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Abstract
The objective of this research is to investigate the potential of machine learning (ML)
and deep learning (DL) within computational fluid dynamics (CFD) utilizing high-
performance computing (HPC). Turbulent flow, a complex phenomenon prevalent in
both natural sciences and industrial settings, poses a significant challenge in classical
physics. Given its nonlinear and stochastic nature, DL emerges as a promising
approach for comprehending turbulent flow dynamics.

This PhD Thesis introduces a novel data-driven methodology, leveraging experi-
mental datasets to assess the efficacy and robustness of sequential DL models in
turbulent flow analysis. The manuscript elaborates on the innovative aspects and
advantages of employing DL within this context. Moreover, it outlines the necessity of
HPC resources for executing cutting-edge DL models alongside the computationally
demanding approaches for model tuning and hyperparameter optimization.

This study thoroughly followed a documented procedure to assess the efficacy of
innovative DL modeling techniques. Initially, measured data obtained from experi-
mental tests was analyzed in depth, establishing their relevance to DL models from a
physical perspective. Subsequently, three DL model architectures— long short-term
memory (LSTM), gated recurrent unit (GRU), and Transformer models—were system-
atically evaluated, and their outcomes were compared. Furthermore, a case study
was undertaken in the wind energy sector within the realm of energy engineering,
yielding promising results to validate the DL prediction model’s applicability.

In addition, optimization techniques for hyperparameter tuning were explored
utilizing new HPC methodologies (e.g., modular supercomputing architectures and
cutting-edge graphical processing units (GPUs)) to enhance the performance of
the DL models. This optimization process was rigorously executed and assessed
within the setup of a data-driven model capable of training with statistics data of
CFD or EFD approaches, resulting in improved and cutting-edge approaches within
the CFD domains, augmenting findings of physics-driven models with DL models.

The findings of this research demonstrate a noteworthy breakthrough in pre-
dicting turbulent flow behavior, showcasing the effectiveness of the proposed DL
models while not losing sight of leveraging cutting-edge HPC methodologies.
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Útdráttur
Markmið rannsóknarinnar er að kanna mátt vélnáms (ML) og djúpnáms (DL) í tölulegri
straumfræði (CFD) með aðstoð háafkasta tölva (HPC). Iðustreymi, margslungið
fyrirbæri sem fyrirfinnst í bæði náttúrulegum aðstæðum og manngerðum iðnaði,
er vel þekkt óleyst eðlisfræðilegt viðfangsefni. Þrátt fyrir að iðustreymi sé bæði
ólínulegt og slembið fyrirbæri hefur djúpnám gefið góða raun um að vera fært um
að segja til um hegðun iðustreymis.

Í þessari doktorsritgerð er kynnt ný gagnadrifin aðferðafræði, sem notar gögn
frá tilraunum til að ná fram styrkleikum og áreiðanleika runubundins djúpnáms í
iðustreymisgreiningu. Ritgerðin sýnir fram á helstu nýjungar þróaðar hér og kosti
þess að nota djúpnám á þetta viðfangsefni. Einnig er farið í nauðsyn þess að nota
háafkastatölvur til að beita djúpnámsaðferðum auk tölulega krefjandi aðferða til að
stilla líkanið af og bestunar á yfirfæribreytu.

Í þessari rannsókn er lýst nákvæmlega stöðluðum aðferðum um hvernig má ná
fram hámarksvirkni djúpnámsaðferða. Í fyrstu var farið vandlega yfir tilraunagögn
og nýting þeirra til djúpnáms í raunverulegum aðstæðum skoðuð ítarlega. Næst eru
þrjár mismunandi djúpnáms aðferðir – minnugt endurkvæmnis tauganet (LSTM),
hlið endurtekin eining (GRU) og breytir (Transformer) – skoðaðar kerfisbundið í
þremur fösum og niðurstöður þeirra bornar saman. Auk þess var gerð tilviksrannsókn
úr vindorkugeiranum, þ.e. orkuverkfræði, sem sýndi niðurstöður sem lofa góðu til
að sannreyna færni djúpnáms til að spá fyrir um framtíðarhegðun.

Í lokafasa rannsóknarinnar var bestunaraðferðum fyrir yfirfæribreytu beitt með
því að nota skjákort (GPU) úr fremstu röð til að bæta virkni djúpnámslíkansins.
Bestunin var framkvæmd af mikilli nákvæmni og metin út frá gagnadrifnum líkönum
sem unnt var að þjálfa með tölfræðigögnum úr tölulegri straumfræði (CFD) og
gögnum úr tilraunum. Það leiddi til bættra og nýrra framúrskarandi aðferða í
tölulegri straumfræði þar sem niðurstöður módela byggðum á eðlifræði eru bætt
með djúpnámi.

Niðurstöður rannsóknarverkefnisins eru bylting í að spá fyrir um hegðun iðu-
streymis og sýna klárlega virkni djúpnáms þegar fremstu háafkastatölvuaðferðum er
beitt.
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1 Introduction

1.1 Motivation
In fluid dynamics, alongside restricted analytical techniques, two approaches,
Computational Fluid Dynamics (CFD) and Experimental Fluid Dynamics (EFD) meth-
ods, are employed to address scientific and engineering problems [1]. EFD is
constrained by both the scale of the problem and its associated costs (e.g., exper-
imental setup, wind tunnels, measurement devices, materials, security concerns,
etc.), limiting its applicability across a wide range of scenarios [2]. Conversely,
CFD’s effectiveness enables understanding when increasing the problem scale and
necessitates substantial computing resources [3]. As problem size increases, CFD
encounters computational challenges. Additionally, validating CFD simulations
requires comparison with experimental data, presenting another hurdle. Further-
more, proficiency in theoretical aspects of a problem is essential for utilizing CFD
effectively.

Turbulent flow, a complex phenomenon in fluid dynamics, remains a challenge
in classical physics [4]. Besides its randomness and nonlinear behavior, turbulent
flow is prevalent in various natural sciences and industrial settings, indicating its
widespread occurrence [1]. While EFD can address turbulent flow within a limited
range, CFD offers three main categories for tackling turbulent flow problems:
Reynolds-Averaged Navier-Stokes (RANS) [1], Large Eddy Simulation (LES) [5],
and DNS [6]. RANS provides an average solution that is most applicable in the
industry because it is the least computationally expensive but also the least accurate.
LES creates a solution with better accuracy than RANS and its computing cost is
higher than RANS and lower than DNS. DNS is the most expensive computing
solution and provides the most exact solution. The continuous improvement and
availability of High-Performance Computing (HPC) systems enhance the feasibility
of more accurate simulations, yet many CFD problems, especially those involving
intricate flow structures, remain computationally challenging [7, 8]. Additionally,
empirical data validation is crucial in numerous CFD applications, posing another
limitation [8].

These limitations raise the necessity for reliable tools to address such challenges
and enable the analysis of turbulent flows across various scales. In recent years,
Machine Learning (ML) and DL have demonstrated significant potential in studying
nonlinear phenomena such as observed in fluid flow.

The subject of this study is therefore evaluating hybrid data-driven models of DL
with the application of HPC for turbulent flow analysis, focusing on the simulation and
prediction of future periods of turbulent flow. The primary concept of turbulent flow is

1



1 Introduction

that it is composed of different sizes of eddies, a bunch of coherent molecules, which
Richardson summarized in 1922 [9]. The eddies have various sizes, and this scale
distinction has complicated the understanding of turbulence. G.I. Taylor, in 1935,
established a fundamental statistical theory of turbulence [10]. A. N. Kolmogorov in
1941 proposed his hypotheses (K41) regarding the structure of turbulent flow [11].
Kolmogorov’s hypotheses only determine the universal equilibrium range, composed
of the dissipation and inertial ranges [1]. This thesis is, therefore, motivated by
the fact that there is no comprehensive analytical understanding of turbulent flow,
particularly on a large scale. Thus, predicting turbulent flow in the upcoming period
hinges on understanding its characteristics, which is a complex task. Evaluating DL
models within hybrid data-driven models could facilitate the analysis of turbulent
flow and potentially serve as helpful tools for CFD applications. Two key lessons
have been learned regarding large-scale structures: firstly, turbulence can manifest
a broader spectrum of behaviors beyond turbulence typically accounted for by
turbulence viscosity; secondly, turbulence operates non-locally in space and time [1].
Hence, turbulence possesses a prolonged memory, with its behavior at a given point
being significantly influenced by flow conditions far removed from that point [1].

Similarly, there is no established theoretical framework for large-scale turbulent
flow, and recent experiments challenge traditional assumptions regarding velocity
difference statistics within the inertial range [12]. This study proposes an approach
based on Lagrangian Particle Tracking (LPT) [13], dependent on the particle Stokes
number(Stokes Number (St)), which is defined in the paper I and subsection
2.3, to investigate turbulent flow properties. The research also highlights the
potential development of this approach in Multiphase Turbulence Flow (MTF) 1,
incorporating particles, droplets, and bubbles [14]. Due to the lack of understanding
of large eddies in turbulent flow, knowledge gaps persist regarding MTF [15, 16].
Additionally, the impact of gravity in MTF has not been thoroughly explored in CFD,
with recent data suggesting caution when generalizing findings from experiments
conducted in zero gravity environments [17]. Moreover, it is noted that the dynamics
of finite-size particles in MTF cannot be solely determined by their response time [17].

Various methods have been developed to address the above-mentioned limita-
tions to capture the key characteristics of turbulent flow through Reduced-Order
Model (ROM). Prominent techniques such as Proper Orthogonal Decomposi-
tion (POD), Dynamical Mode Decomposition (DMD), and Koopman analyses are
employed to construct ROMs [18, 19]. Additionally, within CFD, essential tasks
include dimensionality reduction, feature extraction, super-resolution, application
of ROMs, turbulence closure, shape optimization, and flow control [20]. However,
these techniques tend to be intricate when dealing with real-scale and extensive
fluid dynamics problems.

The thesis is further motivated by the fact that DL has demonstrated impressive
proficiency in forecasting nonlinear and stochastic phenomena. Among the various
DL architectures, the sequential model stands out (i.e., for investigating time series)
for its potential in turbulent studies and is primarily researched in this thesis. As
previously mentioned, turbulent flow operates on a large scale, affecting points both

1Particle-laden turbulence (PLT)
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1.1 Motivation

spatially and temporally, with each point influenced by flow conditions distant from
it. Additionally, the Lagrangian framework [3, 2] establishes a link between time and
local properties in fluid dynamics. Developing a DL model that incorporates both
the Lagrangian framework and memory of turbulent flow could provide a foundation
for predicting emerging turbulent flow features.

In the domain of fluid dynamics, the Lagrangian framework delineates spatial and
temporal functionalities. One can employ a DL model trained solely on temporal,
spatial features, or both within this framework. This approach has been adopted
to construct a model capable of predicting turbulent flow without reliance on flow
characteristic attributes like Re, St, strain mean rate, and gravity.

Employing a DL model trained on a turbulent flow dataset necessitates HPC
resources. Moreover, HPO [21] was utilized to refine the DL models. Within the
EuroCC 1 and 2 projects 2 and the National Competence Centre (NCC) for HPC
and Artificial Intelligence (AI) of Iceland 3, the present research gained access
to machines at the Juelich Supercomputing Centre (JSC) 4. Therefore, the thesis
findings could use cutting-edge HPC research resources such as DEEP [22] and
JUWELS [23]. Those HPC systems are based on the innovative Modular Supercom-
puting Architecture (MSA) approach [24].

Utilizing a data-driven DL model necessitates a suitable dataset, particularly in
fluid dynamics, to ensure the reliability and applicability of the proposed model
in similar conditions and future studies. This thesis used a dataset from strained
turbulence flow derived from a laboratory experiment, employing the LPT technique
for flow feature extraction. This approach ensures that the proposed DL data-
driven methods are founded on dependable experimental data, rendering them
valid. Strained turbulence flow finds relevance across various applications. The
distribution of pollutants in the atmosphere, the formation of rain in the cloud [25],
and the spread of sediments in the ocean and rivers are a few instances [26]. Many
industrial applications are related, including internal engine combustion, particle
interaction in a mixing chamber [27], and leading-edge [28] erosion in compressors
and turbines [29, 30]. The external flow over an airfoil [31, 32] and internal flow in
a changeable cross-section pipe [33, 34] are instances of straining turbulent flow
[35, 36].

Given the above, it is evident that there is a need for a data-driven DL approach
through which integrating physical properties of turbulent flow and AI (i.e., DL and
ML methods) capability can be made possible.

The proposed approach would provide the necessary flexibility through which:

• Dataset can be easily stored, cleaned, manipulated, and analyzed.

• Prospective prediction models can be developed, tested, and improved.

• Data must be valid in fluid dynamics.

• The DL model is flexible for different datasets with different inherent features
and characteristics.

2EuroCC Access Webpage: https://www.eurocc-access.eu/
3NCC Webpage: https://www.ihpc.is/
4JSC Webpage: https://www.fz-juelich.de/en
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1 Introduction

• We foresee that a wide variety of other applications can use the findings of
this thesis.

• DL and HPC are both essential components for implementing the current
approach and could significantly benefit CFD applications.

4
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1.2 Thesis Objectives
The overall objective of this thesis is to investigate the integration of cutting-edge
HPC resources and innovative DL algorithms for CFD. However, achieving this
integration requires extensive preparatory work, including dataset analysis for a
data-driven approach, acquiring the necessary skills, techniques, and tools, and
establishing suitable working environments. The ultimate aim of this research is to
develop and validate a data-driven approach for analyzing and predicting turbulent
flow in fluid dynamics, along with constructing DL-based models optimized for HPC
resources utilization. To assess progress towards this overall thesis objective, a set
of Thesis Objective (TO)s are outlined below.

TO1 – Constructing a dataset sourced from a credible experiment involving tur-
bulent flow and describing the linkage between the Lagrangian framework
and the architecture of sequential DL models.

TO2 – To develop an innovative data-driven approach using fluid dynamics data,
enabling individual prediction of flow components (x, y, and z) as indepen-
dent entities.

TO3 – Evaluating diverse data-driven DL models and analyzing their strengths and
weaknesses within the proposed methodology, particularly emphasize on
utilizing HPC resources.

TO4 – Employing the current state-of-the-art Transformer model within the con-
text of turbulent flow and assessing its performance alongside pioneering
sequential DL models such as LSTM variants.

TO5 – Demonstrating the practical engineering application of integrating fun-
damental fluid dynamics studies with DL models in sustainable energy
engineering, focussing on forecasting wind power production.

TO6 – Enhancing the data-driven model by increasing the volume of input data
to assess the performance of DL models, coupled with HPO techniques in
the context of HPC.

The diagram presented in Figure 1.1 delineates the chronological progression
of the TOs from the commencement of the Ph.D. research to its conclusion. It show-
cases the sequential milestones undertaken to accomplish each TO, encompassing
essential physics of the fluids, techniques, HPC methods, and data employed
throughout the process.

The interconnection among the TOs is depicted by the red arrows, symbolizing
the direct transfer of knowledge acquired in one phase to the subsequent step.

Finally, the flow diagram in Figure 1.1 offers a visual depiction of the TOs
addressed in each of the publications outlined in Chapter 4.
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1 Introduction

Figure 1.1. Flow diagram of the thesis outline and the achieved publications.6



1.3 Outline

1.3 Outline
This thesis adopts a cumulative format, emphasizing the achievement of the TOs
via the publications listed in the ”List of Publications”. A comprehensive overview
of the organization of this manuscript is available in Section 1.3.1, Subsequently,
Section 1.3.2 presents a compilation of primary publications associated with the
objectives outlined in this Thesis. Chapter 4 offers a detailed summary of these
publications. Additional publications, not directly necessary but still somewhat
relevant to the work undertaken by the thesis author or where their involvement was
marginal, are listed in the ”Other Publications”.

1.3.1 Thesis Structure

This thesis is organised as follows:

• Chapter 1 The introduction outlines the scope of the thesis, establishes the
Thesis Objectives, and elucidates the connection between these objectives
and the published works referenced in subsequent sections of the thesis.

• Chapter 2 Offers insights into the foundational topics upon which the work
detailed in this thesis is constructed. This information also contributes to
the broader knowledge accumulated during the course of TO1 and TO6
endeavors.

• Chapter 3 Reviews related work approaches and research showcasing analo-
gous approaches to those expounded upon in this thesis and delineates the
current state-of-the-art technology and methodologies within the field.

• Chapter 4 presents comprehensive explanations of the conference and journal
publications.

• Chapter 5 provides a summary of the thesis and offers a concise overview of
potential future endeavors.

• Subsequently, the publications enumerated in Section 1.3.2 are presented in
their entirety.

• The thesis concludes with the bibliography Section, which catalogs all refer-
enced literature.

1.3.2 Publications

• Paper I
R. Hassanian, Á. Helgadóttir, L. Bouhlali, M. Riedel, ‘An Experiment Gener-
ates a Specified Mean Strained Rate Turbulent Flow: Dynamics of Particles’,
in AIP Physics of Fluids, vol. 35, no. 1, 2023 https://doi.org/10.1063/
5.0134306.
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• Paper II
R. Hassanian, M. Riedel, L. Bouhlali, ‘The capability of recurrent neural
networks to predict turbulence flow via spatiotemporal features’, in IEEE 10th
Jubilee International Conference on Computational Cybernetics and Cyber-
Medical Systems (ICCC), Reykjavik, Iceland, July, 2022, pp. 335–338 https:
//doi.org/10.1109/ICCC202255925.2022.9922754.

• Paper III
R. Hassanian, Á. Helgadóttir, M. Riedel, ‘Deep Learning Forecasts a Strained
Turbulent Flow Velocity Field in Temporal Lagrangian Framework: Comparison
of LSTM and GRU’, in MDPI Fluids, vol. 7, no. 11, 2022, https://doi.org/
10.3390/fluids7110344.

• Paper IV
R. Hassanian, H. Myneni, Á. Helgadóttir, M. Riedel, ‘Deciphering the dy-
namics of distorted turbulent flows: Lagrangian particle tracking and chaos
prediction through transformer-based deep learning models’, in AIP Physics
of Fluids, vol. 35, no. 7, 2023, https://doi.org/10.1063/5.0157897.

• Paper V
R. Hassanian, A. Shahinfar, Á. Helgadóttir, M. Riedel, ‘Optimizing Wind
Energy Production: Leveraging Deep Learning Models Informed with On-
Site Data and Assessing Scalability through HPC’, in IEEE Hungary Section-
Obuda Acta Polytechnica Hungarica Journal, vol. 21, no. 9, 2024, https:
//doi.org/10.12700/APH.21.9.2024.9.4.

• Paper VI
R. Hassanian, M. Aach, A. Lintermann, Á. Helgadóttir, M. Riedel, ‘Turbulent
Flow Prediction-Simulation: Strained flow with Initial Isotropic Condition
Using a GRU Model Trained by an Experimental Lagrangian Framework, with
Emphasis on Hyperparameter Optimization’, in MDPI Fluids, vol. 9, no. 4:
84, 2024, https://doi.org/10.3390/fluids9040084.
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1.4 Contributions

1.4 Contributions
As mentioned in Section 1.2, each publication relates directly to one or more TOs
as shown in Table 1.1. The central aspect of TO1 which is reported in Paper I
is to generate a reliable dataset in the fluid dynamics community to be used in
a DL model with utilizing HPC. Therefore, TO1 focuses on preprocessing data
from an experiment and extracting the required information that could be used.
TO2 is a response to questions on how to find a connection between a data-
driven DL architecture and the physical properties of turbulent flow. The core idea is
established based on the Lagrangian framework, which connects the spatio-temporal
feature, and it is published in Paper II. To assess the optimum model among DL
sequential prediction models, in the context of performance and accuracy, the TO3
enhances the strained turbulent flow prediction model with two most applicable
DL sequential networks and compares their approaches and results in Paper III.
To investigate the other DL models that could be employed in fluid dynamics and
prove their capability, in TO4, an innovative attention mechanism integrated in
cutting-edge DL models (i.e., transformer) are examined and introduced in Paper
IV. TO5 proposes and displays a use-case as an engineering application of the
DL models that are successful in the fluid dynamics assessment in previous TOs
and illustrates in Paper V. The study takes another step to enhance the DL models
in a data-driven approach to predict the turbulent flow features combined with
spatial and temporal features in TO6, which had more extensive data and uses
hyperparameter tuning to optimize the model performance as reported in Paper
VI. The relation between the publications and the TOs is presented in Table 1.1. In
the remainder of this Section, an in-depth discussion of the main contributions of
this thesis is provided, with emphasis on how the TOs were achieved and how they
relate to the published material. Additionally, the thesis author’s contributions to
each publication are highlighted.

