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Abstract

Calculation of quantum mechanical rate constants directly from ab initio atomic
forces

Andri Arnaldsson

Chair of the Supervisory Committee:
Professor Hannes Jónsson

Chemistry

Harmonic quantum transition state theory (HQTST), sometimes referred to as ’instanton

theory’ or ’ImF theory’, has been implemented in an efficient way and tested. HQTST is

analogous to the more familiar classical harmonic transition state theory (HTST), where

the rate is estimated from the energy difference between a reactant state minimum and

a first order saddle point on the potential energy surface ridge that separates reactants

and the products, along with a prefactor derived from harmonic expansion of the potential

around both the minimum and the saddle point. The method described here makes use of a

generalized minimum mode following method to locate saddle points on the effective quan-

tum mechanical energy surface for discretized Feynman path integrals (FPI). The overall

computational cost of estimating rate constants with this method is relatively low and it is

possible to use directly atomic forces obtained from first principle calculations. The method

is also well suited for systems containing many degrees of freedom, on the order of a few

hundred. Usually, a well converged results is achieved with 500 - 700 force calls per system

replica used to represent the FPI.

The method has been tested on several one- and two-dimensional systems where more

accurate (or even analytical) solutions for the rate constant can be obtained. Not only is

it found to robust and fast, but accurate as well, yielding results within a factor of 2-3

from the exact values, indicating that the approximations inherent in the procedure are





well justified for chemically relevant systems. In addition, the method has been used for

calculating the rate of various transitions involving hydrogen atoms or molecules where

the atomic forces are derived from empirical, semi-empirical or first principle calculations.

Calculations presented here include the rate of hydrogen abstraction from gas phase H3BN3,

hydrogen atom diffusion in Ta and Pd, adsorption/desorption of H2 onto/from Cu(100) and

Cu(110) surfaces and hydrogenation of N on Ru(0001) surface. Comparison is made with

either higher level theoretical calculations or experimental results when available, and the

agreement is found to be good in all instances.
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GLOSSARY

AB-INITIO: From first principles. This expression can mean different things in different

fields. In the field of quantum chemistry, it means that a calculation was done by solv-

ing Schrödinger’s equation for the electrons in the system without using any empirical

data. In solid state physics the term also includes methods such as density functional

theory.

CLASSICAL DYNAMICS: The time evolution of Newton’s equations for a classical system.

CFP: Closed Feynman path

CLOSED FEYNMAN PATH: The Feynman paths that are periodic in imaginary time, that

is start and terminate in the same point. Since the quantum partition function is

given by the trace of the density matrix, it is represented only with closed Feynman

paths.

DENSITY FUNCTIONAL THEORY: An approximate method of solving Schrödinger’s equa-

tion for a system of electrons. The energy and force of the system is calculated from the

electron density. DFT scales better than many-body orbital based quantum chemistry

methods and can be used with larger systems.

DIMER METHOD: A method for finding saddle points that requires energy and force but

not second derivatives. The dimer method can be used to find many different saddle

points on the potential energy rim surrounding a potential minimum.

DFT: Density functional theory.

EAM: Embedded atom method.

vi



EMBEDDED ATOM METHOD: A form of empirical potential function which quite accu-

rately describes some metals including aluminum, nickel, silver and copper.

FPI: Feynman path integral

FEYNMAN PATH INTEGRAL: One formulation of quantum mechanics. The probability of

a particle starting from a given configuration and ending at another some time later

is given by an integral over all possible path connecting the two configurations. In

real time it describes quantum dynamics and in imaginary time, quantum statistical

dynamics.

HARMONIC TRANSITION STATE THEORY: A simplified form of transition state theory

in which the potential is assumed to be of harmonic form both at the minimum

and at the saddle point. This is a good approximation at low enough temperature,

unless quantum effects become important. It typically works well for metals at room

temperature.

HTST: Harmonic transition state theory.

HESSIAN MATRIX: The matrix of force constants (second derivatives of the potential

energy). When this matrix is divided by the masses of the atoms, the eigenvectors are

the normal modes, and the eigenvalues are the square of the normal mode frequencies.

INSTANTON: Stationary phase approximation to the thermal Boltzmann operator. In

the context of this study, the instanton is the saddle point along the MAP. That is,

the CFP with the highest action. It is the quantum mechanical analog to the classical

saddle point in hTST.

MAP: Minimum action path

MEP: Minimum energy path.
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MINIMUM ACTION PATH: Optimal sequence of closed Feynman paths connecting the re-

actant and product states and passing through the instanton. The path has the highest

statistical relevance in the quantum mechanical partition function since it represents

the lowest action.

MINIMUM ENERGY PATH: A path between two points on a potential surface of the lowest

possible energy. This path follows the direction of steepest descent.

NEB: Nudged elastic band.

NUDGED ELASTIC BAND: A method for finding the minimum energy paths between two

points on a potential surface. A path of discrete images of a system are connected by

springs (elastic band) and allowed to collectively relax. The ‘nudging’ refers to the

fact that the spring forces act only along the band, and the potential forces act only

perpendicular to the band. Typically this method is used to find the MEP and saddle

point(s) between two potential minima.

PES: Potential energy surface.

POTENTIAL ENERGY SURFACE: Each point in configuration space represents one config-

uration or position of the atoms in the system. For this position, there is a potential

energy. The potential energy surface is the surface defined by the value of the potential

energy at each point in configuration space.

SADDLE POINT: A point on a potential surface at which the force is zero and at which

there is one negative curvature or unstable mode in the Hessian matrix.

TRANSITION STATE: A bottle neck region which a system must cross in order to undergo

a transition from a given initial state. The transition state has dimension one less than

the full system.
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TRANSITION STATE THEORY: A theory for calculating the rate at which a system leaves

a given initial state (potential energy basin) though a bottle neck region.

TST: Transition state theory.
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Chapter 1

INTRODUCTION

At the heart of physical chemistry and chemical physics lies reaction rate theory. It is

also of importance in solid state physics, for example in studies of diffusion and materials

processing. In principle, the study of transitions requires the study of dynamics, i.e. classical

or quantum dynamics of atoms should be followed to obtain an estimate of the rate of

transitions from one atomic configuration to another. But, such a direct approach fails

because of the disparity between the time scale of atomic vibrations and the time scale of

transitions involving significant rearrangements of the atoms. Typically, the thermal energy,

kBT , that is available to a system per degree of freedom is much smaller than a typical energy

barrier separating two metastable states of the system. The motion of the atoms is most

of the time simply vibrations back and forth within a well or a basin representing a stable

or metastable state and only rarely does a fluctuation bring the system from one state to

another over a free energy barrier. The system spends most of its time fluctuating within one

of the metastable states and only infrequently do the random thermal fluctuations combine

in such a way that a barrier crossing becomes possible. Assuming Arrhenius behavior and

a typical prefactor of 1013 s−1, combined with a low energy barrier of 0.5 eV (48 kJ/mol),

a barrier crossing event will on average occur tens of times per microsecond at 300 K.

Molecular vibrations, however, occur on a time scale of tens of femtoseconds (10−14 s)

so it would on average be necessary to follow a trajectory in a dynamics simulation for

about 1010 vibrational periods in order to observe a transition. In a typical simulation

algorithm the time step for a dynamical trajectory is a tenth of a vibrational period, so

1011 time steps would need to be simulated. With current computer technology and any

technological advances in the foreseeable future, this presents an insurmountable task even

when a simple, classical description of the atomic dynamics is used. When a quantum
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mechanical description of the atoms is required, as is sometimes the case, the calculation of

the dynamics is many orders of magnitude more difficult.

The disparity of time scales between atomic vibrations and thermally induced transitions

makes it impossible to simply follow the dynamical evolution of a system in order to study

typical, thermally activated transitions in chemistry and solid state physics. Rather, a

statistical theory needs to be applied. The most successful approach is transition state

theory (TST). It is well established and widely used for calculating rates of thermally

activated processes in systems where the motion of the atoms can be described with classical

dynamics. The main strength of TST is that the rate at which a transition takes place can

be calculated statistically instead of dynamically. Classically, the rate could be estimated

by following a swarm of dynamical trajectories by integrating Newton’s equations motion

forward in time and count how many managed to move from the reactant state to the

product state over a given time interval. A more feasible way, as presented by TST, is

to estimate the statistical probability of finding the system in a transition state between

the reactants and products and calculating the flux out from the transition state towards

the products. The problem is reduced from having to explicitly follow each coordinate’s

time evolution by solving Newton’s equations of motion to one where the reaction rate is

proportional to the relative probability of the system coordinates to be found at a transition

state. The dynamical problem is transformed into a problem of evaluating a thermodynamic

partition function.

Given that a system adheres to the basic assumption of TST, remarkably accurate

results can be achieved over a wide range of temperature. The assumptions made in TST

are: (1) that the time scales be such that a thermal equilibrium is maintained for each

degree of freedom in the initial state throughout the process, and (2) that a dividing surface

between reactant and product regions can be found so that each trajectory which originates

in the reactant state and crosses the dividing surface will end up on the product side

without crossing the dividing surface again. Most often the dividing surface is chosen to

be a hyperplanar surface located in a region where the potential energy is high. But,

it is, in fact, not necessary for there to be an energy barrier separating the reactants and

products, entropic barriers suffice as well. For instance, effusion of particles from a pressured
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container through a pin hole is exactly described by TST. The recrossing criterion leads to a

variational principle since some of the paths crossing the dividing surface will not end up in

the product state but instead recross the surface, heading towards the reactants again. Any

recrossing of the dividing surface results in an overestimation of the true rate. The TST

rate is a rigorous upper bound to the true rate. Through the variational principle [1, 2],

a dividing surface in configuration space can be found, that separates the products and

the reactants and minimizes the rate. Optimization of the location [3] and shape of the

dividing surface such that the number of recrossings is minimized is generally referred to

as variational TST (VTST). In some cases, a hyperplanar dividing surface cannot give a

good rate estimate and it is then important to allow the surface to curve and bend freely

so as to minimize the calculated rate. However, finding such a surface in high dimensional

space is practically impossible, although some success has been made for low dimensional

systems [4]. No matter what dividing surface is used, it is in principle possible to correct

the TST estimate of the rate constant by running classical trajectories from the transition

state and counting the recrossings. However, such a calculation becomes impractical unless

the dividing surface is chosen well. The combination of a VTST followed by dynamical

corrections due to recrossings represents a two step algorithm for calculating the exact rate

constant without ever having to run the impossibly long trajectories that start at the initial

state.

Within the harmonic approximation to TST, HTST, the transition state is chosen to be

a hyperplane that contains the highest saddle point on the potential energy surface that lies

on the minimum energy path that connects the reactant and product energy minima. A rate

constant can then be obtained if one can find this saddle point and evaluate the frequency of

the vibrational modes both at the saddle point and the initial state. This is the form of TST

that is most often used. First principles calculations, where the electronic degrees of freedom

are solved using the Schrödinger equation, are routinely coupled to HTST to estimate rates

since the computational effort of finding saddle points and the vibrational frequencies is not

too large, typically on the order of 1000 force evaluations. The combination of full TST in

conjunction with first principles methods is however rarely done. The computational effort

is still too large, on the order of 100,000 force evaluations.
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Transition state theory is inherently classical. However, it is well known that quan-

tum mechanical effects can be important especially when light atoms such as hydrogen are

involved in the transition. Such effects can be due to the fact that a quantum particle is

delocalized and therefore cannot have the minimum potential energy - the zero point energy

effect. A stronger quantum effect, which again is a consequence of the quantum delocaliza-

tion, is the possibility that a quantum mechanical particle tunnels from one local minimum

to another on the potential energy surface. For several systems, such as hydrogen atom

diffusion in metals, a drop in the effective activation energy as temperature is lowered has

been interpreted as onset of such quantum, tunneling mechanism. The extension of TST

to quantum systems has been a long standing effort and is still a matter of active research.

It is even more important for quantum systems to apply some kind of TST approximation

and get away from calculating dynamical evolution of the system and evaluate statistical

properties instead, as is done in TST. Accurate quantum dynamics calculation can only

be performed for very short periods of time and for systems with only a few degrees of

freedom, on the order of 6 or so. Various theoretical approaches have been developed. The

most successful ones rely upon the imaginary time Feynman path integral (FPI) [5] formal-

ism of quantum mechanics as pioneered by Gillan [6] and later developed further by Voth,

Chandler and Miller [7], and by Messina, Schenter and Garrett [8] and by Mills, Schenter,

Makarov and Jónsson [9, 10, 11]. The evaluation of the rate constant with those methods

requires many force evaluations, many more than full, classical TST, and is therefore not

practical to use in combination with first principles methods.

A harmonic version of FPI based quantum transition state theory, HQTST, has been

developed and is generally referred to as ’instanton theory’. It requires much fewer force

calculations in the evaluation of a rate constant, although many more than classical HTST.

The goal of the work presented in this thesis was to develop an efficient implementation

of instanton theory to make it possible to carry out calculations of quantum mechanical

rate constants that include the tunneling mechanism directly from first principles atomic

forces. This implementation is described in Chapter 2. Chapter 3 reports on a few test

cases to assess the accuracy of the HQTST method and Chapter 4 reports on rate constant

calculations using first principle atomic forces. The rest of chapter 1 is devoted to a review
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of the various flavors of rate theory, both classical and quantum mechanical.

1.1 Classical transition state theory

If the transition state (TS) represents a tight bottle neck for going from reactants (R) to

products (P), then one can approximate the rate constant in a simple way

kTST = (probability of making it to the TS) · (rate of crossing TS from R to P)

=
σ
∫
‡ e
−V (~x)/kBT d~x∫

R e
−V (~x)/kBT d~x

< v⊥ >

σ
(1.1)

where < v⊥ > is the average velocity in crossing the TS, in a direction normal to the

dividing surface and σ is the width of the transition state. Since the width of the TS

is infinitesimal, the potential energy can be taken to be constant in the direction normal

to the dividing surface. The key assumption here is that if the system leaves the TS in

the direction towards the product region, P, then the system will continue to stay in the

product region and spend an extended time there until another energetic fluctuation takes

it back to R. This is the central approximation in TST. This is a good approximation if

the dynamics are simple and the classical trajectories do not go back and forth over the

dividing surface before landing in either R or P. The other two other approximations in

TST are the assumption that classical dynamics on the Born-Oppenheimer surface are a

valid description of the dynamics, and that the reactant has reached equilibrium conditions,

i.e. the energy in each degree of freedom is described by the Boltzmann distribution. For a

typical transition rate, there is a very large number of vibrations in between reactive events

(on the order of 1010), so the last approximation is usually an excellent one.

The average velocity in crossing the TS < v⊥ > can be calculated from the Maxwell

distribution

< v⊥ > =

∫∞
0 v e−

P
i

1
2
µv2/kBT dv∫∞

−∞ e−
P

i
1
2
µiv2i /kBTdv

=

√
kBT

2πµ
(1.2)

Here µ is an effective mass for the motion across the TS, a linear combination of the masses

of the atoms that get displaced in the transition, µ =
∑
µin

2
im, where ni are the components

of the normalized vector representing the unstable mode at the transition state. The TST
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approximation to the rate constant can then be written as

kTST =

√
kBT

2πµ
Z‡

ZR
(1.3)

where Z (configurational integrals) denotes the integral of the Boltzmann factor over the

specified region of configuration space.

1.1.1 Variational classical transition state theory

If a classical trajectory crosses the TS and then for some reason gets reflected and ends up

again in the reactant region, R, before settling down in the product region, then the TST

approximation will have overcounted the number of reactive trajectories and the TST rate

constant estimate will be too high. Also, if a trajectory crosses the dividing surface three

times, the TST approximation will count that as two reactive trajectories even though

it really is only one. Again the TST approximation will lead to an overestimate of the

rate constant. It can be shown that these and other corrections to the ”no recrossing”

approximation in TST all lead to an overestimate, so we have

kTST ≥ kexact (1.4)

This gives a variational principle for placing the dividing surface, i.e. one can vary its

position so as to obtain a minimal value of kTST. That is the best estimate that can be

obtained from TST. It can be shown that this minimization of kTST corresponds to finding

the dividing surface that has the maximum free energy. This is referred to as variational

TST (VTST).

If a good dividing surface is found, then the TST estimate of the rate constant is typically

within a factor of two or so of the exact rate constant. This is typically accurate enough,

there are other errors that tend to be more important, such as the construction of the

potential energy surface. However, if a more accurate estimate of the rate constant is

needed, then it is quite easy to start classical trajectories from the TS and count how often

recrossings occur. This only requires short trajectories because the system falls quite rapidly

from the TS towards either R or P. This way a correction factor, κ, can be computed such
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that

kexact = κ kTST (1.5)

In the end, TST is then just an intermediate construct that enables the computation of kexact

without having to do the impossibly long classical dynamics calculations of a trajectory that

oscillates back and forth in the reactant region before getting a rare, high energy kick from

the heat bath that is large enough to make it through the bottle neck region.

1.2 Harmonic, classical transition state theory

For systems where the atoms are vibrating about fixed average positions, such as atoms in

solids, or molecules reacting on the surface of a solid, the region of the potential surface that

is of greatest importance can be represented by a harmonic approximation. For a diatomic

molecule, the interaction potential, which is only a function of the distance between the

atoms, can be expanded in a Taylor expansion that gets truncated at the second power to

give v(r) ≈ v(r0) + 1
2kx

2 where x = r − r0 and r0 is the distance at which the potential

energy is minimal. The generalization of this to systems with more than one vibrational

degree of freedom involves the calculation of normal mode coordinates, qi. The normal mode

expansion can be carried out for any point on the potential energy surface, in particular

at the minimum in the potential surface corresponding to R. Since the force is zero at the

minimum, the first derivative of the potential vanishes and the expansion of the potential is

V R(~x) ≈ Vmin +
D∑
i

1
2
kRi q

2
R,i (1.6)

in the region close to the minimum. Here, Vmin is the energy at the minimum, kRi are the

force constants for each normal mode and D is the number of degrees of freedom. While

this will not be a good approximation for regions far from the minimum, the approximation

is good enough if the potential energy is high enough in those regions that the probability

of finding the system there is insignificant.

If the dividing surface is chosen to lie along the potential energy ridge that separates

the reactant state from the product state, then the most important point on the dividing

surface, the point with largest statistical weight, is a saddle point. It is a minimum with
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respect to all the degrees of freedom within the dividing surface, but a maximum with

respect to the motion normal to the dividing surface. If more than one saddle point exists

on the potential energy ridge, then the lowest energy one is most important. Let’s assume

there that there is only one saddle point, and carry out a Taylor expansion there of the

potential energy within the dividing surface

V ‡(~x) ≈ VSP +
D−1∑
i

1
2
k‡i q

2
‡,i (1.7)

The first term on the right, VSP , is the energy at the saddle point. The normal mode

corresponding to motion normal to the dividing surface is not included. The width, σ, of

the TS is so small normal to the dividing surface that the potential is taken to be constant

in that direction. With these approximations to the potential energy surface, the TST

expression for the rate constant becomes the harmonic TST (HTST) approximation

kHTST =

√
kBT

2πµ
Z‡

ZR
=

√
kBT

2πµ

∫∞
−∞ e

−
PD−1

i
1
2
k‡i q

2
‡,i/kBT dq‡,i∫∞

−∞ e
−

PD
i

1
2
kR

i q
2
R,i/kBT dqR,i

(1.8)

For each one of the normal modes∫ ∞
−∞

e−
1
2
kiq

2
i /kBT dqi =

√
2πkBT
ki

(1.9)

So,

kHTST =

√
kBT

2πµ

ΠD−1
i

√
2πkBT
k‡,i

ΠD
i

√
2πkBT
kR,i

e−(VSP−Vmin)/kBT (1.10)

The factors of kBT cancel out and all factors of 2π except for one

kHTST =
1

2π
ΠD
i

√
kR,i/µi

ΠD−1
i

√
k‡,i/µi

e−(VSP−Vmin)/kBT (1.11)

Here, the square root of the effective mass for the normal modes has been multiplied

both in the numerator and the denominator. Recall that the vibrational frequency is

ν = ω/2π = 1
2π

√
k
µ so

kHTST =
ΠD
i νR,i

ΠD−1
i ν‡,i

e−(VSP−Vmin)/kBT (1.12)

The HTST approximation agrees with the empirically observed Arrhenius expression for the

temperature dependence of the rate constant. It is simply the potential energy difference
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between the saddle point and the minimum corresponding to the reactant region. The

prefactor has to do with the vibrational entropy. If the vibrational frequencies are low at

the saddle point compared with the minimum, corresponding to a wide mountain pass, then

the prefactor is large. If the potential energy rises quickly away from the SP within the

dividing surface, quicker than in the vicinity of the minimum, then the prefactor is small.

So far, only vibrational contribution to the partition functions has been considered.

Assuming separability of the various degrees of freedom, contributions from translational,

rotational and electronic partition functions can be properly accounted for by [12]

Q(T ) = QelectQtransQrotQvib. (1.13)

How the individual terms are treated is discussed in Sec. (1.5). Most often in this thesis,

the simple case of only vibrational contributions will be used

kHTST(T ) =
1

2π

∏3N
i ωRi∏3N−1
i ω‡i

exp (−∆E/kBT ) (1.14)

where N is the number of atoms used, ω’s are the angular vibrational (harmonic)-frequencies

of the reactant state and the saddle point and ∆E is the energy difference between the

two configurations on the Born-Oppenheimer surface. Note that the imaginary frequency,

corresponding to the unstable vibrational mode at the saddle point is left out from the

product.

1.3 Quantum mechanical corrections to TST

The discussion above has been entirely in terms of classical mechanics. At low temperature

the classical treatment of the atomic motion is often not good enough. First of all, one

needs to take into account the zero point energy of the vibrational ground state. In the

most extreme case, one needs to take into account that the system might tunnel from

the reactant configuration to the the final product configuration. The full extension of

TST to quantum systems is still an area of active research. Often, the effect of quantum

delocalization is added to TST calculations by including zero point energy in the activation

energy. This is then done replacing Vmin − VSP by

Ea =

(
VSP +

D−1∑
i

hν‡,i
2

)
−

(
Vmin +

D∑
i

hνR,i
2

)
(1.15)
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Since there is one fewer vibrational mode at the SP than at the minimum, the addition

of the zero point energy tends to reduce the energy barrier. One consequence of this is

that transitions involving the displacement of a deuterium atom tend to have higher barrier

than transitions where a hydrogen atom is displaced. The zero point energy of deuterium is

smaller because of the larger mass (more classical). This is often referred to as the kinetic

isotope effect. However, this is not necessarily so, if the vibrational frequencies are higher

at the SP than at the minimum, then the total zero point energy at the SP can be higher

than at the minimum, even though there is one fewer modes there. This can lead to the

so called reverse isotope effect. The use of such a zero point energy correction in thermally

activated transitions where the system is necessarily confined to the ground vibrational state

is, however, of questionable validity. This issue is addressed in the appendix in calculations

of methane and hydrogen desorption from Ni(111) surface.

