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Sequence variants associatedwith BMI affect
disease risk through BMI itself
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Mendelian Randomization studies indicate that BMI contributes to various
diseases, but it’s unclear if this is entirely mediated by BMI itself. This study
examines whether disease risk from BMI-associated sequence variants is
mediated through BMI or other mechanisms, using data from Iceland and the
UK Biobank. The associations of BMI genetic risk score with diseases like fatty
liver disease, knee replacement, and glucose intolerance were fully attenuated
when conditioned on BMI, and largely for type 2 diabetes, heart failure,
myocardial infarction, atrial fibrillation, and hip replacement. Similar
attenuation was observed for chronic kidney disease and stroke, though
results varied. Findings were consistent across sexes, except for myocardial
infarction. Residual effectsmay result from temporal BMI changes, pleiotropy,
measurement error, non-linear relationships, non-collapsibility, or confound-
ing. The attenuation extent of BMI genetic risk score on disease associations
suggests the potential impact of reducing BMI on disease risk.

Body mass index (BMI) is a well-recognized risk factor for many
chronic disorders1, including type 2 diabetes mellitus2 (T2D), several
cardiovascular diseases3–5 (CVDs), non-alcoholic fatty liver disease6,
chronic kidney disease7 (CKD) and osteoarthritis8. Although the role of
body mass in the pathogenesis of these diseases is not fully under-
stood, the biomechanical forces imposed by higher BMI may con-
tribute to some, such as knee osteoarthritis, which demonstrates a
stronger association with obesity than hand osteoarthritis8,9.

BMI is a highly polygenic trait. The largest genome-wide asso-
ciation study (GWAS) of BMI to date included 700 thousand indivi-
duals of European origin and yielded 941 sequence variants10 that
account for 6% of the population variance in BMI10. Sequence variants
associated with BMI present an opportunity to investigate how and
to what extent obesity confers risk of diseases11–14, e.g., with Men-
delian randomization (MR)15. Several studies have been performed
that support a direct contribution of obesity to the pathogenesis of
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diseases, such as CVD s14, multiple other chronic diseases16, and
general all-cause mortality17.

One of the assumptions of MR is that the instruments affect dis-
ease risk solely through exposure, in this case, BMI. Here, wewished to
investigate whether disease risk conferred by sequence variants that
are associated with BMI is mediated through their effects on BMI or by
other mechanisms. To this end, we performed mediation analysis to
explore the extent to which adult BMI mediates the risk conferred by
BMI variants on various diseases, which, to our knowledge, has not
been conducted before. We utilized genetic risk scores for BMI (BMI-
GRSs) and compared the associationbetween theGRSs and the various
diseases with and without adjustment for measured BMI. The GRS in
the main analysis had variants excluded that were deemed outliers in
the BMI disease relationships, as these likely violate the MR assump-
tion that they should affect disease risk solely through exposure. Any
residual association between the BMI-GRSs and diseases after adjust-
ing for measurements of adult BMI could be due to pleiotropy, con-
founding, or information not captured with a few adult BMI
measurements. Assuming that the association of the BMI-GRS is
mediated through BMI, the proportionmediated provides an estimate
of the upper bound of the disease risk that is potentiallymodifiable by
lowering the BMI.

Results
Genetic risk score associations
We used BMI measurements and genotype data from 139,236 Ice-
landers and 429,700 persons of European descent from the UK Bio-
bankwith amean of 4 and 1.2 BMImeasurements for each individual in
the Icelandic and UK datasets, respectively. Of the 941 reported
sequence variants that are associated with BMI10, we used a subset of
665 independent variants to generate GRSs (pairwise R2 < 0.2 in the
UK).We furthermoreexcluded45 variants that deviate from the typical
pattern of association with BMI and disease risk for the 10 diseases we
investigated (Fig. 1, Supplementary Data 1 and Supplementary
Figs. 1–10). T2D had the highest number of outliers out of the ten
diseases, or 25 of the 45 outlier variants. Figure 2 displays a scatter plot
of the effects of the 665 BMI variants on BMI and T2D. Most BMI
variants that associate with greater BMI correlate positively with T2D,
but some have a strong negative correlation (Fig. 2)18. Most of the
discordant variants were first identified through their association with
T2D19 and are likely to associate with BMI through T2D, a form of
reverse causation.

