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Abstract 

In this paper, a novel structure of a compact UWB slot antenna and its design optimization procedure has been 

presented. In order to achieve a sufficient number of degrees of freedom necessary to obtain a considerable size 

reduction rate, the slot is parameterized using spline curves. All antenna dimensions are simultaneously adjusted using 

numerical optimization procedures. The fundamental bottleneck here is a high cost of the electromagnetic (EM) 
simulation model of the structure that includes (for reliability) an SMA connector. Another problem is a large number 

of geometry parameters (nineteen). For the sake of computational efficiency, the optimization process is therefore 

performed using variable-fidelity EM simulations and surrogate-assisted algorithms. The optimization process is 

oriented towards explicit reduction of the antenna size and leads to a compact footprint of 199 mm2 as well as 

acceptable matching within the entire UWB band. The simulation results are validated using physical measurements 

of the fabricated antenna prototype. 
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1. Introduction 

 
Size reduction is one of the important criteria in the design of contemporary antennas [1]. It 

is especially important for wireless communication systems [2], wearable devices [3], as well 

as internet of things applications [4, 5]. Unfortunately, achieving a compact geometry and 
maintaining acceptable electrical performance are conflicting goals and, in practice, a 

compromise solution has to be sought. In the case of UWB antennas, reduction of size (and, 
consequently, a ground plane) leads to shortening the current path and matching problems at 

lower frequencies [2]. A number of techniques have been developed to alleviate this difficulty, 

such as various ground plane modifications (e.g., I-shaped [6] and L-shaped stubs [7], protruded 

ground plane structures [8], slits below the feed line [7], stripline-fed designs [9], etc.) but also 

slot and quasi-slot structures [10]. 

Topological modifications leading to a reduced antenna size also result in an increased 

number of geometry parameters that need to be adjusted but also increase complexity of the 

structure. This means a higher computational cost of evaluating the electromagnetic (EM) 

simulation model of the antenna, also because the latter has to include − for the sake of 

reliability − additional components, such as a connector [7]. Taken together, the above factors 
make the process of adjusting structure dimensions very challenging. In particular, traditional 

design methods largely based on experience-driven parameters’ sweeps are unable to yield truly 

optimum designs. This is not only because of the fact that multiple parameters cannot be 

effectively handled this way but, most importantly, because a typical design flow aims at 

obtaining an acceptable level of the in-band reflection (and, perhaps, other important 
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characteristics). A small size is normally a byproduct of the geometrical modifications 

introduced into the design, but not the effect of explicit minimization of the antenna dimensions 

through numerical optimization [10]. 

Cost-efficient simulation-driven design of antenna structures can be realized either through 

gradient-based optimization using adjoint sensitivities [11, 12] or by means of surrogate-

assisted algorithms [13, 14]. The latter approach is more generic and accessible because the 

majority of surrogate-based techniques are derivative-free [13]. Efficient optimization methods 

enable to simultaneously handle the antenna size and its electrical performance parameters, see, 
e.g. [15].   

In this paper, a novel structure of a compact UWB slot antenna is proposed. In order to 

increase the number of degrees of freedom the slot is parameterized using splines. The antenna 

dimensions are adjusted through automated numerical optimization involving variable-fidelity 

EM simulation models. The optimization process is oriented towards explicit size reduction of 

the structure. The final design features a very small footprint of 199 mm2 and acceptable 

matching below –10 dB in the 3.1 GHz to 10.6 GHz frequency range. Experimental validation 

of the fabricated antenna prototype is provided. 
 

2. Proposed spline-parameterized UWB slot antenna structure 

 

The structure of proposed slot antenna is shown in Fig. 1. The geometry is based on a design 

of [16]. The reference structure consists of a microstrip line feed and a stepped impedance 

ground plane slot. The antenna proposed here has been modified to preserve the compact 

geometry and simultaneously ensure its acceptable electrical performance. The introduced 

changes include redesign of the geometry using splines, loading the driven element by the low-

impedance stub, as well as introduction of additional degrees of freedom. 

