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Abstract

Translating visual representations of real environments into auditory feed-

back is one of the key challenges in the design of an electronic travel aid

for visually impaired persons. Although the solutions currently available in

the literature can lead to effective sensory substitution, high commitment

to an extensive training program involving repetitive sonic patterns is typ-

ically required, undermining their use in everyday life. The current study

explores a novel sensory substitution algorithm that extracts information

from raw depth maps and continuously converts it into parameters of a nat-

urally sounding, physically based liquid sound model describing a population

of bubbles. The proposed approach is tested in a simplified wayfinding ex-

periment with 14 blindfolded sighted participants and compared against the

most popular sensory substitution algorithm available in the literature - the

vOICe (Meijer, 1992) - following a short-time training program. The results

indicate a superior performance of the proposed sensory substitution algo-
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rithm in terms of navigation accuracy, intuitiveness and pleasantness of the

delivered sounds compared to the vOICe algorithm, supporting its usability

for the visually impaired community.

Keywords: sensory substitution, sonification, electronic travel aid, physical

sound model

1. Introduction1

The technique of data sonification is used as an alternative or a comple-2

ment to data visualization for representing various actions, objects or signals.3

Sonification can be defined as “a mapping of numerically represented rela-4

tions in some domain under study to relations in an acoustic domain for the5

purposes of interpreting, understanding, or communicating relations in the6

domain under study” [40]. Widely accepted sonification techniques include7

audification (i.e., direct playback of data streams as sound waves), auditory8

icons (i.e., discrete environmental sounds), earcons (i.e., discrete symbolic9

sounds), parameter mapping sonification between data dimensions and audi-10

tory dimensions, and model-based sonification (i.e., based on dynamic models11

of virtual sounding objects) [23, 17].12

Sonification is used in very different contexts to represent a great variety13

of data, ranging from molecular information [19] to geophysical data [16].14

Of particular interest are applications in health care, such as in motor reha-15

bilitation systems [1, 39] where task-related auditory information is able to16

support motor learning and increases attention and engagement levels dur-17

ing rehabilitation tasks. Another widely explored area is that of electronic18

travel aids [15] and other assistive technologies for visually impaired persons19
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(VIPs) [14], where sonification techniques are designed to substitute visual20

information [28]. Unfortunately, the majority of the systems exploiting such21

techniques are still in their infancy and have limited functionalities, small22

scientific and/or technological value and high cost [15].23

Available electronic travel aids for VIPs range from simple obstacle de-24

tectors with a single range-finding sensor (e.g. ultrasound, infrared), to envi-25

ronmental imagers employing data generated from visual representations ac-26

quired through camera technologies. The most common sonification schemes27

of obstacle detectors, which only receive range information, are either earcons28

indicating the presence of an obstacle, or an inversely proportional transform29

mapping one or more range readings to the loudness and/or pitch of synthetic30

sounds or musical tones [10]. On the other hand, environmental imagers (i.e.,31

devices able to deliver a representation of the layout of an environment) allow32

for greater flexibility in sonification mappings. The most significant exam-33

ple is provided by the well-known image sonification algorithm used in the34

vOICe system [30].35

The vOICe algorithm can be thought of as an inverse spectrogram trans-36

form, i.e., a time-varying sound whose spectrogram approximately matches37

an input grayscale image. In particular, the algorithm periodically scans the38

image from left to right, while associating each row to a different sinusoidal39

oscillator with fixed frequency (in ascending order from lower to upper rows)40

and using the brightness of each pixel in turn to control the amplitude of41

the oscillator. The sound output is then spatialized left to right according to42

the current scanning point. It has been shown that, following extensive pe-43

riods of training and exploiting the neural plasticity of the human brain, the44
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vOICe sonification mechanism can lead to effective sensory substitution [31],45

both in object recognition [53] and spatial learning [35].46

Although the original vOICe algorithm was designed to sonify 2D grayscale47

images, its use in blind wayfinding is supported by the observation that a48

depth map can be directly converted into a grayscale image where brightness49

corresponds to depth. The use of depth information for the sonification of 3D50

scenes through either the original vOICe algorithm or slight variations of it51

has already been proposed and investigated [11, 52]. Furthermore, improve-52

ments to the pleasantness of sounds (such as using musical tones instead of53

pure sines) as well as to the spatial feeling and real-time conveyance of the54

sounds (e.g. presenting independently to each headphone channel simulta-55

neous scans from the left and right edge to the central column of the image)56

were proposed [3].57

The main drawback of most existing sensory substitution devices (SSDs),58

including the vOICe, is that even though in some cases the conveyed audi-59

tory information can be successfully interpreted by näıve users, they demand60

extremely high commitment on the user’s side. A lengthy and strenuous61

training of up to one year is required in order to enable users to perform62

most tasks, thus undermining the use of SSDs in everyday life [35]. As63

Fontana et al. point out [18], the prolonged use of SSDs “leads to the strain64

of the user [...] due to the continuous listening of the same signal at regular65

time intervals. This sound, even if spatialized, produces an unnatural effect66

and causes a progressive fatigue.” Therefore, the choice of the type of sound67

as well as the way it is generated should be regarded as a key issue in the68

design of any sensory substitution algorithm.69
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The current study explores a novel model-based sonification algorithm for70

translating continuous representations of a dynamic real environment, coded71

into sequences of depth maps, into auditory feedback. The sensory substitu-72

tion algorithm we propose is meant to be used for real-time blind wayfinding,73

with minimum latency between data acquisition and sonification, and with74

available off-the-shelf hardware technologies. It was designed in an attempt75

to improve the vOICe algorithm from both an ergonomic and a functional76

point of view, eventually reducing the required training time, and to be ef-77

ficiently scalable depending on the available computational resources. The78

algorithm we propose here directly maps low-order statistics from the raw79

depth map into the parameters of a physically-based liquid sound model. In80

this model, physical descriptions of sound events are intentionally simplified81

to emphasize the most perceptually-relevant timbral features, and to reduce82

computational requirements as well [4]. The model was specially selected83

and tuned in order to sound both natural (yet significantly discernible from84

most daily environmental sounds) and aesthetically pleasant.85

The remainder of the paper is organized as follows. In Section 2 we86

describe the generation mechanism of liquid sounds and its use in the design87

of our fluid flow sensory substitution algorithm. In Section 3 we introduce88

an experiment designed in order to assess the performance and individual89

preference of the sensory substitution algorithm in a blind wayfinding task.90

Results are reported in Section 4 and finally discussed in Section 5.91

5



L

R

HRTFs

� = 45j - 90

L

L

L

R

R

R

depth

statistics

A

B

C

0 1 2 3 4

A0...A4

B0...B4

C0...C4

(�,45)

(�,0)

(�,-45)

Figure 1: Simplified scheme of the proposed sensory substitution algorithm.

