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Abstract

The objective of this research is to investigate the potential of machine learning (ML)
and deep learning (DL) within computational fluid dynamics (CFD) utilizing high-
performance computing (HPC). Turbulent flow, a complex phenomenon prevalent in
both natural sciences and industrial settings, poses a significant challenge in classical
physics. Given its nonlinear and stochastic nature, DL emerges as a promising
approach for comprehending turbulent flow dynamics.

This PhD Thesis introduces a novel data-driven methodology, leveraging experi-
mental dafasets to assess the efficacy and robustness of sequential DL models in
turbulent flow analysis. The manuscript elaborates on the innovative aspects and
advantages of employing DL within this context. Moreover, it outlines the necessity of
HPC resources for executing cutting-edge DL models alongside the computationally
demanding approaches for model tuning and hyperparameter optimization.

This study thoroughly followed a documented procedure to assess the efficacy of
innovative DL modeling techniques. Initially, measured data obtained from experi-
mental fests was analyzed in depth, establishing their relevance to DL models from a
physical perspective. Subsequently, three DL model architectures— long shortterm
memory (LSTM), gated recurrent unit (GRU), and Transformer models—were system-
atically evaluated, and their outcomes were compared. Furthermore, a case study
was undertaken in the wind energy sector within the realm of energy engineering,
yielding promising results to validate the DL prediction model’s applicability.

In addition, optimization techniques for hyperparameter tuning were explored
utilizing new HPC methodologies (e.g., modular supercomputing architectures and
cutting-edge graphical processing units (GPUs)) to enhance the performance of
the DL models. This optimization process was rigorously executed and assessed
within the setup of a data-driven model capable of training with statistics data of
CFD or EFD approaches, resulting in improved and cutting-edge approaches within
the CFD domains, augmenting findings of physics-driven models with DL models.

The findings of this research demonstrate a noteworthy breakthrough in pre-
dicting turbulent flow behavior, showcasing the effectiveness of the proposed DL
models while not losing sight of leveraging cutting-edge HPC methodologies.






Utdrattur

Markmié& rannséknarinnar er aé kanna métt vélndms (ML) og djipnams (DL) i télulegri
straumfraedi (CFD) med adstod haafkasta tolva (HPC). I18ustreymi, margslungi®
fyrirbseri sem fyrirfinnst i baedi néttirulegum adsteedum og manngerdum idnadi,
er vel pekkt dleyst edlisfraesilegt vidfangsefni. bratt fyrir ad idustreymi sé baedi
6linulegt og slembid fyrirbeeri hefur djapnam gefid géda raun um ad vera feert um
ad segja til um hegdun idustreymis.

| pessari doktorsritgerd er kynnt ny gagnadrifin adferdafraedi, sem notar gégn
fra tilraunum til a® na fram styrkleikum og &reidanleika runubundins djapnéms i
idustreymisgreiningu. Ritgerdin synir fram 4 helstu nyjungar préadar hér og kosti
bess ad nota djipnam & petta vidfangsefni. Einnig er farié i naudsyn pess ad nota
haafkastatélvur til ad beita djapnémsadferdum auk t6lulega krefjandi adferda til aé
stilla likani® af og bestunar & yfirfzeribreytu.

i pessari rannsékn er Iyst nakvaemlega stédludum adferdum um hvernig méa na
fram hamarksvirkni djapnamsadferda. | fyrstu var fari® vandlega yfir tilraunagégn
og nyting peirra til djipnadms i raunverulegum adstaedum skodué ftarlega. Naest eru
brjéar mismunandi djapnéms a&ferdir — minnugt endurkveemnis tauganet (LSTM),
hlid endurtekin eining (GRU) og breytir (Transformer) — sko&adar kerfisbundid i
bremur fésum og nidurstéSur peirra bornar saman. Auk pess var gerd tilviksrannsékn
ar vindorkugeiranum, p.e. orkuverkfraedi, sem syndi nidurstédur sem lofa gééu il
ad sannreyna feerni djGpnéms til ad spa fyrir um framtidarhegdun.

| lokafasa rannséknarinnar var bestunaradferdum fyrir yfirfaeribreytu beitt me
bvi ad nota skjékort (GPU) ar fremstu réé til ad beeta virkni djapnémslikansins.
Bestunin var framkveemd af mikilli ndkvaemni og metin Gt fra gagnadrifnum likénum
sem unnt var ad pjélfa med t6lfreedigdgnum ar tdlulegri straumfraesdi (CFD) og
gégnum r tilraunum. Pad leiddi til baettra og nyrra framdrskarandi adferda i
tdlulegri straumfraedi par sem nidurstddur médela byggdum & edlifraesi eru baett
med djdpnami.

Nidurstédur rannséknarverkefnisins eru bylting i aé spé fyrir um heg&un i8u-
streymis og syna klarlega virkni djapnéms pegar fremstu héafkastatélvuadferdum er
beitt.
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1 Introduction

1.1 Motivation

In fluid dynamics, alongside restricted analytical techniques, two approaches,
Computational Fluid Dynamics (CFD) and Experimental Fluid Dynamics (EFD) meth-
ods, are employed to address scientific and engineering problems [1]. EFD is
constrained by both the scale of the problem and its associated costs (e.g., exper-
imental setup, wind tunnels, measurement devices, materials, security concerns,
etc.), limiting its applicability across a wide range of scenarios [2]. Conversely,
CFD’s effectiveness enables understanding when increasing the problem scale and
necessitates substantial computing resources [3]. As problem size increases, CFD
encounters computational challenges. Additionally, validating CFD simulations
requires comparison with experimental data, presenting another hurdle. Further-
more, proficiency in theoretical aspects of a problem is essential for utilizing CFD
effectively.

Turbulent flow, a complex phenomenon in fluid dynamics, remains a challenge
in classical physics [4]. Besides its randomness and nonlinear behavior, turbulent
flow is prevalent in various natural sciences and industrial settings, indicating its
widespread occurrence [1]. While EFD can address turbulent flow within a limited
range, CFD offers three main categories for tackling turbulent flow problems:
Reynolds-Averaged Navier-Stokes (RANS) [1], Large Eddy Simulation (LES) [5],
and DNS [6]. RANS provides an average solution that is most applicable in the
industry because it is the least computationally expensive but also the least accurate.
LES creates a solution with better accuracy than RANS and its computing cost is
higher than RANS and lower than DNS. DNS is the most expensive computing
solution and provides the most exact solution. The continuous improvement and
availability of High-Performance Computing (HPC) systems enhance the feasibility
of more accurate simulations, yet many CFD problems, especially those involving
intricate flow structures, remain computationally challenging [7, 8]. Additionally,
empirical data validation is crucial in numerous CFD applications, posing another
limitation [8].

These limitations raise the necessity for reliable tools to address such challenges
and enable the analysis of turbulent flows across various scales. In recent years,
Machine Learning (ML) and DL have demonstrated significant potential in studying
nonlinear phenomena such as observed in fluid flow.

The subject of this study is therefore evaluating hybrid data-driven models of DL
with the application of HPC for turbulent flow analysis, focusing on the simulation and
prediction of future periods of turbulent flow. The primary concept of turbulent flow is



1 Introduction

that it is composed of different sizes of eddies, a bunch of coherent molecules, which
Richardson summarized in 1922 [?]. The eddies have various sizes, and this scale
distinction has complicated the understanding of turbulence. G.I. Taylor, in 1935,
established a fundamental statistical theory of turbulence [10]. A. N. Kolmogorov in
1941 proposed his hypotheses (K41) regarding the structure of turbulent flow [11].
Kolmogorov's hypotheses only determine the universal equilibrium range, composed
of the dissipation and inertial ranges [1]. This thesis is, therefore, motivated by
the fact that there is no comprehensive analytical understanding of turbulent flow,
particularly on a large scale. Thus, predicting turbulent flow in the upcoming period
hinges on understanding its characteristics, which is a complex task. Evaluating DL
models within hybrid data-driven models could facilitate the analysis of turbulent
flow and potentially serve as helpful tools for CFD applications. Two key lessons
have been learned regarding large-scale structures: firstly, turbulence can manifest
a broader spectrum of behaviors beyond turbulence typically accounted for by
turbulence viscosity; secondly, turbulence operates non-locally in space and time [1].
Hence, turbulence possesses a prolonged memory, with its behavior at a given point
being significantly influenced by flow conditions far removed from that point [1].

Similarly, there is no established theoretical framework for large-scale turbulent
flow, and recent experiments challenge traditional assumptions regarding velocity
difference statistics within the inertial range [12]. This study proposes an approach
based on Lagrangian Particle Tracking (LPT) [13], dependent on the particle Stokes
number(Stokes Number (St)), which is defined in the paper | and subsection
2.3, to investigate turbulent flow properties. The research also highlights the
potential development of this approach in Multiphase Turbulence Flow (MTF) T,
incorporating particles, droplets, and bubbles [14]. Due to the lack of understanding
of large eddies in turbulent flow, knowledge gaps persist regarding MTF [15, 1¢].
Additionally, the impact of gravity in MTF has not been thoroughly explored in CFD,
with recent data suggesting caution when generalizing findings from experiments
conducted in zero gravity environments [17]. Moreover, it is noted that the dynamics
of finite-size particles in MTF cannot be solely determined by their response time [17].

Various methods have been developed to address the above-mentioned limita-
tions to capture the key characteristics of turbulent flow through Reduced-Order
Model (ROM). Prominent techniques such as Proper Orthogonal Decomposi-
tion (POD), Dynamical Mode Decomposition (DMD), and Koopman analyses are
employed to construct ROMs [18, 19]. Additionally, within CFD, essential tasks
include dimensionality reduction, feature extraction, super-resolution, application
of ROMs, turbulence closure, shape optimization, and flow control [20]. However,
these techniques tend to be intricate when dealing with real-scale and extensive
fluid dynamics problems.

The thesis is further motivated by the fact that DL has demonstrated impressive
proficiency in forecasting nonlinear and stochastic phenomena. Among the various
DL architectures, the sequential model stands out (i.e., for investigating time series)
for its potential in turbulent studies and is primarily researched in this thesis. As
previously mentioned, turbulent flow operates on a large scale, affecting points both

TParticle-laden turbulence (PLT)
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spatially and temporally, with each point influenced by flow conditions distant from
it. Additionally, the Lagrangian framework [3, 2] establishes a link between time and
local properties in fluid dynamics. Developing a DL model that incorporates both
the Lagrangian framework and memory of turbulent flow could provide a foundation
for predicting emerging turbulent flow features.

In the domain of fluid dynamics, the Lagrangian framework delineates spatial and
temporal functionalities. One can employ a DL model trained solely on temporal,
spatial features, or both within this framework. This approach has been adopted
to construct a model capable of predicting turbulent flow without reliance on flow
characteristic attributes like Re, St, strain mean rate, and gravity.

Employing a DL model trained on a turbulent flow dataset necessitates HPC
resources. Moreover, HPO [21] was utilized to refine the DL models. Within the
EuroCC 1 and 2 projects 2 and the National Competence Centre (NCC) for HPC
and Artificial Infelligence (Al) of Iceland 2, the present research gained access
to machines at the Juelich Supercomputing Centre (J]SC) #. Therefore, the thesis
findings could use cutting-edge HPC research resources such as DEEP [22] and
JUWELS [23]. Those HPC systems are based on the innovative Modular Supercom-
puting Architecture (MSA) approach [24].

Utilizing a data-driven DL model necessitates a suitable dataset, particularly in

fluid dynamics, to ensure the reliability and applicability of the proposed model
in similar conditions and future studies. This thesis used a dataset from strained
turbulence flow derived from a laboratory experiment, employing the LPT technique
for flow feature extraction. This approach ensures that the proposed DL data-
driven methods are founded on dependable experimental data, rendering them
valid. Strained turbulence flow finds relevance across various applications. The
distribution of pollutants in the atmosphere, the formation of rain in the cloud [25],
and the spread of sediments in the ocean and rivers are a few instances [26]. Many
industrial applications are related, including internal engine combustion, particle
interaction in a mixing chamber [27], and leading-edge [28] erosion in compressors
and turbines [29, 30]. The external flow over an airfoil [31, 32] and internal flow in
a changeable cross-section pipe [33, 34] are instances of straining turbulent flow
[35, 3¢].
Given the above, it is evident that there is a need for a data-driven DL approach
through which integrating physical properties of turbulent flow and Al (i.e., DL and
ML methods) capability can be made possible.

The proposed approach would provide the necessary flexibility through which:

. Dataset can be easily stored, cleaned, manipulated, and analyzed.
. Prospective prediction models can be developed, tested, and improved.
. Data must be valid in fluid dynamics.

. The DL model is flexible for different datasets with different inherent features
and characteristics.

2EuroCC Access Webpage: https://www.eurocc-access.eu/
3NCC Webpage: https://www.ihpc.is/
4]SC Webpage: https://www.fzjuelich.de/en



1 Introduction

. We foresee that a wide variety of other applications can use the findings of
this thesis.

. DL and HPC are both essential components for implementing the current
approach and could significantly benefit CFD applications.



1.2 Thesis Objectives

1.2 Thesis Objectives

The overall objective of this thesis is to investigate the integration of cutting-edge
HPC resources and innovative DL algorithms for CFD. However, achieving this
integration requires extensive preparatory work, including dataset analysis for a
data-driven approach, acquiring the necessary skills, techniques, and tools, and
establishing suitable working environments. The ultimate aim of this research is to
develop and validate a data-driven approach for analyzing and predicting turbulent
flow in fluid dynamics, along with constructing DL-based models optimized for HPC
resources utilization. To assess progress towards this overall thesis objective, a set
of Thesis Objective (TO)s are outlined below.

TO1 — Constructing a dataset sourced from a credible experiment involving tur-
bulent flow and describing the linkage between the Lagrangian framework
and the architecture of sequential DL models.

TO2 — To develop an innovative data-driven approach using fluid dynamics data,
enabling individual prediction of flow components (x, y, and z) as indepen-
dent entities.

TO3 — Evaluating diverse data-driven DL models and analyzing their strengths and
weaknesses within the proposed methodology, particularly emphasize on
utilizing HPC resources.

TO4 — Employing the current state-of-the-art Transformer model within the con-
text of turbulent flow and assessing its performance alongside pioneering
sequential DL models such as LSTM variants.

TO5 — Demonstrating the practical engineering application of integrating fun-
damental fluid dynamics studies with DL models in sustainable energy
engineering, focussing on forecasting wind power production.

TO6 — Enhancing the data-driven model by increasing the volume of input data
to assess the performance of DL models, coupled with HPO techniques in
the context of HPC.

The diagram presented in Figure 1.1 delineates the chronological progression
of the TOs from the commencement of the Ph.D. research to its conclusion. It show-
cases the sequential milestones undertaken to accomplish each TO, encompassing
essential physics of the fluids, techniques, HPC methods, and data employed
throughout the process.

The interconnection among the TOs is depicted by the red arrows, symbolizing
the direct transfer of knowledge acquired in one phase to the subsequent step.

Finally, the flow diagram in Figure 1.1 offers a visual depiction of the TOs
addressed in each of the publications outlined in Chapter 4.
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1.3 Outline

This thesis adopts a cumulative format, emphasizing the achievement of the TOs
via the publications listed in the "List of Publications”. A comprehensive overview
of the organization of this manuscript is available in Section 1.3.1, Subsequently,
Section 1.3.2 presents a compilation of primary publications associated with the
objectives outlined in this Thesis. Chapter 4 offers a detailed summary of these
publications. Additional publications, not directly necessary but still somewhat
relevant to the work undertaken by the thesis author or where their involvement was
marginal, are listed in the "Other Publications”.

1.3.1 Thesis Structure

This thesis is organised as follows:

. Chapter 1 The introduction outlines the scope of the thesis, establishes the
Thesis Objectives, and elucidates the connection between these objectives
and the published works referenced in subsequent sections of the thesis.

. Chapter 2 Offers insights info the foundational topics upon which the work
detailed in this thesis is constructed. This information also contributes to
the broader knowledge accumulated during the course of TO1 and TO6
endeavors.

. Chapter 3 Reviews related work approaches and research showcasing analo-
gous approaches to those expounded upon in this thesis and delineates the
current state-of-the-art technology and methodologies within the field.

. Chapter 4 presents comprehensive explanations of the conference and journal
publications.

. Chapter 5 provides a summary of the thesis and offers a concise overview of
potential future endeavors.

. Subsequently, the publications enumerated in Section 1.3.2 are presented in
their entirety.

. The thesis concludes with the bibliography Section, which catalogs all refer-
enced literature.

1.3.2 Publications

. Paper |
R. Hassanian, A. Helgadéttir, L. Bouhlali, M. Riedel, ‘An Experiment Gener-
ates a Specified Mean Strained Rate Turbulent Flow: Dynamics of Particles’,
in AIP Physics of Fluids, vol. 35, no. 1, 2023 https://doi.org/10.1063/
5.0134306.


https://doi.org/10.1063/5.0134306
https://doi.org/10.1063/5.0134306
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. Paper Il
R. Hassanian, M. Riedel, L. Bouhlali, ‘The capability of recurrent neural
networks to predict turbulence flow via spatiotemporal features’, in IEEE 10th
Jubilee International Conference on Computational Cybernetics and Cyber-
Medical Systems (ICCC), Reykjavik, Iceland, July, 2022, pp. 335—338 https:
//doi.org/10.1109/ICCC202255925.2022.9922754.

. Paper Il
R. Hassanian, A. Helgadéttir, M. Riedel, ‘Deep Learning Forecasts a Strained
Turbulent Flow Velocity Field in Temporal Lagrangian Framework: Comparison
of LSTM and GRU’, in MDPI Fluids, vol. 7, no. 11, 2022, https://doi.org/
10.3390/f1uids7110344.

. Paper IV

R. Hassanian, H. Myneni, A. Helgadéttir, M. Riedel, ‘Deciphering the dy-
namics of distorted turbulent flows: Lagrangian particle tracking and chaos
prediction through transformer-based deep learning models’, in AIP Physics
of Fluids, vol. 35, no. 7, 2023, https://doi.org/10.1063/5.0157897.

. Paper V

R. Hassanian, A. Shahinfar, A. Helgadéttir, M. Riedel, ‘Optimizing Wind
Energy Production: Leveraging Deep Learning Models Informed with On-
Site Data and Assessing Scalability through HPC’, in IEEE Hungary Section-
Obuda Acta Polytechnica Hungarica Journal, vol. 21, no. 9, 2024, https:
//doi.org/10.12700/APH.21.9.2024.9.4.

. Paper VI

R. Hassanian, M. Aach, A. Lintermann, A. Helgadéttir, M. Riedel, ‘Turbulent
Flow Prediction-Simulation: Strained flow with Initial Isotropic Condition
Using a GRU Model Trained by an Experimental Lagrangian Framework, with
Emphasis on Hyperparameter Optimization’, in MDPI Fluids, vol. 9, no. 4:
84, 2024, https://doi.org/10.3390/f1uids9040084.
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1.4 Contributions

As mentioned in Section 1.2, each publication relates directly o one or more TOs
as shown in Table 1.1. The central aspect of TO1 which is reported in Paper |
is o generate a reliable dataset in the fluid dynamics community to be used in
a DL model with utilizing HPC. Therefore, TO1 focuses on preprocessing data
from an experiment and extracting the required information that could be used.
TO2 is a response to questions on how to find a connection between a data-
driven DL architecture and the physical properties of turbulent flow. The core idea is
established based on the Lagrangian framework, which connects the spatiotemporal
feature, and it is published in Paper Il. To assess the optimum model among DL
sequential prediction models, in the context of performance and accuracy, the TO3
enhances the strained turbulent flow prediction model with two most applicable
DL sequential networks and compares their approaches and results in Paper llI.
To investigate the other DL models that could be employed in fluid dynamics and
prove their capability, in TO4, an innovative attention mechanism integrated in
cutting-edge DL models (i.e., transformer) are examined and introduced in Paper
IV. TO5 proposes and displays a use-case as an engineering application of the
DL models that are successful in the fluid dynamics assessment in previous TOs
and illustrates in Paper V. The study takes another step to enhance the DL models
in a data-driven approach to predict the turbulent flow features combined with
spatial and temporal features in TO6, which had more extensive data and uses
hyperparameter tuning to optimize the model performance as reported in Paper
VL. The relation between the publications and the TOs is presented in Table 1.1. In
the remainder of this Section, an in-depth discussion of the main contributions of
this thesis is provided, with emphasis on how the TOs were achieved and how they
relate to the published material. Additionally, the thesis author’s contributions to
each publication are highlighted.

In order to enhance the DL and HPC applications in the fluid dynamics area,
datasets are necessary based on the data-driven approach. Most of the flows
are turbulent, and turbulent flow is still complex and has not been understood
comprehensively. Therefore, guiding the application of DL and HPC in this way

Table 1.1. Relation of publications to the TOs.

Paper | Paper Il Paperlll PaperlV PaperV Paper VI

TO1 X

TO2 X X

TO3 X X

TO4 X X

TO5 X

TO6 X X X
Transferable X X X X X X
Knowledge




1 Introduction

to add an aid technique helping in turbulence study was chosen. Data from a
laboratory experiment from the author’s research is employed to follow up on that
goal. The dataset was generated from strained turbulent flow with a particular range
of Reynolds number (Re) [2] and specific mean strain rates. The experiment used a
tracer particle to seed the flow and, with laser and high-speed camera, recorded the
particle movement, which presented the flow streamline based on the Stokes number
(St) [2] measurement. The experiment employed the Lagrangian particle tracking
technique to extract the turbulent flow feature. The flow was three-dimensional, and
the measurements were two-dimensional. The study focused on the velocity of the
turbulent flow, which is fundamentally assumed to carry most of the flow features.
TO1 established the required data for next TOs. The TO1 includes processing
extensive measurement data to transfer and convert to applicable forms and files.

Utilizing a DL model for turbulent features needs to build a connection between
the physics of the phenomenon and the DL architectures. In Fluid dynamics, the
Lagrangian framework defines the flow properties as a function of time. Furthermore,
the location is also connected to the time. This demonstration of the turbulent feature
was an excellent design to apply sequential DL models to predict the flow features.
Therefore, the recorded data from TO1 has been used to train a sequential model as
LSTM model and its variants and test its prediction. The first phase of this examination,
which was performed in TO2, resulted in an impressive alignment between the
predicted velocity of the flow and the measured velocity, exhibiting remarkable
accuracy. Notably, the model’s training relied solely on velocity time series data,
devoid of any flow characterization information, enhancing its superiority within this
domain. However, it was applied to a small dataset to assess this approach. The
proposed approach is developed and leveraged in the next TOs.

Based on the literature, LSTM variants from Recurrent Neural Network (RNN) are
excellent options for predicting sequential properties. In spite of the accuracy of the
DL model prediction for turbulent flow in the present study, the HPC performance
needs to be examined. Therefore, in TO3 the data of the strained turbulent flow was
used to train and predict the following period of the velocity with LSTM and GRU
with different training and test ratios and the model performance was measured.
The outcome of the TO3 presents a perspective to select the proper DL model in
fluid dynamics applications.

Among the DL models, the transformer incorporating from the attention mecha-
nism is state of the art and, at the time of the current study, had not been examined
in fluid dynamics, particularly in a turbulent regime in the data-driven approach.
Therefore, TO4 presents a novel application of the transformer model to predict the
turbulent flow velocity with remarkable accuracy that was observed in the test. The
outcome of TO4 opens a window to develop and leverage transformer applications
in the fluid dynamics area.

TOS5 studies an engineering application of the achievement in TO1 to TO4. In
wind energy production, the prediction of power production, which is a function
of the wind speed and technical parameters of the wind turbine and land surface
type, is relevant to the wake loss effect [37, 38]. Thus, obtaining a prediction
model of the wind speed with nonlinear and randomness behavior could lead to
great development in wind power prediction. Smart power production will assist in
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1.4 Contributions

development of a smart power grid and cities. TO5 applied GRU model trained
with wind velocity from the Icelandic Meteorological Office (IMO) to predict the
following period of the wind speed. The study proposed the idea to split the data
seasonally and predict the wind speed in the seasonal category. The result was
successful and had remarkable accuracy, and it can be developed for practical
application in the industry. Also, the TO5 proposes the local HPC cluster in wind
farm supplied by the wind farm production, making the clean and green resources
for HPC applications.

The employed dataset in the present work is obtained from strained turbulent
flow seeded by tracer particles and LPT used to extract the flow features. In the
examination among TO1 to TO5 the DL only trained with time series of the velocity
and was not informed about the turbulence intensity, strain rate, and particle size—
density. This shows that the model only relies on the time series of the velocity. In
order to assess the model with larger data and more information, the location of the
particles corresponding to the velocity is also trained to help the model predict the
velocity. A GRU model is used and trained in the spatial and temporal approach.
The results of this design are presented in TO6. Furthermore, HPO on cutting-edge
HPC resources was used to improve the prediction model’s performance. The
author’s contribution to the published papers in his PhD thesis involves writing
the original draft, conceptualizing, developing methodology, developing software,
validating, formal analysis, investigation, visualizing, and corresponding author.

1






2 Background

2.1 Deep Learning Models for Sequential Datasets

DL, a subset of both ML and more broadly, Al, has emerged as a cornerstone
technology in today’s Fourth Industrial Revolution (4IR or Industry 4.0) [39]. Lever-
aging its ability to extract insights from data, DL, rooted in artificial neural network
(ANN) principles [39], has captured widespread attention across scientific and
engineering domains and finds extensive utility in sectors such as healthcare, visual
recognition, text analytics, cybersecurity, among others. Yet, crafting effective DL
models presents a challenge, given the ever-evolving DL model architectural design
complexities and capabilities and nuances of real-world problems and data. Further-
more, the opacity inherent in DL methodologies, lacking transparent comprehension,
can impede progress and standardization efforts, rendering them akin to black-box
systems. That is particularly challenging to use in physics applications that are often
driven by causality and based on physical laws using often fully understandable
numerical methods.

Still, DL methodologies have experienced a remarkable surge in performance
across a broad spectrum of applications, also within physics and engineering,
where they excel at unraveling intricate structures within high-dimensional datasets.
Consequently, these techniques wield significant potential in constructing intelligent,
data-centric systems tailored to contemporary requirements, owing to their adeptness
at extracting insights from historical data (i.e., DL models can perform feature
learning apposed to traditional ML models were inputs often had to be manually
feature engineered). As a result, DL revolutionizes both the global landscape and
individuals’ daily routines through its capacity for learning. Given its intersection
with Al, ML, and data science featuring advanced analytics with enormous needs of
computing capacity and capability, DL technology holds profound relevance within
the realm of computer science, particularly within the context of today’s intelligent
computing models [39].

An increasingly favored neural network model, the RNN, specializes in handling
sequential or time-series data. It operates by utilizing the output from the preceding
step (.e.g, time step) as input for the current phase [40, 41]. RNN derive their
learning from training input, but what sets them apart is their “memory,” enabling
them to influence current input and output by leveraging information from past
inputs. The output of an RNN depends on previous elements within the sequence.
However, RNN faces the challenge of vanishing gradients [42], complicating the
learning process for lengthy data sequences.

LSTM stands out as a favored RNN architecture employing specialized units to
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2 Background

address the vanishing gradient issue, as pioneered by Hochreiter et al. [42]. In an
LSTM unit, a memory cell possesses the ability to retain data for extended durations,
with the flow of information regulated by three gates (see Figure 2.1).
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Figure 2.1. The LSTM—model architecture [43].

For example, the ‘'Forget Gate’ decides which information from the prior state cell
to retain and what to discard as obsolete. Meanwhile, the ‘Input Gate’ governs the
entry of information info the cell state, and the ‘Output Gate’ dictates and manages
the outputs. Addressing the challenges inherent in training recurrent networks, the
LSTM network is widely regarded as one of the most effective RNN architectures.
They are also known DL models that handle certain missing data in sequence data
relatively well. Given the many gates and corresponding weight matrices to train,
LSTM training is computationally expensive.

GRU emerges as another widely adopted variation of the RNN architecture,
employing gating mechanisms to regulate the flow of information among cells within
the neural network, as pioneered by Cho et al. [44]. The GRU bears a resemblance
to an LSTM but boasts fewer parameters. It incorporates a reset gate and an update
gate but lacks the output gate, distinguishing it from the LSTM structure.

