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Abstract

Battling climate change and rising temperatures is a major task of this century. To achieve
current climate goals the large-scale removal of carbon dioxide from the atmosphere is
needed. Enhanced Rock Weathering ERW is one of the most promising methods to draw
down carbon dioxide from the atmosphere at large scale, but it has been challenging to
demonstrate. This work reports the soil water chemistry, mineralogy and carbon balance in
an Icelandic Andosol that has received large quantities of basaltic dust over 3300 years,
providing opportunity to quantify the rates and long-term consequences of Enhanced Rock
Weathering. The continuous dust dissolution has been promoted by the precipitation of Al-
Si-minerals, such as allophane, and organic anion ligands released from organic decay.
Consequently, the water pH, alkalinity and the concentrations of most major elements have
increased. Initially released toxic trace metals are scavenged at depth, likely by uptake
through secondary minerals. Some carbon dioxide was stored in solid form as siderite
FeCOs. Meanwhile, the alkalinity generation in these soil waters is more than ten-times
higher than in equivalent basalt-dust-free soils.

This study shows that oxidation in these soil systems leads to the transformation of the
dominant Al-rich allophane phases to Fe**-dominated nontronite and ferrihydrite.
Simultaneously, soil water alkalinity is reduced. Potentially remobilized toxic trace metals
are scavenged by newly formed minerals such as ferrihydrite. Even in surface waters,
ferrihydrite is able to adsorb effectively high concentrations of naturally derived heavy
metals, but also affects nutrients like phosphorus. These scavenged elements will
potentially be released upon interaction with seawater.

After accounting for oxidation and degassing when the soil waters are exposed to the
atmosphere, the annual CO, drawdown by alkalinity generation is estimated at
629 CO, m2yr. Therefore, this study validates the ability of soil amendments
containing fine- gralned mafic minerals to attenuate increasing atmospheric CO, by
alkalmltly export. If the results of our studied field site are representative, the removal of
1 Gtyr— CO, from the atmosphere through alkalinity production alone would require a
total of 16 million km? of surface. However, induced changes in soil organic carbon
storage likely dominate the net CO, drawdown of Enhanced Rock Weathering efforts. At
our Icelandic site the rate of organic carbon storage is estimated to be 1.5 to 3 times larger
than that of alkalinity storage.

This measured specific alkalinity flux is of similar order as the fluxes observed in NE-
Icelandic glacier meltwater-fed reservoirs loaded with suspended basaltic particles. Low
CO, partial pressures in these waters, stemming from the water-rock interactions in the
reservoirs and beneath the glacier, result in a direct CO, drawdown from the atmosphere.
The annual CO2 drawdown from Halsldn, one of the largest hydro power reservoirs in
Iceland, was quantified at 5000 tons annually or 120 g CO, m~ yr* present during a six-
month ice-free period. Simultaneously, the emissions from the downstream Lagarfljot
reservoir decreased from ~5300tyr’ (100gCO,m?yr') to ~1700tyr-l
(32 g CO, m2 yr?), after receiving the redirected waters from the new Halslén reservoir.
While the partial pressure gradient between the atmosphere and the water bodies is the
main driving force for the CO, fluxes, it is highly affected by wind speeds but less by
temperature variations. Although detailed analyses are lacking, additions of mafic
materials to large water bodies to draw down CO; should still be considered in the future.






Utdrattur

Gliman vid loftslagsbreytingar og haekkandi hita er medal hofudverkefna pessarar aldar.
Naudsynlegt mun reynast ad fjarleegja koltvioxid ar andrdmslofti i miklum meli ef
loftslagsmarkmio eiga ad nast. Einhver vanlegasta adferd til ad nema koltvioxid brott ar
andramslofti i storum stil er "aukin bergvedrun®, sem svo kallast, en érdugt hefur reynst ad
sanna matt hennar. I pessu riti er fjallad um rannsokn & efnasamsetningu jardvegsvatns, &
steindasamsetningu og a kolefnisjafnveegi i islenskri eldfjallajord (anddsol), sem oroid
hefur fyrir miklu &foki basaltryks & 3300 arum. bannig hefur gefist teekiferi til ad leggja
mat & hrada aukinnar bergvedrunar og ahrif hennar til lengri tima. Utfelling alkisilsteinda,
eins og alléfans, og lifreenar jonir, sem fallid hafa til vid nidurbrot lifreenna efna, hafa ytt
undir stéduga upplausn ryksins, en hin hefur hakkad pH-gildi vatnsins, basavirkni og
styrk flestra helstu frumefna. Eitradir snefilméalmar, sem leysast Ut i fyrstu, eru tralega
teknir upp af sidsteindum & nokkru dypi. Upptaka koltvioxids Gr andramslofti af véldum
utfellingar jarnkarbonats, siderits, virdist takmorkud i pessum jardvegi, pétt hdn sé
moguleg, en sideritid bindur koltvioxidid sem fast efni. Engu ad sidur er framleidsla
basavirkni i pessu jardvatni lidlega tifalt meiri en i sambaerilegum jardvegi sem laus er vid
basaltryk.

Rannsoknin synir, ad oxun i pessum jardvegi umbreytir hinum rikjandi alriku
alléfansteindum i nontronit og ferrihydrit, en i peim er prigilt jarn rddandi. Um leid
minnkar basavirkni jardvegsvatnsins. Nymyndadar steindir, eins og ferrihydrit, taka upp
eitrada snefilmalma, sem kunna ad hafa leyst Gt. Ferrihydrit getur adsogad mikio af
nattarulega tilfallandi pungmalmum, jafnvel i yfirbordsvatni, en hefur einnig ahrif &
neeringarefni eins og fosfor. Sjdvatn geeti leyst pessi uppteknu efni Ut aftur.

Arleg upptaka koltvioxids Gr andramslofti af véldun framleidslu basavirkni er metin sem
62 g koltvioxids & fermetra & ari, ad teknu tilliti til oxunar og afgdsunar, sem verdur pegar
jarovegsvatnid kemst undir bert loft. Pessi rannsokn stadfestir pannig, ad jardvegsbaetur
med finkorna basalti geta dregid Gr aukningu koltvioxios i andrdmslofti med flutningi
basavirkni. Séu nidurstodur af pessu rannséknarsvaedi demigerdar, ma &tla ad alls pyrfti
16 milljonir ferkilometra yfirbords til ad binda eitt gigatonn koltvioxids Gr andramslofti &
ari med framleidslu basavirkni einni saman. Liklegt er hins vegar, ad breytingar & forda
lifreens kolefnis i jardvegi, sem verda i kjolfarid, séu radandi um bindingu koltvioxios ar
andramslofti med aukinni bergvedrun. A islenska rannsoknarreitnum er lifreen binding
kolefnis metin a bilinu half énnur til prefold binding basavirkninnar.

petta basavirknifleoi er alika mikid og meelist i Halsléni, en i pvi er mikil basaltsvifaur.
Hlutprystingur koltvioxids i Halsloni er lagur vegna efnahvarfa milli vatns og bergs i
16ninu og undir jokli, og veldur pessi lagi prystingur beinni upptekt koltvioxids ar
andramslofti. Arleg upptaka koltvioxids ar andramslofti i Halslén, eitt stersta
uppistdoulon a Islandi, var metin sem 5000 tonn & &ri, eda 120 g 4 fermetra & ari, & sex
manada timabili pegar 16nid var islaust. A sama tima minnkadi losun Gr Leginum Gr u.p.b.
5300 tonnum koltvioxids & ari (100 g & fermetra & ari) nidur i um 1700 tonn & ari (32 g a
fermetra & ari) eftir ad vatni Gr Halsloni var veitt pangad. b6 ad mismunur hlutprystings
koltvioxids milli andrimslofts og vatna sé pad sem knyi fledi koltvioxids, pa hefur
vindhraoi samt mikil ahrif & fleedid, en hiti minni. Pétt itarlega greiningu vanti ennpd, er
asteeda til ad ihuga ibot basaltagna i stor vatnshlot pegar fram lida stundir, i pvi augnamidi
ad binda koltvioxid ar andramslofti.
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1 Introduction

1.1 Climate warming

Each year, human activities release more carbon dioxide into the atmosphere than natural
processes can remove, causing the amount of carbon dioxide in the atmosphere to increase.
Atmospheric carbon dioxide is now 50 percent higher than before the Industrial
Revolution, in the mid-1700’s, when the atmospheric carbon dioxide concentration was
less than 280 ppm (WMO 2024, NOAA 2024). Carbon dioxide is Earth’s most important
greenhouse gas, a gas that warms the earth by absorbing energy and radiating heat (Lacis et
al. 2010, IPCC 2021).

By adding more carbon dioxide to the atmosphere, people are supercharging the natural
greenhouse effect, causing global temperature to rise. According to observations by the
NOAA Global Monitoring Laboratory in 2021, carbon dioxide alone was responsible for
about two-thirds of the total heating influence of all human-produced greenhouse gases
(NOAA Annual Greenhouse Gas Index). A large amount of CO, that is put into the
atmosphere diffuses into the ocean (Ballantyne et al. 2012). Dissolving carbon dioxide in
the ocean creates carbonic acid, thereby increasing the acidity of the water (IPCC 2005,
Figuerola et al. 2021, Campbell et al. 2022). Since the start of the Industrial Revolution,
the pH of the ocean's surface waters has dropped from 8.21 to 8.10, which is an increase by
approximately 30 % in acidity (EEA 2024). This drop in pH is called ocean acidification,
which has negative feedback on many marine organisms.

Based on paleoclimate evidence and paleo-atmospheric sampling on ice cores, the
atmospheric carbon concentration of the past million years can be reconstructed (Fig. 1.1).
The highest recorded CO, concentrations of the atmosphere, measured in various ice cores
(Vostock and EPICA dome c) dating back to the onset of the Middle Pleistocene
approximately 790,000 years before present, are around 300 ppm (Ldthi et al. 2008).

Monitoring stations all over the world such as on Mauna Loa, Hawaii, or the Westman
Islands (Vestmannaeyjar), Iceland, were built to record the atmospheric CO;
concentrations. By the time continuous observations began at Mauna Loa Volcanic
Observatory in 1958, global atmospheric carbon dioxide was already at 315 ppm (Lan et
al. 2024, Keeling and Keeling 2017). Carbon dioxide levels today are higher than at any
point in human history. The latest “record” was measured on April 26, 2024, at the Mauna
Loa Observatory reading 426.9 ppm (Lan et al. 2024). Carbon dioxide, besides other gases
like ozone, methane and nitrous oxides have a large effect on the atmospheric composition
and impact its role as a protection layer for the earth that directly regulates solar radiation.
Increasing the concentration of any of these so called “greenhouse” gases leads to an
increase in solar radiation which directly leads to an increase in global temperatures.
Therefore, attempts are made to limit the emissions of these greenhouse gases as increasing
global temperatures are providing negative feedback such as extreme events like droughts,
tropical cyclones, extreme precipitation and compound extremes (IPCC 2023).
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Figure 1.1 Atmospheric carbon dioxide (COy) in parts per million (ppm) for the past
800,000 years based on ice-core data (light purple line) compared to 2023 concentration
(bright purple dot). The peaks and valleys in the line show ice ages (low CO,) and warmer
interglacials (higher CO,). Throughout that time, CO, was never higher than 300 ppm
(light purple dot, between 300,000 and 400,000 years ago). The increase over the last 60
years is 100 times faster than previous natural increases. (Graph by NOAA Climate.gov
based on data from Liithi et al. 2008, via NOAA NCEI Paleoclimatology Program)

1.1.1 IPCC and the different paths of climate warming
mitigation

The Intergovernmental Panel on Climate Change (IPCC) was founded in 1988 by the
World Meteorological Organization (WMO) and the United Nations Environment
Programme (UNEP), with the goal to provide governments at all levels with scientific
information that they can use to develop climate policies. The first assessment report
published in 1990 led to the creation of the United Nations Framework Convention on
Climate Change (UNFCCC), the key international treaty to reduce global warming and
cope with the consequences of climate change. The fourth assessment report (AR4)
published in 2007 was focused on limiting the global warming to 2°C above pre-industrial
level until the end of the century 2100. (https://www.ipcc.ch/about/history)

Based on the work of the IPCC, the goal of the Paris agreement signed in 2015 is: to limit
global warming to less than 2°C compared to preindustrial levels, preferably 1.5°C by the
year 2100. To achieve this, it was proposed that global carbon dioxide emissions should



peak no later than 2020, and gross CO, emissions should be successively reduced to
~24 gigatons in 2030, ~14 gigatons in 2040 and ~5 gigatons in 2050 (Rdéckstrom et al.
2017, Rogelj et al. 2015). In addition, the cumulative CO, emissions of 700 Gt CO, since
2017 need to be decreased to below 200 Gt CO, by the end of the century, for the
atmospheric CO; concentrations to return to 380 ppm by 2100 (Rockstrém et al. 2017). As
not all greenhouse gas emissions can be fully mitigated (Royal Society and Royal
Academy of Engineering 2018), technologies have to be developed to actively remove
carbon dioxide from the atmosphere.

The IPCC reports and special reports provide insight into the causes and consequences of
global climate warming as well as possible strategies towards the limitation and mitigation
of climate warming. Special Report Global Warming of 1.5°C presents four different
pathways on how to limit global warming to 1.5°C by various combinations of emission
reduction from fossil fuel and industry, agriculture, forestry and other land use (AFOLU)
and implementation of negative emission strategies including contributions from
Bioenergy with Carbon Capture and Storage (BECCS) reducing the risk of global warming
in a long term and providing more time for adaptation. While the first projection (Fig 1.2.
P1) requires a drastic reduction in conventional fossil fuel usage to reduce annual CO,
emissions, all other scenarios (Fig. 1.2 P2-P4) show a less pronounced reduction in CO,
emissions from fossil fuels in the early years, but a more dominant role of Bioenergy with
Carbon Capture and Storage at a later stage. As, by the present date in 2024, even an
immediate shut down of all CO, emissions would still not be sufficient to reach the climate
goal of 1.5°C, direct removal of CO, from the atmosphere will be needed to achieve this
climate goal. This underlines the importance of research and development of possible
carbon dioxide removal CDR technologies.

