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Abstract—In land cover assessment, classes often gradually
change from one to another. Therefore, it is difficult to allo-
cate sharp boundaries between different classes of interest. To
overcome this issue and model such conditions, fuzzy techniques
that resemble human reasoning have been proposed as alter-
natives. Fuzzy C-Means is the most common fuzzy clustering
technique, but its concept is based on a local search mechanism
and its convergence rate is rather slow, especially considering
high dimensional problems (e.g., in processing of hyperspectral
images). Here, in order to address those shortcomings of hard
approaches, a new approach is proposed, i.e., Fuzzy C-Means
which is optimized by Fractional Order Darwinian Particle
Swarm Optimization. In addition, to speed up the clustering
process, the histogram of image intensities is used during the
clustering process instead of the raw image data. Furthermore,
the proposed clustering approach is combined with support
vector machine classification to accurately classify hyperspectral
images. The new classification framework is applied on two
well-known hyperspectral data sets; Indian Pines and Salinas.
Experimental results confirm that the proposed swarm-based
clustering approach can group hyperspectral images accurately
in a time-efficient manner compared to other existing clustering
techniques.

Index Terms—Hyperspectral image analysis, clustering, Frac-
tional Order Darwinian Particle Swarm Optimization, Fuzzy C-
Means, Support Vector Machine classifier.

I. INTRODUCTION

CONVENTIONAL hard classification techniques do not
consider the continuous changes of different land cover

classes from one to another. For instance, the standard crisp
K-Means can be considered as the most popular clustering
technique in the field of pattern recognition [1]. However,
this technique uses hard partitioning, in which each data point
belongs to exactly one cluster. To model the gradual boundary
changes, ”soft” classifiers have been used. Fuzzy classifiers are
soft classification techniques that deal with vagueness in class
definitions and model the gradual spatial transition between
land cover classes [2]. To overcome the hard partition of K-
Means, Fuzzy C-Means (FCM) was introduced in [3], which
is a generalization of the standard crisp K-Means scheme, in
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which a data point can belong to all clusters with different
degrees of membership.

Although FCM is an improvement on K-Means, it is known
for being very sensitive to its initial cluster configuration
and may fall into sub-optimal solutions [4]. Therefore, in
the literature, researchers have tried to improve the resilience
of the FCM approach by optimizing it with bio-inspired
optimization techniques (e.g., Particle Swarm Optimization
(PSO) [5]). However, a general problem with these techniques,
such as the PSO algorithm, is that they may get trapped in local
optimum points, in such a way that they may be successful in
some problems, but fail in others [6].

To further improve the existing techniques, we combine
FCM with Fractional Order Darwinian PSO (FODPSO) pre-
viously proposed by Couceiro et al. and Ghamisi et al. and
applied for different applications [6–10]. The FODPSO algo-
rithm benefits from a cooperation paradigm in which particles
within each swarm cooperate with one another, while multiple
swarms compete to find the most adequate solution, i.e., the
optimal solution. By combining the FODPSO with the FCM
technique, herein denoted as FODPSO-FCM, each particle will
be represented by a given cluster configuration and the FCM
objective function. The emergent collective properties of the
FODPSO, together with a fractional order velocity and a set
of punish-reward rules designed to simulate Darwin’s natural
selection mechanism, will converge to the optimal cluster
configuration. In addition, in order to speed up the clustering
process, the histogram of image intensities is proposed to be
used as an input instead of the raw image data.

Moreover, in order to evaluate the efficiency of the clus-
tering approaches in terms of classification accuracies, a new
supervised classification framework is proposed. The classi-
fication approach integrates the classification map obtained
by a Support Vector Machine (SVM) classifier and the map
obtained by FODPSO-FCM through majority voting. SVM has
the capability of performing well in terms of classification
accuracies in classifying high dimensional data with a limited
number of training samples [11, 12]. However, the SVM
is a hard classifier and, therefore, it cannot model gradual
changes between different classes. As a result, the combination
of the proposed fuzzy clustering and SVM may lead to
better classification accuracies. Then, the capability of the
proposed classification framework is tested on two well-known
AVIRIS hyperspectral data sets; Indian Pines and Salinas, and
compared to other alternatives, including K-Means, in terms of
CPU processing time, classification accuracies and statistical
significant metrics.
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The obtained results confirm the capability of the proposed
clustering approach in terms of improving the classification
accuracies of SVM. It should also be noted that the proposed
approach is time-efficient as it can converge to the most
optimal solution in a few seconds.

The rest of the paper is organized as follows: Section II
describes the background and Section III is devoted to the
description of the proposed methodology. Experimental results
are investigated in Section IV and, finally, the main concluding
remarks, as well as possible future works, are discussed in
Section V.