Another particularly simple way to introduce quantum effects into the rate expression

is to substitute the classical partition function, especially for vibration, with their quantum

mechanical analogs. With that, Eq. (1.14) becomes

kqq−HTST(T ) =
kBT

2πh

∏3N
i 2 sinh

(
h̄ωRi /2kBT

)∏3N−1
i 2 sinh

(
h̄ωTSi /2kBT

) exp (−∆E/kBT ). (1.16)

This introduces zero point energy in a more self-consistent manner than simply adding it

to the exponent. Still, no tunneling has been accounted for.

A more elaborate method, which includes quantum effects along the reaction coordinate

is the small curvature tunneling (SCT) approximation [13, 14, 15]. The SCT approximation

is based on considering a harmonic expansion of the potential energy surface written in

terms of the reaction coordinate, s, and the 3N -1 orthonormal normal modes of vibration,

centered along s. Averaging the resulting Hamiltonian over the the vibrational degrees of

freedom introduces an effective mass into the one dimensional description of the system

movement along the reaction coordinate. The effective mass can be interpreted in terms

of the curvature along the reaction coordinate. In the standard WKB semi-classical ap-

proximation [16, 17, 18] the rate is approximated as ratio of (canonical)-probability of a

nonclassical transmission through the barrier over the classical probability, multiplied by
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the classical rate constant

kSCT(T ) =

∫∞
0 P (E) exp(−E/kBT )dE∫∞

0 H(E − V (s‡)) exp(−E/kBT )dE
kclassical(T ) (1.17)

with H(...) as the Heaviside function, V (s‡) as the maximum along the reaction coordinate

and where the transmission probability is given by

P (E) = {1 + exp 2θ(E}−1 (1.18)

and θ(E) is the imaginary action integral

θ(E) =
1
h̄

∫ s>

s<

{2µ(s)[V (s)− E]}1/2 . (1.19)

Here s<, s> are the turning points for the classically forbidden region, (V (s<) = V (s>) =

E). By including tunneling from the classically forbidden region, where the momentum is

imaginary (negative kinetic energy) a negative centrifugal effect is introduced. So instead

of moving outwards away from the path, the system climbs up along the inside wall of

the potential (cuts the corner), effectively shortening the reaction path and making the

reaction barrier look lower and thiner to the penetrating particle [19]. Both contribute to

an increased reaction rate, as compared to purely classical over-the-barrier movement By

including the effective mass, the imaginary action integral becomes.

θ(E) =
1
h̄

∫ s>

s<
{2µeff(s)[V (s)− E]}1/2 (1.20)

where the mass has been substituted with an effective tunneling mass, µeff . The effective

mass can be calculated by setting up Hessian matrices along the reaction path and diag-

onalizing. In addition, the curvature of each vibrational mode must be found along the

reaction coordinate. Although Hessian matrices can be updated along the path starting

from a few neighboring exact matrices via a Bofill [20] updating scheme, this procedure

is still prohibitively expensive for large systems. If the reaction path curvature is ignored

then µeff = µ and tunneling along the classical reaction coordinate is recovered. For further

information, see [13, 14, 15].
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1.4 Quantum rate theory based on Feynman path integrals

In Feynman’s formalism for quantum statistical dynamics, a quantum partition function,

Q, is the trace of the equilibrium, thermal density matrix, ρ. The density matrix is directly

derived from the real-time propagator from quantum dynamics, which gives the amplitude

for a system to go from q1 to q2 in time t, by introducing a Wick rotation where the real

time is rotated to pure imaginary time. The density matrix is

ρ(q1, q2, βh̄) =
∫
e−SE [q(τ)]/h̄ D[q1→2(τ)]. (1.21)

Here D[q1→2(τ)] extends over all possible paths connecting q1 and q2 in (imaginary) time

βh̄ where each path is weighted by the exponent of the corresponding Euclidian action

(SE =
∫ βh̄

0 Hdτ) and where H is the classical Hamiltonian. In the real time quantum

dynamics, the action is a time line integral of the classical Lagrangian. When imaginary

time is substituted for real time in the Lagrangian, two ’i’ will change the sign on the

potential energy term, converting the Lagrangian to a Hamiltonian. By considering the

trace of the density matrix, the quantum partition function is obtained,

Q = Tr(ρ(q1, q2, βh̄)) (1.22)

=
∫
e−SE [q(τ)]/h̄ D[q1→1(τ)]. (1.23)

Since the trace Tr operates on the diagonal of the density matrix, only closed paths are

included. Thus the quantum partition function relies only on paths starting at configuration

q1, traveling along a path for βh̄ time units and then returning to the point of origin. Such

paths will be called closed Feynman paths (CFP). The period of the path is βh̄.

For transitions in classical systems, the path with largest statistical weight is the mini-

mum energy path, MEP, which can be represented as a chain of system replicas stretching

from the reactant region to the product region in configuration space in such a way that

the perpendicular force on each replica is zero and the replicas are connected together via

springs obeying Hook’s law. This is effectively the picture provided by the NEB (Nudged

Elastic Band) method for finding MEPs [21]. The point of highest energy along the MEP is

a saddle point and the transition state in HTST is chosen to be a hyperplane that includes
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Figure 1.1: Closed Feynman path (CFP) for a diatomic molecule. The classical molecule is
situated on the left hand side of the figure, the quantum mechanical CFP on the right. P is
the number of system replicas (here P = 12). The kinetic energy term (due to the imaginary
time) is presented as springs with temperature dependent spring constants (ksp) between
the system replicas where each atom is connected to itself in the neighboring replicas and the
interatomic (within each replica) potential energy is scaled by the number of replicas. Given
a high enough temperature the springs will contract the CFP to the classical configuration.

the saddle point. The quantum mechanical analog of the MEP is the MAP (minimum action

path) [9]. Along the MAP, each point is a CFP and the MAP is traced out in such a way as

to be parallel to the gradient of the Euclidian action in each point and the neighboring CFPs

are connected through Hook springs. Being the path of least action, the MAP is the path

that contributes most to the quantum partition function. The CFP of maximum action

along the MAP (the saddle point) is a saddle point of an extended, quantum mechanical

energy surface and is called the instanton [22].

In accordance with harmonic transition state theory, the task is to locate the saddle

point along the MAP, i.e. the point of maximum action along the MAP. By using a discrete
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Euclidian action along the CFP, gives

SE(q) = ∆τ
P∑
j=1

[
µ

2

∣∣∣∣qmod(k,P )+1 − qj
∆τ

∣∣∣∣2 + V (qj)

]
. (1.24)

Here the mod subscript is used because the CFP is periodic, system replica with coordi-

nates qP is connected to system replica with coordinates q1., ∆τ = τ/P = h̄/kBTP is the

imaginary time step and µ is the mass of each degree of freedom. The CFP has been made

discrete by placing P system replicas along the closed path. This discrete path integral for-

mulation becomes exact as P →∞ [5]. Each replica has a set of coordinates, denoted by q

and the appropriate subscript. The coordinates for the entire CFP is denoted by boldfaced

q. In terms of vector lengths, the q’s are of length N (the number of degrees of freedom)

and q is of length NP , where P is the number of systems replicas in the CFP.

Since it is intuitively simpler to think of potentials (at least for chemists) rather than

action, it can be beneficial to introduce the temperature dependent spring constant ksp(T )

such that

ksp(T ) = µP

(
kBT

h̄

)2

. (1.25)

A simple rearrangement of Eq. (1.24) yields

SE(q) =
h̄

kBT

P∑
k=1

[
1
2
ksp(T )

∣∣qmod(k,P )+1 − qk
∣∣2 +

V (qk)
P

]
︸ ︷︷ ︸

Veff (q,T )

(1.26)

where the sum has been defined to be some effective potential energy surface since it has

units of energy. It is equivalent to weigh each closed path in the quantum partition function

(Eq. (1.23)) by exp(−SE(q)/h̄) or by exp(−Veff (q, T )/kBT ). The physical interpretation

of this effective potential surface is quite obvious [23]: The classical system has been divided

into P replicas of itself along the closed Feynman path where each replica is connected to its

immediate neighbors via temperature dependent springs obeying Hook’s law and experience

a 1/P of the potential energy that a classical system at the same location would. Above

the crossover temperature Eq. (1.27) the effective potential equals the classical potential as

all the system replicas collapse to a single point in the N -dimensional coordinate space.

At low enough temperature, the effective potential Veff will develop saddle points off

the classical MEP which correspond to paths where thermally assisted tunneling is the
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dominating mechanism, see Fig. (1.2). The crossover temperature, where tunneling starts

to play a significant role, can be estimated from the curvature of the MEP at the classical

saddle point. If ω is the magnitude of the imaginary vibrational frequency of the unstable

mode at the saddle point, the crossover temperature is given by [6]

Tc =
h̄ω

2πkB
. (1.27)

In terms of the spring constants in the CFP this corresponds to temperature where the

spring constants become to weak to overcome the curvature of the potential. The restoring

force of the springs is not strong enough to keep the CFP collapsed at a single point, so the

path opens up and spreads out towards the reactant and products, representing quantum

mechanical delocalization and onset of thermally assisted tunneling.

1.5 Instanton theory, a harmonic quantum mechanical TST

In classical, harmonic transition state theory, where reaction rates can be estimated by

expanding the potential energy surface around the classical saddle point in a second order

Taylor polynomial. Applying the same analogy as before between the MEP and MAP

then an approximate quantum mechanical rate can be obtained by expanding the Euclidian

action around the instanton on the MAP to second order. The instanton rate constant,

kinst is given by [24]

QR kinst =

√
S0

2πh̄
1

∆τ |
∏′
j λj |

e−Sins/h̄. (1.28)

Here, Sins is the value of the effective potential at the instanton, the λj are the frequencies

of the normal modes of vibration of the chain at the instanton. If the system has NP

dimensions then NP − 2 frequency values will be real and positive. One will be purely

imaginary corresponding to the unstable mode. The absolute sign around the the product

in Eq. (1.28) is the result of the imaginary frequency, only the magnitude of the frequency

is relevant. The last eigenvalue is zero and is not included in the product, the prime on

the product sign denotes the absence of this ’zero-mode’. The mode with zero eigenvalue

corresponds to moving the replicas along the CFP path (or, shifting the labels on the
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Figure 1.2: Figure is adopted from Ref.[9]. The top panel show a asymmetric Eckart barrier
with the parameters used in Sec. (3.1). The middle panel show a contour plot of the effective
potential, Eq. (2.1), where the CFP of the simple form q(τ) = qo + q1 sin(2πτ/βh̄). The qo
coordinate represents the centroid of the CFP and the q1 the extent, or delocalization of
the CFP. When the temperature is higher than the crossover temperature, Tc, the CFP is
collapsed at the centroid (qo) coordinate. Any attempt to move of q1 = 0, i.e. introducing
quantum mechanical delocalization, results in a rise in the effective potential. The reaction
coordinate is then the classical MEP, dotted horizontal line, and the CFP is located at
the classical saddle point, black circle. The bottom panel depicts the situation when the
temperature is lower than the crossover temperature. The CFP has now opened up and the
system is delocalized. As described in the text, the effective potential has developed new
saddle points that lie of the classical MEP. The new saddle points are the instantons. The
instanton are the saddle points along a quantum mechanical reaction coordinate, the MAP,
shown as a dashed line going through the instanton (black circle).
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replicas) and is treated separately. Here,

S0 =
µP

βh̄

P∑
j

(qmod(k,P )+1 − qj)2 (1.29)

and is twice the instanton action due to the (imaginary-time) kinetic energy.

1.5.1 HQTST rate

Once the saddle point on the effective potential energy surface has been located, the HQTST

rate can be calculated according to Eq. (1.28). How to calculate QR on the left hand side

is discussed in the Sec. (1.5.2). As Eq. (1.28) is written, only the vibrational part of the

partition function is accounted for. For reactions taking place on a crystal surface, or inside

the crystal bulk, where free translation and rotation are quenched, Eq. (1.28) is of the

appropriate form. But when dealing with a gas phase reaction, the degrees of freedom

corresponding to the three translational and three (assuming a nonlinear system) rotational

degrees of freedom must be project out of the Hessian matrix when calculating the rate

prefactor and substituted back in as independent approximations. Assuming separability of

the various degrees of freedom, the total partition function can be approximated as a simple

product of the electronic, translational, rotational and vibrational contributions. Since the

Born-Oppenheimer approximation is employed the electronic contributions to the overall

rate expression will cancel each other out and can be ignored. The translational part is

given by the usual expression [12]

Qtrans =
(
MkBT

2πh̄2

)3/2

V (1.30)

with M and V as the total mass and volume of the system, respectively. Since the both

the reactant partition function and the instanton partition function contribute the same

amount to the translational partition function, the translational contribution is cancelled

in the rate constant expression (k ∝ QTS/QR) as well.

Here, it is implicitly assumed that the temperature is high enough that the rotation can

always be considered to be purely classical. Care must to taken to validate this assumptions

as the rate is calculated for extremely low temperature values. For the instanton, the
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moments of inertia are approximated as the geometrical mean of the inertia moments of the

individual system replicas along the CFP, as

QCFProt =

((
2kBT
h̄2

)3

π

)1/2

exp

kBTh̄
∫ h̄/kBT

0
dτ loge

(∏
i

ICFPi (τ)

)1/2
 (1.31)

≈

((
2kBT
h̄2

)3

π

)1/2

exp

 1
P

P∑
k=1

loge

(∏
i

ICFPi (τk)

)1/2
 (1.32)

An alternative route would be to assume the CFP to be one super-molecule and simply

calculate the the moments of inertia assuming that each system replica one accounts for

the 1/P -th part of the total mass. The value of the rotational partition function must be

multiplied on the right hand side of Eq. (1.28), at each temperature.

Finally, considering the vibrational partition functions, the CFP is evaluated as always

by diagonalizing the instanton Hessian matrix and projecting out the zero modes. For

a gas phase system there will be seven zero modes, 3 translational modes, 3 rotational

modes (assuming a nonlinear molecule) and the mode corresponding to free rotation of the

periodic orbit. The translational and rotational modes have already been accounted for and

are ignored in the eigenvalue spectra of the Hessian matrix. The remaining mode is handled

in the usual manner, see Eq. (1.29).

1.5.2 Calculating the reactant state partition function

The vibrational partition function for the reactant state is treated exactly alike as for the

instanton. A CFP (discretized with the same number of system replicas) is formed that

is collapsed in the reactant state. As a consequence all the Hessian blocks for individual

system replicas in the CFP are identical and the Hessian matrix for the CFP can be factored

into two parts, one is the Hessian block part with the individual replicas along the diagonal

and the other is the spring constant contributions. The eigenvalues for the spring constant

matrix are known analytically (each one is replicated 3N − 6 times, where N is the number

of atoms)

λ(k)
sp = 4 sin2

(
πk

P

)
, k = 1, 2, . . . , P. (1.33)
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By adding each one of the λ(k)
sp to the the reactant state vibrational modes, the entire CFP

spectrum is obtained. So at the cost of a single diagonalization for one system replica, the

vibrational modes of an arbitrarily sized (collapsed) CFP can be found. It is important to

note that in the limit of infinite resolution of the CFP, the partition function for 3N − 6

independent harmonic oscillators is reclaimed,

3N−6∏
i=1

lim
P→∞

P∏
k=1

{
4 sin2

(
πk

P

)
+ (∆τ)2(ωi)2

}
=

3N−6∏
i=1

1
2 sinh(h̄ω/2kBT )

= QRvib(T ). (1.34)

The classical rotational partition function for an ideal polyatomic molecule is given

by [12] (ignoring any symmetry numbers)

QRrot =

((
2kBT
h̄2

)3

π
∏
i

IRi

)1/2

. (1.35)

Here the Ii’s are the principle moments of inertia (IA, IB and IC) and are easily found as

the eigenvalues of the moment of inertia tensor. For the reactant state, the translational

partition function, Eq. (1.30) is handled identically as in the previous section.
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Chapter 2

EFFICIENT IMPLEMENTATION OF INSTANTON THEORY

The present chapter describes an efficient implementation of instanton theory (harmonic

quantum TST, HQTST), economical enough to be used in systems with tens or even hun-

dreds of degrees of freedom and in combination with first principles evaluation of the atomic

forces. Previously, calculations instantons by identifying periodic, classical orbits on the in-

verted potential energy surface [25, 26, 27]. While such an approach can be applied to

systems with two or three degrees of freedom, extension to larger systems is difficult and

the large number of force calculations required to evaluate the classical trajectories makes

it impractical to apply such an approach in combination with first principles calculations of

the atomic forces.

The implementation presented here relies on the fact that the instanton is a saddle

point on the effective, quantum mechanical potential surface [27, 28]. There are several

analogies between instanton theory and harmonic classical transition state theory. Just

as the saddle point is the point of highest energy along a minimum energy path (MEP),

the instanton is the configuration of a closed Feynman path (CFP) that represents the

largest Euclidian action along a quantum mechanical reaction coordinate, the minimum

action path (MAP) [9, 10, 29]. The well established techniques for locating saddle points

on energy surfaces for systems with many degrees of freedom [30, 31, 32, 33, 34, 21] can,

therefore, also be used to find instantons. The main difference in working with the quantum

mechanical action surface as opposed to the classical potential energy surface is the large

number of degrees of freedom. In going from the classical description to the quantum

mechanical CFPs, the number of degrees of freedom increases by a factor of P , where P is

the number of discrete system replicas used to represent the CFPs - typically between 10 and

100 for the systems of interest here. However, by applying robust methods for finding saddle

points starting from a given initial configuration, the task of finding instantons turns out
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to be tractable even for large systems, provided that a good initial guess for the instanton

can be generated.

At low temperature where tunneling is the dominant transition mechanism, the transi-

tion path can deviate significantly from the MEP. Where the MEP is curved, the tunneling

path will tend to ’cut the corner’, i.e. be shorter at the expense of going through a higher

energy region. It can, therefore, be hard to guess the shape of the CFP at the instanton [19].

The computational approach presented here assumes that one would like to calculate the

transition rate at not just one particular value of the temperature, but rather over a whole

range of temperatures that includes the crossover region, just below Tc. There, the repli-

cas in the CFP at the instanton configuration are all close to the classical saddle point

and spread only slightly away from it, mostly along the direction of the unstable mode.

The rate constant calculations are, therefore, started at a temperature that is only slightly

lower than Tc. A good initial guess for the instanton configuration can then be generated

by distributing the system replicas in an initial CFP along the direction of the unstable

mode, centered at the classical saddle point. After the instanton has been found at this

first temperature value, the temperature is lowered, typically by 10 degrees or so, and the

initial guess for the instanton configuration at the lowered temperature is taken to be the

converged instanton from the previous, higher temperature calculation. From this study,

we have found that the converged instanton CFP is always collapsed in such a way that

pairs of system replicas within the CFP lie on top of each other. This can be used to cut

the number of degrees of freedom in the instanton search in half, leading to large savings

in the calculation both because of the reduction in the number of degrees of freedom and

also because the convergence is more rapid. The generation of the initial configuration is

described in the next section.

Once an initial guess of the instanton configuration has been obtained, the minimum

mode algorithm [30, 31, 32] is used to iteratively change the CFP configuration to converge

on the instanton. This is essentially the same algorithm as has been used in finding classical

saddle points on potential energy surfaces, but it is reviewed here for completeness.

At the beginning of the calculation, the classical MEP and the saddle point on the

potential energy surface are used to estimate the crossover temperature, Tc, in order to
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choose the first value of the temperature for which the instanton is found. Necessarily, the

number of system replicas in the CFPs is chosen to be as small as possible to reduce the

computational effort. It turns out that the temperature at which the discrete CFPs begin

to open up; the effective crossover temperature for a discrete CFP, is quite sensitive to the

number of system replicas used in the calculation. The discretization causes a shift in the

temperature scale, but the calculated value of the rate constant is otherwise not affected

strongly. In the last section of this chapter, an analytical analysis of this shift in the effective

crossover temperature with the number of system replicas in the CFPs is given. It can be

used to get a better estimate of what temperature to start the calculation and to correct

the results obtained from the numerical calculations.

The method described here to find instantons and evaluate quantum mechanical rate

constants, within a harmonic approximation, has been implemented in the plane wave based

density functional theory software called Vienna Ab-initio Simulation Package (vasp) [35,

36, 37, 38]. Typically a few hundred force evaluations are needed in the calculation per

system replica to carry out the calculation at one value of the system temperature. In a

cluster of computers where one or more CPU can be used for each of the system replicas,

this does not represent a particularly large computational time. Application to several

condensed phase systems is given in Chapter 4.

2.1 Numerical procedure

2.1.1 Initial guess for the instanton: collapsed pairs of replicas

In the early stages of the work presented here, initial guesses for the instanton configuration

were constructed by generating system replicas forming a circle around the classical saddle

point. Half of the system replicas were situated on the reactant side of the saddle point and

the other half on the product side. This initial CFP was then converged to the instanton

as described in Sec. (2.1.2). Empirically, it was noted that in the converged instanton,

system replicas in the CFP had paired up, see Fig. (2.1) for an illustrative cartoon. Being

superimposed in such a way in the classical space does not lead to an increase in the potential

energy since the replicas only interact through the springs connecting adjacent replicas and
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(1) (2) (3) (4)

(5)(6)(7)(8)

(1 / 8) (2 / 7) (3 / 6) (4 / 5)

Figure 2.1: A schematic of a collapsed CFP. The upper portion displays a CFP with 8
system replicas. Each system replica is depicted as a single bead and the springs denote
connections from each atom in the system to the same atoms in the neighboring replicas.
The replicas are numbered in parenthesis above and below the individual beads. The lower
half of the schematic shows the collapsed CFP. This is the preferred configuration of the
CFP once converged to an instanton. Replicas have formed ’pairs’ by exactly overlapping
one another. It is important to note that there is no resulting increase in energy or forces
since the replicas only feel each other through the springs.

not the potential energy term in Eq. (2.1). This pairing of the system replicas can be

built in to the CFP right from the initial guess and throughout the calculation to reduce

the computational effort. Half of the replicas are treated as ’shadows’ of the other half.

In practice, atomic forces are only calculated for half of the replicas, and these forces are

then imposed onto the ’shadow’ replicas. The result is about a 50% reduction in the force

calculations necessary for each iteration in the calculation and faster convergence (i.e. fewer

iteration steps). Tests showed that, for most temperatures, using only half of the replicas

and forcing the other half to shadow produces the same results as allowing all the replicas

to move freely. Since the springs become weaker as the temperature is decreased and the

quantum delocalization increases, it is necessary to increase the number of system replicas

as the temperature is lowered. In test cases where the number of replicas was not increased,

the paring of the replicas at the converged result was sometimes not perfect. But, as the

number of replicas was increased, the pairing occurred again. It was, therefore, concluded
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that as long as the number of replicas was sufficient, pairing would take place.