Breakdown of contributions to global net CO2 emissions in four illustrative model pathways

Fossil fuel and industry AFOLU BECCS

Billion tonnes CO, per year (GtCO2/yr) Billion tonnes CO, per year (GtCO2/yr) Billion tonnes CO, per year (GtCO2/yr) Billion tonnes CO, per year (GtCO2/yr)
4(

P1 P2 0 P3 4 P4

2100

P1: Ascenario in which social,
business and technological innovations
result in lower energy demand up to
2050 while living standards rise,
especially in the global South. A
downsized energy system enables
rapid decarbonization of energy supply.
Afforestation is the only CDR option
considered; neither fossil fuels with CCS
nor BECCS are used.

P2: Ascenario with a broad focus on
sustainability including energy

P3: Amiddle-of-the-road scenario in
which societal as well as technological
follows historical

intensity, human
economic convergence and
international cooperation, as well as
shifts towards sustainable and healthy
consumption patterns, low-carbon
technology innovation, and
well-managed land systems with

limited societal acceptability for BECCS.

patterns. Emissions reductions are

mainly achieved by changing the wayin

which energy and products are
produced, and to a lesser degree by
reductions in demand.

P4: Aresource- and energy-intensive
scenario in which economic growth and
globalization lead to widespread
adoption of greenhouse-gas-intensive
lifestyles, including high demand for
transportation fuels and livestock
products. Emissions reductions are
mainly achieved through technological
means, making strong use of CDR
through the deployment of BECCS.

Figure 1.2 Different mitigation strategies can achieve the net emissions reductions that
would be required to follow a pathway that limits global warming to 1.5°C with no or
limited overshoot. All pathways use Carbon Dioxide Removal (CDR), but the amount
varies across pathways, as do the relative contributions of Bioenergy with Carbon Capture
and Storage (BECCS) and removals in the Agriculture, Forestry and Other Land Use
(AFOLU) sector. This has implications for emissions and several other pathway
characteristics. (IPCC 2018)



1.1.2 Importance of CO, removal to achieve 1.5/2°C climate
goal

The IPCC special report on Global Warming of 1.5°C projects potential CO, emission
scenarios during the continued usage of conventional fossil fuels. All projected mitigation
pathways that would prevent exceeding the 1.5°C warming include CDR (IPCC 2018). In
addition, CDR will be capable of counter balancing emissions that are technically difficult
to eliminate, such as those from agriculture or aviation (Royal Society and Royal Academy
of Engineering 2018). The IPCC defines carbon dioxide removal as “anthropogenic
activities that remove CO, from the atmosphere and store it durably in geological,
terrestrial, or ocean reservoirs, or in products” (IPCC 2021). Carbon dioxide removal does
not include any methods reducing emissions or removing CO, from a point source (e.g.
smokestack, coal power plant or cement factory) nor does it cover any natural occurring
processes that are not influenced by human activity.

Carbon dioxide removal covers a wide range of physical or chemical treatments to remove
carbon dioxide on a large scale from the atmosphere. Currently studied technologies
include direct air capture (DAC) (Nikulshina et al. 2012, Sanz-Perez et al. 2016, Jiang et
al. 2023, Zanatta et al. 2023), enhanced mineralization or Enhanced Rock Weathering
(ERW) (Pronost et al. 2011, Alfredsson et al. 2013, Power et al. 2014, Harrison et al. 2013,
Harrison et al. 2015, Hartmann et al. 2013, Zeyen et al. 2022, Haque et al., 2019, Taylor et
al., 2016), Bioenergy with carbon capture and storage (BECCS) (Hanssen et al. 2020, Pour
et al. 2018), ocean-based carbon dioxide removal technologies e.g., ocean fertilization or
ocean alkalinity enhancement (Hartmann et al. 2023), afforestation or reforestation (Fennel
et al. 2023, Siegel et al. 2021, Wu et al. 2023). In contrast to CDR, carbon capture and
storage (CCS) does not reduce the amount of carbon dioxide that is already in the
atmosphere. But it is often proposed to couple these techniques to provide long-term
storage solutions e.g. CO, injection into depleted gas reservoirs, saline aquifers or
mineralization. As of 2023, CDR is estimated to remove approximately 2 gigatons of CO,
annually, mostly by afforestation, reforestation and management of existing forests (UNEP
2023). This is equivalent to about 4 % of the annual greenhouse gas emissions worldwide,
emphasizing the need to further develop existing technologies. To achieve the 1.5°C
climate goal, CDR needs to reach at least 10 Gt CO, annually by 2050 (UNEP 2023).

1.1.3 Potential of Enhanced Rock Weathering and its limitations

Even though a large variety of CDR methods is known, different limitations exist
especially with respect to cost efficiency and logistical infrastructure (Fuss et al. 2018).
Contrary, enhanced weathering or Enhanced Rock Weathering ERW, which aims to spread
finely-ground silicate rocks on soils, usually agricultural land, has the potential to
overcome these shortcomings (Beerling et al. 2018, Campbell et al. 2022, Hartmann et al.
2013, Kantola et al. 2017, Strefler et al. 2018). Therefore, it is feasible to rapidly introduce
Enhanced Rock Weathering applications at large scale within decades (Beerling et al.
2020, Hartmann et al. 2013, Taylor et al. 2016). Enhanced Rock Weathering aims to
increase the carbon uptake of soils, while potentially also increasing nutrient levels,
improving crop yields and crop health (Haque et al. 2019, Hartmann et al. 2013). It
combines direct removal of atmospheric carbon dioxide with long-term storage through
conversion into aqueous alkalinity or carbonate minerals (Hartmann et al. 2013, Meysman
and Montserrat 2017, Minx et al. 2018, Strefler et al. 2018). While carbon dioxide uptake



through weathering of silicates is the main regulator of atmospheric CO, concentrations
over geological times scales (Gaillardet et al. 1999, Gislason et al. 2008, Gislason et al.
2009, White and Buss 2014), it is too slow to sufficiently counterbalance anthropogenic
CO, emissions. Therefore, it has been widely suggested to enhance the natural weathering
processes by spreading finely ground silicate materials as an alternative CDR strategy
(Beerling et al. 2018, Beerling et al. 2020, Goll et al. 2021, Renforth 2019).

Enhanced Rock Weathering is projected to provide a carbon dioxide drawdown of 0.5-4 Gt
CO, annually feasible on a global scale (Beerling et al. 2020, Fuss et al. 2018), while
avoiding competition for land used in food production and potentially mitigating ocean
acidification (Campbell et al. 2022, Hartmann et al. 2013, Meysman and Montserrat 2017,
Moosdorf et al. 2014, Taylor et al. 2015). Co-application of ERW with feedstock crops for
BECCS and biochar could further enhance the feasibility and carbon sequestration
potential of these methods (Amann and Hartmann 2019, Beerling et al. 2018). This can
further be enhanced by using ERW with soil organic carbon sequestration at large scale as
suggested in decarbonization scenarios for 2050 (Rockstrém et al. 2017). In addition, ERW
can potentially replace conventional fertilizers based on agriculture lime (Dietzen et al.
2018, Haque et al. 2019), which globally have a significant CO, footprint (IPCC 2014,
West and McBride 2005).

CDR strategies have two major challenges, one is the capability to upscale the investigated
processes in a cost-efficient way, while the second is to understand potential side effects.
While upscaling of ERW seems to be feasible, especially as application areas and
infrastructure exist and prices are comparable low (Renforth and Henderson 2017). The
major challenge is to understand the interactions between introduced ERW materials and
the natural system, including soil, water and biota, on short and long timescale. The main
effect of ERW amendments is the pH increase, which is favorable for most agricultural
applications (Edwards et al. 2017, Haque et al. 2019). While the wrong usage of materials
can potentially release toxic metals, polluting soils and surface waters. In addition, changes
in the hydrological soil properties and processes affecting the organically stored carbon
and biota can result in positive or negative outcomes. As ERW models and laboratory
experiments are not sufficient, and conducted field studies are rare and covering only very
limited time spans, natural analogues can potentially provide very important information
on the long-term effects of ERW and the interaction with the environment. Hence, the goal
of the here presented Ph.D. work is to provide insights into ERW by studying natural
processes in Iceland, gathering data on soil and surface waters and comparing these results
with data from ERW experiments and modelling predictions.

1.2 Iceland - Geology, Volcanic activity and
soils

Geologically, Iceland is a young volcanic island, mainly built from volcanic rocks with
basaltic composition. Additionally, intermediate and silicic volcanics and clastic sediments
of volcanic origin can be found (Saemundsson 1979). The oldest exposed rocks are about
15 Myr (McDougall et al. 1984). During the last glacial maximum, approximately 20,000
years before present, Iceland was fully covered with glaciers. Around 10,300 years before
present, the ice sheet retreated close to where the present coastline is located. About 8,000
years before present the Icelandic glaciers were of similar or less extent than nowadays



(Norddahl et al. 2008). As most of the soil was removed by the advancing ice sheet and
started to form after its retreat, all present Icelandic soils are assumed to be of Holocene
age, approximately 10,000 years, or younger (Arnalds 2008).

As Iceland is dominated by volcanic activity and has the most extensive sandy tephra areas
on earth, most soils are characterized by input of volcanic material. Andosols are the most
common soils in Iceland, they represent an intermediate soil type between organic-poor
Vitrisols, the soils of the desert areas, and the organic-rich Histosols that are found in
wetland areas (Arnalds 2008). Even though, Andosols are not common in Europe, they are
widespread in the active volcanic areas of the world (Arnalds 2008). Icelandic soils are
typically classified based on two main factors: the deposition of aeolian (volcanic) material
and drainage (Arnalds 2004). Aeolian material, which is transported by wind, originates
from the sandy desert areas located near active volcanic zones or from glaciofluvial
outwash plains. After the settlement in Iceland, around 1076 yr BP, the extent of barren
areas as a source of aeolian material significantly increased (Gisladottir et al. 2008,
Gisladottir et al. 2011, Dugmore et al. 2009).

The basaltic tephra material and the steady aeolian input to the soil surface, together with
numerous freeze-thaw cycles create distinct soil properties (Arnalds 2008). The observed
soils show a variety of features stemming from the influence of andic (volcanic soil
properties) and histic (organic) properties.

Andosols are common for Icelandic wetland areas that are covered by vegetation and that
receive a substantial aeolian input, which lowers the relative organic content and increases
drainage. Contrary, Histosols are organic-rich soils of wetlands with limited aeolian input.
Following increasing drainage conditions and decreasing organic carbon content the soil
types can be ranked in the following order: Histosols (>20 % C), Histic Andosols (12—
20 % C), Gleyic Andosols (>1 to <12 % C, poorly drained), and Brown Andosols (>1 to
<12% C, freely drained) and Vitrisols with <1 % organic carbon (Arnalds 2008).
Coincidentally, this order reflects the decreasing distance from volcanic zones and the
input of aeolian material.

The transition between these soil types is fluent, and changes in drainage or aeolian input
can lead to a change of the soil type. It is postulated that in absence of the volcanic
influences, Icelandic wetland soils would largely be organic Histosols, typical of the arctic
environments (Arnalds 2008 and 2015). Thus, deploying enhanced weathering methods
that add fine-grained basaltic material to organic-rich Histosols should result in a transition
towards a more mineral-rich soil, e.g., Andosols as found in the described study area.

1.3 Field site

The field site is located in the lowlands of South Iceland, 12 km NW from the town of
Hella at the headwaters of the river Raudelaekur (“red creek”). During the last glaciation
(10,000 years before present) the southern lowlands were covered with ice. The Holocene
glacial retreat marked the onset of soil formation on the basaltic bedrock. Today, the
lowlands are quite fertile and widely used for agriculture (Arnalds 2004, Arnalds 2015).
By nature, the soils are commonly quite water-rich, limiting the use for agriculture and
heavy machinery. Hence, large parts of the Icelandic soils were drained by excavating



ditches. The peak of ditch construction was reached in the 1960’s, due to state
compensation, leading to a total of 35,000 km of drainage ditches in 2010, affecting about
70 % of the wetland areas (Arnalds et al. 2016). As agriculture declined, large, drained
areas are left unused, but only few ditches were filled up due to the extra cost. The area of
the field site is confined by drainage ditches about 50-150 m away from the soil profile. It
has not been used for agricultural purposes within the last 30 years. Therefore, no
fertilizers are expected to be present in the soil or soil waters, making it a good natural
analogue.

Soil thickness in this area can reach multiple meters, which is quite significant compared to
soil heights observed elsewhere in Iceland. The studied soil profile was accessible to a
depth of ~2.2 m with the oldest tephra layers dating back to 3300 years before present.

The field site is located in one of the dustiest places in Iceland. It is estimated to receive at
least somewhere between 500 to 800 g of mostly basaltic dust annually (Fig. 1.3). The dust
originates from the nearby volcanic systems, including material from the volcanoes Hekla,
Katla and Grimsvétn (see Chapter 2 Paper ). Fine-grained dust is transported constantly
from the highlands and the erosion areas of the volcanoes as well as from the glacier
outwash plains. In addition, larger size fractions can be transported during heavy
windstorms. Infrequent volcanic eruptions provide an additional source of basaltic material
that form by deposition larger ash layers also called “tephra”. These tephra layers provide
isochronous makers tephrocorrelating different soil profiles and providing age estimates in
the soil profile.
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Figure 1.3 Map of dust deposition rates in Iceland, location of the study site marked with
the black dot. (modified from Arnalds et al., 2023).



1.4 General overview of the sampling methods

To understand the occurring processes at the field site, various samples were collected
including soil water samples, surface water samples and solid samples. Soil water down to
a depth of ~2.6 m, was sampled using suction cup lysimeters (see chapter 2 and 3) and
extracted using large (60 ml) syringes connected via Teflon tubes. Additionally, shallower
samples along a vertical outcrop wall were taken using Rhizon samples (see chapter 4) that
are extracting soil water with low under-pressure simulating the root system of plants. As
the waters are very reactive, various measurements were done in closed containers directly
on site or after stabilizing the samples, e.g. by acidification. Following the water flow from
the outcrop wall and from small springs, along puddles to a nearby drainage channel and
finally all the way down to the ocean, surface water samples were collected (Appendix 5).
While soil water samples were challenging to preserve, the nearby surface water sources
were very dependent on seasonal variations, frozen during winter and dried up during
summer when no rain was present. In addition to the aforementioned water samples, solid
samples from the same soil horizons or surface puddles were collected to provide insight
into the mineralogy and chemical composition of accompanying solids (see chapter 4). All
obtained data is presented in the following chapters, either as already published
manuscripts or as work in preparation for publication.