In order to enhance the DL and HPC applications in the fluid dynamics area,
datasets are necessary based on the data-driven approach. Most of the flows
are turbulent, and turbulent flow is still complex and has not been understood
comprehensively. Therefore, guiding the application of DL and HPC in this way

Table 1.1. Relation of publications to the TOs.

Paper I Paper II Paper III Paper IV Paper V Paper VI
TO1 ×
TO2 × ×
TO3 × ×
TO4 × ×
TO5 ×
TO6 × × ×

Transferable
Knowledge

× × × × × ×
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to add an aid technique helping in turbulence study was chosen. Data from a
laboratory experiment from the author’s research is employed to follow up on that
goal. The dataset was generated from strained turbulent flow with a particular range
of Reynolds number (Re) [2] and specific mean strain rates. The experiment used a
tracer particle to seed the flow and, with laser and high-speed camera, recorded the
particle movement, which presented the flow streamline based on the Stokes number
(St) [2] measurement. The experiment employed the Lagrangian particle tracking
technique to extract the turbulent flow feature. The flow was three-dimensional, and
the measurements were two-dimensional. The study focused on the velocity of the
turbulent flow, which is fundamentally assumed to carry most of the flow features.
TO1 established the required data for next TOs. The TO1 includes processing
extensive measurement data to transfer and convert to applicable forms and files.

Utilizing a DL model for turbulent features needs to build a connection between
the physics of the phenomenon and the DL architectures. In Fluid dynamics, the
Lagrangian framework defines the flow properties as a function of time. Furthermore,
the location is also connected to the time. This demonstration of the turbulent feature
was an excellent design to apply sequential DL models to predict the flow features.
Therefore, the recorded data from TO1 has been used to train a sequential model as
LSTMmodel and its variants and test its prediction. The first phase of this examination,
which was performed in TO2, resulted in an impressive alignment between the
predicted velocity of the flow and the measured velocity, exhibiting remarkable
accuracy. Notably, the model’s training relied solely on velocity time series data,
devoid of any flow characterization information, enhancing its superiority within this
domain. However, it was applied to a small dataset to assess this approach. The
proposed approach is developed and leveraged in the next TOs.

Based on the literature, LSTM variants from Recurrent Neural Network (RNN) are
excellent options for predicting sequential properties. In spite of the accuracy of the
DL model prediction for turbulent flow in the present study, the HPC performance
needs to be examined. Therefore, in TO3 the data of the strained turbulent flow was
used to train and predict the following period of the velocity with LSTM and GRU
with different training and test ratios and the model performance was measured.
The outcome of the TO3 presents a perspective to select the proper DL model in
fluid dynamics applications.

Among the DL models, the transformer incorporating from the attention mecha-
nism is state of the art and, at the time of the current study, had not been examined
in fluid dynamics, particularly in a turbulent regime in the data-driven approach.
Therefore, TO4 presents a novel application of the transformer model to predict the
turbulent flow velocity with remarkable accuracy that was observed in the test. The
outcome of TO4 opens a window to develop and leverage transformer applications
in the fluid dynamics area.

TO5 studies an engineering application of the achievement in TO1 to TO4. In
wind energy production, the prediction of power production, which is a function
of the wind speed and technical parameters of the wind turbine and land surface
type, is relevant to the wake loss effect [37, 38]. Thus, obtaining a prediction
model of the wind speed with nonlinear and randomness behavior could lead to
great development in wind power prediction. Smart power production will assist in
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development of a smart power grid and cities. TO5 applied GRU model trained
with wind velocity from the Icelandic Meteorological Office (IMO) to predict the
following period of the wind speed. The study proposed the idea to split the data
seasonally and predict the wind speed in the seasonal category. The result was
successful and had remarkable accuracy, and it can be developed for practical
application in the industry. Also, the TO5 proposes the local HPC cluster in wind
farm supplied by the wind farm production, making the clean and green resources
for HPC applications.

The employed dataset in the present work is obtained from strained turbulent
flow seeded by tracer particles and LPT used to extract the flow features. In the
examination among TO1 to TO5 the DL only trained with time series of the velocity
and was not informed about the turbulence intensity, strain rate, and particle size–
density. This shows that the model only relies on the time series of the velocity. In
order to assess the model with larger data and more information, the location of the
particles corresponding to the velocity is also trained to help the model predict the
velocity. A GRU model is used and trained in the spatial and temporal approach.
The results of this design are presented in TO6. Furthermore, HPO on cutting-edge
HPC resources was used to improve the prediction model’s performance. The
author’s contribution to the published papers in his PhD thesis involves writing
the original draft, conceptualizing, developing methodology, developing software,
validating, formal analysis, investigation, visualizing, and corresponding author.
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2.1 Deep Learning Models for Sequential Datasets
DL, a subset of both ML and more broadly, AI, has emerged as a cornerstone
technology in today’s Fourth Industrial Revolution (4IR or Industry 4.0) [39]. Lever-
aging its ability to extract insights from data, DL, rooted in artificial neural network
(ANN) principles [39], has captured widespread attention across scientific and
engineering domains and finds extensive utility in sectors such as healthcare, visual
recognition, text analytics, cybersecurity, among others. Yet, crafting effective DL
models presents a challenge, given the ever-evolving DL model architectural design
complexities and capabilities and nuances of real-world problems and data. Further-
more, the opacity inherent in DL methodologies, lacking transparent comprehension,
can impede progress and standardization efforts, rendering them akin to black-box
systems. That is particularly challenging to use in physics applications that are often
driven by causality and based on physical laws using often fully understandable
numerical methods.

Still, DL methodologies have experienced a remarkable surge in performance
across a broad spectrum of applications, also within physics and engineering,
where they excel at unraveling intricate structures within high-dimensional datasets.
Consequently, these techniques wield significant potential in constructing intelligent,
data-centric systems tailored to contemporary requirements, owing to their adeptness
at extracting insights from historical data (i.e., DL models can perform feature
learning apposed to traditional ML models were inputs often had to be manually
feature engineered). As a result, DL revolutionizes both the global landscape and
individuals’ daily routines through its capacity for learning. Given its intersection
with AI, ML, and data science featuring advanced analytics with enormous needs of
computing capacity and capability, DL technology holds profound relevance within
the realm of computer science, particularly within the context of today’s intelligent
computing models [39].

An increasingly favored neural network model, the RNN, specializes in handling
sequential or time-series data. It operates by utilizing the output from the preceding
step (.e.g, time step) as input for the current phase [40, 41]. RNN derive their
learning from training input, but what sets them apart is their ”memory,” enabling
them to influence current input and output by leveraging information from past
inputs. The output of an RNN depends on previous elements within the sequence.
However, RNN faces the challenge of vanishing gradients [42], complicating the
learning process for lengthy data sequences.

LSTM stands out as a favored RNN architecture employing specialized units to
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address the vanishing gradient issue, as pioneered by Hochreiter et al. [42]. In an
LSTM unit, a memory cell possesses the ability to retain data for extended durations,
with the flow of information regulated by three gates (see Figure 2.1).

Figure 2.1. The LSTM–model architecture [43].

For example, the ’Forget Gate’ decides which information from the prior state cell
to retain and what to discard as obsolete. Meanwhile, the ’Input Gate’ governs the
entry of information into the cell state, and the ’Output Gate’ dictates and manages
the outputs. Addressing the challenges inherent in training recurrent networks, the
LSTM network is widely regarded as one of the most effective RNN architectures.
They are also known DL models that handle certain missing data in sequence data
relatively well. Given the many gates and corresponding weight matrices to train,
LSTM training is computationally expensive.

GRU emerges as another widely adopted variation of the RNN architecture,
employing gating mechanisms to regulate the flow of information among cells within
the neural network, as pioneered by Cho et al. [44]. The GRU bears a resemblance
to an LSTM but boasts fewer parameters. It incorporates a reset gate and an update
gate but lacks the output gate, distinguishing it from the LSTM structure.

Therefore, the primary contrast lies in the number of gates: a GRU features
two (reset and update gates), while an LSTM incorporates three (input, output, and
forget gates). The streamlined architecture of the GRU enables it to effectively
capture dependencies within extensive data sequences while adaptively preserving
information from earlier segments. Consequently, the GRU serves as a more
efficient variant, often delivering comparable performance with significantly faster
computational processing and learning [45]. The GRU architecture is illustrated in
Figure 2.2 and is usually thus a bit less computationally expensive to train.

Even though GRUs have demonstrated improved performance on particular
smaller and less frequent datasets [45, 46]. Both versions of RNN have demonstrated
their effectiveness in generating results in a wide variety of scientific and engineering
applications.

More recently, the transformer is a DL network structured with an encoder-
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Figure 2.2. The GRU–model architecture [43].

decoder architecture [47]. Input data is processed through the encoder layers,
and the decoder generates the resulting output [48]. This process involves several
steps. The transformer architecture works effectively if the number of encoder
layers precisely matches the number of decoder layers (see Figure 2.3). Positional
embedding [49] is introduced into the input vectors to encode both the sequence
and positional information within the input data. These positional embedded vectors
serve as the input for the initial encoding layer, and the output from each encoder
layer serves as the input for the subsequent layers.

As shown in Figure 2.3 each encoder layer is structured into two sublayers.
Initially, input data traverse through a multi-head attention sublayer within the first
encoder. This sublayer considers dependencies among all inputs to construct weight
matrices. Subsequently, the outputs from the multi-head attention sublayer flow into
the feed-forward sublayer as shown in Figure 2.3. An intermediate Add&Norm
sublayer resides between these two, adding the inputs of the multi-head sublayer to
its original input and normalizing the result.

Within the feed-forward sublayer, data is processed independently at each
position, allowing for parallel and autonomous processing. After this, the outputs
from the feed-forward sublayer undergo the Add&Norm intermediate sublayer in
the same manner. Thus, data is progressively processed through each encoder
layer before proceeding to the subsequent layers.

The quantity of encoder layers is not bound by fixed or magical numbers [49];
rather, it needs to be carefully selected and tailored for each specific application
during the DL model architecture design phase. In the inception of the Trans-
former architecture [49], for instance, it was initially structured with merely six
encoder-decoder layers, showcasing significant accomplishments. This aspect of
the Transformer architecture highlights its impressive ability to address sequential
data challenges efficiently with fewer layers. Decreasing the number of layers in
DL models has the potential to reduce computational complexity in processing, but
also enables a better parallel computing approach.

After traversing all encoder layers, the data proceeds to the decoder layers for
output embedding. The decoder layer comprises two sublayers: multi-head and feed-
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Figure 2.3. The Transformer–model architecture [49].

forward, akin to those in the encoder layer, positioned after a masked sublayer. The
initial sublayer in the decoder, known as the masked multi-head sublayer, establishes
a masking layer for the embedded outputs, ensuring dependency only on preceding
data. This masking prevents the influence of subsequent data sequences.

Upon passing through the Add&Norm intermediate sublayer, the output from the
masked multi-head sublayer flows through the multi-head sublayer. During training,
three weight matrices—Query, Key, and Value [49]—are generated in the encoding
layers. While the Key and Value matrices from the preceding encoder feed directly
into the multi-head sublayers of decoder layers, the Query matrix for each decoder
layer originates from the earlier masked sublayer.

Subsequent steps in the decoder layers mirror those in the encoder layers.
Eventually, the output progresses through linear and softmax layers in the final
decoder layer. The linear layer, a fully connected neural network, transforms the
vector produced by the decoder stack into a larger vector known as a logit vector.
Then, the softmax function converts scores from the linear vector into probabilities,
ensuring all are positive and sum up to 1.0. The output for the current time step is
selected based on the cell with the highest probability.
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2.2 High-Performance Computing and Parallel Com-
puting

Over the past few decades, computational technology has made significant ad-
vancement that favour the use of ML and DL models and enlarging their success
in a broader set of applications., with even commonplace computers now capable
of executing tens of billions of operations. Specialized machines designed for
scientific endeavors further amplify this capability. The discipline that delves into
the workings of such disruptive machines and their application to research and en-
gineering problems is known as HPC or supercomputing. The distinction between
HPC and regular computing relies on the fact that HPC is a research discipline on
its own, always striving for new architectures and innovative methods incorporating
groundbreaking new processing capabilities (e.g., accelerators) at an unprece-
dented scale. The augmented computational capability of supercomputers largely
stems from conducting operations in exceedingly brief intervals and leveraging
numerous computing units to perform operations simultaneously, known also as
parallel processing or parallel computing. [50].

As a relatively new research area to engage in solutions facing substantial
heterogeneity in user needs, the MSA integrates compute modules with varying
hardware and performance characteristics into a unified heterogeneous system.
Each module operates as a parallel, clustered system, potentially of considerable size,
while each module focuses on specific needs (e.g., offering cutting-edge Central
Processing Unit (CPU) with high single-thread performance or offering a high number
of accelerators like Graphics Processing Unit (GPU)s or neuromorphic devices in
the future). These module-specific interconnects are linked through a federated
network. This configuration significantly benefits heterogeneous applications and
workflows, as each component can run on the most suitable system, enhancing both
time to solution and energy efficiency while offering still users a broad spectrum of
computing solutions. Consequently, it is ideal for supercomputer centers managing
mixed heterogeneous applications, offering higher throughput and better energy
efficiency. Hence, the MSA provides system operators with valuable flexibility,
enabling them to tailor the modules and their sizes to the center’s specific portfolio
and usage requirements.

To provide an example, the JUWELS system employs a MSA. Its JUWELS Cluster
Module, a BullSequana X1000 supercomputer, follows a scalable hierarchical cell-
based design. The cluster comprises ten Sequana X1000 cells: nine cells with
279 compute nodes each in the CPU-only partition and a tenth cell with 48 GPU-
accelerated compute nodes. The CPU-only partition includes 2,511 compute nodes,
each equipped with two Intel Xeon Skylake Platinum 8168 CPUs, offering 24 cores
each and a base frequency of 2.7 GHz. The GPU partition features 56 compute
nodes based on the BullSequana X1125 accelerator blade, with each node housing
two Intel Xeon Gold 6148 processors (20 cores each) and 192 GB of main memory
(cf. Figure 2.4) [23]. Hence, the Cluster Module offers cutting-edge CPUs for
processing-intensive computing with high single-thread performance.

In contract, the JUWELS Booster is a BullSequana XH2000 supercomputer
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Figure 2.4. Annotated block diagrams of JUWELS compute nodes [51].

composed of 936 X2415 compute blades. Each blade features a single node with
512 GB of memory and two AMD EPYC 7042 processors, each with a base frequency
of 2.8 GHz and 24 cores, matching the core count of the Cluster partition for user
convenience. Despite the robust capabilities of these processors, the standout
feature of the JUWELS Booster nodes is their GPUs. Each compute node houses
four NVIDIA Ampere A100 GPUs in the SXM4 form factor, each with 6912 CUDA
cores and 40 GB of HBM2 memory. These GPUs communicate with each other
bi-directionally at 200 GB/s via an NVLink3 bus. Another significant difference
between the GPU nodes in the Cluster partition and those in the Booster is the
interconnect. The complete topology of the nodes is illustrated in Figure 2.5 [23].
To sum up, the Booster Module is specifically designed for GPU-intensive workloads
such as the training of ML and DL models relevant to this thesis.

A substantial element of research in HPC is parallelism, which poses challenges
for both computer architecture hardware vendors, HPC systems designers, and
software developers, as efficient data and message transfer between different parts
of the computer is essential. Specific programming interfaces, such as Message
Passing Interface (MPI) and OpenMP, facilitate this process [50]. It is important to
note that running a parallelizable program across nc computing units rarely results
in an nc times speedup compared to running it on just one unit. This limitation
arises from two primary factors.

Firstly, most algorithms necessitate data and message among computing units,
which can impede calculations as the devices responsible for this transfer operate
at a slower pace than the computing units themselves, especially at a high rate of
scalability of applications covering many different compute nodes and transfers
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Figure 2.5. JUWELS Booster compute node [51].

involving thus thousands of processors. Secondly, algorithms often cannot be fully
parallelized; only certain portions can be shared among multiple computing units,
while the remainder remains inherently serial or must be executed with a core
count lower than the available number. Despite these challenges, high-performance
machines have become indispensable in contemporary scientific endeavors [50]
and are able to overcome the limits (e.g., processing power, memory capacity,
storage capability, etc.) in using just one workstation client or one desktop pc for
solving scientific and engineering problems.

DL models are characterized by a multitude of parameters, and trained weights,
which are refined during the training process. Additionally, each network incor-
porates additional hyperparameters (e.g., learning rate of optimization process,
number of neurons in layer, etc.) that necessitate user configuration. For instance,
adjusting the learning rate and batch size is essential to ensure the model converges
to a local optimum of the training loss. However, simply minimizing the training
loss to set these hyperparameters can lead to overfitting of the training data.

One DL model is defined by millions of parameters that need to be learned from
large amounts of data. This process is computationally intensive and time-consuming.
Often, the dataset is too large to be stored on a single machine, making it crucial to
develop parallel and distributed algorithms to significantly reduce training times
(e.g., distributed deep learning training [21]). When it is not feasible to store the
entire dataset or model on a single machine, the data or model must be distributed
across multiple machines [52]:

• Data Parallelism: The data is distributed across multiple machines. This
approach is useful when the dataset is too large for a single machine or to
achieve faster training by processing data in parallel.

• Model Parallelism: If the model is too large to fit into a single machine,
it can be split across multiple machines. For instance, each layer of the
model can be assigned to a different machine, and forward and backward
propagation involve sequential communication of outputs between machines.
Model parallelism is primarily used when the model size exceeds the capacity
of a single machine, rather than to accelerate training.
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Hyperparameters of DL models are often manually tuned through a trial-and-error
approach, constituting a time-consuming and challenging aspect of ML workflows.
Moreover, most hyperparameters have no straightforward rules of thumb, often
requiring expert knowledge or a manually repeated random selection to determine
sensible values.

HPO algorithms offer a systematic and automated solution to this DL modeling
challenge [53], framing it as a global optimization problem. Typically, the default
objective is to minimize error on a hold-out validation dataset, though alternative
business metrics can also be considered. Furthermore, secondary objectives such
as training time, inference time, or model complexity can be incorporated or
constrained within the optimization process [54]. HPO thus enables an intelligent
approach to reduce the search space, finding the optimal parameters for a specific
DL modeling approach.
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2.3 Turbulent flow in fluid dynamics
A Lagrangian framework is an exploration of fluid motion that keeps track of the
velocity vector and displacement vector of each flow point, called a fluid particle [1,
3]. A fluid particle is a point that moves with the local fluid velocity, and, therefore,
it identifies the position at the time t of a fluid particle [3]. The definition of a fluid
particle arithmetically is [1]:

xi = xi(t,xi,0), (1)

Ui =Ui(t,x1(t,x1,0),x2(t,x2,0),x3(t,x3,0)), (2)

where the fluid particle position and velocity in 3D coordinates are determined by
notations 1 and 2, respectively, x is the position, U is the velocity, t is the time, and
i specifies the vector component.