II. PRELIMINARIES

In the proposed approach, first, the input hyperspectral data
set are grouped by the novel clustering approach (FODPSO-
FCM). In parallel, the input hyperspectral data are classified
by SVM. Finally, the outputs of the SVM and FODPSO-FCM
are integrated through a majority voting process, from which
the final classification map is created. By doing this, it is
possible to take advantage of SVM which can handle high
dimensional data with a limited number of training samples
and the proposed clustering approach which is based on
fuzzy theory and can model gradual changes between different
classes.

Below, in order to introduce the new clustering FODPSO-
FCM approach, different alternatives of K-Means (e.g., the
classical K-Means, FCM and PSO-FCM) will first be de-
scribed. This will be followed by a detailed description of
the proposed FODPSO-FCM clustering approach.

A. K-Means

K-Means clustering is a well-known geometric clustering
algorithm for finding clusters and cluster centers in a set of
unlabeled data [13–15]. Let X be a set of data points (e.g.,
pixels). The algorithm benefits from a local search approach to
partition the points in k clusters [14]. The desired number of
cluster centers is chosen by the user, and K-Means iteratively
moves the centers in order to minimize the total within cluster
variance [13].

K-Means is very widely used and has been applied in a
great variety of applications [16–18]. The main attraction of
this method lies in its simplicity and its observed speed [14].

K-Means aims at minimizing the sum of squared distances
between all points and the closest cluster center, and proceeds
as follows [19, 20]:

1) Choose k initial cluster centers:
z1(1), z2(1), z3(1), . . ., zk(1).

2) At the k-th iterative step, distribute the samples X
among the k clusters using the following:
X ∈ Cj(k) if
‖X − zj(k)‖ < ‖X − zi(k)‖ ; ∀ i, j = 1, 2, ... , k; i 6=
j

where Cj(k) and zj(k) denote centers and set of
samples, respectively, and ‖.‖ is the distance norm.

3) Compute the new cluster centers zj(k + 1); j =
1, 2, ..., k, such that the sum of the squared distances
of all points in Cj(k) to the new cluster center is
minimized. The new cluster center is given by:

zj(k + 1) =
1

Nj

∑
X∈Cj(k)

X; j = 1, 2, ... , k (1)

where Nj is the number of samples in Cj(k).

4) The algorithm will convergence when
|zj(k + 1)− zj(k)| < ε, being ε ∈ R, and the
process terminates. Otherwise, go to step 2.

K-Means is popular because of its simplicity (i.e., centroids,
or cluster centers, are easy to understand and interpret).
Also, because K-Means can find the local minimum of the
optimization criterion (the sum of squared errors), and, for
this, K-Means is often used as a post-processing approach for
other clustering methods [21].

The K-Means clustering approach is considered fast when
compared to most clustering algorithms. This is due to the fact
that only distances and means are needed to be calculated, and
thus, the computational complexity is not very high. However,
since it is an iterative process, part of the speed will depend
on the number of iterations, which, in turn, depends on the
data distribution. Speed will also depend on the dimension of
the data used, because, the higher the dimension, the slower
the process.

K-Means is also considered fast due to its alternative
optimization scheme. In order to assign the samples to the
nearest centroids, the samples have to be linearly scanned.
This linear scanning procedure considers a single pass over
the data set (sample). In other words, it is one reading of the
full set of data points without going back to the previous point.
Therefore, in order to update the centroids, only the arithmetic
means are computed.

The time complexity for K-Means can be considered as:

T = O(I × P × k) (2)

where I is the number of iterations, P is the number of points,
and k is the number of clusters.

The worst-case behavior (i.e., when the number of iterations
is high) of K-Means is slow, but that does not usually happen,
since most of the K-Means convergence occurs in the very first
iterations, and so the user can specify an early termination
condition (i.e., maximum number of iterations). But, it is
important to note that K-Means converges faster when the
data contains well-separated clusters. Thus, from the above,
K-Means is considered a fast clustering method.

B. Fuzzy C-Means Clustering

FCM is an unsupervised clustering algorithm that has been
applied successfully to a number of problems involving feature
analysis, clustering, and classifier design [22]. This algorithm
was proposed by Bezdek [23], as an improvement of the early
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hard K-Means clustering [22]. The FCM algorithm can be
described as follows:

Let X = {X1, ..., Xb, ..., Xq} be the set of q objects,
and Z = {z1, ..., zb, ..., zk} be the set of k centroids in a
p-dimensional feature space. The FCM partitions X into k
clusters by minimizing the following objective function [24]:

J =

q∑
j=1

k∑
i=1

(µij)
m ‖Xj − Zi‖2 (3)

where 1 < m ≤ ∞ is the fuzzifier, Zi is the i-th centroid cor-
responding to cluster βi, µij ∈ [0, 1] is the fuzzy membership
of the pattern Xj to cluster βj , such that,

Zi =
1

qi

q∑
j=1

(µij)
mXj where qi =

q∑
j=1

(µij)
m (4)

and,

µij =
1∑k

c=1(
dij

dcj
)

2
m−1

where d2ij = ‖Xj − Zi‖2 . (5)

FCM starts by randomly choosing k objects as centroids
(means) of the k clusters. Memberships are calculated based
on the relative distance of the object Xj to the centroids using
(5). After the memberships of all objects have been found, the
centroids of the clusters are calculated using (4). The process
terminates when the norm difference between two consecutive
iterations is less than a predefined threshold [24].