Therefore, the primary contrast lies in the number of gates: a GRU features
two (reset and update gates), while an LSTM incorporates three (input, output, and
forget gates). The streamlined architecture of the GRU enables it to effectively
capture dependencies within extensive data sequences while adaptively preserving
information from earlier segments. Consequently, the GRU serves as a more
efficient variant, often delivering comparable performance with significantly faster
computational processing and learning [45]. The GRU architecture is illustrated in
Figure 2.2 and is usually thus a bit less computationally expensive to train.

Even though GRUs have demonstrated improved performance on particular
smaller and less frequent datasets [45, 46]. Both versions of RNN have demonstrated
their effectiveness in generating results in a wide variety of scientific and engineering
applications.

More recently, the transformer is a DL network structured with an encoder-
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Figure 2.2. The GRU—model architecture [43].

X1

decoder architecture [47]. Input data is processed through the encoder layers,
and the decoder generates the resulting output [48]. This process involves several
steps. The transformer architecture works effectively if the number of encoder
layers precisely matches the number of decoder layers (see Figure 2.3). Positional
embedding [49] is introduced into the input vectors to encode both the sequence
and positional information within the input data. These positional embedded vectors
serve as the input for the initial encoding layer, and the output from each encoder
layer serves as the input for the subsequent layers.

As shown in Figure 2.3 each encoder layer is structured into two sublayers.
Initially, input data traverse through a multi-head attention sublayer within the first
encoder. This sublayer considers dependencies among all inputs to construct weight
matrices. Subsequently, the outputs from the multi-head attention sublayer flow into
the feed-forward sublayer as shown in Figure 2.3. An intermediate Add&Norm
sublayer resides between these two, adding the inputs of the multi-head sublayer to
its original input and normalizing the result.

Within the feed-forward sublayer, data is processed independently at each
position, allowing for parallel and autonomous processing. After this, the outputs
from the feed-forward sublayer undergo the Add&Norm intermediate sublayer in
the same manner. Thus, data is progressively processed through each encoder
layer before proceeding to the subsequent layers.

The quantity of encoder layers is not bound by fixed or magical numbers [49];
rather, it needs to be carefully selected and tailored for each specific application
during the DL model architecture design phase. In the inception of the Trans-
former architecture [49], for instance, it was initially structured with merely six
encoder-decoder layers, showcasing significant accomplishments. This aspect of
the Transformer architecture highlights its impressive ability o address sequential
data challenges efficiently with fewer layers. Decreasing the number of layers in
DL models has the potential to reduce computational complexity in processing, but
also enables a better parallel computing approach.

After traversing all encoder layers, the data proceeds to the decoder layers for
output embedding. The decoder layer comprises two sublayers: multi-head and feed-
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Figure 2.3. The Transformer—model architecture [49].

forward, akin to those in the encoder layer, positioned after a masked sublayer. The
initial sublayer in the decoder, known as the masked multi-head sublayer, establishes
a masking layer for the embedded outputs, ensuring dependency only on preceding
data. This masking prevents the influence of subsequent data sequences.

Upon passing through the Add&Norm intermediate sublayer, the output from the
masked multi-head sublayer flows through the multi-head sublayer. During training,
three weight matrices—Query, Key, and Value [49]—are generated in the encoding
layers. While the Key and Value matrices from the preceding encoder feed directly
into the multi-head sublayers of decoder layers, the Query matrix for each decoder
layer originates from the earlier masked sublayer.

Subsequent steps in the decoder layers mirror those in the encoder layers.
Eventually, the output progresses through linear and softmax layers in the final
decoder layer. The linear layer, a fully connected neural network, transforms the
vector produced by the decoder stack into a larger vector known as a logit vector.
Then, the softmax function converts scores from the linear vector into probabilities,
ensuring all are positive and sum up fo 1.0. The output for the current time step is
selected based on the cell with the highest probability.
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2.2 High-Performance Computing and Parallel Com-
puting

Over the past few decades, computational technology has made significant ad-
vancement that favour the use of ML and DL models and enlarging their success
in a broader set of applications., with even commonplace computers now capable
of executing tens of billions of operations. Specialized machines designed for
scientific endeavors further amplify this capability. The discipline that delves into
the workings of such disruptive machines and their application to research and en-
gineering problems is known as HPC or supercomputing. The distinction between
HPC and regular computing relies on the fact that HPC is a research discipline on
its own, always striving for new architectures and innovative methods incorporating
groundbreaking new processing capabilities (e.g., accelerators) at an unprece-
dented scale. The augmented computational capability of supercomputers largely
stems from conducting operations in exceedingly brief intervals and leveraging
numerous computing units to perform operations simultaneously, known also as
parallel processing or parallel computing. [50].

As a relatively new research area to engage in solutions facing substantial
heterogeneity in user needs, the MSA integrates compute modules with varying
hardware and performance characteristics into a unified heterogeneous system.
Each module operates as a parallel, clustered system, potentially of considerable size,
while each module focuses on specific needs (e.g., offering cutting-edge Central
Processing Unit (CPU) with high single-thread performance or offering a high number
of accelerators like Graphics Processing Unit (GPU)s or neuromorphic devices in
the future). These module-specific interconnects are linked through a federated
network. This configuration significantly benefits heterogeneous applications and
workflows, as each component can run on the most suitable system, enhancing both
time to solution and energy efficiency while offering still users a broad spectrum of
computing solutions. Consequently, it is ideal for supercomputer centers managing
mixed heterogeneous applications, offering higher throughput and better energy
efficiency. Hence, the MSA provides system operators with valuable flexibility,
enabling them to tailor the modules and their sizes to the center’s specific portfolio
and usage requirements.

To provide an example, the JUWELS system employs a MSA. Its JUWELS Cluster
Module, a BullSequana X1000 supercomputer, follows a scalable hierarchical cell-
based design. The cluster comprises ten Sequana X1000 cells: nine cells with
279 compute nodes each in the CPU-only partition and a tenth cell with 48 GPU-
accelerated compute nodes. The CPU-only partition includes 2,511 compute nodes,
each equipped with two Intel Xeon Skylake Platinum 8168 CPUs, offering 24 cores
each and a base frequency of 2.7 GHz. The GPU partition features 56 compute
nodes based on the BullSequana X1125 accelerator blade, with each node housing
two Intel Xeon Gold 6148 processors (20 cores each) and 192 GB of main memory
(cf. Figure 2.4) [23]. Hence, the Cluster Module offers cutting-edge CPUs for
processing-intensive computing with high single-thread performance.

In contract, the JUWELS Booster is a BullSequana XH2000 supercomputer
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Figure 2.4. Annotated block diagrams of JUWELS compute nodes [51].

composed of 936 X2415 compute blades. Each blade features a single node with
512 GB of memory and two AMD EPYC 7042 processors, each with a base frequency
of 2.8 GHz and 24 cores, matching the core count of the Cluster partition for user
convenience. Despite the robust capabilities of these processors, the standout
feature of the JUWELS Booster nodes is their GPUs. Each compute node houses
four NVIDIA Ampere A100 GPUs in the SXM4 form factor, each with 6912 CUDA
cores and 40 GB of HBM2 memory. These GPUs communicate with each other
bi-directionally at 200 GB/s via an NVLink3 bus. Another significant difference
between the GPU nodes in the Cluster partition and those in the Booster is the
interconnect. The complete topology of the nodes is illustrated in Figure 2.5 [23].
To sum up, the Booster Module is specifically designed for GPU-intensive workloads
such as the training of ML and DL models relevant to this thesis.

A substantial element of research in HPC is parallelism, which poses challenges
for both computer architecture hardware vendors, HPC systems designers, and
software developers, as efficient data and message transfer between different parts
of the computer is essential. Specific programming inferfaces, such as Message
Passing Interface (MPI) and OpenMP, facilitate this process [50]. It is important to
note that running a parallelizable program across n. computing units rarely results
in an n. times speedup compared to running it on just one unit. This limitation
arises from two primary factors.

Firstly, most algorithms necessitate data and message among computing units,
which can impede calculations as the devices responsible for this transfer operate
at a slower pace than the computing units themselves, especially at a high rate of
scalability of applications covering many different compute nodes and transfers

18



2.2 High-Performance Computing and Parallel Computing

4 Switch
@3200MT/s T' I l 32GB/s PCle Gen4 Switcl

204 GB/s *x16

EPYC 7042

I Infinity fabric: 288 GB/s NVIink3: 50 GB/s per drawn link

A100
EPYC 7042

DDR4 S

@3200MT/s
200 GB/s “m 32 GB/= PEX88096
[ omam | pciecenawis PoiGensswite

x16

x16

faY
=". .

Figure 2.5. JUWELS Booster compute node [51].

involving thus thousands of processors. Secondly, algorithms often cannot be fully
parallelized; only certain portions can be shared among multiple computing units,
while the remainder remains inherently serial or must be executed with a core
count lower than the available number. Despite these challenges, high-performance
machines have become indispensable in contemporary scientific endeavors [50]
and are able to overcome the limits (e.g., processing power, memory capacity,
storage capability, etc.) in using just one workstation client or one desktop pc for
solving scientific and engineering problems.

DL models are characterized by a multitude of parameters, and trained weights,
which are refined during the training process. Additionally, each network incor-
porates additional hyperparameters (e.g., learning rate of optimization process,
number of neurons in layer, efc.) that necessitate user configuration. For instance,
adjusting the learning rate and batch size is essential to ensure the model converges
to a local optimum of the training loss. However, simply minimizing the training
loss to set these hyperparameters can lead to overfitting of the training data.

One DL model is defined by millions of parameters that need to be learned from
large amounts of data. This process is computationally intensive and time-consuming.
Often, the dataset is too large to be stored on a single machine, making it crucial to
develop parallel and distributed algorithms to significantly reduce training times
(e.g., distributed deep learning training [21]). When it is not feasible to store the
entire dataset or model on a single machine, the data or model must be distributed
across multiple machines [52]:

. Data Parallelism: The data is distributed across multiple machines. This
approach is useful when the dataset is too large for a single machine or to
achieve faster training by processing data in parallel.

. Model Parallelism: If the model is too large to fit info a single machine,
it can be split across multiple machines. For instance, each layer of the
model can be assigned to a different machine, and forward and backward
propagation involve sequential communication of outputs between machines.
Model parallelism is primarily used when the model size exceeds the capacity
of a single machine, rather than to accelerate training.
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Hyperparameters of DL models are often manually tuned through a trial-and-error
approach, constituting a time-consuming and challenging aspect of ML workflows.
Moreover, most hyperparameters have no straightforward rules of thumb, often
requiring expert knowledge or a manually repeated random selection to determine
sensible values.

HPO algorithms offer a systematic and automated solution to this DL modeling
challenge [53], framing it as a global optimization problem. Typically, the default
objective is to minimize error on a hold-out validation dataset, though alternative
business metrics can also be considered. Furthermore, secondary objectives such
as training time, inference time, or model complexity can be incorporated or
constrained within the optimization process [54]. HPO thus enables an intelligent
approach to reduce the search space, finding the optimal parameters for a specific
DL modeling approach.
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2.3 Turbulent flow in fluid dynamics

2.3 Turbulent flow in fluid dynamics

A Lagrangian framework is an exploration of fluid motion that keeps track of the
velocity vector and displacement vector of each flow point, called a fluid particle [1,

]. A fluid particle is a point that moves with the local fluid velocity, and, therefore,
it identifies the position at the time ¢ of a fluid particle [3]. The definition of a fluid
particle arithmetically is [1]:

Xi in(f,xi,o)y (1)
Ui = Ui(t,x1(t,x1,0),%2(t,%2,0),x3(1,X3,0)), (2)

where the fluid particle position and velocity in 3D coordinates are determined by
notations 1 and 2, respectively, x is the position, U is the velocity, 7 is the time, and
i specifies the vector component.

To illustrate the Lagrangian framework conceptually, tracer particles are seeded
into the fluid via experimental methods. These particles navigate through the fluid,
influenced by its inherent characteristics such as turbulence intensity, deformation,
and boundary conditions. By monitoring the trajectory of these particles within
the fluid, it becomes possible to extract key properties of the fluid, including its
instantaneous velocity, which is called Lagrangian tracking particle [3]. Thus, here
the above-mentioned characterizations are described:

. The Re is the ratio of inertial forces to viscous forces. It serves as a dimen-
sionless parameter for classifying fluid regimes, particularly where viscosity
significantly influences velocity or flow patterns. In turbulent flow, character-
ized by high Re, inertial forces prevail [3]:

Re=PYL, (3)
u

where p is the fluid’s density, V is the flow velocity, L is the characteristic
length and p is the fluid dynamic viscosity.

. The St is characterizing the behavior of particles suspended in a fluid flow. The
St significantly greater than 1 (St > 1) describes particles that are unaffected
by a fluid velocity change and continue their original trajectory; if (St < 1),
the particle will follow the fluid’s local velocity and it is defined [55]:

S =1,/ 0, (4)

where T, is the Stokes’ relaxation time and 7 is the characteristic time of the
flow. Stokes’ relaxation time 7, is in turn calculated by equation 5 [55]:

Tp = ppdi/lg.ufv (5)

where p,, is the particle density, d,, is a spherical particle diameter, and pif is
the dynamic fluid viscosity.
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. In turbulent flow undergoing an axis-symmetric expansion (deformation) in
the direction of Y, the mean flow field is described by [5¢]:

<U> = (SX, *Zsy,SZ), (6)

. . . ol
where x, y and z are the location and S is the mean strain rate S = \%(SijS[j)f

. Sij = %(gg; + %) is the mean rate of strain tensor with i = 1,2,3 and
j=1,23.""

As previously mentioned, there remains a lack of experimentally validated
hypotheses for anisotropic turbulent flow, particularly concerning large scales [57, 4].
Recent observations reveal discrepancies between existing theories and experimental
findings [12]. The experiment finding shows that the measured second-order velocity
difference statistics become independent of the Reynolds number, suggesting a
universal behavior of decaying turbulence [12]. Utilizing data from experiments,
excluding unproven theories, and training a DL model to forecast turbulent flow
without informing it of turbulence characteristics—such as turbulence intensity, mean
strain rate, and the as-of-yet-unknown effects of gravity [17]—represents a significant
advancement in turbulent flow research. This approach holds broad applicability in
both industrial and natural contexts. This thesis, therefore, is partly motivated by
that fact, and thus, experiments are also incorporated into the thesis studies.
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2.4 Data-Driven DL Model for Turbulent Flow

2.4 Data-Driven DL Model for Turbulent Flow

According to the Lagrangian perspective, time series data for fluid particles captures
their position and velocity at specific points in time. Specifically, in turbulent
flow—characterized by its lack of a known equation and often studied through
statistical methods [4, 31]—a sequential dataset from the Lagrangian viewpoint could
be utilized for forecasting models. Achieving accurate predictions for turbulent
flow velocity without the need for preprocessing to extract hidden features poses a
significant challenge.

Certainly, over the recent decades, big data has become a prevalent aspect of
fluid mechanics research [58], owing to advancements in HPC architectures (i.e.,
storage and memory capacity and increasing processing power) and experimental
measurement capabilities. Throughout the last 50 years, numerous techniques have
emerged to manage such data, spanning from sophisticated algorithms for data
processing and compression to fluid mechanics databases [59, 60]. Nonetheless,
the examination of fluid mechanics data has predominantly leaned on domain
expertise, statistical analysis, and heuristic algorithms [61].

Today, the proliferation of data spans across various scientific fields, ushering in
a new era where deriving insights and actionable information from data is both a
scientific pursuit and a commercial endeavor. Our era is marked by an unparalleled
convergence of factors: (a) the exponential growth of data volume; (b) advance-
ments in computational hardware, coupled with reduced costs for computation,
data storage, and transfer; (c) the refinement of sophisticated algorithms; (d) the
abundance of open-source software and benchmark problems; and (e) substantial
and ongoing investments by industry in data-driven problem-solving. These develop-
ments have reignited interest and progress in DL as a means to extract knowledge
from this deluge of data [17].

DL offers a flexible and adaptable modeling framework that can be customized
to tackle various complexities in fluid mechanics, including reduced-order modeling,
experimental data analysis, shape optimization, turbulence closure modeling, and
control [62, 63]. As the focus of scientific investigation transitions from traditional
first principles to data-driven methodologies, a comparison can be drawn with
the evolution of numerical methods in the 1940s and 1950s for solving fluid
dynamics equations [64]. The field of fluid mechanics stands poised to gain from
the application of learning algorithms, while simultaneously presenting challenges
that could propel the advancement of these algorithms, complementing human
insight and engineering intuition [17].

Besides highlighting achievements, it is crucial to grasp the functioning of
learning algorithms and discern when these methods thrive or falter. While it is
essential to appreciate the potential of DL, it is equally vital to acknowledge that
its integration into fluid mechanics remains an ongoing and demanding endeavor.
Within this framework, it has been emphasized that the value of infusing domain
expertise in fluid mechanics into learning algorithms. It is envisaged that the fluid
mechanics community can play a pivotal role in driving advancements in DL, akin to
the progress witnessed in numerical methods during the previous century [17, 65].

Wiewel et al. recently employed the LSTM model to predict the temporal changes
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r=0 1 =100

Figure 2.6. A test simulation with the DL model. The initial anvil shape was not part
of the training data, but DL successfully generalizes to unseen shapes such as this
one. [66].

in the pressure field of fluid flow. They showed that dense 3D+time functions of a
physical system can be effectively predicted within the latent spaces of a DL model
(cf. Figure 2.6). This breakthrough led to the creation of a DL-based simulation
algorithm that provides substantial practical speed-ups. The results demonstrated
the method's capabilities through a series of complex liquid simulations and single-
phase buoyancy simulations. With trained models, this approach was more than
two orders of magnitude faster than traditional pressure solvers [6¢]. Still, it has
to be noted that DL models are still not fully interpretable even when generalizing
well, and as such, they are not in competition with physical modeling, but rather
a complementary approach leader to new insights. For example, a relatively new
approach in this context if also the methodology of physics-informed DL model
learning [67].
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3.1 HPC in Computational Fluid Dynamics (CFD)

CFD methods offer a convenient avenue for simulating turbulent flows, primarily
through DNS and LES [1]. While LES is generally less accurate than DNS, both
approaches require substantial computational resources [1] on HPC systems. RANS
equations serve as a costeffective method widely adopted in industry, albeit at the
expense of accuracy compared to LES or DNS [68]. The continuous expansion of
capabilities, availability, and scalability of HPC systems enable increasingly detailed
simulations. Nevertheless, existing numerical techniques still fall short in tackling
every CFD problem, particularly those featuring intricate and highly complex flow
structures [7]. Moreover, many CFD applications necessitate validation of solutions
against empirical data, posing another challenge [6, 5].

3.1.1 DNS and HPC

Using the DNS approach requires a large amount of the HPC resources and a
proper meshing setup. For example, Hosseini et al. [69] applied DNS to study the
flow around a wing section at a moderate Reynolds number Re; thus the mesh,
which comprises around 3.2 billion grid points, was optimized to resolve all relevant
scales in the flow properly. Figure 3.1 displays the resolved scales.

Figure 3.1. Presentation of the instantaneous vortical structures resolved by DNS for
flow around a wing section at a moderate Reynolds numbe Rer [69].
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The incompressible spectral-element Navier—Stokes solver Nek5000 [70] has
been used to carry out the simulation shown in Figure 3.1. The work has been
performed in parallel computations on 16,384 processors. Figure 3.2 illustrates a
strong scaling for problem sizes. For visualization purposes, 35 million core hours
have been spent collecting full turbulence statistics, time history data, and flow
snapshots [69].
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Figure 3.2. Strong scaling for problem sizes of (left) 3.2 billion and (right) 120
million grid points vs. the number of cores. The dashed line shows the linear

scaling [69].

3.1.2 Fluid dynamics Use cases and HPC

In fluid dynamics, most use cases have various scenarios, which makes the studies
challenging. For example, Lawson et al. study the flow around a helicopter landing
on a ship [71]. The study of interactions between aircraft and ship wakes using
detailed CFD methods is driven by the necessity to operate vertical take-off and
landing aircraft from decks on both civil and military vessels. It is well-established
that the ship’s superstructure creates a highly unsteady wake [72], along with strong,
organized vertical structures emanating from the ship’s stern. The interaction of
the ship’s wake with the helicopter rotor depends on the ship and wind directions,
as well as the specific features of the ship’s superstructure. This interaction can
negatively impact the helicopter’s rotor loading and overall performance. Due fo the
challenges of accurately measuring flow details during sea trials and the difficulty of
sefting up experiments with representative Reynolds numbers Re and blade speeds
in wind tunnels, numerical simulation using CFD is likely the most feasible method
to study this interaction. Figure 3.3 displays the visualization of the CFD application
for such use cases.

The CFD simulation has utilized HPC clusters: HECToR ° [73] with 44,544 cores
in the UK and JuRoPA ¢ [74] with 17,664 cores at JSC in Germany. For this use
case, the generated grid contains approximately 103 million cells. Due to the vastly
different scales involved, the computation time has been extremely large. Lawson et
al. [71] mentioned that the code used was highly portable and demonstrated that

SHECToR: High-End Computing Terascale Resource: UK National Supercomputing Service
SJuRoPA: Juelich Research on Petaflop Architectures, Forschungszentrum Jiilich GmbH, Germany
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3.1 HPC in Computational Fluid Dynamics (CFD)

Figure 3.3. Ship and Helicopter Computation: (a) Ship and Helicopter, (b)
Helicopter, (c) tail rotor, and (d) active flaps on the main rotor [71].

it could scale effectively up to 24,576 cores [71]. Given the extensive use cases
in CFD, HPC is crucial, encompassing both numerical solution methods and DL
applications. This thesis leverages HPC resources to train the proposed DL models.
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3.2 DL in Fluid Dynamics

The research field of fluid dynamics was traditionally based on mechanical models
or numerical models based on known physical laws. More Recently, DL models
have shown significant capabilities in extracting latent features from nonlinear phe-
nomena and generating predictions across various domains [18, 20]. Furthermore,
researchers have explored the potential of DL models in fluid dynamics applications,
such as Coletti et al. [17] and Eivazi et al. [18].

3.2.1 DL applications in aerodynamics

Duru et al. [75] leveraged DL to predict transonic flow patterns around airfoils. They
developed a DL model to forecast pressure and Mach fields around airfoils across
various angles of attack. The model’s predictive capabilities were demonstrated
through flow field contours and validated using several quantitative accuracy metrics.
The performance was tested by examining the impacts of angle of attack and airfoil
shape variations on the flow field. Comparisons with CFD simulations showed
that the model predictions were highly accurate in capturing the effects of these
variations. Figure 3.4 shows the DL model prediction of the flow on NACAOO012. The
proposed model significantly reduces the need for time-consuming CFD simulations,
with only a slight loss in accuracy. After a 360-hour training process using two
TESLA V100 GPUs, the model’s prediction time for a single case is approximately 1
second, whereas the CFD solver takes about 85 minutes using 32 Xeon E5-2690
CPU cores. It demonstrates that GPU cores combined with DL models in HPC
resources enables a significant progress in the field in aeronautics in particular and

fluid flow in general.
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Figure 3.4. DL model predictions on NACA0OQ12 with angle of attack 8° [75].
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3.2 DL in Fluid Dynamics

3.2.2 DL model in shear flow

Srinivasan et al. [20] employ the Multilayer Perceptron (MLP) and DL model to
forecast turbulent shear flow using equations derived from a Moehlis model [7¢].
They tested several neural network architectures by varying the number of layers,
units per layer, input dimension, and weight initialization and activation functions
to obtain the best configurations for flow prediction. Hence, they did not follow a
systematic HPO process as performed in this thesis. Still, the LSTM led to excellent
predictions of turbulence statistics and the system’s dynamic behavior. Figure 3.5
represents the prediction comparison for turbulence statistics. Hence, this DL
model in shear flow indicates that model tuning using hyperparameter optimization
accelerated through HPC systems is necessary for good model performance.
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Figure 3.5. Turbulence statistics:(left) mean profile, (middle) velocity fluctuations,
and (right) Reynolds shear stress. Blue dots are a nine-equation model, and
prediction models: (red) LSTM1, (green) LSTM2, and (cyan) LSTM3 [20].

As shown in Figure 3.5, Srinivasan et al. examined three LSTM models with
different setups which varying the number of layers, units per layer, input dimension,
and weight initialization and activation functions: LSTM1, LSTM2, and LSTM3. They
reported that using a standard workstation (Intel(R) Core(TM) i7-4930K CPU at 3.4
GHz), training the LSTM1 model with 10,000 time series took approximately 70
hours. After the training phase, generating 500 time series, which is the required
amount for obtfaining converged statistics, took around 12 minutes. In contrast,
producing the same amount of data by integrating the nine-equation model by
Moehlis et al. [7¢] took about 6 minutes on the same workstation. Therefore, after
the initial training investment, the computational time needed for the DL model to
predict the flow is about twice that of resolving a nine-equation model. Moreover,
once trained, DL models can be summarized into smaller, more computationally
efficient networks, significantly reducing prediction time complexity [77]. In CFD
approaches for turbulent flow, LES offers an effective solution by directly resolving
the large-scale motions and modeling the small-scale motions using the Subgrid-
Scale (SGS) model [78]. Srinivasan et al. considered that the computational cost
of evaluating the DL is sufficiently low to be an efficient alternative for predicting
instantaneous variables, such as those in SGS models.

Due to the above mentioned drawbacks of LSTM models, hybrid models such
as autoencoders- LSTM [79], LSTM/ RNN [79], and Convolutional Neural Network
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(CNN)-LSTM [79] have been developed. Eivazi et al. [18] present a DL application
for nonlinear model reduction in unsteady flows. Gu and Li [79] report on the use
of an LSTM network for predicting turbulent wind speeds. Bukka et al. [7] employ a
hybrid, deeply reduced model for predicting unsteady flows.

The majority of fluid flow investigations employing DL utilize data derived from
CFD computations [20]. Given this data availability, DL models are often a bit easier
to use than in use cases with real measurement datasets. Moreover, many studies
incorporate pre-processing procedures aimed at identifying dominant features, such
as POD or DMD [20, 18]. This thesis proposes a novel approach to predict unknown
turbulent flow patterns using a DL model trained on raw measurement data, while
the DL model is not informed of the turbulent flow characteristics.
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3.3 Applications in Green Energy Engineering

The significant increase in energy consumption is primarily driven by emerging
technological demands and evolving lifestyles, leading to the challenges of climate
change as reported by International Energy Agency (IEA) [80]. Scientific reports
consistently highlight the escalating temperature trends, particularly during the
summer months 7 [81]. To combat rising temperatures, many countries rely on
air conditioning systems in residential and commercial buildings, further straining
electricity grids. Consequently, energy producers face the challenge of accurately
predicting such demand spikes.

There is a global consensus that harnessing renewable energy offers the most
promising solution to mitigate climate change. For instance, the proliferation of
electric vehicles underscores the increasing attractiveness of utilizing green energy,
such as that generated by wind turbines [80, 82]. The benefits of wind energy have
been extensively researched, leading to the development of various forecasting
methods—ranging from very shortterm to longterm predictions—utilizing wind
energy models or wind speed profiles (cf. Figure 3.6).

Wind speed/wind power forecasting

T el Fore_cas_ting Types of Modeling
objective forecast theory
Very short term Wind turbine Deterministic model Physical model
Short term Wind farm Probabilistic model Traditional statistical model
Medium term Al-based model
Long term Hybrid model

Figure 3.6. Classification of Wind Speed/Wind Power forecasting [83].

Table 3.1. Summary of DL models in wind power forecasting applications [79].

Applications  Time Step Location  Model Used Type

Wind speed 4 h Onshore  1-D CNN 24 h, Realtime

Wind power  10/30/60/20-min  Onshore  Stacked Shortterm/very
ensemble shortterm

Wind power 24 h - LSTM - GMM 8 Shortterm

Wind power - Coast LSTM + LUBE °? Shortterm

Wind farm - Onshore CNN + LSTM

cluster power

Surface wind 12 h River Realtime 4D Short-term
assimilation

7Global Wind Energy Council (GWEC)
8Gaussian Mixture Model (GMM)
? Lower-Upper-Bound-Estimation (LUBE)
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One example of the impact of DL models using HPC in these green energy
domains based on sequential frameworks was shown by wind energy prediction
models [79]. The DL model, built upon sequential frameworks, demonstrated its
adeptness in forecasting nonlinear phenomena [79]. To enhance the precision of
the DL model in predicting wind velocity, it is crucial to select the appropriate time
period and dataset size. Moreover, the wind speed exhibits distinct patterns across
monthly, seasonal, bi-annual, and annual datasets, contingent upon the location of
the wind park.