The structure is implemented on a Taconic RF-35 substrate (εr = 3.5, tanδ = 0.0018, h = 
0.762 mm). The design parameters are: x = [l0 lg1r lg2 ls1 ls2 ls3 ls4 ls5 lf1r lf2r ws1 ws2 ws3 ws4 wf2 of1r 

os2r os3r os4r]T. Dependent dimensions (see Fig. 1) are: lg1 = lg1r(l0 – ws1), lf1 = lf1r∙l0(1 – lf2r), lf2 = 

l0∙lf1r∙lf2r, of1 = of1r(ls1 + ls2 + ls3 + ls4 + ws4 + lg2 – wf1), os2 = 0.5(os2r(ws1 – ws2) – ws2), os3 = 

0.5(os3r(ws2 – ws3) – ws3) and os4 = 0.5(os4r(ws3 – ws4) – ws4), whereas wf1 = 1.7 remains fixed to 

ensure 50 Ohm input impedance (the unit of non-relative dimensions is mm). It should be noted 

that the structure is geometrically small. Therefore, its EM model is supplemented with an SMA 

connector to improve reliability of the simulation results. 

 

3. Design optimization methodology 

 
In this section, we briefly explain the design optimization technique utilized to adjust the 

geometry dimensions of the antenna. The optimization process is oriented towards explicit size 

reduction of the structure. The acceptable level of in-band reflection is ensured by means 

of a penalty function approach. 

 

3.1. Computational models 

 
The primary EM antenna model R (referred to as the high-fidelity model) is implemented in 

CST Microwave Studio [17] and simulated using its time-domain solver. It contains about 

5,500,000 mesh cells, and its evaluation time on a dual Intel E5540 machine with 6 GB of RAM 

is about 44 minutes. In the design process, we also exploit a coarse-discretization version of R, 

referred to as the low-fidelity model Rc, that is also implemented in CST (~475,000 mesh cells, 

simulation time 152 s). 
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3.2. Problem formulation 

 

There are two design goals to be attained, specifically (i) minimization of the antenna 

footprint S(x), and (ii) maintaining the antenna reflection in the UWB band below –10 dB. The 

design problem is formulated as:  

x* = argmin{x : U(R(x))},                                                 (1) 

where U is the objective function defined as:  
2( ( )) ( ) ( ( ))R x x R xU S gβ= + ⋅ .                                          (2) 

The second term in (2) is a penalty function defined as:  

11 3.1GHz to10.6 GHz
max{| | } 10

( ( )) max ,0
10

+ 
=  

 
R x

S
g .                          (3) 

It should be noted that the penalty function g(R(x)) = 0 if |S11| ≤ –10 dB in the entire UWB 

band, and it is positive otherwise. In other words, the penalty term contributes to the objective 

function if and only if the reflection requirement is violated. Here, β is a penalty factor (we use 

β = 1000). Its value has to be adjusted so as to make the contribution of the penalty term 

considerable in the case of a substantial violation of the maximum reflection threshold. 
 

3.3. Optimization algorithm 

 

Due to a considerable computational cost of R, a surrogate-assisted design procedure is used 

[7] to speed up the process of geometry parameter adjustment. In particular, the optimum design 

x* is approximated by a series of designs x(i), i = 0, 1, …, obtained as: 

  

 

 

Fig. 1. The geometry of the proposed compact UWB slot antenna. Black dots and white squares represent  

the spline nodes. 
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x
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where the surrogate model Rs
(i) at iteration i is constructed from the low-fidelity model Rc using 

frequency scaling and output space mapping [13]. Due to a good correlation between the low- 

and high-fidelity models, the algorithm converges in a few iterations despite the large number 

of geometry parameters of the antenna. 
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4. Numerical results  

 
The initial antenna design x0 = [22 0.52 1.4 2.3 2.1 1.6 0.7 2.7 0.68 0.5 4.6 0.8 3.2 0.9 1.7 

0.7 0 0 0]T has been estimated based on dimensions of the reference structure of [16]. The final 

design x* = [19.52 0.39 1.57 3.8 1.74 1.49 0.68 2.61 0.64 0.46 4.48 0.69 3.31 0.93 2.35 0.72 

0.07 –0.99 0.87]T has been obtained after five iterations of the procedure described in Section 3.  

Comparison of the antenna reflection responses at the initial and the final design is shown in 

Fig. 2. It should be noted that dimensions of the optimized structure are 10.2 mm × 19.5 mm 
and it features an overall footprint of 199 mm2. Moreover, the final antenna design meets the 

imposed requirements concerning reflection: it is below the acceptable level of –10 dB within 

the 3.1 GHz to 10.6 GHz band, which is not the case for the reference design of [16].  