III. METHODOLOGY

A. PSO-FCM

Researchers have been proposing several extensions of
the FCM over the past few years in order to improve its
convergence. The combination of FCM and the well-known
PSO has been one of the most successful ones (i.e., [25, 26]).

PSO is a biologically inspired technique derived from the
collective behavior of birds flocks. Here, each particle presents
itself as a possible solution of the problem, e.g., the best
cluster centers of a given hyperspectral image. These particles
travel through the search space to find an optimal solution
by interacting and sharing information with other particles,
namely their individual best solution (local best) and comput-
ing the globally best solution [27]. In other words, PSO-based
algorithms consider multiple particles, wherein each particle
has its own local solution, e.g., best cluster center it found,
and the whole swarm has a global solution which is the best
among the several local solutions of all particles, e.g., best
cluster center found among all best cluster centers provided
by each particle.

In each step t of the PSO-FCM, the fitness function, repre-
sented by (3), is used to evaluate the success of particles. To
model the swarm, each particle n moves in a multidimensional
space according to the position xn[t], and velocity vn[t], which
are highly dependent on the locally best x̃n[t] and the globally
best g̃n[t] information:

vn [t+ 1] = (6)
wvn [t] + ρ1r1 (g̃n[t]− xn[ t]) + ρ2r2 (x̃n[t]− xn[t]) ,

xn [t+ 1] = xn [t] + vn [t+ 1] . (7)

Coefficients w, ρ1 and ρ2 assign weights to the inertial
influence, the global best and the local best when determining
the new velocity vn[t+1], respectively, with ρ1+ ρ2 < 2 [7],
provided that different results can be obtained by assigning
different influences for each component. The parameters r1
and r2 are random vectors with each component generally a
uniform random number between 0 and 1. The intent is to
multiply a new random component per velocity dimension,
rather than multiplying the same component with each parti-
cles’ velocity dimension.

The velocity dimension, as well as the position dimension,
correspond to the total number of desired cluster centers in
the image. In other words, each particles position will be
represented as a k-dimension vector. Moreover, each particle
moves in a multidimensional space according to position from
the discrete time system (6-7), wherein vn[t],xn[t] ∈ Rk.

B. FODPSO-FCM

Despite good results that have been achieved using the tradi-
tional PSO proposed by Kennedy and Eberhart [5], PSO also
has demonstrated an important drawback: The susceptibility
to local solutions. As such, under complex problems with
multiple local optima, the PSO may fail. In order to overcome
this problem, many authors have suggested adjustments to the
traditional PSO algorithm, namely considering evolutionary
properties such as the hybridization of Genetic algorithms
and PSO [28] as well as the FODPSO algorithm [6–8, 29].
The FODPSO considers the use of fractional calculus which,
as opposed to its integer-order derivative counterpart, endows
particles with a ‘memory’ of all past events. In other words,
by slightly increasing the memory complexity of the PSO,
one can decrease the computational complexity as particles
converge toward the optimal solution.

The basic idea of FODPSO-FCM is to run many simulta-
neous parallel PSO-FCM algorithms, each one as a different
swarm, on the same test problem and then a simple selection
mechanism is applied. When a search tends to a sub-optimal
solution, the search in that area is simply discarded and another
area is searched instead. In order to model the swarm s, each
particle n moves in a multidimensional space according to the
position xs

n[t], and the velocity vs
n[t], that highly depend on

the locally best x̃n[t] and the globally best g̃n[t], shown below
[30] :

ws
n[t+ 1] = αvs

n[t] +
1

2
α(1− α)vs

vn[t− 1] (8)

+
1

6
α(1− α)(2− α)vsvn[t− 2]

+
1

24
α(1− α)(2− α)(3− α)vs

vn[t− 3],

vsvn[t+1] = ws
n[t+1]+ρ1r1(x̃sn[t]−xsn[t])+ρ2r2(g̃

s
n[t]−xsn[t]),

(9)
xs
n [t+ 1] = xs

n[t] + vs
n[t+ 1]. (10)