Starting from the classical saddle point lying on the MEP connecting the reactant and

product states, an initial CFP is formed by generating configurations of the system along the

direction of the unstable mode as determined by the diagonalized Hessian matrix. The tem-

perature is set slightly (typical ∼5 degrees) below the crossover temperature as estimated by

Eq. (1.27). The extent of the CFP is usually chosen to be on the order of 0.1-0.2 Å in either

direction away from the saddle point. The replicas are assumed to be paired. The initial,

linear CFP along the unstable mode direction consists of half of the system replicas used

in the calculation, the second half of the replicas are placed on top to create the collapsed

pairs. As the temperature is lowered further, the converged instanton configuration from a

previous, higher temperature is used as an initial guess for the instanton search.

2.1.2 Converging a CFP to the instanton

The object function to be maximized when locating the instanton is the Euclidian action, as

given by Eq. (1.24). A simple rearrangement gives a more intuitive expression in terms of an

effective potential energy function, facilitating a direct connection to the classical problem

of locating a saddle point on a potential energy surface. Using a discrete representation of

the Euclidian action, with P system replicas, results in

SE(q) = ∆τ
P∑
k=1

[
µ

2

∣∣∣∣qmod(k,P )+1 − qk
∆τ

∣∣∣∣2 + V (qk)

]

=
h̄

kBT

P∑
k=1

[
1
2
ksp(T )

∣∣qmod(k,P )+1 − qk
∣∣2 +

V (qk)
P

]
=

h̄

kBT
Veff(q, T ), (2.1)

where the sum is defined as an effective potential energy surface, Veff(q, T ), since it has

units of energy. The ’mod(k,P )+1’ subscript in Eq. (2.1) is necessary since the Feynman

path is closed, so a system replica with coordinates qP is connected to a system replica with

coordinates q1. According to Eq. (1.23), it is equivalent to weigh each closed path in the

quantum partition function by exp(−SE(q)/h̄) or by exp(−Veff (q, T )/kBT ); maximizing

the effective potential is equivalent to maximizing the Euclidian action. The problem is
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now analogous to finding a saddle point on a potential energy surface, except that in the

quantum mechanical case the potential energy surface depends on the system temperature.

The physical interpretation of the effective potential surface is that the classical system,

with N degrees of freedom, has been divided into P replicas along the CFP where each

replica is connected to its immediate neighbors via temperature dependent springs obeying

Hook’s law. The replicas experience 1/P of the potential energy that a classical system

at the same location would. Above the crossover temperature, Eq. (1.27), the effective

potential equals the classical potential as all the system replicas collapse to a single point

in the N -dimensional coordinate space.

In this work where the CFP is moved to converge to a instanton, a minimum mode

method [30] is adapted. From a given starting configuration (the initial CFP), the lowest

local curvature is found and the force acting on the system is projected along the lowest

curvature direction. The system is subsequently moved along the lowest curvature direction

in order to minimize the force projected along it. Once the lowest curvature becomes

negative (i.e. the mode has become unstable), it is followed in a stepwise manner up to a

first order saddle point.

Previously, the dimer [30] and Lanczos [39, 40] methods have been used with great

success to locate saddle points. In a recent study [32], both methods were found to be

nearly identical with regards to efficiency. In Ref. [30], the dimer method is used to find the

direction of the lowest curvature. The dimer method uses two system replicas (a dimer),

separated by a finite difference distance, to estimate the local curvature along the dimer.

The torque acting on the dimer is used to align the dimer along the lowest curvature mode.

In this study, the minimum mode Lanczos algorithm [40] is used instead of the dimer method

as it leads to a simpler data structure: the dimension of the closed Feynman path (CFP) is

NP but would be twice that if the dimer method were used as each system replica would

then be a dimer. Even though applications of the Lanczos algorithm to minimum mode

saddle point searches have been discussed in detail in Ref. [32], it will be reviewed here for

completeness.

A real and symmetric matrix, such as the Hessian matrix, can be transformed through

an orthogonal similarity transformation to a symmetric tridiagonal matrix. If the original
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matrix is H then the relationship between the original matrix and the tridiagonal ma-

trix is T = W tHW , where the W matrix is orthonormal and the t superscript denotes a

mathematical transpose. The two matrices, H and T , share the same eigenvalues, and the

eigenvectors are trivially connected as well. If H has the eigenpairs {λi, zi}, then T has the

eigenpairs {λi,W T zi}.

Originally, the Lanczos algorithm was suggested as a procedure for performing a full tridi-

agonalization, but inherent numerical instabilities render it useless without costly remedies.

The great virtue of the Lanczos algorithm is that by performing a partial reduction on the

k-first columns, a sequence of tridiagonal matrices, T2, T3, . . ., can be generated, each of

much lower dimension than the original matrix and providing a progressively more refined

estimate for the extrema eigenvalues of the original matrix [41]. The corresponding eigen-

vectors can be extracted through the similarity transformation relations, saving considerable

time since a full diagonalization of a dense matrix represents a substantial computational

barrier. The algorithm itself is remarkably simple: by using Tk = W t
kAWk as AWk = WkTk

suggests (by equating columns of AWk = WkTk), an iteration scheme based on a three term

recursion relation is developed:

Awk = βk−1wk−1 + αkwk + βkwk+1 , β0w0 = 0 (2.2)

where the α’s and β’s are diagonal and sub/super diagonal elements of T and wk’s are

normalized column vectors of W . Here, as before, boldfaced vectors represent all the coor-

dinates of the CFP and the α’s and β’s are scalars. The matrix T is constructed as

Tn =



α1 β1

β1 α2 β2

β2 α3
. . .

. . . . . . βn−1

βn−1 αn



and at each step of the iteration a new line and column are added to the matrix. Beginning

with an arbitrary nonzero starting vector t0 (or a converged eigenvector from a previous
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step) and setting β0 =
∥∥t0

∥∥
2

and w0 = 0, the following steps are repeated (k = 1, . . . , n) [42]

wk =
tk−1

βk−1

uk = Hwk

tk = uk − βk−1wk−1

αk = wT
k tk

tk = tk − αkwk

βk =
∥∥∥tk∥∥∥

2
.

To avoid having to set up the full Hessian matrix, the second step is replaced by the first

order finite difference approximation

uk = −Fk(q + δqwk)− F(q)
δq

where q is the coordinate of the system where the lowest curvature is to be estimated, F

is the force (negative gradient of the effective potential) and δq is the finite difference step

size and is uniform in length for each coordinate. At the end of each step, the matrix Tk

is diagonalized using a standard LAPACK1 routine and the convergence of the lowest (not

smallest) eigenvalue, here called C(k), is monitored. If∣∣∣∣C(k) − C(k−1)

C(k−1)

∣∣∣∣ < tol , (2.3)

then the eigenvalue is considered to have been located. Criteria (tol in Eq. (2.3)) of the

order 10−2-10−4 works well for most cases.

With the lowest eigenvalue, C(k), (the lowest curvature on the effective potential en-

ergy surface) converged, the corresponding eigenvector can be found by an inverse iteration

scheme. First the entire eigenvalue spectra for the tridiagonal Lanczos matrix, T , is shifted

such that it becomes positive definite, i.e. all the eigenvalues are larger than zero. Further,

to ensure rapid convergence for the inverse iteration, the lowest eigenvalue is set to a small

positive number. Experience has shown 10−4 to work quite well. With the Lanczos matrix

1DSTEV, available at http://www.netlib.org/lapack or as a canned routine from most processor vendors
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now fixed to be positive definite, Cholesky factorization can be applied in the inverse itera-

tion scheme instead of LU factorization. Since the matrix is also tridiagonal and symmetric,

the Cholesky factorization scales as 8k. A convergence to the eigenvector is usually found

in about 3 iterations. Once the eigenvector has been found, the lowest curvature mode ( ~N)

can be obtained through the similarity relation between Tk and H. Here no reorthogonal-

ization is performed to overcome the numerical instabilities; it is explicitly assumed that

convergence is reached before any instability issues become important. No case has been

encountered so far that gives any indication to distrust this assumption.

After the lowest curvature mode has been found the system is moved along an effective

force (~Feff ) determined by the sign of the curvature [32, 30]

~Feff =

 −
(
~F · ~N

)
~N if C > 0

~F − 2
(
~F · ~N

)
~N if C < 0

(2.4)

Here ~F are the actual forces on the system. This is to ensure a rapid exit from the convex

regions (C > 0) around the potential energy minimum. It has been shown that this choice

of an effective force leads to fast convergence to a saddle point. Feff can be minimized

with any effective minimization procedure. Here, a conjugate gradient method with a force

based line search is used. The step size is determined solely on the forces since after

projecting the ’true’ force according to Eq. (2.4), there is no longer correspondence between

the effective force and the energy. So the gradient of the energy is not necessarily the

effective force [30, 32].

Once the CFP has been converged to an instanton, qins, the action (or Veff(q, T )) is

expanded to second order around qins,

SE(q) ≈ Sins +∇TSins · (q− qins) +
1
2

(q− qins)T ·
(
∇∇TSins

)
· (q− qins) (2.5)

= Sins +
1
2

(q− qins)T ·
(
∇∇TSins

)
· (q− qins). (2.6)

The first order term is dropped because the instanton is a local maximum with a zero

derivative. Sins is the action at the instanton. The matrix of second derivatives of the

action (∇∇TSins) needs to be set up and diagonalized. Carrying out the differentiation
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Figure 2.2: Structure of the HQTST prefactor matrix. Along the block diagonal are the
matrix of second derivatives of the true potential in mass-scaled coordinates for each system
replica (here P = 7), multiplied by (∆τ)2 (∆τ is the imaginary time step). The contribution
from the temperature dependent spring constants through interactions with the nearest
neighbor replicas lie on the main diagonal (+2) and the super/sub-diagonals (-1). Since the
CFP is a closed path, there are contributions to the top right corner and the bottom left
corner of the matrix, representing the spring connections from the first replica to the last.

results in

K(q) = (∆τ)2

{
∂2V (qi)

(mkml)
1/2 ∂qi,k∂qi,l

− ∂

∂τ2

}
(2.7)

Here qi are the coordinates of the i-th system replica, qi,k and qi,l are the k and l co-

ordinate components for the i-th replica and mk,ml are the corresponding masses of the

coordinates. Fig. (2.2) shows the general structure of the matrix. On the block diagonal

are the Hessian matrices in mass-scaled coordinates for each system replica. The spring

constant (−(∆τ)2∂/∂τ2) contributions, resulting from each replica being connected to the

nearest neighbors along the CFP, are on the main diagonal and the super- and subdiago-

nals as depicted in Fig. (2.2). The spring constants add +2 to the main diagonal and -1

to the super- and subdiagonals. The matrix will be become more and more sparse as the

number of system replicas grows. With use of an effective method that exploits the spare-

ness and symmetric structure, there can be considerable computational savings with the

diagonalization. Robust methods exist to perform a full diagonalization on large symmetric

matrices using only matrix-vector multiplication. Because of the relatively low number of
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dimensions used here (the matrix size is usually around 500x500), the efficiency is not of

the highest importance but should be kept in mind when systems of higher dimensionality

are studied. Usually it takes more computational effort to converge to the instanton than

to set up and solve the eigenvalue problem. In this study only a standard diagonalization

scheme, assuming a dense matrix, has been employed.

Diagonalization of Eq. (2.7) provides the vibration spectrum necessary for calculating the

rate constant according to Eq. (1.28). Arranging the eigenvalues of K(q) in ascending order

with λ2
i , i = 1, 2, . . . , NP , where N is the number of degrees of freedom, and P the number

of system replicas in the CFP. If the CFP has been converged properly to an instanton,

then λ2
1 < 0, λ2

2 = 0 and all other λi’s are positive. The negative λ values corresponds to the

unstable reactive direction and the zero valued λ is related to free rotation of the replicas

around the CFP (Eq. (1.29)). Only the nonzero eigenvalues are used in calculating the

rate constant in Eq. (1.28). Any translational or rotational motion will introduce auxiliary

zero eigenvalues into Eq. (2.7) and must be eliminated from the product of eigenvalues in

Eq. (1.28).

2.2 Correction to the crossover temperature obtained from discrete Feynman
paths

This section presents an analysis that can be used to estimate how much the crossover

temperature is affected by the finite number of system replicas in the CFPs. In the limit of

an infinite number of replicas, the WKB [16, 17, 18] estimate given by Gillan is obtained.

But the fact that a finite number of system replicas is used in practical calculations means

that the crossover temperature, and the temperature scale, is shifted. Consider the situation

depicted in Fig. (2.3). The figure describes an instanton around a potential barrier at a

temperature slightly lower than the crossover temperature. The instanton is comprised of 8

system replicas, but pairs have collapsed, creating the appearance of only 4 system replicas.

Each replica is at a force equilibrium, i.e. the potential force dragging it downwards is

exactly opposed by the neighboring spring forces. It is further assumed that the replicas

are displaced only by an infinitesimal distance from the potential barrier so the force acting

on them can be well described with a second order Taylor expansion from the top of the



31

Figure 2.3: An instanton at static equilibrium on a parabolic potential. The temperature is
assumed to be just under the crossover temperature, Eq. (1.27), so the instanton has started
to spread out. The springs connecting the system replicas with temperature dependent
spring constants, ksp(T ), are shown as dotted lines. Acting on each replica are the force
from the potential (Fpot) dragging the replicas downward and the restoring force from the
springs, Fsp, acting to collapse the instanton. The Feynman path integral is resolved using
8 system replicas but, at the static equilibrium, replicas collapse into pairs so only four
are visible. By considering the forces at equilibrium the coordinates for each of the system
replicas can be determined.

barrier and that the springs obey Hook’s law. Noting the location of the replica furthest to

the right in Fig. (2.3) as q2, the next neighbor as q1 and the barrier top as q0, the following

system of equations arises by considering the balanced forces

−V ′′(q0)(q2 − q0)/P + ksp(T )(q1 − q2) = 0

−V ′′(q0)(q1 − q0)/P + ksp(T )(q2 − q1)− 2k(q1 − q0) = 0,
(2.8)

where V
′′
(q0) is the curvature at the barrier top, P is the number of replicas and ksp is the

spring constant between the replicas (Eq. (1.25)). The P comes from the effective force,

Eq. (2.1), where the potential energy experienced by each replica is scaled by the total

number of replicas in the CFP. Arranging the above set of equations into a more convenient
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matrix form,  −(s− 1) 1

1 −(s+ 1)

 q2 − q0

q1 − q0

 =

 0

0

 (2.9)

using

s =
V
′′
(q0)

ksp(T )P
+ 2 (2.10)

The non-trivial solutions (the trivial being q2 = q0 and q1 = q0, representing a collapsed

CFP) are found by insisting the determinant of the matrix be zero:

det

 −(s− 1) 1

1 −(s+ 1)

 = 0. (2.11)

The solutions to Eq. (2.11) are ±
√

2. Inserting the solution with the highest numerical value

(maximizes the effective potential) back into Eq. (2.10) and using the definition for ksp(T )

and the fact that V
′′
(q0) = −µω2 (ω is the magnitude of the imaginary barrier frequency)

gives

2− smax =
µω2

µP 2 (kBTP /h̄)2

=
(

h̄ω

PkBTP

)2

. (2.12)

Isolating TP from the above expression yields the temperature value where the chain has

just started to spread, i.e. the onset of quantum effects. With the number of replicas, P,

equal to 8 (8 is used for illustrative purposes)

TP =
h̄ω

P
√

2− smaxkB
=

h̄ω

8
√

2−
√

2 kB
' h̄ω

6.122 kB
(2.13)

This is the same general equation for the crossover temperature as derived by Gillan using

WKB theory [6] (see. Eq. (1.27)), differing only by a numerical constant.

By using an arbitrary number of replicas in the analysis above, a general formula is easily

derived. Considering the static force equilibrium on a chain with the number of replicas as
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P = 2j+2, the determinant is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(s− 1) 1

1 −s 1

1 −s 1
. . . . . . . . .

1 −s 1

1 −(s+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
2j

= 0. (2.14)

The solutions are

sj = ±

√
2±

√
2±

√
2± · · · ±

√
2︸ ︷︷ ︸

j−terms

. (2.15)

Inserting the solution with the greatest magnitude, smax, back into Eq. (2.12) gives

2−

√
2 +

√
2 +

√
2 + · · ·+

√
2︸ ︷︷ ︸

j−terms

=
(

h̄ω

PkBTP

)2

=
(

h̄ω

2j+2kBTP

)2

.

By considering the ratio of the predicted crossover temperature as a function of the number

of system replicas, TP , to the Gillan estimate, Eq. (1.27) of the crossover temperature results

in
TP
Tc

=
π

2j+1

√√√√√√2−

√
2 +

√
2 +

√
2 + · · ·+

√
2︸ ︷︷ ︸

j−terms

. (2.16)

The series {

√
2 +

√
2 +

√
2 + · · ·+

√
2} is a well know nested radical and converges in the

limit of infinite j ,

lim
j→∞

√
2 +

√
2 +

√
2 + · · ·+

√
2︸ ︷︷ ︸

j−terms

= 2 (2.17)
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Table 2.1: Convergence of the crossover temperature predicted from instanton rate theory
to the crossover temperature predicted by Gillan [6] from WKB theory. P is the number of
replicas in the discrete formulation of Feynman’s path integral, sj is the maximum solution
of Eq. (2.14) and Tp/Tc is the ratio given by Eq. (2.16).

j P smax TP /Tc

0 4 0.000000 1.1107207

1 8 1.414214 1.0261722

2 16 1.847759 1.0064545

3 32 1.961571 1.0016082

4 64 1.990369 1.0004017

5 128 1.997591 1.0001004

6 256 1.999398 1.0000251

7 512 1.999849 1.0000063

8 1024 1.999962 1.0000016

9 2048 1.999991 1.0000004

10 4096 1.999998 1.0000001

and 2j+1

√
2−

√
2 +

√
2 +

√
2 + · · ·+

√
2 is among the numerous series that converged to

π in the limit of infinite j,

lim
j→∞

2j+1

√√√√√√2−

√
2 +

√
2 +

√
2 + · · ·+

√
2︸ ︷︷ ︸

j−terms

= π. (2.18)

In the limit of infinite system replicas, where the discrete representation of the CFP becomes

continuous, Gillan’s equation for the crossover temperature is retrieved as (with P = 2j+2)

lim
j→∞

TP
Tc

=
π

π
= 1. (2.19)
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Chapter 3

TEST CASES USING ANALYTICAL POTENTIAL ENERGY
FUNCTIONS

The computational procedure for locating instantons and evaluating the corresponding

rate constants is tested by applying it to various problems, which range from a single coor-

dinate to a system with hundreds of degrees of freedom. Potential functions simple enough

to allow closed form solution for the rate constant for comparison, to semi-complex multi-

component, many-body empirical potentials are used. Results are compared to previously

published results where possible.

3.1 Asymmetric Eckart barrier

As a simple test problem, consider the asymmetric Eckart potential barrier [43, 44]. The bar-

rier has a simple one dimensional form that allows for an analytical solution of Schrödinger’s

equation. The potential function is given by

V (x) =
VA y

1 + y
+

VB y

(1 + y)2
, where (3.1)

y =
(
VB + VA
VB − VA

)
eαx.

When x → −∞, V (x) tends to 0 and when x → ∞ to VA. VA sets the asymmetry of the

barrier. The potential describes a gas phase collinear exchange reaction, and the parameters

are chosen to be he same as in Ref. [24] for the larger of the two asymmetries used there,

VA = −0.191 eV, VB = 1.343 eV, α = 5.726 Å and m = 1.008 amu, resulting in a reaction

barrier height with respect to V (x → −∞) of Vmax = V (0) = 0.247 eV and an imaginary

angular frequency at the barrier top with magnitude 7531.3 cm−1. According to Gillan’s

equation, Eq. (1.27), the corresponding crossover temperature is Tc = 273.4 K. A graphical

representation of the barrier is given in Fig. (3.1). The analytical reactive flux, QRk, can
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Figure 3.1: The asymmetric Eckart barrier with parameters from Ref. [24].

be calculated by [24]

QRkexact =
1

2πh̄

∫ ∞
0

dE P (E) exp(−βE), (3.2)

where β = 1/kBT , QRk is the reactant state partition function, P (E) is the barrier trans-

mission probability and is calculated according to

P (E) =
cosh(a+ b) + cosh(a− b)

cosh(a+ b) + cosh(d)
(3.3)

where

a =
2π
√

2mE
h̄α

, (3.4)

b =
2π
√

2m(E − VA)
h̄α

, (3.5)

d =
2π
√

2m
(√
Vmax +

√
Vmax − VA

)2 − ( h̄α2 )2
h̄α

. (3.6)

According to classical HTST the reactive flux is simply

QRkHTST =
1

2πh̄

∫ ∞
0

dE P (E) exp(−βE)

=
1

2πh̄

∫ ∞
Vmax

dE exp(−βE) =
1

2πh̄β
exp (−βVmax). (3.7)
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Figure 3.2: Comparison between the analytical quantum correction factor and the correction
factor obtained from instanton calculations (HQTST) for the asymmetric Eckart barrier.
The top half shows the natural logarithm values while the bottom half plots the ratio of
the absolute magnitudes. The HQTST results overestimate the correction factor close to
the crossover temperature, as expected. The ratio levels of where the HQTST rate under-
estimates the true rate about 20%. The open diamonds in the lower panel are previously
published results from Messina et al., Ref. [24]. The dotted, vertical line represents the
crossover temperature, Tc, calculated to be 273.4 K.

The purely classical transmission probability is a simple step function. If the energy is

below the activation barrier, Vmax, the transmission probability is zero, andif the energy is

higher than the barrier, the transmission probability is one. Finally, the reactive flux can

be calculated from the instanton as prescribed by Eq. (1.28).

By calculating the the quantum correction factor (Γ(T )), i.e. the ratio of the quantum

mechanical reaction rate to the classical HTST rate, the instanton method can be compared

to the analytical solution. Fig. (3.2) displays the comparison between ΓHQTST and Γexact.