To illustrate the Lagrangian framework conceptually, tracer particles are seeded
into the fluid via experimental methods. These particles navigate through the fluid,
influenced by its inherent characteristics such as turbulence intensity, deformation,
and boundary conditions. By monitoring the trajectory of these particles within
the fluid, it becomes possible to extract key properties of the fluid, including its
instantaneous velocity, which is called Lagrangian tracking particle [3]. Thus, here
the above-mentioned characterizations are described:

• The Re is the ratio of inertial forces to viscous forces. It serves as a dimen-
sionless parameter for classifying fluid regimes, particularly where viscosity
significantly influences velocity or flow patterns. In turbulent flow, character-
ized by high Re, inertial forces prevail [3]:

Re =
ρV L

µ
, (3)

where ρ is the fluid’s density, V is the flow velocity, L is the characteristic
length and µ is the fluid dynamic viscosity.

• The St is characterizing the behavior of particles suspended in a fluid flow. The
St significantly greater than 1 (St � 1) describes particles that are unaffected
by a fluid velocity change and continue their original trajectory; if (St � 1),
the particle will follow the fluid’s local velocity and it is defined [55]:

St = τp/τ0, (4)

where τp is the Stokes’ relaxation time and τ0 is the characteristic time of the
flow. Stokes’ relaxation time τp is in turn calculated by equation 5 [55]:

τp = ρpd2
p/18µ f , (5)

where ρp is the particle density, dp is a spherical particle diameter, and µ f is
the dynamic fluid viscosity.
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• In turbulent flow undergoing an axis-symmetric expansion (deformation) in
the direction of Y , the mean flow field is described by [56]:

〈U〉= (Sx,−2Sy,Sz), (6)

where x, y and z are the location and S is the mean strain rate S = 1√
6
(S̄i jS̄i j)

1
2

, S̄i j =
1
2 (

∂Ui
∂x j +

∂U j
∂xi ) is the mean rate of strain tensor with i = 1,2,3 and

j = 1,2,3.

As previously mentioned, there remains a lack of experimentally validated
hypotheses for anisotropic turbulent flow, particularly concerning large scales [57, 4].
Recent observations reveal discrepancies between existing theories and experimental
findings [12]. The experiment finding shows that the measured second-order velocity
difference statistics become independent of the Reynolds number, suggesting a
universal behavior of decaying turbulence [12]. Utilizing data from experiments,
excluding unproven theories, and training a DL model to forecast turbulent flow
without informing it of turbulence characteristics—such as turbulence intensity, mean
strain rate, and the as-of-yet-unknown effects of gravity [17]—represents a significant
advancement in turbulent flow research. This approach holds broad applicability in
both industrial and natural contexts. This thesis, therefore, is partly motivated by
that fact, and thus, experiments are also incorporated into the thesis studies.
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2.4 Data-Driven DL Model for Turbulent Flow
According to the Lagrangian perspective, time series data for fluid particles captures
their position and velocity at specific points in time. Specifically, in turbulent
flow—characterized by its lack of a known equation and often studied through
statistical methods [4, 31]—a sequential dataset from the Lagrangian viewpoint could
be utilized for forecasting models. Achieving accurate predictions for turbulent
flow velocity without the need for preprocessing to extract hidden features poses a
significant challenge.

Certainly, over the recent decades, big data has become a prevalent aspect of
fluid mechanics research [58], owing to advancements in HPC architectures (i.e.,
storage and memory capacity and increasing processing power) and experimental
measurement capabilities. Throughout the last 50 years, numerous techniques have
emerged to manage such data, spanning from sophisticated algorithms for data
processing and compression to fluid mechanics databases [59, 60]. Nonetheless,
the examination of fluid mechanics data has predominantly leaned on domain
expertise, statistical analysis, and heuristic algorithms [61].

Today, the proliferation of data spans across various scientific fields, ushering in
a new era where deriving insights and actionable information from data is both a
scientific pursuit and a commercial endeavor. Our era is marked by an unparalleled
convergence of factors: (a) the exponential growth of data volume; (b) advance-
ments in computational hardware, coupled with reduced costs for computation,
data storage, and transfer; (c) the refinement of sophisticated algorithms; (d) the
abundance of open-source software and benchmark problems; and (e) substantial
and ongoing investments by industry in data-driven problem-solving. These develop-
ments have reignited interest and progress in DL as a means to extract knowledge
from this deluge of data [17].

DL offers a flexible and adaptable modeling framework that can be customized
to tackle various complexities in fluid mechanics, including reduced-order modeling,
experimental data analysis, shape optimization, turbulence closure modeling, and
control [62, 63]. As the focus of scientific investigation transitions from traditional
first principles to data-driven methodologies, a comparison can be drawn with
the evolution of numerical methods in the 1940s and 1950s for solving fluid
dynamics equations [64]. The field of fluid mechanics stands poised to gain from
the application of learning algorithms, while simultaneously presenting challenges
that could propel the advancement of these algorithms, complementing human
insight and engineering intuition [17].

Besides highlighting achievements, it is crucial to grasp the functioning of
learning algorithms and discern when these methods thrive or falter. While it is
essential to appreciate the potential of DL, it is equally vital to acknowledge that
its integration into fluid mechanics remains an ongoing and demanding endeavor.
Within this framework, it has been emphasized that the value of infusing domain
expertise in fluid mechanics into learning algorithms. It is envisaged that the fluid
mechanics community can play a pivotal role in driving advancements in DL, akin to
the progress witnessed in numerical methods during the previous century [17, 65].

Wiewel et al. recently employed the LSTM model to predict the temporal changes
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2 Background

Figure 2.6. A test simulation with the DL model. The initial anvil shape was not part
of the training data, but DL successfully generalizes to unseen shapes such as this
one. [66].

in the pressure field of fluid flow. They showed that dense 3D+time functions of a
physical system can be effectively predicted within the latent spaces of a DL model
(cf. Figure 2.6). This breakthrough led to the creation of a DL-based simulation
algorithm that provides substantial practical speed-ups. The results demonstrated
the method’s capabilities through a series of complex liquid simulations and single-
phase buoyancy simulations. With trained models, this approach was more than
two orders of magnitude faster than traditional pressure solvers [66]. Still, it has
to be noted that DL models are still not fully interpretable even when generalizing
well, and as such, they are not in competition with physical modeling, but rather
a complementary approach leader to new insights. For example, a relatively new
approach in this context if also the methodology of physics-informed DL model
learning [67].
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3.1 HPC in Computational Fluid Dynamics (CFD)
CFD methods offer a convenient avenue for simulating turbulent flows, primarily
through DNS and LES [1]. While LES is generally less accurate than DNS, both
approaches require substantial computational resources [1] on HPC systems. RANS
equations serve as a cost-effective method widely adopted in industry, albeit at the
expense of accuracy compared to LES or DNS [68]. The continuous expansion of
capabilities, availability, and scalability of HPC systems enable increasingly detailed
simulations. Nevertheless, existing numerical techniques still fall short in tackling
every CFD problem, particularly those featuring intricate and highly complex flow
structures [7]. Moreover, many CFD applications necessitate validation of solutions
against empirical data, posing another challenge [6, 5].

3.1.1 DNS and HPC

Using the DNS approach requires a large amount of the HPC resources and a
proper meshing setup. For example, Hosseini et al. [69] applied DNS to study the
flow around a wing section at a moderate Reynolds number Re; thus the mesh,
which comprises around 3.2 billion grid points, was optimized to resolve all relevant
scales in the flow properly. Figure 3.1 displays the resolved scales.

Figure 3.1. Presentation of the instantaneous vortical structures resolved by DNS for
flow around a wing section at a moderate Reynolds numbe Rer [69].
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The incompressible spectral-element Navier–Stokes solver Nek5000 [70] has
been used to carry out the simulation shown in Figure 3.1. The work has been
performed in parallel computations on 16,384 processors. Figure 3.2 illustrates a
strong scaling for problem sizes. For visualization purposes, 35 million core hours
have been spent collecting full turbulence statistics, time history data, and flow
snapshots [69].

Figure 3.2. Strong scaling for problem sizes of (left) 3.2 billion and (right) 120
million grid points vs. the number of cores. The dashed line shows the linear
scaling [69].

3.1.2 Fluid dynamics Use cases and HPC

In fluid dynamics, most use cases have various scenarios, which makes the studies
challenging. For example, Lawson et al. study the flow around a helicopter landing
on a ship [71]. The study of interactions between aircraft and ship wakes using
detailed CFD methods is driven by the necessity to operate vertical take-off and
landing aircraft from decks on both civil and military vessels. It is well-established
that the ship’s superstructure creates a highly unsteady wake [72], along with strong,
organized vertical structures emanating from the ship’s stern. The interaction of
the ship’s wake with the helicopter rotor depends on the ship and wind directions,
as well as the specific features of the ship’s superstructure. This interaction can
negatively impact the helicopter’s rotor loading and overall performance. Due to the
challenges of accurately measuring flow details during sea trials and the difficulty of
setting up experiments with representative Reynolds numbers Re and blade speeds
in wind tunnels, numerical simulation using CFD is likely the most feasible method
to study this interaction. Figure 3.3 displays the visualization of the CFD application
for such use cases.

The CFD simulation has utilized HPC clusters: HECToR 5 [73] with 44,544 cores
in the UK and JuRoPA 6 [74] with 17,664 cores at JSC in Germany. For this use
case, the generated grid contains approximately 103 million cells. Due to the vastly
different scales involved, the computation time has been extremely large. Lawson et
al. [71] mentioned that the code used was highly portable and demonstrated that

5HECToR: High-End Computing Terascale Resource: UK National Supercomputing Service
6JuRoPA: Juelich Research on Petaflop Architectures, Forschungszentrum Jülich GmbH, Germany
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3.1 HPC in Computational Fluid Dynamics (CFD)

Figure 3.3. Ship and Helicopter Computation: (a) Ship and Helicopter, (b)
Helicopter, (c) tail rotor, and (d) active flaps on the main rotor [71].

it could scale effectively up to 24,576 cores [71]. Given the extensive use cases
in CFD, HPC is crucial, encompassing both numerical solution methods and DL
applications. This thesis leverages HPC resources to train the proposed DL models.
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3.2 DL in Fluid Dynamics
The research field of fluid dynamics was traditionally based on mechanical models
or numerical models based on known physical laws. More Recently, DL models
have shown significant capabilities in extracting latent features from nonlinear phe-
nomena and generating predictions across various domains [18, 20]. Furthermore,
researchers have explored the potential of DL models in fluid dynamics applications,
such as Coletti et al. [17] and Eivazi et al. [18].

3.2.1 DL applications in aerodynamics

Duru et al. [75] leveraged DL to predict transonic flow patterns around airfoils. They
developed a DL model to forecast pressure and Mach fields around airfoils across
various angles of attack. The model’s predictive capabilities were demonstrated
through flow field contours and validated using several quantitative accuracy metrics.
The performance was tested by examining the impacts of angle of attack and airfoil
shape variations on the flow field. Comparisons with CFD simulations showed
that the model predictions were highly accurate in capturing the effects of these
variations. Figure 3.4 shows the DL model prediction of the flow on NACA0012. The
proposed model significantly reduces the need for time-consuming CFD simulations,
with only a slight loss in accuracy. After a 360-hour training process using two
TESLA V100 GPUs, the model’s prediction time for a single case is approximately 1
second, whereas the CFD solver takes about 85 minutes using 32 Xeon E5-2690
CPU cores. It demonstrates that GPU cores combined with DL models in HPC
resources enables a significant progress in the field in aeronautics in particular and
fluid flow in general.

Figure 3.4. DL model predictions on NACA0012 with angle of attack 8o [75].
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3.2.2 DL model in shear flow

Srinivasan et al. [20] employ the Multilayer Perceptron (MLP) and DL model to
forecast turbulent shear flow using equations derived from a Moehlis model [76].
They tested several neural network architectures by varying the number of layers,
units per layer, input dimension, and weight initialization and activation functions
to obtain the best configurations for flow prediction. Hence, they did not follow a
systematic HPO process as performed in this thesis. Still, the LSTM led to excellent
predictions of turbulence statistics and the system’s dynamic behavior. Figure 3.5
represents the prediction comparison for turbulence statistics. Hence, this DL
model in shear flow indicates that model tuning using hyperparameter optimization
accelerated through HPC systems is necessary for good model performance.

Figure 3.5. Turbulence statistics:(left) mean profile, (middle) velocity fluctuations,
and (right) Reynolds shear stress. Blue dots are a nine-equation model, and
prediction models: (red) LSTM1, (green) LSTM2, and (cyan) LSTM3 [20].

As shown in Figure 3.5, Srinivasan et al. examined three LSTM models with
different setups which varying the number of layers, units per layer, input dimension,
and weight initialization and activation functions: LSTM1, LSTM2, and LSTM3. They
reported that using a standard workstation (Intel(R) Core(TM) i7-4930K CPU at 3.4
GHz), training the LSTM1 model with 10,000 time series took approximately 70
hours. After the training phase, generating 500 time series, which is the required
amount for obtaining converged statistics, took around 12 minutes. In contrast,
producing the same amount of data by integrating the nine-equation model by
Moehlis et al. [76] took about 6 minutes on the same workstation. Therefore, after
the initial training investment, the computational time needed for the DL model to
predict the flow is about twice that of resolving a nine-equation model. Moreover,
once trained, DL models can be summarized into smaller, more computationally
efficient networks, significantly reducing prediction time complexity [77]. In CFD
approaches for turbulent flow, LES offers an effective solution by directly resolving
the large-scale motions and modeling the small-scale motions using the Subgrid-
Scale (SGS) model [78]. Srinivasan et al. considered that the computational cost
of evaluating the DL is sufficiently low to be an efficient alternative for predicting
instantaneous variables, such as those in SGS models.

Due to the above mentioned drawbacks of LSTM models, hybrid models such
as autoencoders- LSTM [79], LSTM/ RNN [79], and Convolutional Neural Network
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(CNN)-LSTM [79] have been developed. Eivazi et al. [18] present a DL application
for nonlinear model reduction in unsteady flows. Gu and Li [79] report on the use
of an LSTM network for predicting turbulent wind speeds. Bukka et al. [7] employ a
hybrid, deeply reduced model for predicting unsteady flows.

The majority of fluid flow investigations employing DL utilize data derived from
CFD computations [20]. Given this data availability, DL models are often a bit easier
to use than in use cases with real measurement datasets. Moreover, many studies
incorporate pre-processing procedures aimed at identifying dominant features, such
as POD or DMD [20, 18]. This thesis proposes a novel approach to predict unknown
turbulent flow patterns using a DL model trained on raw measurement data, while
the DL model is not informed of the turbulent flow characteristics.
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3.3 Applications in Green Energy Engineering
The significant increase in energy consumption is primarily driven by emerging
technological demands and evolving lifestyles, leading to the challenges of climate
change as reported by International Energy Agency (IEA) [80]. Scientific reports
consistently highlight the escalating temperature trends, particularly during the
summer months 7 [81]. To combat rising temperatures, many countries rely on
air conditioning systems in residential and commercial buildings, further straining
electricity grids. Consequently, energy producers face the challenge of accurately
predicting such demand spikes.

There is a global consensus that harnessing renewable energy offers the most
promising solution to mitigate climate change. For instance, the proliferation of
electric vehicles underscores the increasing attractiveness of utilizing green energy,
such as that generated by wind turbines [80, 82]. The benefits of wind energy have
been extensively researched, leading to the development of various forecasting
methods—ranging from very short-term to long-term predictions—utilizing wind
energy models or wind speed profiles (cf. Figure 3.6).

Figure 3.6. Classification of Wind Speed/Wind Power forecasting [83].

Table 3.1. Summary of DL models in wind power forecasting applications [79].

Applications Time Step Location Model Used Type
Wind speed 4 h Onshore 1-D CNN 24 h, Real-time
Wind power 10/30/60/20-min Onshore Stacked Short-term/very

ensemble short-term
Wind power 24 h - LSTM - GMM 8 Short-term
Wind power - Coast LSTM + LUBE 9 Short-term
Wind farm - Onshore CNN + LSTM
cluster power
Surface wind 12 h River Real-time 4D Short-term

assimilation

7Global Wind Energy Council (GWEC)
8Gaussian Mixture Model (GMM)
9Lower-Upper-Bound-Estimation (LUBE)
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One example of the impact of DL models using HPC in these green energy
domains based on sequential frameworks was shown by wind energy prediction
models [79]. The DL model, built upon sequential frameworks, demonstrated its
adeptness in forecasting nonlinear phenomena [79]. To enhance the precision of
the DL model in predicting wind velocity, it is crucial to select the appropriate time
period and dataset size. Moreover, the wind speed exhibits distinct patterns across
monthly, seasonal, bi-annual, and annual datasets, contingent upon the location of
the wind park.

In order to provide an overview of related work, Table 3.1 presents a variety of DL
models employed for wind power and wind speed forecasting. The table highlights
the differences in time-step intervals among the models, a crucial parameter in
wind speed prediction. Additionally, it demonstrates that most models are hybrid
and designed for short-term forecasting. The wind speed or wind power dataset is
essential for training these DL models. According to the literature, there is currently
no universal model capable of predicting wind speed and wind power; the models
function on a local basis [79].

Recently, it has come to light that the wake loss effect influences the weather
conditions of the land downstream of offshore wind farms. DL models offer a poten-
tial avenue for exploring this phenomenon [84, 85]. This observation underscores
the significance of weather forecasting [86]. DL models grounded in sequential
concepts shown valuable progress in this regard. Furthermore, the potential of
DL models could be harnessed in wind energy research to delve into the elusive
wake loss phenomenon associated with vertical axis wind turbines [38]. This thesis
examined measured wind speed data to evaluate wind power production potential
by performing research studies on a suitable DL model architecture to predict wind
speed, with a focus on seasonal datasets. Moreover, while many horizontal wind
turbines have been studied, this thesis also researched vertical-axis wind turbines.

32



4 Summary of Publications
In this Section, a summary of the published papers relevant to the doctoral work is
provided. Additionally, the TO(s) of this thesis relate to and their main contributions
are described.

4.1 An Experiment Generates a Specified Mean Strained
Rate Turbulent Flow: Dynamics of Particles

R. Hassanian, Á. Helgadóttir, L. Bouhlali, M. Riedel, ‘An Experiment Generates a
Specified Mean Strained Rate Turbulent Flow: Dynamics of Particles’, in AIP Physics
of Fluids, vol. 35, no. 1, 2023, DOI: https://doi.org/10.1063/5.0134306.

This publication fulfills the requirements of TO1 concerning the preparation of
a reliable dataset from turbulent flow which was built experimentally. The dataset
extract to be used in DL models in the data-driven approach.

The paper describes properties of strained turbulent flow generated in a labo-
ratory facility with a range of turbulence intensity identified by Taylor micro-scale
Reynolds number Reλ , mean strain rate of deformation, and tracer particles that
were seeded the flow to display the flow characteristics. Furthermore, in separate
experiments, the flow was seeded with inertial particles to study the particle move-
ment. Table 1 in paper I displays the obtained flow parameters and the details of the
measurements of the mean strain rate, the strain move, a dimensionless parameter
for two different strain rates, and calculating Reλ as well as other information are also
documented in appendix A. The paper points to observations regarding the impacts
of the turbulence intensity, strain rate, and gravity on the tracer and inertial particle
distract their behavior. The St number for the particles was measured to illustrate
the tracer particle presenting the turbulent flow streamlines. The LPT technique was
employed to record the particles move, and their properties include velocity and
location used in next TOs to utilize DL models in the fluid dynamics area. Figure 4.1
is the presentation of the tracer particle move in the generated turbulent flow with
particle characterization. The measurement data supporting this paper’s findings
are available from the PhD student and his supervisor upon reasonable request.
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Figure 4.1. Real view of the path traveled by the particles, obtained from the video
recordings for a data set that included 4000 images (resolution of 512 ×512 pixels),
obtained from one of the 20 individual and independent videos observing the same
experimental condition.