The fractional coefficient 0 < α < 1 weights the influence
of past events on determining a new velocity. With a small
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Initialize 𝑤𝑤,𝜌𝜌1, 𝜌𝜌2  // coefficients 
Initialize 𝑁𝑁 // initial number of particles  
Initialize ∆𝑣𝑣  // maximum number of levels to travel 
Initialize 𝐼𝐼𝑇𝑇 // total number of iterations 
Initialize 𝐱𝐱𝐧𝐧𝐬𝐬 [0], 𝐱𝐱�𝐧𝐧𝐬𝐬  and 𝐠𝐠�𝐧𝐧𝐬𝐬    // randomly initialize the cluster 
centroids, local and global best positions 
Initialize 𝐽𝐽𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝐽𝐽𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 // Local and global best solutions 
For each iteration 𝑡𝑡 until 𝐼𝐼𝑇𝑇  // main loop 
 For each particle 𝑛𝑛 from swarm 𝑠𝑠 
  𝑥𝑥𝑛𝑛[𝑡𝑡 + 1] = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(8 − 10)  
   // compute 𝐽𝐽𝑛𝑛[𝑡𝑡 + 1]𝑛𝑛 

𝐉𝐉𝐧𝐧[𝑡𝑡 + 1] = ∑ ∑ �µ𝐢𝐢𝐢𝐢�
𝑚𝑚�𝐗𝐗𝒋𝒋 − (𝐱𝐱𝐧𝐧[𝑡𝑡 + 1])𝒊𝒊�

2𝑐𝑐
𝑖𝑖=1

𝑛𝑛
𝑗𝑗=1   

(𝐱𝐱𝐧𝐧[𝑡𝑡 + 1])𝒊𝒊 = 1
𝑛𝑛𝑖𝑖
∑ �µ𝐢𝐢𝐢𝐢�

𝑚𝑚𝑛𝑛
𝑗𝑗=1 𝐗𝐗𝐣𝐣,𝑛𝑛𝑖𝑖 = ∑ �µ𝐢𝐢𝐢𝐢�

𝑚𝑚𝑛𝑛
𝑗𝑗=1    

µ𝐢𝐢𝐢𝐢 = 1

∑ �
𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑘𝑘𝑘𝑘

�

2
𝑚𝑚−1𝑐𝑐

𝑘𝑘=1

   𝑑𝑑𝑖𝑖𝑖𝑖
2 = �𝐗𝐗𝐣𝐣 − (𝐱𝐱𝐧𝐧[𝑡𝑡 + 1])𝒊𝒊�

2
 

  If 𝐉𝐉𝐧𝐧[𝑡𝑡 + 1] < 𝐽𝐽𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 // particle 𝑛𝑛 has improved 
   𝐽𝐽𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐉𝐉𝐧𝐧[𝑡𝑡 + 1]  
   𝐱𝐱�𝐧𝐧𝐬𝐬 = 𝐱𝐱𝐧𝐧𝐬𝐬 [𝑡𝑡 + 1]  
 For each swarm 𝑠𝑠 
  If 𝐉𝐉𝐧𝐧[𝑡𝑡 + 1] < 𝐽𝐽𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 // swarm 𝑠𝑠 has improved 
   𝐽𝐽𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐉𝐉𝐧𝐧[𝑡𝑡 + 1]  
   𝐠𝐠�𝐧𝐧𝐬𝐬 = 𝐱𝐱𝐧𝐧𝐬𝐬 [𝑡𝑡 + 1]  
   𝐼𝐼𝑘𝑘𝑠𝑠 = 0  // reset stagnancy counter  
   If 𝑁𝑁𝑠𝑠 < 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚   
    𝑁𝑁𝑠𝑠 = 𝑁𝑁𝑠𝑠 + 1   
    Randomly spawns new particle in swarm 𝑠𝑠   
    If 𝑁𝑁𝑠𝑠 < 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠  and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( ) 𝑁𝑁𝑠𝑠
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

>
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( )  // create a new swarm 

 

     𝑁𝑁𝑠𝑠 = 𝑁𝑁𝑠𝑠 + 1   
     Randomly spawns a new swarm  
  Else  // swarm 𝑠𝑠 has not improved 
   𝐼𝐼𝑘𝑘𝑠𝑠 = 𝐼𝐼𝑘𝑘𝑠𝑠 + 1   
   If 𝐼𝐼𝑘𝑘𝑠𝑠 = 𝐼𝐼𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠  // swarm 𝑠𝑠 has improved   
    If 𝑁𝑁𝑠𝑠 > 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚    
     Delete worse particle from swarm 𝑠𝑠, 

i.e., lower local solution 
 

    Else  // swarm 𝑠𝑠 does not currently have 
the minimum number of allowed particles 
to form a swarm 

 

     Delete whole swarm 𝑠𝑠, i.e., all particles 
from swarm 𝑠𝑠 

 

End 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. FODPSO-FCM algorithm (s: the number of a swarm, t: the number
of iterations, α: Fractional order coefficient, ρ1: cognitive coefficient, ρ2:
social coefficient, Ns: current number of swarms, Ns

min: minimum number
of swarms, Ns

max: maximum number of swarms, Nmin: minimum number
of particles in a swarm, Nmax: maximum number of particles in a swarm,
IT : number of iterations, Ikill: maximum number of iterations for stagnation,
J : fitness function.