A comparison between the two different values at each temperature can be used as a gauge

of the precision that can be expected from instanton calculations. The top half of Fig. (3.2)

shows how the instanton fairs against the analytical solution on a logarithmic scale. Since
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Figure 3.3: The dependence of various instanton gauges on temperature. The top panel
shows S0, the imaginary time kinetic energy, Eq. (1.29), as a function of temperature. Above
the crossover temperature, all the system replicas that represent the closed Feynman path
(CFP) collapse at the classical saddle point. Below the crossover temperature the path
spreads out and kinetic energy rises. The middle panel shows the value of the frequency of
the unstable mode as a function of temperature. Above the crossover temperature the in-
stanton is collapsed at the classical saddle point. As the instanton spreads out the curvature
tends to zero as the activation barrier becomes effectively smaller and smaller due to tunnel-
ing. The value of the curvature is then the classical value, divided by the number of images
in the closed Feynman path. The bottom panel shows the value of the instanton on the
effective potential surface Eq. (2.1). As before the instanton is collapsed to the classical sad-
dle point (0.247 eV) above the crossover temperature. Below the crossover temperature the
instanton spreads out and the instanton energy decreases, indicating a decreased activation
energy due to onset of tunneling. The vertical dotted line marks the crossover temperature,
Tc = 273.4 K, Eq. (1.27). 100 system replicas were used in the discrete representation of
the Feynman path integral.

this perspective tends to skew any real comparison by diminishing any difference, a closer

(and more honest) comparison is made in the lower half of the figure where the ratio of

the absolute magnitudes is plotted as a function of temperature. As previously shown [9],

the instanton severely overestimates the quantum rate and correction factor very close to

the crossover temperature. However, over most of the temperature range in this study,
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the instanton results underestimate the analytical solution by about 20%. The instanton

calculations from Ref. [24] are superposed on the lower half of the figure for comparison.

Since the results from Ref. [24] are only reported with two significant digits, the data look

a bit more jagged on the scale used here.

Once the temperature is below the crossover temperature, the springs are no longer

sufficiently stiff to maintain the CFP collapsed at the the classical image, and the path opens

up. This is interpreted as quantum delocalization of the system and the onset of thermally

assisted tunneling as a competing mechanism to the classical, over the barrier mechanism.

It can be illuminating to study the behavior of some of the characteristic variables for the

instanton under the influence of varying temperature. The top panel of Fig. (3.3) shows the

”free instanton action”, the middle panel is the curvature of the effective potential and the

bottom panel is the instanton energy. Above the crossover temperature (labeled Tc in the

figure) all the values are collapsed to their classical limits, i.e. the So is zero since all the

images are collapsed at the classical saddle point. For the same reason, the energy is the

classical barrier energy and the curvature is the classical barrier curvature, divided by the

number of images in the chain. In fact, So offers an effective gauge for determining when

the crossover temperature is reached as it is extremely sensitive to the length of the CFP.

As soon as the temperature dips below Tc, So rises abruptly. This property can be used

to identify precisely the crossover temperature for a discrete representation of the CFP, for

direct comparison with results from Gillan’s formula, Eq. (1.27).

As a further check on the implementation presented here, the location of the instanton

centroid is calculated as

qcentroid =
1
βh̄

∫ βh̄

0
q(τ)dτ ≈ 1

P

P∑
k=1

qk (3.8)

and compared to results previously published by Messina et al. [24] using the same potential.

As presented in Fig. (3.4), the comparison is satisfactory. The instanton centroid slides down

to the left hand side of the potential as the temperature is reduced. Since the potential is

asymmetric around the barrier and steeper on the right hand side than the left hand side,

system replicas on the right hand side will extend further from the barrier top. More system

replicas are then needed on the left hand side to reach force equilibrium, hence the centroid
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Figure 3.4: Centroid coordinate for the instanton as a function of temperature on the
asymmetric Eckart potential. The topmost figure shows the instanton centroid coordinate
as it varies with temperature. The lower figures show snapshots at 250 K, 175 K, 100 K
and 50 K. The solid dot is the centroid coordinate. On the high temperature end all the
images are collapsed to a single point. As the temperature is lowered the images spread out
along the reaction coordinate, lowering the activation energy, indicating onset of quantum
mechanical delocalization and thermally assisted tunneling. For comparison, results from
Messina et al., Ref. [24], are in excellent agreement with the current study.
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migrates towards the left as the temperature is decreased. Any attempt to estimate the

rate by constraining the CFP centroid to the top of the barrier will not work if the barrier

is not symmetric [7].

3.2 Symmetric Eckart potential coupled to a harmonic oscillator

Following McRae et al. [45], a two dimensional system is studied where a symmetric Eckart

barrier [43] is coupled linearly to a harmonic oscillator. The initial motivation for con-

structing a model potential of this type was to study a reaction in solution, i.e. a single

”solute” coordinate (represented by the Eckart barrier) coupled to a ”solvent” (represented

by a set of harmonic oscillators). Varying the friction (related to the harmonic oscillator

frequency) between the solute coordinate and the the solvent, McRae et al. [45] compare

the results at two different temperatures for two different approximations: variational tran-

sition state theory with semi-classical tunneling corrections and a centroid density method.

Unfortunately, both the temperature values McRae et al. are above the classical to quantum

crossover temperature. The results presented in Ref. [45] indicate that both approximate

methods yield results comparable to the exact quantum reaction rate for both high and

medium friction but deviate somewhat at lower frictions. Here, the low frequency regime

has been especially targeted as a test for the HQTST method.

Based on the results in Ref. [45], a single solvent coordinate is adequate in describing

the solvent effect on the solute coordinate, and hence only one harmonic oscillator is used

here. This reduces the potential energy function to a simple form,

V (x, z) = Vo sech2(αx/2) +
1
2
µω2(z − Cx)2 , (3.9)

here x is the solvent coordinate, z is the oscillator coordinate and the parameters Vo, α, µ

and ω are chosen to reproduce the H+H2 gas-phase reaction. The coupling constant, C, is

meant to mimic the linear response of a Gaussian friction kernel and is calculated by

C =
4fωx
πω

e−π
2/32 , (3.10)

ωx is the magnitude of the imaginary angular frequency at the top of the the Eckart barrier,

ω is the angular frequency of the harmonic oscillator and is chosen to be related to the
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Figure 3.5: Corner cutting effect at 40 K for the symmetric Eckart potential, linearly coupled
to a harmonic oscillator. The classical MEP and the instanton are represented by the dashed
line and dots, respectively. The Feynman path at the instanton is approximated with 100
discrete system replicas.

characteristic timescale, σ, of the friction kernel through ω = π/(4σ). Finally, f is dimen-

sionless friction parameter. The potential parameters chosen are Vo = 0.425 eV, α = 3.97 Å,

µ = 0.672 amu, ωx = 2.232 τ−1, ω = 0.0921 τ−1 and C = 10.0 (f ≈ 4.4). The base units for

energy, length, mass and temperature are eV, Å, amu and K as respectively; the correspond-

ing time unit is 1 τ = 10.18 fs. For more on the friction and how Eq. (3.10) is deduced, refer

back to McRae et al. [45]. A contour plot of the potential, along with the classical MEP

is shown in Fig. (3.5). The sharp turn in the classical MEP path results in a considerable

corner cutting effect at lower temperatures, as is evident in Fig. (3.5). In Fig. (3.6) the

reactive flux (i.e. loge(QRk)) from two different methods is compared to the HQTST flux.

A discrete representation of the Feynman path integral is used with 100 system replicas

in the chain. The first method, here referred to as ’Exact’, sets up a discrete version of

the system Hamiltonian on a grid and solves the corresponding eigenvalue problem for the

state energies and wavefunctions. These are then used to calculate Miller’s reactive flux
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Figure 3.6: Reactive flux for the symmetric Eckart barrier, linearly coupled to a harmonic
oscillator. HQTST results are compared exact quantum mechanical solution and results
based on the small curvature tunneling (SCT) approximation to the classical rate. Excel-
lent agreement is found between the exact reactive flux and the HQTST flux. Above the
crossover temperature, the SCT approximation agrees favorably with the exact solution,
but starts to deviate at lower temperatures, as expected. The HQTST results are obtained
by using 100 discrete system replicas in the Feynman paths. The classical to quantum
crossover temperature is 242.9 K.

correlation function [46]. The second method compared to is a small curvature tunneling

(SCT) correction [14, 13, 47] to the classical (quasi-quantum) rate. It is expected to be

reliable over a wide temperature range and more accurate at higher temperatures. The

SCT accounts for the tunneling probability by expanding the potential in a Taylor series up

to the quadratic term and finds the optimal tunneling path, including corner cutting. The

tunneling probability is then represented by a multiplicative term in the classical reaction

rate. As is evident in Fig. (3.6), there is an excellent correspondence between the HQTST

reactive flux and the the ”exact” solution. As expected, the SCT approximation yields good

results at the higher temperatures but starts to deviate as the temperature is decreased.
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3.3 Electron scattered by embedded Gaussian peaks in a two dimensional
parabolic potential

Gudmundsson et al. [48, 49, 50] have performed numerical as well as theoretical studies

of electron conductance through a quantum nanowire with embedded impurities (both at-

tractive and repulsive) of a finite extent. Cases both with or without external homogenous

magnetic field have been considered. Here, efforts will be concentrated on the case of re-

pulsive impurities in the presence of a zero magnetic field. The model potential is adopted

from Gudmundsson et al. and is composed of two independent components. The wire is

described to be of infinite length but parabolically confined along the transverse direction,

and the scattering potential is chosen to be one or more Gaussians. The potential param-

eters are chosen to mimic the GaAs semi-conductor system as much as possible, resulting

for the parabolic confinement in

Vpar(x) =
1
2
mω2x2 (3.11)

with m = 6.10 ·10−32 kg (0.067 me), the effective mass of a electron in the GaAs system and

ω = 3.04 · 1012 s−1 so that the energy spacing between levels for the parabolic confinement

potential is Eo = 2.0 meV. The scattering potentials have the form

Vscatt(x, z) =
N∑
i=1

Vi e
−β2

i ((x−xi)
2+(z−zi)

2). (3.12)

Three different cases are studied here. The first case is a single Gaussian barrier situated

at the center of the wire (N = 1, V1 = 4.0 meV, β1 = 0.012247 nm, and x1 = z1 = 0.0), the

second case is two Gaussian barriers symmetrically offset around the center with the same

barrier height (N = 2, V1 = V2 = 4.0 meV, β1 = β2 = 0.031623 nm, and x1 = z1 = −x2 =

−z2 = 20.0 nm). The final case is two Gaussian barriers situated along the axis of the

parabolic confinement potential, with N = 2, V1 = V2 = 4.0 meV, β1 = β2 = 0.12247 nm,

and x1 = z1 = −x2 = −z2 = 85.0 nm. When the distance between the barriers is such

that no potential from the neighbors on either side is felt, the total rate constant will be

given by a simple multiplication of all the independent rate constants. As the barriers are

brought closer together, stronger resonance effects, which are not included in the instanton
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(a) (b)

Figure 3.7: Contour plots for an electron traveling along a model quantum nanowire with
embedded impurity. In panel (a) a single Gaussian function is used to represent an impurity
in the wire. The maximum barrier height is 4.0 meV and the exponential decay parameter
, β, is 0.012247 nm. In panel (b) two Gaussian functions are used to represent the impurity
where one is offset from the center by (20.0 , 20.0) nm and the other one by (-20.0 , -20.0) nm.
Both have barrier heighs of 4.0 meV and exponential decay parameters of 0.031623 nm,
resulting in a saddle point with an energy of 3.594 meV located at (x, z) = (0.0 , 0.0). The
classical MEP, as determined by the NEB method [21], is represented as a dashed line.

rate theory, will be present. A contour plot and a cross section of the third potential are

shown in Fig. (3.9).

A curved MEP offers the system the possibility to shorten the tunneling path via cor-

ner cutting at low enough temperatures. Contour plots of the first two potentials are

shown in Fig. (3.7) along with the classical MEPs, as determined by the NEB method [21].

The HQTST rate is compared to results obtained from the full quantum mechanical wave

function calculations and flux-flux autocorrelation function formalism for the rate constant

calculation [46], this gives an ’exact’ value of the rate constant to which the HQTST ap-

proximation can be compared.

In the flux-flux correlation formalism, the rate constant takes on the solution

QRk =
∫ ∞

0
Cf (t) dt (3.13)

with QR as the partition function for the reactant state and Cf (t) as the flux-flux correlation
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Figure 3.8: Comparison between rates calculated from HQTST theory and exact quantum
mechanical theory for the model quantum wire with Gaussian impurities. For illustration
of quantum effects the purely classical rate is presented as well. Panel (a) shows the results
for symmetric impurity (see accompanying text) and panel (b) for asymmetric impurity. In
both cases the comparison between HQTST theory and exact theory is found to be excellent.
The dotted vertical lines indicate the representative crossover temperature values for each
system, 2.16 K and 4.67 K respectively

function. A discrete system Hamiltonian is constructed on a uniform grid of nx points along

the x-coordinate and nz along the z-coordinate. The corresponding matrix representation

is diagonalized to produce the eigenfunctions (φi(x, z), i = 1, . . . , nxnz) and eigenvalues

(εi, i = 1, . . . , nxnz). In this representation the correlation function becomes

Cf (t) =
nxnz∑
i,j

exp
(
−εi + εj

2kBT

)
cos
(
εi − εj
h̄

t

)(
h̄

2m

)2 ∫ ∣∣ψ′iψj − ψiψ′j∣∣2 , (3.14)

where in the last integral, the wave functions are evaluated at the classical transition state

and their derivatives estimated along the reaction coordinate. The integration extends over

all other degrees of freedom, except the reaction coordinate. By integrating the correlation

function according to Eq. (3.13), the rate expression becomes

QRk = lim
t→∞

nxnz∑
i,j

exp
(
−εi + εj

2kBT

)
sin ((εi − εj)t/h̄)

εi − εj

(
h̄

2m

)2 ∫ ∣∣ψ′iψj − ψiψ′j∣∣2 . (3.15)

In [46] it is noted that due to discretization of the energy spectrum, the infinite time limit

of Eq. (3.15) does not explicitly exist; as time grows the discrete nature of the spectrum

(i.e. (εi− εj)t ) will become apparent and lead to erroneous behavior. Given a large enough
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Figure 3.9: The upper panel shows a cross section (x=0) through the potential when two
Gaussian barriers are aligned symmetrically along the axis of the parabolic confinement
potential. The lower panel shows a contour plot of the same potential. The dotted line is
the MEP and lies along the x=0 cross section.

number of eigenfunctions and hence a small spacing between energy levels, the hope is that

this shortcoming will not be problematic and the rate will converge in a short time to its

infinite time value. This is indeed what is observed to happen. In this study, great effort

has been concentrated on reaching the convergence limit with respect to the number of

eigenfunctions.

A comparison between results obtained from HQTST rate theory, Eq. (1.28), and exact

quantum rate theory, Eq. (3.15), is made in Fig. (3.8). To emphasize the quantum nature of

the rate constant for temperature values below the crossover temperature, the classical rate

is presented as well, Eq. (1.14). Above the crossover temperature, the exact rate corresponds

nicely to the classical rate but below the crossover temperature, where the HQTST rate can

be obtained, the comparison to the exact rate is excellent. In both cases the HQTST rate

theory is found to be within an order of magnitude of the ”exact” quantum mechanical

results. The ratio kHQTST/kexact is found to be ∼ 0.8 for the symmetric impurity and ∼ 0.2
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Figure 3.10: Two different instanton for a potential with two Gaussian barrier along a
parabolic confinement potential. In (a), the instanton corresponds to tunneling through the
first ’hump’. The instanton is shown along with the centroid coordinate at the instanton
energy. The centroid will travel to the minima between the two ’humps’ and stop there
since the force will become zero. In (b), the instanton corresponds to tunneling through the
entire barrier. At low enough temperatures it dominates the rate since its energy is much
lower than for the instanton in (a). Up to 300 system replicas were used to properly resolve
the CFP.

for the asymmetric one. This is quite satisfactory for most purposes.

The last case is where the two Gaussian barriers are situated along the axis of parabolic

confinement potential. The HQTST rate is compared to the rate obtained from integrating

the reaction probability over energy. According to Ref. [46], this procedure is identical to

the flux-flux scheme used previously in this section. As before, the Hamiltonian is set up

on a discrete grid and diagonalized. But instead of time propagating the flux-flux auto-

correlation function, the reaction probability is calculated according to

P (E) =
1
2

(2πh̄)2Tr[F̄ δ(E −H)F̄ δ(E −H)] (3.16)

≈ w
πh̄4

m

∑
jk

e−w(ε−εj)2e−w(ε−εk)2
∣∣∣φ′j(0)φk(0)− φj(0)φ

′
k(0)

∣∣∣2 (3.17)

where F̄ is the flux operator [46], E and H are the energy and Hamiltonian, respectively.

The delta function is approximated as
√
w/πe−wε

2
. The eigenvalues, ε, and eigenfunctions,
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Figure 3.11: The reactive flux versus temperature for the two Gaussian barriers in a
parabolic confinement potential. The results are compared to numerically exact calcula-
tions based on the integrated reaction probability (see text). At high enough temperatures
instanton 1 matches well with the exact rate, but starts to deviate significantly at lower
temperatures. At lower temperatures instanton 2 matches the exact rate, as the dominating
mechanism is then tunneling through the entire barrier. Note the crossover from instanton
1 to instanton 2. Initially when the second instanton opens up, its energy is higher than for
the first one, eventually becoming lower. The crossover corresponds nicely to the break in
the exact rate.

φ, are the same as before. The eigenfunctions and their derivatives are evaluated at the

origin. Finally, the rate is integrated as

QRkexact =
1

2πh̄

∫ ∞
0

P (E)e−E/kBTdE, (3.18)

with P (E) as the reaction probability. As mentioned above, this procedure results in the

same final answer as the one based on flux-flux auto-correlation functions.

In the case where the two Gaussian barriers are aligned along the parabola axis, two

distinct instantons are found, see Fig. (3.10). One corresponds to the tunneling through

a single Gaussian barrier, the other one to tunneling through the entire barrier. Calcula-

tions of the reactive flux, based on the integrated reaction probability, Eq. (3.18), as well
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as HQTST calculations for both instantons are shown in Fig. (3.11). At high enough tem-

perature, the prevalent reaction mechanism is tunneling through the first Gaussian barrier,

followed by a subsequent tunneling through the other barrier. As the temperature is further

lowered, a new reaction channel opens up: tunneling through the entire barrier. As is seen

from Fig. (3.10), the effective activation energy (the energy of the centroid) for the second

instanton eventually becomes lower than the centroid energy for the other instanton. At

low enough temperatures, tunneling through the entire barrier is the dominant mechanism.

3.4 Associative desorption of H2 molecule from a Cu(110) surface

Thermally activated processes on surfaces and interfaces are at the heart of heterogeneous

catalysis and such events have been probed extensively both with experimental and com-

putational techniques. One prototypical system that has attracted considerable interest

is dissociative adsorption and associative desorption of H2 on various facets of Cu. Both

experimental and quantum calculations indicate an unambiguous deviation from the clas-

sical Arrhenius law at lower temperatures [51]. Mills et al. have published results [9, 11]

for the associative desorption of H2 from a Cu(110) surface using an empirical, many-body

EAM potential [52]. The potential form includes a pair potential term (φ) for the screened

Coulomb repulsion interaction between ions and a term for each ion embedded into a valance

electron density (ρ) of its neighboring ions (F ). For more details on the exact form of each

term and parameters used, see Ref. [11]. This type of a potential can be expected to work

well for Cu, as it has little directional bonding due to its filled d-shell. It has recently been

shown [53] that the particular parameter set employed here reproduces the physical char-

acteristics of the interaction potential energy surface somewhat poorly. But it will suffice

for the purpose of this study, which is to compare the HQTST rate to a method based

on free energy calculations (hence including full anharmonic effects) to estimate the rate

constant. In [9, 10] Mills et al. used a free energy based method (RAW-QTST or reversible

action-space work quantum transition state theory) to calculate the rate of desorption of

H2 from a Cu(110) surface. The method uses Feynman’s (imaginary time) formulation of
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Figure 3.12: H2 adsorbed onto a Cu(110) surface (a) and the classical desorption saddle
point (b). In the minimum energy configuration the H atoms are 2.06 Å above their nearest
Cu neighbors. The distance between the two H atoms is 3.05 Å. At the saddle point the
distance between the H atoms is reduced to 1.34 Å and the distance to the nearest Cu
neighbors increased to 2.17 Å. The energy compared to a H2 molecule above the surface is
0.157 eV and 0.702 eV for the absorbed state and transition state, respectively.

the quantum partition function

Q =
∫
e−SE(q)/h̄ D[q], (3.19)

where SE =
∫ βh̄

0 Hdτ is the Euclidian action with H and q as the system (N dimensional)

Hamiltonian and coordinates, respectively. In a discrete representation the integral becomes

a finite sum. Utilizing P system replicas for a discrete representation of the Feynman path

integral, the Euclidean action in Eq. (3.19) becomes

SE(q) = ∆τ
P∑
i

(
µ

2

∣∣∣∣qi+1 − qi
∆τ

∣∣∣∣2 + V (qi)

)
. (3.20)

Here, ∆τ = h̄/kBTP is the imaginary time step along the CFP and q represent the

coordinates of all the N classical coordinates of the P system replicas. The free energy is

then calculated as the cumulated reversible work needed to move this higher dimensional

system from the reactant state to the transition state, constrained to a NP −1 dimensional

cone along the reaction coordinate. The reaction coordinate is chosen to be the minimum

action path (MAP) which is analogous to the classical MEP, expect that the beads along

the elastic band are now discrete, closed imaginary time Feynman paths. Since the system

replicas in the Feynman paths (the CFPs) are connected to their neighbors through springs
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Figure 3.13: The MEP (small grey circles) for associative desorption of H2 off a Cu(110)
surface, along with the the instanton (darker circles) at 100 K. 100 system replicas are used
to represent the closed Feynman path (CFP). A clear corner cutting effect to shorten the
tunneling path is visible at this temperature.

with temperature dependent spring constants, the replicas collapse into each over above

the crossover temperature and along with it, the entire MAP onto the MEP. The MAP

is the path (along with nearby paths) that contributes most to the quantum partition

function, see Eq. (3.19). The RAW-QTST can in fact be considered to be a general quantum

transition state theory, but the prefactor was taken from Affleck’s WKB analysis [54] of a

simple barrier and is therefore not explicitly derived from rigorous first principles theory. It

naturally tends to variational transition state theory [55] in the classical limit and variational

centroid density theory [56, 8] above the the classical-quantum crossover temperature (see

Eq. (1.27)). Moreover it is reduced to HQTST theory in the low temperature, harmonic

limit. In analogy with classical, harmonic transition state theory where the transition state

is a first order saddle point along the MEP, the instanton is a first order saddle point along

the MAP.

The system used in Refs. [9, 10] and this study consists of 216 Cu atoms representing

the (110) surface. The Cu atoms are separated into 6 layers, each containing 36 atoms. The
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Figure 3.14: Comparison for the rate of associative desorption of H2 from a Cu(110) sur-
face where an EAM-type potential is used to describe the atomic interactions. Excellent
agreement is found between a full anharmonic quantum rate theory (RAW-QTST) and its
harmonic approximation (HQTST) over a wide range of temperature. An uniform shift
has been applied to the RAW-QTST data (Ref. [10]) so it asymptotically approaches the
HTST result in the high temperature limite. The crossover temperature is determined to
be 264.6 K.