2. Sensory substitution with liquid sounds92

The fluid flow sensory substitution algorithm that we propose in this93

paper receives a sequence of depth maps as input. Each depth map is di-94

vided into 15 equally sized sectors given by the combination of 3 rows and 595

columns. Every sector corresponds to an independent and uncorrelated in-96

stance of a liquid sound generator, and its position within the depth map is97

spatialized in the frontal hemisphere, allowing for effective source separation.98

Figure 1 reports a simplified scheme of the proposed algorithm.99

2.1. Generation of liquid sounds100

The building block of the fluid flow algorithm is the liquid sound gener-101

ator. In the physical world, liquid sounds are mostly caused by gas bubbles102

trapped inside the liquid rather than by the liquid mass itself. For this reason,103

sound is generated through a stochastic process modeling the temporal evo-104

lution of a population of bubbles, a synthesis approach previously referred to105

as physically informed sonic modeling by granular synthesis [57]. The liquid106

sound generation algorithm considers individual bubbles to be atomic units107

(or grains, according to the granular synthesis terminology [37]), synthesized108
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using the well-known physically based Minnaert model [32]. Spherical bub-109

bles effectively act as exponentially decaying sinusoidal oscillators: the com-110

pressible gas region of the bubble, surrounded by an incompressible liquid111

mass, gradually dissipates the energy involved in its creation by a periodic112

pulsation, as it would happen in a spring-mass system.113

Every single bubble k, whose impulse response is114

ik(t) = ak sin(2πf 0
k t)e

ζkt (1)

is fully defined by means of its radius rk and depth factor Dk, that uniquely115

determine the individual damping factor ζk, resonant frequency f 0
k , and am-116

plitude ak as follows:117

ζk =
0.13

rk
+ 0.0072r

−
3

2

k f 0
k =

3

rk
ak = Dkr

3

2

k (2)

Here the depth factor Dk models the lumped effect of the depth of a bubble,118

and the effect of different excitation strengths of the bubbles. Bubbles that119

are submerged more will be attenuated more. Factor Dk is a dimensionless120

number between 0 and 1, where 1 corresponds to a bubble created at the121

surface and 0 to a fully submerged bubble.122

The creation of bubbles is then modeled as a Bernoulli process occurring123

at audio rate with success probability p = 1/Λ, where Λ is the average bubble124

rate (bubbles per second). The radius of each successfully produced bubble125

k is set to126

rk = xγr
k (rMAX − rMIN) + rMIN (3)

where xk ∈ [0, 1] is a number drawn from a uniform distribution function,127

rMIN and rMAX are the minimum and maximum bubble radius values, and128
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γr is the radius gamma factor, which allows to increase the ratio of bigger129

bubbles relative to smaller bubbles (0 < γr < 1) or vice versa (γr > 1).130

Similarly, the depth factor Dk is set to131

Dk = yγDk (DMAX −DMIN) + DMIN (4)

where yk ∈ [0, 1] is a number drawn from a uniform distribution function,132

DMIN and DMAX are the minimum and maximum depth factor values, and133

γD is the depth gamma factor, which allows to increase the ratio of bubbles134

close to the surface relative to deeper bubbles (0 < γD < 1) or vice versa135

(γD > 1).136

Bubble sounds often exhibit a characteristic rise in pitch, especially when137

approaching the surface. The phenomenon is mostly caused by the pressure138

reduction as the liquid mass above the bubble becomes thinner and thinner.139

The effect is modeled in the synthesis algorithm by a global rise factor pa-140

rameter ξ. Since bubbles with a rising pitch are created close to the surface,141

it seems reasonable to assume they are generally louder than average. This142

effect is modeled by a rise cutoff parameter Kξ. When it is set to a value143

0 < Kξ < 1, only bubbles with a depth factor Dk > Kξ have a nonzero rise144

factor ξ. According to the physically based bubble sound model described145

in [57], a rising bubble is modeled by making its frequency time-dependent146

according to147

fk(t) = f 0
k (1 + σkt) (5)

where σk is the slope of the frequency rise related to the vertical velocity of148

the bubble, modeled as149

σk = ξζk. (6)
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An implementation of the liquid sound generator described above (fluid150

flow module) is included in the Sound Design Toolkit (SDT),1 an open-source151

(GPLv2) library of physically based sound synthesis algorithms for Max and152

Pure Data [4]. In this implementation the stochastic process drives an oscil-153

lator bank, whose number of voices can be set as a parameter. The size of154

the oscillator bank defines the polyphony of the algorithm, i.e. the maximum155

number of bubbles that can be active at the same time. If the maximum num-156

ber is exceeded, a voice stealing mechanism takes place and the new bubble157

is assigned to the oscillator that currently has the minimum instantaneous158

amplitude envelope, resetting all its parameters, base frequency included.159

Phase alignment allows to avoid audible artifacts during the generation of a160

new bubble [46].161

The liquid sound generator is a slightly improved version of the bubble162

simulator proposed by van den Doel [57]. The main improvement with re-163

spect to the van den Doel simulator lies in the use of a single Bernoulli164

process for a population of bubbles with different radii (i.e., with different165

base frequencies) rather than 50 Bernoulli processes each set to a fixed base166

frequency. This strategy allows to represent bubbles of arbitrary size, im-167

proving the versatility of the algorithm especially with small oscillator banks.168