The proposed structure has been compared regarding the occupied area with other state-of-

the-art structures including a miniaturized slot antenna [16], compact monopoles [4, 7, 18] and 

strip-line-fed structures [9]. The mentioned designs are implemented on substrates with varied 

electrical properties. For the sake of reliable comparison dimensions of the considered 

structures have been expressed as the guided wavelength λg (defined for the 50 Ohm line 
operating at the 6.85 GHz center frequency). The results gathered in Table 1 indicate that the 

proposed antenna structure, although not the smallest in respect of the absolute size, features 
the lowest λg

2 footprint. It should be noted that, in metric units, the presented spline-

parameterized antenna is slightly larger than the reference design of [16]. However, the 

reference antenna violates the specification upon the minimal acceptable in-band reflection 

below –10 dB.  

 
Table 1 Comparison of UWB antennas’ geometry. 

Antenna Dimensions mm × mm Size mm2 Effective λg × λg Footprint#  λg2 

Design [18] 10.0 × 32.5 325 0.42 × 1.38 0.89 

Design [9] 7.00 × 25.0 175 0.43 × 1.07 0.46 

Design [4] 10.0 × 25.0 250 0.39 × 0.97 0.38 

Design [7] 15.8 × 22.0 348 0.50 × 0.69 0.35 

Design* [16] 8.50 × 22.0 187 0.35 × 0.92 0.32 

This work 10.2 × 19.5 199 0.39 × 0.74 0.28 

#  For fair comparison, the antenna size is expressed in terms of the guided wavelength corresponding to the substrate 

properties the design is implemented on. 
*  Design violates the imposed requirement upon the acceptable in-band reflection level below –10 dB. The structure 

exhibits reflection below –8 dB. 

 

 

Fig. 2. The reflection response of the proposed UWB slot antenna at the initial (– –) 

 and the optimized (––) design. 
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5. Experiment 

 
The proposed compact UWB antenna has been fabricated and measured. Photographs of the 

manufactured prototype are shown in Fig. 3. Fig. 4 presents a comparison of its simulated and 

measured reflection characteristics. The results are in a good agreement. The measured response 

slightly (below 0.3 dB) violates the design specification at its upper edge, which is considered 

acceptable for a structure with such small dimensions. 

Figure 5 shows a comparison of the simulated and measured gain characteristics of the 

structure at the direction perpendicular to its surface (here, direction y; cf. Fig. 1). The 

characteristics are in close resemblance. The average in-band gains are –0.8 db and –0.5 for 
simulation and measurements, respectively.  

 

 

Fig. 3. Photographs of the fabricated compact UWB slot antenna. 

 

 

Fig. 4. The simulated (– –) and measured (––) reflection characteristics of the proposed UWB antenna. 

 

 

 

Fig. 5. The simulated (– –) and measured (––) gain characteristics of the compact UWB slot antenna. 
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Fig. 6. Comparison of the simulated (– –) and measured (––) H-plane radiation patterns of the proposed UWB 

slot antenna at selected frequency points. 

 

A comparison of antenna E-field radiation patterns obtained for its H-plane (x−y plane; cf. 
Fig. 1) is provided in Fig. 6. The agreement level between simulations and measurements is 

acceptable. It should be noted that the peak radiation pattern shifts clockwise with the frequency 

increase (from about 135° at 3.1 GHz to ~45° at 9 GHz), however its change at 90° remains 

below 1.5 dB at selected frequencies and, from this perspective, it can be considered stable. 

Moreover, the H-plane front-to-back ratio remains below 3 dB and 7 dB for simulations and 

measurements, respectively. The discrepancies between simulated and measured field 

characteristics are mostly the result of electrically large measurement setup, which was not 

accounted for in the antenna EM model. To some extent, the observed discrepancies are also 

introduced by fabrication and assembly imperfections (allocation of the SMA connector, the 

influence of solder, etc.). 
 

6. Conclusion 
 

In the paper, a novel structure of a miniaturized UWB slot antenna with the spline-

parameterized geometry has been proposed along with a computationally-efficient procedure 

for size-reduction-oriented optimization of its dimensions. Simultaneous adjustment of all 

relevant parameters led to a very compact size of only 199 mm2 while maintaining good 

electrical performance. Design correctness has been verified experimentally. 
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