α, particles ignore their previous activities, thus ignoring the
system dynamics and become susceptible to get stuck in local
solutions (i.e., exploitation behavior). On the other hand, with
a large α, particles will present a more diverse behavior, which
allows exploration of new solutions and improves the long-
term performance [30]. However, if the exploration level is
too high, the algorithm may take too much time to find the
global solution.

The parameters r1 and r2 are random vectors with each
component generally a uniform random number between 0
and 1 [30].

As particles move in that multidimensional space, they share
their own solution with other particles inside the same swarm
by computing the fitness function presented in (3) [30]. Thus,

following the insights presented for the first time by [31, 32]
and more recently in [6], in order to analyze the general state
of each swarm, the fitness of all particles is evaluated and
the neighborhood and individual best positions of each of the
particles are updated. If a new global solution is found, a new
particle is spawned. Whilst if the swarm fails to find a fitter
state in a defined number of steps, the particle is deleted. Fig. 1
describes how the proposed FODPSO-FCM clustering method
works.

C. Proposed classifier based on FODPSO-FCM and SVM

In order to take advantage of SVM and the novel clustering
method (FODPSO-FCM), the outputs of them are integrated
through majority voting. Fig. 2 depicts the general idea of
integrating the outputs of FODPSO-FCM (clustering map) and
SVM (classification map) with the majority voting. Clustering
methods provide a few cluster centers as their outputs. Each
cluster consists of several pixels that are closest to the cluster
center. These samples get the same clustering label. In the
same way, the output of classification is a few number of
classes and each class consists of several pixels with the same
classification label. To perform the majority voting jointly on
the output of the clustering and classification steps, first, the
number of pixels with different classification labels in each
cluster is counted. Then, all pixels in each cluster get the most
frequent class label in the cluster. For a better understanding
of how the results of the novel fuzzy clustering approach
(FODPSO-FCM) and the classification technique (SVM) are
combined through majority voting, the outline of the whole
procedure can be described step-by-step as follows:

1) The input data are classified by SVM;
2) The input data are clustered by FODPSO-FCM;
3) The results of step 1 and step 2 are combined using the

majority voting.
It should be noted that the classification framework in this
work has been only used for the evaluation of the capability
of different clustering techniques and the main novelty of this
paper goes to the proposition of the new clustering approach.

IV. EXPERIMENTAL RESULTS

A. Data Description

Two data sets are used in experiments. These data sets are
described below.

1) Indian Pines: This data set was captured by AVIRIS
of Indian Pines (NW Indiana) in 1992 and has 16 classes
by AVIRIS (see Fig. 3), mostly related to different land
covers. The data set consists of 145 × 145 pixels with a
spatial resolution of 20 m/pixel. Here, 200 data channels were
considered after the removal of the spectral bands affected
by atmospheric absorption. The number of training and test
samples are displayed in Table I.

2) Salinas: This data set was captured by AVIRIS over
Salinas Valley, CA, USA, and it is characterized by high
spatial resolution (3.7-m pixels) consisting of 512 by 217
samples. The original data set consists of 224 data channels,
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Hyperspectral 
Data

First Principal 
Component

FODPSO-FCMSVM

Majority Voting

Classification
Map

Clustering Map, 

this thematic 

figure consists 

of  3 clusters. In 

each cluster, 

there are a few 

pixels labeled 
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Fig. 2. Procedure of the majority voting for combining the output of the
clustering and the classification techniques (based on [33]).

Fig. 3. The AVIRIS Indian Pines data set. a) Spectral band number 27 (λ =
646.72nm); b) training samples, c) test samples, where each color represents
a specific information class. The information classes are listed in Table I.

TABLE I
INDIAN PINES: THE NUMBER OF TRAINING AND TEST SAMPLES

Class Number of Samples
Number Name Training Test

1 Corn-notill 50 1384
2 Corn-mintill 50 784
3 Corn 50 184
4 Grass-pasture 50 447
5 Grass-trees 50 697
6 Hay-windrowed 50 439
7 Soybean-notill 50 918
8 Soybean-mintill 50 2418
9 Soybean-clean 50 564
10 Wheat 50 162
11 Woods 50 1244
12 Bldg-Grass-Tree-Drives 50 330
13 Stone-Steel-Towers 50 45
14 Alfalfa 15 39
15 Grass-pasture-mowed 15 11
16 Oats 15 5

TABLE II
THE NUMBER OF TRAINING AND TEST SAMPLES.