2.2. Model-based sonification169

A global dMAX parameter is defined in order to consider only those points170

in the depth map whose depth is no greater than this defined parameter.171

Then, for each sector, two descriptive depth metrics are calculated: map172

1http://soundobject.org/SDT/
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density and average depth. Design choices for mappings between depth map173

properties and liquid sound features are the following:174

• map density → average bubble rate;175

• average depth → maximum bubble depth factor.176

Map density ρ is defined as the number of pixels with depth value no greater177

than dMAX divided by the total number of pixels in that sector. It is mapped178

to the average bubble rate Λ according to179

Λ = 500ρ2 (7)

so that the denser the sector, the more the generated bubbles. The upper180

limit of 500 bubbles/second was heuristically set following informal investi-181

gations on the pleasantness and intelligibility of the associated liquid sound.182

Average depth d̄ is defined as the mean depth value (in meters) of all183

pixels with depth no greater than dMAX in that sector. It is mapped to the184

maximum bubble depth factor DMAX as185

DMAX =

(

dMAX − d̄

dMAX

)2

. (8)

In this way, closer obstacles are transformed in a larger amount of bubbles186

close to the surface of the water, thus increasing their average loudness and187

sharpness. As an analogy, it might help to think of the scene as a big aquar-188

ium seen from above, with the water surface just in front of the observer and189

all objects producing bubbles.190

In order to provide a spatial dimension of the depth map, the sound191

produced by each liquid sound generator is binaurally spatialized by mapping192
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the corresponding depth map sector (Ri,Cj) to the azimuth and elevation193

parameters (θ,φ) of a generic HRTF filter as follows:194

θ = 45j − 90 (9)
195

φ = 45 − 45i (10)

where θ and φ are expressed in degrees with respect to the observer according196

to a vertical polar coordinate system, i = 0, 1, 2 is the row number (top to197

bottom), and j = 0, . . . , 4 is the column number (left to right). However,198

since elevation cues greatly differ from subject to subject [48] and lead to199

high variance in vertical localization performance with generic HRTFs [33],200

elevation information is redundantly coded into another liquid sound fea-201

ture. In particular, sectors belonging to different rows of the depth map are202

assigned different bubble radius intervals [rMIN , rMAX ] as follows:203

R0 : rMIN = 0.2mm, rMAX = 1mm;

R1 : rMIN = 1mm, rMAX = 5mm;

R2 : rMIN = 5mm, rMAX = 20mm.

(11)

Thanks to the inversely proportional relation between bubble radius and res-204

onant frequency (see Eq. 2), the above heuristically defined intervals allow205

for different characteristic liquid sounds to be produced depending on eleva-206

tion, i.e., ranging from light, fizzy sounds for higher elevations (row R0) to207

low, gurgling sounds for lower elevations (row R2).208

Other parameters that define the liquid sound generator are kept con-209

stant. These include the radius gamma factor (γr = 1), the minimum bub-210

ble depth (DMIN = 0), the depth gamma factor (γD = 1), the rise factor211
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(ξ = 0.5), and the rise cutoff (Kξ = 0.5). Both gamma factors are set to 1212

in order to preserve the uniform distribution of radius and depth values. On213

the other hand, the choices for the rise factor and rise cutoff allow for an ad-214

ditional auditory depth cue. By combining Eq. 8 and Eq. 4 it can be shown215

indeed that the average depth value at which pitch-rising bubbles start being216

produced (Dk > Kξ) roughly corresponds to d̄ ≈ 0.3dMAX . This translates217

at auditory level into a peculiar boiling water sound for close objects, and218

the closer the object (i.e., the lower the average depth value), the higher the219

number of pitch-rising bubbles and therefore the clearer the boiling effect.220

A preliminary version of the fluid flow algorithm was previously pre-221

sented by the authors in [46]. With respect to the previous version, the222

main improvements of the algorithm described here lie in the representation223

of elevation information with different bubble radius values, in using bub-224

ble depth as a proper physical depth indicator rather than plain amplitude225

control, and in the use of the rising pitch cue for close objects rather than226

elevated objects. These design changes were suggested from both test results227

and informal comments following preliminary experimental trials with offline228

video sequences [46], that highlighted above all the difficulty of interpreting229

elevation cues.230

At the same time, the new mappings provide more meaningful correspon-231

dences between physical and auditory cues. As a matter of fact, beside the232

intuitive relationship between physical depth and bubble depth, crossmodal233

correspondences between pitch (resonant frequency in the bubble model) and234

elevation are well known in the literature [25] and frequently used in sensory235

substitution systems (including the vOICe). Furthermore, the boiling ef-236
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fect that gets more and more prominent while approaching an object can be237

interpreted as an effective natural warning sound [55].238

3. Evaluation239

The main goal of the experiment presented here is to assess the per-240

formance and individual preference of the fluid flow sensory substitution241

algorithm in a blind wayfinding task. More in detail, the point-by-point242

objectives are243

1. to validate the effectiveness of the proposed sounds of giving reliable244

and distinguishable information in a simplified wayfinding task with a245

reasonably sized pool of näıve blindfolded participants;246

2. to collect individual judgments about the naturalness, pleasantness and247

usability of the sounds that are conveyed;248

3. to compare the above results and ratings against those collected using249

the reference sensory substitution scheme provided through the original250

vOICe algorithm [30].251

Our working hypotheses are that: (1) after a short training session, the252

fluid flow algorithm is able to help participants avoid obstacles in the large253

majority of the presented cases; (2) performance and completion time are254

at least comparable to the vOICe algorithm; (3) the individual judgments255

on the liquid sounds reflect a positive opinion on all the investigated aspects256

and, in particular, a more positive rating compared to the sounds produced257

by the vOICe algorithm.258
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3.1. Sample259