34



4.2 The capability of recurrent neural networks to predict turbulence flow via spatiotemporal
features

4.2 The capability of recurrent neural networks to
predict turbulence flow via spatiotemporal fea-
tures

R. Hassanian, M. Riedel, L. Bouhlali, ‘The capability of recurrent neural networks
to predict turbulence flow via spatiotemporal features’, in 2022 IEEE 10th Jubilee
International Conference on Computational Cybernetics and Cyber-Medical Systems
(ICCC), Reykjavik, Iceland, July, 2022, pp. 335–338, DOI: https://doi.org/
10.1109/ICCC202255925.2022.9922754

This publication meets the criteria outlined in TO2 by establishing a fresh connec-
tion between flow characteristics in the Lagrangian framework and the architecture
of DL models.

The paper introduces a new interpretation of how turbulent flow properties
within the Lagrangian framework intersect with the GRU architecture. Furthermore,
the model was designed to predict velocity for each component of turbulent flow
individually, enabling its application to both 2D and 3D datasets.

In Figure 4.2, the model capability in the prediction is presented.

Figure 4.2. GRU model for turbulent flow velocity in y direction with spatial-temporal
features.
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4.3 Deep Learning Forecasts a Strained Turbulent
Flow Velocity Field in Temporal Lagrangian Frame-
work: Comparison of LSTM and GRU

R. Hassanian, Á. Helgadóttir, M. Riedel, ‘Deep Learning Forecasts a Strained
Turbulent Flow Velocity Field in Temporal Lagrangian Framework: Comparison of
LSTM and GRU’, in MDPI Fluids, vol. 7, no. 11, 2022, DOI: https://doi.org/
10.3390/fluids7110344.

This paper meets the criteria outlined in TO3 by employing two DL models, namely
LSTM and GRU, to analyze velocity prediction in turbulent flows. It systematically
compares the performance of these models to fulfill and address TO3

In this study, a legitimate dataset was experimentally generated from TO1 to
investigate the predictive capabilities of LSTM and GRU models thus addressing
TO3 regarding the elusive patterns of turbulent flow velocity. Emphasizing the
temporal dimension, the model aimed to establish and retain the sequential nature
of the data within sequential DL frameworks.

Figure 4.3 and 4.4 depict the model’s velocity prediction performance for
two flow components using 60% and 80% of the training data, respectively. The
MAE = 0.001-–0.002 and the R2 score is in the range of 0.983–-0.987 for both
models. The HPC speedup as a critical requirement to perform these models is
also measured.

From a physical perspective, the notable advantage of the proposed models
lies in their ability to make predictions without requiring information on turbulence
intensity, mean flow rate, or the influence of gravity. This characteristic renders
the model applicable across a wide spectrum of industrial and natural contexts,
particularly where raw velocity and other flow properties data are typically available.

Figure 4.3. Prediction of velocity component in the y direction for a strained
turbulent flow with mean strain rate 8 s−1, GRU model on the left-hand side, and
LSTM model on the right-hand side. Training data are 60% and test data 40%.
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Figure 4.4. Prediction of velocity component in the y direction for a strained
turbulent flow with mean strain rate 8 s−1, GRU model on the left-hand side, and
LSTM model on the right-hand side. Training data are 80% and test data 20%.
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4.4 Deciphering the dynamics of distorted turbulent
flows: Lagrangian particle tracking and chaos pre-
diction through transformer-based deep learning
models

R. Hassanian, H. Myneni, Á. Helgadóttir, M. Riedel, ‘Deciphering the dynamics of
distorted turbulent flows: Lagrangian particle tracking and chaos prediction through
transformer-based deep learning models’, in AIP Physics of Fluids, vol. 35, no. 7,
2023, DOI: https://doi.org/10.1063/5.0157897.

This paper meets the criteria outlined in TO4 by enhancing an attention mecha-
nism model from the field of fluid dynamics within DL. Utilizing the Transformer model,
which represents the cutting-edge architecture in DL, relies on encoder-decoder lay-
ers. This pioneering approach within the Lagrangian framework marks a significant
advancement.

This paper proposed a model based on the Transformer model and the definition
of the Lagrangian framework relevant to its structure to predict the velocity of a
turbulent flow with no known analytical pattern. The model displayed proper
prediction capability and performance compared to the previously successful model
of the current thesis. Table 4.1 shows the Transformer model performance compared
to the LSTM and the GRU models. To apply such models, the HPC resources are
required, and for all models, the speedup has been examined.

This paper established groundbreaking knowledge based on the experimental
dataset and compared the capability of these three DL models that can be used
in a wide range of turbulent flow and fluid dynamics. Despite the fact that all the
models show similar results, the Transformer enables a certain interpretability of its
inherent learned parameters. Their investigation was not published and is part of
future work. Instead, hyperparameter optimization was another track of research
performed in the PAPER VI.

Table 4.1. To assess the capability of the Transformer model as a mechanism for
attention, a comparison is made between its performance and that of LSTM [43]
and GRU [43] from previous studies with similar datasets.

Training ratio Performance LSTM GRU Transformer
80% MAE 0.002 0.002 0.002

R2 score 0.98 0.98 0.98
Training time (s) 295 318 301

60% MAE 0.002 0.002 0.003
R2 score 0.98 0.98 0.98
Training time (s) 214 229 219
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4.5 Optimizing Wind Energy Production: Leveraging
Deep Learning Models Informed with On-Site
Data and Assessing Scalability through HPC

R. Hassanian, A. Shahinfar, Á. Helgadóttir, M. Riedel, ‘Optimizing Wind Energy
Production: Leveraging Deep Learning Models Informed with On-Site Data and
Assessing Scalability through HPC’, in IEEE Hungary Section-Obuda, Acta Polytech-
nica Hungarica Journal, vol. 21, no. 9, 2024, DOI: https://doi.org/10.12700/
APH.21.9.2024.9.4.

This paper satisfies the criteria set forth in TO5 by showcasing the engineering
application of fundamental research in developing DL models for turbulent flow. As
an illustrative case, these models are applied to forecast wind speed for wind power
generation, addressing a significant challenge in power production.

This study utilizes insights gained from TO1 through TO4 to refine DL models
for industrial applications. Predicting wind power production is vital, particularly
for power producers who must forecast power outputs to meet demand in the grid.
These forecasts are typically classified as short-term or long-term predictions.

This paper introduces an innovative approach that leverages historical seasonal
data to forecast future periods using a GRU model. Particularly, the model demon-
strates strong predictive performance, notably with a dataset featuring 10-minute
time steps compared to the traditional 1-hour intervals. In terms of computational
resources, the paper recommends employing a local HPC cluster powered by the
wind farm itself, thus establishing a sustainable energy source.

The findings highlight the effectiveness of sequential DL in capturing nonlinear
and stochastic patterns prevalent in turbulent flow regions, such as wind speed.

Figure 4.5. A schematic representation of how wind power production prediction
could assist the power supplier in managing the response to the power grid demand.
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4.6 Turbulent Flow Prediction-Simulation: Strained
flow with Initial Isotropic Condition Using a GRU
Model Trained by an Experimental Lagrangian
Framework, with Emphasis on Hyperparameter
Optimization

R. Hassanian, M. Aach, A. Lintermann, Á. Helgadóttir, M. Riedel, ‘Turbulent
Flow Prediction-Simulation: Strained flow with Initial Isotropic Condition Using a
GRU Model Trained by an Experimental Lagrangian Framework, with Emphasis
on Hyperparameter Optimization’, in MDPI Fluids, vol. 9, no. 4, 2024, DOI:
https://doi.org/10.3390/fluids9040084.

This paper meets the criteria outlined in TO6 by enhancing DL models with
spatial and temporal features to analyze their combined impact on target feature
predictions. Additionally, it investigates hyperparameter optimization to enhance
computational performance and compares it with previous models.

This paper introduces an enhanced version of the GRU model, incorporating
spatial and temporal input data for training, with the target being the velocity of
turbulent flow. The study demonstrates that increasing the volume of training data
improves prediction accuracy, albeit at the cost of increased computational time. To
address this, the research applies hyperparameter tuning, specifically focusing on
batch size, to expedite computation.

Table 4.2 illustrates that the improved model, referred to as GRU-h, achieves
higher squared R values and more accurate MAE compared to previous models.
Additionally, hyperparameter optimization effectively reduces computational time,
nearly matching that of earlier models despite utilizing more training data.

Table 4.2. Comparison table of the GRU-h model of the current study that is
improved by HPO and trained with larger data and four sequential variable inputs:
x, y, VX , and VY . Transformer, LSTM, and GRU, illustrated in the table, are models
from previous studies [43, 87], with smaller boundary conditions and two sequential
variable inputs VX and VY and without HPO.

Training Proportion Performance GRU-h Transformer LSTM GRU
80% MAE 0.001 0.002 0.001 0.002

R2 score 0.99 0.98 0.98 0.98
Runtime (s) 256 301 295 318

Table 4.3 showcases the results of hyperparameter tuning on the JUWELS-
BOOSTER machine, identifying a batch size of 512 as the optimal choice.

In summary, this paper presents an optimized GRU model capable of successfully
predicting turbulent flow velocity when incorporating both spatial and temporal
features.
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Hyperparameter Optimization

Table 4.3. Effect of the size of the batch size on the computing time and the MAE.

Machine GPUs Batch Size per GPU Computing Time [s] MAE
Module
JUWELS- 4 8 14723.30 0.0016698
BOOSTER 4 16 7499.96 0.0015822

4 32 3757.98 0.0015293
4 64 1820.90 0.0014718
4 128 963.49 0.0014551
4 256 493.07 0.0013771
4 512 255.93 0.0013613
4 1024 147.70 0.0014453
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5 Conclusions
The objective of this study is to assess the effectiveness of DL models in the field
of fluid dynamics, particularly leveraging HPC, which is pivotal for implementing
such models. There is a growing interest in employing DL applications in fluid
dynamics, especially in tackling complex problems like turbulent flow, which remains
unresolved through classical physics. Hence, traditionally, fluid dynamics studies
using HPC were thus primarily focussing on numerical methods based on known
physical laws, and therefore, this thesis embarks on new studies using cutting-edge
data-driven approaches via various DL models. Given the reliability of statistical
methods developed over recent decades in turbulent flow studies, this thesis study
adopts a hybrid data-driven approach utilizing statistical data analysis. To sum
up, the thesis showed that DL models can be successfully applied to fluid flow
problems. However, the following paragraphs provide detailed information on the
study findings with respect to different TOs.

Initially, experimental data from the author’s research was processed for utilization.
The experiment produced a broadly observable strained turbulent flow. To study
its properties, tracer particles were used to seed the flow, and the LPT technique
was employed. Additionally, the flow was seeded separately with inertial particles
to investigate the effects of turbulence intensity, gravity, and mean strain rate on
the particles. The main findings of this publication are that the newly designed
and conducted experiments successfully simulated the flow. The particle behavior
within this flow demonstrated the impact of flow distortion on particle dynamics,
including velocity root mean square and Reynolds stress. The resulting dataset was
analyzed to provide a resource for deep learning model training, addressing the
TO1 requirements, and published.

A pioneering effort was made to establish a framework connecting DL architec-
tures to turbulent flow properties, with a focus on the Lagrangian framework as the
foundational definition for flow properties as a function of time. In the Lagrangian
framework, the motion of a particle (or point) within the flow is tracked over time,
resulting in a time series of flow properties. This thesis specifically focuses on
flow velocity. In turbulent flow, the velocity consists of both a mean component
and fluctuating components. The experimental data in this thesis capture the total
velocity, encompassing both the mean and the fluctuations. The main findings of
the publications with respect to TO2 indicate that the Lagrangian framework in
fluid dynamics is effectively interconnected with a sequential deep learning model,
making it suitable for use with time series datasets. The TO2 in novel approach de-
termines turbulent flow properties by linking the Lagrangian framework to sequential
DL models.
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5 Conclusions

TO3 aims to embed the established framework of TO2 and use the data from
TO1 to design a DL model to predict the turbulent flow that has no known pattern.
Hence, the study proceeded to successfully develop LSTM and GRU models using
HPC resources via varying training and test data ratios. As the publications demon-
strate, remarkable results were achieved, demonstrating these models’ capability
to accurately predict turbulent flow velocity solely based on past velocity compo-
nents. Since tracer particles were employed in the experiments, certain effects like
strain deformations and the influence of gravity were not analytically understood
(i.e., using traditional only physics-based approaches and no DL models), making
the study’s findings significant for the turbulence community by enabling velocity
prediction without detailed flow characteristic information.

Recently, Transformer models have become very successful in a wide variety
of applications, and thus TO4 introduced and evaluated the Transformer model
for turbulent flow velocity prediction, showcasing superior performance compared
to LSTM and GRU models. To the author’s knowledge, there have been no similar
applications of Transformer models prior to this work. publications in general and
the assessments in particular also included evaluating computing resources, which is
critical in CFD and DL, in terms of speedup. Hence, achieving TO4 covers research
on the unknown limits of DL models in turbulent flow, mainly the range of Re that
current DL models can handle. Also, the research of TO4 identified several cases in
turbulent flow that could benefit from the proposed and validated DL models from
this study, which have been published as open access publications to contribute to
the turbulent flow research community.

Given the recent momentum in Green Energy in Europe driven by the European
Commission, an application in wind energy was explored to illustrate the engineering
utility of the proposed approach in TO5, specifically in predicting wind power
production to meet demand on the power grid. Adapting the model for wind speed
prediction enhanced wind power production in wind parks, yielding substantial
results. TO5 was achieved by identifying engineering applications relevant to the
thesis objectives that are able to utilize the DL model to predict turbulent flow in
diverse contexts of physics and industry, as discussed in other publications listed in
this manuscript. Other publications of the thesis have shown results of the application
of the proposed DL models in this thesis to various fields, including leading edge
erosion, stagnation point, MTF prediction models, wake loss effects for vertical axis
wind turbines, and solar energy.

Finally, the PhD study aimed to enhance GRU model performance in turbulent
flow prediction by integrating spatial and temporal features based on the Lagrangian
framework, which was achieved and published in the context of TO6. This improved
approach not only increased prediction accuracy but also optimized computing
requirements on HPC via HPO. The research of the achieved TO6 demonstrates that
increasing the input variables from the Lagrangian framework enhances the accuracy
of turbulent flow predictions. Additionally, to manage the increased computational
demand due to the larger training dataset, HPO was effectively employed, resulting
in reduced computing time and improved model performance. The findings of the
current PhD study have been published in several respected scientific journals, and
the supporting data are available from the PhD student and his supervisor upon
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reasonable request.
The proposed data-driven approach validated in this study underscores DL

models as excellent tools for studying turbulent flow alongside CFD and EFD.
Moreover, as data-driven DL models operate on measured data without reliance
on theoretical assumptions, they offer a robust capability to forecast turbulent flow
properties. This approach’s adaptability to measured data, prevalent in various
industrial and natural studies, underscores its broad applicability. Hence, the overall
findings of this PhD thesis can be re-used in many different application domains.

Future Work
The approach assessed in this study holds promise for examining inertial particles
in MTF, a phenomenon lacking analytical understanding. Traditional CFD analyses
using large computational application runs on HPC have still not explored the
gravitational effects on such particles, highlighting the potential of employing this
approach to investigate particle behavior. Data-driven approaches assist the core
philosophy of the emerging Hybrid Analysis and Modeling (HAM) paradigm. HAM
maximizes the utilization of Physics-Based Model (PBM) and resorts to data-driven
models to address unmodeled or unknown physics.

Moreover, there is potential to enhance the scalability of the proposed data-
driven model by incorporating larger and more temporally extensive datasets. The
author proposes integrating this data-driven model with a physics-based model
to explore turbulent flow further, facilitating a deeper analytical understanding of
these intricate phenomena. Hence, many findings should be re-used to create
so-called Physics-Informed Neural Networks (PINNS) approaches in the future. The
idea of these innovative but hard-to-develop DL models is to guide the data-driven
learning process with constraints obtained from physics. A promising approach
that combines the power of cutting-edge DL models with various established laws
of physics. As the thesis TOs are achieved, the author will continue after the PhD to
work on these approaches together with the larger physical application community.
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Abstract—This study presents a deep learning (DL) neural
network hybrid data-driven method that is able to predict tur-
bulence flow velocity field. Recently many studies have reported
the application of recurrent neural network (RNN) methods,
particularly the Long short-term memory (LSTM) for sequential
data. The airflow around the objects and wind speed are the most
presented with different hybrid architecture. In some studies,
the investigated data set in fluid dynamics were generated via
known equations, and they have no random and chaotic behavior.
Data series extracted from Computational Fluid Dynamics (CFD)
have been used in many cases. This work aimed to determine a
method with raw data that could be measured with devices in
the airflow, wind tunnel, water flow in the river, wind speed and
industry application to process in the DL model and predict the
next time steps. This method suggests spatial-temporal data in
time series, which matches the Lagrangian framework in fluid
dynamics. Gated Recurrent Unit (GRU), the next generation of
LSTM, has been employed to create a DL model and forecasting.
Time series data source is from turbulence flow has been
generated in a laboratory and extracted via 2D Lagrangian
Particle Tracking (LPT). This data has been used for the training
model and to validate the prediction in the suggested approach.
The achievement via this method dictates a significant result and
could be developed.