Class Number of Samples
Number Name Training Test

1 Brocoli green weeds 1 252 1757
2 Brocoli green weeds 2 474 3252
3 Fallow 239 1737
4 Fallow rough plow 169 1225
5 Fallow smooth 342 2336
6 Stubble 516 3443
7 Celery 442 3137
8 Grapes untrained 1395 9876
9 Soil vinyard develop 775 5428

10 Corn senesced green weeds 407 2871
11 Lettuce romaine 4wk 141 927
12 Lettuce romaine 5wk 232 1695
13 Lettuce romaine 6wk 124 792
14 Lettuce romaine 7wk 121 949
15 Vinyard untrained 906 6362
16 Vinyard vertical trellis 231 1576

Fig. 4. Example of the Salinas test case. (a) Data channel 57. (b) Training
samples. (c) Test samples. Each color represents a specific information class.
The information classes are listed in Table II.

but here, 20 water absorption bands are discarded. The data set
includes vegetation, bare soils, and vineyard fields. The Salinas
reference data contain 16 classes. Fig. 4 shows the Salinas
data set and its corresponding reference map. The number of
training and test samples are displayed in Table II.

B. Algorithm setup and general description

To compare the performance of the different K-Means al-
ternatives used in this paper, all methods were programmed in
MATLAB, running on a computer having Intel(R) Core(TM)
i7 CPU 2.40 GHz and 16GB (15.9GB usable) of memory.

Table III presents the initial parameters for both the PSO-
and FODPSO-FCM methods. As previously described, the
PSO and FODPSO methods are parameterized algorithms.
Therefore, one needs to choose parameter values that result in
faster convergence. The cognitive, social and inertial weights
were chosen by taking into account several works focusing on
the convergence analysis of the traditional PSO (cf., [6, 34]).
For instance, to guarantee the convergence of the process,
Jiang et al. [34] presented a set of attraction domains that
altogether present a relation between ρ1, ρ2 and w, wherein
0 ≤ w < 1 and ρ1+ρ2 > 0. Based on the attraction domain in
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TABLE III
DEFINITION OF PSO AND FODPSO PARAMETERS USED IN EXPERIMENTS.

Parameter PSO FODPSO

Number of iterations IT 100 100
Number of particles N 150 20
Social coefficient ρ1 0.8 0.8

Cognitive coefficient ρ2 1.2 1.2
Inertial coefficient w 0.8 -

Maximum step between iterations ∆v 2 2
Minimum number of particles in a swarm Nmin - 10
Maximum number of particles in a swarm Nmax - 30

Initial number of swarms Ns - 4
Minimum number of swarms Ns

min - 2
Maximum number of swarms Ns

max - 6
Stagnancy counter Iskill - 10

Fractional order coefficient α - 0.8

[34], if one would choose an inertial coefficient w = 0.8, the
sum between the cognitive and social components would need
to be less than 7, i.e., ρ1 + ρ2 < 7. Note that the threshold
velocities of particles and the maximum number of particles
within each swarm in the FODPSO are smaller than the PSO
algorithm. This was experimentally adjusted here to provide
swarms of 20 particles with the same level of diversity (i.e.,
exploration and exploitation) as swarms of 150 particles.

The same set of parameters for both data sets was chosen
which infers that the proposed method is data set distribution
independent and there is no need to set any parameters for it.

Since the compared methods are based on stochastic tech-
niques and results can be different in different runs, both the
PSO-FCM and FODPSO-FCM were evaluated over 50 runs
for each data set, in which and the average results are reported
in Tables IV and V.

In order to carry out a fair evaluation, the input is classified
only once by SVM, while the output of this step is used for
all different levels. By doing that, the accuracy of the classifi-
cation for different methods only depends on the outcome of
the clustering method.

The number of clusters for all clustering techniques studied
in this work was set equal to the number of classes for both
data sets.

The hyperplane parameters for the SVM classifier were
chosen by 5-fold cross validation.

Below, the terms K-Means, FCM, PSO and FODPSO
are referred to situations when the hyperspectral data are
clustered by K-Means, FCM, PSO-FCM and FODPSO-FCM,
respectively, and the outputs combined with SVM through the
majority voting step.

C. Discussion

1) Indian Pines: Table IV gives information regarding the
classification accuracies and the CPU processing time. As
can be seen, FODPSO+FCM outperforms other alternatives in
terms of classification accuracies. The main reason behind this
is the capability the algorithm has to distributively compare
a set of ever-improving solutions provided by particles in
a coopetitive fashion, i.e., depicting both cooperation and
competition behaviors. In other words, while particles within

TABLE IV
INDIAN PINES: CLASSIFICATION ACCURACIES (OA IN PERCENTAGE AND

KAPPA HAS NO UNITS) ALONG WITH CPU PROCESSING TIME IN SECONDS.