Fourteen participants (7F, 7M) participated on a voluntary basis. Ages260

ranged from 22 to 46 (M = 30.5, SD = 7.2). All participants spoke fluent261

English and none of them reported either visual or hearing impairments. All262

participants gave their informed consent for inclusion before they partici-263

pated in the study. The study was conducted in accordance with the Decla-264

ration of Helsinki, and the protocol was approved by the National Bioethical265

Committee of Iceland (reference number VSN-15-107).266

3.2. Experimental setup267

The experiment took place in an empty classroom sized 8m (length) ×268

6.7m (width) ×3.5m (height) inside a building of the University of Iceland.269

Four pieces of green carpet, sized 4m× 0.5m each, were placed in the middle270

of the classroom floor in order to delimit a square 3.5m× 3.5m testing area271

(see Figure 2a). During the whole experiment, to control for confounding272

effects, windows were kept closed and artificial light was turned on. The273

absence of any kind of activity in the neighboring classrooms due to sum-274

mer break guaranteed a quiet environment throughout the testing sessions.275

The ventilation system of the classroom produced the only significant, yet276

constant, environmental sound.277

During the tests, white cardboard boxes were placed in predefined loca-278

tions of the testing area. The size of a single cardboard box was 0.4m (length)279

× 0.4m (width) ×0.6m (height). The number of boxes inside the testing area280

during each experimental trial ranged from 5 to 8; when less than 8, the un-281

used boxes were placed along one wall as shown in Figure 2a. Furthermore, a282

tripod holding a small Bluetooth box speaker (at approximately 1.2m height)283
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Figure 2: Experimental setup. (a) Subject during the experiment. (b) Close up of the

equipment.

was placed along the end-side of the testing area. The only other significant284

objects present in the room were a desk and two chairs for the experimenters,285

all positioned behind the starting point of the participants.286

Participants wore the following equipment, pictured in Figure 2b: (a) an287

elastic headband (originally holding a searchlight) with a Structure Sensor288

camera2, a high-performance structured light 3D sensor, tightened to the289

frontal plastic hold; (b) a pair of open over-ear headphones (AKG K612 Pro)290

allowing environmental sound to enter the ear; (c) a small backpack carrying291

a Lenovo Ideapad Y700 laptop running the software to which the camera,292

headphones and (d) an external battery were connected; (e) a blindfold. In293

order to ensure regular functioning, the laptop was constantly monitored294

by an experimenter through a second laptop placed on the desk behind the295

2https://structure.io/
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testing area, connected via VPN.296

Depth maps with a resolution of 640 × 480 pixels were acquired from297

the Structure Sensor at a rate of 10 frames per second with the support298

of an open-source Matlab Wrapper for OpenNI 2.2,3 processed in Matlab,299

and sonified through the Pure Data software implementing the fluid flow300

and vOICe algorithms. Depth maps spanned the entire field of view of the301

Structure Sensor, i.e., 58◦ horizontal, 45◦ vertical, and a 0.4m to 3m depth302

range. Visual information falling beyond these ranges was therefore not303

sonified.304

3.3. Stimuli305

The sound stimulus conveyed to participants during the experiment was a306

continuous sonification of the depth data acquired through the Structure Sen-307

sor, either through the fluid flow algorithm, referred to as FF and described308

in Section 2, or the vOICe algorithm, referred to as VC and described in309

the following paragraph. Each algorithm was implemented as a Pure Data310

patch that constantly receives the depth map statistics data through the311

OSC (Open Sound Control) protocol. In order to avoid audible artifacts, the312

incoming depth map statistics values were smoothed with a 100-ms ramp313

function. In the experiment, the dMAX parameter was set to 3m and the314

number of voices of each liquid sound generator to 32. For the sake of315

consistency, the level of the sound card was kept constant throughout the316

experiment for all participants.317

3http://uk.mathworks.com/matlabcentral/fileexchange/42127-matlab-wrapper-

for-openni-2-2
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The vOICe sensory substitution algorithm was implemented following the318

specifications from Meijer [30]. The algorithm scans each depth snapshot319

(resized to 64 × 64 pixels) from left to right, while associating height (i.e.320

the vertical coordinate of the pixel) with pitch and depth with loudness.321

More specifically, every row is associated to an amplitude-controlled oscillator322

whose fixed frequency exponentially ranges from 500 Hz (bottom row) to 5323

kHz (top row), while amplitude is inversely proportionally related to the324

depth value, ranging from 0 for pixels of unknown depth value or where325

depth is greater than or equal to dMAX , to 1 for pixels of zero depth. The326

auditory output of the implemented algorithm was compared against the327

original vOICe software for Windows on a small benchmark set of 10 depth328

maps from the NYU-Depth Dataset V24 [44], and it was found to never329

exceed 1 dB of spectral distortion in the 0.5 − 5 kHz range.330

The generic HRTF filter that we used is provided through the earplug∼331

Pure Data binaural synthesis external. The filter renders the angular position332

of the sound source relative to the subject by convolving the incoming signal333

with left and right HRTFs from the MIT KEMAR database5 [20]. For the334

sake of consistency, the same HRTF filters were used for both FF and VC.335

3.4. Experimental procedure336

The experiment was divided in two sessions, each corresponding to a sin-337

gle sensory substitution algorithm (FF or VC). The two sessions were con-338

ducted on different days and the order of the sensory substitution algorithms339

4http://cs.nyu.edu/∼silberman/datasets/nyu depth v2.html
5http://sound.media.mit.edu/resources/KEMAR.html
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was randomized and balanced. A single experimental session was composed340

of three parts presented in the following order: a self-training part, a guided341

training part, and an experimental test. The purpose of the training was to342

allow for sufficient interaction with the system and to gain experience with343

the sonification algorithm prior to the experimental test, where the actual344

performance data was collected. The duration of the self- and guided train-345

ing was approximately 10 and 65 minutes, respectively, while the average346

duration of the experimental test was approximately 40 minutes.347

3.4.1. Self-training348

Basic information about the sensory substitution algorithm was first pro-349

vided to participants through a short written description (7 lines) on an350

experimental sheet, transcribed in the Appendix. Then, participants wore351

the pair of headphones and freely interacted via keyboard with a simplified352

demo of the system representing a single virtual object in the field of view353

of the camera. Participants controlled the azimuth, elevation, distance, and354

size of the object (see key assignment below), and directly listened to the355

corresponding sonification:356

• numpads 1 − 9: change the direction of the object on a 3 × 3 grid: 3357

azimuths (left, center, right) and 3 elevations (up, middle, down);358

• arrow keys up/down: increase/decrease the distance of the object be-359

tween 0.5m and 3m, in 0.5m steps;360

• keys +/−: increase/decrease the size of the object (in terms of % of361

the occupied area in that sector) from 0% to 100%, in 10% steps.362
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The self-training was designed to introduce participants to the sensory sub-363