EAM potential gives the energetically most favorable configuration of the hydrogen atoms on

the surface as aligned symmetrically along a surface valley, separated by a long bridge. The

two hydrogen atoms adsorbed onto the surface are shown in figure Fig. (3.12), along with

the desorption transition state. The energy of the transition state lies 0.544 eV above the

energy of the absorbed state. The minimum energy path (MEP) has been traced out be the

NEB [21] method and is depicted in Fig. (3.13). The MEP is completely contained within

a plane spanned by the initial, transition and final state and is symmetric about a plane

parallel to the surface normal, orthogonal to the MEP plane and intersecting the transition

state. The movement of the surface Cu atoms is minimal compared to the movement of the

H atoms, or just about 0.1 Å for the two nearest Cu atoms in the initial state.
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The comparison between the HQTST and RAW-QTST results is shown in Fig. (3.14).

The results in Ref. [10] were shifted by the classical prefactor, so they have been shifted

back by a uniform constant. Quantum effects on the rate are found to be large at low

temperature; at around 150 K the rate is completely dominated by the tunneling mechanism.

Overall the agreement between the full anharmonic (RAW-QTST) results and the harmonic

approximation (HQTST) is excellent. In the low temperature limit, 100 replicas were needed

to properly resolve the CFP, fewer replicas resulted in an artificial rise in the the reaction

rate at the low temperature end. Interestingly, the data from Ref. [10] seems to be a bit

jagged, indicating that more replicas should have been used to achieve properly converged

results.

3.5 Dissociative adsorption of H2 onto a Cu(100) surface

The sticking coefficient for H2 and D2 on a Cu(100) surface has previously been measured

over a limited temperature range by Rasmussen et al. [57]. Results based on instanton

rate theory (HQTST) are compared to measured values from Ref. [57] as well to accurate

quantum dynamics calculations by Somers et al. [58]. For details on the quantum mechanical

wave packet propagation used by Somers et al., refer back to Ref. [59]. A potential energy

function (PES5) recently developed by Olsen et al. [60] is used to perform the calculations.

The 6D potential was fitted to a set of DFT calculations, using the GGA approximation and

periodic boundary conditions to describe the system. The corrugation reduction procedure

(CRP)[61] was used to generate the global potential energy surface.

A short derivation is presented on how to calculate the sticking coefficient directly from

instanton theory. Define the sticking coefficient θo as

θo =
N reactive

N total
, (3.21)

where N reactive is the number of reactive collisions per unit time per unit area and N total is

the total number of collisions per unit time per unit area. The latter is obtained from the

elementary theory of ideal gases (a particularly good reference can be found in Ref. [44]) as

N total =
N

4V
v̄ =

N

4V

√
8kBT
πM

, (3.22)
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with N being the total number of particles, V the volume they occpy, v̄ the average speed

(Maxwell-Boltzmann distribution), kB Boltzmann’s constant, T the temperature, and M

the mass of a gas molecule (note that M is total mass of the molecule). The numerator in

Eq. (3.21) can be obtained in the following way: The number of reactive collision during

a time t1 within a surface area As is given by Ast1N
reactive. This number can also be

obtained from e.g. HQTST rate theory as ηst1NkHQTST, with kHQTST being the single

molecule HQTST rate at one reactive site within the surface area As. The factor ηs is used

to account for the fact that only a fraction of the available sites might be available under

the reaction conditions (or that there is more than one reaction site inside the surface area

As). Thus,

N reactive =
ηsNkHQTST

As
. (3.23)

Inserting Eqs. (3.22) and (3.23) into Eq. (3.21) gives

θo =
4ηsV
As

√
πM

8kBT
kHQTST. (3.24)

An expression for kHQTST can be retrieved from instanton rate theory (harmonic quantum

transition state theory) as

kHQTST =
Q̃

QR
exp

(
−Vins
kBT

)
, (3.25)

where Vins is the effective potential at the instanton. Here, Q̃ is referred to as the instanton

partition function. An expression for it will be developed later. First an expression for the

reactant partition function, QR, will be developed. The simplest approximation to make

is to consider an ideal diatomic gas, i.e., a collection of non-interacting rigid-rotor rotating

dumbbells where molecular vibrations are treated within the harmonic approximation [note

that this approximation is consistent with Eq. (3.22)]. For a single particle (kHQTST is

defined to be a single molecule rate constant), QR factors into

QR = Qtrans Qvib Qelec Qrot Qnucl, (3.26)
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where

Qtrans =
(

2πMkBT

h2

)3/2

V, (3.27)

Qvib =
e−h̄ω/2kBT

1− e−h̄ω/kBT
, (3.28)

Qelec = g e−Ee/kBT . (3.29)

Here, the zero of the electronic energy Ee must be chosen properly and in correspondence

with the zero of the energy used for the instanton rate kHQTST. The most natural choice is

to define the energy of the bottom of the well in the reactant region to be zero, implying Ee

to be zero. This is consistent with the choice made in Eq. (3.25). The multiplicity of the

electronic state is accounted for by g. For H2 it is one, and thus Qelec = 1 (note that for

the temperature range we are interested in there will be no electronic excitations of H2).

For a homo-nuclear molecule like H2 with nuclear spin 1
2 , Qrot and Qnucl couple together

because of symmetry (see [12], chapters 6-4 and 6-5). This is the remainder of QR,

Qrot,nucl =
∑

J even

(2J + 1)e−h̄
2J(J+1)/2IkBT + 3

∑
J odd

(2J + 1)e−h̄
2J(J+1)/2IkBT , (3.30)

with I being the moment of inertia, µr2
e , of the molecule (note that the reduced mass µ of

the molecule enters in this expression). Together this gives the reactant partition function

as

QR =
(

2πMkBT

h2

)3/2

V
e−Θv/2T

1− e−Θv/T( ∑
J even

(2J + 1)e−ΘrJ(J+1)/T + 3
∑

J odd

(2J + 1)e−ΘrJ(J+1)/T

)
, (3.31)

where

Θv = h̄ω/kB (3.32)

and

Θr = h̄2/2µr2
ekB (3.33)
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Substituting kHQTST and QR into (3.24) results in

θo =
4ηsV
As

√
πM

8kBT
Q̃ exp

(
−Vins
kBT

)(
h2

2πMkBT

)3/2 1
V

1− e−h̄ω/kBT

e−h̄ω/2kBT( ∑
J even

(2J + 1)e−ΘrJ(J+1)/T + 3
∑

J odd

(2J + 1)e−ΘrJ(J+1)/T

)−1

=
8ηsπ2h̄3

AsMk2
BT

2
sinh

(
Θv

2T

)
ΓHQTST( ∑

J even

(2J + 1)e−ΘrJ(J+1)/T + 3
∑

J odd

(2J + 1)e−ΘrJ(J+1)/T

)−1

,

(3.34)

where ΓHQTST is the right hand side of Eq. (1.28) with Sins/h̄ = Vins/kBT .

From the H2/Cu(100) PES the following values are obtained for an H2 molecule far from

the surface: ω = 2π 4168.6 cm−1 and re = 0.77815 Å. Inserting these values in Eqs. (3.32)

and (3.33) gives Θv = 5997.6 K and Θr = 79.515 K (in reasonable agreement with the

values given in Table 6-1, page 95 in Ref. [12]). The area of the Cu(100) surface unit cell

is As = 4.82382 bohr2 = 6.5160 × 10−20 m2 and the number of active sites is two, ηs = 2.

With the all the above information the calculated sticking coefficient is

ln(θo) = ln
(

8ηsπ2h̄3

AsMk2
B

)
− 2 ln(T ) + ln

(
sinh

(
Θv

2T

))
+ ln(ΓHQTST)

− ln

( ∑
J even

(2J + 1)e−ΘrJ(J+1)/T + 3
∑

J odd

(2J + 1)e−ΘrJ(J+1)/T

)
. (3.35)

For comparison with Eq. (3.35) ln ΓHQTST in the third term in Eq. (3.35) can be replaced

with

Γqq−HTST =
N−1∏
i=1

1
2 sinh(h̄ωi/2kBT )

e−∆E/kBT

where ωi are the stable angular vibrational frequencies at the classical saddle point and ∆E

is the energy of the saddle point, as compared to the reactant state.

For comparison between the present HQTST sticking coefficient and the quantum wave

packet propagation (QD) from Ref. [60], refer to Fig. (3.15). In obtaining the QD data,

Olsen et al. ran wave packet propagation with kinetic energy as low as 0.3 eV, which is still

about an order of an magnitude larger than what would be consider chemically relevant



58

-18

-16

-14

-12

-10

-8

-6

-4

 1  2  3  4  5  6  7  8

1251502003005001000
lo

g 1
0(

θ o
)

1000/T [1/K]

T [K]

qq-HTST

HTST

HQTST

Tc

QD

Figure 3.15: Comparison between the HQTST sticking coefficient and more accurate quan-
tum dynamics calculations (QD). To emphasize the sticking enhancement due to tunneling,
results for the sticking coefficient calculations based on qq-HTST (no tunneling, but zero
point energy) and HTST (no tunneling, nor zero point energy) are presented as well. Over-
all, the agreement between the HQTST is satisfactory. The dash-dot lines above and below
the QD line represent the uncertainty in the extrapolation scheme employed. The HQTST
calculations are based on 100 replicas in the CFP and the crossover temperature, Tc, is
255.17 K.

for the sticking coefficient under investigation here. To rectify this dilemma, Olsen et

al. extrapolate the results close to zero in energy, both by using a linear extrapolation

scheme, as well as a quadratic one. The dash-dot lines around the QD results in Fig. (3.15)

represent the error inherent in this procedure. The QD results are an average over several

different extrapolations. Any statistical error due to the finite time length of the dynamical

paths would be added to this ’extrapolation’ error. Overall there is good agreement between

the two different approaches, especially if all the uncertainties regarding the QD results are

kept in mind. Also, the QD calculations are horrendously complicated and time consuming,

representing months of computation on parallel machines with huge RAM. On the other

hand, the HQTST ran in about 2 minutes on a somewhat aging Apple PPC laptop computer.

Finally, compare the HQTST sticking coefficient to the experimental results from Ras-
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Figure 3.16: Comparison between the calculated HQTST sticking coefficient and experimen-
tal bulb measurements. The agreement is good, with the discrepancy between measured
and calculated around 1-2 orders of magnitude.

mussen et al. [57], based an bulb experiments where the H2 gas above the Cu surface was

thermalized. Given the nature of the empirical, low dimensional potential used and any sys-

tematic experimental error, the agreement is surprisingly good (perhaps fortuitously). The

discrepancy is only around 1-2 orders of magnitude. The comparison is shown in Fig. (3.16).
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Chapter 4

QUANTUM RATE CONSTANTS FROM FIRST PRINCIPLES AND
SEMI-EMPIRICAL ATOMIC FORCES

4.1 Hydrogen abstraction from ammoinaborane

The U.S. Department of Energy (DOE) has stipulated that hydrogen storage devices should

contain a minimum of 6.5% hydrogen by mass and be capable of delivering hydrogen gas at

a pressure of 1 bar at temperatures between 50-100 ◦C. At the current level of technology

this constitutes a substantial hurdle. A great deal of effort has been given in the past to light

metalhydrides, for example MgH2 (7.6% by mass ratio), and other magnesium-metal alloys.

Although great progress had been made, both in the understanding of these system, as well

as with practical applications, fundamental problems pertaining to loading and unloading

of the devices still persist. However, interest in magnesium and other metallic alloys as a

potential storage medium remains high still to date.

Another particularly attractive candidate for a hydrogen storage device, due to the high

hydrogen mass percent (19.5%), is ammoinaborane (also known as borazane), H3BNH3.

Borazane is a structural analog of carbon based ethane. Solid ammoinaborane is known to

thermally decompose at relatively mild temperatures [62, 63, 64] in two partially overlapping

processes, both yielding H2 gas and heat. The first process involves decomposition of am-

moinaborane to hydrogen gas and a solid residue of polymeric aminoborane ([H2BNH2]x).

The associated change in enthalpy is measured to be ∆H = −(0.22 ± 0.01) eV [62]. The

second step is a further decomposition of the polymeric aminoborane to hydrogen gas and

a noncrystalline residue, the exact composition of which depends on the sample heating

rate and has the stoichiometry BNHy with y ranging from 1.2-2.4 [64]. The two processes

can be completely separated by initially decomposing ammoinaborane isothermally at a

temperature below the melting temperature (385 K) followed by an additional heating up

to 500 K [62]. Each step is found to release about 1 mol of H2 per mol of ammoinaborane,
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(a) (b)

Figure 4.1: Reactant and transition states for H3BNH3. The reactant state (a) is in a
staggered configuration (C3v symmetry). Before reaching the transition state (b) the NH3

group rotates into an eclipsed configuration and one of the NH bonds becomes stretched
as the H atom reacts with one of the H atoms bonded to the boron atom. The remaining
H atoms in the transition state have moved considerably upwards and are close to be in
a plane, a preparation for the product configuration (H2BNH2). The final transition state
has a Cs symmetry.

yielding an impressive overall hydrogen storage capacity of about 14% [63] relative the orig-

inal amount of ammoinaborane. Interestingly enough the high mass percent is found to be

independent of the heating rate, even though the first process is not run to completion [63].

Lower heating rates produce smaller amounts of other volatile side products, something that

must be taken into account with regards to future applications, for instance as a generator

for a fuel cell. Upon analyzing the gas phase products, monomeric aminoborane, borazine

(B3N3H6 ,BN-analog of benzene) and diborane (B2H6) have been detected [63]. An attempt

to reduce the amount of gas phase side products has spurred an interest in aminoborane

reactions in ionic solvents, see for example. Ref. [65] and references therein.

Previously Li et al. [66] have studied the dehydrogenation of ammoinaborane in the gas

phase at the G3MP2B3 [67] level of theory using geometries optimized with B3LYP [68,

69, 70] and a aug-cc-pVTZ basis set. The rate constant for the process was calculated and

reported using canonical variational transition state theory (CVT) [15], with and without

small curvature tunneling correction (SCT) [13, 14, 15]. See Sec. (1.3) as well.

Here, a study of the hydrogen abstraction rate from H3BNH3 in the gas phase has been
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conducted at the AM1 [71] level of theory, as implemented in the MOPAC [72] compu-

tational suite. AM1 (Austin Model 1) is a semi-empirical forcefield method used for the

calculation of a molecular electronic structure. It is based on the Neglect of Differential

Diatomic Overlap (NDDO) formalism which explicitly includes only two-center integrals

for repulsion between two charge distributions located at each center. This is a considerable

improvement over ab-initio Hartree-Fock methods where all two-center integrals need to be

evaluated. Most present day semi-empirical methods are based on the NDDO approxima-

tion. Additional nuclear repulsion is added to NDDO in the AM1 formalism in the form

of Gaussian charge centers located at various distances between any two nuclei as to effec-

tively reduce the repulsion of the atom at close distances. The additional Gaussian charges

lead to great improvements in the geometry and energy predictions, especially when dealing

the hydrogen bonded systems. As compared to Li et al. [66], AM1 predicts the zero-point

energy corrected barrier height to be 1.567 eV which is in reasonable agreement with the

results reported in Ref. [66], of 1.41 eV at the G3MP2B3 level of theory, given the vast

difference in sophistication between AM1 and G3MP2B3. Unfortunately the comparison

between the heat of the reaction is not as favorable; by assuming ideal gas behavior AM1

predicts -0.92 eV, but the prediction at the G3MP2B2 level of theory is -0.19 eV. The

experimentally derived value is -(0.22 ± 0.01) eV [62]. There are clearly some difference

between the two potential energy surfaces that precludes any direct comparison between the

two calculated rate constants, even if performed at the same level of approximation. The

rate constant was calculated at various levels using the AM1 semi-empirical potential. The

simplest and most commonly used approximation is the harmonic transition state theory

(HTST), where the rate is calculated based on a hyper planar dividing surface at the saddle

point, orthogonal to the reaction coordinate. The partition functions, in particular the vi-

brational partition function, are assumed to be purely classical and the potential harmonic.

The term quasi-quantum, qq-HTST for short, will be adopted is the vibrational partition

functions are made to be quantum mechanical, as to distinguish it from the classical HTST.

The rate constant expressions are

kHTST(T ) =
1

2π

∏3N
i ωRi∏3N−1

i ωTSi
exp (−∆E/kBT ) (4.1)
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Figure 4.2: Reaction rates as a function of temperature for a hydrogen abstraction from gas
phase ammoinaborane molecule. Quantum effects are seen to dominate the reaction rate,
even at room temperature. The CFP is represented by 96 system replicas. The crossover
temperature is calculated to be Tc = 470.1 K.

and

kqq−HTST(T ) =
kBT

2πh

∏3N
i 2 sinh

(
h̄ωRi /2kBT

)∏3N−1
i 2 sinh

(
h̄ωTSi /2kBT

) exp (−∆E/kBT ). (4.2)

Here ∆E is the energy difference between the reactant state and the transition state on

the Born-Oppenheimer potential surface, ωR and ωTS are the harmonic angular frequencies

corresponding to stable vibrational modes at the reactant and transition states, respectively.

The unstable mode at the transitions state is excluded from the transition state product.

Both approximations include no tunneling and should coincide in the infinite temperature

limit. The HQTST rate was calculated as described in Sec. (1.5). The results are shown in

Fig. (4.2). For comparison, the rate was calculated using CVT with small curvature tun-

neling (SCT) corrections as calculated with the POLYRATE [73] package using AM1 [74].

Variationally moving the hyper planer dividing surface does not seem to be important for

this system, the CVT rate (not shown in Fig. (4.2)) overlap the qq-HTST results in the

entire temperature range under investigation. The crossover temperature was calculated to
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be Tc = 470.1 K, according to Eq. (1.27). Close to the crossover temperature, the HQTST

rate and CVT/SCT appear to compare favorably. But as the temperature is decreased even

further, the two rates start to deviate, presumably since the tunneling path moves further

away from the classical reaction coordinate. Compared to the HQTST, the SCT is generally

referred to as a lesser approximation to the true rate since it is based on a harmonic expan-

sion along the classical reaction coordinate. Alternatively, the HQTST rate is calculated as

a harmonic expansion around the quantum mechanical reaction path, the minimum action

path (MAP).

In conclusion, it is apparent that tunneling of hydrogen atoms is the dominant transition

mechanism at 400 K, the temperature where hydrogen desorption is experimentally observed

to occur. The rate calculation with HQTST theory which includes tunneling is 300 times

larger than the rate constant evaluated from quasi-quantum TST, an approximation that

includes zero point quantum effects but not tunneling. The semiclassical small curvature

tunneling (SCT) approximation was found to overestimate the rate constant in this case by

nearly a factor of 10.

4.2 H atom diffusion in metals

A great deal of effort over the last few decades has been directed towards studying hydro-

gen in metals, as is amply evident from the exhausting array of reported studies in the

literature, both experimental and theoretical. See for example [51, 75, 76] and references

therein. This interest can be explained by that from a theoretical standpoint hydrogen in

metals can serve as phenomenological workbench for which knowledge and experience can

be extracted from and extended to more complicated systems. Also, when embedded in

or on metals, hydrogen and its isotopes, being the lightest of all the elements exhibit con-

siderable amount of quantum mechanical characteristics, such as zero point energy effects,

tunneling and discrete nature of the vibrational levels. On the experimental side, interstitial

hydrogen changes the local electronic and magnetic properties of the surrounding medium,

giving rise to potential structural changes and complex phase diagrams. Recently, with the

current efforts to diversify the available energy resources, interest in the various properties

of hydrogen in metals has been rekindled.
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4.2.1 H atom diffusion in Ta

Here, a diffusion study of dilute hydrogen in the α-phase of elemental tantalum (Ta) has been

carried out using the HQTST rate formulation. Ta has a bcc structure and experimentally

it is a well known fact that quantum effects are much more pronounced in bcc metals than

in fcc metals. Bcc metals generally have lower barriers between interstitial sites and the

sites lie closer together than in fcc metals. Both facilitate quantum mechanical tunneling.

Forces and energies were generated at the DFT level of theory, utilizing a plane wave

basis set and periodic boundary conditions. The Kohn-Sham equations [77] were solved

with the Vienna Ab-initio Simulation Package (vasp) [35, 36, 37, 38], where the interaction

between ion cores and electrons was described by the projector augmented wave formalism

(PAW) [78]. The the default kinetic energy cut-off value for the plane wave basis function of

250 eV (18.4 Ry) was used. The exchange-correlation part of the potential was PW91 [79].

The Brillouin zone was sampled by a 3x3x3 k-point mesh generated with the Monkhorst-

Pack scheme [80]. The system was described with 16 Ta atoms, with four atoms in four

layers, in the bcc crystal configuration. After a volume relaxation, the lattice constant was

determined to be 3.32 Å, in excellent agreement with the experimental value of 3.31 Å [81].

The most stable configuration was found to be with the H atom occupying a tetrahedral

hole (Td) in the crystal structure, as is most common for metals with a bcc structure. The

diffusion was assumed to take place via hydrogen atom migration between two neighboring

(Td) configurations.

To reduce the computational effort, only five Ta atoms surrounding the two Td sites

where allowed to relax from the lattice configuration. Table (4.2.1) summarizes the effects

of the chosen computational parameters on the classical reaction barrier. From the com-

parison, it is evident that the parameters employed here result in both the classical barrier

height and curvature reasonably well converged. In Ref. [82], a larger system is used with

approximately the same parameters in vasp. Compared to the experimental results from

Ref. [83] based on the Grosky effect, all the theoretical values in Table (4.2.1) overestimate

the reaction barrier height. However, the theoretical values are within acceptable range

from the experimental results, especially when the the current level of accuracy for DFT
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Table 4.1: Energy of the classical saddle point relative to the relaxed Td in a Ta. The saddle
point energy is relatively constant, as compared to the computational parameters used in
the study, if a denser k-point grid is used and/or more Ta atoms (nTa) are allowed to relax
from the bulk configuration. Relaxing the spin restriction did not introduce any changes.
The calculated crossover temperature is underestimates in all instances.

k-point mesh nTa atoms ∆E [eV] Tc [K] Ref.

3 x 3 x 3 5 0.193 178 Present study

4 x 4 x 4 5 0.200 181 Present study

4 x 4 x 4 16 0.196 179 Present study

4 x 4 x 4 54 0.180 - [82]

- - 0.136 ± 0.009 ≈220 [83]

based methods is considered. It was found necessary to use 29 movable with another 29

shadow replicas in the discrete representation of the CFP over the entire temperature range.

Second derivatives were estimated numerically with a finite difference scheme where the step

size was set fixed to 1.0 · 10−3 Å. The CPF was considered to be converged to the instanton

once all force components where less than 1.0 · 10−4 eV/Å and was achieved typical in less

than 700 force calculation per movable image if the initial configuration was chosen to be a

previously converged instanton at a higher temperature.