1.5 Summary of scientific contributions

The effects of climate change, including increasing global temperatures that are ubiquitous
present require joint efforts to secure the future of society. Following the directive of the
Paris agreement and the Intergovernmental Panel on Climate Change to limit global
warming to less than 2°C, global CO, emissions have to be limited to a minimum and
additionally CO; has to be actively removed from the atmosphere within the next decades.
Therefore, carbon dioxide removal technologies have to be further developed and brought
to an economical feasible level. Enhanced Rock Weathering is suggested as one of the
most promising techniques to remove CO, from the atmosphere on a large scale. It is based
on the natural weathering of rocks like basalts, where naturally occurring chemical
reactions slowly lead to the uptake of CO, and the formation of dissolved carbonate or
carbonated rocks. But a deep understanding of the occurring processes and involved
reactions is required before it can be used on a large scale at a much faster rate. As these
natural processes are very slow adequate man-made experiments at small scale, e.g. in the
laboratory or via modelling, do not provide sufficient insight. Therefore, information
gained from natural analogues is very important.

The main part of this Ph.D. thesis focuses on understanding such a natural system, where a
comparable fast weathering and soil formation occurs. A large data set comprised of soil
water and mineral data, including aqueous soil and surface water samples and solid rock
and soil samples, was collected over the course of this work. This data is used together
with geochemical modelling to estimate the potential CO, uptake of this system and is then
compared to natural environments elsewhere and proposed ERW projects and laboratory
and small-scale field studies. The results of this Ph.D. study are presented in a set of



scientific articles that are partially peer reviewed and partially still in preparation for
publication.

The first paper presented in chapter 2, “Direct evidence of CO, drawdown through
enhanced weathering in soils” (Linke et al. 2024a, Geochemical Perspective Letters 30, 7-
12), firstly describes the field site in South Iceland and the dominating processes that lead
to the formation of the soil waters, namely basaltic dust dissolution, organic decay and
precipitation of secondary minerals. The paper provides information about the soil water
chemistry, mineral saturation states as well as the soil profile and further provides
estimates on the alkalinity generation that is coupled to CO, uptake. The maximum carbon
drawdown potential of the study site was quantified and compared to other natural sites
without basaltic dust and to data on ERW. This work shows that basaltic dust is present
throughout the soil profile and dissolves continuously, which can be recreated via simple
geochemical models. Nevertheless, the natural rock dissolution seems to be much slower
than estimates by laboratory experiments suggest, which needs to be taken into account for
ERW applications. On the other side, potentially released toxic metals are suspected to be
scavenged by secondary forming minerals, thus decreasing their mobility within the
subsurface and limiting their negative impact on the environment.

The second paper, “The geochemical evolution of basalt Enhanced Rock Weathering
systems quantified from a natural analogue” (Linke et al. 2024b, Geochimica et
Cosmochimica Acta 370, 66-77) is looking at Iceland as a long-term ERW analogue,
where the findings and implications of this doctoral study can have potential important
implications on future ERW applications and show limitations. The paper investigates the
chemical composition and mineral transformation in the soil and recreates their evolution
by geochemical modelling. It details the estimate of the CO, drawdown potential of the
soil system, predicting that approximately 0.17 t C per hectare are removed annually from
the atmosphere by alkalinity generation. The alkalinity generation in the presence of
basaltic dust is much larger (at least ten-times) than in equivalent dust-free soils elsewhere,
but changes in the organic carbon stock of the soil can negate this positive effect. As the
studied system has stabilized over several thousands of years, abrupt changes of the soil
chemistry by amendment of basaltic rock powder to comparable dust-free soils can cause
unknown, possibly negative results, potentially releasing CO,. Additionally, the upscaling
of this slow process might be challenging due to the large land requirements.

While the previous sections focused mainly on the dissolution and the processes occurring
inside the soil, the third paper with the preliminary title “Enhanced basaltic rock
weathering: oxidative mineral transformation” (Linke et al. 2024¢ — in preparation), covers
mineral transformations that are occurring in the transition zones towards the atmosphere,
e.g. in drainage channels. This paper covers critical points regarding the security of the
engineered ERW systems with respect to environmental changes, including transitions in
the redox environment, mineral transformations and potential release of toxic metals. This
section provides proof of occurring mineral transformations, including results from X-ray
diffractometry and synchrotron-based analysis, as well as for the formation of siderite,
which is storing CO, in solid form. Notably, the formation of ferrihydrite in the oxic
environment can scavenge potentially liberated toxic metals.



A fourth paper, “Stability of iron minerals in Icelandic peat areas and transport of heavy
metals and nutrients across oxidation and salinity gradients — a modelling approach”
(Linke et al. 2018, Energy Procedia 146, 30-37), provides insight into the stability of iron
mineral phases using geochemical modelling. Predictions of the dominating iron phases
and their effect on potential heavy metals when transported towards the ocean are included.
Consequently, the most common metastable iron phase is ferrihydrite, which is in
agreement with field observations (see chapter 2-4). Ferrihydrite's large reactive surface
area has the capacity to adsorb large amounts of heavy metals and phosphate. This work
provides first information on the fate of heavy metals and phosphate in the surface waters
and estimates the mixing ratios with seawater for their release to the ocean.

Additionally to paper four, a large data set of surface water samples, from the source area
along the river course to the ocean, was collected over the study period, including samples
of associated mineral phases. The data is presented in the supplementary material
(Appendix F: Unpublished Material) but has not yet been included in a scientific
publication. This data provides information on the fluxes of major and trace elements,
including measurements of alkalinity, redox potential and dissolved organic carbon.

The last chapter of the thesis includes a preliminary scientific manuscript on the CO,
fluxes from Icelandic reservoirs and rivers, titled “Water-air-CO,-flux changes after
damming rivers loaded with suspended basaltic particles” (Linke et al. 2024d). This work
evolved as a side project with Landsvirkjun and is mainly based on a large set of data on
river and reservoir compositions that has been collected over the past decades provided by
the co-authors and Landsvirkjun. In the following, the existing water analysis were used
together with meteorological data on temperature, windspeed and ice cover to estimate the
potential CO, fluxes from and into one of Iceland’s major hydropower reservoirs and
associated rivers. The results show that the glacier melt water streaming into the reservoir
is highly undersaturated with respect to atmospheric CO, concentrations, leading to a total
drawdown of ~5000t CO; annually in the Halslon reservoir. The change of the river
course, as a result of damming, also lowered the CO, emissions from the downstream
Lagarfljét reservoir. The work shows that the fluxes are mainly affected by wind speed and
ice cover, and changes of these parameters can result in large changes of the fluxes.
Overall, this study shows that water rock interactions underneath the glaciers can lead to
significant CO, uptake similar to the Enhanced Rock Weathering in soils as described in
the previous chapters.

Additionally to the data provided in the previous chapters, an extensive collection of data
and additional information, including description of methods, calculations and definitions,
is included in the supplementary material accompanying each described article.

Overall, this Ph.D. study and the associated scientific manuscripts show that natural
weathering of basaltic material in Icelandic wetland soils lead to a clear increase of
alkalinity in the soil waters compared to non-basaltic soil systems. Additionally, similar
alkalinity generation is observed in glacier melt water that interacted with basaltic material.
Nevertheless, the generated alkalinity is mainly decreased by iron oxidation, when in
contact with the atmosphere, leading to a decrease of the carbon dioxide removal potential.
Simultaneously, the forming iron phases are capable of scavenging and immobilizing
potentially released toxic trace metals. Altogether, the study proves the applicability of
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Enhanced Rock Weathering, but the potential carbon drawdown effect might be notable
lower compared to proposed values in the literature due to various limitations shown in the
presented papers. Additionally, the organic carbon stock of the soils is much larger than the
annual alkalinity generation. Changes affecting this carbon pool can lead to adverse
effects, resulting in a higher release of CO; than negated by the alkalinity production. This
work provides a first insight into the potential of Enhanced Rock Weathering based on
natural analogues. Nonetheless, the potential CO, release and the complexity of the studied
soil system issues a warning that a deeper understanding is required before an employment
of ERW on large scale should be attempted.
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ARTICLE INFO ABSTRACT

Associate editor: Alexis Navarre-Sitchler Substantial quantities of fine-grained basaltic dust have fallen on South Iceland soils over at least the past 3300

years, making this region an ideal natural analogue to define the long-term consequences of current Enhanced

Keywords: Rock Weathering efforts. A relatively pristine South Iceland Gleyic/Histic Andosol, 3 m in height, receiving
CO; storage approximately 1250 mm of rainfall annually was selected for this study. This soil receives an estimated 500-800
Alkalinity production 2 -1

gm “y ° of basaltic dust. The soil waters in this system were regularly sampled as a function of depth from May
to November 2018. The fluid pH, alkalinity and the concentrations of most major elements increased with depth
as the fluids became more reduced. In contrast, whereas numerous toxic trace metals are initially released to the
fluid by the dissolution of the basalt near the surface they are scavenged at depth likely due to their uptake by
secondary minerals. Equilibrium reaction path modelling suggests that 1) the added airborne basaltic dust dis-
solves throughout the soil column and 2) in total 0.26 cm?® of basalt dust dissolves per kg water in this soil-water
system. Mass balance calculations indicate that the annual mass of basalt dissolved is less than 60 % of that
added to the system, such that the mass of basaltic material in the soil column likely increases continuously over
time. Basalt dissolution is maintained throughout the soil by the precipitation of Al-Si-minerals such as allo-
phane, and organic anion ligands released from organic decay. These processes limit aqueous AI** activity and
keep the soil waters undersaturated with respect to primary basaltic minerals and glass. The soil water pH is ~6
and has a higher alkalinity than that of both Icelandic surface waters and the ocean. In contrast, if no basalt was
present, the pH of the soil solutions would be 4.4, with zero alkalinity, illustrating the role of added basalt in
drawing CO; out of the atmosphere.

Basalt weathering
Heavy-metal mobility

Soil degassing

Enhanced rock weathering

1. Introduction

Enhanced Rock Weathering (ERW) is currently being explored as a
method to remove CO; directly from the atmosphere to limit future
global warming (e.g., Schuiling and Krijgsman, 2006; Hartmann et al.,
2013; Moosdorf et al., 2014; Edwards et al., 2017; Beerling et al., 2018;
Dietzen et al., 2018, IPCC, 2018; Haque et al., 2021; Paulo et al., 2021;
Kantzas et al., 2022; Baek et al., 2023; Deng et al., 2023; Reershemius
et al., 2023). This process involves amending soils with crushed fast-
reacting Ca-Mg-silicate rocks and minerals such as basalt (Haque
et al., 2019a, 2020; Beerling et al., 2020). To date these studies have
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https://doi.org/10.1016/j.gca.2024.02.005
Received 19 September 2023; Accepted 8 February 2024
Available online 16 February 2024

been short-term, lasting for no more than 5 years (Haque et al., 2019a;
Goll et al.,, 2021). Consequently, the long-term consequences of
enhanced weathering efforts are poorly constrained. The present study
was motivated to illuminate the longer-term consequences of Enhanced
Rock Weathering efforts through a detailed characterization of the
geochemistry of an analogue field site located in South Iceland.

The natural analogue considered in the present study in South Ice-
land is a Gleyic/Histic Andosol (Arnalds, 2015). Gleyic and Histic
Andosols are soil classes and correspond to Aquands in Soil Taxonomy.
Andosols are mineral soils derived from volcanic sediments and cover
about 2 % of the Earth’s terrestrial surface (Arnalds, 2015). Andosols
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store about 5 % of the terrestrial carbon (Eswaran et al., 1993). The
Andosols of South Iceland receive frequent basaltic dust fallout; the mass
of basaltic dust added to these soils is estimated to be 500 to 800 g
m 2 y’l (Arnalds, 2010; Arnalds et al., 2014, 2016). In addition, less
frequent and larger grained airborne volcanic material is transported
during explosive volcanic eruptions in the form of glassy volcanic ash
fallout referred to as tephra. The tephra forms distinct horizons that can
be used to date the soil as a function of depth. In total it is estimated that
up to 800 g m~2 y~! of natural basaltic dust has been added to the soils
in South Iceland for the past 3300 years. In contrast, enhanced rock
weathering experiments to date have added up to 40 kg m~2 of crushed
Ca-Mg-silicate rocks to agricultural soils annually (Gillman et al., 2002;
Cho et al., 2010; ten Berge et al., 2012; Amann et al., 2018; Haque et al.,
2019b). Due to the long regular addition of natural basaltic dust to South
Icelandic soils, these soils likely provide an insightful natural analogue
to illuminate the long-term effect of adding ground basalt to soils as part
of enhanced rock weathering efforts.

This is the first manuscript exploring the long-term efficiency and
consequences of enhanced rock weathering efforts through the study of
a South Iceland Gleyic/Histic Andosol. Future manuscripts will present
an estimate of the rate of alkalinity generation and carbon drawdown
due to the addition of basaltic dust to this Gleyic/Histic Andosol. In this
article we report the composition of fluids and solids in our studied
South Iceland soil as a function of depth and time over two field seasons.
These observations were used together with geochemical modelling
calculations to 1) quantify the saturation state of the primary and sec-
ondary mineral phases with respect to the soil solutions, 2) to determine
the processes controlling the mobility of heavy metals, and 3) assess the
rate at which basalt dissolved in the soils.

2. Methods
2.1. Field site description

The field site chosen for this study is located approximately 7 km
north from the town of Hella, at the headwaters of the Raudalakur river
in South Iceland (Fig. 1A). This site was selected as an analog to un-
derstand the long-term behavior and consequences of current ERW ef-
forts. There are a number of reasons why these soils provide an excellent
natural analogue for ERW systems. First, due to annual dust fallout,
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these soils have received over 16,500 t ha™" of basaltic dust over the past
3300 years. Second, the specific surface area of natural basaltic dust is
likely substantially higher than that added to the soils in current ERW
experiments due to its finer grain size. The grain size of the crushed
rocks used in ERW-applications, if reported, is commonly less than 150
um (Gillman et al., 2002; Haque et al., 2019b). In contrast, the average
size of basaltic Icelandic dust ranges from 10 to 62 pm (Arnalds et al.,
2014; Liu et al., 2014; Baldo et al., 2020).