stitution algorithm and the underlying mappings.364

3.4.2. Guided training365

Participants were equipped with the system (backpack/PC, camera head-366

band, blindfold, headphones) and then guided through five consecutive train-367

ing steps as follows.368

Step A (3 minutes). Participants listened interactively to the soni-369

fication of an empty testing area while being allowed to freely explore the370

empty room (only being stopped when going too close to an obstacle, e.g.371

the desk or a wall). Additionally to the floor, at this stage, it was important372

for participants to listen to and recognize the sonification of walls, ceiling373

and other fixed objects in the room.374

Step B (7 minutes). One object (made of two or three boxes on top of375

each other in turn) was placed in the middle of the testing area and partic-376

ipants were asked to interact with it. Participants were encouraged (guided377

if necessary) to systematically explore the sonification output in relation to378

changing their own position, e.g. to (1) go towards/away from the object379

while facing it, therefore experiencing distance changes, while getting verbal380

feedback on the current distance; (2) circle the object and stand aside of381

it while trying to locate it with only head movements; (3) stand 2m away,382

face the object and tilt the head up/down in order to experience elevation383

changes. At this stage it was important to let participants realize through384

training that objects closer than 0.4m or further than 3m were not repre-385

sented; therefore, participants were invited to explore and experience at what386

distance the sonification of the object stopped.387
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Step C (15 minutes). Participants trained scenes with a single object388

(made of two or three boxes on top of each other) positioned in randomly389

chosen locations of the testing area within the represented distance range.390

Pink noise was played on the headphones in order to mask the sound of391

boxes being moved when preparing the next scene. The participants’ task392

was to first point at the object after head movement only, tell its approximate393

distance (in meters) and size (2 or 3 boxes), and then to go towards it and394

touch it. From this step onwards, after successful completion of each scene,395

participants were invited to temporarily remove the blindfold in order to396

check the scene they just accomplished.397

Step D (20 minutes). Participants trained scenes with two objects398

(each made of two or three boxes on top of each other) positioned in randomly399

chosen locations of the testing area within the represented distance range,400

provided that they were positioned no less than 0.8m apart from each other401

in order to be able to comfortably pass between them. The participants’ first402

task was to point at each object in turn after head movement only and tell403

again their approximate distance and size. After successful completion of the404

first task, participants were asked to walk between and past the two objects405

trying not to touch or collide with them.406

Step E (20 minutes). Participants trained a number of scenes with two407

or three objects (randomized), aiming to find their way towards the small408

speaker placed at a randomly chosen point on the opposite side of the testing409

area and playing easy-listening pop music [54] at a comfortable level. The410

obstacles (again 2 or 3 boxes on top of each other) were placed randomly411

within the testing area, provided that they were positioned no less than412
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Figure 3: The 10 testing scenes. The 2-box obstacles are depicted as gray squares, and the

3-box obstacles as black squares. The starting and target (end) points are marked with S

and T, respectively.

0.8m apart from each other (to all sides). Participants were asked to walk413

as carefully as possible trying not to touch or collide with the obstacles, to414

stay inside the testing area all the time, and to scan the environment before415

moving forward. At this stage it was important to tell participants that the416

tripod would be represented through sound as well, that they should walk417

towards the target without detour (especially when starting on the edges of418

the testing area), and that if close to the target, they should try to touch the419

target promptly.420

In order to reduce fatigue, a mandatory 10-minute break was introduced421

between Step D and Step E. Participants were invited to take off the system422

and relax.423

3.4.3. Experimental test424

Right after the training, the blindfolded participants tested 10 wayfinding425

scenes with two or three objects always positioned within the path towards426
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the target, with a task similar to training step E. However, this time the427

obstacles (2 or 3 boxes on top of each other each) were not placed randomly428

within the testing area but in predefined locations, as well as the starting429

and target (end) points, as shown in Figure 3. The order of the 10 scenes430

was randomized for each participant and each session. Participants were431

reminded to walk as carefully as possible, to scan the environment before432

moving forward, and to walk towards the target without detour. Participants433

were informed that their goal was to reach the target speaker trying to avoid434

any collision with obstacles and without leaving the testing area, and that435

all errors would be counted. For each experimental testing, collected data436

included:437

• number of collisions with obstacles, while differentiating between mi-438

nor collisions (i.e., not moving boxes from their position, for instance439

brushing on them) and major collisions (i.e., boxes moved);440

• number of times the participant left the testing area by treading, even441

partially, on the carpet (except when in the target’s vicinity);442

• completion time (in seconds, taken with a timer), defined as the time443

between the moment when the sonification was turned on and the mo-444

ment when the participant touched the speaker or tripod.445

After completion of all experimental testing scenes, participants were asked446

to reply to a questionnaire about the corresponding sensory substitution447

algorithm by ticking one item in each of three 7-point Likert scales (1 =448

strongly disagree, 7 = strongly agree):449
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1. I feel I could directly understand the meaning of the sounds without450

training;451

2. I feel that the sounds are pleasant;452

3. I would feel comfortable hearing these sounds on a daily basis.453

3.5. Statistical analysis454

After an exploratory data analysis on all categories of navigation errors,455

a more advanced analysis was performed. Due to the dependent, nested456

structure of the data, and to factor in covariates, linear mixed models with457

fixed and random effects [36] were fit in R version 3.4.1 (R Development Core458

Team 2017). The within-subjects design of the current study allowed to sta-459

tistically control for the differences across participants in every analysis by460

taking individual variance as random effect into account, which might oth-461

erwise distort the results. Additionally, training effects might influence the462

outcome, meaning that participants accomplished more scenes without navi-463

gation errors when they went through the training and testing procedure for464

the second time compared to the first time, independent of the sensory sub-465

stitution algorithm. By randomizing the sequence of the two algorithms, any466

systematical influence due to training effects was experimentally controlled467

for. Yet, the training effect might lead to substantial additional variance in468

the data, which is why it was statistically controlled for by being factored in469