Index Terms—Recurrent Neural Network, Unsteady Flow,
Deep Learning

I. INTRODUCTION

Turbulence is observed in the most natural and artificial
phenomena [1] [2]. Water in the waterfall, airflow in the wind,
smoke from a chimney, and airflow around the objects are
examples from the environment [1]. The industry cases are
the flow in the engine mixing chamber; two working flows
inside the heat exchanger, and airflow around the airplane and
car [1] [3] [4] [5]. In large-scale turbulence, solar flare, oceanic
and atmospheric flow are other giant emanations that influence
our lives [2]. Turbulence flow is chaotic, non-repeatable, and

This work was performed in the Center of Excellence (CoE) Research on
AI and Simulation Based Engineering at Exascale (RAISE) and the EuroCC
projects receiving funding from EU’s Horizon 2020 Research and Innovation
Framework Programme under the grant agreement no.951733 and no. 951740
respectively.

random, and it is well addressed that the statistics aspect of the
flow is applicable [1]. On the other hand, Computational Fluid
Dynamics (CFD) is a leading traditional numerical approach
to dealing with nonlinear fluid dynamics phenomena such as
turbulence flow. Direct Numerical Method and Large Eddy
Simulation are two capable and accurate methods to resolve
the turbulent flow problems. But, from the computational
cost, they are costly. High-performance computation is an
essential factor for all solutions in Direct Numerical Method
and Large Eddy Simulation. Simulation for many types of
turbulence problems is almost impossible on the actual scale
because of the limitation in the computation. Scientists have
efforts to create similar scale problems to natural phenomena.
However, we are still far from solving problems with extensive
size. In many CFD applications, it is required to validate the
solution with empirical data, is an another limitation. These
constraints illustrate a reliable tool is necessary to overcome
the above-called obstacles. Machine learning (ML) based on
Artificial Intelligence has become an important key to encoun-
tering nonlinear phenomena. Deep learning (DL) is a capable
approach in ML and is able to extract the hidden features
from complex and nonlinear dynamic systems [6] [7] [8] [9].
Recurrent neural network (RNN) is a type of neural network
especially appropriate for sequential data such as time series
[6]. An RNN is a neural network composed of an individual
hidden layer with a feedback loop in which the hidden layer
output with the current input is returned to the hidden layer
[6]. RNN networks define the temporal relationship because
of sequential input data, and three weight matrices and two
biases characterize it. RNNs can almost not train sequence
data with long-range temporal dependencies because the van-
ishing gradients problem exists [6]. Long short-term memory
(LSTM) network was developed and suggested in 1995 [10].
LSTM applies a gating structure to control the transients
of the recurrent connectors and can deal with the vanishing
gradient issue. Moreover, it is able to model longer temporal
dependencies rather than standard RNNs [6]. Recently, LSTM
has been employed in many studies in order to model time
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series prediction. The interest in this method has also increased
in the fluid dynamics area. Vinuesa et al. [6] have used LSTM
to predict the turbulence shear flow. Veisi et al. [7] used LSTM
hybrid model prediction for unsteady flows. LSTM Potential
has been led to hybrid models such as convolutional neural net-
work (CNN)–LSTM, Autoencoders–LSTM, and LSTM/RNN
[11]. Gated recurrent unit (GRU) [12] is a variant of LSTM
which has fewer parameters than LSTM, and the training
rate is faster [11]. In GRU, the forget gate and input gate
in LSTM are replaced with only one update gate [11]. GRU
is required fewer data to train the model, therefore gaining a
similar performance in multiple tasks with less computation
[11]. Recently GRU has been employed to forecast wind
speed and predicts electricity demand [12] [13] [14]. Most
fluid flow studies that were applied ML/DL are composed
of data extracted from CFD studies’ known equations. On
the other hand, many works included preliminary steps to
do autoencoder to extract the main features, such as, proper
orthogonal decomposition, dynamic mode decomposition, and
well-known reduced order methods [7] [15] [16] [17]. In
the ML/DL context, there is a capability to determine a
training method with raw data from the Lagrangian framework
velocity field involving spatial and temporal features. In many
applications of industry, research and experiment, it is possible
to measure the velocity field directly or indirectly via devices
such as constant temperature anemometer, flowmeter (and
obtain the velocity), pitot tube, laser doppler anemometry, and
light detection and ranging. This study introduces a method
to use time series data consisting of velocity components and
position in 2D coordinate to train the GRU model and evaluate
the prediction in future time. Hence, this paper is organized
as follows. The applied theory is presented in Section II . In
Section III , the method is introduced. Section IV discusses
the result, and the conclusions are presented in Section V .

II. THEORY

A. Lagrangian Framework in fluid dynamics

Lagrangian framework is a description of the motion fluid,
involves keeping track of the position vector and velocity
vector of each point of flow which it is called fluid particle
[1] [18]. A fluid particle is a point that moves with the local
fluid velocity, therefor it specifies the position at time t of fluid
particle [16]. The definition of fluid particle mathematically is
[1]:

xi = xi(t, xi,0), i = 1, 2, 3 (1)

Ui = Ui(t, x1(t, x1,0), x2(t, x2,0), x3(t, x3,0)), i = 1, 2, 3
(2)

where (1) and (2) determines the fluid particle position and
velocity in 3D coordinates respectively. x is the position,
U is the velocity, t is the time and denote i specifies the
vector component. Based on the Lagrangian definition, for
fluid particle there is a time series data which specify a position
and velocity at particular time. Particularly in turbulence
flow which has not known equation and it is investigated in

statistics, these time series data available and appropriate to
use.

B. Gated Recurrent Unit (GRU)

From the DL method, it is well known that RNNs can
perform prediction for sequence data via LSTM. GRU [19]
is a next-generation determination from LSTM with a bit
distinction in the model architecture. Literature reports that
GRU is comparable in performance is considerably faster to
compute than LSTM and has a streamlined model [20]. GRU
cell that is displayed in Fig. 1, is composed of a hidden state,
reset gate, and update gate. We can control how much of
the previously hidden state might be remembered from the
reset gate. On the other hand, via the update gate, we can
understand how much of the new hidden state is just a copy of
the old hidden state. This architecture in the GRU establishes
two significant features: the reset gate captures short-term
dependencies in sequences, and the update gate receives long-
term dependencies in sequences [19].

Fig. 1. Gated Recurrent Unit cell; ht−1 is hidden state from previous step,
Xt is current input, ht is new hidden state, yt is output, r(t) is reset gate,
z(t) is update gate, g(t) is candidate hidden state, σ is sigmoid function, tanh
is hyperbolic tangent function.

III. METHODOLOGY

A. Data-set generated in a laboratory facility

This study uses a data-set from experiments conducted
for turbulence flow investigation [21] [22]. A special tank is
designed to create a turbulence flow via eight impellers in the
corners, and servomotors control the impellers’ speed. The
rotation speed specifies the turbulence intensity of the flow
case. The flow was seeded with tracer particles with median
diameters 8—10 µm and specific gravity g/cm3 (hollow
glass). The Stokes number for the seeded particle is less than
one and meets the tracing requirement. Equation 3 describes
the mean flow field ⟨U⟩ in the facility;

⟨U⟩ = (Sx,−2Sy, Sz), (3)

where -2S is the primary strain rate in the y-dir, and S is
the strain rate for the other two directions, x, y and z are
the particle location. In this work the flow considered in 2D,
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therefore z-dir is not addressed. The straining flow case in
the experiment was created with a mean strain rate 2S =
−4s−1. Equation 3 is based on the laminar flow; however,
we know that velocity fluctuates in the turbulence flow. The
measurement area is equivalent to 24.5 × 24.5 mm2 (512
× 512 pixels) located in the tank center, and a high-speed
camera with 10000 frames per second is employed to record
the tracer particle move. Two circular plates were prepared in
the tank and located up and down the study area, and they
were moved toward each other by an actuator to generate a
straining turbulence flow. The data-set included 4000 frames,
and the Lagrangian particle tracking technique was employed
to process the recorded frames and extract the particle motion
feature statistics.

B. Velocity time series data

This study has designed and applied a suggested hybrid
model based on time series vector data for velocity. The spatial
and temporal data extracted from 2D Lagrangian Particle
Tracking. Data is included time, velocity in x and y directions,
and position in x and y coordinates. Therefore, we have
corresponding velocity and position with a specific time in
this time series. In the suggested model, since the velocity is
with two components in the x and y direction, we carried on
the model for every component individually. Hence, the model
predicts the velocity component in both directions and then
could be developed in 3D time-series data. The strain motion
has been conducted in the y-direction and is considered an
effective dominant direction for the flow case behavior; thus,
the prediction model in this work is created for this direction.

C. GRU model

The proposed GRU model is created with data series involv-
ing two velocity components in x and y directions and two-
position coordinates x and y. Every fluid particle at a specified
time has a velocity component, and based on the Lagrangian
view; they are dependent on the time and position. Both
position vectors also function of time and primary position.
The input features are on different scales, and then it is
essential to scale the features. A function is defined to create
time-series data set. The data are split into 80% training and
20% test data set. The GRU model is created with hundred
GRU layers and one Dense layer, and the model is optimized
with an Adam optimizer. In order to evaluate the model, the
mean absolute error (MAE) and coefficient of determination
(R2) are measured.

IV. RESULT

This work applied a recorded data set from an experiment to
create a GRU model. The flow case was a straining turbulence
flow with a specified mean strain rate. In order to assess the
experiment, the processed data investigated the mean strain
rate from the measured data. Since the theoretical mean strain
was 2S = −4s−1 in y-direction based on the laminar flow
description, it is well known in the turbulent flow, the velocity
fluctuates, and this affects the measured strain rate. Literature

also has mentioned that the generated strain in the turbulent
flow will create extra fluctuation [2] [5] and could be the
reason to measure a lower means strain rate than the theoretical
amount. Fig 2 presents the measured mean strain rate in the
investigated flow case.

Fig. 2. The mean strain rate of the generated deformed turbulence flow
is extracted from measured data in the experiment. The mean strain rate
theoretical was 2S = −4s−1 in y-direction and S = 2s−1 in x-direction
based on laminar flow.

Fig 3 displays the velocity component in the y-direction
measured from the experimental data for the Lagrangian
fluid particles. The mean velocity is expected to increase
approximately linearly, but the turbulence flow velocity field
fluctuates, which makes the velocity behave chaotically and
irregularly. The strain motion was generated in the y-direction,
which is the dominant motion and has much more oscillations
and fluctuations than another direction which makes it difficult
to predict the next time step. This study considered this
velocity data set in y-direction via the GRU model to create
predictions for the next step and evaluate the prediction with
actual available recorded data.

Fig. 3. The velocity component in the y-direction of the tracked particles is
extracted from the measured data. The strain motion time is recorded in 0.4s.

The explained method in the study is based on the capability
of DL via GRU, which is able to store long-term dependencies.
From the data set 80% used as train data and 20% as test
data. Fig. 4 represents the result of this model that has been

ICCC 2022 • IEEE 10th Jubilee International Conference on Computational Cybernetics and Cyber-Medical Systems • July 6-9, 2022 • Reykjavík, Iceland

000337

Authorized licensed use limited to: NATIONAL UNIVERSITY OF ICELAND. Downloaded on March 08,2024 at 07:28:13 UTC from IEEE Xplore.  Restrictions apply. 



used to predict the velocity components in the y-direction.
In Fig. 4, the actual data, hidden and covered by train data
and predicted data, dictates the suggested model could make
remarkable forecasting for a future time. For the conducted

Fig. 4. GRU model for turbulence flow velocity in y direction with spatial
temporal features

model, MAE and R2 were measured equal to 0.002 and 0.98,
respectively. These measurements determine that the GRU
model can establish a significant prediction for time series
with features that have relationships analogous to described
data in this work that could be seen in many turbulence flow
applications.

V. CONCLUSION

This work aimed to determine a method to use spatial-
temporal features of the Lagrangian framework data in a
turbulent flow to create a prediction model based on DL
authority. In this view, the velocity functions of the position
and time. On the other hand, the position is related to the
time and primary place. DL networks for sequential data have
been developed in subsets in RNNs such as LSTM and GRU.
Turbulence flow is a high dimensional phenomenon, and to
use a feature for LSTM/GRU model, it is essential to figure
out the main features among the high-dimensional data. This
study proposed a GRU model relying on velocity components
and the position of the fluid particles and exclusive of high
dimensionality. Moreover, GRU can predict a time series with
long-term dependencies based on the result presented and the
Lagrangian definition for the velocity field, storing long-term
dependencies is a crucial factor that led to this significant
prediction and matched the actual data in the test. On the
other hand, this method creates predictions for every velocity
component individually, making it applicable for 2D and 3D
fluid flow. The error measurement represented in the evaluation
of this method implies the capability of GRU in this kind of
application and could be developed for long-term forecasting
studies. Since the dominant motion in the considered flow case
is a y-direction, we created a prediction model for the velocity
in the y-direction. The model can develop and perform in other
directions, and it has planned to implement in next works of
our research group.
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Abstract: The subject of this study presents an employed method in deep learning to create a
model and predict the following period of turbulent flow velocity. The applied data in this study
are extracted datasets from simulated turbulent flow in the laboratory with the Taylor microscale
Reynolds numbers in the range of 90 < Rλ< 110. The flow has been seeded with tracer particles. The
turbulent intensity of the flow is created and controlled by eight impellers placed in a turbulence
facility. The flow deformation has been conducted via two circular flat plates moving toward each
other in the center of the tank. The Lagrangian particle-tracking method has been applied to measure
the flow features. The data have been processed to extract the flow properties. Since the dataset is
sequential, it is used to train long short-term memory and gated recurrent unit model. The parallel
computing machine DEEP-DAM module from Juelich supercomputer center has been applied to
accelerate the model. The predicted output was assessed and validated by the rest of the data from
the experiment for the following period. The results from this approach display accurate prediction
outcomes that could be developed further for more extensive data documentation and used to assist in
similar applications. The mean average error and R2 score range from 0.001–0.002 and 0.9839–0.9873,
respectively, for both models with two distinct training data ratios. Using GPUs increases the LSTM
performance speed more than applications with no GPUs.

Keywords: turbulent flow; Lagrangian framework; unsteady; prediction; deep learning; sequential

1. Introduction

Turbulent flow is a nonlinear and random phenomenon [1–3]. Water flow in a river,
waterfall, airflow passing a wind turbine blade, flow in an engine mixing chamber, smoke
from a chimney, and two working flows inside the heat exchanger are examples of turbulent
flow in natural events and artificial applications [1–5]. The complexity and multiscale
features of turbulent flows make the forecasting of the fluid flow a considerable problem.
There are many previous works using experiments and/or numerical methods of turbulent
flow to investigate and make efforts to forecast flow periods with specified conditions.
However, experiments are costly and, for many applications, could not be performed in a
laboratory environment. Computational methods based on partial differential equations,
i.e., applying a full-order model, are capable of predicting fluid flow accurately but are
computationally costly. High-performance computing is, therefore, essential in those
computational methods, yet we are still far from having computing capability to solve even
moderately sized problems. Thus, there are limitations in computing costs [6].

These restrictions determine a reliable tool is required to overcome the above-mentioned
obstacles. Machine learning based on artificial intelligence has become a pivotal approach
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to encountering nonlinear events. Deep learning networks (DL) applications have recently
been represented as having strong capability to model and forecast phenomena with
unknown patterns. DL is able to extract hidden features from complex and nonlinear
dynamic systems [7,8]. Recurrent neural networks (RNNs) are neural networks appropriate
for sequential datasets, such as time series [7]. An RNN is composed of an individual
hidden layer with a feedback loop in which the hidden layer output with the current input
is returned to the hidden layer [7]. RNNs define the temporal relationship because of
sequential input data and three weight matrices and two biases characterize it. RNNs can
almost not train the sequential data with long-range temporal dependencies because a
vanishing gradients problem exists [7]. Long short-term memory (LSTM) networks were
developed and suggested in 1995 [9], which apply a gating structure to control the recurrent
connectors’ transients and deal with a vanishing gradient issue. Moreover, it is able to
model longer temporal dependencies than standard RNNs [7].

A gated recurrent unit (GRU) is a variant of LSTM, which has fewer parameters than
LSTM, and its training rate is faster [10,11]. In GRU, the forget gate and input gate in LSTM
are replaced with only one update gate [11]. GRU requires fewer data to train the model,
therefore, gaining a similar performance in multiple tasks with less computation [11].
Recently, LSTM has been employed in many studies to model time series prediction.
Interest in this method has also increased in the fluid dynamics area. Vinuesa et al. [7]
have used LSTM to predict a shear turbulence flow. Veisi et al. [8] used LSTM hybrid
model prediction for unsteady flows. LSTM potential has led to hybrid models, such as
convolutional neural networks (CNNs)-LSTM, Autoencoders-LSTM, and LSTM/RNN [11].
Bukka et al. [6] applied a hybrid deep learning prediction model based on a reduced-order
model for unsteady flow. Duru et al. [12] used CNN to predict transonic flow around
the airfoils. GRU has been employed to forecast wind speed and anticipate electricity
demands [10,11].

Most fluid flow studies that applied ML/DL are composed of data extracted from
CFD studies’ known equations. On the other hand, many works include preliminary steps
to autoencoders to extract the main features, such as proper orthogonal decomposition,
dynamic mode decomposition, and well-known reduced-order methods [8,13–15].

The subject of the current study is a novel approach to present a capability in the DL
context to make a training method with raw measured data from the Lagrangian framework
velocity field with non-specified pattern and to predict followed fluid flow period. In many
applications of industry and experiments, it is possible to measure the velocity fields
directly or indirectly via devices, such as a constant temperature anemometer, flowmeter
(and obtain the velocity), pitot tube, laser doppler anemometry, and light detection and
ranging. This study will introduce an application of an empirical dataset from a laboratory
with unknown patterns composed of 2D velocity components and time. LSTM and GRU
have been used to create a prediction model for a strained turbulent flow. In order to
accelerate the deep models’ execution, they were implemented in the DEEP-DAM module
from a parallel computing machine at the Juelich supercomputing center. Hence, this paper
is organized as follows. The applied theory is introduced in Section 2. In Section 3, the data
set from the experiment is explained. Section 4 determines the models used. The results
and discussion are provided in Section 5, and the conclusion is presented in Section 6.

2. Theory
2.1. Fluid Flow in Lagrangian Framework

In turbulent flow, it is well-known what statistical aspects of the flow features are
applicable [1–3]. A Lagrangian framework is an exploration of fluid motion that keeps
track of the velocity vector and displacement vector of each flow point, called a fluid
particle [1,16]. A fluid particle is a point that moves with the local fluid velocity, and,
therefore, it identifies the position at the time t of a fluid particle [16]. The definition of a
fluid particle arithmetically is [1]:
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xi = xi(t, xi,0), i = 1, 2, 3 (1)

Ui = Ui(t, x1(t, x1,0), x2(t, x2,0), x3(t, x3,0)) (2)

where the fluid particle position and velocity in 3D coordinates is determined by (1) and (2),
respectively, x is the position, U is the velocity, t is the time, and i specifies the vector
component.

Based on the Lagrangian definition, there is time series data for fluid particles that
determine a position and velocity at a specific time. In particular, in turbulent flow, which
has no known equation and is investigated using statistics, a sequential dataset could be
used from the Lagrangian view for the forecasting model. It is a crucial challenge to be
able to have accurate prediction for turbulent flow velocity via an approach that does not
need preprocessing to extract hidden features or reduced order methods [6–8,17–19]. Some
numerical methods due have drawbacks, such as missing features because of dimension
reduction [6–8,17–19]. Based on the above description for the velocity in the Lagrangian
framework, in this study we will apply velocity denotation (2) to train LSTM or GRU model
via velocity component as an input. Then, the model will predict the velocity component
for next period as an output.

This study used the dataset for a strained turbulent flow that has been generated
in a laboratory. Turbulence intensity has been created with the action of impeller rotors
in the corners of a box turbulence facility. The turbulent flow has been strained in the
vertical direction (see Figure 1) by the motion of flat circular plates, as shown in the sketch.
Equation (3) defines the mean velocity field of the flow:

〈U〉 = (Sx,−2Sy, Sz) (3)

where 2S is the primary strain rate in the Y-dir, S is the mean strain rate for the other two
directions, and x, y and z are the particle location. In this work, the flow was considered in
2D, therefore, Z-dir is not addressed.
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Figure 1. A sketch of the straining mechanism and turbulence generation.

The straining flow case has been created in the experiment with mean strain rate,
2S = 8 s−1. Equation (3) is based on laminar flow; however, we know that velocity fluctuates
in turbulent flow. Further details on the experimental setup are described in Section 3.

The Stokes number for a seeded particle is calculated to ensure a tracer particle meets
the requirements and specifies whether a particle introduced to the flow will follow the
flow streamline or not. This identification is defined by Equation (4):

St =
τp

τη
(4)
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where τp is Stokes’ relaxation time. Kolmogorov scale (τη , defined in Equation (6)) is based
on the flow quantities before applying the strain. Stokes’ relaxation time τp is, in turn,
calculated by Equation (5):

τp =
ρpdp

2

18µ
(5)

where ρp is particle density, dp is a spherical particle diameter, and µ is the dynamic fluid
viscosity that, in the conducted experiment, was water.