The area upstream of the field site has not been used for agriculture
nor fertilized during the past several decades and is therefore considered
to be in a natural state. Some drainage channels have been cut in the
region, the closest located around 150 m from the study site. The soil at
this site is organic-rich and receives substantial and regular input of
aeolian basaltic material. Tephra layers from past volcanic eruptions are
visible in an outcrop wall located about 10 m downstream from the
suction cup lysimeters used in this study (see Fig. 1B). These tephra
layers can be used to date the soil profile.

2.2. Soil water, soil sampling and field measurements

Soil water samples were collected using suction cup lysimeters pro-
vided by Prenart Denmark. These lysimeters were installed 10 m up-
stream from a southwest facing outcrop wall and placed at depths of 76,
121, 173 and 260 cm from the surface. Collected fluid samples were
analyzed for pH, temperature, dissolved HyS concentration and redox
potential in the field. The dissolved HS content was measured by pre-
cipitation titration immediately after sampling with an uncertainty of
+0.7 pmol kg‘,’vémr, using mercury acetate solution Hg(CH3COO)2 as
described by Arnorsson (2000). The redox potentials were measured
using an Ag/AgCl micro redox electrode. Measured values were con-
verted to equivalent potentials for a standard hydrogen electrode (Egyg)
using a value of +199 mV for the reference potential E° of the Ag/AgCl
electrode (Sawyer et al., 1995) via the Nernst equation. Additional fluid
samples were filtered through 0.2 uym cellulose acetate in-line filters for
major element and alkalinity measurements in the laboratory. For major
element analysis, 10 ml of soil water collected from each level was
transferred into acid washed polypropylene bottles and acidified to 0.5
% HNOj3 using concentrated Merck suprapure 65 % HNOs. Samples for
iron speciation determination were collected into acid washed poly-
propylene bottles and acidified to 0.5 % HCl using Merck suprapure HCL.

Suction cup lysimeter

Fig. 1. A: Aerial photo of the studied field site and sampling locations, the red arrow shows the location of suction cup lysimeters and the orange arrow shows the
location of the natural outcrop where solid samples were collected. Straight lineation’s on the photo are man-made drainage channels (aerial photo published with
permission from Loftmyndir ehf). B: Schematic NE-SW cross section of the studied outcrop and the position of suction cup lysimeters (shown in red). The locations of
soil core samples collected from horizons at 71-96 cm and 120 cm depths are shown as orange dots (labeled M1, M2 and M3). Black horizontal lines represent tephra
layers, and the blue curve illustrates the estimated position of the groundwater table.
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Samples for dissolved organic carbon (DOC) measurement were
collected in 30 ml acid washed polycarbonate bottles and acidified with
0.5 M Merck suprapure HCl to 1:30 ratio. Alkalinity titrations were
performed after returning to the laboratory by titrating fluid samples,
while constant stirring to pH 3.3 using 0.1 M HCL. The alkalinity was
then calculated via the Gran method (Gran, 1952) with an uncertainty of
+5 % or less. A detailed description of the analysis methods is provided
in section 2.3.

Solid soil samples were collected in May 2017 from the cleared face
of the outcrop wall, located 10 m from the suction cup lysimeters (see
Fig. 1B). Soil cores were obtained by pushing 7.5 cm diameter, 30 cm
long PVC tubes horizontally into the outcrop, which were then sealed to
prevent oxidation. The sample tubes were subsequently opened in the
laboratory, inside a glove box under an anoxic atmosphere consisting of
97 % N3 and 3 % Hp. Palladium catalysts were present in the glove box to
remove traces of O and minimize sample oxidation. Material from the
inner parts of the cores was prepared for powder X-ray diffraction
analysis (XRD) in a Bruker dome sample holder. The prepared samples
were analyzed immediately after their preparation using a Bruker D8
Advance Plus X-ray diffractometer with 20 geometry equipped with a
copper X-ray source (A = 0.15406 nm) and a Ni-filter. The samples were
measured over the 5-70° 20 range with a step size of 0.02° 20 and a
counting time of 1.2 s per step. Additionally, some of the sample ma-
terial was dried in the glove box and then analyzed by powder X-ray
diffraction as described above.

Pair distribution function PDF analysis was performed on the soil
samples to further characterize the structure of amorphous or crypto-
crystalline phases. The samples were first dried and then loaded into
Cole-Parmer polyimide capillaries. Measurements were performed as
described by Dideriksen et al. (2015) at Beam line 11-ID-B of the
Advanced Photon Source, Argonne National Laboratory using X-rays
with an energy of 58.6 keV. To calibrate and convert data from 2D to 1D
we used the program fit2D (Hammersley et al., 1996; Hammersley,
1997). Further data processing was performed using PDFgetX2 (Qiu
etal., 2004). Pair distribution functions, G(r), were generated by Fourier
transformation using a Qmax of 24 A~! and are provided together with
the X-ray scattering data I(Q). The PDFgetX2 data treatment requires
definition of the chemical composition of the samples. To obtain these
compositions, preliminary SEM/EDX analyses were performed. These
showed a pronounced Fe and O signal with less pronounced Si and C
signals. Based on these results, it was assumed that the soil samples had a
composition consistent with:

Si0, + x Fe(OH)3 + y H,O + z CH,0 )

The value of x in Equation (1) was estimated from the relative peak
intensities at ~1.6 ;\, corresponding to Si—O, and at ~2 A for Fe(II)-O
or ~2.1 A for Fe(I)-O, taking into account the difference in electron
density and expected coordination number of SiO4 and FeOg. The values
of y and z in equation (1) were subsequently defined by trial and error to
avoid high amplitude oscillations in the G(r) function at low r values.
Tests of the procedure on the same samples yielded highly similar PDF
fits at r >1 A with values of x varying within +30 %.

2.3. Analytical Techniques

Major element concentrations were analyzed in duplicate using a
Ciros Vision, Spectro Inductively Coupled Plasma Optical Emission
Spectrometer (ICP-OES). The same subsamples were used to measure the
trace element compositions of fluid samples using a Thermo iCAP Qc
Inductive coupled plasma mass spectrometer (ICP-MS). Prior to the
analysis the samples were diluted with milliQ water and spiked with
internal Rh, Ir, and Ga standards to correct measurements for detector
drift. For both ICP-OES and ICP-MS measurements, the uncertainties
were below +5 % for all elements. Iron redox species were determined
using a Dionex 3000 ion chromatography system using the method
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described by Kaasalainen et al., (2016). DOC concentrations were
determined by size exclusion chromatography using a Liquid Chroma-
tography — Organic Carbon Detection system (LC-OCD) following the
method of Huber et al. (2011).The limit of quantification (LOQ) for each
element is presented in S1.

2.4. Geochemical Modelling

In-situ aqueous speciation, charge balance, mineral saturation states
and equilibrium reaction paths were modelled using the PHREEQC
interactive software version 3.4.0 (Parkhurst and Appelo, 1999). Cal-
culations were performed using the minteq.v4.dat (Allison et al., 1991;
U.S. Environmental Protection Agency, 1998) database after adding to it
the thermodynamic data for minerals, aqueous species and glasses listed
in electronic supplement S2.

Based on these calculations, predominance diagrams were plotted
using PhreePlot (Kinniburgh and Cooper, 2004) as described in Linke
and Gislason (2018). Hematite, magnetite, goethite, were not allowed to
form making ferrihydrite and siderite the most stable Fe phases in the
modelled system that form as a result of weathering process at the sur-
face. These two minerals have been identified in the studied field site.
Note that Baldo et al. (2020) identified hematite, goethite, and
magnetite in Icelandic dust. Neither these minerals nor maghemite and
lepidocrocite were observed to form in our field area nor the field ob-
servations reported by Arnalds (2004). Geochemical modelling was also
used to assess the saturation state of the soil solutions with respect to
atmospheric COy and O, selected minerals and glasses.

2.4.1. Reaction path modelling

Equilibrium reaction path modelling was performed in the present
study using PHREEQC. The initial fluid compositions entering the soil
used in the modelling was set to the average composition of South Ice-
land rainwater as provided in Table S3 (Eiriksdottir et al., 2014). The
composition of the dissolving basalt was based on the chemical analysis
of volcanic rocks located close to the study area (Hardardottir, 2020)
comprising the most likely source for the dust added into the studied
soils (Arnalds et al., 2014, 2016). The composition of this basalt is
provided in Table S2 and its metal oxide composition is provided in
Table 1. The dissolution reaction of this ‘On-Site’ basalt can be written
as:

SiAlg 335Feq.265Mg0.165Ca0.22Nag 12K 01903222 + 1.104H"+2.118H,0 =
H,SiO4 + 0.335A1(0H); + 0.265Fe?* + 0.165 Mg>*+0.22Ca>" + 0.12Na™
+0.019 K )

Equilibrium reaction path models were used to calculate the fluid
composition and mass of minerals precipitating from the fluid phase as
this basalt dissolves into the fluid. Based on field observations, only the
upper 70 cm of the soil column is assumed to be oxic with the uppermost
part in equilibrium with atmospheric oxygen. No oxygen source is pre-
sent deeper in the soil. The initial rainwater is set to be in equilibrium
with atmospheric CO2 and oxygen. As Fe?* dominates the oxidation
state of iron in the ‘On-Site’ basalt, all iron released from this basalt was
assumed to be in this oxidation state. During the simulations, Oy is

Table 1

Metal oxide composition of the ‘On-Site’ basalt
used for data interpretation in this study. Note
for simplicity all iron is shown as Fe?*

metal oxide Mass-%
SiOy 50.15
Al,03 14.26
FeO 15.89
MgO 5.55
CaO 10.3
NayO 3.1
K0 0.75
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continuously removed from the system as Fe?" is released from the
dissolving basalt and oxidized. The partial pressure of CO3 in the soil is
set to 0.05 bar, which is the average of that measured in the soil water
samples. The effect of the presence of DOC in the model calculations was
taken into account by assuming that all DOC was present as aqueous
oxalate. This choice was made because oxalate is representative of
aqueous organic species and because of the availability of equilibrium
constants for aqueous metal-oxalic complexes (Pettit and Powell, 2008).

The minerals allowed to precipitate in the reaction path models were
restricted to include only those observed in andosols, namely ferrihy-
drite and allophane. In addition, a silica phase with thermodynamic
properties of moganite was included. Under reduced conditions allo-
phane, moganite, siderite and mackinawite were allowed to precipitate
at local equilibrium if these phases became supersaturated. The mass of
basalt dissolved was tuned to best fit the Ca and Mg concentration
observed in the field. The model, however, does not include provision
for bacterial activity or local compositional, physical, or mineralogical
heterogeneities.

3. Results
3.1. Mineral and chemical composition of the collected solids

X-Ray diffraction (XRD) analysis and Pair Distribution Function
(PDF) analysis were conducted to determine the mineralogical compo-
sition of the soil samples. The XRD pattern of the soil, as shown in
Fig. 2A, exhibits a strong background at 10° to 20° 20 caused by the
dome sample holder used to protect the samples from oxidation and at
30° and 60° 26 by the presence of amorphous and/or poorly crystalline
material that cannot be identified by XRD. Additional minor amounts of
crystalline feldspar and pyroxene are present. Material collected from a
soil horizon between 71 and 96 cm in depth (Fig. 1B) contains crystalline
siderite (Fig. 2B). No difference in the mineral composition or relative
peak intensity was observed between the wet samples measured in the
dome sample holders and corresponding material dried in the glove box.
Red material collected from the same horizon as the siderite does not
show distinct XRD peaks, but Pair Distribution Function analysis in-
dicates that it contains a short range ordered ferrihydrite, indicated by
peaks at e.g., 2.0 A for Fe-O pairs, at 3.1 A for edge sharing Fe-Fe pairs
and at 3.4 A for corner sharing Fe-Fe pairs (Fig. 2C and Fig. 2D).
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3.2. Fluid Compositions

Soil water samples were analyzed for their major and trace metal
composition as well as for redox sensitive elements and dissolved
organic and inorganic carbon. All measured compositions are provided
in Tables S1 and S4. These compositions were recalculated to the in-situ
soil temperature of 7 °C, the average soil temperature at 76-260 cm
depth during the summer months (Petersen and Berber, 2018), using
PHREEQC (Parkhurst and Appelo, 1999). These recalculated fluid
compositions are shown as a function of depth in Figs. 3 and 4.

The redox potential (Ehgyg), the logarithmic partial pressure of the
COo, and the dissolved inorganic carbon (DIC) concentrations of the soil
water samples are shown in Fig. 3. For comparison, the redox potential
was also calculated based on measured concentrations of Fe?*/Fe>* and
of S03~/HS™ using PHREEQC. These values are compared to the Eh
measured in the field in Fig. S5 in the Electronic Supplement. In general,
the closer the samples are to the atmosphere, the more oxic the soil
water samples.

The redox potential of the soil water samples, Ehgyg, decreases with
increasing depth and pH. There are significant variations in pH, Ehgyg
and pCO; with time at each soil depth. Although no clear trend for
temporal pH evolution is evident, the measured Eh increased in all soil
water samples during October and November likely due to changes in
bacterial activity. The alkalinity of the fluid samples increased during
the summer months, peaking in mid-September, it declined thereafter
(see Table S4).