as random effect into all analyses.470

3.5.1. Analysis of performance data471

In order to compare the performance between the two sensory substitu-472

tion algorithms, the probability of passing a scene (meaning the participants473
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did neither collide with any obstacle nor leave the testing area) for each474

of the two algorithms was calculated, set as outcome variable and fit in a475

Generalized Linear Mixed Model (GLMM). Due to the categorical nature476

of the outcome variable, a mixed-effects binomial logistic regression model477

was performed [22, 24] by executing the the glmer() function as part of the478

lme4 package in R [5]. For parameter estimation in the GLMM, in order479

to approximate true likelihood, the Laplace approximation method with an480

adaptive algorithm using one integration point was performed [7].481

A model selection process was the first step of the performance analy-482

sis, in which the improvement of model fits for three different models was483

compared. Firstly, Model 0 (a baseline model not containing any fixed pre-484

dictor but only the random effects of individuals and training) was compared485

to Model 1 (with algorithm added as one fixed predictor) in order to deter-486

mine if taking in algorithm as predictor into the model significantly improves487

the variance explained by the model. If so, algorithm would have a signif-488

icant effect on the probability of passing a scene. Secondly, Model 1 was489

compared to Model 2 (with time that was necessary for scene completion490

added as second fixed predictor, besides algorithm) in order to determine if491

adding time as predictor significantly improves the variance explained. If so,492

time would have a significant effect on the probability of passing a scene. A493

Chi-square distributed Likelihood Ratio Test was performed to determine if494

the difference between models was significant and therefore select the best495

model. Finally, the model with the best fit was reported with regression co-496

efficients, effect direction, confidence intervals and the predictors significance497

was ascertained with the Wald statistics [58].498
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3.5.2. Analysis of time data499

In the performance analysis described above, the time that participants500

needed to complete a scene was only indirectly taken into account as pos-501

sible predictor for passing as scene. However, we were mainly interested in502

answering the question if the choice of sensory substitution algorithm results503

in significantly different times (while statistically controlling for training and504

individual effects). To address this, a subset of data only including passed505

scenes was created and analyzed with time as continuous outcome variable.506

This approach was chosen since the occurrence of navigation errors hint at507

the possibility that scenes were not represented understandably and partic-508

ipants were not able to interpret the obstacle location, which questions the509

sense of interpreting failed scenes.510

A Linear Mixed Model with algorithm as fixed effect and individual dif-511

ferences and training as random effects was fit using Restricted Maximum512

Likelihood (REML) [36]. We performed the lmer() function as part of the513

lme4 package to fit the LMM in R [5], as well as the lmerTest package6514

to test if the predictor of the proposed model was significant. The pack-515

age provides F-test statistics by calculating the degrees of freedom with the516

Satterthwatie approximation method [41].517

3.5.3. Analysis of questionnaire data518

We finally investigated for differences in individual questionnaire scores519

between the two algorithms by running three separate Wilcoxon signed-rank520

tests, one per questionnaire item (intuitiveness, pleasantness and usability,521

6https://CRAN.R-project.org/package=lmerTest
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respectively). The choice of the Wilcoxon signed-rank test was due to the522

within-participants design and to the non-normal distribution of the ques-523

tionnaire data. Before applying each test, we verified the assumption that524

the distribution of the differences between the two related groups was sym-525

metrical in shape by checking that its skew value was between −2 and 2 [27].526

4. Results527

The complete individual results from the experiment are reported in Ta-528

ble 1. In the table, variables CMIN (number of minor collisions), CMAJ529

(number of major collisions), NOUT (number of times the participant left the530

testing area), and TTOT (completion time) are aggregated for the 10 scenes.531

It can be noticed that a lower average number in all types of navigation errors532

was registered for FF compared to VC.533

4.1. Performance534

First, we compared the performance between the two algorithms, FF and535

VC. To assess whether a scene was reliably and understandably represented536

by the algorithm, the number of passed scenes was counted. The results show537

that when using FF, 107 (out of 140) scenes were successfully completed by538

participants (therefore fulfilling our hypothesis no.1), compared to 77 (out of539

140) when the same participants used VC.540

In order to assess whether the higher proportion of passed scenes with541

FF was statistically significant (on alpha level of .05), the influence of the542

algorithm on the probability of passing a scene was determined as described543

in Section 3.5.1 following a model selection process. The results for Model544

1 and Model 2 are reported in Table 2 with regression coefficients, standard545
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errors, confidence intervals and Wald statistics per predictor. Whereas all546

models included individual variance and training as random effects, the basic547

model (Model 0) did not contain any fixed predictors, which is why it is not548

presented in the table, but served as baseline model for comparison to Model549

1.550

According to the Likelihood Ratio Test (LRT), including the predictor of551

sensory substitution algorithm (Model 1) significantly improved the model552

fit compared to an empty model without predictors (Model 0), χ2(1, N =553

280) = 20.15, p < .001. This result indicates that the choice of algorithm,554

FF or VC, has a significant effect on the outcome variable of performance,555

meaning that the probability that participants performed a scene without556

errors was significantly higher when they followed FF compared to VC.557

In Model 2, time was included as additional fixed predictor to test if it558

had a significant influence on the performance. We expected that a short559

completion time, even though at first glance seemingly positive, might in-560

dicate that participants rushed through the scenes since they were lacking561

understanding of the scene resulting in collisions. However, including time562

as predictor (additionally to algorithm) does not significantly improve the563

model according to the LRT, χ2(1, N = 280) = 2.50, p = .105, meaning that564

the completion time is not a predictor for more passed scenes.565

To summarize, Model 1, only including algorithm as fixed effect while566

factoring individual variance and training as random effects, explains most of567

variance in the data. Adding time as predictor does not improve the model fit.568