We constructed two GRSs based on the selected variants to test
for association with 10 diseases or conditions reflecting diseases in
the Icelandic20 and UK21 datasets: atrial fibrillation, CKD, non-
alcoholic fatty liver disease, glucose intolerance, heart failure, hip
or knee replacement because of severe osteoarthritis, myocardial
infarction (MI), stroke, and type 2 diabetes (Supplementary Data 1).
The weights for the Icelandic GRS analysis were derived from ameta-
analysis of BMI data from the UK and the 2015 GIANT GWAS22 and
that for the UK GRS analysis from a meta-analysis of recent Icelandic
data and the 2015 GIANT data. The variance explained in the BMI
phenotype by the BMI-GRSs was 4.9% in Iceland and 5.5% in the UK
(Supplementary Table 1).

We scaled each GRS score such that a unit change corre-
sponded to a predicted one unit (1 kg/m2) increase in BMI in the
respective population (Supplementary Table 2). Thus, when we test
the BMI-GRS for association with disease, the resulting odds ratios
(ORs) can be interpreted as a change in disease risk per 1 kg/m2

increase in BMI. The BMI-GRSwas associatedwith all ten diseases in
the Icelandic dataset andwith all but stroke in theUKdata (p < 0.05/
10). The most significant association with BMI-GRS in both popu-
lations, and with the largest effect size, was with T2D
(ORIceland = 1.23, pIceland = 1.2e-128, ORUK = 1.26, pUK = 4.3e-448). The
associations with BMI-GRS and the diseases were mostly similar in
the two populations (Supplementary Table 3), but we did observe
significant differences for T2D (phet = 4.0e-3), MI (ORIceland = 1.06,
ORUK = 1.11, phet = 7.1e-5) and HF (ORIceland = 1.10, ORUK = 1.17,
phet = 7.2e-6).

Mediation analysis
We then performed mediation analysis by conditioning on measured
BMI (Fig. 3, Supplementary Fig. 11 and Supplementary Table 3). The
association of the BMI-GRS with knee replacement, glucose intoler-
ance, and fatty liver disease was fully attenuated after conditioning on
BMI in both the UK and Icelandic datasets (Fig. 3 and Supplementary
Table 3). For the remaining diseases, the associations were sub-
stantially, but not fully, attenuated in both datasets, with the propor-
tion of effectmediated ranging from 29% to 85%. This attenuation was
mostly consistent in the two populations; the 95% confidence intervals
for the proportion of effect mediated overlapped in the two popula-
tions for all diseases, except for CKD, 49% (95% CI: 33%–67%)
attenuation in Icelandic data and 96% (95% CI: 85%–115%) attenuation
in UK data.
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genetic instruments

BMI-effects estimated

from GIANT 2015

and UKB

BMI-effects estimated

from GIANT 2015

and Iceland

GRS created 

in 400K individuals in UKB
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BMI-GRS BMI
Health

outcome
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1. Variants associated with exposure
2. Variants do not associate with confounders
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BMI-GRS
Health

outcome
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BMI*
Observed exposure

Information captured 
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by measured BMI
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Fig. 1 | Schematic overview of the key features of the study. A depicts a diagram
of how the BMI-GRSs were constructed. B depicts in the top section the causal
diagram for Mendelian Randomization with the three assumptions. The lower part
of (B) shows how the residual associations can be interpreted. In the middle, we
have a box representing BMI as the exposure, in the upper part we have measured

BMI, represented as BMI* and the lower part, we have BMI|BMI*, which represents
the information not contained in the measurements. The information not con-
tained in the measurements can have an impact on disease, demonstrated by sig-
nificant residual associations.
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Sensitivity analysis with potential confounders
The associations that remain after conditioning on BMI could be
explained by other variables that are associated with the BMI variants,
BMI, and/or the diseases. To investigate this, we performed sensitivity
analysis by adjusting for three additional variables of particular rele-
vance to BMI and the diseases, namely ever-smoking status23, waist-to-
hip ratio24 (WHR) and educational attainment25 (EA), (Supplementary
Note). Adding any one of the three variables, or all together, as cov-
ariates had little or no effect on the adjusted associations of the BMI-
GRS with the diseases. We also included T2D as a covariate for all the
associations except the one with T2D. Including T2D information did
not have an effect on the adjusted association (See Supplemen-
tary Fig. 12).