Method OA Kappa Time(s)

SVM 82.56 0.8019 –
K-Means 86.92 0.8510 0.0090±0.0039

FCM 87.24 0.8544 0.2737±0.0039
PSO 86.22±1.68 0.8428±0.0191 3.3471±0.2666

FODPSO 88.03±0.90 0.8635±0.0102 2.5030±0.1358

the PSO only cooperate with one another, the several com-
petitive swarms within the FODPSO are able to avoid sub-
optimal solutions and, henceforth, achieve a higher OA. The
FODPSO+FCM approach is immediately followed by the
FCM, thus presenting better results than both PSO-based
approach and the crisp K-Means. As can be seen, all different
alternatives of K-Means (K-Means, FCM, PSO and FODPSO)
improve the classification accuracies of SVM within a very
short CPU processing time. In other words, the use of all
the different alternatives only adds up a very short overhead
time on the CPU processing time of SVM, while significantly
improving the classification accuracies.

One can also observe that the non-stochastic algorithms can
cluster the input data faster than the PSO- and FODPSO-based
approaches. That is an expected drawback in this specific
situation since particles depict an exploitation behavior near
the sub-optimal and optimal solutions, thus requiring a fine
evaluation of each minor step performed by each particle.
Put it differently, the methods take approximately the same
time to retrieve roughly the same solution. Afterwards, the
biological approaches require extraordinary computation to
slightly improve the result around such solution.

One-way MANOVA analysis was carried out to assess
whether K-Means, FCM, PSO-based FCM and FODPSO-
based FCM methods have a statistically significant effect
on the classification performance. The significance of the
different types of algorithms used (independent variable) on
the CPU processing time, overall accuracy (OA) and the kappa
coefficient (dependent variables) was analyzed using a one-
way MANOVA after checking the assumptions of multivari-
ate normality and homogeneity of variance/covariance, for a
significance level of 5%.

The assumption of normality of each of the univariate
dependent variables was examined using a paired-sample
Kolmogorov-Smirnov (p-value<0.05) [35]. Although the uni-
variate normality of each dependent variable has not been
verified, since n=50, and by considering the Central Limit
Theorem (CLT) [36], normality was assumed [36].

The MANOVA analysis revealed that the type of algorithm
led to a statistically significant different outcome on the
multivariate composite (F=1196.4569; p-value<0.0001). As
the MANOVA detected significant statistical differences, we
proceeded to the commonly-used ANOVA for each dependent
variable. By carrying an individual test on each dependent
variable, it was possible to observe that the CPU process-
ing time presents statistically significant differences between
methods (F=6046.51; p-value<0.0001), in which both the
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Fig. 5. Indian Pines: Performance comparison between methods. a) Processing time (sec); b) Overall accuracy (OA) (%); and c) Kappa Coefficient (has no
units).

TABLE V
SALINAS: PERFORMANCE COMPARISON BETWEEN METHODS. A)

PROCESSING TIME (SEC); B) OVERALL ACCURACY (OA) (%); AND C)
KAPPA COEFFICIENT (HAS NO UNITS).

Method OA Kappa Time(s)

SVM 94.02 0.9334 –
K-Means 95.49 0.9498 0.0211±0.0014

FCM 96.29 0.9587 0.1746±0.0096
PSO 95.92±0.49 0.9546±0.0054 3.59±0.1059

FODPSO 96.54±0.54 0.9615±0.0060 3.0196±0.5046

PSO- and FODPSO-based approaches take longer time than
K-Means and FCM. Likewise, the OA also depicts statisti-
cally significant differences between methods (F=31.19; p-
value<0.0001), as well as the KC (F=31.41; p-value<0.0001),
in which the FODPSO-based approach is the one presenting an
overall better performance for both metrics. In other words, the
proposed FODPSO-based solution produces better solutions
than the alternatives, at the cost of a higher CPU processing
power. However, it does so with a lower CPU processing
power than the PSO-based method.

To easily assess the differences between the algorithms
and further understand the trade-off between performance
and algorithmic complexity, we show the outcome of trials
graphically using boxplot charts (Fig. 5). In the figure, the
top/bottom of the blue boxes and the horizontal red lines in
between correspond to the first and third quartiles and the
median values, respectively. As one may observe, by benefiting
from the FODPSO approach, the classification performance
improves both in terms of OA and Kappa coef. However, there
is an increase in the CPU processing time when compared
to the non-stochastic methods. Even so, the FODPSO is still
able to present a reduced computational complexity when
compared to its original counterpart (PSO).

2) Salinas: Table V gives information regarding the classi-
fication accuracies (OA in percentage and Kappa) along with
CPU processing time in seconds. Again, FODPSO has the best
performance in terms of classification accuracies.

By comparing the CPU processing time reported in Tables
V and IV, it can be observed that the new implementation of
different alternatives of clustering methods (K-Means, FCM,
PSO and FODPSO) can cluster different input data sets regard-

less of their size in almost the same CPU processing time. The
two different data sets (Salinas with the size of 512×217×204
and Indian Pines with the size of 145× 145× 200) demanded
almost the same CPU processing time to be clustered by using
the new implementation proposed in this paper. The main
reason behind this result is that computing the solution of
each particle under both PSO- and FODPSO-based approaches
requires about the same time, in which the influence of the
image dimension is almost neglected.