The Wald statistics for each fixed predictor of Model 1, reported in Table 2,569

confirm the significant effect of the sensory substitution algorithm (improving570
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our expectations as stated in hypothesis no.2) and the non-significant effect571

of time on the probability of passing a scene.572

4.2. Time573

As shown above, including time as fixed effect to predict if a scene was574

passed does not significantly improve the model fit, thereby suggesting that575

if participants completed a scene either quickly or slowly is not related to the576

fact that the scene was mastered without errors or not.577

The aim of the detailed time analysis was to investigate if the differ-578

ent sensory substitution algorithms lead to significantly different completion579

times. Thus, for the analysis, a subset of data only including passed scenes580

was created and fit in a LMM with time as continuous outcome variable,581

algorithm as fixed and individuals and training as random effects, as de-582

scribed in Section 3.5.2. The resulting parameter is the regression coefficient583

for the fixed predictor of algorithm (on time as outcome variable), B = 4.98584

[−1.91, 11.87] with SE = 3.52, indicating that the choice of algorithm does585

not influence the time needed for completing the scenes (F (170, 184) = 2.01,586

p = .159). In conclusion, using FF does not cause participants to either587

complete a scene faster or slower, compared to VC.588

4.3. Questionnaires589

The histograms in Figure 4 report the scores given to each of the 3 ques-590

tionnaire items. The support in favour of the FF algorithm compared to591

the VC algorithm was almost unanimous and reflected in all scores, in line592

with our hypothesis no.3. Intuitiveness FF scores were significantly higher593
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(a) (b) (c)

Figure 4: Histograms of questionnaire scores. (a) Intuitiveness. (b) Pleasantness. (c)

Usability.

(Z = −2.81, p = .005) than VC scores (medians: FF = 5.5, VC = 3.5). Sim-594

ilarly, usability FF scores were significantly higher (Z = −2.96, p = .003)595

than VC scores (medians: FF = 6, VC = 4). More interestingly, an over-596

whelming difference was found in the pleasantness scores (medians: FF = 6,597

VC = 3), according to which participants highly significantly preferred FF598

to VC (Z = −3.2, p = .001). All the participants judged FF sounds pleas-599

ant, while 9 participants out of 14 negatively judged the pleasantness of VC600

sounds. Only one participant gave an equal rating to the two types of sounds,601

while all other participants gave a higher score to FF sounds.602

5. Discussion603

The fluid flow sensory substitution algorithm proved to be a usable and604

informative sensory substitution scheme for recognizing the location of ob-605

stacles in a simplified blind wayfinding task. This conclusion is supported by606

the experimental results on a pool of blindfolded sighted participants, who607

managed to complete the task in 76% of the proposed scenes. It has to be608
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remarked that the majority of the scenes (see Figure 3) required the par-609

ticipants to travel through spaces as narrow as 80cm without even brushing610

against an obstacle. If we apply a minimum tolerance on the committed611

navigation errors and allow for one minor collision per scene, which in the612

majority of cases meant that participants recognized the obstacle but did613

not keep enough distance while walking past it, the percentage of completed614

scenes grows to 86%.615

Remarkably, our experimental results indicate a statistically significant616

superior performance of the fluid flow algorithm compared to the vOICe al-617

gorithm in terms of obstacle avoidance and navigation accuracy. This finding618

is supported by qualitative evaluations from the participants collected at the619

end of each session. For instance, a subset of participants remarked that they620

preferred to scan the environment themselves by rotating their heads rather621

than let the algorithm scan at a fixed rate. This remark supports the use622

of real-time representation of the environment as provided by the fluid flow623

scheme rather than the vOICe, whose inherently scanning nature combined624

with head motion results in an unnatural “scan within a scan” not easy to625

manage for some participants, at least following a short training session. An-626

other subset of participants reported, following a collision with an obstacle,627

to have “lost” the obstacle vOICe representation while moving; this issue can628

also be related to the lack of a real-time feedback for effectively tracking ob-629

stacles not only during head movement but also during body movement. Due630

to the high cognitive load on the working memory imposed by the double-631

scanning with the vOICe algorithm, two participants reported headache after632

2 hours of training, which did not occur with the real-time presentation used633
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by the fluid flow.634

On the other hand, one participant deemed the vOICe algorithm to be635

more convincing in delivering the spatial layout of the obstacles due to the636

clear left-to-right scanning mechanism. The participant reported that he637

found the liquid sound representation of obstacles more difficult to separate638

when there were two or more obstacles in the field of view of the camera, and639

that he needed head and body movement to resolve the scene layout. This640

remark may hint at the necessity of a more consistent training with the fluid641

flow algorithm in static conditions.642

As reported in the previous section, the time required to complete the643

scenes was not significantly different between the two algorithms. Two par-644

ticipants scored exceptionally good performances, completing most scenes645

without errors and in less than 30 seconds each, independently of the sen-646

sory substitution algorithm. This results indicates a ceiling effect for certain647

participants, meaning that the scenes were too easy for them to accomplish648

and therefore they were not able to differentiate between the two algorithms.649

The ceiling effects covers potential differences between the algorithms; how-650

ever, this issue only applied for two out of 14 participants. Some participants651

were on average both faster and more accurate with the fluid flow algorithm652

than with the vOICe, while other participants considerably slowed down653

when using the fluid flow sounds. When asked about the latter behaviour,654

one participant (at the end of her second session) stated that she had a much655

better understanding of the scene with the fluid flow sounds and felt like she656

had more control about her performance than with the vOICe algorithm,657

and therefore devoted more attention to complete the scene without errors.658
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This conduct is consistent with the fact that prior to the experimental test659

participants were clearly informed that their task was to minimize navigation660

errors and not race against time.661

The proposed algorithm directly receives as input reliable low-level infor-662

mation conveyed through an off-the-shelf depth sensor, contrary to other sen-663

sory substitution schemes previously explored by the authors [9, 50, 49, 13]664

that used obstacle information segmented through computationally heavy665

image processing techniques. This is a very desirable property in a system666

that needs to be scalable in order to run on smartphones or embedded sys-667

tems with low processing power. The scalability of the proposed approach is668

further supported by the possibility of reducing the resolution of the depth669

map without considerable loss of information, as well as changing the size670

of the oscillator bank for each liquid sound generator at the price of sound671

quality [4]. This would allow for graceful degradation of our rendering ap-672

proach depending on the available computational resources. Future work will673

investigate the quality of experience of the sounds produced by the sensory674

substitution algorithm even in cases of limited computing power.675

One limitation of the current study lies in the use of a sensor with limited676

field of view and range information, that disoriented some participants in677

that the obstacle sonification stopped when getting close enough to it, and678

required considerable head rotation (both yaw and pitch) for a full scan of679

the scene. Furthermore, although not directly investigated in this study, the680

choice of the spatialization technique has an undeniable impact on the spatial681