The Stokes number significantly greater than 1 (St� 1) describes particles that are
unaffected by a fluid velocity change and continue their original trajectory; if St� 1, the
particle will follow the fluid’s local velocity. To extract the flow properties, particle image
velocimetry method has been employed and once dissipation rate specified via second-order
longitudinal velocity structure function, Kolmogorov scales were calculated by:

τη =
(ν

ε

) 1
2 (6)

where ν is kinematic viscosity of the fluid, τη is the Kolmogorov’s time scale, and ε is
dissipation rate evaluated via second-order longitudinal velocity structure function.

The Stokes number for the tracer particles used in the performed experiment are in
the range of 0.0063–0.0094.

2.2. LSTM and GRU Architecture

The subject of this study is using the velocity components Ux and Uy, according to
definition (2) as sequential input training data for LSTM or GRU model. The model for
each component is separated. Even though the velocity is a profound feature in the flow
field description and is based on the Lagrangian perspective, it is spatiotemporal; therefore,
it carries many flow effects, such as fluctuation, strain, turbulence intensity, and geometry
boundary [1–5]. This is the capital concept of this novel proposed approach.

Since the flow velocity is spatial-temporal and is affected via the above-nominated
effects, the LSTM or GRU model is trained and learns how to forecast the next period
according to received effects. The predicted flow velocity via LSTM or GRU model is
validated by test data in the x and y components separately.

Recurrent neural networks are deep network models that can extract sequential data
dynamics through recurrent connections. They can be considered as cycles in the network of
nodes. Although gradient contraction in recurrent neural networks seems to help exploding
gradients, handling vanishing gradients requires a more precise solution [20–22]. One of
the first and most successful techniques to solve the vanishing problems was presented in
the long short-term memory model [9].

In simple recurrent neural networks, long-term memory is in the form of weights, and
the weights change gradually during the training and encode general knowledge about
the data. Additionally, these networks have short-term memory, which is in the form of
fast transient activations and is continuously transferred from one node to another. In the
LSTM model, an intermediate storage type is defined through a memory cell (see Figure 2).
A memory cell is a composite unit that consists of simpler nodes and acts through a specific
connectivity pattern by imbedding new multiplicative nodes.

Each memory cell is composed of an internal state and several multiplicative gates,
which control the data as follows: (i) a given input should affect the internal state (the input
gate) or not, (ii) the internal state should drive to 0 (the forget gate), (iii) a given neuron’s
internal state should be able to impact the cell output (the output gate).

A significant distinction between standard RNNs and LSTM is a hidden state gate
determined in LSTM. This state provides an appropriate mechanism for when a hidden
state should be updated and when it should be reset. These mechanisms are learned, and
they resolve the known concerns from standard RNNs. For example, if the first token has a
major significance, it will learn not to update the hidden state after the first perception. In
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addition, it will learn to omit incoherent temporary perceptions. Eventually, it will learn to
reset the hidden state whenever it is essential.
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GRU is a next-generation determination from LSTM with a bit distinction in the model
architecture [23]. Literature reports that GRU is comparable in performance is considerably
faster to compute than LSTM and has a streamlined model [17,19,24]. The GRU cell that is
displayed in Figure 3 is composed of a hidden state, reset gate, and update gate. We can
control how much of the previously hidden state might be remembered from the reset gate.
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Figure 3. Gated recurrent unit cell; h(t−1) is hidden state from previous step, X(t) is current input,
h(t) is new hidden state, y(t) is output, r(t) is reset gate, z(t) is update gate, g(t) is candidate hidden
state, σ is sigmoid function, tanh is hyperbolic tangent function [18].

On the other hand, via the update gate, we can understand how much of the new
hidden state is just a copy of the old hidden state. This architecture in the GRU establishes
two significant features: the reset gate captures short-term dependencies in sequences and
the update gate receives long-term dependencies in sequences [23].

3. Experiment and Dataset
3.1. Apparatus and Experiment Setup

The experiment has been performed at the Laboratory of Fundamental Turbulence
Research (LFTR) at Reykjavik University and the applied facility is shown in Figure 4. The
water tank (60 cm × 60 cm × 60 cm) has 20 mm thick acrylic walls (transparent Plexiglas
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XT) that enables optical access to the data. The eight corners of the box have a triangular
shape, while the top and the bottom are nearly circular. An aluminum frame holds the
components of the turbulence box together. The turbulence has been generated by eight
impellers driven by independently controlled servo motors (Lenz-model: MCS), which
were mounted at the eight corners of the cube and point to the center of the tank. The
rotation rate of each servo motor is adjustable over a range of 100–4500 rpm at a gearing
rate of 0.075. For the used dataset in this study the speed is 1000 rpm. The motion-view
filtering software that came with these motors was used to monitor and set up the suited
speed of each impeller. The degassing system was used to remove bubbles and solid dust
from the water before starting the experiment. The tank has been specifically designed for
studying turbulence (Lagrangian and Eulerian motion at moderate Reynolds numbers).
The flow facility produces a nearly stationary homogeneous isotropic turbulence near the
center of the tank, where measurements have been performed.
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Circular plates, shown at the top and bottom (see Figure 1), generate the strain motions; a
linear actuator drove each plate with a piston rod (Parker, model: ETV32M10PA47JMA400A).
When they are moved towards the center with a pre-described rate, a nearly constant strain
rate is ensured in the fluid. Spherical and hollow glass beads with a median diameter
of 8–10 µm and a specific gravity of 1.1 g/cm3 seed the flow. The recording area is
located in the center of the tank with a size of 24.5 × 24.5 mm2 (see Figure 1). The
particle image velocimetry technique is applied and extracts the flow properties before
strain deformation. Thus, via a second-order longitudinal velocity structure function,
the turbulent flow dissipation rate is obtained; therefore, the Kolmogorov time scale is
calculated based on Equation (6) and a Stokes number is obtained from Equation (4).
The Taylor microscale Reynolds number is achieved in the range of 90 < Rλ< 110 in the
performed experiment. For the dataset used, the strain rate produced by the two above-
described circular plates is 8 s−1, and the Lagrangian particle-tracking techniques are
applied to inscribe the data. A high-speed camera used as a detection system was set at
10 kHz (10,000 fps) for well-resolved particle velocity statistics. This very high temporal
resolution (0.1–0.2 ms) is considerably smaller than the Kolmogorov time τη (35–99 ms) of
the smallest eddies present in the flow; therefore, the properties of the dissipation range in
the flow are resolved. However, in contrast to the previous numerical works, this empirical
study considers the velocity field explored by tracer particles in the presence of gravity.
Each video has 2000 frames, and to collect sufficient statistical data, the strain motion was
repeated 20 times to record 20 videos. All videos together have created 40,000 frames. Each
of the videos was statistically independent, as the flow is given a generous time to recover
to near isotropy between different strokes.
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3.2. Sequential Velocity Dataset

The recorded videos from the experiment are processed via programming based on
Lagrangian particle-tracking method and are not subject of this study, and the detail can
be seen in [25,26]. Each particle has vector of velocity and displacement during the strain
motion. According to denotation (1) and (2) in the Lagrangian view, these statistics could be
used to investigate the turbulent flow. As one of the reviewers mentioned, some statistical
features can be calculated from extracted data from the experiment [27]. In this study,
however, our focus is on velocity because it is a feature that can be measured in many
applications, and its prediction model can be helpful. For example, wind speed is a crucial
issue in wind energy production; it is, therefore, essential to have a prediction model for
speed itself so producers can forecast the power production in the following period, long
or short term.

The dataset of this study composed of 2,862,119 tracking points for every vector is
as follows:

- Velocity component in y direction;
- Velocity component in x direction;
- Time vector specifies the time t for every tracking point.

These tracking points consist of all particles’ velocity vectors achieved via 20 recordings,
and every video recording includes several particles. Moreover, it is expected to observe
several tracking lines, as it is presented for the velocity in the results in Section 5; every
tracking line specifies a particle.

Although the dataset is sequential, we split it into training data and test data for
the first model, 80% and 20%, respectively, and for the second model, 60% and 40%,
proportionally. Therefore, we assessed and validated the velocity prediction of the following
period with the test data for LSTM and GRU models.

4. LSTM and GRU Model Set Up

We coded the models in Python and used the TensorFlow platform [28,29]. The LSTM
model is set up with 100 layers and one dense layer, and Adam is specified as an optimizer.
The GRU model has also been set up with the same layers and optimizer. The dataset
was normalized by MinMaxScaler transformation [30]. The MinMaxScaler is a type of
scaler that scales the minimum and maximum values to be 0 and 1, respectively [30].
Since the modeling was implemented on the DEEP-DAM module [31] parallel computing
machine, we have applied a distributed strategy application programming interface from
the TensorFlow platform abstraction to distribute the training across multiple custom
training loops [32]. The strategy has been set up with one to four GPUs on one node. The
result of the computing and the models’ performance distinction are reported in Section 5.

5. Result and Discussion
5.1. Meseured Turbulent Flow Velocity

As is described in Section 3, from the experiments, based on the Lagrangian-particle
tracking, the recorded videos included velocity vectors for particles moving in the flow
velocity field. Figures 5 and 6 illustrate the velocity component in the y and x directions,
respectively. Since the initial strain rate was generated in the flow in the y direction, as
was expected, the velocity component in the y direction has an inclined average velocity
relative to the velocity in the x direction. In this study, these extracted data have been used
to train LSTM and GRU with a ratio of the training data and assess the prediction with the
test data proportion. According to Equation (3), which defines the velocity field for laminar
flow, it can be seen in Figures 5 and 6 that the turbulent flow behaves differently than the
laminar equation because of velocity fluctuations.
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extracted via Lagrangian-particle tracking technique.

5.2. Turbulent Flow Velocity Predicition via LSTM and GRU

Figures 7–10 display the velocity prediction via GRU and LSTM model for the y and the
x directions. The models trained and assessed with two distinct data ratios. In the first model,
80% of the data have applied as training and 20% rest of the dataset validated the prediction.
In second model, 60% of the training data have been applied and 40% used as test data.
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data are 60% and test data 40%.

Fluids 2022, 7, x FOR PEER REVIEW  9  of  13 
 

 

Figure 7. Prediction of velocity component in the y direction for a strained turbulent flow with mean 

strain rate 8 s−1, GRU model on the left‐hand side, and LSTM model on the right‐hand side. Training 

data are 80% and test data 20%. 

 

Figure 8. Prediction of velocity component in the y direction for a strained turbulent flow with mean 

strain rate 8 s−1, GRU model on the left‐hand side, and LSTM model on the right‐hand side. Training 

data are 60% and test data 40%. 

 

Figure 9. Prediction of velocity component in the x direction for a strained turbulent flow with mean 

strain rate 8 s−1, GRU model on the left‐hand side, and LSTM model on the right‐hand side. Training 

data are 80% and test data 20%. 

Figure 9. Prediction of velocity component in the x direction for a strained turbulent flow with mean
strain rate 8 s−1, GRU model on the left-hand side, and LSTM model on the right-hand side. Training
data are 80% and test data 20%.
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Figure 10. Prediction of velocity component in the x direction for a strained turbulent flow with mean
strain rate 8 s−1, GRU model on the left-hand side, and LSTM model on the right hand side. Training
data are 60% and test data 40%.
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LSTM and GRU models have provided accurate predictions of a strained turbulent
flow velocity with no known pattern in theory. We must notice that the period of the
experiment and data used in this study are short, but proportionally the prediction model
could be used for similar velocity field application.

Figures 7 and 8 represent the velocity in y direction, forecasting 80% training and
60% training. As can be seen, the prediction section is an impressive match for the
test data for LSTM and GRU model with two training ratios. The mean average error
(MAE) = 0.001–0.002 and R2 score is in range of 0.983–0.987 for both models.

Figures 9 and 10 illustrate the prediction of the velocity in the x direction with two
different training data ratios. The MAE and R2 for x direction forecasting has the same
range and with an outstanding match.

The result of the velocity prediction of the turbulent flow represents the capability of
LSTM and GRU models, which can forecast unknown sequential data. The Lagrangian
view provides temporal data, and it appears possible to apply this approach in similar
turbulent flow with a longer period.

5.3. LSTM and GRU Models Performance

It has been reported in the literature that the GRU model has faster performance than
the LSTM model [10,11]. For 80% training, GRU is 8–12% faster than LSTM and for 60%
training it is 5–10% faster. However, when the number of GPU increases, LSTM performs
modeling faster than GRU, which can be explained by the application of GPUs that provides
much more memory for the LSTM. We investigated the performance of LSTM and GRU
on DEEP-DAM module on one node with four GPUs. For all models in this study, LSTM
executed 7–8% faster than the GRU model. Table 1 shows the result of this evaluation.

Table 1. Evaluation of the LSTM and the GRU model on DEEP-DAM module on one node and
several GPUs.

Training Proportion Computing Module Performance LSTM GRU

80%

1 node, 1 GPU

Scalability 1 1.12

MAE 0.001 0.002

R2 score 0.984 0.984

1 node, 4 GPUs

Scalability 3.45 3.20

MAE 0.002 0.002

R2 score 0.983 0.983

60%

1 node, 1 GPU

Scalability 1 1.08

MAE 0.0015 0.0015

R2 score 0.985 0.987

1 node, 4 GPUs

Scalability 3.61 3.36

MAE 0.002 0.002

R2 score 0.985 0.987

6. Conclusions

The subject of this study was using LSTM and GRU models to provide a prediction
for distortion turbulent flow performed in a laboratory with specific turbulent intensity
and mean strain rate in the primary direction. For two training efforts, the dataset was split
into 80% first and secondly 60%. Every ratio of training in the rest of the data was applied
for test and prediction validation. LSTM and GRU models were applied and executed on
the DEEP-DAM module of parallel computing machine at Juelich supercomputing center.
Two different GPU set ups were applied to assess the model’s performance.



Fluids 2022, 7, 344 11 of 12

The result of this study shows that LSTM and GRU models can predict the straining
turbulence flow appropriately and match in quality and quantity. The mean average
error (MAE) = 0.001–0.002 and R2 score is in the range of 0.983–0.987 for both models.
Without GPU, the GRU model has faster performance than the LSTM and, with less
training ratio (60%), can provide prediction with the same performance of training with
80%. Nevertheless, we must notice the period of the dataset used was short, so the forecast
was also brief. However, with GPUs set up, LSTM gets faster performance than GRU,
which is related to GPUs memory, which strengthens the LSTM memory.

In many applications of fluid dynamics, there is a possibility to collect the velocity field
data in the Lagrangian framework in which data are sequential. It seems this advantage
of the Lagrangian view could be applied to predict the velocity field via such LSTM and
GRU models.
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Abstract: This study suggests employing a deep learning model trained on on-site wind 
speed measurements to enhance predictions for future wind speeds. The model uses a gated 
recurrent unit (GRU) derived from the long short-term memory (LSTM) variant, and is 
trained using actual measured wind velocity data collected at both 10-minute and hourly 
intervals. The approach relies on using same-season data for predicting wind velocity, 
necessitating regular updates to the model with recent measurements to ensure accurate 
predictions in a timely manner. 
The results from the prediction model, particularly at a 10-minute interval, demonstrate a 
significant alignment with the actual data during validation. Comparative analysis of the 
employed model over a two-year span, with a 24-year distinction, indicates its efficiency 
across different time periods and seasonal conditions, contingent upon frequent updates 
with recent on-site wind velocity data. 
Given the reliance of sequential deep learning models on extensive data for enhanced 
accuracy, this study emphasizes the importance of employing high-performance computing 
(HPC). As a recommendation, the study proposes equipping the wind farm or wind farm 
cluster with an HPC machine powered by the wind farm itself, thereby transforming it into 
a sustainable green energy resource for the HPC application. The recommended approach 
in this work is enforcing the smart power grid to respond to the power demand that is 
connected to predictable wind farm production. 

Keywords: Deep Learning; Wind Energy; Wind Turbine; Smart Grid; Renewable Energy 
Prediction; High-performance computing 
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1 Introduction 

1.1 Wind Energy Resource 

The paramount global challenge is climate change, and each nation bears the 
responsibility and capacity to invest in renewable energy as a means to mitigate 
the emission of greenhouse gases [1, 2]. 

In recent years, the remarkable expansion of wind energy has emerged as a 
noteworthy development in the worldwide energy scenario [3]. Wind energy 
currently stands as the swiftest-growing form of renewable energy, boasting a 
cumulative installed capacity of 763 GW in 2020—a substantial increase from the 
modest 24 GW recorded in 2000 [4, 5]. This extraordinary growth can be 
attributed to technological advancements, cost reductions, and favorable policies 
that encourage the shift from fossil fuels to renewable sources. 

In recent times, advancements in artificial intelligence (AI) have enhanced the 
prediction and management of power generation in wind energy [6]. Wind power 
presents numerous advantages, positioning it as a compelling alternative to 
conventional energy sources. Unlike fossil fuels, wind energy is renewable and 
environmentally friendly, as it does not emit harmful greenhouse gases or 
pollutants. The modular and scalable nature of wind turbines makes them suitable 
for a diverse range of applications, spanning from large-scale utility projects to 
small-scale residential systems. Additionally, wind energy stands out as a 
dependable and cost-effective electricity source, with the leveled cost of wind 
energy experiencing a significant decline over the past decade [3]. 

Forecasts suggest that the global capacity for wind energy will achieve 2,110 GW 
by the year 2030, constituting roughly 20% of the world's electricity generation 
[7]. This upward trajectory is propelled by various factors, including the rising 
demand for clean energy, supportive policies, and technological advancements 
that contribute to the enhanced efficiency and cost-effectiveness of wind turbines 
[7]. 

1.2 Wind Turbine 

Wind energy production involves converting kinetic energy from moving wind 
into electrical power. There are two main types of wind turbines: horizontal axis 
wind turbines (HAWTs) and vertical axis wind turbines (VAWTs) [1].  
The efficiency of the HAWTs is much larger than that of VAWTs; however, both 
of these types have advantages and disadvantages [8, 9]. The power potential of a 
wind turbine is proportional to the cubic power of the wind velocity [10]. Wind 
speed has a turbulence behavior and diverse fluctuations [11]. Moreover, the 
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power potential of the wind turbine is proportional to the density of air. As a 
result, cold air has a higher wind power potential than warm air [10]. These 
nonlinear and random features of the wind makes its forecasting a crucial issue for 
wind power producers.  

Power production from wind farms depends on the wind velocity. Furthermore, it 
is crucial issue that the producer be aware of the kind of farm production to 
respond to the demand for electricity on the power grid. Moreover, the smart grid 
technology is a function of the smart components that supply the power grid.  
In fact, if the wind farm has the capability to predict the wind speed in the short 
and long-term, it has forecasting for electricity production [3, 6]. This leads to 
smart wind farm production and enforcement of the smart power grid [12]. Figure 
1 displays how wind power production prediction could assist the power supplier 
in managing the response to the power grid demand. 

 
Figure 1 

A schematic representation of how wind power production prediction could assist the power supplier 
in managing the response to the power grid demand 

1.3 Deep Learning and Wind Farm 

The deep learning model, based on the sequential models, displayed the successful 
capability to predict the nonlinear phenomenon [13]. In order to optimize the 
accuracy of the DL model for the wind velocity, using the appropriate period and 
size of the data is essential. Additionally, depending on the wind park location, the 
wind speed has a different pattern for monthly, seasonal, bi-annual, and annual 
datasets. Based on the author's experiences in Nordic countries like Iceland, the 
wind speed in the winter is extremely higher than in the summer. Because of this 



R. Hassanian et al. Optimizing Wind Energy Production: Leveraging Deep Learning Models 
  Informed with On-Site Data and Assessing Scalability through HPC 

 – 48 – 

difference, the previous study demonstrated a DL model for summer that should 
not be used for winter prediction [6]. Thus, it is essential to have an online and 
updated DL model for a wind park. This leads to updating the DL model with 
measured data from many years ago to a few minutes before. 