Correlations of repeated measurements
Toassess the stability ofmeasured adultBMI,we investigated repeated
measures of BMI in Icelandic data (Supplementary Fig. 13). The esti-
mated correlations for BMI measured 5 and 10 years apart for ages
18–80 years, are similar through most of adulthood, ranging from 0.7
to 0.9, until the age of 60–70 years, where the correlations start to
decline (Supplementary Fig. 14). This demonstrates that throughmost
of adult life, BMI trajectories follow a predictable path.

GRS variance explained by age
Subsequently, in the UK dataset, we assessed how the BMI-GRS
accounts for BMI variance across different age groups (Supplementary
Fig. 14). We found that the BMI-GRS explained ~6% of BMI variance in
individuals aged 40–55 years, decreasing slightly yet significantly to 5%

in those aged 65–75 years. This pattern implies an age-related shift in
the BMI-GRS’s predictive accuracy.

Mediation analysis by sex
We performed sex-stratified mediation analysis in the UK data (Sup-
plementary Fig. 15 and Supplementary Tables 4 and 5). Results were
generally concordant between the sexes with respect to effect esti-
mates, both conditioned on BMI and not. MI was the only disease
where we observed differences in effects between sexes
(ORfemales = 1.08, ORmales = 1.13, p =0.0012) in the unadjusted analysis.
Furthermore, the BMI-GRS association was fully attenuated among
females, but not males when conditioning on BMI (ORmales adj = 1.05,
p = 5.7e-10). Thus, the residual association with MI in the joint analysis
of the sexes seems to be driven by males.

Sensitivity to outlier removal
To investigate the impact of removing outlier variants on the media-
tion analysis, we performed the same analysis with two less restrictive
genetic scores, one including all genome-wide significant independent
BMI variants, referred to as BMI-GRS-with-Outliers (Supplementary
Tables 1 and 6), and another including less significantmarkers, the BMI
polygenic risk score (BMI-PRS), created with 611 K markers using
LDPred26 (Supplementary Tables 1 and 7). The proportion of the GRS
association mediated by BMI for the three different scores is sum-
marized in Supplementary Table 8.We also computed effect estimates
of the associations of the rank-transformed BMI phenotype to com-
pare the effects of the genetic scores with an epidemiological estimate
in the same population (Supplementary Table 9). As shown in Fig. 4,
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Fig. 2 | Scatter plot showing effects of BMI variants on BMI on the x axis and
their effects (log(OR)) on T2D on the y axis. The log(OR) is meta-analyzed from
Icelandic and UK data, while the BMI Beta is from Yengo et al.10. Outliers detected
with MRPRESSO are colored in orange and annotated with the closest gene. A

bidirectional relationship is observed, most of the variants are concordant, while
most of the outliers are discordant and have strong associations with T2D. Source
data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-53568-9

Nature Communications |         (2024) 15:9335 3

www.nature.com/naturecommunications


the effect estimates of the BMI-GRS and the BMI-PRS on T2D were
different in both populations, and the BMI-GRS-with-Outliers effect
was smaller than the BMI-GRS effect in the UK, but not in the Icelandic
data.TheBMI-PRS effects tended tobe smaller than theBMI-GRSeffect
estimates indicative of the bias stemming from reverse causation
variants, a similar pattern was observed for the BMI-GRS-with-Outliers,
but to a lesser extent. The effect of the BMI-GRSonHFwas greater than
that of BMI on HF. This difference may partly be attributed to the
nonlinear effects of BMI on HF risk (Supplementary Notes).