In order to provide an overview of related work, Table 3.1 presents a variety of DL
models employed for wind power and wind speed forecasting. The table highlights
the differences in time-step intervals among the models, a crucial parameter in
wind speed prediction. Additionally, it demonstrates that most models are hybrid
and designed for shortterm forecasting. The wind speed or wind power dataset is
essential for training these DL models. According to the literature, there is currently
no universal model capable of predicting wind speed and wind power; the models
function on a local basis [79].

Recently, it has come tfo light that the wake loss effect influences the weather
conditions of the land downstream of offshore wind farms. DL models offer a poten-
tial avenue for exploring this phenomenon [84, 85]. This observation underscores
the significance of weather forecasting [86]. DL models grounded in sequential
concepts shown valuable progress in this regard. Furthermore, the potential of
DL models could be harnessed in wind energy research to delve into the elusive
wake loss phenomenon associated with vertical axis wind turbines [38]. This thesis
examined measured wind speed data to evaluate wind power production potential
by performing research studies on a suitable DL model architecture to predict wind
speed, with a focus on seasonal datasets. Moreover, while many horizontal wind
turbines have been studied, this thesis also researched vertical-axis wind turbines.
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4 Summary of Publications

In this Section, a summary of the published papers relevant to the doctoral work is
provided. Additionally, the TO(s) of this thesis relate to and their main contributions
are described.

4.1 An Experiment Generates a Specified Mean Strained
Rate Turbulent Flow: Dynamics of Particles

R. Hassanian, A. Helgadéttir, L. Bouhlali, M. Riedel, ‘An Experiment Generates a
Specified Mean Strained Rate Turbulent Flow: Dynamics of Particles’, in AIP Physics
of Fluids, vol. 35, no. 1, 2023, DOI: https://doi.org/10.1063/5.0134306.

This publication fulfills the requirements of TOT concerning the preparation of
a reliable dataset from turbulent flow which was built experimentally. The dataset
extract to be used in DL models in the data-driven approach.

The paper describes properties of strained turbulent flow generated in a labo-
ratory facility with a range of turbulence intensity identified by Taylor micro-scale
Reynolds number Rej;, mean strain rate of deformation, and tracer particles that
were seeded the flow to display the flow characteristics. Furthermore, in separate
experiments, the flow was seeded with inertial particles to study the particle move-
ment. Table 1 in paper | displays the obtained flow parameters and the details of the
measurements of the mean strain rate, the strain move, a dimensionless parameter
for two different strain rates, and calculating Re;, as well as other information are also
documented in appendix A. The paper points to observations regarding the impacts
of the turbulence intensity, strain rate, and gravity on the tracer and inertial particle
distract their behavior. The St number for the particles was measured to illustrate
the tracer particle presenting the turbulent flow streamlines. The LPT technique was
employed to record the particles move, and their properties include velocity and
location used in next TOs to utilize DL models in the fluid dynamics area. Figure 4.1
is the presentation of the tracer particle move in the generated turbulent flow with
particle characterization. The measurement data supporting this paper’s findings
are available from the PhD student and his supervisor upon reasonable request.
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Figure 4.1. Real view of the path traveled by the particles, obtained from the video
recordings for a data set that included 4000 images (resolution of 512 x 512 pixels),
obtained from one of the 20 individual and independent videos observing the same
experimental condition.
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4.2 The capability of recurrent neural networks to predict turbulence flow via spatiotemporal
features

4.2 The capability of recurrent neural networks to
predict turbulence flow via spatiotemporal fea-
tures

R. Hassanian, M. Riedel, L. Bouhlali, ‘The capability of recurrent neural networks
to predict turbulence flow via spatiotemporal features’, in 2022 IEEE 10th Jubilee
International Conference on Computational Cybernetics and Cyber-Medical Systems
(ICCC), Reykjavik, Iceland, July, 2022, pp. 335—338, DOI: https://doi.org/
10.1109/1ICCC202255925.2022.9922754

This publication meets the criteria outlined in TO2 by establishing a fresh connec-
tion between flow characteristics in the Lagrangian framework and the architecture
of DL models.

The paper introduces a new interpretation of how turbulent flow properties
within the Lagrangian framework intersect with the GRU architecture. Furthermore,
the model was designed to predict velocity for each component of turbulent flow
individually, enabling its application to both 2D and 3D datasets.

In Figure 4.2, the model capability in the prediction is presented.

——Real Data

Train Data
——Predicted Data via GRU Model (Test Data)

0.8

Target Output (Normalized)

I L L
150000 200000 270641

Number of Data

L L
0 50000 100000

Figure 4.2. GRU model for turbulent flow velocity in y direction with spatiaktemporal
features.
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4.3 Deep Learning Forecasts a Strained Turbulent
Flow Velocity Field in Temporal Lagrangian Frame-
work: Comparison of LSTM and GRU

R. Hassanian, A. Helgadéttir, M. Riedel, ‘Deep Learning Forecasts a Strained
Turbulent Flow Velocity Field in Temporal Lagrangian Framework: Comparison of
LSTM and GRU’, in MDPI Fluids, vol. 7, no. 11, 2022, DOI: https://doi.org/
10.3390/f1uids7110344.

This paper meets the criteria outlined in TO3 by employing two DL models, namely
LSTM and GRU, to analyze velocity prediction in turbulent flows. It systematically
compares the performance of these models to fulfill and address TO3

In this study, a legitimate dataset was experimentally generated from TO1 to
investigate the predictive capabilities of LSTM and GRU models thus addressing
TO3 regarding the elusive patterns of turbulent flow velocity. Emphasizing the
temporal dimension, the model aimed to establish and retain the sequential nature
of the data within sequential DL frameworks.

Figure 4.3 and 4.4 depict the model’s velocity prediction performance for
two flow components using 60% and 80% of the training data, respectively. The
MAE = 0.001-—0.002 and the R? score is in the range of 0.983—-0.987 for both
models. The HPC speedup as a critical requirement to perform these models is
also measured.

From a physical perspective, the notable advantage of the proposed models
lies in their ability to make predictions without requiring information on turbulence
intensity, mean flow rate, or the influence of gravity. This characteristic renders
the model applicable across a wide spectrum of industrial and natural contexts,
particularly where raw velocity and other flow properties data are typically available.

" . Actual Data
Training Data, 60%

" . Actual Data
Training Data, 60%

Velocity Component, y Direction [m/s]
Velocity Component, y Direction [m/s]
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Figure 4.3. Prediction of velocity component in the y direction for a strained
turbulent flow with mean strain rate 8 s=!, GRU model on the left-hand side, and
LSTM model on the right-hand side. Training data are 60% and test data 40%.
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4.3 Deep Learning Forecasts a Strained Turbulent Flow Velocity Field in Temporal Lagrangian
Framework: Comparison of LSTM and GRU
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Figure 4.4. Prediction of velocity component in the y direction for a strained
turbulent flow with mean strain rate 8 s=', GRU model on the lefthand side, and
LSTM model on the righthand side. Training data are 80% and test data 20%.
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4.4 Deciphering the dynamics of distorted turbulent
flows: Lagrangian particle tracking and chaos pre-
diction through transformer-based deep learning
models

R. Hassanian, H. Myneni, A. Helgadéttir, M. Riedel, ‘Deciphering the dynamics of
distorted turbulent flows: Lagrangian particle tracking and chaos prediction through
transformer-based deep learning models’, in AIP Physics of Fluids, vol. 35, no. 7,
2023, DOI: https://doi.org/10.1063/5.0157897.

This paper meets the criteria outlined in TO4 by enhancing an attention mecha-
nism model from the field of fluid dynamics within DL. Utilizing the Transformer model,
which represents the cutting-edge architecture in DL, relies on encoder-decoder lay-
ers. This pioneering approach within the Lagrangian framework marks a significant
advancement.

This paper proposed a model based on the Transformer model and the definition
of the Lagrangian framework relevant to its structure to predict the velocity of a
turbulent flow with no known analytical pattern. The model displayed proper
prediction capability and performance compared to the previously successful model
of the current thesis. Table 4.1 shows the Transformer model performance compared
to the LSTM and the GRU models. To apply such models, the HPC resources are
required, and for all models, the speedup has been examined.

This paper established groundbreaking knowledge based on the experimental
dataset and compared the capability of these three DL models that can be used
in a wide range of turbulent flow and fluid dynamics. Despite the fact that all the
models show similar results, the Transformer enables a certain interpretability of its
inherent learned parameters. Their investigation was not published and is part of
future work. Instead, hyperparameter optimization was another track of research
performed in the PAPER VI.

Table 4.1. To assess the capability of the Transformer model as a mechanism for
aftention, a comparison is made between its performance and that of LSTM [43]
and GRU [43] from previous studies with similar datasets.

Training ratio  Performance LSTM  GRU Transformer
80% MAE 0.002 0.002 0.002
R? score 098 098 0.98
Training time (s) 295 318 301
60% MAE 0.002 0.002 0.003
R? score 0.98 0.98 0.98

Training time (s) 214 229 219
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4.5 Optimizing Wind Energy Production: Leveraging
Deep Learning Models Informed with On-Site
Data and Assessing Scalability through HPC

R. Hassanian, A. Shahinfar, A. Helgadéttir, M. Riedel, ‘Optimizing Wind Energy
Production: Leveraging Deep Learning Models Informed with On-Site Data and
Assessing Scalability through HPC', in IEEE Hungary Section-Obuda, Acta Polytech-
nica Hungarica Journal, vol. 21, no. 9, 2024, DOI: https://doi.org/10.12700/
APH.21.9.2024.9.4.

This paper satisfies the criteria set forth in TO5 by showcasing the engineering
application of fundamental research in developing DL models for turbulent flow. As
an illustrative case, these models are applied to forecast wind speed for wind power
generation, addressing a significant challenge in power production.

This study utilizes insights gained from TO1 through TO4 to refine DL models
for industrial applications. Predicting wind power production is vital, particularly
for power producers who must forecast power outputs to meet demand in the grid.
These forecasts are typically classified as shortterm or longterm predictions.

This paper introduces an innovative approach that leverages historical seasonal
data to forecast future periods using a GRU model. Particularly, the model demon-
strates strong predictive performance, notably with a dataset featuring 10-minute
time steps compared to the traditional 1-hour intervals. In terms of computational
resources, the paper recommends employing a local HPC cluster powered by the
wind farm itself, thus establishing a sustainable energy source.

The findings highlight the effectiveness of sequential DL in capturing nonlinear
and stochastic patterns prevalent in turbulent flow regions, such as wind speed.

How much power
Power Production will be produced

from the wind ?

Power Grid Power Users

Figure 4.5. A schematic representation of how wind power production prediction
could assist the power supplier in managing the response to the power grid demand.
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4 Summary of Publications

4.6 Turbulent Flow Prediction-Simulation: Strained
flow with Initial Isotropic Condition Using a GRU
Model Trained by an Experimental Lagrangian
Framework, with Emphasis on Hyperparameter
Optimization

R. Hassanian, M. Aach, A. Lintermann, A. Helgadéttir, M. Riedel, ‘Turbulent
Flow Prediction-Simulation: Strained flow with Initial Isotropic Condition Using a
GRU Model Trained by an Experimental Lagrangian Framework, with Emphasis
on Hyperparameter Optimization’, in MDPI Fluids, vol. 9, no. 4, 2024, DOI:
https://doi.org/10.3390/£1uids9040084.

This paper meets the criteria outlined in TO6 by enhancing DL models with
spatial and temporal features to analyze their combined impact on target feature
predictions. Additionally, it investigates hyperparameter optimization to enhance
computational performance and compares it with previous models.

This paper introduces an enhanced version of the GRU model, incorporating
spatial and temporal input data for training, with the target being the velocity of
turbulent flow. The study demonstrates that increasing the volume of training data
improves prediction accuracy, albeit at the cost of increased computational time. To
address this, the research applies hyperparameter tuning, specifically focusing on
batch size, to expedite computation.

Table 4.2 illustrates that the improved model, referred to as GRU-h, achieves
higher squared R values and more accurate MAE compared to previous models.
Additionally, hyperparameter optimization effectively reduces computational time,
nearly matching that of earlier models despite utilizing more training data.

Table 4.2. Comparison table of the GRU-h model of the current study that is
improved by HPO and trained with larger data and four sequential variable inputs:
x, y, Vx, and Vy. Transformer, LSTM, and GRU, illustrated in the table, are models
from previous studies [43, 87], with smaller boundary conditions and two sequential
variable inputs Vx and Vy and without HPO.

Training Proportion Performance GRU-h Transformer LSTM  GRU

80% MAE 0.001 0.002 0.001 0.002
R? score 0.99 0.98 0.98 0.98
Runtime (s) 256 301 295 318

Table 4.3 showcases the results of hyperparameter tuning on the JUWELS-
BOOSTER machine, identifying a batch size of 512 as the optimal choice.

In summary, this paper presents an optimized GRU model capable of successfully
predicting turbulent flow velocity when incorporating both spatial and temporal
features.
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Table 4.3. Effect of the size of the batch size on the computing time and the MAE.

Machine GPUs Batch Size per GPU Computing Time [s] MAE
Module

JUWELS- 4 8 14723.30 0.0016698
BOOSTER 4 16 7499.96 0.0015822
4 32 3757.98 0.0015293
4 64 1820.90 0.0014718
4 128 963.49 0.0014551
4 256 493.07 0.0013771
4 512 255.93 0.0013613
4 1024 147.70 0.0014453
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5 Conclusions

The objective of this study is to assess the effectiveness of DL models in the field
of fluid dynamics, particularly leveraging HPC, which is pivotal for implementing
such models. There is a growing interest in employing DL applications in fluid
dynamics, especially in tackling complex problems like turbulent flow, which remains
unresolved through classical physics. Hence, traditionally, fluid dynamics studies
using HPC were thus primarily focussing on numerical methods based on known
physical laws, and therefore, this thesis embarks on new studies using cutting-edge
data-driven approaches via various DL models. Given the reliability of statistical
methods developed over recent decades in turbulent flow studies, this thesis study
adopts a hybrid data-driven approach utilizing statistical data analysis. To sum
up, the thesis showed that DL models can be successfully applied to fluid flow
problems. However, the following paragraphs provide detailed information on the
study findings with respect to different TOs.

Initially, experimental data from the author’s research was processed for utilization.
The experiment produced a broadly observable strained turbulent flow. To study
its properties, tracer particles were used to seed the flow, and the LPT technique
was employed. Additionally, the flow was seeded separately with inertial particles
to investigate the effects of turbulence intensity, gravity, and mean strain rate on
the particles. The main findings of this publication are that the newly designed
and conducted experiments successfully simulated the flow. The particle behavior
within this flow demonstrated the impact of flow distortion on particle dynamics,
including velocity root mean square and Reynolds stress. The resulting dataset was
analyzed to provide a resource for deep learning model training, addressing the
TO1 requirements, and published.

A pioneering effort was made to establish a framework connecting DL architec-
tures to turbulent flow properties, with a focus on the Lagrangian framework as the
foundational definition for flow properties as a function of time. In the Lagrangian
framework, the motion of a particle (or point) within the flow is tracked over time,
resulting in a time series of flow properties. This thesis specifically focuses on
flow velocity. In turbulent flow, the velocity consists of both a mean component
and fluctuating components. The experimental data in this thesis capture the total
velocity, encompassing both the mean and the fluctuations. The main findings of
the publications with respect to TO2 indicate that the Lagrangian framework in
fluid dynamics is effectively interconnected with a sequential deep learning model,
making it suitable for use with time series datasets. The TO2 in novel approach de-
termines turbulent flow properties by linking the Lagrangian framework to sequential
DL models.
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5 Conclusions

TO3 aims to embed the established framework of TO2 and use the data from
TO1 to design a DL model to predict the turbulent flow that has no known pattern.
Hence, the study proceeded to successfully develop LSTM and GRU models using
HPC resources via varying training and test data ratios. As the publications demon-
strate, remarkable results were achieved, demonstrating these models’ capability
to accurately predict turbulent flow velocity solely based on past velocity compo-
nents. Since tracer particles were employed in the experiments, certain effects like
strain deformations and the influence of gravity were not analytically understood
(i.e., using traditional only physics-based approaches and no DL models), making
the study’s findings significant for the turbulence community by enabling velocity
prediction without detailed flow characteristic information.

Recently, Transformer models have become very successful in a wide variety
of applications, and thus TO4 introduced and evaluated the Transformer model
for turbulent flow velocity prediction, showcasing superior performance compared
to LSTM and GRU models. To the author’s knowledge, there have been no similar
applications of Transformer models prior to this work. publications in general and
the assessments in particular also included evaluating computing resources, which is
critical in CFD and DL, in terms of speedup. Hence, achieving TO4 covers research
on the unknown limits of DL models in turbulent flow, mainly the range of Re that
current DL models can handle. Also, the research of TO4 identified several cases in
turbulent flow that could benefit from the proposed and validated DL models from
this study, which have been published as open access publications to contribute to
the turbulent flow research community.

Given the recent momentum in Green Energy in Europe driven by the European
Commission, an application in wind energy was explored to illustrate the engineering
utility of the proposed approach in TO5, specifically in predicting wind power
production to meet demand on the power grid. Adapting the model for wind speed
prediction enhanced wind power production in wind parks, yielding substantial
results. TO5 was achieved by identifying engineering applications relevant to the
thesis objectives that are able to utilize the DL model to predict turbulent flow in
diverse contexts of physics and industry, as discussed in other publications listed in
this manuscript. Other publications of the thesis have shown results of the application
of the proposed DL models in this thesis to various fields, including leading edge
erosion, stagnation point, MTF prediction models, wake loss effects for vertical axis
wind turbines, and solar energy.

Finally, the PhD study aimed to enhance GRU model performance in turbulent
flow prediction by integrating spatial and temporal features based on the Lagrangian
framework, which was achieved and published in the context of TO6. This improved
approach not only increased prediction accuracy but also optimized computing
requirements on HPC via HPO. The research of the achieved TO6 demonstrates that
increasing the input variables from the Lagrangian framework enhances the accuracy
of turbulent flow predictions. Additionally, to manage the increased computational
demand due to the larger training dataset, HPO was effectively employed, resulting
in reduced computing time and improved model performance. The findings of the
current PhD study have been published in several respected scientific journals, and
the supporting data are available from the PhD student and his supervisor upon
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reasonable request.

The proposed data-driven approach validated in this study underscores DL
models as excellent tools for studying turbulent flow alongside CFD and EFD.
Moreover, as data-driven DL models operate on measured data without reliance
on theoretical assumptions, they offer a robust capability to forecast turbulent flow
properties. This approach’s adaptability to measured data, prevalent in various
industrial and natural studies, underscores its broad applicability. Hence, the overall
findings of this PhD thesis can be re-used in many different application domains.

Future Work

The approach assessed in this study holds promise for examining inertial particles
in MTF, a phenomenon lacking analytical understanding. Traditional CFD analyses
using large computational application runs on HPC have still not explored the
gravitational effects on such particles, highlighting the potential of employing this
approach to investigate particle behavior. Data-driven approaches assist the core
philosophy of the emerging Hybrid Analysis and Modeling (HAM) paradigm. HAM
maximizes the utilization of Physics-Based Model (PBM) and resorts to data-driven
models to address unmodeled or unknown physics.

Moreover, there is potential to enhance the scalability of the proposed data-
driven model by incorporating larger and more temporally extensive datasets. The
author proposes integrating this data-driven model with a physics-based model
to explore turbulent flow further, facilitating a deeper analytical understanding of
these intricate phenomena. Hence, many findings should be re-used to create
so-called Physics-Informed Neural Networks (PINNS) approaches in the future. The
idea of these innovative but hard-to-develop DL models is to guide the data-driven
learning process with constraints obtained from physics. A promising approach
that combines the power of cutting-edge DL models with various established laws
of physics. As the thesis TOs are achieved, the author will continue after the PhD to
work on these approaches together with the larger physical application community.
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ABSTRACT

This study aimed to simulate straining turbulent flow empirically, having direct similarities with vast naturally occurring flows and
engineering applications. The flow was generated in 100 < Re; < 500 and seeded with passive and inertial particles. Lagrangian particle
tracking and particle image velocimetry were employed to extract the dynamics of particle statistics and flow features, respectively. The
studies for axisymmetric straining turbulent flow reported that the strain rate, flow geometry, and gravity affect particle statistics. To
practically investigate mentioned effects in the literature, we present the behavior of both passive and inertial particles from the novel
experiment conducted on initially I turbulence und a sudden axisymmetric expansion. We represent the result with two
different mean strains and Reynolds-Taylor microscales. However, this study, in contrast to the previous studies, considers the fields of
inertial particles in the presence of gravity. The result discloses that the novel designed and conducted experiments simulated the flow
satisfactorily. Then, the particle behavior in such flow showed the effectiveness of the flow distortion on particle dynamics such as velocity
root mean square and Reynolds stress. Straining turbulence flow is subject to many industrial applications and physics studies, such as
stagnation points, external flow around an airfoil, internal flow in changeable cross section pipe, expansion in the engine mixing chamber,
and leading edge erosion. This study’s conclusion could apply constructively to these areas.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (hitp:
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0134306

I. INTRODUCTION

The dynamics of particles in turbulent flow relate to a broad
range of natural phenomena and engineering applications.” The distri-

affect particle motion, and the heavier inertial particles represent lower
acceleration variance than the lighter inertial particles."
Most natural flows combine inertial particles and straining geom-

6V'S2:90 $202 UKW L0

bution of pollutants in the atmosphere, the formation of rain in a
cloud,” and the spread of sediments in oceans and rivers are instances.”
Many industrial applications are related, including internal engine
combustion, particle interaction in a mixing chamber,’ and leading-
edge” erosion in compressors and turbines.”” The external flow over
the airfoil*” and internal flow in changeable cross-section pipe'’ ' are
instances of straining turbulence flow. " This study’s motivation has
been from recent works that examined the Lagrangian inertial particle
in shear flow'” '* and boundary layer," " reporting a profound effect
on inertial particle statistics. Later, Lee et al.'” showed that the mean
strain rate substantially affected tracer and inertial particle statistics.
They reported that for a higher strain rate, acceleration variance
increased notably."” They also noticed that large-scale motion could

etries;' ™" thus, the straining motion consideration is essential. It is
well addressed that turbulent flow statistics"”’ are applicable.”' ** Due
to inertia and interaction, the lighter inertial particle to mean flow has
higher acceleration than the tracer particle.”” When the particle has
higher inertia, the ballistic motion will increase the mean flow acceler-
ation.'” The straining motion appears in the stagnation point region."

It has been known that extra fluctuation is derived from mean strain
and transmitted to the turbulence.””” Most studies focused on
Lagrangian acceleration particle statistics in isotropic turbulence flow,
but the recent literature mentioned the vitality of large anisotropic
scale Lagrangian dynamics. * The small scale may be isotropic, but the
large scale is highly anisotropic.” Indeed, flow with mean zero flow is
generally isotropic, not realistic, and usually close to being

Phys. Fluids 35, 015124 (2023); doi: 10.1063/5.0134306
© Author(s) 2023

35,015124-1



anisotropic.”’ The large-scale structure depends on initial turbulence
conditions.”” Local strain rates in mean flow do not control it although
the magnitude of Reynolds stress is related to the immediate history of
turbulence which can say the scales have a remote feeling.”’ Statistics
of the scales are not a function of local gradients in the mean flow.”’
Moreover, its specified gravity and strain affect the acceleration vari-
ance and Stokes number, narrowing the acceleration probability distri-
bution function (p.d.fs) and skewed with inertia.'”

The current work designs and suggests a novel procedure to sim-
ulate a turbulence flow with a specified strain rate in the laboratory
environment. Tracer particles seeded the flow, and the particle image
velocimetry (PIV) technique was employed to extract the flow feature.
Furthermore, to examine the dynamics of the particles affected by tur-
bulence intensity, mean strain rate, and presence of gravity,”*” inertial
and tracer particles were seeded the flow in separate implementations,
and the Lagrangian particle tracking (LPT) approach was applied to
investigate the particle behaviors. The proposed procedure applies to
many industrial applications, particularly stagnation point and flow
with various geometry. Furthermore, it manifests sight to study the
particles in the natural environment and variant flow conditions.

This study presents velocity root mean square (RMS) and nor-
malized Reynolds stress results. In addition to the novel procedure, the
examination is conducted in the presence of gravity, "’ not consid-
ered in the previous numerical studies that have examined the inertial
particles’ dynamics in the turbulent flow.”"”* It is well determined that
the conclusions achieved in zero gravity should not be applied outside
this condition.”””’ Therefore, it is essential to understand the gravity
effects on the dynamics of the particles. Hence, this paper is organized
as follows: the applied theory for the dynamics of the particles is pre-
sented in Sec. 11. The experiment is explained in Sec. 111, and the mea-
surement method is explored in Sec. 1V. Results and discussion are
represented in Sec. V and Sec. VI provides the conclusions.

Il. THEORY

In this section, the applied theory in turbulent flow statistics is
described. Since the data are extracted from measurement, it is essen-
tial to define the characteristics of the flow and particle properties and
how the measured data are used to investigate the dynamics of a parti-
cle and flow feature.

A. Strained turbulence

The turbulent flow is generated with the action of impeller rotors
in the corners of a box turbulence facility. The turbulent flow is then
strained in the vertical direction (see Fig. 1) by the motion of flat circu-
lar plates, as shown in the sketch. The fluid is seeded with buoyant
(tracer) particles and inertial particles with median diameters 8-10 um
and 210-250 um, respectively. The specific gravity for tracers was
1.1 g/em? (hollow glass) and 2.5 g/cm? (solid glass) for inertial par-
ticles. The flow field properties are obtained through the particle image
velocimetry (PIV), and the Lagrangian particle tracking (LPT) method
is employed to study the particles’ movement. Equation (1) describes
the mean flow field in the facility

(U) = (Sx,—28y, Sz), 1)

where —28 is the primary strain rate in the Y-dir; S is the strain rate
for the other two directions; and x, y, and z are the particle location. In
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Tank frame

Plates are moving toward
each other to make a strain
Rotating impellers
generate turbulent flow

FIG. 1. A sketch of the tank facility and the location of the LPT/PIV measurement
area. The viewing window (24.5 x 24.5mm?) is located in the center of the water
tank. The Y-axis of the coordinate system (CS) points upwards, whereas the X-axis
points from left to right. The origin of the CS is located at the center point of the
tank.

this work, the flow is considered in two-dimensional (2D); therefore,
Z-dir is not addressed.

The straining flow cases in the experiment were created with two
mean strain rates, 25 = 45! and 2§ = 8s~". Equation (1) is based
on the laminar flow; however, we know that velocity fluctuates in the
turbulence flow. Further details on the experimental setup are
described in Sec. I11. Based on the determined coordinate system (CS)
in this experiment, the strain rate for both directions has these nota-
tions:' dU, /dy = —2S and dU, /dx = S.

B. Turbulent flow characterization

The turbulence flow statistics were used to extract the flow field
properties. We analyzed the trajectories of particles in the flow field
using the LPT technique. Accordingly, the velocity fluctuations u, and
u,, can be calculated as

w=U—{U), i=xy, ®)

where U is the measured (total) velocity, (U) is the mean velocity, and
the subscript i refers to the component of the velocity, in x, y (or z)
direction.

We applied the following equations to obtain the variance of
velocity var(U;), and the velocities RMS 14, ;2

s = /var(Uy) = ()%, )

Reynolds-stress is a term that stems from momentum transfer by
fluctuating velocity field." Reynolds-stresses are the components of a
second-order tensor, which is symmetric. The diagonal components
(u;u;) are normal stress, while the off diagonal components (u;u;) are
shear stress (the subscripts i and j denote the components of the veloc-
ity)." It has been addressed the Reynolds stress gaining from the irrota-
tional field has definitely no effect on the mean velocity field." The
normalized Reynolds-stress is calculated for particles in this work to
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examine the fluctuation of particles caused by distinct strain rates and
turbulence intensity. The definition for the normalized Reynolds-
stress is'

() /2ko = (u}) /(5 + 143,), i =x,y, “@)

where u is the particle velocity in the deformed flow; ug.y, 4o, are the
velocity; ko = (4, + uf,)/2 is the turbulent kinematic energy of the
particle in turbulent flow without strain; and the subscript i denotes
the components of the velocity. Since the measurement is carried on
in 2D in this work, the velocity has two components in the x and y
directions.