1.4 Literature Review 

In recent years, the DL model for wind velocity forecasting was developed with 
different DL layers architecture [6, 14]. The majority of the available studies 
focused on short-term prediction [6, 15]. The dataset used to train the DL model 
consists of 5-10 minutes and 1-2 hours [6]. The measured data in the previous 
studies from onshore wind farms [6, 16]. The literature displays 1-6 hour 
prediction with different DL models. However, there is no universal model to be 
used globally, and they are specified for a particular site location where trained 
data has been measured [6, 17]. 

Looking at the above-mentioned aspects of the proposed DL model for wind 
speed prediction leads to a novel approach and perspective proposal. Since the 
wind farm's location, air temperature, month, season, and year of the measured 
data impact the prediction [3, 6], it dictates an essential local DL model design for 
each specified wind farm, and the model training must be updated per hour or 
daily. 

The present study proposes a DL model for wind velocity prediction that is 
updated with training data depending on effective factors such as hour, daily, cold, 
and warm air and season. The result of the study is a remarkable capability that 
can cause long-term prediction in addition to short-term forecasting. Hence, this 
paper is organized as follows. The applied methodology is presented in Section 2. 
In Section 3, the result and discussion are presented and at the end the conclusion 
is presented. 

2 Methodology 

2.1 Measured Wind Velocity 

This study applies on-site measured wind velocity data from the Vedurstofan (the 
Metrological Office) of Iceland. The data involves a time step of 10 minutes for 
specific years and an hour time step for other years. Figure 2 displays December 
1995 to February 1996 and December of 1996 to February 1997. 
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Figure 2 

Presentation of the measured wind velocity for two different time periods in Iceland. (a) December 
1995 to February 1996, (b) December 1996 to February 1997 

These are the same period of time for two years. It can be seen that the wind 
velocity does not have a similar pattern to be able to use the previous year's data 
and simulate the next year. 

Moreover, two different time periods (seasons) can be seen in Figures 3 and 4. 
These presentations reveal how owning a distinct pattern is from September 1996 
to November 1996 to December 1996 to February 1997. In Figure 4, the same 
period of September 2021 to February 2022 is displayed. The illustration of these 
two figures uncovers that the wind speed has nonlinear and random features, and 
there is no known equation or pattern to use the previous wind velocity of the 
earlier time to simulate the next time. 

As pointed out in the introduction, in recent years, DL networks have been 
employed to predict a sequential nonlinear dataset, such as wind speed, which has 
turbulence behavior in the fluid dynamics area. However, the models depend on 
the specific site location and measured data. The present study suggests using 
online and recent data to train each wind park's DL model to overcome this defect. 
To make this application possible in the actual wind farm, it is essential to connect 
the measured data online to the DL model and update the training in a short time. 
Additionally, this study would emphasize the fact that using training data from the 
same period of time will be much more efficient. For example, the speed data 
from the summer train in the DL model may not be sufficient to predict the wind 
speed in the winter and needs to be merged with data from winter time. This 
concept is used in the current study. 
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Figure 3 

On-site measured wind velocity for two different seasons in Iceland, black color curve, September 
1996 to November 1996 and red color curve, December 1996 to February 1997 

 

 
Figure 4  

On-site measured wind velocity for two different seasons in Iceland, black color curve, September 
2021 to November 2021, and red color curve, December 2021 to February 2022 
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2.2 Deep Learning Models 

Among available DL models for sequential data, LSTM for sequential nonlinear 
and random datasets displayed successful application. Additionally, the 
Transformer as an up-to-date DL model from the attention mechanism provided 
appropriate prediction for the random sequential dataset. The current study 
employs a gated recurrent units (GRUs) model trained with on-site measured wind 
velocity and forecasts the wind speed for the following period of time. Based on 
the literature, GRU is a variant of LSTM and has a simpler architecture. It is 
reported that GRU has the same efficiency as LSTM with less data. 

The model has been assessed with two datasets, one from 1996 with a time step of 
10 minutes and the second dataset from 2021 with an hour time step. For each 
model, 60% of the data was used for training, and 40% of the rest of the data was 
employed for testing the model prediction. The present study shows that reducing 
the training data ratio to lower than 60% will reduce the model prediction 
accuracy. The mean absolute error and squared R (R2) are measured as metrics for 
the models. Figure 5, a diagram shows the required dataset for DL model training 
with HPC resources, and the target is a prediction of the wind speed. 

 

 
Figure 5 

The DL model is trained and tested with measured wind speed. Training data are 60% of the measured 
data, and 40% of the rest of the data are used to test the model prediction 
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2.3 High-Performance Computing in Wind Farm 

The sequential model of DL will lead to an accurate model with a larger amount 
of training data. The extensive training data and the DL architecture make it 
essential to use high-performance computing (HPC). As discussed earlier in this 
study, the suggestion is to use an online DL model training with up-to-date 
measured data at the wind farm site. 

Having access to HPC to train a DL model with extensive data that is related to 
scalability is a crucial issue. 

However, since the wind frame produces power, it will be an option for each wind 
farm to own its HPC system or install an HPC system for cluster wind farms that 
share the computing between them; this will make the HPC supported with green 
energy, which is a remarkable achievement since many of the HPC clusters using 
traditional and fossil fuel resources. 

3 Result and Discussion 

This section presents and discusses the result of the proposed approach, which is 
composed of the on-site measured data and GRU model. 

Figure 6 shows the GRU model result that used measured wind speed data with a 
period of September 1996 to November 1996 with time step 10 minutes. To train 
the GRU model, 60% of the data is used to train the GRU model, and 40% to 
validate the model prediction. The metric evaluation shows MAE 0.019 and R2 is 
0.97. this model used data with short time steps. 

Figure 7 illustrates the wind velocity prediction result of the GRU model that 
trained with actual wind speed from in-site measurement with a period of 
September 2021 to November 2022 with time step an hour. In this model, 60% of 
the data is used for training and 40% as validation. The prediction of the model 
has MAE 0.059 and R2 is 0.71. This model used data with longer time steps. 
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Figure 6 

Presentation of GRU model prediction that is trained with on-site measured wind velocity with time 
step 10 minutes with a period of September 1996 to November 1996, with 60% training ratio and 40% 

validation. Blue colors the actual measured data, red colors the training ratio, and yellow colors the 
prediction of the model. 

 

 
Figure 7 

Representation of GRU model prediction that is trained with on-site measured wind velocity with time 
step an hour with a period of September 2021 to November 2022, with 60% training ratio and 40% 
validation. Blue colors the actual measured data, red colors the training ratio, and yellow colors the 

prediction of the model. 
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The illustrated results in Figures 6 and 7 show a remarkable observation.  
The GRU model that trained with shorter time steps is much more accurate.  
In contrast, to the model trained with an hour time step, shorter time step data 
caused a 36% increase in the R2 and a 67% decrease in the MAE. Therefore, 
measuring in-site and speed with short time steps makes the prediction model 
more efficient and accurate. 

Additionally, the current study used one GRU model with a distinct period of time 
from 24 years ago (1996 and 2021). For each model, the training data was 
updated, and the model resulted in an appropriate wind speed prediction. These 
remarkable achievements show that the training update significantly affects the 
model's accuracy. It could be taken into account that the season of the data for 
wind speed training should match the target wind speed time. 

Conclusions 

The current study proposes an approach to using time series data of in-site 
measured wind speed to predict the wind velocity in the following period of time 
with the application of deep learning capability. A GRU model from the LSTM 
variant was designed and trained with a specific ratio of the measured data, and its 
prediction was validated by the actual data. 

The superiority of the present work suggests the use of updated data to predict 
wind velocity. Furthermore, the study used data from the same season (winter or 
summer) to train and predict the wind velocity. The study results uncovered that 
the shorter time step, 10 minutes, makes the model extremely accurate than the 
model trained with a longer time step, an hour (60 minutes). 

The present study recommends using a DL model as software in wind frames that 
are trained with updated measured wind speed via online connection and updated 
training to be able to have short and long-term predictions with desirable 
accuracy. This application makes it possible for the wind energy producer to have 
a period of wind velocity and wind energy production, and this capability leads to 
an efficient smart power grid to respond to the power demand. It is planned to 
evaluate the wind speed prediction via updated data with a Transformer as an 
attention mechanism and compare it to LSTM variants. 
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request from the corresponding author. 
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Abstract: This study presents a novel approach to using a gated recurrent unit (GRU) model, a deep
neural network, to predict turbulent flows in a Lagrangian framework. The emerging velocity field is
predicted based on experimental data from a strained turbulent flow, which was initially a nearly
homogeneous isotropic turbulent flow at the measurement area. The distorted turbulent flow has a
Taylor microscale REYNOLDS number in the range of 100 < Reλ < 152 before creating the strain and is
strained with a mean strain rate of 4 s−1 in the Y direction. The measurement is conducted in the
presence of gravity consequent to the actual condition, an effect that is usually neglected and has
not been investigated in most numerical studies. A Lagrangian particle tracking technique is used
to extract the flow characterizations. It is used to assess the capability of the GRU model to forecast
the unknown turbulent flow pattern affected by distortion and gravity using spatiotemporal input
data. Using the flow track’s location (spatial) and time (temporal) highlights the model’s superiority.
The suggested approach provides the possibility to predict the emerging pattern of the strained
turbulent flow properties observed in many natural and artificial phenomena. In order to optimize
the consumed computing, hyperparameter optimization (HPO) is used to improve the GRU model
performance by 14–20%. Model training and inference run on the high-performance computing
(HPC) JUWELS-BOOSTER and DEEP-DAM systems at the Jülich Supercomputing Centre, and the
code speed-up on these machines is measured. The proposed model produces accurate predictions
for turbulent flows in the Lagrangian view with a mean absolute error (MAE) of 0.001 and an R2

score of 0.993.

Keywords: turbulent flow; prediction; deep learning; simulation; high-performance computing

1. Introduction

Turbulent flow is a high-dimensional and nonlinear phenomenon [1]. It can be found
in many artificial and natural applications, and it is therefore of great interest to study its
features [1–3]. All turbulent flows have random characteristics, rendering deterministic
approaches impossible to apply. Therefore, existing analyses rely on statistical methods
addressing the energy cascade theory [1,2]. The use of computational fluid dynamic (CFD)
methods is a convenient approach for simulating turbulent flows, mainly via direct numer-
ical simulation (DNS) and large eddy simulation (LES) [1]. Although LES is less accurate
than DNS, both methods require extensive computing [4] on high-performance computing
(HPC) systems. Solving Reynolds-averaged Navier Stokes (RANS) equations is a cheap
method used widely in the industry, though it does not provide results on the level of
accuracy of LES or DNS. The size and scalability of HPC systems is continuously grow-
ing, allowing for more and more fine-grained simulations. However, current numerical
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methods are far from being able to compute every CFD problem, especially those featuring
highly complex and detailed flow structures [4,5]. Furthermore, in many CFD applications,
a validation of the solution via empirical data is essential, which is another disadvan-
tage [4]. Experiments are frequently used to study the turbulent flow. However, due to
their scale and size limitations, they can only be applied to particular and size-limited
problems [1,3,6,7]. These constraints underpin the demands for a reliable tool to overcome
the obstacles mentioned above and analyze turbulent flows in a broader range of scales [4].
Several methods extract the dominant features via the reduced-order model (ROM). Proper
orthogonal decomposition (POD), dynamical mode decomposition (DMD), and Koopman
analyses are some of the well-known techniques to yield ROM [8]. Moreover, dimension-
ality reduction, feature extraction, super-resolution, applying ROM, turbulence closure,
shape optimization, and flow control are some of the crucial tasks in CFD [9].

In many areas, deep learning (DL) models have demonstrated an extensive capability
to extract hidden features from nonlinear events and create predictions [8,9]. The appli-
cability of DL models has also been studied in fluid dynamics [4]. Recent studies show
that with DL, model-free predictions of spatiotemporal dynamical systems, particularly for
high-dimensional, dynamical systems [8], are possible. Recurrent neural networks (RNN)
are neural networks composed of an individual hidden layer with a feedback loop, in which
the hidden layer output and the current input are turned to the hidden layer [9]. They are
well-suited for sequential datasets [9]. They determine a temporal relationship, as they learn
from sequential input data and are characterized by featuring three weight metrics and two
biases. However, RNN cannot learn long-range temporal dependencies from sequential
data due to the vanishing gradient problem [9]. The long short-term memory (LSTM)
model was developed in 1995 [10]. It features a gating structure to control the recurrent
connector transients. In contrast to RNN, vanishing gradients are avoided. It is therefore
a proper tool to model longer temporal dependencies [9]. Gated recurrent unit (GRU)
models are variants of LSTM models that work with fewer parameters [11,12]. Besides,
in GRU architectures, the forget and input gates of LSTM are altered only with one update
gate. In the literature, it has been shown that GRU models can be trained faster while
still achieving results similar to LSTM, even with fewer training data [12]. Duru et al. [13]
apply DL to predict the transonic flow around airfoils. Srinivasan et al. [9] use Multilayer
Perceptron (MLP) and DL networks to predict a turbulent shear flow from equations
known from a Moehlis model [14]. LSTM’ susceptibility has led to hybrid models such as
autoencoders-LSTM, LSTM/RNN, and Convolutional Neural Network (CNN)-LSTM [12].
Eivazi et al. [8] present a DL application for the nonlinear model reduction in unsteady
flows. The review of Gu, Chengcheng, and Li, Hua [12] reports on an LSTM network being
applied to predict the wind speed, which has turbulent behavior. Bukka et al. [5] employ
a hybrid, deeply reduced model to predict unsteady flows. Most fluid flow studies that
applied DL use data extracted from CFD computations [4,9]. Furthermore, most works
include pre-processing steps to identify the dominant features, such as POD or DMD [4].
Recently, Hassanian et al. [15] used LSTM and GRU models to predict a turbulent flow with
only temporal features. Moreover, the Transformer model, as an up-to-date DL technique,
displays successful capabilities to simulate and forecast emerging unknown patterns of
turbulent flow [16].

This study proposes an innovative idea, using a GRU model to predict turbulent flows
with spatial-temporal data based on raw data from flow measurements in an experiment of
strained turbulent flow [17]. The Lagrangian particle tracking (LPT) technique is applied to
extract 2D (two components of each property, such as velocity) from the 3D experiment
(consisting of all components of each property) of the strained turbulent flow. As the
turbulent flow manifests as a three-dimensional phenomenon, employing experimental
data yields a dataset containing authentic and comprehensive turbulence characteristics.
The data contain information on the time t, location x and y, and the velocity components
in the X and the Y directions. The Lagrangian framework is defined by particle traces in
a spatiotemporal way [6,7]. A particle in the flow with a specific velocity and position at
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each particular time t is followed [1,6]. This way, the particle’s velocity over time can be
represented as a time series [4], which is a function of the particle’s location. Relying on
this concept, a GRU model can be trained with the spatiotemporal data and predict the
velocity. The velocity time series in fluid dynamics have been recorded in several biological
and industrial applications via special devices [4] and can be used in combination with
the suggested model. Since the turbulent flow is a nonlinear problem and there is no
deterministic approach to solve or forecast the emerging period of its feature, the suggested
method in the present study provides a transparent window to study turbulent flow.

In prior research on turbulent flow employing deep learning models, a hybrid ap-
proach incorporating Proper Orthogonal Decomposition (POD), Reduced Order Modeling
(ROM) [18], and deep learning techniques was employed to address nonlinear parametrized
Partial Differential Equations (PDEs) [19,20]. The superiority of this proposed method is
that it eliminates the steps of extracting the dominant data and the necessary pre-processing
steps before the application of DL, and directly provides predictions of the future flow
through DL models. This advantage renders the model adaptable for training with raw
measurement data, eliminating the need for processing, such as ROM or POD. Its novelty
in applying training data for a DL model is based on spatio-temporal attributes. In sequen-
tial DL models such as LSTM and GRU, the training data are times series and, therefore,
temporal. The current study employs the spatial attributes of the turbulent flow since,
in the Lagrangian framework, the location is a function of the time. Furthermore, the pre-
eminence of the present study is utilizing the GRU model to be trained with measured
property, forecasting it in the following period without training, and informing the model
with flow characteristics such as the Reynolds number, Stokes number, length, or time
scale. In many industries and applications, fluid flow properties such as velocity, flow
rate, vorticity, and acceleration can be measured with technical devices. This consistency
helps the proposed approach to be broadly utilized. The experimental dataset used in the
present study stems from a strained turbulence flow in the presence of gravity and tracking
tracer particles. However, the prediction model only relies on the velocity and location
time series, and the training does not include parameters such as particle size, turbulence
intensity, gravity, and strain rate. The parallel computing machines JUWELS-BOOSTER
and DEEP-DAM [21] from the Jülich Supercomputer Centre are used to accelerate the
GRU model training process. Hence, this manuscript is organized as follows. The applied
methodology is introduced in Section 2. Subsequently, the results and discussion are
provided in Section 3. Finally, conclusions are drawn in Section 4.

2. Methodology

This section represents the theory of the LPT, which is used to employ a dataset
from the experiment in this study. Furthermore, the dataset details have been explained.
Thus, the employed GRU model and its setup for training and prediction have been
demonstrated.

2.1. The Lagrangian Framework and Fluid Particles

In a Lagrangian framework, individual fluid particles’ position and velocity vectors
are tracked [1,6]. A fluid particle is a point that streams with the local flow velocity; thus, it
identifies the velocity and position at time t. The arithmetic definition of a fluid particle
is [1,4]:

Ui = Ui(t, x1(t, x1,0), x2(t, x2,0), x3(t, x3,0)), (1)

where the velocity U is determined in 3D coordinates, x is the position vector, t is the time,
and i specifies the vector components in the X, the Y, and the Z directions. Notation (1)
defines the particle velocity in sequential time series and is frequently used in turbulent
flow statistics, where no universal velocity function is available. xi,0 ascertains the initial
condition of the particle in the i direction. Figure 1 displays a sketch of the strained
turbulent flow.
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Figure 1. A sketch displays the strain acting on the turbulent flow. The turbulent flow at the
measurement area, located at the center of the tank, is a nearly stationary homogeneous isotropic
turbulence flow initially and before the distortion. The measured data are used in the current study
to train a GRU model.

2.2. Experimental Data

The experiment was conducted within a water tank featuring eight impellers strategically
positioned at the corners of a cube and directed toward the tank’s center, as displayed in
Figure 1. These impellers rotated at specific speeds falling within the range of 100 < Reλ < 152,
effectively simulating the turbulent flow before creating the strain deformation. The re-
sulting flow in the central region of the tank, where measurements were taken, exhibited
a nearly stationary homogeneous isotropic turbulence [22]. The tank, with dimensions of
60 cm × 60 cm × 60 cm, had transparent Plexiglas for XT walls that were 20 mm thick,
allowing optical access to the data. An aluminum frame held the components of the tur-
bulence box in place. The fluid in the tank was seeded with tracer particles with median
diameters of 8–10 µm. Tracer particles had a specific gravity of 1.1 g/cm3 (hollow glass). Two
circular flat disks positioned vertically in the center of the tank moved towards each other,
generating a specified mean strain rate. The experiment involved a mean strain rate, primarily
in the y-direction of −4 s−1. The measurement area, situated in the center of the tank, had
dimensions of 24.5 × 24.5 mm2.

The Lagrangian particle tracking (LPT) technique was employed to monitor and extract
the dynamic features of the particles. Lagrangian Particle Tracking (LPT) [23–25] is a non-
intrusive optical methodology that is widely utilized in experimental fluid dynamics. This
technique involves capturing images of particles suspended in a fluid and subsequently
tracking the movement of individual particles within a small interrogation window. In the
context of two-dimensional LPT, the flow field is observed within a thin plane illuminated
by a laser sheet, allowing for the measurement of particle motion within that specific slice
of the flow. Introducing low-density particles into the flow of interest allows each particle
to be individually tracked across multiple frames.