As before, a one-way MANOVA analysis was carried out
to assess whether K-Means, FCM, PSO-based FCM and
FODPSO-based FCM methods have a statistically significant
effect on the classification performance.

The MANOVA analysis revealed that the proposed algo-
rithm led to a statistically significant outcome on the multivari-
ate composite (F=645.9372; p-value<0.0001) when compared
to the other approaches. As the MANOVA detected signifi-
cant statistical differences, we proceeded to the commonly-
used ANOVA for each dependent variable. It was possible
to observe that the CPU processing time (F=1573.44; p-
value<0.0001), the OA (F=47.81; p-value<0.0001) and the
Kappa. (F=47.44; p-value<0.0001) present statistically sig-
nificant differences between methods. Again, the proposed
FODPSO-based solution produces better solutions in terms of
accuracies than the alternatives, at the cost of higher CPU
processing power.

Let us now compare the outcome of trials graphically using
boxplot charts (Fig. 6). As one may observe, by benefiting
from the FODPSO approach, the classification performance
improves in terms of both OA and Kappa Coef. Although
there is an increase in the CPU processing time as compared
to the non-stochastic methods, the FODPSO is still able to
present a reduced computational complexity when compared
to its original counterpart (PSO), which even presents the
worst results when compared to FCM under certain situations.

For both data sets, the new approach based on FODPSO-
FCM leads to faster results than PSO-FCM since FODPSO
with the fractional coefficient α, is able to balance particles’
behavior between the exploration and the exploitation. Finally,
it should be noted that, for all the different alternatives of FCM
applied in this paper, the histogram of image intensities is
used instead of the raw image data used during the clustering
process, which leads to the clustering of the whole data in a
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Fig. 6. Salinas: Performance comparison between methods. a) Processing time (sec); b) Overall accuracy (OA) (%); and c) Kappa Coefficient.

very fast way.
The computational complexity of the FODPSO algorithm

depends, as its traditional counterpart PSO, on the number
of possible solutions. In the case of PSO, the number of
solutions is equal to the number of particles in the swarm, N ,
and remains the same throughout the optimization procedure.
Therefore, the complexity of PSO is O(N). In FODPSO,
the number of solutions is not only based on the number of
particles. Actually, the number of solutions is the sum of the
number of particles, N , within all swarms, s, and the order
of the fractional order extension, r̂, which was defined here
as four (see (8)). Therefore, the computational complexity
of FODPSO is O(r̂ × N × s). In the experiments, PSO
was defined with 150 particles, while FODPSO was initially
defined with 20 particles in each of the four starting swarms
(Table III). In other words, in the very beginning, FODPSO has
a higher computational complexity because of its 320 possible
solutions as compared to the 150 possible solutions of the PSO
algorithm. However, as the FODPSO algorithm converges, the
number of particles and swarms within FODPSO starts to drop,
being possible to achieve a minimum of 10 particles and two
swarms, converging towards 80 possible solutions, presenting
an inferior computational complexity than the traditional PSO
algorithm. For more details, please refer to [37].

V. CONCLUSION

In this paper, a novel evolutionary based fuzzy clustering
approach is proposed. This approach benefits from a fractional
calculus approach to improve the convergence rate of the
traditional FCM, while, at the same time, it benefits from
the same natural selection mechanism as the original PSO
to avoid stagnation around local optima. Then, the proposed
fuzzy clustering approach is used to improve the classification
of hyperspectral images with SVM. It is well known that the
SVM is able to efficiently classify high dimensional data with
a limited samples. However, it is a hard classifier and cannot
model temporal gradual changes between different classes.
In contrast, the novel clustering technique is based on fuzzy
concepts and can model gradual changes between different
classes. In other words, the combination of the SVM and the
novel fuzzy clustering technique can be considered a desirable
strategy to classify hyperspectral images. The experimental
evaluation for two benchmark hyperspectral images demon-

strates that the performance of the proposed method, which
uses a biologically inspired behavior based on natural selection
and non-integer convergence, results in a statistically signifi-
cant improvement in terms of overall classification accuracy
and kappa coefficient. It should be noted, thanks to the efficient
implementation of all clustering approaches in this paper based
on image histograms, the clustering approaches here are very
fast and they can lead to a conclusion in a few seconds (even
less than one second for K-Means and FCM).

As a possible future work, it is envisioned to integrate
the new approach with the Hidden Markov Random Field
(HMRF) [38], since the new approach does not incorporate
spatial and contextual information of the adjacent pixels and
only considers the spectral information.

In addition, in this paper only rural areas with homogeneous
regions have been taken into account since the number of
clusters for different clustering alternatives here can be ad-
justed automatically (equal to number of classes). However, for
complicated areas, this number should be increased in order
to avoid under-segmentation. As a possible future work, the
automatic selection of the number of clusters for complicated
data sets can be of interest.
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