The number of points used to compute statistics depends on the
type of experiment conducted. The turbulence energy dissipation rate
is calculated using a second-order longitudinal velocity structure func-
tion Dy (r), assuming inertial subrange Dy (r) = Cy(er)'/? with a
universal constant C, = 2.1, r is the separation and Uj(x,t) is
Eulerian velocity field.

Dy (r) = Dy(r,x,t)
= ([Ui(x +r,0) = U(x. ] [U(x + r.0)=Tj(x.0]). - (5)
The mean energy dissipation rate is constant in the inertial sub-
range, as illustrated in the results. We used the Eulerian autocorrela-

tion function p(L) to obtain the Eulerian integral scale /, which can be
defined as:""

p(L) = (u(ro + L)u(ro)) /. (6)

The Eulerian integral scale is given by""’
o0
I:J p(L)dL. @
o

In Eq. (7), the velocity is taken on a grid obtained from the particle
image velocimetry (PIV) measurements, and o is taken in both the x
and y directions; L is the Eulerian integral variable. Based on
Kolmogorov’s hypothesis, the length and time scales of the turbulence
flow can be calculated using the following equations:

n=(A/e)/*, ®)
o= (/o) ©)

where v is the kinematic viscosity of the fluid, 1 is Kolmogorov's
length scale, 7, is the Kolmogorov’s timescale, and ¢ is the energy dissi-
pation rate which is evaluated via described second-order longitudinal
velocity structure function.

C. Stokes number

In this study, we employed LPT to track the particle in the gener-
ated flow. Therefore, the Stokes number must be considered for both
particle types. The Stokes number specifies whether a particle intro-
duced to the flow will follow the flow streamline or not. This identifi-
cation is defined by the following equation:

S =1/, (10)

where 1, is Stokes’ relaxation time. Kolmogorov scale is based on the
flow quantities before applying the strain, and these amounts are
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calculated for two-particle types and presented in Sec. IV. Stokes’
relaxation time ,, is, in turn, calculated by the following equation:

T = Py /181, (11

where p, is the particle density, d, is a spherical particle diameter, and
s is the dynamic fluid viscosity that, in this experiment, is water. Both
the Stokes’ relaxation time and the Kolmogorov timescale are required
in Eq. (9). The relaxation time for each particle is calculated based on
the particle property from Eq. (10). The Stokes number significantly
greater than 1 (St >> 1) describes particles that are unaffected by a
fluid velocity change and continue their original trajectory; if (St < 1),
the particle will follow the fluid’s local velocity.

1l EXPERIMENT

The flow facility at the Laboratory for Fundamental Turbulence
Research (LFTR) at Reykjavik University is shown in Fig. 2, where the
experiments were carried out in a zero-mean turbulence box (with the
corners cut off to facilitate impellers that force the flow). The tank is spe-
cifically designed for studying turbulence (Lagrangian and Eulerian
motion at moderate Reynolds numbers). This flow facility produces a
nearly stationary homogeneous isotropic turbulence near the center of
the tank, where measurements are performed. The water tank
(60 x 60 x 60 cm®) has 20 mm thick acrylic walls (transparent Plexiglas
XT) that enable optical access to the data. The eight corners of the box
have a triangular shape, while the top and the bottom are nearly circular.
An aluminum frame holds the components of the turbulence box
together. The turbulence is generated by eight impellers driven by inde-
pendently controlled servo motors (Lenz-model: MCS), which are
mounted at the cube’s eight corners and point to the center of the tank.
The rotation rate of each servo motor is adjustable over a range of
100-4500 revolutions per minute (rpm) at a gearing rate of 0.075. The
motion-view filtering software that came with these motors was used
to monitor and set up the suited speed of each impeller. The degassing
system was used to remove bubbles and solid dust from the water before
starting the experiment.

FIG. 2. A photo of the furbulence box taken at the Laboratory for Fundamental
Turbulence Research (LFTR) at Reykjavik University.”** Reproduced with permission
from Hassanian, M.S. dissertation (Reykjavik University, 2020). Copyright 2020 Author.
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Circular plates, shown at the top and bottom (see Fig. 1), generate
the strain motions; a linear actuator drove each plate with a piston rod
(Parker, model: ETV32M10PA47JMA400A). When they are moved
toward the center with a pre-described rate that ensures a nearly con-
stant strain rate in the fluid. For each flow case, variables are investi-
gated with different propeller rotation rates, strain rates, and particle
types; a total of 20 piston movements is recorded to collect a sufficient
number of particle trajectories. Each video is statistically independent,
as the flow is given ample time to recover to near isotropy between dif-
ferent strokes. The recording area is 24.5 x 24.5 mm? and is located in
the center of the tank for LPT/PIV measurements (Fig. 1). The flow
case in this study depends on the size of the particles and the rotation
speed of the impeller in the tank and is applied at 1000 and 1500 rpm.
Two circular plates described previously created two mean strain rates:
28 = 4 and 2§ = 85~ . The plate driver motor moves according to an
exponential profile, and the same as a particle would move by if it
were moving along the y-axis toward the center of the coordinate sys-
tem. The straining turbulence flow was generated for two kinds of par-
ticles: a passive and an inertial particle. Each particle has two nominal
strain rates and two impeller rotation speeds as the numerical varia-
tions of the turbulence factor. The detection system for LPT was set at
10kHz [10000 frames per second (fps)] for well-resolved particle
velocity and acceleration statistics. This very high temporal resolution
(0.1-0.2ms) is considerably smaller than the Kolmogorov time
(35-99 ms) of the smallest eddies present in the flow, which is deter-
mined in Sec. V; therefore, the properties of the energy dissipation rate
range in the flow are solved. For each flow case, the average of the

Tmpeller

X

Laser optics i
Water tank

CMOS Camera

Ethernet connection

ARTICLE ‘ scitation.org/journal/phf

measurements was done over 20 videos in the same instant time, and
one averaged data file was created. The average file was used to obtain
the flow field properties. The software includes several stages. First, it
converts the image to a readable file, processes it to achieve the neces-
sary data, and follows the post-processing stages.

IV. MEASUREMENT TECHNIQUE
A. Particle image velocimetry technique

The particle image velocimetry (PIV) technique is applied and
extracts the flow properties before strain deformation. Thus, via a
second-order longitudinal velocimetry structure function, the turbu-
lent flow dissipation rate is obtained; therefore, the Kolmogorov time-
scale is calculated based on Eq. (9) and Stokes number obtained from
Eq. (10). In this study, the PIV has been applied independently of the
LPT experiment because the number of seeded particles in PIV is
much higher. The PIV measurement is applied to extract the flow
characteristics. A single high-speed CMOS camera with a 105mm
focal length lens was used to record the PIV images, and it was set at
512 x 512 pixels resolution. For the illumination of the tracer particles,
an Nd-YAF laser (527 nm) was used and synchronized at the same
sampling frequency as the camera. The laser was set at internal mode,
14 A Q-switch current, and pulse width of 2.5 uis. The laser beam is
expanded to a sheet along the (X, Y)-plane using spherical and cylin-
drical lenses. The sample area has a size of the frame and thickness
equal to the thickness of the laser sheet, which is 2 mm. The PIV con-

figuration 2C-2D is applied (see Fig. 3), which delivers two velocity

components in the x and the y directions. " In this configuration, one

Motor

FIG. 3. A view of the experiment set up
to record the PIVILPT frames.

Data acquisition System
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camera is used, and its position is perpendicular to the laser light sheet.
The displacement of the particles is estimated using cross correlation
and fast-Fourier transformers. For evaluation of recorded images, the
digital PIV recording is divided into small subareas called interroga-
tion areas (IA).” It is assumed that all particles within one IA have
moved h eneously between two illt s. In order to obtain
a valid velocity measurement, a spot should contain anywhere from
seven to ten particle pairs, where one pair refers to a particle imaged at
both  and . In the literature, it is noted it is advantageous to offset
the second IA according to the mean displacement of the tracer par-
ticles between the two illuminations,” which is performed. Regarding
the particle seeding in the flow, ideally, the particle should have the
same density as the flow, which is respected in this study by the tracer
particle. Another important factor in the measurements’ accuracy is
the seeding’s homogeneity. The applied PIV recording technique is
based on the method which provides a single illuminated image for
each illumination pulse (multi-frame/single exposure PIV) since the
used CMOS camera and laser are internally synchronized at the same
frequency rate. In the current study, the PIV recording system is able
to employ the double-frame/single-exposure recording technique. The
measurement area of size 512 x 512 pixels (24.5 x 24.5mm’) was
divided into interrogation areas (IA) of size 64 x 64 pixels. To com-
pute the structure functions from PIV, the IA has a size of 64 x 64 pix-
els with an overlap of 50% to decrease the computing time. This
yielded 15 x 15 velocity vectors with a spacing grid of 32 pixels. The
local displacement vector for the images of the tracer particles of the

()

(@) (b) (©
@) U]
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first and second illumination is determined for each IA utilizing statis-
tical methods (cross correlation). The projection of the vector of the
local flow velocity into the plane of the light sheet (two-component
velocity vector) is calculated respecting the time delay between the two
illuminations and the magnification at imaging. The interrogation
process is repeated for all IA’s of the PIV recording and was delivered
a complete velocity field. The PIV was conducted with similar turbu-
lence intensity to LPT data and has controlled by a servomotor at
speeds of 1000 and 1500 rpm without an act of strain. The frame rate
set up was 2 kHz [2000 frames per second (fps)], which gives an expo-
sure time (time interval between two successive frames) of 500 us

(0.5ms). The recorded videos were 20 for each experiment, where
each video has 1000 frames; this gives 20 000 instantaneously recorded
images. This work applies a fast-Fourier transformer, a strong tool to
accelerate the correlation process in digital PIV. The measurement
represents the the Taylor microscale Reynolds number
100-500 in the performed experiment.

range is

B. Lagrangian particle tracking measurements

The Lagrangian particle tracking (LPT) measurements were car-
ried out for two flow cases in this work in the presence of the strain.
The camera and laser setup for LPT measurement are as explained in
the PIV measurement. LPT uses a lower seeding density but finds indi-
vidual and longer particle tracks. One camera was used in the LPT sys
tem, enabling the reconstruction of particle tracks in two dimensions.

FIG. 4. A representation of six sequential frames of the recording via a high-speed camera in the LPT technique: (a) frame 1 at t s, (b) frame 2 at t + 0.0001s, (c) frame 3 at
t40.0002s, (d) frame 4 at t + 0.0003 s, (e) frame 5 at t -+ 0.0004s, and (f) frame 6 at t + 0.0005s (t is an arbitrary moment). Each frame has been taken in 0.0001s. The

green and red boxes display the locations of two different particles in each time frame.
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These particle tracks are used to calculate the dynamics of particles of
initial turbulence, including the Lagrangian statistics. Figure 4 illus-
trates LPT frames recorded and how particles are seen and could be
tracked. The particles” center detection (identification) method used in
this LPT technique is called the 2D Gaussian fitting; its principle is
based on the idea that a Gaussian can approximate particles’ intensity
profile, and therefore, the Gaussian function can be used to fit this
intensity profile of the particle image. For each particle pixel group,
two one-dimensional Gaussian fits'” are used: one Gaussian will deter-
mine the horizontal position of the particle, and the second will deter-
mine the vertical position and, hence, solving the two system of

equations:
Io 1/x—x\*
I = —=—exp|—= , 12
! ZmreXP{ 2( o )] 12

I RYEAY
)] e

for i=1, 2, 3, it leads to particle center coordinates (x,, y.). Notation
(x;, ;) are the coordinates of the local maximum pixel intensity I, and
the two neighbor’s pixel intensities I, and I, o is the width of the dis-
tribution that is assumed equally in x and y coordinates, and I is the
pixel intensity. Notice that the captured images are dynamically
thresholded before starting the process of detecting the particles. It is
assumed that every local maximum in intensity above a threshold rep-
resents a particle. Once particle centers on each image are detected,
the next step is reconstructing their 2D tracks from successive images
by matching each particle’s position in the first image with its corre-
sponding position in the second image.

The four-frame particle tracking technique used in this work,
which is called four-frame Best Estimate, * is an extension of the
four-frame Minimum Change in Acceleration heuristic (4MA);™ it
tracks a particle path through four sequential flow images (see Fig.
5) by a prediction which is based on a given heuristic and cost func-
tion. This method proceeds in two steps. First, the center of a search
region is calculated using a constraint on velocity or acceleration.

frame [n - l] Current frame [n]

ARTICLE scitation.org/journal/phf

Then, all particles within the search region are tested using a cost
function that has to be minimized. Let x;" denotes the ith position
in the nth frame. A tracking algorithm, then, tries to find an x"*!
for each x}' such that x; is the position of the particle in the frame
[ + 1] that was at position x; in the frame [n]. The most common is
restricting the number of frames over which the cost-tracking func-
tion is optimized. The second approximation is to restrict the x;"*!
investigated as possible matches for each x;” by imposing a limit on
the distance a particle can travel from one frame to the next. Within
these approximations, a tracking algorithm is specified by two
parameters: the heuristic used to calculate the cost function and the
method used to break tracking conflicts. In this process, if more
than one track shares the same particle, the incorrect tracks are dis-
carded. The position of the particle in the frame [ -+ 1] is estimated
by using the three-frame Minimum Acceleration heuristic (3MA)*
which is given by

X = UPAE = 2% — (14)

where U;" is the estimated velocity and At is the time elapsed between
frames. For each of the particles in the search volume search region: S1
in the frame [ + 1], a position x;"*? in the frame [n + 2] is estimated
tobe™

X" = x" + U"2At + a" AP, (15)

where ;" is the estimated particle acceleration. Particles in a search
region: S2 around it are investigated. The particle chosen as the best
match in the frame [n + 2] is the one that has the smallest distance
between particles in the frame [ + 2] and the second estimated posi-
tion, and hence, the particle that is linked here in the previous frame
[+ 1] is chosen as the best match too. The cost function ¢;" applied
in this case is given by™*

By = Il — x4, 16)
where x;""? is the estimated position in the frame [ + 2]. The sim-
plest way to handle conflicts is to give up: when a particle in the frame
[+ 1] is the best match for multiple particles in the frame [n], the

frame [n+2]

frame [n + 1]

FIG. 5. Schematic diagram of the conventional four-frame PTV tracking algorithm. The black circles are the particles positioned outside of the search region, while the light
gray circles are the particles positioned inside the search region, and the white circles are the predicted positions of the particles in the next frame. The arrows that link the

frames between them are the possible particle path.
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X- dir Resolution

FIG. 6. Real view of the path traveled by the particles, obtained from the video
recordings for a data set that included 4000 images (resolution of 512 x 512 pix-
els), obtained from one of the 20 individual and independent videos observing the
same experimental condition.

involved tracks are stopped at the frame (1], and a new track is consid-
ered to have begun in the frame [n + 1]. Note that our LPT code for
identifying and tracking the tracer particles is based on the work of
Ouelette et al.

V. RESULTS AND DISCUSSION
A. Turbulent flow quantities

Figure 6 presents real tracks from a run in an LPT experiment per-
formed in the described facility. Turbulent flow quantities in the experi-
ments are initially extracted to base the subsequent comparison on; this
includes the energy dissipation rate, Kolmogorov length and timescale,
and the turbulent Reynolds-Taylor microscale. PIV is applied for this pur-
pose to the turbulent flow prior to the application of strain in a nearly sta-
tionary homogenous turbulent box flow. Figure 7 shows the compensated
longitudinal structure function Dy (r) in terms of the separation r to eval-
uate the dissipation ¢. Two cases are displayed based on the two turbu-
lence intensities produced by the two motor speeds of the impellers
driving the turbulent flow. In the inertial subrange, the compensated struc-
ture functions are nearly constant, allowing us to determine the dissipation
rate ¢ in the flow (we use r between 6017 and 1/6 according to Ref. 1).

“Table I summarizes the different cases under investigation, which
are controlled by the rotation speed of the impellers in the

o2
ol Flow case: 1000 rpm.
0006

pi 1000 = 1x 1073 m?/s*

00

VD, (0/C) [m¥s]
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TABLE . Flow obtained from PIV for passive particles. ¢,
turbulence energy dissipation rate; v, kinematic viscosity; /, large eddy length scale
(integral scale); uyms, velocity root mean square; #, Kolmogorov length scale; z,,
Kolmogorov timescale; Z, Taylor microscale; Re;, Reynolds number based on the
length scale of the large eddies present in the flow;Re;, Reynolds-Taylor microscale.

Flow quantities Flow case 1000 rpm  Flow case 1500 rpm

£(m?/s*) 1.0 x 102 3.6x107°
v(m?/s) 1x10°¢ 1x10°°
I(cm) 5.70 7.40
s (M/s) 0.026 0.047
7= (14/e)* (mm) 0.177 0.129
7y = (v/e)"/? (ms) 316 16.6

.= (150/¢)"* (mm) 38 32
Ret = ttysl v/ 1485 3478
Re; = tps |V 110 152

experimental facility. Once the dissipation and velocity RMS are mea-
sured, the remaining quantities are known.

B. Particle characterization

Table 11 summarizes the properties of the particles seeded in the
flow. The Stokes numbers are calculated based on Eq. (9), e.g., the ratio
of the particle response and the timescale of the flow presented. It
must be noted that the particle Stokes numbers are based on the
Kolmogorov timescale of the flow before the straining motion is
applied to the turbulent field. Although it is expected that the timescale
in the flow changes during the deforming motion, observations are
assumed on the Stokes number’s initial value. In addition, it is
expected that the short duration of the straining motion will not affect
the smallest scales of motion in the turbulent flow field to a high
degree. The Stokes number for tracer and inertial particles are in the
range of 0.006 32-0.018 07 and 0.113-0.307, respectively.

C. Mean strain motion

In this study, the experiment is conducted with a novel approach
to simulate a strain flow with a specified mean strain rate. Figure 8
indicates the mean strain measurement for 2§ = 45~ for both flow
cases. The results show that the turbulence flow reaches the mean

TABLE II. Stokes number for the two types of particles applied in the experiments.
Buoyant and Inertial particles with several flow cases.

Flow case Flow case

0 oms oo
0015 . . Re;; = 1105 Re;, = 152;
ooz Flow case: 1500 rpm 1000 rpm 1500 rpm
oo, L, Particle Size 7, =31.6ms 1, = 16.6ms
0006+ £4500 = 3.6 X103 m?/s*

""“; ) . Type dp(um) Stokes number Stokes number
0 oms  oos  om2 ooz oo oms 005 003
rlm) Tracer (Min.) 8 6.32 %1073 12.04 x 1072
-3 -3
FIG. 7. Compensated second-order longitudinal structure functions Dy, (r) via Eq. . (Max.) 10 9-49x 10 18.07 x 10
(4) for the flow cases Re;; = 110; 1000rpm and Re;, = 152; 1500 rpm. The black Inertial (Min.) 210 0.113 0.216
lines indicate the expected value of the dissipation rate in each case. ¢ is the (Max.) 250 0.161 0.307
energy dissipation rate, C, = 2.1 is the universal constant,' and ris the separation
Phys. Fluids 35, 015124 (2023); doi: 10.1063/5.0134306 35,015124-7
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FIG. 8. A presentation of the mean strain rate is measured for the flow during the
straining generation for tracer particles. The strain is conducted in Y-dir with
—4s~" and in Xdir 25" The filled blue circle is for the X-dir, and the filled red
square is for Y-dir. The above drawing is for flow case Re;y = 110; 1000 rpm, and
down curves are for flow case Re;, = 152; 1500 rpm.

strain rate during strain generation in the main direction y as —4 s
and the x direction is 25~ based on Eq. (1) for mean strain. Figure 9,
in the same manner, dictates the mean strain measurement for 2§
= 85" for both flow cases. The mean strain rate for 25 = 45" was
achieved approximately with a 15% difference from the theoretical
strain rate, but for 2§ = 85~', the measured mean strain rate reached
the theoretical rate accurately. The reason for this distinction is not
apparent, but it seems that for a lower strain rate, the tracer particles
need more time to attain the theoretical rate because of the large-scale
eddies effects and rate of energy transfer. The literature notes that the
external motion and energy source moving on the flow, such as strain
or shear, could drive instability in the flow.”""*" It could be another
reason to see a less achieved strain rate for the case flow with
28 =4s"'. Results for the strain measurement have been earned
based on the tracer particles. These measurements show that the
experiment simulated the strain motion with the desired outcomes,
matching the strain motion behavior quantitatively and qualitatively.

D. Velocity root mean square (RMS)

Figures 10 and 11 show that for the tracer particles with equal
turbulence intensity, the velocity RMS component in the y-direction is

e — < xe
- e
. o oi on oas ows’ ol o2
Z - R

i ot 501 s

i

s

PR e i e B g g g
L T T oo o o o2

Time [s]

FIG. 9. A presentation of the mean strain rate is measured for the flow during the
straining generation for tracer particles. The strain is conducted in Y-dir with
—8s~" and in Xdir 4s". The filled blue circle is for the X-dir, and the filled red
square is for Y-dir. The above drawing is for flow case Re;s = 110; 1000 rpm, and
the down curves are for flow case Re;, = 152; 1500 rpm.
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FIG. 10. The velocity RMS for the straining turbulence flow with 28 = 4s~" and
flow cases Re;; = 110; 1000 rpm and Re;, = 152; 1500 rpm for X and Y compo-
nents for tracer particles. The filled blue circle, the empty blue circle, the filled red
square, and the empty black square represent X-dir; flow case Re;1, X-dir, flow
case Re;,, Y-dir; flow case Re; and Y-dir, flow case Re;, respectively.

more extensive than in the x-direction, as the strain motion in the y-
direction has a double mean strain rate than the other direction.
However, for tracers with a similar mean strain rate, the flow case with
intense turbulence has higher velocity RMS and amplitude fluctuation.

In the literature, it has been noticed that the strain motion could
generate extra oscillation and increase the fluctuation.””” Figures 10
and 11 illustrate that tracer particles with the same direction and equal
turbulence intensity have gained intensive fluctuation with a higher
mean strain rate. Moreover, since all flow cases approximately had the
same initial condition before the strain, the results showed the velocity
RMS is not only related to the initial condition but also affected by the
history of the turbulence.”’

Figures 12 and 13 display that strain motion has affected the iner-
tial particle, and velocity RMS has fluctuated much more. The inertial
particle has more substantial oscillations than tracers for cases with
analogous mean strain rate and turbulence intensity. Figures 12 and
13 represent that the inertial particles in the flow with higher turbu-
lence intensity are much more sensitive to the strain motion and have
profound effects than lower turbulence flow. This issue could be
caused by scale distinction for flow with different turbulence intensi-
ties. In the previous studies, it has been noted that the large scale could

« Tracer-SS-T000RPM-X
+ Tracer-S5-1000RPM-Y
o Tracer S8 1500RPM.X
= Tracer-S5-1500RPM-Y

Ton 1
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0
o . . !
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FIG. 11. The velocity RMS for the straining turbulence flow with 28 = 8s~" and
flow cases Re;; = 110; 1000 rpm and Re;, = 152; 1500 rpm for X and Y compo-
nents for tracer particles. The filled blue circle, the empty blue circle, the filled red
square, and the empty black square represent for X-dir; flow case Re;1, X-dir, flow
case Re;,, Y-dir; flow case Re; and Y-dir, flow case Re;, respectively.
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FIG. 12. The velocity RMS for the straining turbulence flow with 28 = 4s~' and
flow cases Re;; = 110; 1000 rpm and Re;, = 152; 1500 rpm for Y component for
tracer and inertial particles. The filled red square, the empty black square, the filled
green triangle, and the empty blue triangle represent tracer; Y-dir; flow case Re;s,
tracer; Y-dir, flow case Re;,, inertial; Y-dir; flow case Re;; and inertial; Y-dir, flow
case Re;y, respectively.
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FIG. 13. The velocity RMS for the straining turbulence flow with 25 = 8s~" and
flow cases Re;; = 110; 1000 rpm and Re;, = 152; 1500 rpm for Y component for
tracer and inertial particles. The filled red square, the empty black square, the filled
green triangle, and the empty blue triangle represent tracer; Y-dir; flow case Re;s,
tracer; Y-dir, flow case Re;,, inertial; Y-dir; flow case Re;; and inertial; Y-dir, flow
case Re;y, respectively.

noticeably affect particle motion.”*” However, because the inertial
particle is denser than the tracer, the gravity effect could be considered
the second effective parameter in addition to strain motion.

E. Normalized Reynolds-stress in the strained
turbulent flow

As described in the theory section, the Reynolds-stress is an
appropriate term to assess the fluctuation effects. Figures 14-17 show
the normalized Reynolds-stress and determine that the denser particle
gains an intensive effect from the strain motion than the tracer in the
same condition. Moreover, the inertial particles with similar straining
turbulence flow have less sensitivity to the strain motion in flow with
higher turbulence intensity. It results in the same manner for tracer
and inertial particles and must be taken as a specific issue regarding
the scale size for distinct turbulence flow. However, we must notice
that the gravity effect for the inertial particle could increase the strain
motion impact. In this practical study, gravity is a parameter not
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FIG. 14. The normalized Reynolds stress for the straining turbulence flow with
28 = 45" and flow case Re;; = 110; 1000 rpm for Y component for tracer and
inertial particles. The red-filled square, the filled blue circle, the filled green triangle,
and the empty black diamond represent the normalized Reynolds stress in the Y
direction for the tracer, in the X direction for the tracer, the Y direction for the inertial
particle, and in the X direction for the inertial particle, respectively.
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FIG. 15. The normalized Reynolds stress for the straining turbulence flow with
28 = 85" and flow case Re;; = 110; 1000 rpm for Y component for tracer and
inertial particles. The red-filled square, the filled blue circle, the filled green triangle,
and the empty black diamond represent the normalized Reynolds stress in the Y
direction for the tracer, in the X direction for the tracer, the Y direction for the inertial
particle, and in the X direction for the inertial particle, respectively.
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FIG. 16. The normalized Reynolds stress for the straining turbulence flow with
28 = 45" and flow case Re;, = 152; 1500 rpm for Y component for tracer and
inertial particles. The red-filled square, the filled blue circle, the filled green triangle,
and the empty black diamond represent the normalized Reynolds stress in the X
direction for the tracer, in the Y direction for the tracer, the Y direction for the inertial
particle, and in the X direction for the inertial particle, respectively.
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FIG. 17. The normalized Reynolds stress for the straining turbulence flow with
28 =85 and flow case Re;; = 152; 1500 rpm for Y component for tracer and
inertial particles. The red-filled square, the filled blue circle, the filled green triangle,
and the empty black diamond represent the normalized Reynolds stress in the Y
direction for the tracer, in the X direction for the tracer, the Y direction for the inertial
particle, and in the X direction for the inertial particle, respectively.

considered in previous numerical works, and the observation in this
study appears that gravity affects inertial particles’ behavior more than
tracer particles.

VI. CONCLUSIONS

First, this study aims to design a novel experimental procedure to
generate a straining deformation in turbulence flow, and second, to
investigate the Lagrangian dynamics of tracer and inertial particles
affected by flow distortion practically in the presence of gravity. The
Lagrangian particle tracking method and particle image velocimetry
approach were employed to extract particle statistics and flow charac-
terizations from the videos recorded by a high-speed camera, respec-
tively. In the first step, the outcome of strain motion measurements
showed that the designed experiment matched the desired state with
remarkable results. The measured strain rate intensively corresponds
to the theoretical mean strain rate and can be used to create a straining
turbulence flow with a different mean strain rate in this approach. The
considerable observation is related to the sensitivity of the conducted
strain rate. The results depict that the high mean strain rate made its
effect faster than the lower mean strain rate on the flow with similar
turbulence intensity. This behavior could be related to large-scale
interactions and how energy transfers to small scales. In the next step,
post-processing on the particle statistics presents us with velocity RMS
and Reynolds-stress. The results illustrate that the geometry of the
flow or distortion affects the inertial particles more extensively than
the tracer particles. The inertial particles in the flow with extreme tur-
bulence intensity have less sensitivity to distortion. It seems the pres-
ence of gravity causes distortion effects to be increased on the
dynamics of the inertial particles. The results of this study can be listed
as follows:

* The strain motion has been affected by both tracer and inertial
particles.