In the mediation analyses for glucose intolerance, for both BMI-
PRS and BMI-GRS-with-Outliers, we observed a shift in the effect of
associations: they changed from positive in the unadjusted analysis to
negative upon adjusting for BMI (Supplementary Figs. 16–19 and
Supplementary Tables 6 and 7). These differences also result in dif-
ferent estimates for the proportion of associationmediated by BMI for
the different scores (Supplementary Figs. 20 and 21, and Supplemen-
tary Table 8). The T2D association is fully erased when conditioned on
measuredBMI, both in the analysis with the BMI-GRS-with-Outliers and
the BMI-PRS, but we observe a residual association with T2D in the
BMI-GRS association. These results highlight the importance of
removing outlier sequence variants from the analysis, as they violate
the third MR assumption that the variants should only associate with
the outcome through the exposure, and bias the results15. Analyzing
the outlier variants exclusively further highlights these differences
(Supplementary Note).

Discussion
Here we show that the conservative BMI-GRS (with outlier variants
excluded) associated with various diseases, atrial fibrillation, CKD,
fatty liver disease, glucose intolerance, heart failure, osteoarthritic hip
or knee replacement, MI, stroke, and type 2 diabetes, confirming
previous MR results supporting a causal role of BMI in the pathogen-
esis of these diseases. We show that the associations of the BMI-GRS

with the diseases are largely attenuated when conditioned on mea-
sured adult BMI. This is consistent with BMI contributing directly to
their development. However, there are disease-specific differences in
the proportion of the genetic risk mediated through measured BMI
that are not adjusted for by adult BMI measurements. For instance,
measured BMI fully accounts for the BMI-GRS association with fatty
liver disease and knee replacement, while it accounts for most but not
all the association of BMI-GRS with T2D, MI, and HF.

The adult BMI measurements contain incomplete information
about the total exposure of BMI. The incompleteness does not stem
frommeasurement accuracy, but rather the limited temporal coverage
of repeatedmeasurements since BMI can change over time. Adult BMI
follows a predictable path, yet a limited number of measurements
cannot fully inform us about the lifetime BMI trajectory. One of the
limitations of this study is that confounders can also influence the
effect of the BMI-GRS when we condition on measured BMI, but it is
likely that theywould bias the effect further from theunadjusted effect
towards zero (Supplementary Notes). Another limitation is that MR
assumes a linear relationship between the exposure and outcome,
nonlinear relationships can give rise to incomplete attenuation when
conditioning on BMI, the putative exposure. Assuming that the BMI-
GRS confers disease risk through BMI, the proportion of disease risk
mediated in our mediation results provides an estimate of an upper
bound of the genetic risk of the diseases that is potentially modifiable
with a reduction in weight.

It is also possible that BMI itself is very correlated with the true
causal factor for some of the diseases investigated, a form of vertical
pleiotropy, and that BMI mediates this association. Evidence from a
clinical trial of a GLP-1 agonist as a treatment for major CVDs demon-
strates that the protective effect of treatment is observed from the
start of intervention and is consistent throughout the trial period27, yet
the full effect of the treatment onweight is not observed until one year
after treatment initiation28. This is not consistent with the effect on

BMI−GRS associations with diseases

with and without BMI adjustment

Atrial fibrillation

Chronic kidney disease

Fatty liver disease

Glucose intolerance

Heart failure

Hip replacement

Knee replacement

Myocardial Infarction

Stroke

Type 2 diabetes

1.0 1.1 1.2
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33733 / 395643

15888 / 413812
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15564 / 414028

25221 / 404047

3202 / 426066
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Cases /
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11719 / 81147

2753 / 88587

587 / 93828

478 / 90862
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BMI units

Fig. 3 | Main association results summarized in a forest plot. Shown are asso-
ciations between the BMI-GRS and diseases/conditions in the UK Biobank (left) and
Iceland (right). TheGRSswere inboth cases scaled such that an increasebyoneunit
corresponded to a 1 kg/m2 increase in BMI, thus the ORs correspond to a 1 kg/m2

increase in BMI. The black points and error bars show the disease association of the

BMI-GRS adjusted for sex, year of birth, and 20 genetic principal components), and
the orangepoints and error bars show the corresponding associationwhenBMI has
been added as a covariate. The error bars correspond to a 95% confidence interval
for the parameter, and the points represent ORs from logistic regression. See
Supplementary Table 3 for details. Source data are provided as a Source Data file.
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CVD being directly caused by BMI, since that would give rise to a dose-
response relationship. BMI could be a consequence of an underlying
causalmechanism, which could, for instance, be excessive food intake,
adipocyte expansion, or adipogenesis. This pattern of cardiovascular
event incidence curves has also been observed for bariatric surgery29.