The concentrations of DIC and Si are relatively high compared to
other constituents, reflecting basalt dissolution and organic matter
decomposition. Average DIC concentration increases with increasing
depth but varies seasonally (see Fig. 3 and Fig. S1). The highest DIC
concentration was found in samples collected during September, except
for the deepest samples collected at 260 cm depth, where this concen-
tration peaked later in the fall. DOC concentrations increased with time
during the summer and fall and have the lowest concentrations at the
greatest depths. The DOC concentrations are generally 7-21 times lower
than the DIC concentrations. The variations in DIC and DOC over time
are likely caused by the response of bacterial activity and organic decay
to seasonal changes in temperature and environmental conditions.
There are significant temporal variations in measured Si concentrations
at depths of 76 cm and 121 cm. Deeper in the soil, the Si concentrations
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Fig. 2. A: Representative Powder X-ray Diffraction (XRD) pattern of a soil sample collected from ~120 cm in depth. The small peaks indicated by the * and +symbols
are consistent with feldspar and pyroxene, the major crystalline phases in basalt. The high background is caused by the dome sample holder and the presence of
amorphous and nanocrystalline material. B: Powder X-ray diffraction pattern of a dried nodule identified as siderite collected from ~80 cm in depth. All major peaks
correspond to the siderite reference pattern; the siderite peaks shown with relative intensity as blue bars were reported by Effenberger et al. (1981). The additional
peak indicated with a * at 27.9° 2 0 corresponds to the main peak of Ca-rich feldspar. C: Pair Distribution function (G(r)) in real space of red solid material collected
from the outcrop wall at ~80 cm depth. This is identified as a ferrihydrite-rich soil. The absence of larger peaks at >15 A indicates the short order of the mineral
phase. D: X-ray scattering data, I(Q), of red material collected from the outcrop wall at ~80 cm in depth. Also shown is the I(Q) of a 2-line ferrihydrite standard. The
natural sample with minor impurities resembles closely the ferrihydrite standard material.
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size except for Ca.

vary less over time (Fig. 4).

The concentrations of all other elements are lower than those of Si.
The Al concentrations, as shown in Fig. 4, range from below the 0.28
umol kg;v;te, quantification limit to 3 umol kg‘;el,tep This is ~200 times
lower than the corresponding measured Si concentrations. The con-
centrations of Mg, Ca, Fe, Mn, Sr, and Ti generally increase with depth
and their concentrations suggest the close to stoichiometric dissolution
of the basalt in the soil. Only 10 to 20 % of the total dissolved iron is
present as Fe>*. At 76 cm depth, under oxidizing conditions, the con-
centrations of both Fe?* and Fe®' are close to the detection limit.
Manganese concentrations exhibit the same trend as iron, being only
present as reduced Mn?" deeper in the soil, where anoxic conditions are
present. The concentrations of Cl, Na and K do not correlate with depth,
as these concentrations are largely controlled by their concentrations in
the influent rainwater.

The soil water H,S concentration increases with depth, while total S
decreases (Fig. 5). The concentrations of the trace metals Cd, Co, Cu, Mo,

70

Ni, and Pb also decrease with depth (see Fig. 5 and Table S1). The
similarity of these behaviors suggests consumption of these trace metals
by secondary sulfide mineral precipitation (e.g., Charriau et al., 2011;
Smieja-Krol et al., 2015) The concentrations of other metals including As
and Cd are close or below the detection limit in all collected water
samples and Pb is only above the limit of quantification in one shallow
soil water sample.

An Eh-pH diagram illustrating the stability of iron phases at the
conditions of our field site is shown in Fig. 6. The pH of the soil water
samples increases continuously with depth as the samples become more
anoxic. At shallow levels the oxidized Fe>* species are dominant, which
lead to a supersaturation of the fluid phase with respect to ferrihydrite at
these depths. Deeper in the soil Fe?* dominates. The dissolved iron
concentrations increase with depth and up to ~500 umol kgv’v;m. Asa
consequence, the water approaches equilibrium with respect to siderite.
The sulfur concentrations of the sampled soil waters at depth greater
than 121 c¢m did not exceed 80 pmol kg;v}ner. No sulfide minerals are
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Fig. 5. Sulfur and trace metal concentrations in soil water samples versus depth. Note the different units and scales on the horizontal axes. Black dashed lines
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Fig. 6. Eh-pH diagram computed with PhreePlot illustrating the predominance
fields of iron phases as at a temperature of 7 °C. The square symbols show the
composition of collected soil water samples. The shading of the symbols in-
dicates the depth of the water sample; the darker the shading, the deeper the
sample. The black lines show the predominance field for a total Fe concentra-
tion of 500 umol and a log(pCO,/bar) of —1.0. The dashed black lines represent
the ferrihydrite predominance field at the total Fe concentrations indicated in
the figure. The dashed red lines illustrate the siderite predominance field at the
log(pCO,) values indicated by the red numbers in the plot at a Fe concentration
of 500 pmol. The light orange field shows the extent of the predominance field
of the Fe(OH)3 species at 10 and 1 umol Fe,,, concentrations. The average pH-
Eh of rainwater, shown as a blue field labeled ‘rain’ was taken from Eiriksdottir
et al. (2014).
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found to be stable at these low sulfur concentrations and the pH-Eh of
studied soil system.

3.3. Geochemical modelling

3.3.1. Mineral saturation states in the soil water samples

Calculated saturation indices of the sampled soil waters with respect
to the ‘On-Site’ basaltic glass and common primary and secondary soil
minerals at 7 °C are shown in Fig. 7. All the sampled soil solutions are
saturated or supersaturated with respect to the SiO; polymorphs quartz
and chalcedony, but undersaturated with respect to amorphous silica.
Moganite is slightly undersaturated in all samples but closer to equi-
librium than the other SiO, -phases.

The Al-Si-mineral allophane, the most common secondary mineral in
Icelandic soils along with iron oxyhydroxides (Wada, 1989; Arnalds,
2004, 2015), is supersaturated at all depths, except for some of the
samples collected at a depth of 76 cm. The silica-rich allophane, Al/
Si1.26, is more supersaturated than the silica-poor allophanes. The Fe-
Mg-rich smectite is undersaturated in all the shallow samples but close
to saturation deeper in the soil (Fig. 7), while the Fe-Mg-poor smectite is
only undersaturated at 76 cm and always supersaturated at deeper
levels. The soil water samples are supersaturated with respect to ferri-
hydrite, except for some of the shallowest samples, which are under-
saturated. Siderite (FeCO3) and mackinawite (FeS) are undersaturated
in the fluid samples at the shallowest depth, but close to saturation
deeper in the soil. Amorphous FeS (not shown) and calcite are always
undersaturated.

All fluid samples are undersaturated with respect to the main pri-
mary phases present in basalt, including ‘On-Site’ basaltic glass, which is
consistent with the ongoing dissolution of the basaltic material
throughout the soil column. The continuous undersaturation of the
basaltic glass is due to the low concentrations of its dissolution products
in the aqueous solution. The presence of organic acids also increases the
degree of undersaturation of the Al-bearing primary minerals. In this
way, the presence of DOC helps to accelerate the dissolution of the
primary basaltic phases (Oelkers and Gislason, 2001).

3.3.2. Reaction path modelling

Reaction path models were run to 1) reproduce the soil water com-
positions measured in the field, 2) quantify the mass and volume of
basalt dust dissolved, 3) predict the mass and volume of secondary
phases, and 4) estimate the spatial variation in basalt dissolution and
secondary mineral precipitation. The mass of basalt dissolved in the
model calculation as a function of depth was determined by fitting the
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results of the calculation to the measured water compositions. The
calculated soil water compositions as a function of depth obtained by
this effort are illustrated as solid black curves in Fig. 4. A good agree-
ment between the calculated curves and measured concentrations is
evident.

As shown in the top left plot of Fig. 4, up to 260 mmol kg;,%ter, equal
to ~310 mg kg{véter, of basalt needs to dissolve to reproduce the
measured soil water compositions. This is equal to 0.26 cm® of basaltic
glass per kg soil water solution. The dissolution of this basalt induces the
precipitation of allophane, ferrihydrite, siderite and the silica poly-
morph moganite. The volume of each of these secondary minerals

precipitated as a function of depth is illustrated in Fig. 8. The precipi-
tation of these minerals has a complex influence on carbon uptake rates.
Their precipitation maintains the aqueous fluid at undersaturated con-
ditions with respect to the basaltic dust, promoting the dissolution of
these solids. This precipitation can also alter fluid pH which can either
increase or decrease the solubility of CO3 in the aqueous phase.
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Fig. 8. Calculated volumes of minerals precipitated, and basalt dissolved per kg of soil solution A) incremental volume change and B) cumulative volume change

from the top of the soil column to the indicated depth.
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4. Discussion
4.1. Soil water chemistry and estimation of basalt dissolution rates

The measured soil waters are enriched in Si, Ca, Mg and Fe compared
to rainwater. This confirms the dissolution of basalt in the soil. The
breakdown of soil organic matter increases DOC and DIC concentration,
as well as S and N, which are only present in low concentrations in the
dissolving basalt. The pH of the water in this basalt-rich soil ranges from
5.8 to 6.7 and the alkalinity up to 3 meq kg;v},ter. In contrast, the alka-
linity of water in corresponding organic-rich basaltic mineral-poor soils
are commonly less than 0.3 meq kg‘;;ter (Verry, 1975; Vitt et al., 1995).
This comparison illustrates the ability of fine ground basalt dissolution
to increase soil water alkalinity.

As the mass of sulfur in basalt is low (Wallace and Carmichael, 1992),
it is likely that most of the S in the sampled soil water originated from
the decomposition of organic material. Much of the sulfur in the organic
material likely originated from sea spray, volcanic gas emissions, and
global pollution. Organic decay occurs continuously with depth and
organic matter decay releases sulfur (e.g., (Chen and Stevenson, 1986;
Kirkby et al., 2011). It might be expected, therefore, that the total sulfur
concentration in the soil waters will also increase with depth. Never-
theless, as shown in Fig. 5, total dissolved sulfur concentrations in the
soil water decrease with depth, suggesting that aqueous S is being
consumed by one or more solid phases. Based on the fluid saturation
states, the most likely precipitating sulfide mineral at depth in the
anoxic zone is mackinawite. The formation of this (or perhaps another)
sulfide mineral likely helps scavenge some potentially toxic metals from
the soil solutions via co-precipitation or sorption (see below and Rickard
and Luther (2007); Swanner et al. (2019)).

The variation of soil water compositions as a function of depth allows
estimation of the geometric surface area normalized dissolution rate of
the ‘On Site’ basaltic glass in our studied soil. The dissolution rate, r, of
this glass can be estimated taking account of (Oelkers and Gislason,
2001; Gislason and Oelkers, 2003)

1 <dmlm.mh) <dmwa/w)
Ageo \dMyarer di
where Ag, corresponds to the total geometric surface area of basalt in

dmpgsqe
dmyater

3)

r=

the soil column, ( ) designates the mass of basalt dissolved into

each incremental mass of water, and (d—"‘;[‘;) represents the rate at which

water is passing through the soil column. Reactive path calculations
suggest that up to ~310 mg kg;,},ter or ~2.6x10~% mol kg;vite, of basaltic
glass dissolved in our studied soil column. Correspondingly, the mass of
water flowing through our soil system is estimated to be 925 + 150
kg water m72 yril-

The geometric surface area, Ag, in Eq. (3) is equal to the product of
the specific surface area of the basaltic glass and its mass in the soil
column. The specific geometric surface area, A’ geo can be estimated
using (Brantley et al., 1999; Gautier et al., 2001).

6

=— 4
e @

geo

where defr and p symbolize the effective grain diameter and the density
of the basaltic glass, respectively. The effective particle size, de¢ can be
determined from (Tester et al., 1994)

Ay — din
dyy = ——F——
n <1>
where diqx and dmin denote the maximum and minimum grain size of the

basalt in the soil. A number of past studies concluded that most of the
basaltic dust in Iceland is dominated by 10 to 62 um size grains (Arnalds

5)

73

Geochimica et Cosmochimica Acta 370 (2024) 66-77

et al., 2014; Liu et al., 2014; Baldo et al., 2020). Based on these values,
the effective diameter of the basalt grains is 28.5 um. Taking account of
Eq. (4) and a basaltic glass density of 2.7 t m~3, the specific geometric
surface area of the basaltic dust in our soil equals 78 m? kg’l.

The mass of basalt in the soil column is somewhat challenging to
estimate. The soil contains approximately at least 50 % pore space
(Snaebjornsson, 1982) and up to 20 % organic carbon based on field
observations (Arnalds, 2015). If it is assumed that half of the remaining
volume is occupied by basalt, 15 percent of the volume of the soil is
basalt and the remainder secondary minerals, including allophane and
ferrihydrite. This estimate is roughly consistent with the current rate of
basaltic glass input versus dissolution in the soil column. As mentioned
above, the mass of basaltic dust in South Iceland can be a maximum of
0.8kg m? yr’l. This flux is approximately 2.8 times the estimated rate of
basalt dissolution in each m? of the soil column, which is estimated to be
~0.286 kg m? yr~! by taking account of the mass of basalt dissolved
annually in the soil column and the mass of water passing though this
soil column.

Assuming the soil column contains 15 % basaltic glass by mass, the
total volume of basalt in each square cm of the soil column is 40.5 cm®,
equal to 0.000045 m®. This volume of basalt has a mass of 0.109 kg, such
that the total surface area of basalt in the soil column equals 8.53 m?.
Taking account of this surface area together with the mass of basalt
dissolving into each kg of water and the mass of water passing through
the system, an estimate of the rate of basalt dissolution can be deter-
mined using Eq. (3), yielding a rate of 9x1072° mol m? s~!. The uncer-
tainty associated with this number is large owing to uncertainties in the
mass and surface area of basalt in the soil column. Nevertheless, this
field measured surface area normalized dissolution rate is approxi-
mately 2 orders of magnitude or more, slower than that measured in the
laboratory at similar pH and temperature conditions, as reported by
Oelkers and Gislason (2001) and Gislason and Oelkers (2003).
Numerous past studies have reported that mineral reaction rates in the
field are significantly slower than corresponding laboratory measured
rates (Gislason and Arnoérsson, 1993; White and Blum, 1995; White
et al., 1996; White and Brantley, 2003; Molins et al., 2012). Numerous
origins of this discrepancy have been proposed as summarized by White
and Brantley (2003).

It should be emphasized that that both the large uncertainties in
field-based weathering rates and large variations in annual environ-
mental conditions including annual and seasonal temperature and
rainfall patterns make it difficult to quantify carbon drawdown rates of
proposed enhanced weathering efforts. Attempts to develop novel
methods to overcome these limitations are currently ongoing (e.g.,
Kantola et al., 2023; Reershemis et al., 2023).