Inertial particles have a more intensive impact from the strain
motion than tracer particles.

For two flow cases with distinct turbulence intensities, there are
observations regarding scale size, leading to some effects on par-
ticle motion.

ARTICLE scitation.org/journal/phf

The results illustrate that the strain motion eventually generates
extra fluctuation, increasing the fluctuation amplitude increased
than without strain.

The Reynolds-stress results represent that they are affected by
the initial condition, strain motion, and history of the turbulence.
Although the inertial particle is heavier than the tracer, it could
be effective by gravity added to the strain motion impact for
these types of particles.
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Abstract—This study presents a deep learning (DL) neural
network hybrid data-driven method that is able to predict tur-
bulence flow velocity field. Recently many studies have reported
the application of recurrent neural network (RNN) methods,
particularly the Long short-term memory (LSTM) for sequential
data. The airflow around the objects and wind speed are the most
presented with different hybrid architecture. In some studies,
the investigated data set in fluid dynamics were generated via
known equations, and they have no random and chaotic behavior.
Data series extracted from Computational Fluid Dynamics (CFD)
have been used in many cases. This work aimed to determine a
method with raw data that could be measured with devices in
the airflow, wind tunnel, water flow in the river, wind speed and
industry application to process in the DL model and predict the
next time steps. This method suggests spatial-temporal data in
time series, which matches the Lagrangian framework in fluid
dynamics. Gated Recurrent Unit (GRU), the next generation of
LSTM, has been employed to create a DL model and forecasting.
Time series data source is from turbulence flow has been
generated in a laboratory and extracted via 2D Lagrangian
Particle Tracking (LPT). This data has been used for the training
model and to validate the prediction in the suggested approach.
The achievement via this method dictates a significant result and
could be developed.

Index Terms—Recurrent Neural Network, Unsteady Flow,
Deep Learning

I. INTRODUCTION

Turbulence is observed in the most natural and artificial
phenomena [1] [2]. Water in the waterfall, airflow in the wind,
smoke from a chimney, and airflow around the objects are
examples from the environment [1]. The industry cases are
the flow in the engine mixing chamber; two working flows
inside the heat exchanger, and airflow around the airplane and
car [1] [3] [4] [5]. In large-scale turbulence, solar flare, oceanic
and atmospheric flow are other giant emanations that influence
our lives [2]. Turbulence flow is chaotic, non-repeatable, and

This work was performed in the Center of Excellence (CoE) Research on
Al and Simulation Based Engineering at Exascale (RAISE) and the EuroCC
projects receiving funding from EU’s Horizon 2020 Rescarch and Innovation
Framework Programme under the grant agreement n0.951733 and no. 951740
respectively.

978-1-6654-8177-9/22/$31.00 ©2022 IEEE

random, and it is well addressed that the statistics aspect of the
flow is applicable [1]. On the other hand, Computational Fluid
Dynamics (CFD) is a leading traditional numerical approach
to dealing with nonlinear fluid dynamics phenomena such as
turbulence flow. Direct Numerical Method and Large Eddy
Simulation are two capable and accurate methods to resolve
the turbulent flow problems. But, from the computational
cost, they are costly. High-performance computation is an
essential factor for all solutions in Direct Numerical Method
and Large Eddy Simulation. Simulation for many types of
turbulence problems is almost impossible on the actual scale
because of the limitation in the computation. Scientists have
efforts to create similar scale problems to natural phenomena.
However, we are still far from solving problems with extensive
size. In many CFD applications, it is required to validate the
solution with empirical data, is an another limitation. These
constraints illustrate a reliable tool is necessary to overcome
the above-called obstacles. Machine learning (ML) based on
Artificial Intelligence has become an important key to encoun-
tering nonlinear phenomena. Deep learning (DL) is a capable
approach in ML and is able to extract the hidden features
from complex and nonlinear dynamic systems [6] [7] [8] [9].
Recurrent neural network (RNN) is a type of neural network
especially appropriate for sequential data such as time series
[6]. An RNN is a neural network composed of an individual
hidden layer with a feedback loop in which the hidden layer
output with the current input is returned to the hidden layer
[6]. RNN networks define the temporal relationship because
of sequential input data, and three weight matrices and two
biases characterize it. RNNs can almost not train sequence
data with long-range temporal dependencies because the van-
ishing gradients problem exists [6]. Long short-term memory
(LSTM) network was developed and suggested in 1995 [10].
LSTM applies a gating structure to control the transients
of the recurrent connectors and can deal with the vanishing
gradient issue. Moreover, it is able to model longer temporal
dependencies rather than standard RNNs [6]. Recently, LSTM
has been employed in many studies in order to model time
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series prediction. The interest in this method has also increased
in the fluid dynamics area. Vinuesa et al. [6] have used LSTM
to predict the turbulence shear flow. Veisi et al. [7] used LSTM
hybrid model prediction for unsteady flows. LSTM Potential
has been led to hybrid models such as convolutional neural net-
work (CNN)-LSTM, Autoencoders-LSTM, and LSTM/RNN
[11]. Gated recurrent unit (GRU) [12] is a variant of LSTM
which has fewer parameters than LSTM, and the training
rate is faster [11]. In GRU, the forget gate and input gate
in LSTM are replaced with only one update gate [11]. GRU
is required fewer data to train the model, therefore gaining a
similar performance in multiple tasks with less computation
[11]. Recently GRU has been employed to forecast wind
speed and predicts electricity demand [12] [13] [14]. Most
fluid flow studies that were applied ML/DL are composed
of data extracted from CFD studies’ known equations. On
the other hand, many works included preliminary steps to
do autoencoder to extract the main features, such as, proper
orthogonal decomposition, dynamic mode decomposition, and
well-known reduced order methods [7] [15] [16] [17]. In
the ML/DL context, there is a capability to determine a
training method with raw data from the Lagrangian framework
velocity field involving spatial and temporal features. In many
applications of industry, research and experiment, it is possible
to measure the velocity field directly or indirectly via devices
such as constant temperature anemometer, flowmeter (and
obtain the velocity), pitot tube, laser doppler anemometry, and
light detection and ranging. This study introduces a method
to use time series data consisting of velocity components and
position in 2D coordinate to train the GRU model and evaluate
the prediction in future time. Hence, this paper is organized
as follows. The applied theory is presented in Section /1. In

statistics, these time series data available and appropriate to
use.

B. Gated Recurrent Unit (GRU)

From the DL method, it is well known that RNNs can
perform prediction for sequence data via LSTM. GRU [19]
is a next-generation determination from LSTM with a bit
distinction in the model architecture. Literature reports that
GRU is comparable in performance is considerably faster to
compute than LSTM and has a streamlined model [20]. GRU
cell that is displayed in Fig. 1, is composed of a hidden state,
reset gate, and update gate. We can control how much of
the previously hidden state might be remembered from the
reset gate. On the other hand, via the update gate, we can
understand how much of the new hidden state is just a copy of
the old hidden state. This architecture in the GRU establishes
two significant features: the reset gate captures short-term
dependencies in sequences, and the update gate receives long-
term dependencies in sequences [19].
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Section I11, the method is introduced. Section IV di
the result, and the conclusions are presented in Section V.

II. THEORY
A. Lagrangian Framework in fluid dynamics

Lagrangian framework is a description of the motion fluid,
involves keeping track of the position vector and velocity
vector of each point of flow which it is called fluid particle
[1] [18]. A fluid particle is a point that moves with the local
fluid velocity, therefor it specifies the position at time t of fluid
particle [16]. The definition of fluid particle mathematically is
(1

x; = xi(t,w0), 1=1,2,3 (1)

Ui = Ui(t, 1 (t, 21,0), 2(t, w2,0), 23(t, 230)), 1 =1,2,3
(2)
where (1) and (2) determines the fluid particle position and
velocity in 3D coordinates respectively. x is the position,
U is the velocity, t is the time and denote i specifies the
vector component. Based on the Lagrangian definition, for
fluid particle there is a time series data which specify a position
and velocity at particular time. Particularly in turbulence
flow which has not known equation and it is investigated in

X

Fig. 1. Gated Recurrent Unit cell; hy—y is hidden state from previous step,
X is current input, k¢ is new hidden state, y; is output, r(t) is reset gate,
z(t) is update gate, g(t) is candidate hidden state, o is sigmoid function, tanh
is hyperbolic tangent function.

III. METHODOLOGY

A. Data-set generated in a laboratory facility

This study uses a data-set from experiments conducted
for turbulence flow investigation [21] [22]. A special tank is
designed to create a turbulence flow via eight impellers in the
corners, and servomotors control the impellers’ speed. The
rotation speed specifies the turbulence intensity of the flow
case. The flow was seeded with tracer particles with median
diameters 8—10 pm and specific gravity g/cm® (hollow
glass). The Stokes number for the seeded particle is less than
one and meets the tracing requirement. Equation 3 describes
the mean flow field (U) in the facility;

(U) = (8w, —28y, S2), ®3)

where -25 is the primary strain rate in the y-dir, and S is
the strain rate for the other two directions, x, y and z are
the particle location. In this work the flow considered in 2D,
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therefore z-dir is not addressed. The straining flow case in
the experiment was created with a mean strain rate 25 =
—4s~1. Equation 3 is based on the laminar flow; however,
we know that velocity fluctuates in the turbulence flow. The
measurement area is equivalent to 24.5 x 24.5 mm? (512
x 512 pixels) located in the tank center, and a high-speed
camera with 10000 frames per second is employed to record
the tracer particle move. Two circular plates were prepared in
the tank and located up and down the study area, and they
were moved toward each other by an actuator to generate a
straining turbulence flow. The data-set included 4000 frames,
and the Lagrangian particle tracking technique was employed
to process the recorded frames and extract the particle motion
feature statistics.
B. Velocity time series data

This study has designed and applied a suggested hybrid
model based on time series vector data for velocity. The spatial
and temporal data extracted from 2D Lagrangian Particle
Tracking. Data is included time, velocity in x and y directions,
and position in x and y coordinates. Therefore, we have
corresponding velocity and position with a specific time in
this time series. In the suggested model, since the velocity is
with two components in the x and y direction, we carried on
the model for every component individually. Hence, the model
predicts the velocity component in both directions and then
could be developed in 3D time-series data. The strain motion
has been conducted in the y-direction and is considered an
effective dominant direction for the flow case behavior; thus,
the prediction model in this work is created for this direction.

C. GRU model

The proposed GRU model is created with data series involv-
ing two velocity components in x and y directions and two-
position coordinates x and y. Every fluid particle at a specified
time has a velocity component, and based on the Lagrangian
view; they are dependent on the time and position. Both
position vectors also function of time and primary position.
The input features are on different scales, and then it is
essential to scale the features. A function is defined to create
time-series data set. The data are split into 80% training and
20% test data set. The GRU model is created with hundred
GRU layers and one Dense layer, and the model is optimized
with an Adam optimizer. In order to evaluate the model, the
mean absolute error (MAE) and coefficient of determination
(R?) are measured.

IV. RESULT

This work applied a recorded data set from an experiment to
create a GRU model. The flow case was a straining turbulence
flow with a specified mean strain rate. In order to assess the
experiment, the processed data investigated the mean strain
rate from the measured data. Since the theoretical mean strain
was 25 = —4s~! in y-direction based on the laminar flow
description, it is well known in the turbulent flow, the velocity
fluctuates, and this affects the measured strain rate. Literature

also has mentioned that the generated strain in the turbulent
flow will create extra fluctuation [2] [5] and could be the
reason to measure a lower means strain rate than the theoretical
amount. Fig 2 presents the measured mean strain rate in the
investigated flow case.

2 ' ' v v
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Fig. 2. The mean strain rate of the generated deformed turbulence flow

is extracted from measured data in the experiment. The mean strain rate
theoretical was 25 = —4s~1 in y-direction and S = 25~ in x-direction
based on laminar flow.

Fig 3 displays the velocity component in the y-direction
measured from the experimental data for the Lagrangian
fluid particles. The mean velocity is expected to increase
approximately linearly, but the turbulence flow velocity field
fluctuates, which makes the velocity behave chaotically and
irregularly. The strain motion was generated in the y-direction,
which is the dominant motion and has much more oscillations
and fluctuations than another direction which makes it difficult
to predict the next time step. This study considered this
velocity data set in y-direction via the GRU model to create
predictions for the next step and evaluate the prediction with
actual available recorded data.

i
s
i
§
z

0 005 01 015 02 025 03 035 04
Time [s]

Fig. 3. The velocity component in the y-direction of the tracked particles is
extracted from the measured data. The strain motion time is recorded in 0.4s.

The explained method in the study is based on the capability
of DL via GRU, which is able to store long-term dependencies.
From the data set 80% used as train data and 20% as test
data. Fig. 4 represents the result of this model that has been
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used to predict the velocity components in the y-direction.
In Fig. 4, the actual data, hidden and covered by train data
and predicted data, dictates the suggested model could make
remarkable forecasting for a future time. For the conducted

1. —RalDita
Train Data

Predicted Data via GRU Model (Test Data)

Target Output (Normalized)

0 50000 100000 150000 200000 270641
Number of Data

Fig. 4. GRU model for turbulence flow velocity in y direction with spatial
temporal features

model, MAE and R? were measured equal to 0.002 and 0.98,
respectively. These measurements determine that the GRU
model can establish a significant prediction for time series
with features that have relationships analogous to described
data in this work that could be seen in many turbulence flow
applications.

V. CONCLUSION

This work aimed to determine a method to use spatial-
temporal features of the Lagrangian framework data in a
turbulent flow to create a prediction model based on DL
authority. In this view, the velocity functions of the position
and time. On the other hand, the position is related to the
time and primary place. DL networks for sequential data have
been developed in subsets in RNNs such as LSTM and GRU.
Turbulence flow is a high dimensional phenomenon, and to
use a feature for LSTM/GRU model, it is essential to figure
out the main features among the high-dimensional data. This
study proposed a GRU model relying on velocity components
and the position of the fluid particles and exclusive of high
dimensionality. Moreover, GRU can predict a time series with
long-term dependencies based on the result presented and the
Lagrangian definition for the velocity field, storing long-term
dependencies is a crucial factor that led to this significant
prediction and matched the actual data in the test. On the
other hand, this method creates predictions for every velocity
component individually, making it applicable for 2D and 3D
fluid flow. The error measurement represented in the evaluation
of this method implies the capability of GRU in this kind of
application and could be developed for long-term forecasting
studies. Since the dominant motion in the considered flow case
is a y-direction, we created a prediction model for the velocity
in the y-direction. The model can develop and perform in other
directions, and it has planned to implement in next works of
our research group.
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Abstract: The subject of this study presents an employed method in deep learning to create a
model and predict the following period of turbulent flow velocity. The applied data in this study
are extracted datasets from simulated turbulent flow in the laboratory with the Taylor microscale
Reynolds numbers in the range of 90 < Rj< 110. The flow has been seeded with tracer particles. The
turbulent intensity of the flow is created and controlled by eight impellers placed in a turbulence
facility. The flow deformation has been conducted via two circular flat plates moving toward each
other in the center of the tank. The Lagrangian particle-tracking method has been applied to measure
the flow features. The data have been processed to extract the flow properties. Since the dataset is
sequential, it is used to train long short-term memory and gated recurrent unit model. The parallel
computing machine DEEP-DAM module from Juelich supercomputer center has been applied to
accelerate the model. The predicted output was assessed and validated by the rest of the data from
the experiment for the following period. The results from this approach display accurate prediction
outcomes that could be developed further for more extensive data documentation and used to assist in
similar applications. The mean average error and R? score range from 0.001-0.002 and 0.9839-0.9873,
respectively, for both models with two distinct training data ratios. Using GPUs increases the LSTM
performance speed more than applications with no GPUs.

Keywords: turbulent flow; Lagrangian framework; unsteady; prediction; deep learning; sequential

1. Introduction

Turbulent flow is a nonlinear and random phenomenon [1-3]. Water flow in a river,
waterfall, airflow passing a wind turbine blade, flow in an engine mixing chamber, smoke
from a chimney, and two working flows inside the heat exchanger are examples of turbulent
flow in natural events and artificial applications [1-5]. The complexity and multiscale
features of turbulent flows make the forecasting of the fluid flow a considerable problem.
There are many previous works using experiments and/or numerical methods of turbulent
flow to investigate and make efforts to forecast flow periods with specified conditions.
However, experiments are costly and, for many applications, could not be performed in a
laboratory environment. Computational methods based on partial differential equations,
i.e., applying a full-order model, are capable of predicting fluid flow accurately but are
computationally costly. High-performance computing is, therefore, essential in those
computational methods, yet we are still far from having computing capability to solve even
moderately sized problems. Thus, there are limitations in computing costs [6].

These restrictions determine a reliable tool is required to overcome the above-mentioned
obstacles. Machine learning based on artificial intelligence has become a pivotal approach
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to encountering nonlinear events. Deep learning networks (DL) applications have recently
been represented as having strong capability to model and forecast phenomena with
unknown patterns. DL is able to extract hidden features from complex and nonlinear
dynamic systems [7,8]. Recurrent neural networks (RNNs) are neural networks appropriate
for sequential datasets, such as time series [7]. An RNN is composed of an individual
hidden layer with a feedback loop in which the hidden layer output with the current input
is returned to the hidden layer [7]. RNNs define the temporal relationship because of
sequential input data and three weight matrices and two biases characterize it. RNNs can
almost not train the sequential data with long-range temporal dependencies because a
vanishing gradients problem exists [7]. Long short-term memory (LSTM) networks were
developed and suggested in 1995 [9], which apply a gating structure to control the recurrent
connectors’ transients and deal with a vanishing gradient issue. Moreover, it is able to
model longer temporal dependencies than standard RNNs [7].

A gated recurrent unit (GRU) is a variant of LSTM, which has fewer parameters than
LSTM, and its training rate is faster [10,11]. In GRU, the forget gate and input gate in LSTM
are replaced with only one update gate [11]. GRU requires fewer data to train the model,
therefore, gaining a similar performance in multiple tasks with less computation [11].
Recently, LSTM has been employed in many studies to model time series prediction.
Interest in this method has also increased in the fluid dynamics area. Vinuesa et al. [7]
have used LSTM to predict a shear turbulence flow. Veisi et al. [8] used LSTM hybrid
model prediction for unsteady flows. LSTM potential has led to hybrid models, such as
convolutional neural networks (CNNs)-LSTM, Autoencoders-LSTM, and LSTM/RNN [11].
Bukka et al. [6] applied a hybrid deep learning prediction model based on a reduced-order
model for unsteady flow. Duru et al. [12] used CNN to predict transonic flow around
the airfoils. GRU has been employed to forecast wind speed and anticipate electricity
demands [10,11].

Most fluid flow studies that applied ML/DL are composed of data extracted from
CFD studies’ known equations. On the other hand, many works include preliminary steps
to autoencoders to extract the main features, such as proper orthogonal decomposition,
dynamic mode decomposition, and well-known reduced-order methods [8,13-15].

The subject of the current study is a novel approach to present a capability in the DL
context to make a training method with raw measured data from the Lagrangian framework
velocity field with non-specified pattern and to predict followed fluid flow period. In many
applications of industry and experiments, it is possible to measure the velocity fields
directly or indirectly via devices, such as a constant temperature anemometer, flowmeter
(and obtain the velocity), pitot tube, laser doppler anemometry, and light detection and
ranging. This study will introduce an application of an empirical dataset from a laboratory
with unknown patterns composed of 2D velocity components and time. LSTM and GRU
have been used to create a prediction model for a strained turbulent flow. In order to
accelerate the deep models’ execution, they were implemented in the DEEP-DAM module
from a parallel computing machine at the Juelich supercomputing center. Hence, this paper
is organized as follows. The applied theory is introduced in Section 2. In Section 3, the data
set from the experiment is explained. Section 4 determines the models used. The results
and discussion are provided in Section 5, and the conclusion is presented in Section 6.

2. Theory
2.1. Fluid Flow in Lagrangian Framework

In turbulent flow, it is well-known what statistical aspects of the flow features are
applicable [1-3]. A Lagrangian framework is an exploration of fluid motion that keeps
track of the velocity vector and displacement vector of each flow point, called a fluid
particle [1,16]. A fluid particle is a point that moves with the local fluid velocity, and,
therefore, it identifies the position at the time ¢ of a fluid particle [16]. The definition of a
fluid particle arithmetically is [1]:
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xi = xi(t,xi0), i=1,2,3 (1)
Ui = Ui(t,x1(t, x1,0), 22(t, x20), x3(t, X30)) (3]

where the fluid particle position and velocity in 3D coordinates is determined by (1) and (2),
respectively, x is the position, U is the velocity, t is the time, and i specifies the vector
component.

Based on the Lagrangian definition, there is time series data for fluid particles that
determine a position and velocity at a specific time. In particular, in turbulent flow, which
has no known equation and is investigated using statistics, a sequential dataset could be
used from the Lagrangian view for the forecasting model. It is a crucial challenge to be
able to have accurate prediction for turbulent flow velocity via an approach that does not
need preprocessing to extract hidden features or reduced order methods [6-8,17-19]. Some
numerical methods due have drawbacks, such as missing features because of dimension
reduction [6-8,17-19]. Based on the above description for the velocity in the Lagrangian
framework, in this study we will apply velocity denotation (2) to train LSTM or GRU model
via velocity component as an input. Then, the model will predict the velocity component
for next period as an output.

This study used the dataset for a strained turbulent flow that has been generated
in a laboratory. Turbulence intensity has been created with the action of impeller rotors
in the corners of a box turbulence facility. The turbulent flow has been strained in the
vertical direction (see Figure 1) by the motion of flat circular plates, as shown in the sketch.
Equation (3) defines the mean velocity field of the flow:

(U) = (Sx, —2Sy,Sz) (3)

where 2S is the primary strain rate in the Y-dir, S is the mean strain rate for the other two
directions, and X, y and z are the particle location. In this work, the flow was considered in
2D, therefore, Z-dir is not addressed.
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Figure 1. A sketch of the straining mechanism and turbulence generation.
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The straining flow case has been created in the experiment with mean strain rate,
25=8sL Equation (3) is based on laminar flow; however, we know that velocity fluctuates
in turbulent flow. Further details on the experimental setup are described in Section 3.

The Stokes number for a seeded particle is calculated to ensure a tracer particle meets
the requirements and specifies whether a particle introduced to the flow will follow the
flow streamline or not. This identification is defined by Equation (4):

st= 2
Ty

(©)]
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where T, is Stokes’ relaxation time. Kolmogorov scale (1, defined in Equation (6)) is based
on the flow quantities before applying the strain. Stokes’ relaxation time 7p, is, in turn,
calculated by Equation (5):
2
o e
P 18u
where p;, is particle density, dp is a spherical particle diameter, and y is the dynamic fluid
viscosity that, in the conducted experiment, was water.

The Stokes number significantly greater than 1 (St > 1) describes particles that are
unaffected by a fluid velocity change and continue their original trajectory; if St < 1, the
particle will follow the fluid’s local velocity. To extract the flow properties, particle image
velocimetry method has been employed and once dissipation rate specified via second-order
longitudinal velocity structure function, Kolmogorov scales were calculated by:

)

1

W= () 0

where v is kinematic viscosity of the fluid, 7, is the Kolmogorov’s time scale, and ¢ is
dissipation rate evaluated via second-order longitudinal velocity structure function.

The Stokes number for the tracer particles used in the performed experiment are in
the range of 0.0063-0.0094.

2.2. LSTM and GRU Architecture

The subject of this study is using the velocity components U, and uy, according to
definition (2) as sequential input training data for LSTM or GRU model. The model for
each component is separated. Even though the velocity is a profound feature in the flow
field description and is based on the Lagrangian perspective, it is spatiotemporal; therefore,
it carries many flow effects, such as fluctuation, strain, turbulence intensity, and geometry
boundary [1-5]. This is the capital concept of this novel proposed approach.

Since the flow velocity is spatial-temporal and is affected via the above-nominated
effects, the LSTM or GRU model is trained and learns how to forecast the next period
according to received effects. The predicted flow velocity via LSTM or GRU model is
validated by test data in the x and y components separately.

Recurrent neural networks are deep network models that can extract sequential data
dynamics through recurrent connections. They can be considered as cycles in the network of
nodes. Although gradient contraction in recurrent neural networks seems to help exploding
gradients, handling vanishing gradients requires a more precise solution [20-22]. One of
the first and most successful techniques to solve the vanishing problems was presented in
the long short-term memory model [9].

In simple recurrent neural networks, long-term memory is in the form of weights, and
the weights change gradually during the training and encode general knowledge about
the data. Additionally, these networks have short-term memory, which is in the form of
fast transient activations and is continuously transferred from one node to another. In the
LSTM model, an intermediate storage type is defined through a memory cell (see Figure 2).
A memory cell is a composite unit that consists of simpler nodes and acts through a specific
connectivity pattern by imbedding new multiplicative nodes.

Each memory cell is composed of an internal state and several multiplicative gates,
which control the data as follows: (i) a given input should affect the internal state (the input
gate) or not, (ii) the internal state should drive to 0 (the forget gate), (iii) a given neuron’s
internal state should be able to impact the cell output (the output gate).

A significant distinction between standard RNNs and LSTM is a hidden state gate
determined in LSTM. This state provides an appropriate mechanism for when a hidden
state should be updated and when it should be reset. These mechanisms are learned, and
they resolve the known concerns from standard RNNs. For example, if the first token has a
major significance, it will learn not to update the hidden state after the first perception. In
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addition, it will learn to omit incoherent temporary perceptions. Eventually, it will learn to
reset the hidden state whenever it is essential.
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Figure 2. Long short-term memory cell; hi(; ;) is hidden state from previous step, X; is current

input, () is new hidden state, c(; 1) is memory cell internal state, c(;) is new memory cell internal
state, f{;) is forget gate, i) is input gate, d () is input node, o is output gate, o is sigmoid function,
tanh is hyperbolic tangent function; descriptions are based on [9].

GRU is a next-generation determination from LSTM with a bit distinction in the model
architecture [23]. Literature reports that GRU is comparable in performance is considerably
faster to compute than LSTM and has a streamlined model [17,19,24]. The GRU cell that is
displayed in Figure 3 is composed of a hidden state, reset gate, and update gate. We can
control how much of the previously hidden state might be remembered from the reset gate.
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Figure 3. Gated recurrent unit cell; (;_;) is hidden state from previous step, X(;) is current input,
h) is new hidden state, y ;) is output, r(;) is reset gate, z;) is update gate, g(;) is candidate hidden
state, o is sigmoid function, tanh is hyperbolic tangent function [18].

On the other hand, via the update gate, we can understand how much of the new
hidden state is just a copy of the old hidden state. This architecture in the GRU establishes
two significant features: the reset gate captures short-term dependencies in sequences and
the update gate receives long-term dependencies in sequences [23].

3. Experiment and Dataset
3.1. Apparatus and Experiment Setup

The experiment has been performed at the Laboratory of Fundamental Turbulence
Research (LFTR) at Reykjavik University and the applied facility is shown in Figure 4. The
water tank (60 cm x 60 cm x 60 cm) has 20 mm thick acrylic walls (transparent Plexiglas
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XT) that enables optical access to the data. The eight corners of the box have a triangular
shape, while the top and the bottom are nearly circular. An aluminum frame holds the
components of the turbulence box together. The turbulence has been generated by eight
impellers driven by independently controlled servo motors (Lenz-model: MCS), which
were mounted at the eight corners of the cube and point to the center of the tank. The
rotation rate of each servo motor is adjustable over a range of 100-4500 rpm at a gearing
rate of 0.075. For the used dataset in this study the speed is 1000 rpm. The motion-view
filtering software that came with these motors was used to monitor and set up the suited
speed of each impeller. The degassing system was used to remove bubbles and solid dust
from the water before starting the experiment. The tank has been specifically designed for
studying turbulence (Lagrangian and Eulerian motion at moderate Reynolds numbers).
The flow facility produces a nearly stationary homogeneous isotropic turbulence near the
center of the tank, where measurements have been performed.

Figure 4. The turbulence flow facility at the Laboratory of Fundamental Turbulence Research,
Reykjavik University [18,25,26].