The effects of BMI-GRS on disease risk were generally larger than
for BMI-GRS-with-Outliers and BMI-PRS, with the latter likely under-
estimating the causal effect due to the inclusion of reverse causality
instruments or horizontal pleiotropy. While our BMI measurements
capture much of the BMI-GRSs impact on disease risk, they are still
incomplete. The significant residual association of the BMI-GRS with
T2D, MI, and HF after adjusting for BMI calls for further research into
these persisting correlations. Comprehensive BMI trajectory data
could shed light on whether the residual associations are due to
missing temporal information. On the other hand, the BMI-GRS might
also be linked with other intermediary factors, such as food pre-
ferences or levels of physical activity. Presently, our results establish an
upper bound on the disease risk directly attributed to measured BMI.
Further research is required to determine the lasting risks associated
with significant weight gain.

Methods
Study populations
Iceland. The Icelandic deCODE database contains a collection of data
from Icelanders who have participated in several genetic initiatives.
Our analysis was restricted to those aged over 18 years. All participants
who donated biological samples signed informed consent for
research. To ensure participant confidentiality, a sanctioned

encryption systemwas employed andmonitored by the Icelandic Data
Protection Authority. The study was approved by the Icelandic
National Bioethics Committee (approval No. VSN-17-076). The study
complies with all relevant regulations regarding the use of data from
human participants and was conducted in accordance with the criteria
set by the Declaration of Helsinki. No statistical method was used to
predetermine the sample size.

Height, weight andBMI information from Icelanderswasobtained
from Landspitali—The National University Hospital of Iceland; the
Primary Health Care Clinics of the Capital area; and from a range of
research undertakings at deCODE genetics. In case of multiple height
measurements, the mode of the measurements was selected to
represent the individual’s height, thus a unique height measurement
was obtained for each individual. BMI’s were adjusted by regressing
out the effect of age at measurement using a generalized additive
model with splines from the mgcv package30 separately for each sex.
Multiple measurements were averaged after the adjustment process.
The residuals from each sex were then inverse normal transformed.

Information about diseases was largely obtained from Landspitali
—The National University Hospital and several registries managed by
the Directorate of Health: Causes of Death Register, Register of Pri-
mary Health Care Contacts and Register of Contacts with Medical
Specialists in Private Practice. Cases of atrial fibrillation were defined
by ICD-10 code I48 (and sub-codes) and ICD-9 code 427.3. Cases of
CKD were defined by ICD-10 code N18 (and sub-codes). Fatty liver
disease was defined by ICD-10 code K76.0 (and sub-codes). The glu-
cose intolerance diagnoses were based on ICD-10 code R73 (and sub-
codes). The heart failure diagnoses were based on ICD-10 code I50

Effect estimate comparison by risk scores

Atrial fibrillation

Chronic kidney disease

Fatty liver disease

Glucose intolerance

Heart failure

Hip replacement

Knee replacement

Myocardial Infarction

Stroke
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Fig. 4 | Comparing estimation of BMI as a risk factor for diseases by different
approaches in UK Biobank and Icelandic data. Three scores are compared, BMI-
GRS (yellow), BMI-GRS-with-Outliers (blue), and the BMI-PRS (red), all created from
BMI effects fromBMI-GWASmeta-analyses (Seemethods and Fig. 1). All scores have
been scaled such that a unit increase corresponds to a 1 kg/m2 increase in BMI, thus
theORscorrespond to a 1 kg/m2 increase inBMI. TheBMI-GRS is the sameas theone
reported in Fig. 3. The BMI phenotype corresponds to the black legend and