4.2. Toxic metal mobility

The mass of toxic metals released to the soil water in the study site by
basalt dissolution can be estimated by taking account of the total mass of
basalt dissolved in the system and the average composition of the dis-
solving basalt. To a first approximation the trace and toxic metal con-
centration of the basalt was taken to be equal to that of MORB as
reported by Gale et al. (2013). The choice to use the composition of
MORB in this instance is that it likely represents an average composition
of the dust entering our system over time. Note because of annually and
seasonally changes in wind direction, and of distinct volcanic eruptions,
the trace element composition of dust arriving to our system is some-
what variable. The composition of MORB is also similar to that being
considered for current enhanced rock weathering applications (Beerling
et al., 2018). Taking this into account, the 0.31 gkgw ! basaltic glass
dissolved into the soil water would release ~245 nmol kgyiwer Co,
~1600 nmol kgyaer Cr, ~390 nmol kgyier Cu, ~525 nmol kgpacer Ni,
and ~1 nmol kg;,%ter Pb, respectively. The concentration of each of these
trace metals in the deepest collected soil waters are, however, lower by a
factor of at least 5-200 relative to these values. This comparison
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suggests that these trace metals have been reincorporated into the solid
phase following their liberation from dissolving basalt. Note that this
reduction in toxic trace element reduction may be underestimated as it
does not take into account the potential remobilization of these elements
from the secondary minerals in the soil. It is likely that the trace ele-
ments in our studied soil were originally sourced from the earlier
dissolution of basaltic dust input.

The degree of depletion of selected major, toxic and trace metals in
the collected soil waters are depicted in Fig. 9 relative to that of Ca. It is
assumed that Ca is not incorporated into secondary phases. This choice
is made due to the relatively high concentration of this element in the
dissolving basalt, its low concentration in the influent rainwater, and the
low stability of Ca-bearing secondary minerals in the studied system.
Copper is the most depleted trace metal relative to its concentration in
MORB, and chromium, nickel and cobalt are also strongly depleted at
depth. Numerous past studies reported the incorporation of trace and
toxic metals into iron oxyhydroxide phases (Scheinost et al., 2001;
Brinza et al., 2008; Moon and Peacock, 2012) and into sulfide minerals
(Rickard and Luther, 2007; Swanner et al., 2019). Both of these phases
are predicted and/or observed to have formed in our studied soil system.
Ferrihydrite was observed to have formed near the surface of our soil
column, where the fluids are oxic, whereas mackinawite is predicted to
have formed deeper in the soil column at anoxic conditions. The effi-
ciency of scavenging toxic trace metals by secondary minerals in our
studied system suggests that similar processes might limit toxic metal
release from the waters discharged from geoengineered enhanced
weathering systems.

Total dissolved Al is depleted in the fluids at all depth. Note that
dissolved Al is highly toxic (Rosseland et al., 1992; Gensemer and Playle,
1999; Roy et al., 2000; Closset et al., 2021). Furthermore, the low
concentration of AI** and potential complexation of this metal with
aqueous organic species, ensures the continued dissolution of basaltic
glass and plagioclase throughout the soil column. It can also be seen in
Fig. 9 that Ca, Mg and Fe, dissolve near congruently at all depth, except
for Fe at the shallowest level, which is at oxic conditions.

Due to secondary mineral scavenging, none of the soil water com-
positions contained metal concentrations that exceed the drinking water
guidelines from the WHO, EPA or the Icelandic government, with the
exception of Fe and Mn, (United States Environmental Protection
Agency, 2009; Gunnarsdottir et al., 2016; World Health Organization,
2017). In all cases the trace and toxic metal concentrations were lower
than the drinking water limits by at least a factor of 50. Nevertheless, the
uptake of toxic trace elements by soils due to enhanced rock weathering

S

Si Ca Mg Fe Al

Ca soilwater

Ca rock

i soilwater
irock

Na Ti K S Cr Ni Cu Co Mo Pb

Element

Fig. 9. The ratio of selected element concentrations normalized to Ca in the
collected soil waters relative to the release from basalt assuming stoichiometric
dissolution. All values have been corrected for seawater input. The shading of
the columns indicates the depth of the water sample; the darker the shading, the
deeper in the soil is the sample. The S concentration of MORB was taken from
Wallace (2021) and trace metals from (Gale et al., 2013).
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over time, eventually lead to soils accumulating metal contents that
exceed environmental regulatory limits (Dupla et al., 2023).

4.3. Consequences for Enhanced Rock Weathering efforts

The results of this study have a number of implications for current
enhanced weathering efforts. Notably, the enhanced weathering studies
to date have added up to 400 t ha™! (equal to 40,000 g m~2) of ground
basalt to soils (Gillman et al., 2002; Haque et al., 2019a). These efforts
have only lasted for no more than several years. The present study, based
on a natural analogue, provided insight into the long-term behavior of
these efforts. Notably:

1. The basalt added annually to the soil of our study area does not
totally dissolve each year. Only approximately half of the up to 800 g
m ™2 of basalt added annually to the soil is estimated to dissolve.
Basalt and secondary minerals continue to accumulate in the soil
over time. Results also suggest that basalt added up to 3300 years ago
continues to dissolve in our studied soil system. Current ERW efforts
typically add far more basalt annually than received by our study
area, and the dust grains are also larger in size. It seems likely,
therefore, that much of the basalt added in ERW efforts will persist
long-term. Consequently, carbon drawdown by these efforts may not
be as efficient as anticipated. Nevertheless, alkalinity production
provoked by the addition of basalt to soils during ERW efforts will
likely continue for significant time frames after the addition of the
reactive material is terminated.

2. The dissolution of basaltic glass is observed to continue throughout
the soil column. This observation favors the addition of reactive rock
throughout the soil column, not just at the top of the soil. This
continued dissolution is insured by the continued strong under-
saturation of the soil waters with respect to primary basaltic min-
erals. This undersaturation is partially maintained by the
decomposition of organic materials present in the soil column. This
decomposition adds organic acid anions to the soil water, which
helps maintain fluids at strongly undersaturated conditions.

3. The dissolution rates of basaltic glass are found to be approximately
two orders of magnitude slower than corresponding laboratory rates.
These slower field rates need to be taken into account when assessing
the efficiency of enhanced weathering efforts.

4. Toxic and trace metals, likely released to the fluid phase by the
dissolution of basaltic glass in our field area, are efficiently rein-
corporated into the soil column, likely by their coprecipitation and
sorption into/to secondary minerals. Although this process assures
that waters released from the soils into surface and groundwater
systems will likely be non-toxic, these metals will build up in the soil
profile. The degree to which the increasing content of trace and toxic
metals in the soil column is detrimental to the local biota remains
unclear.

5. Conclusions

This study focused on the fluid compositions and mineralogy of a
natural soil that has received up to 800 g m~2 of basaltic dust annually
for ~3300 years. Despite the dissolution of some of this basalt annually,
it is estimated that more than half of the basalt added is still present in
the studied soil column. The results of this field study, therefore, illu-
minate the potential and the limitations of ERW efforts. The precipita-
tion of secondary minerals and the addition of organic acids maintains
the soil waters undersaturated with respect to the primary minerals and
glasses present in basalt. This assures the continued dissolution of basalt
present in the soil system and suggests that the maximum total mass of
basalt added to soil can be substantially greater than that of our studied
soil system without slowing the specific dissolution rate of the basalt.
Both this result and the observation that toxic metals are retained in the
soil despite their likely release by dissolving basalts, encourages the
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continued consideration of ERW for CO, drawdown from the
atmosphere.

Nevertheless, this study also suggests some strong limitations to ERW
efforts. Notably, basaltic glass dissolution rates are substantially lower
than might be expected from laboratory experiments. This limits the
near-term efficiency of such efforts. In addition, the long-term effect of
the buildup of toxic and trace metals on soil ecosystems remains unre-
solved. Taken together these limitations compel new studies of natural
analogue systems to further illuminate the long-term consequences of
ERW efforts.
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Appendix A. Supplementary material

Chemical compositions of the soil water samples are provided
together with a figure showing their temporal evolution, as well as the
Eh measured and derived from different redox couples in the supple-
mentary material, as well as additions to the thermodynamic database
and the rainwater composition used for the modeling and the calcula-
tions of the basalt dissolution rates. Supplementary material to this
article can be found online at https://doi.org/10.1016/j.gca.2024.02.00
S.
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The ability of engineered enhanced weathering to impact atmospheric CO, has been
challenging to demonstrate due to the many processes occurring in soils and the
short time span of current projects. Here we report the carbon balance in an
Icelandic Histic/Gleyic Andosol that has received large quantities of basaltic dust over
3300 years, providing opportunity to quantify the rates and long term consequences
of enhanced weathering. The added basaltic dust has dissolved continuously since its
deposition. The alkalinity of the soil waters is more than 10 times higher than in
equivalent basalt dust-free soils. After accounting for oxidation and degassing when
the soil waters are exposed to the atmosphere, the annual CO, drawdown due to

alkalinity generation is 0.17 t Cha~" yr~!. This study validates the ability of fine grained mafic mineral addition to soils to attenuate
increasing atmospheric CO, by alkalinity export. Induced changes in soil organic carbon storage, however, likely dominate the

net CO, drawdown of enhanced weathering efforts.
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I Introduction

The natural weathering of basaltic and ultramafic rocks has been
demonstrated to have a relatively large role in the drawdown of
CO, from the atmosphere (Dessert et al., 2003; Gislason et al.,
2009; Taylor et al., 2021). Such observations have motivated
several proposals to use these rocks to remove CO, directly from
the atmosphere through a process called Enhanced Weathering
(EW) (Moosdorf et al., 2014; IPPC, 2018; Beerling et al., 2020).
Enhanced weathering involves amending soils with crushed fine
grained, fast reacting Ca-Mg silicate rocks and minerals such as
basalts and peridotites (Strefler et al., 2018). To date, enhanced
weathering field experiments have demonstrated improved crop
vigour, organic and inorganic carbon storage and decreased N,O
degassing (Haque et al., 2019a, 2020; Beerling et al., 2020). One of
the goals of EW is to increase the alkalinity export of waters that
drain from soils and enter rivers and streams. The quantification
of carbon drawdown by enhanced weathering has been chal-
lenging to identify or quantify due to the large number of proc-
esses that occur in soils and the short duration of existing field
studies.

One approach to investigate the long term behaviour and
consequences of EW is via natural analogues. Enhanced weath-
ering experiments to date have tested the addition of up to
400 t ha™! yr~! of crushed Ca-Mg silicate rocks to agricultural
soils (Gillman et al., 2002; Amann et al., 2018; Haque et al.,
2019b). This crushed rock flux is orders of magnitude higher than
the average global desert dust deposition on Earth, which is esti-
mated tobe 0.5 tha~! yr~! (Mahowald et al., 2005). In the vicinity

. Institute of Earth Sciences, University of Iceland, Sturlugata 7, 102 Reykjavik, Iceland

of the dust “hot spots”, such as South Iceland, however, the
mass of deposited fine grained basaltic dust can be as high as
8 t ha™! yr! (Amalds, 2010; Arnalds et al, 2014, 2016). Al-
though this natural mass flux of basalt is less than that of current
EW efforts, 1) this basaltic dust flux has been added continuously
to the soil of this region over at least the past 3300 years, such
that in total over 16,500 t ha~! of basaltic dust has been added
over this time, and 2) the specific surface area of natural basaltic
dust is likely higher than that added to soils in current EW experi-
ments due to its finer grain size. The grain size of the crushed
rocks used in EW applications, if reported, is commonly less than
150 um (Haque et al., 2019a; Gillman et al., 2002). In contrast, the
average size of basaltic Icelandic dust ranges from 10 to 62 ym
(Arnalds et al., 2014; Liu et al., 2014). For these reasons, the min-
eral rich Histic/Gleyic Andosols (Arnalds, 2015) considered in
this study located in South Iceland provide an insightful natural
analogue to illuminate the long term effect of EW applications
performed under similar climate, vegetation, and soil conditions.
The studied soil receives large amounts of air borne volcanic
material during 1) explosive volcanic eruptions in the form of
glassy volcanic ash fallout, and 2) dust storms (Shoji et al,
1995; Arnalds et al., 2016). Explosive eruptions lead to evident
tephra horizons that can be used to date these soils. The
more frequently deposited windblown dust is finer grained
than the tephra and intermingled with the soil organic carbon
(see “Soil classification and soil evolution in Iceland” in
Supplementary Information). Based on palaeoecologic research
(Gisladottir et al., 2008; Arnalds, 2015; Mockel et al., 2017), in the
absence of volcanic dust input, the Histic/Gleyic Andosols of
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Figure 1 (a) Photograph of the studied soil system. The dark layers correspond to tephra originating from historic volcanic eruptions.
(b) Schematic illustration of the soil profile with depths and ages (in years before present) of identified tephra layers shown in yellow
for better visibility, the Landnam Layer that occurred around the time of the Icelandic settlement could not be clearly identified because
of alteration. Plant remnants are visible in the lower part of the profile, indicating high organic content.

Southern Iceland would have developed into Histosols (Arnalds,
2008). Consequently, the comparison of the behaviour of South
Icelandic Histic/Gleyic Andosols with that of volcanic dust-free
Histosols, located in similar climatic zones provides insight into
the consequences of adding fine grained basaltic material to soils
as part of enhanced weathering efforts.

One of our motivations to focus on the addition of volcanic
material to Histosols/peat soils to drawdown CO, from the
atmosphere stems from the role of these soils in the global
carbon cycle. Although peatlands cover only about 3 % of the
continents (Xu et al., 2018), they store ~10 % of all non-glacial
freshwater and roughly 30 % of the land-based organic carbon
(Mitra et al., 2005; Bragazza et al., 2013). Man made drainage and
burning of peat areas worldwide releases 0.5-0.8 Gt C yr~},
which is equivalent to 5-8 % of global anthropogenic carbon
emissions (Hooijer ef al., 2006; Parish et al., 2008). Carbon diox-
ide emission from the drainage of peat areas is estimated to be
the largest anthropogenic source of CO, emissions in Iceland
(Keller et al., 2020). The addition of reactive silicate rock dust
to peat soils might help increase carbon storage being otherwise
lost due to peatland draining.