The hydrogen atom is self-trapped at a interstitial site by local relaxation of the neigh-

boring lattice atom surrounding the interstitial site. A neighboring interstitial site will be

higher in energy compared to the relaxed site if the hydrogen atom would be instanta-

neously teleported from the current site. Classically, thermal energy is needed to overcome

the potential energy barrier separating the two sites. Quantum mechanically, the process

requires thermal fluctuations to bring the two sites into coincidence, with the two sites at

the same energy level and the hydrogen delocalized over both sites. This is referred to as

thermally or phonon assisted tunneling.

Recently, Sundell and Whanström [84, 82] have carried out a numerical study on the same

system, using very similar computational parameters. By setting up a three dimensional
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grid for a hydrogen atom self-trapped in a Td site and a hydrogen atom delocalized over

two neighboring Td sites, a three dimensional Schrödinger equation was solved and the

vibrational levels along with tunneling matrix elements [85] extracted. The delocalization

of the hydrogen atom was simulated by placing two hydrogen atoms at the different sites

and using a linear combination of the symmetrized Hellmann-Feynman forces. Working

within the framework of the high temperature limit of the small polaron theory [86], where

the rate is expressed as

ν =
1
h̄

(
π

4EckBT

)1/2

J2 exp (−Ec/kBT ), (4.3)

with J as the tunneling matrix element and Ec the activation energy needed to induce

the coincident configuration, Sundell et al. calculated the hydrogen diffusion rate between

100 K and 200 K and obtained results in good agreement with experimental work by Messer

et al. [87]. Small polaron approximation is valid if the temperature is low enough so that

excited vibrational states can be ignored, but high enough for the lattice vibrations to be

treated classically.

Assuming a random walk model (uncorrelated jumps) to describe successive migrations

between two stable Td configurations, the diffusion constant, D(T ), as a function of tem-

perature, can be calculated as

D(T ) = n
l2

2d
k(T ) (4.4)

= 9.13 · 10−17k(T ) [cm2/s] (4.5)

where l the distance (1.17 Å) between two stable Td sites, d is the dimensionality of the

problem (three in this case), n is the number of symmetry cancels of escape (four in present

case), and k(T ) is the rate constant as calculated by the HQTST rate theory.

The calculated HQTST rate is compared with two different experimental results, one

based on the Grosky effect [83], and the other on NMR spin-lattice relaxation times [87].

In the Grosky effect measurements, a concentration gradient is introduced by expansion

and contraction of the lattice caused by bending the sample. The hydrogen atoms migrate

along the gradient, causing a time dependent anelastic strain. From the relaxation time of

the anelastic strain, the diffusion constant can be obtained. Since the anelastic strain is
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Figure 4.3: Diffusion constant for a hydrogen atom in Ta. The diffusion constant as calcu-
lated from the HQTST rate theory is in an overall good agreement with the experimental
data. The CFP was represented by 29 movable system replicas and 29 shadow replicas,
giving a total of 57 replicas. The crossover temperature was calculated from the curvature
of the classical saddle point as 178 K, somewhat less than the experimental values of around
220 K. The open circles were extracted from Ref. [83] and the filled circles from Ref. [87].

macroscopic in nature, the diffusion constant obtained by the Grosky effect can be influenced

by impurities (adatoms, vacancies, etc.), since hydrogen atoms will easily become trapped

at impurities, especially at lower temperatures. This will result in a lower effective diffusion

rate. On the other hand, the NMR spin-lattice relaxation times are much more closely

related to the elementary jump processes. In figure Fig. (4.3) the comparison between

the two experimental measurements and the calculated HQTST rate is depicted. At the

lower temperature end, the Grosky effect measurements are found to underestimate the

NMR relaxation times. As suggested by Messer et al. [87], the overall best fit through

the experimental data should be drawn through the high temperature tail of the Grosky

effect measurements and the low end tail of NMR measurements, since the NMR data was

derived by assuming only jumps between two neighboring tetrahedral sites. The diffusion

rate calculated from the HQTST approach is found to be in overall good agreement with the
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experimental data in the temperature range (180 K - 110 K) of this study. Below 100 K the

HQTST rate is predicted to be almost completely flat as a function of temperature, possible

as a result of the finite resolution if the CFP. There is also some numerical noise apparent in

the HQTST data. While the effective energy of the instanton and the contribution from the

free rotation along the CFP could be calculated relatively easily, accurately calculating the

CFP vibrational frequencies necessary for the prefactor was found to be extremely difficult.

The difficulty was attributed to the lack of precision in the forces provided by vasp, a

problem that is magnified when finite difference of forces are considered, as is necessary for

estimating the matrix of second derivatives. Instead of performing a costly analysis of the

optimal step size for the finite difference scheme, a overall downward slope of the calculated

diffusion constant was accepted, as it adheres to common physical intuition, and by keeping

in mind the inherent error of DFT and the experiment, the agreement was found to be most

acceptable. As a side note, the increased deviation from the experimental data obtained

by the Grosky effect measurements may support the hypothesis that the hydrogen diffusion

rate at low temperatures are underestimated due to trapping.

4.2.2 H atom diffusion in Pd

Calculation were performed by the Vienna Ab-initio Simulation Package (vasp) [35, 36,

37, 38] code. The system was a 4 Pd atoms in the fcc crystal lattice configuration. The

Brillouin zone was sampled by a 5x5x5 k-point mesh generated with the Monkhorst-Pack

scheme [80] and the kinetic energy cut-off for the plane wave basis functions was 349.9 eV.

Ultasoft Vanderbilt pseudopotentials (US-PP) [88] were used and the exchange-correlation

part of the potential was PW91 [79]. All calculations were performed spin restrictive.

During the simulation one of the Pd atoms was kept frozen at the ideal lattice coordi-

nates. The optimal site for the H atom was found to be in the octahedral hole, Oh, as is

most common for fcc metals. Diffusion of the hydrogen atom was assume to occur between

to adjacent octahedral hole, via a tetrahedral hole. Hydrogen diffusion in Pd exhibits in-

verse isotope effects, that is diffusion of deuterium if faster then hydrogen (protium), even

though the former is heavier. The effect has been contributed to the difference in zero-point
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Figure 4.4: Comparison between calculated and experimental diffusion constants for hy-
drogen diffusion in Pd. The upper panel shows the calculated diffusion constants in the
present study. In the classical regime, the inverse isotope effect between hydrogen and deu-
terium is reproduced. Quantum effects are calculated to be considerable below the crossover
temperature,Tc = 144 K. The lower panel presents the experimental results from Ref. [89]
The experimental crossover temperature is ≈220 K.

energy between the two isotopes in the Pd crystal and reproduced in the classical region.

Table (4.2.2) compares the parameters for Arrhenius, D(T ) = Do exp (−∆E/kBT ), like

expression for the diffusion constants, as extracted from the computational and experimental

results, Ref. [89]. The activation energies are in general found to be in good agreement with

the experimentally extracted results, but the prefactors are underestimated by 1-2 orders of

magnitude. It is well known that the potential energy surface for the Pd/H system displays
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Table 4.2: Comparison between the calculated and experimental diffusion parameters. The
parameters were extracted from a fit to an Arrhenius, D(T ) = Do exp (−∆E/kBT ), equation
in the high and low temperature limit from Ref. [89]. The agreement between the calculated
and experimental activation energies (∆E) is generally good, but the calculated prefactors
(Do) are underestimates by 1-2 orders of magnitude. The discrepancy can be attributed to
the anharmonic nature of the potential energy surface.

System Do [cm2/s] ∆E [eV]

H (classical) 7.7 · 10−4 0.21

Computational D (classical) 5.4 · 10−4 0.21

H (instanton) 2.1 · 10−7 0.17

H (classical) 5.3 · 10−3 0.23

Experimental D (classical) 3.7 · 10−3 0.22

H (quantum) 6.1 · 10−5 0.15

some anharmonic features [90]. The anharmonic nature of the potential energy surface

could possibly explain the observed discrepancy between the calculated and experimental

crossover temperatures, as well as the diffusion prefactors.

4.3 Hydrogenation of ammonia precursors on Ru(0001) surface

Ammonia is one of the most vital and most produced chemical in the world; in 2004 the

worldwide ammonia production was 109 million metric tons. With 80% of the ammonia

produced being used by the agricultural industry in the form of artificial fertilizers to gener-

ate crops, and the exponential rise in human population, production of ammonia will almost

certainly grow in the near future. Ammonia finds widespread usage in the manufacturing,

production of high explosive, and in the polymer and textile industries. Additionally, with

the advent of increased consciousness regarding environmental issues, avenues are currently

being explored utilizing salts of ammonia as hydrogen storage devices and as catalytic re-

duction agents for removal of nitrogen oxide compounds from diesel engine exhaust.

Ammonia synthesis represents the quintessential heterogeneous catalysis reaction and
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has, as such, been extensively studied, both experimentally and theoretically. The reaction

mechanism on an iron surface is well characterized and follows a Langmuir-Hinshelwood

scheme where both gaseous reactants adsorb and dissociate on the catalyst surface, fol-

lowed by a stepwise hydrogenation of atomic nitrogen until NH3 desorbs from the surface.

Traditionally the reaction takes place on an iron based catalyst; it has since been recognized

that ruthenium is the best elemental catalyst available. Especially at lower temperatures,

ruthenium is found to have considerably higher activity. However, higher cost and shorter

lifetime of ruthenium based catalysts have largely precluded a general industrial usage over

more conventional iron based catalysts.

On the industrial scale, ammonia is synthesized by the Haber-Bosch process, where

molecular nitrogen (N2) and hydrogen (H2) are reacted on a metal catalyst surface at el-

evated temperature (∼700 K) and pressure (∼200 atm). Although an effective catalyst is

used, the Haber-Bosch process consumes vast amounts of energy, and ammonia production

constitutes more than 1% of the global energy consumption. Since extreme reaction condi-

tions are needed for activation of the very strong nitrogen-nitrogen triple bond, the initial

dissociative adsorption of N2 is commonly acknowledged as the rate determining step at the

industrial scale. Nature, through the course of evolution, has produced microorganisms ca-

pable of producing ammonia via nitrogen fixation, catalyzed by the enzyme nitrogenase, at

atmospheric conditions. The active site on the enzyme it proposed to be a MoFe7S9 cluster

and unlike the Haber-Bosch process where the energetic nitrogen triple bond is broken, the

enzyme directly hydrogenates the N2 molecule.

Recently, Tautermann et al. [91] have published calculated rate constants for all the

nitrogen hydrogenation steps on Ru(0001). In Ref. [91] a reduced dimensionality potential

energy surface was used where the energy and forces were generated by a plane wave based

DFT code using the RPBE functional [92]. The system size was a 2x3, two layer unit cell,

constituting 12 Ru atoms that were kept fixed at the experimental lattice coordinates. The

rate constants were subsequently calculated within transition state theory and quantum

mechanical effects were accounted for by small curvature corrections (SCT) to the classical

results, where the reaction path was traced by the Page-McIver method [93]. Some devia-

tions from the classical Arrhenius behavior was found for the first two hydrogenation steps,
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especially for the second step. The lack of quantum mechanical enhancement of the rate

from the third and final step was attributed to the mass of the ammonia molecule.

Little difference has been found in classical reaction rates between steps and terraces

on Ru(0001) [94]. For later comparison with results from Ref. [91] terraces are considered

exclusively in the present study.

In the two following subsections, the reaction rates for the first two hydrogenation steps

will be presented. Forces and energies were generated by Vienna Ab-initio Simulation Pack-

age (vasp) [35, 36, 37, 38], one of the most popular and powerful DFT [95] code available

to date. vasp solves the Kohn-Sham equations [77] self-consistently for a given exchange-

correlation functional, using periodic boundary conditions with plane-wave basis set and a

generalized Vanderbilt ultrasoft pseudopotential (US-PP) [88] or projector augmented wave

(PAW) [78] formalism to describe the interaction between ion cores and electrons. In the

present study ultrasoft pseudopotentials were used.

4.3.1 Nads + Hads

Results are presented for the rate of reaction for the first hydrogenation step of nitrogen on

a Ru(0001) surface. The Ru substrate was modeled by a three layer slap, with each layer

containing 8 atoms. With the substrate and the adsorbed atoms the system contains 26

atoms. All Ru atoms were kept fixed at the experimental lattice configuration throughout

the simulation, the two lattice parameters are given as a = 2.706 Å and c = 4.282 Å [81]. A

vacuum layer of 11 Å was placed above the surface layer. The hydrogen atoms was found

to adsorb at a fcc surface site and the nitrogen atom at a hcp surface site, in accordance

with other studies [94, 96, 91]. The Brillouin zone was sampled with a 2x1x1 k-point mesh

generated with the Monkhorst-Pack scheme [80] and the exchange-correlation functional was

represented by the RPBE (revised Perdew-Burke-Ernzerhof) functional [92]. Preliminary

checking indicated that the current k-point sampling resulted in adequately accurate forces

and energy. As mentioned before, the Kohn-Sham equations were iteratively solved with

the Vienna Ab-initio Simulation Package (vasp) [35, 36, 37, 38] DFT code.

The classical reaction barrier height was calculated to be 1.11 eV, in good agreement
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Figure 4.5: The rate constant as a function of temperature for the first hydrogenation step
in the stepwise hydrogenation of nitrogen in ammonia production on a Ru(0001) surface.
Comparison is made the recently published results by Tautermann et al. [91] using a small
curvature tunneling correction (SCT) to the classical rate. A general good agreement is
found above the crossover temperature between the SCT results and the semi-classically
corrected [97] classical rate suggested by Fermann et al. (sc-qq-HTST) from the present
study. The discrepancy can be explained by the slightly different barrier height between the
two computational approaches employed. Below the crossover temperature the consistency
between the SCT and HQTST rates is also favorable, over the range of the SCT results,
the ratio of the two remains about constant. The crossover temperature was calculated to
be Tc = 263 K. The line through the HQTST results is a guide for the eye only.

with the 1.07 eV value recently published by Tautermann et al. [91]. In the present study,

the CFP was represented by 8 system replicas (and 8 shadow replicas) at the highest tem-

peratures and up to 29 movable replicas at the lower temperature values. More replicas

were needed at the lower temperature end to adequately describe the elongated CFP. The

electronic structure was rigorously converged to obtain accurate forces for estimating the

necessary second derivatives of the potential. Starting at a given temperature with a pre-

viously converged CFP from a higher temperature, resulted in a speedy convergence to the

instanton, usually requiring only about 700 force calculations per movable replica. As each

replicas can be efficiently parallelized over a set of processors, this does not constitute a
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considerable computational task.

The results for the rate constant calculations are depicted in Fig. (4.5). The HQTST rate

is compared to the results from Tautermann et al. [91]. Compared to the quasi-quantum

rate constant (qq-HTST), considerable quantum effects are already present, even well about

the crossover temperature. Quantum mechanical enhancement of the rate will though be

minuscule at industrial relevant conditions. The small curvature corrected (SCT) rate (see

Sec. 1.3) from Ref. [91] is found to be slightly higher at the high temperature end, since the

barrier height reported there is smaller than the present one. Over the temperature range

reported in Ref. [91], the SCT and HQTST results compare remarkably well, maintaining

about the same slope throughout.

Preliminary results indicate that it is necessary to include the relaxation of N in the

simulation; restricting the movement of the N atoms results in severe underestimation of

the tunneling effect. In general, keeping the substrate fixed, is found to result in a good

approximation to the reaction rate, especially at temperatures close to the crossover tem-

perature. Only around 140 K will allowing the surface atoms to relax cause deviation from

the results where all surface atoms as kept frozen, indicating the the tunneling path has

moved away from the classical MEP.

4.3.2 NHads + Hads

In the present study, a two layer, 4x2 rectangular cell was used (giving total of 16 Ru

atoms) where the Ru atoms were kept fixed at the experimental geometry (a = 2.706 Å

and c = 4.282 Å) [81] during all calculations. A vacuum layer of 11 Å was placed above

the surface layer. The RPBE (revised Perdew-Burke-Ernzerhof) [92] exchange-correlation

functional was used and the Kohn-Sham orbitals were expanded in a plane-wave basis

set with kinetic energy up to 25.68 Ry (349.4 eV). The Brillouin zone was sampled with

a (2N x N x 1) k-point mesh generated with Monkhorst-Pack scheme [80] with N= 1, 2, 3.

Convergence with respect to the k-point sampling was reached with N = 3. For temperatures

ranging from 250 K - 140 K, 15 system replicas (with additional 15 shadow replicas) were

found to be sufficient to describe the discrete CFP. At lower temperatures however, the
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Figure 4.6: Three possible reaction paths for the NH +H reaction on a Ru(0001) surface.
The topmost panel, (a), shows the path studied. The configuration on the left is the initial
state with the NH molecular fragment at a hcp site and the reacting H atoms as a fcc site.
The middle depicts the actual reaction path, where only the movements of the reacting
hydrogen atoms is showed. There is a slight extra movement in the path since the reacting
H atoms kicked the resulting NH2 fragment to a equivalent bridge site. Because of the
imposed boundary condition the NH2 moves to a neighboring bridge site. The rightmost
figure is the finial product, with a NH2 fragment at a bridge site. The middle panel, (b),
shows another possible reaction path where the reacting hydrogen atoms start at a fcc site
situated further away than the one in panel (a). The saddle point along path (b) is only
slightly higher than for the path in panel (a), ca. 0.08 eV. The bottom panel, (c), shows
the reaction hydrogen atoms starting at an intermediate hcp site. The reaction actually
progresses through the same saddle point as the reaction path in (a).
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Figure 4.7: The rate constant as a function of temperature for the second hydrogenation step
in the stepwise hydrogenation of nitrogen in ammonia production on a Ru(0001) surface.
Comparison between the HQTST (and quasi-quantum) results in the present study and
the SCT results from Ref. [91] are shown. In the high temperature limit there is good
agreement between the qq-HTST, sc-qq-HTST and the SCT indicating the two different
potential energy surface are represented similarly. The line through the HQTST results is
a guide for the eye only. The crossover temperature was calculated to be 254.1 K and is
represented by the horizontal dotted line.

number of system replicas was increased to 29 (and 29 shadow replicas) to ensure sufficient

resolution of the Feynman path. Derivatives were determined by a 1.0 · 10−3 Å step size

and the electronic structure was rigorously converged by requiring the energy difference

between two sequential iteration to be less than 1.0 · 10−8 eV. The CFP was considered

to have converged to the instanton if the maximum value of all force components was

lower than 3.0 · 10−4 eV/Å. Starting from a previously converged instanton at a higher

temperature, convergence was typically achieved in about 500 - 800 force calculation, per

movable image. As pointed out previously by Zhang et al. [96], there exist many different

reaction paths for each of the hydrogenation steps, all with similarly energetic saddle points.

Three different pathways for the second hydrogenation step are shown in Fig. (4.3.2). Similar
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Table 4.3: Structural parameters for the reacting species in NH + H → NH2. Adsorption
sites are given and for the transition state the magnitude of the imaginary frequency is
listed. Numbers in parenthesis are from Ref. [91]. Distances are given in Å.

Species Site or imag. freq. Adsorption height N-H bond length

H fcc 1.08 (1.08) -

NH hcp 1.25 (1.30) 1.02 (1.03)

NH2 bridge 1.64 (1.67) 1.02 (1.02)

TS(NH → NH2) 1111 (1150) cm−1 1.34 (1.39) 1.38 (1.44)

pathways exist for the first step, the only difference is that a single N atom is placed for

the NH molecular fragment. In Fig. (4.3.2) paths (a) and (c) react through the same

transition state. Starting with the configuration in panel (b), the reacting H atoms could

conceivably travel along the reaction path depicted in the middle figure of panel (b) or

along the reaction coordinate for path (c). The energy of the initial state increases as the

reacting H atom is moved closer to the NH molecular fragment. Evidently, the increased

proximity induces repulsive interactions between the reacting species. The energy difference

is slight, with the initial configuration in panel (b) in Fig. (4.3.2) about 0.06 eV lower in

energy than the starting configuration in panel (a). On the other hand, the reaction barrier

is higher by ca. 0.08 eV for the path in panel (b) and it is considerably longer than in

the path in panel (a). Both effects act as to favor the path in (a), especially at lower

temperatures. The initial configuration in panel (c) is much higher in energy (∼0.2 eV) and

is not considered to be relevant in the present study. In this study, and in accordance with

Ref. [91], reaction path (a) was focused on exclusively. At industrial conditions, all three

pathways most likely will be in active competition. The reactive barrier for the path under

study was found to be 1.39 eV (1.36 eV), as compared to 1.35 eV (1.31 eV) in Ref. [91],

the numbers in the parenthesis are the zero-point energy corrected barrier heights. The

difference can be attributed to the differences in the computational setup. In Ref. [91], a

three dimensional potential energy surface was used to estimate the reaction rate constant
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for the hydrogenation step. The reaction rate constant was calculated within the harmonic

transition state theory (HTST). The small curvature tunneling correction (SCT) scheme,

see Sec. (1.3), was used to incorporate quantal effects, such as zero-point energy, barrier

penetration via tunneling and nonclassical barrier reflection. As is evident from Fig. (4.3.2),

the reaction path is quite curved and the nitrogen atom moves slightly out of the coordinate

range specified by the three dimensional potential energy employed in Ref. [91]. Fixing

the nitrogen atom is therefore necessary. To compensate, Tautermann et al. introduce a

reduced mass for the reacting hydrogen atom by considering the magnitude of the imaginary

vibrational frequency at the saddle point in the reduced, three dimensional system and the

full system.

In Fig. (4.7), a comparison between the HQTST rate, as calculated in the present study,

Sec. (1.5), and the results presented in Ref. [91] is shown. In addition, to estimate the

magnitude of including quantum mechanical effects in the rate, results based on the quasi-

quantum rate and the semi-classical correction suggested by Fermann et al. [97] are showed

as well. Quantum effects are found to be completely repressed at industrial relevant condi-

tions, as could have been expected. But right below the crossover temperature, including

effects from quantum mechanical tunneling enhances the reaction rates by about an order

of an magnitude.