represents an epidemiological estimate of the risk for the corresponding popula-
tion. The counts of cases and controls are the same as reported in Fig. 3. The points
and error bars show the disease association of the BMI genetic scores and the BMI
phenotype adjusted for sex, yearof birth, and 20geneticprincipal components. The
error bars correspond to a95%confidence interval for theparameter, and thepoints
represent ORs from logistic regression. See Supplementary Tables 3, 6, 7, and 9 for
full details of the associations. Source data are provided as a Source Data file.
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(and sub-codes). Hip or knee replacements because of osteoarthritis
were based on NOMESCO Classification of Surgical Procedures
(NCPS) codes NFB and prior ICD-10 M16.0, M16.1, or M16.9 codes in
the same individual for hip replacement, or NGB and prior ICD-10
M17.0, M17.1, or M17.9 codes for knee replacement, or were obtained
from the national Icelandic knee or arthroplasty registry31. Indivi-
duals who underwent joint replacement after the age of 40 years
were included, and those with diagnosis of rheumatoid arthiritis
were excluded. MI cases were based on ICD-10 codes I21 (and sub-
codes) or I25.2 and comparable ICD-9 codes32. Ischemic stroke cases,
were identified based on the ICD-9 codes 433,434 and ICD-10 codes
I63.0, I63.1,163.2, I63.3, I63.4, I63.5, I63.8, I63.933. Type 2 diabetes
cases were defined by ICD-10 code E11 or at least two measurements
of hemoglobin A1c (HbA1C) > 6.5% or use of oral diabetes medication
or self-report. Diagnosis of type 1 diabetes or MODY was used as an
exclusion criterion. In general, for Icelandic case-control analyses,
the controls were individuals recruited through different genetic
studies at deCODE Genetics who had not been diagnosed with the
disease in question.

United Kingdom. The UK Biobank (UKB) is a vast biomedical reposi-
tory holding intricate phenotypic and genetic data on about 500,000
individuals from England, Wales, and Scotland. We restricted our
analysis to individuals of European descent. They were between 40-69
years old at the point of entry. All participants willingly gave their
informed consent. The operational methodologies were vetted and
sanctioned by The NorthWest Research Ethics Committee, and access
to the UKB resources was gained through application no. #56270. The
study complies with all relevant regulations regarding the use of data
from human participants and was conducted in accordance with the
criteria set by the Declaration of Helsinki. No statistical method was
used to predetermine the sample size.

BMI was obtained from data field f.21001. The BMI measure was
adjusted for year of birth, age, age squared, and 20 principal compo-
nents for males and females separately, then combined, the average
drawn from multiple measurements for individuals, and then inverse
normal transformed. Data for the sexeswas combined after the inverse
normal transform.

Disease information was aggregated from multiple data fields,
including hospital medical records (f.42170), primary clinical event
records (f.42040), self-reported illness (f.20002), hospital records of
surgical procedures (f.41149), self-reported medical conditions
(f.2443) and death register (f.40001/40002). The atrial fibrillation
diagnoses were based on ICD-10 code I48 (and sub-codes) from hos-
pital medical records, primary clinical events records, or self-reported
illness. CKD diagnoses were based on ICD-10 codes N18.3, N18.4, and
N185 from hospital medical records or primary care clinical events
records. Fatty liver disease diagnoses were defined by ICD-10 code
K760 from hospital records or primary care clinical events records.
Glucose intolerance was defined by ICD-10 code R73 (and sub-codes)
from hospital medical records or primary care clinical events records.
Heart failure diagnoses were defined by ICD-10 code I50 (and sub-
codes) from hospital medical records, primary care clinical events
records, or self-reported illness. Hip replacementwas basedonOPSC-4
codes, and matched ICD-10 codes, from hospital operation records.
The OPCS-4 codes included are W371, W378, W379, W381, W388,
W389,W391, W399matchedwith ICD-10 codesM160,M161, M169 and
with age at operation greater than 40 years. Similarly, knee replace-
ment was based on OPSC-4 codes, and matched ICD-10 codes, from
hospital records of surgical procedures. The OPCS-4 codes included
are W401, W408, W409, W411, W418, W419, W421, W428, W429 mat-
ched with ICD-10 codes M170, M171, M179 and with age at surgery
greater than 40 years. MI was defined using ICD-10 codes I200, I21,
I210, I211, I21.2, I21.3, I21.4, I21.9, I21.X, I22, I22.0, I221, I22.8, I22.9, I25.2
from hospital medical records, primary care clinical events records or