This manuscript is one of two exploring the long term effi-
ciency and consequences of enhanced rock weathering efforts

through the study of a South Iceland Gleyic/Histic Andosol.
The first manuscript (Linke et al., 2024) reports the composition
of fluids and solids collected over two field seasons to 1) quantify
the saturation state of the primary and secondary mineral phases
with respect to the soil solutions, 2) determine the processes
controlling the mobility of heavy metals, and 3) assess the rate
at which basalt dissolved in the soils. In this manuscript we
present a comparison of the alkalinity export from this soil with
corresponding results from volcanic dust-free Histosols to quan-
tify the ability of enhanced weathering efforts to drawdown CO,
from the atmosphere. Results are then used to estimate the effi-
ciency of enhanced weathering at a larger scale. The purpose of
this paper is to present the results of this study and use the
results to gain insight into the consequences of current and
future enhanced weathering efforts.

I Field Site Description

The field site is located above the source of the Raudaleekur
(“Red creek”) river at 63° 53' 42.5" N, 20° 21' 15.9" W, which
is approximately 7 km north of the town of Hella in South
Iceland. This site consists of an upper Gleyic Andosol and a lower
Histic Andosol (see Supplementary Information for further
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details). The study site receives an annual aeolian dust flux of
5-8tha~!yr~}, consisting of mostly basaltic glass (Arnalds et al.,
2016). Additional basaltic material is added during irregular vol-
canic events. During the past several decades, drainage trenches
have been cut into the nearby soils; the closest drainage ditch is
located more than 150 metres from the study site. The studied
soil contains several prominent horizontal tephra layers, with
thicknesses ranging from a few mm to few cm and deposited
during the past 3300 years. An image and schematic illustration
of the system is provided in Figure 1 and a detailed description of
the field site is provided in the Supplementary Information and
Table S-1 therein.

P Results

Fluid compositions. Soil fluid samples were collected using
suction cup samplers from May to November 2018. The compo-
sitions of all fluid samples are provided in Table S-2
(Supplementary Information) and selected dissolved constitu-
ents are shown as a function of depth in Figure 2. The pH of
the samples was recalculated using PHREEQC (Parkhurst and
Appelo, 1999) to the in situ soil temperature of 7 °C. This is
the average soil temperature at 76-260 cm depth during the
summer months (Petersen and Gerber, 2018). The concentra-
tions of major elements increase continuously with depth sug-
gesting the continuous dissolution of the basaltic dust in the
soil. The soil waters become increasingly anoxic with depth as
indicated by the Eh values shown in Figure 2b.

The alkalinity of the soil waters increases from 0 to 3 meq
kg~ with depth. Once these waters exit the soils, they will equili-
brate with the O, and CO, in the atmosphere. PHREEQC calcu-
lations indicate that the alkalinity of the soil waters will decrease
on average to 1.53 + 0.2 meq kg™! due to iron oxidation/precipi-
tation reactions when they come in contact with the atmosphere
as they flow into local rivers (further details of this calculation are
provided in the Supplementary Information).

The alkalinity of soil waters in our studied dust-rich
soil are compared to the corresponding alkalinities of basalt

dust-free Histosols located in non-carbonate terrains in Figure 3.
Our field site, mostly fed by rainwater, shows considerably
higher alkalinity and pH values than observed in corresponding
basalt dust-free Histosols. Histosols located in carbonate terrains
are not included in this comparison as the presence of carbonate
minerals leads to a pH and alkalinity increase due to carbonate
dissolution, a process which has no long term net effect on
atmospheric carbon drawdown. The comparison in Figure 3
shows that the addition of volcanic dust to our soil increased sub-
stantially the alkalinity in its soil waters, most notably deep in the
soil column. This observation confirms the ability of enhanced
weathering by the addition of basaltic dust to soils to drawdown
COs from the atmosphere.

A noteworthy observation is that the basaltic dust in the
studied soil column persists and is reactive throughout the soil
column, despite the fact that some of this dust has been present
in the soil for 3300 years. This observation is consistent with
mass balance estimates of the import and export of metals to
the soil column. The study site receives an average annual dust
flux of 500-800 g m~2 yr~1. This basalt flux adds 0.96-1.54 mol Ca
and 0.72-1.16 mol Mg per m? yr! to the soil. In contrast, the
average Ca and Mg concentration of the deep soil water is
5x 107 and 4 x 10~ mol kg™! for Ca and Mg, respectively.
Taking account of the estimated 925 = 150 kg m=2 yr™! of water
that flows through, and is exported annually by our studied soil
(see Supplementary Information for details of this water flow
estimate), we estimate that 0.47 +0.07 and 0.37 + 0.06 mol yr’1
of Ca and Mg, respectively, are removed from the soil per square
metre of soil surface area at present. The input of Ca and Mg by
volcanic dust addition is, therefore, approximately 2-3 times
more than that removed by soil water export. The results of this
comparison are consistent with the persistence of the reactive
dust throughout the soil column and suggest the long term
viability of enhanced weathering efforts.

Carbon Storage via alkalinity export by the addition of
basaltic material to soils. The rate of carbon drawdown due to
alkalinity export by enhanced weathering in our studied field site
can be estimated by combining the annual water flux through
the soil and the measured alkalinity, as demonstrated in
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Figure 2 Measured soil water concentrations determined in the present study in all samples collected from May to November 2018, as
a function of depth. The pH values are normalised to a 7 °C reference temperature and Eh values to a Standard Hydrogen Electrode. The black
squares represent measured water concentrations, whereas the blue squares show the composition of rainwater. The error bars correspond to
a5 % uncertainty on the measured concentrations; error bars do not appear if the uncertainty is smaller than the symbol size. The red curvesin
the figure show 2"? order polynomial fits of all the measured concentrations with the corresponding R? values next to each curve.
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Figure 3 Comparison of pH and alkalinity of soil waters collected
from our studied soil with similarly composed, but volcanic dust-
free soils reported in other studies. The black symbols correspond
to alkalinity values reported in the literature for Histosols from
bogs, poor or rich fens located in non-volcanic regions and in
the absence of carbonate bedrock. The black boxes around the
black symbols represent the commonly reported pH-alkalinity
ranges of bogs and fens respectively. The red, orange, green
and blue symbols represent soil water samples measured in the
present study at the depths indicated in the figure. The purple
symbol shows the composition of rainwater at our field site.
The sources and location of the literature data are provided in
Table S-3 of the Supplementary Information.

Figure 4. By taking account of the rainfall, evaporation, and sur-
face runoffit is estimated that 925 + 150 kg m~ yr~! of water pass
through and are exported from the studied soil annually.
Multiplying this number by the 1.53 +0.2 meq kg™' average
alkalinity of the deepest water samples of our study area, after
its equilibration with the atmosphere, yields an estimated alka-
linity export from our soils of 1.43+0.3 meq m™2 yr .
Multiplying this number by the atomic weight of carbon yields
an annual carbon addition to our river water of 17+3.6 g m
-2 yr~1, which equals 0.17+0.036 t ha™? yr™! of C. The degree
to which this carbon drawdown rate is influenced by the rate of
basalt input to the soil and its surface area has yet to be quantified.
Although, dissolution rates are commonly thought to be propor-
tional to the fluid-mineral surface area, these rates are also influ-
enced by fluid compositions, including approach to equilibrium
and fluid flow paths in the soil column (Schott et al. 2009;
Linke et al., 2024).

It is insightful to extrapolate this annual rate of carbon
drawdown to a larger scale. If the results of our studied field site
are representative, the removal of 1 Gt yr~! CO, from the atmos-
phere through alkalinity production would require a total of
16 million km? of surface. This is larger than the total surface
area of the United States. Moreover, the mass of basaltic dust
required to provoke this rate of carbon removal may be unreal-
istically large. The average annual flux of basaltic dust into the
studied South Iceland soils is 5-8 t ha™! yr~!. Adding this mass
of basalt over 16 million km? of surface would require 8 to 13 Gt
of finely ground basalt annually. This mass of ground basalt is
larger than the world’s annual cement production of 4.3 Gt in
2020 (https://iea.org/reports/cement). This conclusion, based
on the alkalinity export from our studied soil, which contains
more organic matter (12 % to >20 % C) than most soils globally
(<5 % C; e.g., Stockmann et al., 2015), is nevertheless supported

1250
kgm?yr
+
oM
alkalinty, " .10 % surface runoff
-16 %
Evapotranspiration
soil water:
organic 925 kgm?yr|
C in soil
0.026 alkalinity in C:
o 0.029 kgm?yr” surface water:
S 2 0.017 kgm2yr!
kgm=yr alkalinity in C

Figure 4 Schematic illustration of the processes drawing down
CO; at our field site. The site receives ~1250 =200 kg m~2 yr~' of
rainfall. Of this rainfall 16 % is estimated to evaporate and 10 %
is estimated to be lost to surface runoff. As the remaining
925 + 150 kg m~2yr~' of water passes through the soil, its alkalinity
increases on average from 0to 2.59 + 0.34 meq kg~' at depth. Once
these waters equilibrate with the atmosphere, this fluid oxidises
and some CO, is released such that the alkalinity decreases to
1.53+0.2 meq kg~ resulting in an annual export of 17+3.6 g C
per m? soil surface area. At the same time 26-52 g m=2 yr~' of
Cis drawn down from the atmosphere by organic carbon produc-
tion and stored in the soil.

by other recent enhanced rock weathering studies. Our result of
0.17£0.036 t ha™ yr™' of carbon drawdown from alkalinity
export by enhanced rock weathering is within the range of
the handful of large scale cropland EW studies of 0.0005—
0.5 t C ha™ yr~! (Haque et al., 2020; Taylor et al., 2021; Larkin
etal., 2022). It should be noted, however, that the alkalinity gen-
erated in our studied Histic/Gleyic Andosol was the conse-
quence of the dissolution of the basalt added to this soil
annually over the past 3300 years. This annual addition has
led to a buildup of basaltic material over time. The results shown
in Figure 2 indicate that the presence of older basaltic dust,
located deep in the soil profile is an important contributor to
alkalinity production. As such, it seems likely that substantially
more than 5-8 t ha™! yr~! would need to be added to soils near-
term as part of enhanced weathering efforts to provoke a similar
rate of alkalinity production as observed in our study area.

Carbon drawdown by alkalinity production versus soil
organic carbon. The total mass of organic carbon in our studied
soil is estimated to be 86-172 kg C m~2 with average net annual
rate of carbon drawdown estimated to be 26-52 g Cm~2yr~! (see
Supplementary Information). This rate of CO, drawdown is sub-
stantially larger than the corresponding 17+3.6 g C m™2 yr™!
drawdown due to alkalinity export in our studied soils. These
estimates are in agreement with previous studies (Taylor et al,,
2021). These estimates also suggest that the amount of CO,
removed by the addition of basaltic dust to the soil in one year
by alkalinity export is more than 3 orders of magnitude less than
the total CO, stored as organic carbon in the soil. This latter
observation should serve as a warning to those attempting
atmospheric CO, drawdown by enhanced weathering in soils.
If the addition of basaltic dust to soil leads to the accelerated
decomposition of organic material in soils, the latter process
could readily dominate leading to a net increase of CO, released
to the atmosphere due to enhanced weathering efforts.

I Conclusions

The results of this study confirm the ability of fine grained
basaltic rock added to soils to enhance CO, drawdown directly
from the atmosphere due to alkalinity production. It is estimated
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that 17 £ 3.6 g Cm~2 yr~!is currently drawn down and added to
rivers by alkalinity production from our South Iceland field site.
The enhanced alkalinity production of our soils was produced by
the addition of approximately 1.7-2.6 t m~2 of basaltic dust to
this soil over 3300 years. Upscaling of this process to address
even a small fraction of the mass of anthropogenic CO, emis-
sions to the atmosphere, however, may be challenging because
1) this enhanced weathering process is slow and would require
more land than is available for a sizeable drawdown of CO,
through alkalinity production, and 2) the currently unquantified
effect of adding basalt powder to soils on soil organic matter. So,
although this study demonstrates the potential of enhanced
weathering efforts to contribute to attenuating atmospheric
CO, concentrations, the degree to which this approach will
prove successful at a larger scale remains unclear.
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Abstract

Enhanced Rock weathering is widely discussed to be deployed globally on large-scale to
remove carbon dioxide from the atmosphere. The stability of these engineered systems with
respect to environmental changes is of importance. Here we report the changes in mineralogy
and soil water chemistry and their effect on toxic trace metals and alkalinity in a natural setting
experiencing redox gradients. Additionally, we quantitatively identified minerals in these soils
that form as a result of natural weathering of basaltic material. The formation of siderite FeCOs,
which stores carbon dioxide in solid form, seems to be very limited within these soil systems,
making it a minor carbon sink. Using reaction path modelling we were able to recreate
observed changes in the soil mineralogy under changing redox conditions, indicating the
transformation of the dominant Al-bearing allophane phases to Fe3*-dominated nontronite and
ferrinydrite and affecting the alkalinity of the soil waters. Potentially liberated toxic trace metals
are scavenged by the newly formed ferrihydrite. The additional formation of siderite as a carbon
sink and the immobilization of toxic metals by reaction products of basalt dissolution encourage

the use of enhanced rock weathering to increase ocean alkalinity and carbon dioxide removal.

Introduction
Enhanced rock weathering is widely discussed as a carbon dioxide removal technique to

combat climate warming (Hartmann et al., 2013; Moosdorf et al., 2014; Edwards et al., 2017;
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Beerling et al., 2018; Dietzen et al., 2018, IPCC, 2018; Haque et al., 2021; Deng et al., 2023;
Reershemius et al.,, 2023). As field studies are scarce, only limited information about
interactions of the suggested rock amendments with soils and biota is available (Angst et al.,
2018, Haque et al., 2019a; Goll et al., 2021, Larkin et al., 2022, Vicca et al., 2022). The
formation and reactivity of secondary minerals or interactions with organic compounds is
unclear. Possibly introduced heavy metals, commonly found in mafic and ultra mafic rocks, are
of concern as their release to the soil and ground water could negate any gains from carbon
dioxide removal (Beerling et al., 2020, Dupla et al., 2023). Therefore, naturally occurring
reactions could be helpful to provide insights into interactions of basaltic materials and their
weathering products with their surrounding soil and soil waters. Additionally, the formation of
carbonate minerals, e.g. siderite, as a possible carbon dioxide sink resulting from precipitation

reactions after basalt rock amendments has been discussed.