Circular plates, shown at the top and bottom (see Figure 1), generate the strain motions; a
linear actuator drove each plate with a piston rod (Parker, model: ETV32M10PA47]MA400A).
When they are moved towards the center with a pre-described rate, a nearly constant strain
rate is ensured in the fluid. Spherical and hollow glass beads with a median diameter
of 8-10 pm and a specific gravity of 1.1 g/cm? seed the flow. The recording area is
located in the center of the tank with a size of 24.5 x 24.5 mm? (see Figure 1). The
particle image velocimetry technique is applied and extracts the flow properties before
strain deformation. Thus, via a second-order longitudinal velocity structure function,
the turbulent flow dissipation rate is obtained; therefore, the Kolmogorov time scale is
calculated based on Equation (6) and a Stokes number is obtained from Equation (4).
The Taylor microscale Reynolds number is achieved in the range of 90 < R, < 110 in the
performed experiment. For the dataset used, the strain rate produced by the two above-
described circular plates is 8 s7!, and the Lagrangian particle-tracking techniques are
applied to inscribe the data. A high-speed camera used as a detection system was set at
10 kHz (10,000 fps) for well-resolved particle velocity statistics. This very high temporal
resolution (0.1-0.2 ms) is considerably smaller than the Kolmogorov time 7, (35-99 ms) of
the smallest eddies present in the flow; therefore, the properties of the dissipation range in
the flow are resolved. However, in contrast to the previous numerical works, this empirical
study considers the velocity field explored by tracer particles in the presence of gravity.
Each video has 2000 frames, and to collect sufficient statistical data, the strain motion was
repeated 20 times to record 20 videos. All videos together have created 40,000 frames. Each
of the videos was statistically independent, as the flow is given a generous time to recover
to near isotropy between different strokes.
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3.2. Sequential Velocity Dataset

The recorded videos from the experiment are processed via programming based on
Lagrangian particle-tracking method and are not subject of this study, and the detail can
be seen in [25,26]. Each particle has vector of velocity and displacement during the strain
motion. According to denotation (1) and (2) in the Lagrangian view, these statistics could be
used to investigate the turbulent flow. As one of the reviewers mentioned, some statistical
features can be calculated from extracted data from the experiment [27]. In this study,
however, our focus is on velocity because it is a feature that can be measured in many
applications, and its prediction model can be helpful. For example, wind speed is a crucial
issue in wind energy production; it is, therefore, essential to have a prediction model for
speed itself so producers can forecast the power production in the following period, long
or short term.

The dataset of this study composed of 2,862,119 tracking points for every vector is
as follows:

- Velocity component in y direction;
- Velocity component in x direction;
- Time vector specifies the time t for every tracking point.

These tracking points consist of all particles’ velocity vectors achieved via 20 recordings,
and every video recording includes several particles. Moreover, it is expected to observe
several tracking lines, as it is presented for the velocity in the results in Section 5; every
tracking line specifies a particle.

Although the dataset is sequential, we split it into training data and test data for
the first model, 80% and 20%, respectively, and for the second model, 60% and 40%,
proportionally. Therefore, we assessed and validated the velocity prediction of the following
period with the test data for LSTM and GRU models.

4. LSTM and GRU Model Set Up

We coded the models in Python and used the TensorFlow platform [28,29]. The LSTM
model is set up with 100 layers and one dense layer, and Adam is specified as an optimizer.
The GRU model has also been set up with the same layers and optimizer. The dataset
was normalized by MinMaxScaler transformation [30]. The MinMaxScaler is a type of
scaler that scales the minimum and maximum values to be 0 and 1, respectively [30].
Since the modeling was implemented on the DEEP-DAM module [31] parallel computing
machine, we have applied a distributed strategy application programming interface from
the TensorFlow platform abstraction to distribute the training across multiple custom
training loops [32]. The strategy has been set up with one to four GPUs on one node. The
result of the computing and the models’ performance distinction are reported in Section 5.

5. Result and Discussion
5.1. Meseured Turbulent Flow Velocity

As is described in Section 3, from the experiments, based on the Lagrangian-particle
tracking, the recorded videos included velocity vectors for particles moving in the flow
velocity field. Figures 5 and 6 illustrate the velocity component in the y and x directions,
respectively. Since the initial strain rate was generated in the flow in the y direction, as
was expected, the velocity component in the y direction has an inclined average velocity
relative to the velocity in the x direction. In this study, these extracted data have been used
to train LSTM and GRU with a ratio of the training data and assess the prediction with the
test data proportion. According to Equation (3), which defines the velocity field for laminar
flow, it can be seen in Figures 5 and 6 that the turbulent flow behaves differently than the
laminar equation because of velocity fluctuations.
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Figure 5. Velocity component in y direction from twenty videos, which involves 40,000 frames
extracted via Lagrangian-particle tracking technique.
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Figure 6. Velocity component in x direction from twenty videos, which involves 40,000 frames

extracted via Lagrangian-particle tracking technique.

5.2. Turbulent Flow Velocity Predicition via LSTM and GRU

Figures 7-10 display the velocity prediction via GRU and LSTM model for the y and the
x directions. The models trained and assessed with two distinct data ratios. In the first model,
80% of the data have applied as training and 20% rest of the dataset validated the prediction.
In second model, 60% of the training data have been applied and 40% used as test data.

08 . . 08
o Actual Data

0. ® Training Data, 80%

o Predicted Data, GRU Model

o Actual Data
« Training Data, 80%

Velocity Component, y Direction [m/s]

08 8
NS > 3 NS RIS
FFEE PP < FTEFE IS

Time [s] Time [s]

Figure 7. Prediction of velocity component in the y direction for a strained turbulent flow with mean
strain rate 8 s~!, GRU model on the left-hand side, and LSTM model on the right-hand side. Training
data are 80% and test data 20%.
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Figure 8. Prediction of velocity component in the y direction for a strained turbulent flow with mean
strain rate 8 s~!, GRU model on the left-hand side, and LSTM model on the right-hand side. Training
data are 60% and test data 40%.
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Figure 9. Prediction of velocity component in the x direction for a strained turbulent flow with mean
strain rate 8 s~!, GRU model on the left-hand side, and LSTM model on the right-hand side. Training
data are 80% and test data 20%.
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Figure 10. Prediction of velocity component in the x direction for a strained turbulent flow with mean
strain rate 8 s~1, GRU model on the left-hand side, and LSTM model on the right hand side. Training
data are 60% and test data 40%.
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LSTM and GRU models have provided accurate predictions of a strained turbulent
flow velocity with no known pattern in theory. We must notice that the period of the
experiment and data used in this study are short, but proportionally the prediction model
could be used for similar velocity field application.

Figures 7 and 8 represent the velocity in y direction, forecasting 80% training and
60% training. As can be seen, the prediction section is an impressive match for the
test data for LSTM and GRU model with two training ratios. The mean average error
(MAE) = 0.001-0.002 and R? score is in range of 0.983-0.987 for both models.

Figures 9 and 10 illustrate the prediction of the velocity in the x direction with two
different training data ratios. The MAE and R? for x direction forecasting has the same
range and with an outstanding match.

The result of the velocity prediction of the turbulent flow represents the capability of
LSTM and GRU models, which can forecast unknown sequential data. The Lagrangian
view provides temporal data, and it appears possible to apply this approach in similar
turbulent flow with a longer period.

5.3. LSTM and GRU Models Performance

It has been reported in the literature that the GRU model has faster performance than
the LSTM model [10,11]. For 80% training, GRU is 8-12% faster than LSTM and for 60%
training it is 5-10% faster. However, when the number of GPU increases, LSTM performs
modeling faster than GRU, which can be explained by the application of GPUs that provides
much more memory for the LSTM. We investigated the performance of LSTM and GRU
on DEEP-DAM module on one node with four GPUs. For all models in this study, LSTM
executed 7-8% faster than the GRU model. Table 1 shows the result of this evaluation.

Table 1. Evaluation of the LSTM and the GRU model on DEEP-DAM module on one node and
several GPUs.

Training Proportion Computing Module Performance LSTM GRU
Scalability 1 112
1node, 1 GPU MAE 0.001 0.002
R? score 0.984 0984
80% —
Scalability 3.45 3.20
1 node, 4 GPUs MAE 0.002 0.002
R? score 0.983 0.983
Scalability 1 1.08
1node, 1 GPU MAE 0.0015 0.0015
R? score 0985 0987
60%
Scalability 3.61 3.36
1 node, 4 GPUs MAE 0.002 0.002
R? score 0.985 0.987

6. Conclusions

The subject of this study was using LSTM and GRU models to provide a prediction
for distortion turbulent flow performed in a laboratory with specific turbulent intensity
and mean strain rate in the primary direction. For two training efforts, the dataset was split
into 80% first and secondly 60%. Every ratio of training in the rest of the data was applied
for test and prediction validation. LSTM and GRU models were applied and executed on
the DEEP-DAM module of parallel computing machine at Juelich supercomputing center.
Two different GPU set ups were applied to assess the model’s performance.
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The result of this study shows that LSTM and GRU models can predict the straining
turbulence flow appropriately and match in quality and quantity. The mean average
error (MAE) = 0.001-0.002 and R? score is in the range of 0.983-0.987 for both models.
Without GPU, the GRU model has faster performance than the LSTM and, with less
training ratio (60%), can provide prediction with the same performance of training with
80%. Nevertheless, we must notice the period of the dataset used was short, so the forecast
was also brief. However, with GPUs set up, LSTM gets faster performance than GRU,
which is related to GPUs memory, which strengthens the LSTM memory.

In many applications of fluid dynamics, there is a possibility to collect the velocity field
data in the Lagrangian framework in which data are sequential. It seems this advantage
of the Lagrangian view could be applied to predict the velocity field via such LSTM and
GRU models.
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ABSTRACT

Turbulent flow is a complex and vital phenomenon in fluid dynamics, as it is the most common type of flow in both natural and artificial
systems. Traditional methods of studying turbulent flow, such as computational fluid dynamics and experiments, have limitations such as
high computational costs, experiment costs, and restricted problem scales and sizes. Recently, artificial intelligence has provided a new
avenue for examining turbulent flow, which can help improve our understanding of its flow features and physics in various applications.
Strained turbulent flow, which occurs in the presence of gravity in situations such as combustion chambers and shear flow, is one such case.
This study proposes a novel data-driven transformer model to predict the velocity field of turbulent flow, building on the success of this deep
sequential learning technique in areas such as language translation and music. The present study applied this model to experimental work by
Hassanian et al., who studied distorted turbulent flow with a specific range of Taylor microscale Reynolds numbers 100 < Re; < 120. The
flow underwent a vertical mean strain rate of 85! in the presence of gravity. The Lagrangian particle tracking technique recorded every
tracer particle’s velocity field and displacement. Using this dataset, the transformer model was trained with different ratios of data and used
to predict the velocity of the following period. The model’s predictions significantly matched the experimental test data, with a mean absolute
error of 0.002-0.003 and an R? score of 0.98. Furthermore, the model demonstrated its ability to maintain high predictive performance with
less training data, showcasing its potential to predict future turbulent flow velocity with fewer computational resources. To assess the model,
it has been compared to the long short-term memory and gated recurrent units model. High-performance computing machines, such as
JUWELS-Devel BOOSTER at the Juelich Supercomputing Center, were used to train and run the model for inference.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (hiip:
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0157897
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I. INTRODUCTION

In fluid dynamics and physics, turbulent flow is a complex prob-
lem." Turbulent flow is a nonlinear and high-dimensional phenome-
non,” and it is commonly seen in industrial and natural applications.”
In addition, the universe is composed of turbulent and unsteady com-
ponents.” Thus, there is a tremendous interest in studying turbulent
flow. In this study, experimental data from Hassanian ef al. work" are
applied from the Lagrangian particle tracking technique for tracer par-
ticle seeded a turbulent deformation flow with a specific mean strain
rate and a particular range of Taylor microscale Reynolds numbers.

Turbulent flow with deformation can be observed in various scenarios,
including leading-edge erosion in compressors and turbines,” combus-
tion in internal engines, and particle interaction in mixing chambers."
It can also occur in the external flow over an airfoil and in the internal
flow of pipes with variable cross sections."

The prior applied solution in turbulent flow has been experi-
mented,” and it is still the most robust way.” However, designing and
conducting experiments is expensive in the case of most natural and
industrial flow studies because of their dimensions and scales, leading
to constraints and making them even more often impossible to
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perform.’ The most known numerical approach to solving turbulent
flow problems is the computational fluid dynamics (CFD) method.™”
In CFD, the numerical approaches can be broadly classified into three
categories based on the accuracy vs computation time: Reynolds aver-
aged Navier Stokes (RANS), large eddy simulation (LES), and direct
numerical simulation (DNS)."" RANS is applied widely in the industry
and provides an average solution, not an exact one."" LES solves the
problem with better accuracy than RANS, but weaker than DNS, and
consequently, DNS proposes the exact answer.”'" LES and DNS suffer
cost computation, and the computation cost proli depending on
the problem size.” In this term, to implement "LES and DN, it is essen-
tial to apply high-performance computing.” Despite development in
parallel computing, this issue limits these two solver applications. It
must be noted in most CFD solutions, validating the results via experi-
ment plays a crucial role’ Accordingly, to overcome above-
mentioned obstacles, discovering and using an alternative method to
provide the possibility to study the turbulent flow widely is an essential
matter. Deep learning (DL) has recently been used broadly, proving
remarkable capability in fluid dynamics."” To analyze turbulent flow
in the Lagrangian framework, both spatial and temporal perspectives
are crucial to identify flow characteristics in the future period. Among
the various deep learning techniques, sequential architectures such as
long short-term memory (LSTM) and combinations of convolutional
neural networks (CNN) that cover the temporal perspective have
proved to be effective models for resolving or predicting turbulent
flow issues. It is well addressed that the statistics of turbulent flow are
applicable,"” and they are sequence features based on the Lagrangian
framework. Obviously, as literature has noted, LSTM variants are an
excellent way for sequential datasets.” CNN compositions for sequen-
tial data require a large dataset to train, and it has several layers, which
leads to a lot of computing time."

DL methods involve semi-supervised and unsupervised learn-
ing."" In semi-supervised learning, the target has no label, and in unsu-
pervised learning, the target pattern must be understood and extracted
by the model."” The main necessity in deep learning lies in the input
data used to train the model. In the realm of fluid dynamics, obtaining
an accurate dataset can be achieved through experiments and DNS.
Zhou et al.'* applied a surrogate model based on CNN and higher-
order dynamic mode decomposition to predict the unsteady fluid force
time history for twin tandem cylinders. An unsupervised machine
learning Gaussian mixture model for the detection of viscous-
dominated and turbulent regions has been proposed by Otmani
et al."” Salehipour et al."* applied a DL model to discover a generic
parameterization of diapycnal mixing, Raissi et al.'” employed a DL
model for the prediction of the lift and drag forces on the vortex struc-
ture. Kim et al.”’ presented an unsupervised learning model that can
be trained with unpaired turbulence data for super-resolution recon-
struction. Yousif et al.”' proposed a DL method composed of a convo-
lutional auto-encoder and LSTM for generating turbulent inflow
conditions. Lee et al.”* determined a data-driven deep learning model
to predict unsteady flow over a circular cylinder. Hassanian et al.”’
applied LSTM variants to predict a deformed turbulent flow velocity
field. Eivazi et al”' presented a physics-informed neural network
application for solving RANS equations. Duru et al.”" represents an
application of DL to forecast the transonic flow around airfoils. Bukka
et al”® defined a hybrid DL model to predict unsteady flows. Most
fluid flow studies that applied DL use data extracted from CFD

ARTICLE

computations.”” Furthermore, most works included preprocessing
steps to identify the dominant features, such as proper orthogonal
decomposition or dynamic mode decomposition.'” Recently, LSTM
and GRU models are used to predict a turbulent flow with only tem-
poral features.””** Based on above-mentioned terms, it is essential to
correspond the DL model to turbulent flow with these features:

Predicting turbulent flow with minimum training data that are
possible to generate for the study case via DNS or experiment.
The DL model training cost does not grow in relation to the size
of the data.

The DL model is able to extract the dominant feature from avail-
able data.

The DL model performs reliably in a broad range of high
Reynolds numbers.

Recently, transformer model from the attention mechanism rep-
resents the remarkable capability to simulate and forecast sequennal
datasets.””” This study aims to apply the transformer model”’ in a
novel data-driven approach and assess it based on the above items. A
transformer is a DL model based on encoder-decoder layers, and it
processes the data through an attention mechanism.” It is used widely
in language translation.”’ The dmmgmshmg chamctenstlc of the
Transformer is its archi which i the use of
recurrence and convolutions.” This intrinsic feature enables the trans-
former model to be highly parallelizable, resulting in sxgmﬁcantly
reduced training time and computational requirements.” Previous
recurrent models encounter a sequence of hidden states as a function
of previous states and input, and this sequential nature impedes paral-
lelization with training examples. In addition, the attention mecha-
nism allows modeling of depende11c1es no matter how far apart the
inputs or outputs sequence are.”””

In this study, the proposed transformer model can be effectively
utilized to analyze the strained turbulent flow cases mentioned earlier,
offering valuable insights into the physical properties of turbulent
flow. This enhanced understanding has wide-ranging applications in
both industrial and natural settings. The dataset comprises two com-
ponents: the velocity of each individual particle and the corresponding
time recorded during the experiment. A subset of the dataset is
employed to train the transformer model, while the remaining data
are used to test the model's predictions and forecast the flow velocity
for subsequent periods. Hence, this paper is organized as follows; the
theory is described in Sec. II. The methodology and setup are pre-
sented in Sec. I1I. The results and conclusions are represented in
Secs. 1V and V, respectively.

Il. THEORY

This study designs and proposes a transformer model in a data-
driven approach using experimental turbulent flow data.” In Secs. IT A
and B, first, the applied turbulent flow theory is described, and then,
the transformer model architectures are explored.

A. Turbulent flow and Lagrangian particle tracking

The data used are from turbulent flow conducted in a laboratory,
and details can be found in the original work." The flow has a Taylor
microscale in the range of 100 < Re; < 120. The flow underwent
strain deformation with a specific mean rate of 85! in the y direction.
Figure 1 displays a sketch of the generated flow. The experiment was
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tracer particles following
the streamlines

-4

FIG. 1. Sketch of the generated turbulent flow: the particle size is for visualization
in the figure, and it is not the actual scale.

conducted in the presence of gravity. The flow was seeded by tracer
particles with median diameters 8-10um and specific gravity
1.1g/cm? (hollow glass) to extract the flow features. The Lagrangian
particle tracking technique based on the work of Ouelette ef al.”’ was
employed to record the tracer particles’ movement via the high-speed
camera in 2D view. The original work assessed the tracer particle based
on Stokes number to ensure that the particle track is following
the flow streamlines. Stokes number St is an identification when it is
St < 1 for a particle, and it proves the particle pathline corresponding
to the flow streamlines. The Stokes number for seeded particles has
been reported in the range of 0.00632-0.01807." Thus, the measured
data included velocity components in the x and y directions, location
in the x and y coordinates, and corresponding time  for every moment
measured. The data were recorded with 10000 frames per second
(10kHz) in the period of 0.2 5. From the Lagrangian perspective, the
velocity of a fluid particle is defined by”

xi = xi(t.xi0), 1)
Ui = Ui(t,x(t, x10), X2, x20), %3 (8, X30)) 2

where the fluid particle position and velocity in 3D coordinates are
determined by notations 1 and 2, respectively, x is the position, U is
the velocity, ¢ is the time, and i specifies the vector component. In this
work, data were measured in 2D; therefore, the 3rd dimension has not
been addressed.

This study applies a data-driven approach based on the above-
described dataset. Since turbulent flow is a complex concept and is a
high-dimensional phenomenon, the primary of the DL model applica-
tion is to discover the dominant feature to be able to predict the fol-
lowing periods of the target segments. In this work, the available data
consist of velocity and location in corresponding time. The turbulent
flow is affected by the external mean strain rate and has deformed. In
addition, the experiment was conducted in the presence of gravity,
and its effect is unknown from previous studies.” In order to specify
the input data, this study proposes a novel approach: the velocity com-
ponents in sequence feeding the model as input and training the
model. This design is based on the concept that velocity in turbulent

ARTICLE ‘ pubs.aip.org/aip/pof

flow is considerable, and it is attained and carries the most properties
of turbulent flow. Moreover, the model gains training for each velocity
component individually in the x and y directions. This configuration
allows the model to be used with 3D components and without limits
in flow dimensions.

The superiority of this proposed approach is that it employs raw
measured velocity datasets without preprocessing to specify the domi-
nant feature or make the dimensional reduction. The turbulent flow
velocity could be measured in many industries and natural applica-
tions via available devices.

B. Transformer and attention mechanism architecture

The transformer is a DL network composed of encoder-decoder
architecture.”” The input data feed the encoder layers and generate the
output via the decoder.” The mechanism of this process has several
steps. The number of encoder layers must be equal to the decoder layers.
In order to specify the input sequence and distance, positional embed-
ding is added to the input vectors. The positional embedded input vec-
tors feed the first encoding layer, and the output of the previous encoder
layer provides the successive layers. Every encoder layer is broken down
into two sublayers. The first encoder inputs stream through a multi-
head attention sublayer. In a multi-head sublayer, all inputs’ dependen-
cies are considered to create the weight matrices. The next step is the
outputs from the multi-head sublayer stream to the feed-forward sub-
layer. Between these sublayers, there is an Add&Norm intermediate
sublayer, which adds the inputs of the multi-head sublayer to its input
and normalizes them. In the feed-forward sublayer, the data are inde-
pendently applied to each position. Thus in the feed-forward sublayer,
data can process in parallel and independently. The outputs from the
feed-forward sublayer, in the same manner, should pass the
Add&Norm intermediate sublayer. Consequently, the data have been
proceeded into an encoder layer and then flowed into the next encoder
layer. The number of the encoder layers have no specific and magic
numbers,” and they must be resolved and determined in the architec-
ture design for every problem. When the first transformer architecture
was born,”” it was designed with only six encoder-decoder layers with
notable achievement. This feature of the transformer architecture men-
tions a remarkable capability to model sequential data problems with
fewer layers. Reducing the number of layers in deep learning models
could lead to less computing.

When the data cross through all encoder layers, then they will be
encoded data flow to decoder layers to embed the outputs. The
decoder layer consists of two multi-head and feed-forward sublayers
that do the same as the encoder layer and are located after a masked
sublayer. The first sublayer in the decoder, as a masked multi-head
sublayer, makes a masking layer for the embedded outputs in this way
that it only depends on the earlier data. It masks the next sequence of
data and avoids their effects. When passed the Add&Norm intermedi-
ate sublayer, the output from the masked multi-head flows through
the multi-head sublayer. Training the model in the encoding layers
creates three weight matrices: Query, Key, and Value. Key and Value
matrices from the latter encoder feed the multi-head sublayers of
decoder layers directly. However, the multi-head sublayer of every
encoder layer gains the Query matrix from the earlier masked sub-
layer. The following steps in decoder layers are similar to encoder
layers. Consequently, the output goes through linear and softmax
layers from the last decoder layer. The linear layer is a fully connected
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neural network that converts the vector created by the stack of a decoder
to a much larger vector called a logit vector. Then, softmax turns the
scores from linear vector to probability (all positive, all add up to 1.0),
and the cell with the highest probability is chosen as the output for this
time step. This study applied a transformer model with four encoder—
decoder layers, and its architecture is displayed in Fig. 2. This study uses
the sequential velocity vector as input and is processed through a deter-
mined transformer encoder-decoder to train and predict the following
velocity. To measure the model error of the prediction, this study
applied to mean absolute error (MAE) and the R? score. These two met-
ric measurements are defined by the following equations: "

1 N
MAE:NZ\M—S,,-L 3)
i=1
N
> (s
R=1-1— (4)

> i —sn)®

=1

where s, is the actual measured data, 5; , is the predicted data, s, is
the mean of the actual data, i refer to the corresponding time (or vec-
tor array number), and N is the number of the test data.

Ill. METHODOLOGY

In this section, the design setup of the transformer model is
explored, and then, the experimental data from the turbulent flow are
described.

Output Probabilities

Encoder Setup

Positional
Encoding
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A. Transformer model tuning

The model is coded in Python and uses the TensorFlow plat-
form.”" The transformer model is set up with 4 encoder and
decoder layers, which shows the attention mechanism ability and
distinction of the transformer model from other sequential architec-
ture. This study has tuned the transformer model with the optimum
layers number to present the best result. Indeed, it is possible to
build a transformer model with more layers. However, the subject of
this work applies an optimum model with a minimum layer number.
It must be noted that the primary transformer model, when
invented, only had six encoder-decoder.”” Adam is specified as an
optimizer.'* The dataset was normalized by MinMaxScaler transfor-
mation."’ The MinMaxScaler is a type of scaler that scales the mini-
mum and maximum values to be 0 and 1, respectively.”’ Since the

deling was impl d on the DevelB module’’ from
Juwels parallel computing machine, we have applied a distributed
strategy application programing interface from the TensorFlow plat-
form abstraction to distribute the training across multiple custom
training loops."” The strategy has been set up with four GPUs
(Graphics processing units) on one node.

B. Experimental turbulent flow velocity dataset

Each particle has a vector of velocity and displacement during
the strain motion. This study proposes a transformer data-driven
model for the sequence dataset relying on the velocity. The dataset of
this study composed of 2862,119 tracking points for every vector is as
follows:

Decoder Setup

FIG. 2. Transformer model architecture
with four encoder—decoder layers.

Positional
Encoding
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* Velocity component in the y direction
* Velocity component in the x direction
* Time vector specifies the time ¢ for every tracking point

These tracking points consist of all particles’ velocity vectors.
Moreover, it is expected to observe several tracking lines, as it is pre-
sented for the velocity in the results in Sec. IV; every tracking line
specifies a particle. Although the dataset is sequential, it is split into
training data and test data for the first model, 80% and 20%, respec-
tively, and for the second model, 60% and 40%, proportionally.
Therefore, we assessed the velocity prediction of the following period
with the test data for the transformer model.

IV. RESULTS AND DISCUSSION

In this section, the achieved results from the proposed trans-
former model to forecast the velocity field in a turbulent flow are dis-
played and discussed. First, the visualization of the measured velocity
field will be presented, obtained by the Lagrangian particle tracking.

A. Actual measured velocity

The experimental data from the original work" have been applied
to the Lagrangian particle tracking techniques. The recorded data
involve the velocity vectors in two directions of the x and y. Figures 3
and 4 are presentations of the velocity in the period of the experiment.
Accordingly, the turbulent flow underwent a deformation in the y
direction, and it is obvious that the velocity fluctuates much more in
the y direction than in other directions. It has been noted in the litera-
ture that deformation leads to extra fluctuations in a turbulent flow."”
In addition, the velocity in the y orientation gains a slope in the mean
velocity, which is caused by the mean strain rate value.”" These two
datasets of the velocity fed the transformer model in this study with
different training portions, and the observations are reported in the
next subsection. For flow with 3D measurement, the third velocity
direction will be available and can be performed the same as these two
velocity components.

B. Transformer model velocity prediction

The transformer model is trained for each velocity component
individually, for the direction of the y once and again the direction of
the x. The model has been assessed with two training ratios: start with
80% and then 60% training, and the rest of the data portion has tested

U o)
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FIG. 4. The measured velocity component in the x direction U, via Lagrangian par-
ticle tracking technique during the deformation.
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01
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FIG. 5. The prediction of the velocity in the y direction U, by the proposed trans-
former model with 80% training data and 20% test data.

the prediction and measured the metric error. Figures 5 and 6 display
the transformer model velocity prediction in the y and the x, respec-
tively, which has 80% training data, and 20% are used to test the veloc-
ity forecasting. The mean absolute error (MAE) and R” score 0.002
and 0.98, respectively. In order to evaluate the transformer model
capability with less training, the model again trained with 60% of the
data, and 40% are employed for the test. In Figs. 7 and &, the outcome
of the second transformer model training in the y and the x orientation

| mis]

v
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Traiing dat: 0% (Magenta points)
Predicted dats, Transformer Model (Cyan paints)
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FIG. 3. The measured velocity component in the y direction U, via Lagrangian par-
ticle tracking technique during the deformation.
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FIG. 6. The prediction of the velocity in the x direction U, by the proposed trans-
former model with 80% training data and 20% test data.

Phys. Fluids 35, 075118 (2023); doi: 10.1063/5.0157897
© Author(s) 2023

35, 075118-5

81188190 $20Z UKW L0



Physics of Fluids

05 . . — ~ - -

1 data (Red paints)
ing dats: 60 (Blue poinis)
cted data, Transformer Model (Green points)

0 o oo 006 008 01 02 om0l 01 02
Time Is]

FIG. 7. The prediction of the velocity in the y direction U, by the proposed trans-
former model with 60% training data and 40% test data.

is illustrated, respectively. With less training data, the MAE is 0.003,
and the R score is 0.98.