In this particular experiment, a single camera was utilized to reconstruct particle tracks
in two dimensions, providing valuable insights into the initial turbulence and Lagrangian
statistics of the turbulent flow. The construction of particle tracks in 2D-LPT involves two
primary tasks. Firstly, the images captured by the camera undergo processing to determine
the two-dimensional positions of the particles within the camera’s image space. Secondly,
a tracking algorithm, based on the principle of the 4-frame best estimate pioneered by
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Ouelette et al. [25], is applied to establish the paths followed by the particles over time
using a sequence of images.

A solitary high-speed CMOS camera equipped with a 105 mm focal length lens was
employed to capture LPT images, set at a resolution of 512 × 512 pixels. The detection
system operated at 10 kHz, equivalent to 10,000 frames per second (fps), ensuring well-
resolved particle velocity and acceleration statistics. This exceptionally high temporal
resolution (0.1–0.2 ms) is significantly smaller than the Kolmogorov time τλ (16.6–31.6 ms)
of the smallest eddies in the flow, allowing for the resolution of dissipation range properties.
It is reported that the STOKES number (relaxation time over the Kolmogorov scale) for the
tracer particles is in the range of 0.0063–0.0094 [17]. For illuminating the tracer particles;
an Nd-YAF laser (527 nm) was utilized, synchronized at the same sampling frequency
as the camera. The laser operated in an internal mode, with a 14 A Q-switch current
and a pulse width of 2.5 µs. To ensure accurate statistics of the particle-laden turbulent
flow, the recording process was iterated 20 times for each flow case. It is important to
note that the present study uses a dataset to train a GRU model originated from the LPT
measurement based on Ouelette et al. [25] and Hassanian et al. [17]. The original work [17]
details the experiments and their measurements.

2.3. Sequential Velocity Dataset

The velocity dataset is extracted from the LPT experiment described in the previous
section, following the procedure of Hassanian et al. [17]. The dataset is composed of
6,225,457 tracking points for every vector, as follows:

• Velocity component in the Y direction, VY;
• Velocity component in the X direction, VX ;
• Location in the x coordinate;
• Location in the y coordinate;
• The time vector specifies the time t for every tracking point.

These tracking points comprise velocity and location vectors, attained via 20 recordings
to provide sufficient statistical data. As expected, the tracking yields several tracking lines,
as illustrated in the result section, and every tracking line specifies the fate of a single
particle. This study employed different ratios of the training dataset to determine the
optimal model with accurate predictions for the strained turbulent flow. To measure
the performance of the forecasting model, the data are split into 80% training data and
20% test data. The prediction quality of the model is evaluated on the unseen test data.
The model is trained in a way that individually predicts the velocity in the X direction
and the Y direction. This design makes the model applicable to higher-dimensional data.
For instance, if there are data with a third component in the Z direction, this model can
forecast the corresponding velocity component in a separate training run. It should be
noted that the dataset in this study underwent strain deformation in the Y direction, which
is the dominant orientation in this flow; therefore, it is expected to see more fluctuation in
this direction [3,17].

2.4. Gated Recurrent Unit Model

The study relies on the concept that the flow properties in the Lagrangian frameworks
are carried by the velocity, which is a function of time and location. Therefore, the input
data from the 2D measurement involves the location in the x and the y coordinates in
addition to velocity components in both orientations. The current study trained a DL model
on these data to assess the ability to forecast flow fields, because the concept of sequentiality
is an inherent feature in the Lagrangian framework. The DL model thereby takes into
account all historical impacts. Despite the mean strain rate, turbulence intensity, geometry
of the boundary condition as an effectiveness parameter [26,27], and gravity as a presence
effect [17], they are not part of the model input. The only inputs to train the model are
locations and the velocity. The target is the velocity in the future. A GRU is based on
the LSTM model with slight changes in the architecture [28]. The literature reports that a
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GRU is faster to compute than an LSTM and has a streamlined model [11,12,29]. A GRU
cell, which is displayed in Figure 2, is composed of a hidden state ht−1, a reset gate rt,
and an update gate zt. The reset gate controls how much of the previously hidden state is
remembered. Via the update gate, it can be quantified how much of the new hidden state ht
is just a copy of the old hidden state. This architecture establishes two significant features:
the reset gate captures short-term dependencies and the update gate models’ long-term
dependencies in sequences [28].

Figure 2. Architecture of a GRU model: h(t−1) is the hidden state from the previous step, X(t) is the
current input, h(t) is a new hidden state, y(t) is the output, r(t) is the reset gate, z(t) is the update
gate, g(t) is the candidate hidden state, σ is the sigmoid function, and tanh is the hyperbolic tangent
function [15].

2.5. Forecasting Model Set Up and Parallel Computing

The models are coded in Python with the TensorFlow library [30,31]. The GRU model
is set up with 100 layers and one dense layer, and Adam is specified as an optimizer [15].
The dataset was normalized by the MinMaxScaler transformation [32], scaling the minimum
and maximum values to be 0 and 1. In the GRU model, kernel_initializer is glorot_uni f orm,
and the learning rate is 0.001. Since the model training runs on the JUWELS-BOOSTER [33]
and DEEP-DAM [21] machines, a distribution strategy from the TensorFlow interface to
distribute the training across multiple GPU with custom training loops is applied [34].
The training has been set up to use 1 to 4 GPU on one node. The result of the computing
and the models’ performance distinction are reported in Section 3.

3. Results

The current study makes use of a dataset from an LPT measurement, which provides
spatial and temporal information. The visualization of the velocity that is measured in
the X and Y directions is obtained to observe the flow turbulency behavior. The velocity
in a specific direction at location x and y is used as input training data with a ratio of
80%. The velocity prediction was evaluated with the rest of the data (20%). The trained
model performs the forecast for both velocities individually. In this section, the results and
discussion are presented.

3.1. Measured Turbulent Flow Velocity

The subject of this study is to employ the dataset from the experiment in the training
of the GRU model and to analyze its training and predictive performance. The data
extracted from the experiments contain the velocities of tracer particles in the Lagrangian
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framework [17]. Figures 3 and 4 illustrate the measured velocity component in the X and Y
directions, respectively.

Figure 3. The measured velocity in the X direction from 20 videos for strained turbulent flow.
The experiments have been repeated in analogous conditions.

Figure 4. The measured velocity in the Y direction from 20 videos for strained turbulent flow.
The experiments have been repeated in analogous conditions.

The velocity measurements in the X and Y directions both show fluctuations. Com-
paring Figures 3 and 4 reveals that in the Y direction, the turbulence is more intense. This
is due to the fact that the strain direction mainly points to this orientation [17]. That is,
the velocity in the Y direction has a gradient that is caused by the strain. It is, therefore,
much more visible than the velocity in the X direction. The literature emphasizes that the
strain could lead to extra fluctuations [2,3,17]. Besides the strain and turbulence intensity,
the geometry boundary influences the flow velocity [3].

3.2. Predicted Velocity and GRU Model Evaluation

Figures 5 and 6 illustrate that 80% of the velocity time series are used to train the
GRU model in this study. The rest of the data (20%) are applied as test data to assess the
predicted velocity via the GRU model.

The model provides considerably accurate velocity forecasting. The MAE and the
R2 score metrics are applied to evaluate the model; with 80% training data, the MAE
and R2 scores are 0.001 and 0.993, respectively. It must be noted that the actual data in
Figures 5 and 6 are in the filled blue circles and are because of the high level of the predic-
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tions covered by the prediction.To evaluate the designed GRU model, its performance is
compared to model applications from previous studies that used LSTM, GRU, and Trans-
former models trained only with temporal features. The comparison is displayed in Table 1.
In the present study, the dataset included 6,225,457 tracking points and four sequential
variables composed of x, y, VX and VY to predict the VX and VY in the following periods.
The model of this work is tuned for performance in terms of the runtime and accuracy with
HPO, evaluating different batch sizes, BS = [8, 16, 32, 64, 128, 256, 512, 1024]. The accuracy
of the model, trained with the optimal batch size found, is specified by GRU-h in Table 1.
From the previous study of the author’s research group, LSTM, GRU, and Transformer
models have been applied with 2,862,119 tracking points, with two sequential variable
inputs (temporal feature) composed of VX and VY to predict the VX and VY [15,16]. Table 1
shows that the GRU-h model of this study is 20% faster than the GRU model with a smaller
dataset, and it is 14% and 15% faster than the LSTM and Transformer models, respectively.
Since the dataset in this study is approximately 220% larger, with twice the size of input fea-
tures, the modification and hyperparameter tuning made it faster, around 14–20%, which is
a remarkable speed up for extensive data that could be employed in this model. Moreover,
the GRU-h led to slightly more accurate predictions with an R2 equal to 0.99 and an MAE
of 0.001; see Table 1.

Figure 5. Velocity prediction of the velocity in the X direction from the GRU model. The model is
trained on 80% of the data, while the remaining 20% is used for testing. The filled blue circles are
actual data, the green points are train data, and the magenta points are GRU-predicted data.

Figure 6. Velocity prediction of the velocity in the Y direction from the GRU model. The model is
trained on 80% of the data, while the remaining 20% is used for testing. The filled blue circles are
actual data, the green points are trained data, and the magenta points are GRU-predicted data.
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Table 1. Comparison table of the GRU-h model of the current study that is improved by HPO and
trained with larger data and four sequential variable inputs: x, y, VX , and VY . Transformer, LSTM,
and GRU, illustrated in the table, are models from previous studies [15,16], with smaller boundary
conditions and two sequential variable inputs VX and VY and without HPO.

Training Proportion Performance GRU-h Transformer LSTM GRU

80% MAE 0.001 0.002 0.001 0.002
R2 score 0.99 0.98 0.98 0.98

Runtime (s) 256 301 295 318

3.3. Parallel Computing Assessment

It is reported that GRU is faster and produces similar prediction results as LSTM with
fewer data [4,11,12,15]. In this study, 6,225,457 tracking points are available just from the
0.4 s long period of the experiment. To cope with the amount of data, the GRU is trained on
parallel computing architectures, and its speed-up is examined. The training of the GRU is
performed on two machines, i.e., on the DEEP-DAM and JUWELS-BOOSTER machines.
On DEEP-DAM, the training is performed on a single node using one GPU. The corre-
sponding training time using this setup is 5802.60 s, serving as a baseline. By varying the
number of GPU on the JUWELS-BOOSTER, it is possible to measure the speed-up gained
by the additional GPU. Here, strong scaling is the metric of choice, as the amount of work
stays constant no matter how many processors are used [35]. The goal of parallelizing the
computation is to reduce the time to solution. As is obvious from the data in Table 2 and
Figure 7, the speed-up of the model increased with 1.59, 2.13, and 2.57 for using 2, 3, and
4 GPU, respectively.

Table 2. Parallel computing machine scalability to train the GRU model with GPU.

Machine Module Node GPUs Computing Time [s] Speedup

JUWELS- 1 1 5801.20 1
BOOSTER 1 2 3640.31 1.59

1 3 2719.36 2.13
1 4 2252.52 2.57

DEEP-DAM 1 1 5802.60 1

Figure 7. Computing time on the JUWELS-BOOSTER on one node assessed with one to four GPU for
the GRU training model.

In addition to the MAE, the HPO process for optimizing the batch size also affects
the runtime of the training, which is reported in Table 3. As the batch size per GPU
increases with a factor of 2, the total training runtime reduces approximately with the same
factor. This indicates that the GPU are not fully utilized with small batch sizes, and for
the computational efficiency, the training should be conducted with larger batch sizes.
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The lowest MAE is observed for a batch size of 512, which is an indication that this batch
size is the optimal trade-off between speed-up and accuracy.

Table 3. Effect of the size of the batch size on the computing time and the MAE.

Machine Module GPUs Batch Size per
GPU

Computing
Time [s] MAE

JUWELS- 4 8 14723.30 0.0016698
BOOSTER 4 16 7499.96 0.0015822

4 32 3757.98 0.0015293
4 64 1820.90 0.0014718
4 128 963.49 0.0014551
4 256 493.07 0.0013771
4 512 255.93 0.0013613
4 1024 147.70 0.0014453

4. Summary and Conclusions

This study employed empirical data from strained turbulence flow experiments con-
ducted in a laboratory setup to create a velocity prediction model. The simulated turbulent
flow has a Taylor microscale REYNOLDS number in the range of 100 < Reλ < 152. The turbu-
lent flow at the measurement area was a nearly stationary homogeneous isotropic before the
deformation. Tracer particles with a median diameter of 8–10 µm and a specific gravity of
1.1 g/cm3 were seeded in the flow. The mean strain rate in the Y direction is generated to be
4 s−1, and the LPT technique is applied to record the flow features. Based on the Lagrangian
perspective, the extracted velocity and location dataset has been used to train a GRU model
for flow predictions. The strained turbulent flow is a type of shear flow that can be observed
in many applications, such as the external flow over an airfoil and internal flow within a
variable cross-section pipe, internal combustion in engines, particle interactions in mixing
chambers, erosion at the leading edges, dispersion of pollutants in the atmosphere, formation
of rain within clouds, and dispersion of sediments in oceans and rivers [17].

A GRU network is a version of the LSTM network that can perform training faster and
with fewer data. As has been noted in the literature, the turbulence intensity, boundary
geometry, and strain rate affect the flow velocity. Moreover, this experiment was performed in
the presence of gravity, which was not investigated in previous numerical studies on deformed
turbulent flow, and its effect remains unknown. This study relies on the concept that the
velocity as a function of the locations and sequential feature of the flow carries all relevant
information affecting the above-mentioned factors. Therefore, in the training of the GRU,
the model is evaluated to observe how it is capable of learning how the historical effect of
all parameters will impact the following period, since DL can extract hidden features. Each
velocity component and location are measured by LPT in sequence form, and the locations x,
y, and velocity components in the corresponding directions are applied as input data to train
the GRU model. Based on the training, the GRU predicts the velocity component individually
in the following period. In this study, 80% of the data was used as training data, and the
remaining 20% of the data were employed to test the prediction and validate it.

The predictions from the GRU model are considerably accurate, as the MAE and
R2 score are 0.001 and 0.993, respectively. The suggested approach leads to predicting
turbulence flow in many applications. However, it is essential to evaluate the model with
extensive data and long-term predictions, as well as apply different boundary conditions
and vary the REYNOLDS number range to observe the limit of the projections. The current
model has been compared to previous DL models with a similar application. The results in
Table 1 show that the proposed model, with 220% larger data and two times more input
variables, has a faster performance of 14–20% than similar model applications of LSTM,
GRU, and Transformer because of the HPO. This performance is a remarkable achievement,
particularly when applying the model to a more extensive dataset. Besides the accurate
predictions generated by this model, the model was executed on the parallel machines
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JULES-BOOSTER and DEEP-DAM at the Jülich Supercomputer Centre to investigate the
training’s speed-up. The performance on one node and one to four GPU has been examined
in JUWELS-BOOSTER. The results show the speed-up to increase in two GPU. With four
GPU, the model trains 2.57 faster than the metric measurement with a single GPU. To
further enhance this model, its performance with respect to the prediction accuracy and
scalability will be examined extensively using more data. Furthermore, the impact of
the hyperparameters in this model will be investigated to accelerate the model under the
constraint of keeping the accuracy at suitable conditions.
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Appendices
A Appendix
Appendix A documents the experiments’ details and how the turbulent flow charac-
teristics were measured and calculated.

1. Strain rate measurement
The experiment was performed two times with tracers employing the Particle

Image Velocimetry (PIV) technique:
I. The turbulence flow without strain: homogeneous isotropic turbulent flow

(HIT)
where, the equation shows one component of the flow velocity.

VHIT =V + v′ (A.1)
where, VHIT is measured velocity, V is mean velocity and v′ is fluctuation.
II. Strained turbulent flow (S-HIT): the velocity generated by strain added to the

total velocity via an experiment with specific strain deformation 2S in the y-direction:

VS−HIT =V + v′+(−2Sy) (A.2)
here VS−HIT is the total measured velocity, and y is the location in the y-direction

The measurement extracted the velocity of two experiments separately. To calculate
the generated strain, only must subtract the two velocities:

Vstrain =VS−HIT −VHIT (A.3)

Vstrain = (V + v′+(−2Sy))− (V + v′) =−2Sy (A.4)
where, Vstrain the velocity generated because of the straining. So, to calculate

the strain rate:

Srate =
dVstrain

dy
(A.5)

here Srate mean strain rate. The generated strain was 4 s−1 and 8 s−1 in the
y-direction; the strain rate measured fluctuated close to the value.

Since Ustrain = (Sx,−2Sy,Sz) is a for laminar flow, it does not expect to measure
the same mean strain value since the generated strain in turbulent flow added to the
velocity fluctuations as it well addressed in the literature (P. A. Davidson, 2004).

2- Circular disk move: When they are moved toward the center with a pre-
described rate that ensures a nearly constant strain rate in the fluid (Paper I, page
4, paragraph 1.). Since the distance between the disk was vertically constant for
experiments, for two mean strain rates, the speed was regulated to generate the
specified strain rate.
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3. Time duration and dimensionless parameter:
To compare the different experiments with dimensionless parameters, the S× t

is defined. S× t= 1.6, so when the strain rate is 4 s−1, the time duration t is 0.4 s
and when the strain rate is 8 s−1, the time duration t is 0.2 s.

4. Calculating Reλ

According to Table 1 (Paper I), first, it must calculate the dissipation rate ε

(Stephen B. Pope, 2000). It requires the use of a second-order velocity structure
function (Stephen B. Pope, 2000):

Di j = [Vi(y(2))−Vi(y(1))][Vj(y(2))−Vj(y(1))] (A.6)

D11 = DLL (A.7)

D22 = D33 = DNN (A.8)

D12 = D13 = D23 = 0 (A.9)

here Di j is second-order velocity structure function. DLL and DNN are longi-
tudinal and transverse structure functions, respectively. i and j specify the vector
component. V (y) is the velocity. y is the location. The equation can be used
(Stephen B. Pope, 2000):

D11/(εr)
2
3 =C2 (A.10)

D22/(εr)
2
3 = D33/(εr)

2
3 =

4
3

C2 (A.11)

where ε is the mean dissipation rate, r = y(2)− y(1), and C2 = 2 is the universal
constant (Sadoughi eta al, 1994; Stephen B. Pope, 2000).

Eulerian auto-correlation function is used to calculate the integral scale and
measure the length scale (Stephen B. Pope, 2000):

ρ(l) = u(r0 +L)u(r0)/u2 (A.12)

L =
∫

∞

0
ρ(l)dl (A.13)

where ρ(l) is the integral scale, u is the velocity, r is location, r0 refer to origin
location that assumed, l is the variable of integration and L is length scale.

ui =U −Umean (A.14)

here, ui is the velocity fluctuation, U is the total velocity, Umean is the mean
velocity.

urms =
√

u2
i (A.15)
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where urms is the root mean square velocity.

η = (
ν3

ε
)

1
4 (A.16)

where η is Kolmogorov length scale and ν is the kinematic viscosity.

τη = (
ν

ε
)

1
2 (A.17)

here τη is Kolmogorov time scale.

λ = urms(
15ν

ε
)

1
2 (A.18)

where λ is Taylor mircoscale.

ReL =
urmsL

ν
(A.19)

here ReL is the flow Reynolds number.

Reλ =
urmsλ

ν
(A.20)

where Reλ is the Taylor microscale Reynolds number.
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