from the death register. Cases of Ischemic stroke were defined using
ICD-10 codes I63.0, I631, I63.2, I63.3, I63.4, I63.5, I63.8 from hospital
medical records. Type 2 diabetes diagnoses were based on ICD-10
code E11 from hospital medical records, primary care clinical events
records, self-reported illness, death register, and self-reportedmedical
condition. Individuals with type 1 diabetes (ICD-10 E10) or gestational
diabetes (ICD-10 O244) were excluded.

Quantitative traits were used for additional adjustments in the UK
data. WHR is computed from waist circumference (field f.48) and hip
circumference (field f.48). The values were adjusted in the sameway as
the BMI UK data. The smoking data used for adjustment was aggre-
gated from the fields f.2897 Age stopped smoking, f.20116 Smoking
status, and f.20161 Pack years of smoking. The years of education were
determined from UK Biobank field 6138 and translated into specific
durations using the following previously described34 rules, 1) College
or University degree corresponds to 20 years; 2) professional qualifi-
cations, such as nursing or teaching, equate to 18 years; 3) qualifica-
tions like A levels/AS levels, CSEs,NVQ,HND, orHNCare set at 13 years;
4) O levels/GCSEs or their equivalents are pegged at 10 years. 5)Indi-
viduals with none of the aforementioned qualifications are assigned 7
years. Subsequently, adjustments to this data were made in the same
way as for the BMI data.

Sequencing data
In both populations studied, genetic variants were first identified in
whole-genome sequencing data. Subsequently, these variants were
imputed into the remaining dataset based on chip-genotyping via
long-range phasing35. Single nucleotide polymorphisms were called
using Graphtyper20,36,37.

Iceland. At deCODE genetics, 64,460 individuals had their whole
genomes sequenced,while 173,025underwent chip-genotyping aspart
of multiple research endeavors. The sequencing technologies
employed included GAIIx, HiSeq, HiSeqX, and NovaSeq from Illumina.

UK. Within the UK Biobank initiative, all participants were chip-geno-
typed, and 131,958 participants had whole-genome sequencing per-
formed using the NovaSeq Illumina devices38.

Method details
BMI markers for genetic risk scores. Starting with the list of 941
markers published by Yengo et al.10, we first mapped the base-pair
positions to hg38 and queried the markers in our data. We matched
905 markers that were used for subsequent analysis. We removed all
markers with p > 5e-8, with the p value which was computed in the
original inverse variance weighted meta-analysis. After this step, we
ended up with 673 markers. We then used LD data estimated from the
UK Biobank to removemarkers that had an R2 of 0.2 or higher with the
strongest variant in the region. This process yielded 665 markers that
we refer to as the set of independent and genome-wide significant
markers, (Fig. 1 and Supplementary Data 1).

Genetic risk scores outlier removal. Due to the existence of outliers
in the associations, e.g., the TCF7L2 variant for T2D (Fig. 2), we
wanted to remove variants that strongly deviate from the typical
association pattern, which could stem from horizontal pleiotropy or
reverse causation. We, therefore, used the MRPRESSO method39 to
remove outliers. We can only know that we have removed the
instruments that are most severely deviating from the expected
distribution. Removing outlier variants is particularly important for
the mediation analysis, as strong reverse causation variants can
substantially bias the results.

Meta-analysis for outlier estimation. Using BMI effects estimated by
Yengo et al.10 for the exposure, we computed using inverse variance
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meta-analysis the log ORs (ORs) for the 10 disease traits, using data
from Iceland and UK Biobank. These log ORswere used as an outcome
in the MRPRESSO analysis. Any outlier detected in the 10 MRPRESSO
runs was removed from subsequent analysis. A variant was deemed as
an outlier if the Bonferroni corrected outlier test was below 0.05. This
required drawing 20K samples from the null distribution to achieve
enough precision to compute the empirical p-values. We removed 45
outlier markers from the subsequent analysis (See supplementary
Figs. 1–10). For certain traits we found no outliers.