Because Ref. [91] employes both a different potential energy surface as well as a different

method for the quantal effects, a direct comparison between the HQTST rate and the results

reported therein is not feasible. Close to the crossover temperature, the discrepancy between

the two sets of results is found to be small, presumably due to the different representations

of the potential energy surfaces. According to Ref. [91] the barrier is slightly lower, hence

the rate is higher. As the temperature is lowered further, the results from Ref. [91] and

the present HQTST results increasingly diverge, in line with what has been observed in

previous comparison between the two methods. The cause is likely the harmonic expansion

centered around the classical reaction path employed in the small curvature approxima-

tion. As before, the semi-classical approximation (sc-qq-HTST) suggested by Fermann et.

al [97] completely fails below the crossover temperature. However, close to the crossover

temperature, the HQTST rate and the sc-qq-HTST appear to agree reasonably well.
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Chapter 5

CONCLUSION AND DISCUSSION

This thesis presents an implementation of instanton theory [22, 25, 6] - a harmonic

quantum transition state theory (HQTST) - that makes it possible to calculate quantum

mechanical rate constants with relatively small computational effort. The method is efficient

enough to use atomic forces directly obtained from first principles methods, without need-

ing to develop analytical potential energy surfaces. The method is applied to several test

problems where more accurate, higher level quantum rate theories can be applied, as well

as to simulations of hydrogen atom diffusion and H2 adsorption/desorption where atomic

forces are obtained from density functional theory (DFT) or semi-empirical methods. The

basic question that is addressed is how low the temperature needs to be in these systems

for quantum mechanical tunneling of hydrogen atoms to become the dominant transition

mechanism.

Previous calculations of quantum rate constants have in most cases relied on the de-

velopment of analytical potential energy surfaces and subsequent propagation of quantum

mechanical wave packets to find the reaction rate. Such an approach is limited to systems

with only very few degrees of freedom, at most six, both because of the tedium and cost

in developing the potential energy surface and because of the exponential scaling of the

computational effort in the wave packet calculations. In previous applications of instanton

theory, which is a statistical theory that avoids the need to calculate quantum dynamics,

the problem of finding the instantons has usually been approached by identifying periodic,

classical orbits on the inverted potential energy surface, an approach that is, again, only

applicable to systems with few degrees of freedom [27, 98, 99, 100]. The methodology that

is presented here, however, can be applied to systems with hundreds of degrees of freedom

even when computationally demanding, first principles methods are used to evaluate the

atomic forces. The approach takes advantage of the analogy between instanton theory and
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classical harmonic transition state theory (HTST), in particular the fact that the instanton

is a saddle point on an effective, quantum mechanical energy surface that results from the

Feynman path integral formulation of quantum statistical mechanics [26, 28, 10]. There, the

quantum mechanical delocalization of the system is described by creating several replicas

of the system. Corresponding atoms in the replicas are connected with a spring interaction

that depends on temperature [101, 9, 23]. The lower the temperature, the looser the springs

and greater the quantum delocalization. The total number of degrees of freedom in this

path integral construction is 3NP in three dimensions, where N is the number of atoms and

P the number of system replicas. The dimensionality of the effective quantum mechanical

energy surface can be very high since N is on the order of 100 and P is 10 to 50 for systems

and conditions that are commonly used in simulation studies in condensed matter chem-

istry and physics. A recently developed method, the minimum mode method [30, 32, 31],

for finding saddle points on high dimensional surfaces without the need for second deriva-

tives and knowledge of the final state of the transition makes the search for the instanton

practical even for such a large number of degrees of freedom. The calculation can easily be

divided up and run on several computers simultaneously either by parallel execution and/or

distributed computing. The calculations typically require on the order of a few hundred

force evaluations per system replica at a given temperature.

Application of the instanton method to simple test problems with one or two degrees

of freedom, where the exact quantum mechanical rate constant can be evaluated, indicate

that the approximations on which the instanton theory is based hold well in systems of

chemical interest and that the calculated rate constants are within a factor of two of the

exact value. An application to a large test problem, the desorption of hydrogen molecules

from a Cu(110) surface, where full quantum free energy calculations have been performed

previously [10], also indicates that instanton theory provides a good approximation for the

rate constant in that case.

An application of the instanton method to hydrogen desorption from ammoniaborane,

H3BHN3, a promising hydrogen storage material, shows that tunneling of hydrogen atoms is

the dominant transition mechanism at 400 K, the temperature where hydrogen desorption is

experimentally observed to occur. The rate calculation with instanton theory which includes
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tunneling is 300 times larger than the rate constant evaluated from quasi-quantum TST,

an approximation that includes zero point quantum effects but not tunneling. In each case

the AM1 semi-empirical method was used to evaluate the atomic forces. The semiclassical

small curvature tunneling (SCT) [13, 14, 15] approximation was found to overestimate the

rate constant in this case by nearly a factor of 10.

Calculations of the diffusion of hydrogen atoms in metals were also performed using DFT

with a gradient dependent PW91 functional to evaluate the atomic forces. For Ta and Pd

in particular, experimental data has shown clear changes in the effective activation energy

as the temperature is lowered through a fairly narrow transition interval. In the case of

Ta, the instanton calculations give very good agreement with the measured diffusion at low

temperature, for both the activation energy and prefactor, supporting the interpretation

that quantum mechanical tunneling is the dominant diffusion mechanism. For H in Pd, the

calculated activation energy agrees well with the measured one but the calculated prefactor

is too large by an order of magnitude, possibly due to anharmonic effects.

Finally, calculations were performed on the rate of two slow, elementary steps in the

formation of ammonia on the Ru(0001) surface: N+H→NH and NH+H→NH2. While in-

dustrial production of ammonia takes place at a high temperature where quantum tunneling

of hydrogen atoms is not important, the project here was part of a larger theoretical study

on the possibility of forming ammonia electrochemically at room temperature. The ques-

tion was how important tunneling of the hydrogen atoms would be for such conditions. The

instanton method shows that that tunneling only becomes important below room tempera-

ture; the best estimate of the crossover temperature is around 250 K. This system was used

for several tests regarding the importance of including various degrees of freedom in the

instanton calculations, ranging from calculations where only the adsorbed hydrogen atom

could move to calculations where the adsorbed atoms could all move, as well as the top layer

of the metal crystal - a DFT/instanton calculation involving a total of 26 atoms, including

10 movable atoms. Just below Tc, it turned out to be important to include the relaxation of

the N-atom in addition to that of the H-atoms, but the relaxation of the surface atoms did

not affect the rate until the temperature had been reduced to half the crossover temperature.

A troublesome fact regarding the instanton method is that the formalism becomes un-
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defined over the quantum-classical crossover temperature [6]. This precludes estimation of

the rate constant at higher temperatures, even though quantum mechanical effects may

be present. While rates at cryogenic conditions can be important in astrochemistry and

reactions in the interstellar medium, the higher temperature values of the rate constant are

usually of greater interest when studying more common chemical events. A modus operandi

for extending the instanton method above the crossover temperature or combining it with

a simpler, more approximate method would be highly valuable and worth exploring.

A particularly simple and attractive scheme would be to obtain the rate constant above

the crossover temperature by the semi-classical method as suggested by Fermann et al. [97].

Since the Fermann correction breaks down shortly after the temperature decreases below

the crossover temperature, instanton rate theory would provide the rate constant in the

low temperature region. Calculating the rate based on Fermann’s correction to HTST

is as expensive as the HTST rate calculation. Another possibility would be to combine

the instanton results with results obtained by the small curvature approximation (SCT).

However, applications of the small curvature approximation in many dimensions is much

less tractable.

Another, perhaps more consistent, approach would be to consider the CFP as a classical

entity. The saddle point could be found as usual, and then dynamical corrections performed

to access the rate constant at temperatures both above and below the crossover temperature.

This avenue has not been explored but yet, but is similar in spirit to the method suggested

by Craig et al. [102, 103, 104]. How to treat the quantum mechanical zero-mode (related to

the free rotation along the CFP) within this framework remains an open question.

The diffusion of different isotopes of hydrogen can be easily measured with great accuracy

because of relatively large atomic mass ratios. The diffusion of the isotope would constitute a

perfect test for the instanton method. However, since the curvature of the potential surfaces

of the three isotopes is approximately the same, the crossover temperature is reduced for

deuterium and tritium as the square root of the mass ratio between the two nuclei. This

severely reduces the temperature range where instantons for all isotopes are defined. In this

case, it would be critical to calculate the rate above the crossover temperature in a manner

consistent with the instanton framework.
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As future projects, implementation in other ab initio codes are planned. Arrangements

have already been made for including the instanton method into the ADF (Amsterdam

Density Functional) program suite [105]. Some lingering interest for similar plans regarding

CP2K [106] and NWChem [107] remain.
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Appendix A

PREVIOUSLY PUBLISHED ARTICLE IN THE JOURNAL OF
CHEMICAL PHYSICS

Theoretical calculations of CH4 and H2 associative desorption from

Ni(111): could subsurface hydrogen play an important role?
by

G. Henkelman1, A. Arnaldsson2 and H. Jónsson3

Published in J. Chem. Phys., 124, 044706 (2006)

A.1 Summary

The results of theoretical calculations of associative desorption of CH4 and H2 from the

Ni(111) surface are presented. Both minimum energy paths and classical dynamics tra-

jectories were generated using density functional theory to estimate the energy and atomic

forces. In particular, the recombination of a subsurface H-atom with adsorbed CH3 (methyl)

or H at the surface was studied. The calculations do not show any evidence for enhanced

CH4 formation as the H-atom emerges from the subsurface site. In fact, there is no mini-

mum energy path for such a concerted process on the energy surface. Dynamical trajectories

started at the transition state for the H-atom hop from subsurface to surface site also did

not lead to direct formation of a methane molecule but rather led to the formation of a

thermally excited H-atom and CH3 group bound to the surface. The formation (as well as

rupture) of the H-H and C-H bonds only occurs on the exposed side of a surface Ni atom.

The transition states are quite similar for the two molecules, except that in the case of the C-

1Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station
A5300, Austin, Texas 78712-0165

2Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700

3Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700 and
Faculty of Science, VR-II, University of Iceland, 107 Reykjavik, Iceland
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H bond, the underlying Ni atom rises out of the surface plane by 0.25 Å. Classical dynamics

trajectories started at the transition state for desorption of CH4 show that 15% of the barrier

energy, 0.8 eV, is taken up by Ni atom vibrations, while about 60% goes into translation and

20% into vibration of a desorbing CH4 molecule. The most important vibrational modes,

accounting for 90% of the vibrational energy, are the four high frequency CH4 stretches.

By time reversability of the classical trajectories, this means that translational energy is

most effective for dissociative adsorption at low energy characteristic of thermal excitations

but energy in stretching modes is also important. Quantum mechanical tunneling in CH4

dissociative adsorption and associative desorption is estimated to be important below 200

K and is, therefore, not expected to play an important role under typical conditions. An

unexpected mechanism for the rotation of the adsorbed methyl group was discovered and

illustrates strong three-center C-H-Ni contribution to the methyl-surface bonding.

A.2 Introduction

The critical step in the transformation of methane to more valuable chemicals is the disso-

ciative adsorption on the surface of the catalyst to form an adsorbed methyl group, CH3 and

an adsorbed hydrogen atom. Much of the experimental and theoretical work has focused on

this step. The most recent and most reliable measurements of the activation energy barrier

for dissociative adsorption of CH4 on Ni(111) give a value of 0.77 ± 0.10 eV [108]. Great

care was taken in these measurements to block defects on the surface with unreactive Au

atoms and to thermalize the methane gas with the surface. Previous measurements had

given a smaller value of 0.55 eV [109].

Theoretical studies of the dissociative adsorption have employed various techniques for

describing the energetics and have given estimates of the rate within harmonic transition

state theory where the saddle point on the energy surface between the energy minimum

corresponding to the methane molecule and the adsorbed methyl group and hydrogen atom

gives the activation energy barrier for the transition. Witten and coworkers have used clus-

ter models of the surface and calculated the energetics using Hartree-Fock and configuration

interaction (CI) methods [110]. Their best estimate of the activation energy for dissocia-

tive adsorption is 0.72 eV. The distance between the C-atom and the closest Ni-atom at
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the saddle point is 2.41 Å. Nørskov and coworkers have employed density functional the-

ory methods using both the PW91 and RPBE functional, obtaining activation energies of

0.73 eV and 1.05 eV, respectively [111]. The minimum energy path for dissociative adsorp-

tion is, of course, the same as the minimum energy path for associative adsorption. The

calculated MEP with the RPBE functional gives an activation energy of 0.4 eV for asso-

ciative desorption of methane when starting with H-atom and CH3-group adsorbed on the

surface.

A traditional view of surface chemistry assumes that chemical reactions and dissociative

chemisorption take place on the outer surface of the catalyst. However, in a series of exper-

iments by Ceyer and coworkers [112, 113] the presence of subsurface hydrogen was shown

to increase the efficiency of CH3 and ethylene hydrogenation on a Ni(111) surface. Two

theoretical studies of methane associative desorption have addressed this issue [114, 115].

In both studies, density functional theory (DFT) calculations using the PW91 functional

were used to study various pathways for the recombination of the subsurface H-atom and

surface adsorbed methyl group. Both groups report an activation energy barrier for the

direct recombination process suggested by Ceyer and coworkers but in one case the first

order saddle point is reported to be 1.08 eV higher in energy than the initial state [114],

while in the other study it is reported to be 1.36 eV higher [115]. The saddle point geom-

etry is reported to be quite unusual in that the C-Ni distance was very large – 2.5 Å in

one [114] and 2.2 Å in the other [115]. Typically, the catalysis of a chemical reaction by

a transition metal requires the overlap of the half-filled d-electron orbitals on a transition

metal atom with the molecular orbitals of the chemical and because of the localized nature

of the d-orbitals a typical transition state involves much shorter distances. In both reports

it was pointed out that the activation energy barrier for the process starting from surface H-

and CH3 is considerably lower in energy, and the increased reactivity when the Ni catalyst

is prepared with subsurface H-atoms is not due to a new reaction pathway but rather the

additional energy given to the initial state of the desorption process by driving the H-atoms

into subsurface sites [114, 115].

The reactivity of subsurface deuterium on Ni(111) has been studied by Wright, et al

[116, 117]. Temperature programed desorption experiments of D in both subsurface and
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surface sites show enhanced D2 associative desorption on Ni(111) at 180 K, as compared

to a thermal baseline. The angular distribution of desorbing molecules is consistent with

subsurface D-atoms surfacing at vacant sites and diffusing on the surface before combining

to form D2. No evidence of a direct recombination process was observed.

Because of the surprising and somewhat inconsistent results reported on the direct re-

combination pathway involving subsurface hydrogen, we decided to look more carefully into

this and apply a rigorous method for finding the minimum energy paths, the nudged elas-

tic band method [11], as well as direct classical dynamics simulations to investigate the

possibility of dynamically correlated reactive events.

A.3 Calculations

Density functional theory (DFT) calculations were done with the VASP code [35, 36, 37],

using the PW91 functional [118], ultrasoft pseudopotentials [88], and with a plane wave

basis set with a 350 eV cutoff. The nickel surface was represented as a four or five layer slab

with either a p(2×2) or a p(3×3) cell. The former has four Ni atoms per layer and the latter

has nine. Unless otherwise specified, the calculated results given below are for the largest

system, five layers with 9 atoms each. The bottom two layers of the slab were constrained

to their crystal lattice positions. The Brillouin zone was sampled with a 4×4×1 k-point

mesh for the p(2×2) system and a 2×2×1 mesh for the p(3×3) system. The sensitivity

of the calculated barriers to spin polarization, plane wave energy cutoff, k-point sampling,

system size, and surface relaxation were tested and discussed in appendix A.7.

Classical trajectories were calculated using a combination of DFT evaluation of atomic

forces and a verlet algorithm for the dynamics. A small time step size of 0.2 fs was used

to ensure energy conservation. Energy barriers were calculated using the nudged elastic

band (NEB) method [21] with the climbing-image modification to rigorously converge on

saddle points [33, 34]. Once a minimum energy path was found, the dimer method [30] was

used to reconverge saddle points after slab geometry had been changed or when calculation

parameters had been changed. For these calculations, a force-based conjugate gradients

method was used to optimize the geometry [119]. Saddle points and minima were considered

converged when the maximum force in every degree of freedom was less than 0.001 eV/Å.
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A.4 Results

The lattice constant for bulk nickel was calculated and found to be 3.52 Å, matching the

experimental value. Using this lattice constant, slab geometries were generated with 12 Å

of vacuum between the top of the slab and the bottom of its periodic image.

Adsorption at the four high symmetry binding sites was studied – the face centered cubic

(FCC) and hexagonal close packed (HCP) threefold hollow sites, the bridge site between two

surface atoms, and the on-top site above a single nickel atom. Both the H-atom and CH3

have lowest energy at the FCC threefold site. The calculated binding energy of hydrogen

was found to be 2.8 eV, matching the experimental binding energy of 2.77 eV measured

by Christmann et al. [120], while the binding energy of CH3 was found to be 1.8 eV. The

binding energy at the HCP site is only a few tens of meV lower for both species. For the CH3

group there is, furthermore, a minimum in the energy surface corresponding to binding on

top of a Ni atom but this is 0.3 eV higher than the FCC site, The on-top site was not a local

minimum for the hydrogen atom. Neither hydrogen nor methyl showed a local minimum in

the energy surface at the bridge site.

Spin polarization is found to be moderately important for binding, decreasing hydrogen’s

binding energy by 0.1 eV. The bare Ni(111) surface is stabilized with spin polarization to a

larger extent than it is with hydrogen bound to it. The reduction in the binding energy as

the spin polarization is included is consistent with the fact that the hydrogen bound Ni(111)

system has one less unpaired electron than the bare surface.

A.4.1 Subsurface hydrogen

It requires a large amount of energy, 0.6 eV, to drive a H-atom from a surface FCC site

to a subsurface site. Figure A.1 shows the minimum energy path for hydrogen resurfacing.

The activation energy for resurfacing is small, 0.1 eV. This energy profile is consistent with

previous calculations by Michaelides, Hu, and Alavi [115], Ledentu, Dong and Sautet [114],

and more recently Greeley and Mavrikakis [121]. The energy difference between the surface

and subsurface sites makes it very unlikely to find thermal hydrogen in the subsurface layer;

at room temperature and low H coverage, for example, it is 1010 times less probable. At
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Figure A.1: A hydrogen atom is 0.6 eV higher in energy at a subsurface site than at a FCC
hollow site at the surface. Hydrogen can resurface with a small energy barrier of 0.1 eV.

elevated temperature of 600K it is over 100, 000 times less probable. However, when H2 gas

pressure is high and the H-adatom coverage large, the subsurface sites will be populated to

some extent and it is of interest to find out to what extent a reaction mechanism involving

subsurface H-atoms could contribute to the rate of hydrogenation.

A.4.2 H2 recombination from Ni(111)

To determine the mechanism of subsurface and surface hydrogen recombination, a nudged

elastic band (NEB) is constructed with the initial state consisting of atomic surface hydrogen

adsorbed in the preferred FCC hollow site [122, 123] directly above a subsurface hydrogen

atom (see Fig. A.2). The final state consists of the H2 molecule above the Ni(111) surface

beyond the interaction distance. Intermediate images along the NEB (see Fig. A.2A) are

placed linearly between the initial and final states. The linear interpolation is a good esti-

mate of the direct recombination process. The fact that the NEB converges to a completely

different path (see Figs. A.2 and A.3) shows that there is no direct recombination process.

Rather, the hydrogen molecule wants to recombine on the exposed side of a nickel atom.

In order for the NEB to cross this transition state and satisfy the initial and final state

constraints, several intermediate minima appear (automatically) along the band. First, the

subsurface hydrogen moves to an adjacent subsurface site (position a in Figs. A.2 and A.3),
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Figure A.2: Initial (A) and relaxed (B) nudged elastic band (NEB) for the process by which
subsurface hydrogen combines with surface hydrogen to form a gas phase H2 molecule above
the Ni(111) surface. The initial NEB is a linear interpolation between a relaxed geometry in
which the surface hydrogen is adsorbed in the FCC hollow site directly above the subsurface
hydrogen and a relaxed geometry in which the H2 molecule is above the surface beyond the
interaction distance. The linearly interpolated initial band is an approximation to a direct
recombination process but when the NEB relaxes, no such process is found. Instead, the
NEB converges to a much more complicated path in which the subsurface hydrogen (a) first
diffuses to a neighboring subsurface site so that it can surface at an unoccupied site. The
other hydrogen atom (b) then moves to an adjacent surface site so they can recombine over
a surface nickel atom to form H2 (c).

so that it can emerge at an unoccupied surface site. At this point the two hydrogen atoms

are directly across a surface nickel atom (position b in Figs. A.2 and A.3), requiring one

hydrogen atom to move to an adjacent surface site so that the H2 molecule can recombine

(position c in Figs. A.2 and A.3) on the exposed site of the surface nickel atom.

Considering the reverse process, a dissociative adsorption reaction can simplify the de-

scription. The H2 molecule dissociates over a surface nickel atom into adjacent surface sites.

The rest of the process is simply required to move the hydrogen atoms to the specific final

state in which a subsurface hydrogen atom is directly below a hydrogen atom adsorbed in

an FCC hollow site.
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Figure A.3: The minimum energy path for H2 formation from a subsurface and surface
CH3-group at the Ni(111) surface. The process involves multiple steps. A nudged elastic
band (NEB) is constructed with an initial state (a) consisting of a surface hydrogen atom in
the lowest energy hollow site on Ni(111) directly above a subsurface hydrogen, and a final
state (c) consisting of the H2 molecule above the metal surface. The NEB does not find a
direct recombination mechanism. Instead, the minimum energy path breaks up into a set
of processes. First the subsurface hydrogen moves to an adjacent subsurface site, allowing
it to surface in an unoccupied site (b). Two hydrogen atoms then move to neighboring
surface sites, one in the fcc and the other in the hcp hollow, so that the H2 molecule (c)
can recombine on the exposed side of a Ni surface atom.

A.4.3 CH4 recombination from Ni(111)

The role of subsurface hydrogen in the recombination process with methyl on Ni(111) was

investigated in the same manner as H2. Figure A.4 shows a converged NEB with an initial

state consisting of the methyl group in a hollow site directly above hydrogen in a subsurface

site, and a final state with methane above the surface. Just as with H2 recombination, no

direct recombination process with subsurface hydrogen is found. Instead the NEB breaks

up into a set of intermediate processes. First the methyl molecule moves to an on top

site which allows the subsurface hydrogen atom to surface into an unoccupied hollow site.

Then, as with H2, recombination takes place on the exposed side of a surface nickel atom.

Figure A.5 shows this three step recombination process.

These calculations show that there is no direct mechanism for methyl recombination
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Figure A.4: The minimum energy path for CH4 formation from a subsurface H-atom and
surface H-atoms at the Ni(111) surface. The process involves multiple steps. The first step
involves the methyl group hopping to an on-top site. Then the subsurface hydrogen hops
to the surface. In the second step, methyl recombines with the surface hydrogen on the
exposed surface of the raised Ni atom.