perception of sounds, and therefore on the degree of immersion [34] and682

overall quality of experience. The most effective solution would be the use of683
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individual HRTFs measured on the listener with the addition of head tracking684

and artificial reverberation [6, 56]. However, obtaining acoustically measured685

individual HRTF data is only possible with tailored equipment and invasive686

recording procedures [12]. On the other hand, even though one participant687

to our study commented that he could “clearly visualize columns of bubbles”688

where the obstacles were, using non-individual HRTFs is only effective for689

a limited number of individuals. Different alternative approaches towards690

HRTF-based spatial rendering were proposed throughout the last decades,691

ranging from HRTF selection [43, 21] to structural HRTF models [8, 47]692

and numerical HRTF simulations [26, 59]. Such approaches are expected to693

progressively bridge the gap between accessibility and accuracy of individual694

spatial audio [51]. Still, in cases of limited computing power, HRTF rendering695

can be substituted by constant-power panning [29] to represent horizontal696

direction at least.697

Validation with sighted users implies that these results should only be698

generalized to the visually impaired population with caution. Blind users699

are generally more adapted to rely on their sense of hearing for orientation700

and solving daily mobility challenges compared to sighted, e.g. by using701

echolocation techniques [42]. This might result in even lower training time702

required for VIPs to successfully apply the fluid flow algorithm. Furthermore,703

dynamic postural stability is affected by the visual system, which is why the704

postural stability of sighted individuals with eyes closed has been shown to705

be superior to that of blind people [2]. This might result in more collisions706

when VIPs perform the same task compared to sighted people, even when707

the obstacle is correctly located in the first place. Hence, to control for these708
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possible differences between sighted and blind, similar evaluations of the fluid709

flow algorithm are currently being carried out within the Sound of Vision7
710

project, ranging from virtual to complex real world environments [13], re-711

quired for assessing the usability of the system outside the laboratory.712

In the final questionnaire, participants reported a clear preference for the713

fluid flow sounds compared to the vOICe sounds, in terms of intuitiveness,714

pleasantness, and usability. This result is of great relevance for the integra-715

tion of the fluid flow sounds in a sensory substitution system for VIPs. Our716

belief, supported by several participant comments in addition to the ques-717

tionnaire scores, is that a natural, intuitive, and aesthetically pleasant sonic718

representation requires little time and effort to be learned while at the same719

time allowing for longer and less fatiguing practice sessions [45]. In a seminal720

paper from 2003, yet still as current today as ever, Rocchesso et al. [38] assert721

that “an aesthetic mismatch exists between the rich, complex, and informa-722

tive soundscapes in which mammals have evolved and the poor and annoying723

sounds of contemporary life in today’s information society”, recognizing “the724

need for sounds that can convey information about the environment yet be725

expressive and aesthetically interesting.” In our view, the use of physically726

based, natural-sounding liquid sounds perfectly matches this need within the727

field of sensory substitution.728

7https://soundofvision.net/
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Appendix A. Experimental sheet descriptions734

FF. The system converts the video stream into a liquid streaming sound735

produced through superposition of bubble sounds. Bubbles simultaneously736

come from the visible objects direction in space. The bigger the volume737

occupied by an object in the visible space, the richer the texture of the738

corresponding streaming sound (i.e., more bubbles produced). The higher739

the position of the object in the visible space, the fizzier the bubbles sound.740

The closer an object within the represented distance range, the louder the741

liquid streaming sound. If the object gets closer than 1m, bubbles begin to742

present a characteristic boiling sound.743

VC. The system converts the video stream into a sound made of the744

superposition of simple tones. The acquired image is scanned in a left to745

right scanning order, at a rate of one scan per second. Hearing some sound746

on your left or right thus means having a corresponding object pattern on the747

left or right side, respectively. During every scan, the higher the pitch, the748

higher the position of objects in that direction in the visible space. Loudness749

means distance: the louder the sound, the closer the objects in that direction750

in the visible space. The bigger the volume occupied by an object in the751
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visible space, the richer (i.e., more simultaneous tones) and the longer the752

corresponding sound.753
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Table 1: Individual experimental results: number of minor/major collisions

(CMIN/CMAJ ), number of times the participant left the testing area (NOUT ) and to-

tal completion time (TTOT ), divided by participant and sensory substitution algorithm.

CMIN CMAJ NOUT TTOT [s]

Participant ID FF VC FF VC FF VC FF VC

01 2 1 0 1 0 0 771 702

02 0 2 0 1 0 0 2451 1453

03 0 6 0 1 0 0 1458 1840

04 2 7 1 5 0 0 909 1292

05 6 4 2 7 1 7 717 1648

06 2 2 1 10 1 0 2172 1138

07 8 8 1 6 2 1 1983 1202

08 0 0 1 0 0 1 963 1506

09 0 1 1 4 0 0 1466 1824

10 0 0 1 0 0 0 230 228

11 3 5 5 13 0 0 822 882

12 0 0 0 0 0 0 407 344

13 1 2 1 0 0 0 410 1021

14 4 9 5 9 0 1 1880 1645

Mean 2 3.4 1.4 4.1 0.3 0.7 1188.5 1194.6

SD 2.5 3.1 1.6 4.4 0.6 1.9 713.4 513.4
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Table 2: Results of calculating Generalized Linear Mixed Model for Model 1 and Model 2

including one additional predictor, each with individual variance and training as random

effects. The model parameter estimates are calculated basing on Laplace approximation

with 1 integration point. Shown are regression coefficients with associated standard errors

(SE) and confidence intervals (CI), and Wald statistics (z-value and p-value).

Predictor Coeff. SE CI [LL,UL] z-value p-value

Model 1 Algorithm -1.30 0.33 [-1.94,-0.66] -3.96 p < .001

Model 2
Algorithm -1.30 0.33 [-1.95,-0.65] -3.94 p < .001

Time -0.01 0.01 [-0.02,0.00] -1.64 p = .101
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