It must be noted the applied data from a turbulent flow with
identified Taylor microscale Reynolds number range underwent defor-
mation with a specific rate, and the experiment was conducted in the
presence of gravity. In this proposed transformer model, training data
did not have any direct information regarding the turbulent intensity,
strain rate, and gravity effects. This is the superiority of the trans-
former model that can extract the dominant feature and its dependen-
cies. Moreover, in this model, the study only applied the velocity
vector as an inherent flow feature, which carried the flow properties,
and can transfer these crucial features to the model and predict the
next period of the turbulent flow. The predicted velocity field by the
transformer model remarkably matches the actual available data based
on the MAE and the R’ score.

C. Sequential dataset and transformer model

To evaluate the transformer model as an attention mechanism in
comparison to well-established sequential deep learning models, its
performance is compared to LSTM and GRU models utilized in previ-
ous studies with similar datasets, focusing on physical properties and
size.”’ Table | presents the results, showcasing that the transformer
model achieves comparable mean absolute error (MAE), R* scores,
and training time in predicting the velocity of strained turbulent flow

 mis]
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FIG. 8. The prediction of the velocity in the x direction U, by the proposed trans-
former model with 60% training data and 40% test data.
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TABLE 1. To assess the capability of the transformer model as a mechanism for
attention, a comparison is made between its performance and that of long short-term
memory (LSTM)* and gated recurrent units (GRU)** from previous studies with sim-
ilar datasets.

Training ratio Performance LSTM  GRU  Transformer

80% MAE 0.002  0.002 0.002
R score 098 098 0.98

Training time (s) 295 318 301
60% MAE 0.002  0.002 0.003
R score 098 098 0.98

Training time (s) 214 229 219

when compared to LSTM and GRU models. The LSTM and GRU
models in Table I utilized identical training and test ratios as the trans-
former model employed in this study. LSTM and GRU models have
been widely employed as sequential models in numerous studies, mak-
ing them suitable benchmarks for comparison.

While the use of transformer models in the field of fluid dynam-
ics has been relatively limited compared to the widespread adoption of
LSTM and GRU models, Table I demonstrates the competence of the
transformer model for such applications. However, further enhance-
ments can be made by leveraging a larger and more diverse dataset
specific to fluid dynamics. Moreover, the original work introducin
the transformer model”” highlights its parallelizability and significantl
reduced training time compared to traditional models. This inherent
characteristic warrants evaluation with a larger-scale dataset to fully
exploit its potential benefits in fluid dynamics research.

D. Transformer and sequential models in turbulent
flow and physics applications

The primary challenge of the present century lies in enhancing
deep learning models, including transformers, to tackle turbulent flow
and accurately predict its features. This advancement holds the poten-
tial to provide a comprehensive understanding of turbulent flow appli-
cations, thereby offering valuable insights and advancements in
various domains.

One crucial application is the utilization of wind energy, where
the inherent relationship between wind speed and turbulence plays a
significant role. Accurate long-term and short-term forecasting of tur-
bulent wind patterns can greatly enhance the reliability and stability of
power grids, contributing to the pursuit of sustainable and efficient
energy systems.

Another critical area is the study of turbulent flow over airplane
wings. Understanding the intricate features and making precise predic-
tions in this domain is essential for addressing the challenge of reduc-
ing drag force. Such advancements are instrumental in realizing goals
related to green energy and minimizing fuel consumption on a
broader scale.

Particle-laden turbulent flow represents an open frontier in fluid
dynamics. By harnessing the capabilities of deep learning models like
transformers, it becomes feasible to forecast the trajectories of particles
in subsequent periods. Additionally, these models can shed light on
crucial physical concepts, such as the impact of gravity, which may
have been inad ly explored using traditional numerical methods.
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In the field of combustion, understanding reactive flows holds
great significance for controlling, predicting, and optimizing the con-
version processes. Recent attention has been directed toward alterna-
tive fuels such as hydrogen, where experimental studies can be
complex and costly. Leveraging the capabilities of Transformers and
other sequential deep-learning models can lead to remarkable
advancements in this area, revolutionizing the exploration and utiliza-
tion of alternative fuels.

In summary, the integration of deep learning models, particularly
transformers, into the study of turbulent flow has the potential to drive

ial progress in unds ding complex flow dynamics, unlock-
ing valuable insights, and enabling advancements in a wide range of
applications.

E. Limits and enhancing Transformer and sequential
models in turbulent flow

The study at hand presents a deep learning-based model utilizing
the transformer architecture to forecast the velocity of deformed tur-
bulent flow under specific conditions, encompassing the effects of
gravity, defined turbulent intensity, and determined strain rate.
Experimental data obtained through the LPT technique were
employed as the dataset. However, compared to other deep learning
methods such as LSTM, GRU, and CNN, the application of the trans-
former model in predicting turbulent flow is still an active area of
research. It is crucial to und d the capabilities and limitations of
this model in the context of turbulent flow, particularly when dealing
with high Reynolds numbers characterized by heightened fluctuations.
Additionally, the flow characteristics differ depending on whether it is
compressible or incompressible. Previous studies applying deep learn-
ing techniques to turbulent flow have often focused on specific data or
narrow ranges of Reynolds numbers. Consequently, further investiga-
tion is necessary to identify the limitations and failure points of these
models in prediction tasks. It should be noted that each deep learning
model applied to turbulent flow requires specific tuning, and there is
no universally applicable setup. Recent developments in deep learning,
such as hyper tuning, have und d its significance in
optimizing model performance. Incorporating this technique can aid
in identifying the most suitable model design for a given task.
Expanding on the proposed model, this study suggests exploring the
potential of enhancing deep learning models, including variants of
LSTM, Transformer, and CNN, across a wider range of turbulent flow
scenarios. Future research endeavors should strive to uncover the
working range and performance boundaries of these models in turbu-
lent flow applications.

V. CONCLUSION

This study proposed a novel transformer model from DL
approaches in the context of data-driven concepts to predict the veloc-
ity field of a turbulent flow with deformation and in the presence of
gravity from an experiment. Transformer model architecture is based
on encoder-decoder layers and processes the data via an attention
mechanism. The transformer model is state-of-the-art for sequential
models and is mostly applied in language translation, and it made
remarkable development in this area. In the realm of turbulent flow,
the application of the transformer model is relatively nascent
compared to established methods such as LSTM variants and
CNN compositions. However, recent studies in fluid dynamics have
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d d significant advancements and notable precedents in uti-

lizing the transformer model.”""* Long short-term memory and con-
volutional neural networks are employed in many data-driven and
compute-driven fluid dynamics areas.

The application of deep learning models in the field of fluid
dynamics, specifically in turbulent flow, has emerged as a crucial area
of study. In various fields of fluid dynamics, a combination of analyti-
cal, numerical, and artificial intelligence methods has gained traction.
Several examples include analyzing flow on airplane wings, reactive
flow phenomena, wind speed prediction in wind turbines, studying
multiphase flow dynamics, investigating boundary layers, and explor-
ing particle-laden turbulent flow. This integration highlights the
increasing recognition of artificial intelligence as a powerful tool along-
side traditional methods, empowering researchers to tackle complex
fluid dynamics challenges and could open up new avenues for under-
standing and predicting complex flow phenomena. These models have
the potential to uncover a wealth of physical concepts and facilitate
accurate flow feature predictions in various domains, contributing to
advancements in energy, transportation, and environmental research.

This work used only the velocity components of 2D turbulent
flow measurement in a sequence way. It did not feed the other effects,
such as turbulence intensity, strain rate, and gravity effect, to the
model. This design relies on the concept that velocity carries and
transfers the most important flow features. Moreover, the velocity
measurement of the turbulent flow by devices is available in many
industrial and natural applications; therefore, applying the suggested
method to predict the turbulent velocity is convenient. Moreover, the
model is independent of the velocity p and trains and pre-
dicts each velocity component individually. The transformer model
was trained with two portions of training data, 80%, and 60%, respec-
tively, and the rest of the data tested the velocity prediction. The error
measurement illustrates the MAE and the R” score in 0.002-0.003 and
0.98, respectively, which is a considerable prediction and almost
matches the actual data. It is extraordinary that with less training data,
the transformer model is able to keep the error and prediction quantity
constant and predict a period similar to a larger training ratio. It
proves that the capability of the Transformer model is excellent. For
future studies, it is suggested to investigate the transformer model with
extensive data to evaluate its computation cost. Moreover, other turbu-
lent flow features can be taken into model consideration and predic-
tion. Based on the Transformer architecture and its capability, it could
hopefully be useful for a deeper physical understanding of the turbu-
lent phenomenon. The suggested method in this study could be
employed broadly.

In light of the proposed model, this study advocates for an exten-
sive exploration of deep learning models, such as various LSTM var-
iants, transformer architectures, and CNNs, to unlock their full
potential in a broader spectrum of turbulent flow scenarios. It is
imperative for future research efforts to go beyond the current bound-
aries and unravel the working range and performance limits of these
models in turbulent flow applications. By pushing the boundaries of
deep learning techniques, we can gain deeper insights into their appli-
cability and efficacy, paving the way for advancements in turbulent
flow prediction and analysis. This comprehensive investigation will
contribute to a more thorough understanding of the capabilities and
limitations of deep learning models, allowing for their optimal utiliza-
tion in real-world turbulent flow scenarios.
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Abstract: This study suggests employing a deep learning model trained on on-site wind
speed measurements to enhance predictions for future wind speeds. The model uses a gated
recurrent unit (GRU) derived from the long short-term memory (LSTM) variant, and is
trained using actual measured wind velocity data collected at both 10-minute and hourly
intervals. The approach relies on using same-season data for predicting wind velocity,
necessitating regular updates to the model with recent measurements to ensure accurate
predictions in a timely manner.

The results from the prediction model, particularly at a 10-minute interval, d ate a
significant alignment with the actual data during validation. Comparative analysis of the
employed model over a two-year span, with a 24-year distinction, indicates its efficiency
across different time periods and seasonal conditions, contingent upon frequent updates
with recent on-site wind velocity data.

Given the reliance of sequential deep learning models on extensive data for enhanced
accuracy, this study emphasizes the importance of employing high-performance computing
(HPC). As a recommendation, the study proposes equipping the wind farm or wind farm
cluster with an HPC machine powered by the wind farm itself, thereby transforming it into
a sustainable green energy resource for the HPC application. The recommended approach
in this work is enforcing the smart power grid to respond to the power demand that is
connected to predictable wind farm production.

Keywords: Deep Learning; Wind Energy; Wind Turbine; Smart Grid; Renewable Energy
Prediction; High-performance computing
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1 Introduction

1.1 Wind Energy Resource

The paramount global challenge is climate change, and each nation bears the
responsibility and capacity to invest in renewable energy as a means to mitigate
the emission of greenhouse gases [1, 2].

In recent years, the remarkable expansion of wind energy has emerged as a
noteworthy development in the worldwide energy scenario [3]. Wind energy
currently stands as the swiftest-growing form of renewable energy, boasting a
cumulative installed capacity of 763 GW in 2020—a substantial increase from the
modest 24 GW recorded in 2000 [4, 5]. This extraordinary growth can be
attributed to technological advancements, cost reductions, and favorable policies
that encourage the shift from fossil fuels to renewable sources.

In recent times, advancements in artificial intelligence (AI) have enhanced the
prediction and management of power generation in wind energy [6]. Wind power
presents numerous advantages, positioning it as a compelling alternative to
conventional energy sources. Unlike fossil fuels, wind energy is renewable and
environmentally friendly, as it does not emit harmful greenhouse gases or
pollutants. The modular and scalable nature of wind turbines makes them suitable
for a diverse range of applications, spanning from large-scale utility projects to
small-scale residential systems. Additionally, wind energy stands out as a
dependable and cost-effective electricity source, with the leveled cost of wind
energy experiencing a significant decline over the past decade [3].

Forecasts suggest that the global capacity for wind energy will achieve 2,110 GW
by the year 2030, constituting roughly 20% of the world's electricity generation
[7]. This upward trajectory is propelled by various factors, including the rising
demand for clean energy, supportive policies, and technological advancements
that contribute to the enhanced efficiency and cost-effectiveness of wind turbines

(71

1.2  Wind Turbine

Wind energy production involves converting kinetic energy from moving wind
into electrical power. There are two main types of wind turbines: horizontal axis
wind turbines (HAWTs) and vertical axis wind turbines (VAWTs) [1].
The efficiency of the HAWTSs is much larger than that of VAWTs; however, both
of these types have advantages and disadvantages [8, 9]. The power potential of a
wind turbine is proportional to the cubic power of the wind velocity [10]. Wind
speed has a turbulence behavior and diverse fluctuations [11]. Moreover, the
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power potential of the wind turbine is proportional to the density of air. As a
result, cold air has a higher wind power potential than warm air [10]. These
nonlinear and random features of the wind makes its forecasting a crucial issue for
wind power producers.

Power production from wind farms depends on the wind velocity. Furthermore, it
is crucial issue that the producer be aware of the kind of farm production to
respond to the demand for electricity on the power grid. Moreover, the smart grid
technology is a function of the smart components that supply the power grid.
In fact, if the wind farm has the capability to predict the wind speed in the short
and long-term, it has forecasting for electricity production [3, 6]. This leads to
smart wind farm production and enforcement of the smart power grid [12]. Figure
1 displays how wind power production prediction could assist the power supplier
in managing the response to the power grid demand.

How much power

Power Production will be produced
from the wind ?
_nD 1t Power Grid Power Users
’rwi et
11 RRARARER | | =======""
83836888
IEEEL

How much is the power production in the following period?
- the wind velocity, how long of wind velocity is predictable?

[oFS

Power grid challenges:

- how make : Produced wind power supply = Power grid demand
- Can predict the wind power production to response demand?
- Must be power pi

grid the power

Figure 1
A schematic representation of how wind power production prediction could assist the power supplier
in managing the response to the power grid demand

1.3 Deep Learning and Wind Farm

The deep learning model, based on the sequential models, displayed the successful
capability to predict the nonlinear phenomenon [13]. In order to optimize the
accuracy of the DL model for the wind velocity, using the appropriate period and
size of the data is essential. Additionally, depending on the wind park location, the
wind speed has a different pattern for monthly, seasonal, bi-annual, and annual
datasets. Based on the author's experiences in Nordic countries like Iceland, the
wind speed in the winter is extremely higher than in the summer. Because of this
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difference, the previous study demonstrated a DL model for summer that should
not be used for winter prediction [6]. Thus, it is essential to have an online and
updated DL model for a wind park. This leads to updating the DL model with
measured data from many years ago to a few minutes before.

1.4 Literature Review

In recent years, the DL model for wind velocity forecasting was developed with
different DL layers architecture [6, 14]. The majority of the available studies
focused on short-term prediction [6, 15]. The dataset used to train the DL model
consists of 5-10 minutes and 1-2 hours [6]. The measured data in the previous
studies from onshore wind farms [6, 16]. The literature displays 1-6 hour
prediction with different DL models. However, there is no universal model to be
used globally, and they are specified for a particular site location where trained
data has been measured [6, 17].

Looking at the above-mentioned aspects of the proposed DL model for wind
speed prediction leads to a novel approach and perspective proposal. Since the
wind farm's location, air temperature, month, season, and year of the measured
data impact the prediction [3, 6], it dictates an essential local DL model design for
each specified wind farm, and the model training must be updated per hour or
daily.

The present study proposes a DL model for wind velocity prediction that is
updated with training data depending on effective factors such as hour, daily, cold,
and warm air and season. The result of the study is a remarkable capability that
can cause long-term prediction in addition to short-term forecasting. Hence, this
paper is organized as follows. The applied methodology is presented in Section 2.
In Section 3, the result and discussion are presented and at the end the conclusion
is presented.

2 Methodology

2.1 Measured Wind Velocity

This study applies on-site measured wind velocity data from the Vedurstofan (the
Metrological Office) of Iceland. The data involves a time step of 10 minutes for
specific years and an hour time step for other years. Figure 2 displays December
1995 to February 1996 and December of 1996 to February 1997.
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Figure 2
Presentation of the measured wind velocity for two different time periods in Iceland. (a) December
1995 to February 1996, (b) December 1996 to February 1997

These are the same period of time for two years. It can be seen that the wind
velocity does not have a similar pattern to be able to use the previous year's data
and simulate the next year.

Moreover, two different time periods (seasons) can be seen in Figures 3 and 4.
These presentations reveal how owning a distinct pattern is from September 1996
to November 1996 to December 1996 to February 1997. In Figure 4, the same
period of September 2021 to February 2022 is displayed. The illustration of these
two figures uncovers that the wind speed has nonlinear and random features, and
there is no known equation or pattern to use the previous wind velocity of the
earlier time to simulate the next time.

As pointed out in the introduction, in recent years, DL networks have been
employed to predict a sequential nonlinear dataset, such as wind speed, which has
turbulence behavior in the fluid dynamics area. However, the models depend on
the specific site location and measured data. The present study suggests using
online and recent data to train each wind park's DL model to overcome this defect.
To make this application possible in the actual wind farm, it is essential to connect
the measured data online to the DL model and update the training in a short time.
Additionally, this study would emphasize the fact that using training data from the
same period of time will be much more efficient. For example, the speed data
from the summer train in the DL model may not be sufficient to predict the wind
speed in the winter and needs to be merged with data from winter time. This
concept is used in the current study.
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On-site measured wind velocity for two different seasons in Iceland, black color curve, September
1996 to November 1996 and red color curve, December 1996 to February 1997
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On-site measured wind velocity for two different seasons in Iceland, black color curve, September
2021 to November 2021, and red color curve, December 2021 to February 2022
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2.2 Deep Learning Models

Among available DL models for sequential data, LSTM for sequential nonlinear
and random datasets displayed successful application. Additionally, the
Transformer as an up-to-date DL model from the attention mechanism provided
appropriate prediction for the random sequential dataset. The current study
employs a gated recurrent units (GRUs) model trained with on-site measured wind
velocity and forecasts the wind speed for the following period of time. Based on
the literature, GRU is a variant of LSTM and has a simpler architecture. It is
reported that GRU has the same efficiency as LSTM with less data.

The model has been assessed with two datasets, one from 1996 with a time step of
10 minutes and the second dataset from 2021 with an hour time step. For each
model, 60% of the data was used for training, and 40% of the rest of the data was
employed for testing the model prediction. The present study shows that reducing
the training data ratio to lower than 60% will reduce the model prediction
accuracy. The mean absolute error and squared R (R?) are measured as metrics for
the models. Figure 5, a diagram shows the required dataset for DL model training
with HPC resources, and the target is a prediction of the wind speed.

Training data includes past measured wind velocity.
Test data is based on the idation from nent.

DL model

=9

Target, Wind velocity in
following period

The DL model, with
extensive training data, is
required HPC resources.

HPC

Figure 5
The DL model is trained and tested with measured wind speed. Training data are 60% of the measured
data, and 40% of the rest of the data are used to test the model prediction
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2.3 High-Performance Computing in Wind Farm

The sequential model of DL will lead to an accurate model with a larger amount
of training data. The extensive training data and the DL architecture make it
essential to use high-performance computing (HPC). As discussed earlier in this
study, the suggestion is to use an online DL model training with up-to-date
measured data at the wind farm site.

Having access to HPC to train a DL model with extensive data that is related to
scalability is a crucial issue.

However, since the wind frame produces power, it will be an option for each wind
farm to own its HPC system or install an HPC system for cluster wind farms that
share the computing between them; this will make the HPC supported with green
energy, which is a remarkable achievement since many of the HPC clusters using
traditional and fossil fuel resources.

3 Result and Discussion

This section presents and discusses the result of the proposed approach, which is
composed of the on-site measured data and GRU model.

Figure 6 shows the GRU model result that used measured wind speed data with a
period of September 1996 to November 1996 with time step 10 minutes. To train
the GRU model, 60% of the data is used to train the GRU model, and 40% to
validate the model prediction. The metric evaluation shows MAE 0.019 and R? is
0.97. this model used data with short time steps.

Figure 7 illustrates the wind velocity prediction result of the GRU model that
trained with actual wind speed from in-site measurement with a period of
September 2021 to November 2022 with time step an hour. In this model, 60% of
the data is used for training and 40% as validation. The prediction of the model
has MAE 0.059 and R? is 0.71. This model used data with longer time steps.
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Presentation of GRU model prediction that is trained with on-site measured wind velocity with time
step 10 minutes with a period of September 1996 to November 1996, with 60% training ratio and 40%
validation. Blue colors the actual measured data, red colors the training ratio, and yellow colors the
prediction of the model.
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Representation of GRU model prediction that is trained with on-site measured wind velocity with time
step an hour with a period of September 2021 to November 2022, with 60% training ratio and 40%
validation. Blue colors the actual measured data, red colors the training ratio, and yellow colors the

prediction of the model.
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The illustrated results in Figures 6 and 7 show a remarkable observation.
The GRU model that trained with shorter time steps is much more accurate.
In contrast, to the model trained with an hour time step, shorter time step data
caused a 36% increase in the R? and a 67% decrease in the MAE. Therefore,
measuring in-site and speed with short time steps makes the prediction model
more efficient and accurate.

Additionally, the current study used one GRU model with a distinct period of time
from 24 years ago (1996 and 2021). For each model, the training data was
updated, and the model resulted in an appropriate wind speed prediction. These
remarkable achievements show that the training update significantly affects the
model's accuracy. It could be taken into account that the season of the data for
wind speed training should match the target wind speed time.

Conclusions

The current study proposes an approach to using time series data of in-site
measured wind speed to predict the wind velocity in the following period of time
with the application of deep learning capability. A GRU model from the LSTM
variant was designed and trained with a specific ratio of the measured data, and its
prediction was validated by the actual data.

The superiority of the present work suggests the use of updated data to predict
wind velocity. Furthermore, the study used data from the same season (winter or
summer) to train and predict the wind velocity. The study results uncovered that
the shorter time step, 10 minutes, makes the model extremely accurate than the
model trained with a longer time step, an hour (60 minutes).

The present study recommends using a DL model as software in wind frames that
are trained with updated measured wind speed via online connection and updated
training to be able to have short and long-term predictions with desirable
accuracy. This application makes it possible for the wind energy producer to have
a period of wind velocity and wind energy production, and this capability leads to
an efficient smart power grid to respond to the power demand. It is planned to
evaluate the wind speed prediction via updated data with a Transformer as an
attention mechanism and compare it to LSTM variants.

Data Availability Statement: The data presented in this study are available on
request from the corresponding author.
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Abstract: This study presents a novel approach to using a gated recurrent unit (GRU) model, a deep
neural network, to predict turbulent flows in a Lagrangian framework. The emerging velocity field is
predicted based on experimental data from a strained turbulent flow, which was initially a nearly
homogeneous isotropic turbulent flow at the measurement area. The distorted turbulent flow has a
Taylor microscale REYNOLDS number in the range of 100 < Re, < 152 before creating the strain and is
strained with a mean strain rate of 4 s~ ! in the Y direction. The measurement is conducted in the
presence of gravity consequent to the actual condition, an effect that is usually neglected and has
not been investigated in most numerical studies. A Lagrangian particle tracking technique is used
to extract the flow characterizations. It is used to assess the capability of the GRU model to forecast
the unknown turbulent flow pattern affected by distortion and gravity using spatiotemporal input
data. Using the flow track’s location (spatial) and time (temporal) highlights the model’s superiority.
The suggested approach provides the possibility to predict the emerging pattern of the strained
turbulent flow properties observed in many natural and artificial phenomena. In order to optimize
the consumed computing, hyperparameter optimization (HPO) is used to improve the GRU model
performance by 14-20%. Model training and inference run on the high-performance computing
(HPC) JUWELS-BOOSTER and DEEP-DAM systems at the Jiilich Supercomputing Centre, and the
code speed-up on these machines is measured. The proposed model produces accurate predictions
for turbulent flows in the Lagrangian view with a mean absolute error (MAE) of 0.001 and an R?
score of 0.993.

Keywords: turbulent flow; prediction; deep learning; simulation; high-performance computing

1. Introduction

Turbulent flow is a high-dimensional and nonlinear phenomenon [1]. It can be found
in many artificial and natural applications, and it is therefore of great interest to study its
features [1-3]. All turbulent flows have random characteristics, rendering deterministic
approaches impossible to apply. Therefore, existing analyses rely on statistical methods
addressing the energy cascade theory [1,2]. The use of computational fluid dynamic (CFD)
methods is a convenient approach for simulating turbulent flows, mainly via direct numer-
ical simulation (DNS) and large eddy simulation (LES) [1]. Although LES is less accurate
than DNS, both methods require extensive computing [4] on high-performance computing
(HPC) systems. Solving Reynolds-averaged Navier Stokes (RANS) equations is a cheap
method used widely in the industry, though it does not provide results on the level of
accuracy of LES or DNS. The size and scalability of HPC systems is continuously grow-
ing, allowing for more and more fine-grained simulations. However, current numerical
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methods are far from being able to compute every CFD problem, especially those featuring
highly complex and detailed flow structures [4,5]. Furthermore, in many CFD applications,
a validation of the solution via empirical data is essential, which is another disadvan-
tage [4]. Experiments are frequently used to study the turbulent flow. However, due to
their scale and size limitations, they can only be applied to particular and size-limited
problems [1,3,6,7]. These constraints underpin the demands for a reliable tool to overcome
the obstacles mentioned above and analyze turbulent flows in a broader range of scales [4].
Several methods extract the dominant features via the reduced-order model (ROM). Proper
orthogonal decomposition (POD), dynamical mode decomposition (DMD), and Koopman
analyses are some of the well-known techniques to yield ROM [8]. Moreover, dimension-
ality reduction, feature extraction, super-resolution, applying ROM, turbulence closure,
shape optimization, and flow control are some of the crucial tasks in CFD [9].

In many areas, deep learning (DL) models have demonstrated an extensive capability
to extract hidden features from nonlinear events and create predictions [8,9]. The appli-
cability of DL models has also been studied in fluid dynamics [4]. Recent studies show
that with DL, model-free predictions of spatiotemporal dynamical systems, particularly for
high-dimensional, dynamical systems [8], are possible. Recurrent neural networks (RNN)
are neural networks composed of an individual hidden layer with a feedback loop, in which
the hidden layer output and the current input are turned to the hidden layer [9]. They are
well-suited for sequential datasets [9]. They determine a temporal relationship, as they learn
from sequential input data and are characterized by featuring three weight metrics and two
biases. However, RNN cannot learn long-range temporal dependencies from sequential
data due to the vanishing gradient problem [9]. The long short-term memory (LSTM)
model was developed in 1995 [10]. It features a gating structure to control the recurrent
connector transients. In contrast to RNN, vanishing gradients are avoided. It is therefore
a proper tool to model longer temporal dependencies [9]. Gated recurrent unit (GRU)
models are variants of LSTM models that work with fewer parameters [11,12]. Besides,
in GRU architectures, the forget and input gates of LSTM are altered only with one update
gate. In the literature, it has been shown that GRU models can be trained faster while
still achieving results similar to LSTM, even with fewer training data [12]. Duru et al. [13]
apply DL to predict the transonic flow around airfoils. Srinivasan et al. [9] use Multilayer
Perceptron (MLP) and DL networks to predict a turbulent shear flow from equations
known from a Moehlis model [14]. LSTM’ susceptibility has led to hybrid models such as
autoencoders-LSTM, LSTM/RNN, and Convolutional Neural Network (CNN)-LSTM [12].
Eivazi et al. [8] present a DL application for the nonlinear model reduction in unsteady
flows. The review of Gu, Chengcheng, and Li, Hua [12] reports on an LSTM network being
applied to predict the wind speed, which has turbulent behavior. Bukka et al. [5] employ
a hybrid, deeply reduced model to predict unsteady flows. Most fluid flow studies that
applied DL use data extracted from CFD computations [4,9]. Furthermore, most works
include pre-processing steps to identify the dominant features, such as POD or DMD [4].
Recently, Hassanian et al. [15] used LSTM and GRU models to predict a turbulent flow with
only temporal features. Moreover, the Transformer model, as an up-to-date DL technique,
displays successful capabilities to simulate and forecast emerging unknown patterns of
turbulent flow [16].