Figure A.5: Graphical representation of the methyl recombination process showing hydrogen
resurfacing before recombining with methyl over a nickel surface atom.
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Figure A.6: Geometry of the saddle point for methyl recombination (and dissociation) on
the surface of Ni(111). The methyl group and the surface hydrogen react on the exposed
side of a single raised surface Ni atom. The Ni atom is raised by 0.25 Å at the transition
state. It is likely that the upward displacement of this atom raises the energy of the Ni
d-bands to favor bonding with the methyl group and reduce the barrier energy [124].

with subsurface hydrogen. The experimental evidence for the importance of subsurface

hydrogen in methane recombination [112] is based on a non-equilibrium experiment in which

subsurface hydrogen is induced under high pressure, and surface hydrogen is removed with

an atomic Xe beam. The observed increase in reactivity does not result from a new and

faster mechanism which opens up with the presence of subsurface H-atoms but it could be

caused by the release of (non-thermal) energy stored in the subsurface hydrogen. We have

done ab initio molecular dynamics simulations to test this. This is described in Sec. A.4.5.

The only theoretically observed mechanism for the dissociative adsorption of methane

on Ni(111) involves methyl and hydrogen adsorbing onto the surface. Our most accurate

simulation, with a five layer, nine atom per layer Ni(111) slab with three relaxed layers, a

350 eV plane wave energy cutoff, a 2×2×1 Monkhost-Pack k-point mesh, including spin-

polarization has a barrier of 0.82 eV. This is in excellent agreement with the barrier of

0.77 eV obtained in recent experiments by Egeberg et al. [108].

The transition state geometry, shown in Fig. A.6, shows a remarkable nickel atom surface

relaxation of 0.25 Å. The atom rises out of the surface to provide a favorable environment

for the hydrogen-methyl bond breaking reaction. This was first observed in calculations

of methane dissociation on Ir(111) [125], and then for methane on Ni(111) by Bengaard et

al. [111]. The surface relaxation is moderately important for the reaction barrier; methane
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Table A.1: Energy distribution of the CH4 molecule as it leaves the Ni(111) surface. A
1 ps ab initio molecular dynamics simulation is started from the saddle point for methane
dissociation, slightly displaced away from the surface so that the methane molecule desorbs
from the surface. The 0.82 eV potential energy at the saddle (0.85 after being displaced) is
partitioned into translation, rotation, and internal energy of the CH4 molecule, and energy
that is left behind in the nickel surface.

Energy Mode or Subsystem

0.13 eV Ni(111) slab

0.50 eV CH4 translation

0.03 eV CH4 rotation

0.19 eV CH4 vibration

0.85 eV Total in CH4 and Ni(111) system

reacting on a frozen surface has a barrier which is 0.14 eV higher. Mavrikakis, Hammer

and Nørskov [124] have suggested that a strained surface can raise the energy of the d-band

electron energy levels to enhance reactivity. The effect of surface relaxation on the barrier

energy is less dramatic than reported in Ref. [125] because the saddle point calculations on

Ir(111) were not converged with respect to k-point sampling [126].

A.4.4 Partitioning of CH4 desorption energy

One of the intriguing possibilities suggested originally from the work of Polanyi [127], is

state specific chemistry. If it is known which modes need to be excited in order to make

molecules overcome a reaction barrier, there is the possibility of injecting energy into just

those modes to enhance reactivity. In order to address this question for the methane disso-

ciative adsorption reaction, a dynamics simulation was run starting from the saddle point

for desorption. The molecule was moved a small (0.1 Å) distance away from the surface so

that it desorbed from the surface during the simulation. A calculation of 150 fs was suffi-

cient to reach a CH4-surface distance of 5.3 Å, where the molecule is no longer interacting

with the surface at this level of theory. It was then possible, by looking at the velocity of
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Table A.2: Vibrational energy of a desorbing CH4 molecule projected onto the normal
modes. An averaging over 200 fs was calculated. This analysis suggests that energy in the
symmetric and asymmetric stretch modes can equally enhance dissociative adsorption.

Energy Mode Description Frequency

0.021 eV T2 (×3) asymmetric stretch 3207 cm−1

0.020 eV A1 (×1) symmetric stretch 3063 cm−1

0.003 eV E (̇×2) asymmetric deformation 1551 cm−1

0.002 eV T2 (×3) asymmetric deformation 1324 cm−1

each atom in the system, to partition the energy into different modes of the system as the

molecule leaves the surface. Such a partitioning is shown in Table A.1. The majority (59%)

of the saddle point energy goes into translational energy of the methane molecule, making

that the most important degree of freedom for dissociative adsorption. A further 22% and

4% of the energy goes into vibrational and rotation energy of CH4 respectively. The final

15% of the energy is left behind in vibrational motion of the nickel atoms.

It was also possible to subdivide the internal CH4 energy into its internal modes. To

do this, the dynamical simulations were continued for 200 fs after the methane molecule

was no longer interacting with the surface. The velocity of the molecule at each time step

was projected onto the normal modes of the molecule. The kinetic energy in each mode

could then be calculated, and the total energy found by the Virial theorem. The average

energy in each mode is reported in Table A.2 along with the calculated frequency, symmetry,

degeneracy and description of each mode. The CH4 normal modes were calculated at the

MP2 level using the GAUSSIAN98 software [128]. The frequencies, obtained with MP2 and

a local basis set, were significantly closer to the experimental values than could be calculated

with the periodic VASP code using a plane wave basis set.

Table A.2 shows that the high frequency stretch modes contain 88% of the vibrational

energy of the desorbing CH4 molecule. This energy is only ca. 1/20th of the vibrational

quantum so these classical dynamics cannot be expected to give an accurate description



107

of the vibrational motion of the CH4 molecule. Our results do, however, suggest that the

stretching modes are more important than the lower frequency deformation modes, and that

there could be some enhancement of the dissociation rate if adsorbing methane molecules

could be prepared with high energy in the stretching modes, and a high translational kinetic

energy. Evidence of this enhancement was recently observed by Smith et al. [129] and

Juurlink et al. [130].

A.4.5 Classical dynamics trajectories of H resurfacing near adsorbed CH3

It is evident from the NEB calculations, that there does not exist a direct recombination

mechanism for a subsurface hydrogen atom and an adsorbed methyl group on the Ni(111)

surface. It is however, possible that the energy released (0.6 eV) when a hydrogen atom

resurfaces enhances the CH4 dissociation rate. Since the energy barrier for resurfacing is

low (ca. 0.15 eV) we were able to run a classical dynamics simulation at 500 K to see what

happens when the hydrogen resurfaces.

An initial geometry was chosen with a subsurface hydrogen atom directly below an

adsorbed methyl in the hollow site of Ni(111). One methyl molecule on our nine atom-per-

layer Ni surface corresponds to a 1/3 coverage, assuming that methyl molecules can occupy

1/3 of the FCC sites in a full monolayer. This configuration was chosen to maximize the

chance of seeing a direct recombination event. A velocity scaling thermostat was used to

generate a set of independent coordinates and velocities consistent with a temperature of

500 K. Fourteen such geometries were used as initial configurations to generate dynamics

trajectories of 8.5 picoseconds (or until a reactive event took place), using a time step of 0.2

femtoseconds. Temperature was controlled with a weak Nosé thermostat, using a coupling

mass of 5 amu.

During the dynamics runs, the methyl and subsurface hydrogen atom oscillated in their

original potential basins, until either the methyl group or hydrogen atom hopped to a

neighboring site. This typically happened several times before a surfacing event occurs,

and the species may have accumulated a considerable distance from each other when finally

such an event takes place. A surfacing event where the methyl group was in the hollow
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Figure A.7: Block averaged kinetic energy for the surfacing H-atom. The first 300 fs after
the H-atom crosses the surface plane are broken into six 50 fs segments and averaged over
each one. The error bars are the normalized standard deviation for each segment. An
exponential fit to these data show a relaxation time, t0, of 200 fs. This is expected to be an
underestimation of the true relaxation time because we have used classical dynamics with
a weak thermostat. These calculations show that a resurfacing H-atom will be hot due to
the release of 0.6 eV of potential energy, but that this energy is dissipated to the substrate
on the picosecond time scale.

site or in an on-top site adjacent to the hollow site where the hydrogen atom emerged was

never observed. On average, a surfacing event took place every 4.5 ps. This time scale is

consistent with a harmonic transition state theory estimate of the rate, a reaction barrier of

0.15 eV will be crossed on average after 6.5 ps at a temperature of 500 K, assuming a typical

reaction prefactor of 5 × 1012 s−1. A surfacing event took place in eleven of the fourteen

trajectories within our time limit of 8.5 ps. Several different mechanisms were seen in these

eleven trajectories where surfacing of the hydrogen atom occurred, as described below.

In one trajectory, the CH3 group dissociated into CH2 and an adsorbed hydrogen atom,

before the subsurface hydrogen hopped to the surface. In three others, the methyl hopped

to a neighboring hollow site before the hydrogen surfaced and thermalized. In four, the sub-

surface hydrogen hopped to an adjacent subsurface site before resurfacing. In the remaining

three trajectories both the methyl and the subsurface hydrogen hopped laterally before the

resurfacing event took place. In each case, the resurfacing hydrogen did not show any sign
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of recombining with the methyl group. Instead, the resurfacing energy was transferred into

kinetic energy of the hydrogen atom, which was dissipated into the surface on a time scale

of 200 fs (shown in Fig. A.7).

This relaxation time is somewhat shorter than other calculated and measured lifetimes of

hot adsorbed H-atoms on metal surfaces, in part due to a weak thermostat present during

the dynamics. Klamroth and Saalfrank calculate a time scale of several picoseconds for

adsorbed H-atoms to settle into binding sites on Cu(100) [131]. In these simulations, it was

found that classical dynamics provides an accurate estimate of the energy decay time, as

compared to full wave packet dynamics. Strömquist et al. [132] have done classical dynamics

simulations of H/Cu(111) using a model energy landscape fit to ab initio data and found an

energy relaxation time of 1.4 ps. Recently, Trail et al. [133] have found a shorter relaxation

time of 0.8 ps from dynamics simulations using forces from DFT. They also estimate that

electronic friction, due to electron-hole pair creation, will reduce the relaxation time scale

for a H-atom on a metal surface by roughly 80% as compared to a Born-Oppenheimer

classical dynamics simulation. Infrared reflection adsorption experiments [134] have also

determined a sub-picosecond lifetime of 0.7 ps for H on Cu(111). The agreement between

this wide range of computational techniques with experiment provides convincing evidence

that energy dissipates from H-adatoms to the metal surface on the picosecond time scale.

The lateral diffusion of subsurface hydrogen and the adsorbed methyl molecule away from

each other, as observed in the trajectory data, is supported by comparing the energetics

between the initial configuration, in which the subsurface hydrogen is directly below the

adsorbed methyl group. The energy of this configuration is 0.08 eV higher than the same

species at infinite separation. This repulsive interaction between the subsurface H-atom

and the surface methyl group will reduce the chance of finding a hot hydrogen atom in the

vicinity of an adsorbed methyl molecule.

These dynamical trajectories support the suggestion that resurfacing hydrogen is unlikely

to increase the CH4 desorption rate, except by local heating in the case of an athermal

subsurface population. In thermal equilibrium, the presence of subsurface hydrogen will

not enhance the desorption rate of CH4. Furthermore, unless there is a very high density

of methyl groups on the surface, it is unlikely that a resurfacing hydrogen atom will find a
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Figure A.8: The optimal mechanism for the rotation of a methyl group adsorbed on a
Ni(111) surface involves first a displacement of the C atom from a FCC to an adjacent
HCP hollow site. During this process, one of the hydrogen atoms maintains contact with
an underlying Ni atom. In this intermediate state (indicated by ?), the methyl group has
rotated by 60◦. In the second step, the methyl group rotates about a different hydrogen
atom and the C-atom gets displaced back to the original FCC site – completing the 120◦

rotation. This mechanism, and the high rotational barrier, indicates strong three center
C-H-Ni interaction.

methyl group in the ca. 200 fs that it takes for the resurfacing energy to dissipate. Both

the transition state and dynamics calculations indicate that subsurface hydrogen will not

contribute to CH4 recombination from Ni(111) under thermal catalytic conditions.

A.4.6 Methyl diffusion

The interaction of the CH3 with the surface is of a strong three-center character. The H-

atoms are strongly attracted to the nearby Ni atoms and the lowest energy configuration

has the three hydrogen atoms pointed towards the adjacent surface nickel atoms. This

effect has been discussed by Michaelides and Hu [135]. The strength of these bonds was

investigated by finding the barrier for rotation of the CH3 group. A NEB calculation was

set up with the CH3 sitting at a FCC hollow site in both the initial and final state, with the

labeling of the H-atoms changed to reflect a 120◦ rotation about the surface normal going

through the carbon atom. The initial chain of images was generated by a linear interpolation
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between the initial and final states. Figure A.8 shows the converged minimum energy path.

Remarkably, the hydrogen-metal binding is so strong that CH3 does not rotate about the

carbon atom. Instead, the carbon atom first gets displaced to an HCP site and the CH3

group rotates 60◦ about one of the H-atoms (see Fig. A.8, inset a). In the second step,

the carbon atom is displaced back to the FCC site and the CH3 group rotates by another

60◦ about another one of the H-atoms, as shown in Fig. A.8, inset b. The overall methyl

rotation barrier on Ni(111) is 0.17 eV. This illustrates how the NEB method can find a

minimum energy path that is quite far removed from the initial guess and thereby reveal

an unexpected transition mechanism.

A.4.7 Quantum effects

Quantum zero point and tunneling effects have been evaluated for dissociative adsorption of

CH4 on Ni(111) within the harmonic approximation. We have considered the dissociative

adsorption process instead of associative desorption because previous studies have most

often focussed on adsorption.

In classical transition state theory, after making a harmonic approximation for vibra-

tional modes, the rate constant for dissociative adsorption can be written as [136, 137],

khTST
cl =

1
Qinit

t,r

Πi ν
init
i

Πi ν
‡
i

e−(E‡−Einit)/kBT , (A.1)

where νinit
i and ν‡i are the frequencies of harmonic vibrational modes at the initial state min-

imum and saddle point, respectively, and Qinit
t,r is the product of translational and rotational

partition functions of the initial gas phase molecule.

The normal modes of the CH4 molecule in the gas phase and at the saddle point for

dissociative adsorption were evaluated from the DTF forces using a finite difference scheme.

The total zero point energy in the 9 vibrational modes of a gas phase CH4 molecule was

found to be 1.23 eV. At the saddle point, the frequencies obtained from small displacements

of the C- and H-atoms while keeping the Ni atoms frozen gave a total zero point energy of

1.07 eV, from the 14 stable vibrational modes. The difference in the zero point energy of the

initial and transition state is commonly used as a correction to the classical activation energy

barrier. In this case, such a correction would lower the barrier by 0.16 eV (see Fig. A.9).
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However, this approximation is only valid at low temperature when each vibrational mode

is in its ground state.

A better approximation to the quantum mechanical rate constant can be obtained by

using quantum mechanical partition functions for the vibrational modes in both the initial

and transition states while keeping the classical mechanical definition of the normal modes.

When the harmonic quantum partition function is used instead of the classical limit, the

Wigner correction [138] to the classical rate constant is obtained,

khTST
qm =

Πi sinh(xinit
i )/xinit

i

Πi sinh(x‡i )/x
‡
i

khTST
cl , (A.2)

where xi = hνi/2kBT is the ratio of the zero point energy to the thermal energy in each

vibrational mode. The quantum correction to the classical rate can also be expressed as a

temperature dependent correction to the classical activation energy barrier,

khTST
qm = e−δE/kBT khTST

cl . (A.3)

In the case of the Wigner approximation, the correction to the classical barrier is

δEwig = −kBT ln

[
Πi sinh(xinit

i )/xinit
i

Πi sinh(x‡i )/x
‡
i

]
. (A.4)

In the high temperature limit, the Wigner correction vanishes, and in the low temperature

limit, it goes to the commonly used zero point energy correction,

δEzp =
∑
i

hν‡i
2
−
∑
i

hνinit
i

2
. (A.5)

Figure A.9 shows a comparison of the classical barrier (∆E = E‡ − Einit), the zero point

corrected barrier (∆E+ δEzp), and the Wigner corrected barrier (∆E+ δEwig) for the CH4

dissociative adsorption barrier at temperature above 200 K. Plotting the quantum corrected

rate in this way shows at which temperature quantum effects become important, and when

the simple zero point energy correction can be used. At the operating temperature of a

typical industrial catalyst, only a fraction of the simple zero point energy correction is

appropriate.

The effect of quantum mechanical tunneling can also be estimated using a harmonic

Wigner correction [139]. The ratio of the rate constant including both tunneling and zero
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Figure A.9: Quantum mechanical correction, δE, to the energy barrier for dissociative
adsorption of CH4. The simple, commonly used zero point energy correction (Eq. A.5)
shifts the classical barrier from 0.82 eV (upper line) down to 0.66 eV (lower line). This is
a poor approximation at high temperature where the system is not confined to the ground
state. The Wigner zero point energy correction (Eq. A.4, shown in red), which treats
classical harmonic modes as quantum oscillators, smoothly switches between the simple
zero point correction at low temperature to the classical barrier at high temperature. The
addition of the Wigner tunneling correction (Eq. A.6, shown in blue) does not significantly
change the barrier above the crossover temperature of 200 K (see Eq. A.7) for this reaction.

point energy and the rate constant that only includes zero point energy quantum effects is

khTST
qmzpt/k

hTST
qmzp =

ihν∗/2kBT
sin(ihν∗/2kBT )

=
x∗

sinhx∗
, (A.6)

where ν∗ is the imaginary frequency at the saddle point, and x∗ = ihν∗/2kBT . The correc-

tion can only be used above the crossover temperature for tunneling

Tc =
h̄ |ν∗|
kB

, (A.7)

at which point the approximation diverges. The crossover temperature for the Wigner

approximation is the same as that obtained from the WKB approximation [6]. Above this

crossover temperature, the reaction mechanism can be thought of as over-the-barrier hop,

but at lower temperature tunneling is the dominant mechanism. An appealing aspect of

the Wigner tunneling correction (Eq. A.6) is that the imaginary frequency at the saddle
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point, ν∗, enters into the quantum rate expression (Eq. A.2) in the same way that the real

frequencies do in the Wigner zero point correction. The Wigner correction to the classical

barrier (Eq. A.4) includes the tunneling correction (Eq. A.6) if the product over saddle

point modes in the denominator includes the imaginary frequency mode along the reaction

coordinate. For CH4, we find that the imaginary frequency has a magnitude of 850 cm−1

at the saddle point which corresponds to a crossover temperature Tc of 200 K. The small

difference between the Wigner correction with and without tunneling (Fig. A.9) shows how

small the tunneling correction is above the crossover temperature.

A.5 Conclusions

We have carried out various calculations of associative desorption of H2 and CH4 to study,

in particular, the role that subsurface H-atoms could play in these processes. We have car-

ried out calculations of minimum energy paths, which are the paths with highest statistical

weight in thermal systems, as well as calculations of classical dynamics and energy parti-

tioning between vibrational modes. Although it might seem, judging from steric arguments,

that a subsurface H-atom could readily react with a surface adsorbed methyl group or H-

adatom, a minimum energy path for such a process was not found. Also, direct classical

dynamics simulations of the surfacing of a subsurface H-atom, initially placed directly under

a surface methyl group or surface bound H-atoms did not, in fourteen statistically indepen-

dent trajectories, lead to associative desorption. Instead, the surface species either moves

out of the way by hopping to other surface sites before the subsurface H-atom hops out to

the surface, or the subsurface atom hops to adjacent subsurface sites before hopping out

into a vacant surface site. The basic reason for this seems to be that the surface Ni-atoms

can only catalyze H-H and H-CH3 bond formation/rupture on the exposed, undercoordi-

nated side. There is, furthermore, a small but significant repulsive interaction between a

subsurface H-atom and a surface methyl group. Experimentally, enhanced reactivity in the

presence of subsurface hydrogen has been observed [112, 117], but these experiments were

carried out with high coverage of both surface and subsurface species and the effect is likely

due to the local energy release of surfacing H-atoms resulting from the high energy, non-

equilibrium initial state. In our classical dynamics simulations the excess kinetic energy
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of a H-atom after hopping out to a surface site dropped very quickly, on the time scale of

200 fs, and no associative process was observed in fourteen trajectories. It is quite likely

that a classical description of these processes is not adequate. It is, however, clear that

under thermal conditions, the probability of finding an energetic atom on the surface is not

affected by the presence of H-atoms in subsurface sites. The probability of finding an atom

with energy E is only related to the Boltzmann factor e−E/kT . The presence of an unstable

state such as the subsurface hydrogen species does not increase the probability of finding a

hot hydrogen atom on the surface under thermal conditions.

Our calculations also provide information about associative desorption of CH4 and H2

starting with surface species. In the saddle point configuration for CH4 desorption, the

underlying Ni-atom is lifted up from the surface plane by 0.25 Å. This reduces the energy of

the saddle point configuration in a way that is analogous to strain effects [124]. An analysis

of classical trajectories for desorption showed that about 15% of the saddle point energy

goes into surface vibrational modes as the Ni atom relaxes back to its original position. The

rest of the energy is taken up by the methane molecule and the majority, 60% of the total

goes into translation, while vibration and rotation take up 20% and 5%, respectively. The

symmetric and asymmetric stretches are found to be the most important vibrational modes.

The principle of time reversal symmetry can be used to argue that these modes will also be

most important for enhancing dissociative adsorption of methane on Ni(111), in agreement

with recent experiments of Smith et al. [129] and Juurlink et al. [130].
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A.7 Appendix: Convergence

The sensitivity of the CH4 dissociation barrier on Ni(111) to various computational param-

eters is given in Table A.3. For each parameter, the energy difference is with respect to our

most accurate calculation described above. The most sensitive computational parameter in

our calculation is k-point sampling. Given more computing power, this should be increased

to verify convergence. For the smaller, four atom per layer system, in which k-point sam-

pling will be even more important, going from a 2×2×1 Monkhost-Pack k-point mesh to a

4×4×1 mesh did not change the binding energies by more than 0.1 eV. Spin polarization

also plays a significant role, raising the barrier by 30%. Finally, surface relaxation and the

number of layers in the Ni(111) slab are both needed to allow the large surface relaxation

found at the transition state and to lower the barrier by 20%.

Table A.3: Sensitivity of the CH4 dissociation energy barrier on Ni(111) with respect to
computational parameters. Energy differences are with respect to a five layer, nine nickel
atoms per layer slab with the bottom two layers frozen, a plane wave energy cutoff of 350 eV,
a 2×2×1 Monkhost-Pack k-point mesh, spin polarized calculation for which an activation
energy barrier of 0.82 eV was calculated.

Energy Computational Parameter

0.30 eV K-point sampling (Γ to 2×2×1)

0.25 eV Spin polarization

0.15 eV Surface relaxation (frozen to relaxed)

0.10 eV System size (four to nine atoms per layer)

0.05 eV Number of surface layers (four to five)

0.02 eV Plane wave energy cutoff (240 eV to 350 eV)
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