ConstructingGRSs. When constructing the GRSs wemade sure to use
additive genetic effects estimated with the data that we had available,
excluding the data from the target cohort. This is to ensure that we
have no biases stemming from sample overlap or overfitting40,41. The
effects were meta-analyzed from three summary statistics: (1) 2015
GIANT Consortium data (excluding the Icelandic data); (2) Icelandic
data; and (3) UK Biobank data. The PRS score was created using the
infinitesimal model, with all markers.

GRS associations with diseases and mediation analysis. The GRS
associations and mediation analysis were performed using R version
3.6.3 and the lm and glm functions from the stats package42. The GRS
was used as a predictor for the disease outcomes using logistic
regression implemented in the glm function. In all associations, we
included covariates for sex, year of birth, and 20 genetic principal
components. In themediation analysis, we simply added themeasured
BMI as a covariate to the model, that is, the inverse normal trans-
formed adjusted BMI.

GRS associations with BMI. We computed the association of the
GRSs, the GRSs-with-outliers, and the PRSs with the inverse normal
transformed BMI phenotype. This was done using the lm function in
R using the same covariates as for the disease association. The
reported p values are from a two-sided test. We also computed the
effects with raw BMI data. In order to account for multiple mea-
surements, we simply used the BMI at first visit in the UK data, while
for the Icelandic data, we computed themean of all BMImeasures for
each individual (Supplementary Table 2). These values were used to
scale the effects of the GRS association with diseases, in order to
interpret the ORs as a proportional increase in risk with respect to
one BMI unit increase. This furthermore allowed us to compare the
effects of the different scores in Fig. 4 in a common unit. We also
computed this scale for each sex separately in the UK data (Supple-
mentary Table 5).

GRS associations adjusting for confounders. In the mediation ana-
lysis, we addedmeasurements for four potential confounders, namely
EA,WHR, T2D, and smoking. The EA andWHRphenotypes were added
as simple extra terms to themodel. The smoking adjustment was done
by including three terms, a factor of smoking status, and then a non-
linear function of pack years and years since the individual had stop-
ped smoking (Supplementary Notes). The T2D adjustment was not
done for the T2D association. The combined adjustment included
WHR, EA, and smoking.

Proportion-mediated confidence intervals. In order to create con-
fidence intervals for the proportion of effect attenuated (See Supple-
mentary Table 8), we used the R package mediation43, as has been
previously been done for PRS scores44.

Software
We used R version 3.6.3 for the analysis and visualizations using the
packages tidyverse (v1.3.0), ggsci (v2.9) and ggrepel (v0.8.2). Other
software used was Ensembl version 87, https://www.ensembl.org/
index.htmlGraphtyper version 2, https://github.com/DecodeGenetics/

graphtyper, BOLT-LMM version 2.1, https://data.broadinstitute.org/
alkesgroup/BOLT-LMM/downloads/, IMPUTE2 version 2.3.1, https://
mathgen.stats.ox.ac.uk/impute/impute_v2.html, dbSNP version 140,
http://www.ncbi.nlm.nih.gov/SNP/.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The SNPs used to construct the BMI-GRS scores can be found in the
Supplementary Data 1 file along with information on which are classi-
fied as outliers. The Icelandic individual level data cannot be made
publicly available due to data privacy laws. Thosewishing to access the
Icelandic individual level data should contact the corresponding
author, Kari Stefansson (kari.stefansson@decode.is), to organize a
visit to deCODE Genetics’ facilities in Iceland where they will be given
access to data and computation resources upon arrival to perform
analyses that conform to the permissions of the Icelandic National
Bioethics Committee and according to the rules of the Icelandic Data
Protection Authority. The UK Biobank data were downloaded under
application no. 56270. Individual level genomic and phenotypic data
from the UK Biobank are available to researchers upon application
(https://ukbiobank.ac.uk). Source data are provided as a Source Data
file. Source data are provided with this paper.
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