This study proposes an innovative idea, using a GRU model to predict turbulent flows
with spatial-temporal data based on raw data from flow measurements in an experiment of
strained turbulent flow [17]. The Lagrangian particle tracking (LPT) technique is applied to
extract 2D (two components of each property, such as velocity) from the 3D experiment
(consisting of all components of each property) of the strained turbulent flow. As the
turbulent flow manifests as a three-dimensional phenomenon, employing experimental
data yields a dataset containing authentic and comprehensive turbulence characteristics.
The data contain information on the time ¢, location x and y, and the velocity components
in the X and the Y directions. The Lagrangian framework is defined by particle traces in
a spatiotemporal way [6,7]. A particle in the flow with a specific velocity and position at
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each particular time # is followed [1,6]. This way, the particle’s velocity over time can be
represented as a time series [4], which is a function of the particle’s location. Relying on
this concept, a GRU model can be trained with the spatiotemporal data and predict the
velocity. The velocity time series in fluid dynamics have been recorded in several biological
and industrial applications via special devices [4] and can be used in combination with
the suggested model. Since the turbulent flow is a nonlinear problem and there is no
deterministic approach to solve or forecast the emerging period of its feature, the suggested
method in the present study provides a transparent window to study turbulent flow.

In prior research on turbulent flow employing deep learning models, a hybrid ap-
proach incorporating Proper Orthogonal Decomposition (POD), Reduced Order Modeling
(ROM) [18], and deep learning techniques was employed to address nonlinear parametrized
Partial Differential Equations (PDEs) [19,20]. The superiority of this proposed method is
that it eliminates the steps of extracting the dominant data and the necessary pre-processing
steps before the application of DL, and directly provides predictions of the future flow
through DL models. This advantage renders the model adaptable for training with raw
measurement data, eliminating the need for processing, such as ROM or POD. Its novelty
in applying training data for a DL model is based on spatio-temporal attributes. In sequen-
tial DL models such as LSTM and GRU, the training data are times series and, therefore,
temporal. The current study employs the spatial attributes of the turbulent flow since,
in the Lagrangian framework, the location is a function of the time. Furthermore, the pre-
eminence of the present study is utilizing the GRU model to be trained with measured
property, forecasting it in the following period without training, and informing the model
with flow characteristics such as the Reynolds number, Stokes number, length, or time
scale. In many industries and applications, fluid flow properties such as velocity, flow
rate, vorticity, and acceleration can be measured with technical devices. This consistency
helps the proposed approach to be broadly utilized. The experimental dataset used in the
present study stems from a strained turbulence flow in the presence of gravity and tracking
tracer particles. However, the prediction model only relies on the velocity and location
time series, and the training does not include parameters such as particle size, turbulence
intensity, gravity, and strain rate. The parallel computing machines JUWELS-BOOSTER
and DEEP-DAM [21] from the Jiilich Supercomputer Centre are used to accelerate the
GRU model training process. Hence, this manuscript is organized as follows. The applied
methodology is introduced in Section 2. Subsequently, the results and discussion are
provided in Section 3. Finally, conclusions are drawn in Section 4.

2. Methodology

This section represents the theory of the LPT, which is used to employ a dataset
from the experiment in this study. Furthermore, the dataset details have been explained.
Thus, the employed GRU model and its setup for training and prediction have been
demonstrated.

2.1. The Lagrangian Framework and Fluid Particles

In a Lagrangian framework, individual fluid particles” position and velocity vectors
are tracked [1,6]. A fluid particle is a point that streams with the local flow velocity; thus, it
identifies the velocity and position at time . The arithmetic definition of a fluid particle
is [1,4]:

U; = Uj(t, x1(t, x10), x2(t, x20), x3(t, x30)), (1)

where the velocity U is determined in 3D coordinates, x is the position vector, ¢ is the time,
and i specifies the vector components in the X, the Y, and the Z directions. Notation (1)
defines the particle velocity in sequential time series and is frequently used in turbulent
flow statistics, where no universal velocity function is available. x; ascertains the initial
condition of the particle in the i direction. Figure 1 displays a sketch of the strained
turbulent flow.
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Alinear actuator moves the circular disk.

Propellers that are
generating turbulent flo

Distortion turbulent flow

*. Circular disks move toward the center of
the tank and create strain.

Alinear actuator moves the circular disk.

Figure 1. A sketch displays the strain acting on the turbulent flow. The turbulent flow at the
measurement area, located at the center of the tank, is a nearly stationary homogeneous isotropic
turbulence flow initially and before the distortion. The measured data are used in the current study
to train a GRU model.

2.2. Experimental Data

The experiment was conducted within a water tank featuring eight impellers strategically
positioned at the corners of a cube and directed toward the tank’s center, as displayed in
Figure 1. These impellers rotated at specific speeds falling within the range of 100 < Re, <152,
effectively simulating the turbulent flow before creating the strain deformation. The re-
sulting flow in the central region of the tank, where measurements were taken, exhibited
a nearly stationary homogeneous isotropic turbulence [22]. The tank, with dimensions of
60 cm x 60 cm x 60 cm, had transparent Plexiglas for XT walls that were 20 mm thick,
allowing optical access to the data. An aluminum frame held the components of the tur-
bulence box in place. The fluid in the tank was seeded with tracer particles with median
diameters of 8-10 pm. Tracer particles had a specific gravity of 1.1 g/cm (hollow glass). Two
circular flat disks positioned vertically in the center of the tank moved towards each other,
generating a specified mean strain rate. The experiment involved a mean strain rate, primarily
in the y-direction of —4 s~1. The measurement area, situated in the center of the tank, had
dimensions of 24.5 x 24.5 mm?.

The Lagrangian particle tracking (LPT) technique was employed to monitor and extract
the dynamic features of the particles. Lagrangian Particle Tracking (LPT) [23-25] is a non-
intrusive optical methodology that is widely utilized in experimental fluid dynamics. This
technique involves capturing images of particles suspended in a fluid and subsequently
tracking the movement of individual particles within a small interrogation window. In the
context of two-dimensional LPT, the flow field is observed within a thin plane illuminated
by a laser sheet, allowing for the measurement of particle motion within that specific slice
of the flow. Introducing low-density particles into the flow of interest allows each particle
to be individually tracked across multiple frames.

In this particular experiment, a single camera was utilized to reconstruct particle tracks
in two dimensions, providing valuable insights into the initial turbulence and Lagrangian
statistics of the turbulent flow. The construction of particle tracks in 2D-LPT involves two
primary tasks. Firstly, the images captured by the camera undergo processing to determine
the two-dimensional positions of the particles within the camera’s image space. Secondly,
a tracking algorithm, based on the principle of the 4-frame best estimate pioneered by
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Ouelette et al. [25], is applied to establish the paths followed by the particles over time
using a sequence of images.

A solitary high-speed CMOS camera equipped with a 105 mm focal length lens was
employed to capture LPT images, set at a resolution of 512 x 512 pixels. The detection
system operated at 10 kHz, equivalent to 10,000 frames per second (fps), ensuring well-
resolved particle velocity and acceleration statistics. This exceptionally high temporal
resolution (0.1-0.2 ms) is significantly smaller than the Kolmogorov time 7 (16.6-31.6 ms)
of the smallest eddies in the flow, allowing for the resolution of dissipation range properties.
It is reported that the STOKES number (relaxation time over the Kolmogorov scale) for the
tracer particles is in the range of 0.0063-0.0094 [17]. For illuminating the tracer particles;
an Nd-YAF laser (527 nm) was utilized, synchronized at the same sampling frequency
as the camera. The laser operated in an internal mode, with a 14 A Q-switch current
and a pulse width of 2.5 ps. To ensure accurate statistics of the particle-laden turbulent
flow, the recording process was iterated 20 times for each flow case. It is important to
note that the present study uses a dataset to train a GRU model originated from the LPT
measurement based on Ouelette et al. [25] and Hassanian et al. [17]. The original work [17]
details the experiments and their measurements.

2.3. Sequential Velocity Dataset

The velocity dataset is extracted from the LPT experiment described in the previous
section, following the procedure of Hassanian et al. [17]. The dataset is composed of
6,225,457 tracking points for every vector, as follows:

e Velocity component in the Y direction, Vy;

*  Velocity component in the X direction, Vy;

®  Location in the x coordinate;

*  Location in the y coordinate;

®  The time vector specifies the time f for every tracking point.

These tracking points comprise velocity and location vectors, attained via 20 recordings
to provide sufficient statistical data. As expected, the tracking yields several tracking lines,
as illustrated in the result section, and every tracking line specifies the fate of a single
particle. This study employed different ratios of the training dataset to determine the
optimal model with accurate predictions for the strained turbulent flow. To measure
the performance of the forecasting model, the data are split into 80% training data and
20% test data. The prediction quality of the model is evaluated on the unseen test data.
The model is trained in a way that individually predicts the velocity in the X direction
and the Y direction. This design makes the model applicable to higher-dimensional data.
For instance, if there are data with a third component in the Z direction, this model can
forecast the corresponding velocity component in a separate training run. It should be
noted that the dataset in this study underwent strain deformation in the Y direction, which
is the dominant orientation in this flow; therefore, it is expected to see more fluctuation in
this direction [3,17].

2.4. Gated Recurrent Unit Model

The study relies on the concept that the flow properties in the Lagrangian frameworks
are carried by the velocity, which is a function of time and location. Therefore, the input
data from the 2D measurement involves the location in the x and the y coordinates in
addition to velocity components in both orientations. The current study trained a DL model
on these data to assess the ability to forecast flow fields, because the concept of sequentiality
is an inherent feature in the Lagrangian framework. The DL model thereby takes into
account all historical impacts. Despite the mean strain rate, turbulence intensity, geometry
of the boundary condition as an effectiveness parameter [26,27], and gravity as a presence
effect [17], they are not part of the model input. The only inputs to train the model are
locations and the velocity. The target is the velocity in the future. A GRU is based on
the LSTM model with slight changes in the architecture [28]. The literature reports that a
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GRU is faster to compute than an LSTM and has a streamlined model [11,12,29]. A GRU
cell, which is displayed in Figure 2, is composed of a hidden state /1;_1, a reset gate r¢,
and an update gate z;. The reset gate controls how much of the previously hidden state is
remembered. Via the update gate, it can be quantified how much of the new hidden state /;
is just a copy of the old hidden state. This architecture establishes two significant features:
the reset gate captures short-term dependencies and the update gate models’ long-term
dependencies in sequences [28].

Yo A

he-g)
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90

[0 > ’ —> [

rny

X
——— The internal GRU cell operations
e The current input

The hidden state

Figure 2. Architecture of a GRU model: /1(; ;) is the hidden state from the previous step, X(;) is the
current input, /i(;) is a new hidden state, y(;) is the output, r(;) is the reset gate, z(;) is the update
gate, g(;) is the candidate hidden state, ¢ is the sigmoid function, and tanh is the hyperbolic tangent
function [15].

2.5. Forecasting Model Set Up and Parallel Computing

The models are coded in Python with the TensorFlow library [30,31]. The GRU model
is set up with 100 layers and one dense layer, and Adam is specified as an optimizer [15].
The dataset was normalized by the MinMaxScaler transformation [32], scaling the minimum
and maximum values to be 0 and 1. In the GRU model, kernel_initializer is glorot_uniform,
and the learning rate is 0.001. Since the model training runs on the JUWELS-BOOSTER [33]
and DEEP-DAM [21] machines, a distribution strategy from the TensorFlow interface to
distribute the training across multiple GPU with custom training loops is applied [34].
The training has been set up to use 1 to 4 GPU on one node. The result of the computing
and the models’ performance distinction are reported in Section 3.

3. Results

The current study makes use of a dataset from an LPT measurement, which provides
spatial and temporal information. The visualization of the velocity that is measured in
the X and Y directions is obtained to observe the flow turbulency behavior. The velocity
in a specific direction at location x and y is used as input training data with a ratio of
80%. The velocity prediction was evaluated with the rest of the data (20%). The trained
model performs the forecast for both velocities individually. In this section, the results and
discussion are presented.

3.1. Measured Turbulent Flow Velocity

The subject of this study is to employ the dataset from the experiment in the training
of the GRU model and to analyze its training and predictive performance. The data
extracted from the experiments contain the velocities of tracer particles in the Lagrangian
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framework [17]. Figures 3 and 4 illustrate the measured velocity component in the X and Y
directions, respectively.

Velocity Component, x Direction [m/s]

o 005 01 015 02 025 03 035 04
Time [s]

Figure 3. The measured velocity in the X direction from 20 videos for strained turbulent flow.
The experiments have been repeated in analogous conditions.

Velocity Component, y Direction [m/s]
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Figure 4. The measured velocity in the Y direction from 20 videos for strained turbulent flow.
The experiments have been repeated in analogous conditions.

The velocity measurements in the X and Y directions both show fluctuations. Com-
paring Figures 3 and 4 reveals that in the Y direction, the turbulence is more intense. This
is due to the fact that the strain direction mainly points to this orientation [17]. That is,
the velocity in the Y direction has a gradient that is caused by the strain. It is, therefore,
much more visible than the velocity in the X direction. The literature emphasizes that the
strain could lead to extra fluctuations [2,3,17]. Besides the strain and turbulence intensity,
the geometry boundary influences the flow velocity [3].

3.2. Predicted Velocity and GRU Model Evaluation

Figures 5 and 6 illustrate that 80% of the velocity time series are used to train the
GRU model in this study. The rest of the data (20%) are applied as test data to assess the
predicted velocity via the GRU model.

The model provides considerably accurate velocity forecasting. The MAE and the
R? score metrics are applied to evaluate the model; with 80% training data, the MAE
and R? scores are 0.001 and 0.993, respectively. It must be noted that the actual data in
Figures 5 and 6 are in the filled blue circles and are because of the high level of the predic-
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tions covered by the prediction.To evaluate the designed GRU model, its performance is
compared to model applications from previous studies that used LSTM, GRU, and Trans-
former models trained only with temporal features. The comparison is displayed in Table 1.
In the present study, the dataset included 6,225,457 tracking points and four sequential
variables composed of x, y, Vx and Vy to predict the Vx and Vy in the following periods.
The model of this work is tuned for performance in terms of the runtime and accuracy with
HPO, evaluating different batch sizes, BS = [8, 16,32, 64,128,256,512,1024]. The accuracy
of the model, trained with the optimal batch size found, is specified by GRU-h in Table 1.
From the previous study of the author’s research group, LSTM, GRU, and Transformer
models have been applied with 2,862,119 tracking points, with two sequential variable
inputs (temporal feature) composed of Vx and Vy to predict the Vi and Vy [15,16]. Table 1
shows that the GRU-h model of this study is 20% faster than the GRU model with a smaller
dataset, and it is 14% and 15% faster than the LSTM and Transformer models, respectively.
Since the dataset in this study is approximately 220% larger, with twice the size of input fea-
tures, the modification and hyperparameter tuning made it faster, around 14-20%, which is
a remarkable speed up for extensive data that could be employed in this model. Moreover,
the GRU-h led to slightly more accurate predictions with an R? equal to 0.99 and an MAE
of 0.001; see Table 1.

+ Actual Data (Blue color)
Train Data (Green color) 80%
Predicted Data via GRU Model (Magneta color)is Tested with 20%

<

Velocity Component, x Direction [m/s]

Figure 5. Velocity prediction of the velocity in the X direction from the GRU model. The model is
trained on 80% of the data, while the remaining 20% is used for testing. The filled blue circles are
actual data, the green points are train data, and the magenta points are GRU-predicted data.

« Actual Data (Blue color)
oal Train Data (Green colon) 80%
Predicted Data via GRU Model (Magneta color) is Tested with 20%

Velocity Component, y Direction [m/s]
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Figure 6. Velocity prediction of the velocity in the Y direction from the GRU model. The model is
trained on 80% of the data, while the remaining 20% is used for testing. The filled blue circles are
actual data, the green points are trained data, and the magenta points are GRU-predicted data.
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Table 1. Comparison table of the GRU-h model of the current study that is improved by HPO and
trained with larger data and four sequential variable inputs: x, y, Vx, and Vy. Transformer, LSTM,
and GRU, illustrated in the table, are models from previous studies [15,16], with smaller boundary
conditions and two sequential variable inputs Vx and Vy and without HPO.

Training Proportion  Performance GRU-h Transformer LSTM GRU
80% MAE 0.001 0.002 0.001 0.002

R? score 099 098 098 098

Runtime (s) 256 301 295 318

3.3. Parallel Computing Assessment

It is reported that GRU is faster and produces similar prediction results as LSTM with
fewer data [4,11,12,15]. In this study, 6,225,457 tracking points are available just from the
0.4 s long period of the experiment. To cope with the amount of data, the GRU is trained on
parallel computing architectures, and its speed-up is examined. The training of the GRU is
performed on two machines, i.e., on the DEEP-DAM and JUWELS-BOOSTER machines.
On DEEP-DAM, the training is performed on a single node using one GPU. The corre-
sponding training time using this setup is 5802.60 s, serving as a baseline. By varying the
number of GPU on the JUWELS-BOOSTER, it is possible to measure the speed-up gained
by the additional GPU. Here, strong scaling is the metric of choice, as the amount of work
stays constant no matter how many processors are used [35]. The goal of parallelizing the
computation is to reduce the time to solution. As is obvious from the data in Table 2 and
Figure 7, the speed-up of the model increased with 1.59, 2.13, and 2.57 for using 2, 3, and
4 GPU, respectively.

Table 2. Parallel computing machine scalability to train the GRU model with GPU.

Machine Module Node GPUs Computing Time [s] Speedup
JUWELS- 1 1 5801.20 1
BOOSTER 1 2 3640.31 1.59

1 3 2719.36 2.13
1 4 2252.52 2.57
DEEP-DAM 1 1 5802.60 1
120
« JUWELS-BOOSTER
—_— .
5
£

2 %

3

£

£ 6 .

&
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Figure 7. Computing time on the JUWELS-BOOSTER on one node assessed with one to four GPU for
the GRU training model.

In addition to the MAE, the HPO process for optimizing the batch size also affects
the runtime of the training, which is reported in Table 3. As the batch size per GPU
increases with a factor of 2, the total training runtime reduces approximately with the same
factor. This indicates that the GPU are not fully utilized with small batch sizes, and for
the computational efficiency, the training should be conducted with larger batch sizes.
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The lowest MAE is observed for a batch size of 512, which is an indication that this batch
size is the optimal trade-off between speed-up and accuracy.

Table 3. Effect of the size of the batch size on the computing time and the MAE.

Machine Module GPUs B“““G’;‘ée per C‘;‘i':[fe“[:;‘g MAE
JUWELS- 4 8 14723.30 0.0016698
BOOSTER 4 16 7499.96 0.0015822

4 2 3757.98 0.0015293
4 64 1820.90 0.0014718
4 128 963.49 0.0014551
4 256 193.07 0.0013771
4 512 255.93 0.0013613
4 1024 147.70 0.0014453

4. Summary and Conclusions

This study employed empirical data from strained turbulence flow experiments con-
ducted in a laboratory setup to create a velocity prediction model. The simulated turbulent
flow has a Taylor microscale REYNOLDS number in the range of 100 < Re, < 152. The turbu-
lent flow at the measurement area was a nearly stationary homogeneous isotropic before the
deformation. Tracer particles with a median diameter of 8-10 um and a specific gravity of
11g/ em? were seeded in the flow. The mean strain rate in the Y direction is generated to be
4571, and the LPT technique is applied to record the flow features. Based on the Lagrangian
perspective, the extracted velocity and location dataset has been used to train a GRU model
for flow predictions. The strained turbulent flow is a type of shear flow that can be observed
in many applications, such as the external flow over an airfoil and internal flow within a
variable cross-section pipe, internal combustion in engines, particle interactions in mixing
chambers, erosion at the leading edges, dispersion of pollutants in the atmosphere, formation
of rain within clouds, and dispersion of sediments in oceans and rivers [17].

A GRU network is a version of the LSTM network that can perform training faster and
with fewer data. As has been noted in the literature, the turbulence intensity, boundary
geometry, and strain rate affect the flow velocity. Moreover, this experiment was performed in
the presence of gravity, which was not investigated in previous numerical studies on deformed
turbulent flow, and its effect remains unknown. This study relies on the concept that the
velocity as a function of the locations and sequential feature of the flow carries all relevant
information affecting the above-mentioned factors. Therefore, in the training of the GRU,
the model is evaluated to observe how it is capable of learning how the historical effect of
all parameters will impact the following period, since DL can extract hidden features. Each
velocity component and location are measured by LPT in sequence form, and the locations x,
y, and velocity components in the corresponding directions are applied as input data to train
the GRU model. Based on the training, the GRU predicts the velocity component individually
in the following period. In this study, 80% of the data was used as training data, and the
remaining 20% of the data were employed to test the prediction and validate it.

The predictions from the GRU model are considerably accurate, as the MAE and
R? score are 0.001 and 0.993, respectively. The suggested approach leads to predicting
turbulence flow in many applications. However, it is essential to evaluate the model with
extensive data and long-term predictions, as well as apply different boundary conditions
and vary the REYNOLDS number range to observe the limit of the projections. The current
model has been compared to previous DL models with a similar application. The results in
Table 1 show that the proposed model, with 220% larger data and two times more input
variables, has a faster performance of 14-20% than similar model applications of LSTM,
GRU, and Transformer because of the HPO. This performance is a remarkable achievement,
particularly when applying the model to a more extensive dataset. Besides the accurate
predictions generated by this model, the model was executed on the parallel machines
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JULES-BOOSTER and DEEP-DAM at the Jiilich Supercomputer Centre to investigate the
training’s speed-up. The performance on one node and one to four GPU has been examined
in JUWELS-BOOSTER. The results show the speed-up to increase in two GPU. With four
GPU, the model trains 2.57 faster than the metric measurement with a single GPU. To
further enhance this model, its performance with respect to the prediction accuracy and
scalability will be examined extensively using more data. Furthermore, the impact of
the hyperparameters in this model will be investigated to accelerate the model under the
constraint of keeping the accuracy at suitable conditions.
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CFD Computational Fluid Dynamics
CNN  Convolutional Neural Network
Ccru Central Processing Unit

DL Deep Learning

DMD  Dynamical Mode Decomposition
DNS Direct Numerical Simulation
GPU Graphics Processing Unit

GRU  Gated Recurrent Unit

HPC High-Performance Computing
HPO Hyperparameter Optimization
LES Large Eddy Simulation

LPT Lagrangian Particle Tracking
LSTM  Long Short-Term Memory

MAE  Mean Absolute Error

ML Machine Learning

MLP Multilayer Perceptron

MPI Message Passing Interface

POD Proper Orthogonal Decomposition
RANS  Reynolds-Averaged Navier Stokes
RANS  Reynolds-Averaged Navier Stokes
RNN  Recurrent Neural Network

ROM  Reduced-Order Model
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Appendices

A Appendix

Appendix A documents the experiments’ details and how the turbulent flow charac-
teristics were measured and calculated.

1. Strain rate measurement

The experiment was performed two times with tracers employing the Particle
Image Velocimetry (PIV) technique:

I. The turbulence flow without strain: homogeneous isotropic turbulent flow
(HIT)

where, the equation shows one component of the flow velocity.

Vir =V +V (A7)

where, V1 is measured velocity, V is mean velocity and v/ is fluctuation.
Il. Strained turbulent flow (S-HIT): the velocity generated by strain added to the
total velocity via an experiment with specific strain deformation 25 in the y-direction:

Vs mir =V +V + (—28y) (A.2)

here Vs_p7 is the total measured velocity, and y is the location in the y-direction
The measurement extracted the velocity of two experiments separately. To calculate
the generated strain, only must subtract the two velocities:

Vitrain = Vs—Hir — VHIT (A.3)

Vstrain = (V +V'+ (=28y)) = (V +v/) = -28y (A.4)

where, Vi;,4in the velocity generated because of the straining. So, to calculate
the strain rate:

d Vstrain
dy

here S,.. mean strain rate. The generated strain was 4 s~! and 8 s~! in the
y-direction; the strain rate measured fluctuated close to the value.

Since Uyt rain = (Sx, —2Sy,Sz) is a for laminar flow, it does not expect to measure
the same mean strain value since the generated strain in turbulent flow added to the
velocity fluctuations as it well addressed in the literature (P. A. Davidson, 2004).

Srate =

(A.5)

2- Circular disk move: When they are moved toward the center with a pre-
described rate that ensures a nearly constant strain rate in the fluid (Paper I, page
4, paragraph 1.). Since the distance between the disk was vertically constant for
experiments, for two mean strain rates, the speed was regulated to generate the
specified strain rate.
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3. Time duration and dimensionless parameter:

To compare the different experiments with dimensionless parameters, the S x ¢
is defined. S x = 1.6, so when the strain rate is 4 s~!, the time duration ¢ is 0.4 s
and when the strain rate is 8 5!, the time duration ¢ is 0.2 s.

4. Calculating Rey,

According to Table 1 (Paper 1), first, it must calculate the dissipation rate €
(Stephen B. Pope, 2000). It requires the use of a second-order velocity structure
function (Stephen B. Pope, 2000):

Dy = Vi) = ViV, 0%) = v, 0] (A.6)
Dy =Dy (A7)

Dy = D33 = Dy (A.8)
Diy=Di3=Dy3=0 (A.9)

here D;; is second-order velocity structure function. Dy and Dyy are longi-
tudinal and transverse structure functions, respectively. i and j specify the vector
component. V(y) is the velocity. y is the location. The equation can be used
(Stephen B. Pope, 2000):

2
3

Dyi/(er)s =G (A.70)

3 i_ gcz (A.11)

Da/(er)3 = D33/ (er)

where ¢ is the mean dissipation rate, r =y —y(1), and C, = 2 is the universal
constant (Sadoughi eta al, 1994; Stephen B. Pope, 2000).

Eulerian auto-correlation function is used to calculate the integral scale and
measure the length scale (Stephen B. Pope, 2000):

p(l) = u(ro+ L)u(ro) /u* (A.12)

L:/pr(l)dl (A.13)

where p(1) is the integral scale, u is the velocity, r is location, ry refer to origin
location that assumed, [ is the variable of integration and L is length scale.

uj = U-— Umean (A14)

here, u; is the velocity fluctuation, U is the total velocity, U,.q, is the mean
velocity.

Urms = u? (A N 5)
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where u,,; is the root mean square velocity.

V3
&€

n=(—)

where 1 is Kolmogorov length scale and v is the kinematic viscosity.

Vi
T, =(—)2
n (8)

here 7, is Kolmogorov time scale.

A= “rms(

where A is Taylor mircoscale.

Re; = UpmsL

here Rey, is the flow Reynolds number.

Upns A
Rel — rms

where Re, is the Taylor microscale Reynolds number.

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

127



	Abstract
	Útdráttur
	Dedication
	Contents
	List of Figures
	List of Tables
	List of Publications
	Other Publications
	Abbreviations
	Acknowledgments
	Introduction
	Motivation
	Thesis Objectives
	Outline
	Thesis Structure
	Publications

	Contributions

	Background
	Deep Learning Models for Sequential Datasets
	High-Performance Computing and Parallel Computing
	Turbulent flow in fluid dynamics
	Data-Driven DL Model for Turbulent Flow

	Related Work
	HPC in Computational Fluid Dynamics (CFD)
	DNS and HPC
	Fluid dynamics Use cases and HPC

	DL in Fluid Dynamics
	DL applications in aerodynamics
	DL model in shear flow

	Applications in Green Energy Engineering

	Summary of Publications
	An Experiment Generates a Specified Mean Strained Rate Turbulent Flow: Dynamics of Particles
	The capability of recurrent neural networks to predict turbulence flow via spatiotemporal features
	Deep Learning Forecasts a Strained Turbulent Flow Velocity Field in Temporal Lagrangian Framework: Comparison of LSTM and GRU
	Deciphering the dynamics of distorted turbulent flows: Lagrangian particle tracking and chaos prediction through transformer-based deep learning models
	Optimizing Wind Energy Production: Leveraging Deep Learning Models Informed with On-Site Data and Assessing Scalability through HPC
	Turbulent Flow Prediction-Simulation: Strained flow with Initial Isotropic Condition Using a GRU Model Trained by an Experimental Lagrangian Framework, with Emphasis on Hyperparameter Optimization

	Conclusions
	 Paper I
	 Paper II
	 Paper III
	 Paper IV
	 Paper V
	 Paper VI
	References
	Appendix