Siderite is a ferrous iron carbonate FeCOs, which can occur in different geological settings. It
has been found in hydrothermal deposits (Damyanov and Ratiev, 1994; Martin et al., 2017;
Morton and Nebel, 1984), peat areas (Mcmillan and Schwertmann, 1998; Postma, 1980) and
as secondary alterations (Eshaghpour, 2003). It is also predicted to form as a mineralization
product of carbon capture and storage by injection of dissolved CO; into basaltic rocks
(Sneebjornsdottir et al., 2018). Despite the fact that large parts of Iceland are covered by
wetland soils, which have been intensively drained for agricultural use (Arnalds, 2015), there
is only one report about siderite published (Gudmundsson, 1978). Gudmundsson (1978)
reports siderite lenses in peat soil in West Iceland, which potentially formed by inorganic
transformation of buried ferric Fe3* lenses as bog iron. Information on the occurrence of siderite
as well as goethite and pyrite in Icelandic soils are therefore very limited. As described by
(Arnalds, 2015), the most common soil minerals in Iceland are allophane, ferrihydrite and
imogolite. Since siderite seems to be a quite unusual mineral in Iceland, it is also not
considered for the calculation of the carbon stock in the soil. We provided proof of siderite
mineralization in Icelandic Andosols (Linke et al. 2024a), which is further investigated in this
study.

Methods

Field site

The study site is located in Southern Iceland (63°53'42.5"N 20°21'15.9"W) at the headwaters
of the river Raudelaekur, 7 km NNE from the town Hella. Raudeleekur means “red brook”,
named after the reddish color of the water. The field site is situated in a former wetland area,
which is drained and used for hay farming and grazing. Nevertheless, the direct vicinity
(~200 m) of the sampled spot has not been used in the past 10 years, therefore man-made
impact is expected to be negligible.
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A natural cliff of about 2 m height is exposing a vertical soil cross section, which is the transition
of a mainly waterlogged wetland area to surface runoff pools mixing with drainage channels
forming the river Raudelaekur (“red creek”). The cross section has been cleaned up by
removing the outermost ~10 cm. Afterwards the profile was pedological described and a time

correlation was done using tephra layers (see Linke et al. 2024a and b).

Analytical techniques

For the mineralogical characterization, spot samples were collected from the soil profile by
pushing PVC tubes (2 cm @ and 8 cm length) into the cleared soil. Sample material was then
dried in a desiccator flushed with N> over silica gel. Additionally, soil cores were taken by
hammering 50 cm PVC tubes (75 mm @) horizontally into the section, which were closed right
after the extraction. The cores were opened in a glove box under anoxic atmosphere (97 % N
+ 3 % H,, with palladium catalysts to react any traces of O, with the H. to water) to avoid any
oxidation. Material from the inner parts of the cores was prepared for PXRD analysis using
dome sample holders and measured right afterwards with a D8 diffractometer (Bruker). PXRD
measurements on dried samples were additionally carried out with either a D8 Advance Plus
X-ray diffractometer (Bruker) or a D5000 X-ray diffractometer (Bruker) both with 20 geometry
and equipped with a copper X-ray source (A=0.15406 nm) and a Ni-filter. The samples were
continuously measured in the range of 5-70 °20 with a step size of 0.02 °20 to 0.05 °20 and
a counting time of 1.2 s to 1.5 s per step depending on the instrument.

Scanning electron microscopy was conducted using a Quanta™ 3D FEG (FEI) SEM with an
accelerating voltage of 20 kV. Samples were sputtered beforehand with a ~10 nm gold layer
using a LEICA EDC 550. EDX spot measurements were conducted simultaneously for a range
of elements including Fe, Si, O and C.

For pair distribution function (PDF) analysis samples were first dried and then loaded in
Polyimide capillaries (Cole-Parmer). For a few samples, the preparation was performed in a
glovebox and the material was loaded into glass capillaries (Mark-Rdhrchen) and sealed with
paraffin prior to transport. Based on previous tests, this procedure adequately protects highly

oxygen sensitive, amorphous iron carbonate from oxidation (Dideriksen et al., 2015).

Measurements were conducted at Beam line 11-ID-B, Advanced Photon Source, Argonne
National Laboratory, USA using monochromatic X-rays with an energy of 58.6 keV, a more
detailed description can be found in Dideriksen et al. (2015). Scattered X-rays were detected
with a 40 by 40 cm? Perkin EImer XRD1621 amorphous silicon detector placed ~16 cm from
the sample. Calibration of the measurement geometry was conducted with a CeO, standard
and the program fit2D (Hammersley et al., 1996, Hammersley, 1997). This software was also

used to polarization correct the 2D data and convert them to 1D. From the 1D data, the pair
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distribution function was obtained using the software PDFgetX2 (Qiu, et al., 2004), using
standard procedures such as background correction using an empty capillary, normalization
to the average scattering cross section of the sample, and correction for incoherent scattering
and non-linear detector efficiency at different angles. The pair distribution functions, G(r), were

generated by Fourier transformation using a Qmax of 24 A,

Obtained pair distribution functions were fitted with the program PDFGui (Qiu et al., 2004).
First, data from an a-Al,Os; standard material was used to fit the instrumental dampening
(Qdamp) and broadening (Qbroad) parameters based on the structure from Smrcok et al.
(2006). The G(r) obtained for siderite were fitted with the structure for siderite from Effenberger
et al. (1981), adjusting the structural parameters to minimize the discrepancy between

measured and calculated pattern.

The data treatment requires definition of the chemical composition, which for many samples is
unknown. While errors in the chemical composition to some extent is mitigated by the
correction for non-linear angular detector efficiency, larger errors will be clearly visible,
manifested as a high amplitude oscillation in the PDF at r < 1 A. To define the chemical
composition, preliminary SEM/EDX were conducted. The analyses showed a pronounced
signal from primarily Fe, Si and O, and smaller signal for C, for which SEM/EDX is less
sensitive. Based on these results, samples with [(Q) showing pronounced peaks of siderite

were assumed to be composed of:
SiOz + x FeCO3 + y H,0 + z CH.0,

whereas the composition of the remaining samples was calculated based on an assemblage
of:

SiO, + x Fe(OH)s + y H,0 + z CH.0.

In the definition of composition, the value of x was estimated from the relative peak intensities
at~1.6 A (corresponding to Si-O) and ~2 A (Fe(ll1)-0) or ~2.1 A (Fe(I1)-O), taking into account
the difference in electron density and expected coordination number (SiO4 and FeOg). The
values of y and z were then defined through trial and error to avoid high amplitude oscillations
at low r values. Tests of the procedure on the same samples yielded highly similar PDF at r >

1 A for variation of x within + 30%.

Fourier transform infrared spectroscopy (FTIR) analysis were carried out using a Perkin Elmer
Spectrum Two FT-IR Spectrometer with Spectrum software. For each measurement 2 mg of
sample was mixed with 300 mg of Potassium bromide KBr and then pressed to a pellet.
Measurements were carried out in a range of 4000-400 cm* with a resolution of 4 cm,

averaging 20 scans to improve the signal-to-noise ratio.
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The specific surface area of the samples was determined from the nitrogen adsorption-
desorption isotherms at -196 °C in a Micromeritics Gemini VII 2390t apparatus. The samples
were pre-treated at 110 °C for 2 h under nitrogen flow (~30 mL mint) in a micromeritics
FlowPrep 060 sample degas system in order to remove adsorbed species. The specific surface

area was determined by the BET method (Brunauer et al., 1938).

The particle size distribution (PSD) of the samples was determined by laser diffraction (Low
Angle Laser Light Scattering) using a Malvern Mastersizer 2000 equipment with a He-Ne gas
laser (A=0.63 um), with software provided by the manufacturer. The samples were dispersed
in water, stirred at 800 rpm, and pumped (2050 rpm) to the measuring unit. Deagglomeration
of the particles was attained by in situ ultrasonic treatment for 5, 10 or 15 min. Measurements

were conducted at a laser obscuration of 6.8-10.

Thermogravimetric analysis (TG) and Differential Scanning Calorimetry (DSC) curves were
simultaneously recorded in a SDT Q600 TA instrument, using a-Al.Oz (Fluka) previously
calcined overnight at 1200 °C, as a reference material for the DSC measurements. All samples
were heated up to 900 °C at a heating rate of 5 K min-t under O flow (50 ml min). Released
gases during the heating process were simultaneously analyzed using a coupled mass
spectrometer (MS, Pfeiffer Vacuum ThermoStar GSD 301 T2).

For chemical analysis 130-160 mg dried sample material was weighted and ashed in ceramic
crucibles overnight in a furnace at 550 °C. Afterwards each sample was transferred to Teflon
beakers and rinsed by addition of 5x 1 ml of conc. suprapure HNOs. Then 2 ml hydrofluoric
acid HF and 2-3 drops of perchloric acid were added to each sample and the Teflon beakers
were heated overnight at ~70 °C. After evaporation of HF 2 ml of boric acid Hz:BOs was added
and then evaporated overnight at ~70 °C. The dry samples were cooled down and dissolved
by addition of 5x 1 ml of conc. suprapure HNO3; while heated up to ~70 °C. These solutions

were transferred to volumetric flasks and mixed with milliQ water.

Analysis of the major elements were carried out using an inductively coupled plasma optical
emission spectrometer (ICP-OES, Spectro, Ciros Vision) equipped with a semiconductor
detector (CCD). The instrument was calibrated with in-house standards referenced to
commercial standard material. All used standards and measured samples were acidified to
0.5 % HNO:s.

For trace element analysis, the sample solutions from the HF dissolution were diluted with
milliQ water and spiked with internal standards (Rh, Ir, Ga). All samples were then measured
using an inductive coupled plasma mass spectrometer (Thermo iCAP Qc ICP-MS). Detector
drift was corrected with the added internal standards. Blank solutions were measured every 5

samples.
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Reaction paths of predicted soil minerals and soil waters under changing redox conditions
were simulated using PHREEQC interactive software version 3.4.0 (Parkhurst and Appelo,
1999). Calculations were performed using the minteqg.v4.dat (Allison et al.,, 1991; U.S.
Environmental Protection Agency, 1998) database.

Results

Soil profile description

The soil profile was divided into 14 sections, based on the pedological classification scheme
from the Schoeneberger et al (2012). Interposed tephra layers were used for detailed

subdivision. A detailed description can be found in Linke et al. (2024a).

Katla 229 BP

58 Katla 465 BP

96 Landnam 1076 BP

162 Hekla ~ 2540 BP

182 ' Katla ~ 2900 BP

209

: g e Katla ~ 3300 BP
o i H H

Figure 1A: Overview of the outcrop with the different horizons and sampling locations (green).
B: schematic profile with identified soil horizons and tephra layers with names of the volcanoes
and ages on the right side, modified after Linke et al. (2024a). Note: the siderite containing red
horizon locally extends up to 40 cm thickness (not shown in A)
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As seen in figure 1A and B, a large reddish horizon occurs at a depth of 60 to 95 cm, irregularly
extending over 10 to 25 cm height, locally up to 40 cm thick. The soil depth of the red horizon
coincided with the typical depth of the settlement layer “Landnam”. This horizon contains
frequently irregular shaped greyish inclusions of 0.5 to 30 cm size (diameter) with sharp
boundaries to the surrounding red material. Spot samples (samples H1 to H11) from the major
horizons were collected and analyzed regarding their mineral and chemical composition.
Multiple samples were taken from the greyish material (Fig. 2A) in the red horizon (samples
FS). Distinct tephra layers were used to cross correlate the studied profile with nearby soil
profiles and provide age estimates based on tephrochronology. The entire soil profile extents

over ~220 cm and circa 3,300 years.

Figure 2A: Detailed view of blue/green/greyish nodules within the red horizon around 60-95
cm soil depth identified as siderite aggregations. B: SEM image of greyish sample material
identified as siderite via EDX and XRD/PDF

Mineral phase characterisation

Powder X-ray diffraction and pair distribution function analyses of the dried soil samples (H1
to H11) from the different horizons show that the samples do not contain high amounts of well
crystalline material (Fig. 3A and B). The few observed peaks in the XRD pattern between 20
and 40 °20 were attributed to feldspar and pyroxene phases that could not be identified any
further. Feldspar and pyroxene were also identified in the PDF data and are indicted by black
asterisk (*) in Figure 3B. Additionally, in the XRD data from sample H7 siderite could be
identified and is indicated by the asterisks in Figure 3A and the blue lines in Figure 3B for the
PDF analysis. In addition to the crystalline phases, peaks most likely corresponding to a
nontronite phase were observed in the PDF data (see Fig. 3B green dashed lines). No other
clay mineral phases such as allophane could be identified in any of the recorded PDF or XRD
data.
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Figure 3A: XRD of the samples. Peaks for feldspar are indicated by black lines, for pyroxene
by black dashed lines, and siderite by blue asterisks. B The 1(Q) of samples and standards (at
the top). Peaks for siderite are indicated by blue dashed lines, for nontronite by green dashed
lines, and for feldspar and pyroxene by black asterisks. Data for siderite from Dideriksen et al.,
2015. Fig.

The greyish material in the FS samples (see Fig. 1 and Fig. 3) from the red horizon could be
identified as siderite FeCOs using powder X-ray diffraction (Effenberger et al. 1981) showing
a main peak at 31.9 °2Theta (Fig. 4B). The XRD pattern shows a quite pure sample with an
additional peak at 27.9 °2Theta, most likely caused by the main peak of a calcium-rich feldspar
phase, which is commonly found in basalt (Barth 1936). The sharp PXRD peaks and the long-
range order in the PDF data show a very high crystallinity of the siderite compared to the other
minerals identified in the soil samples. The maximum crystallite size based on the PDF data is
estimated to be around 40-50 nm, which matches with the calculated crystallite size of 44 nm
based on the Scherrer equation (Scherrer 1918) for the main peak at 31.9 °2Theta and the
observations published by (Mcmillan and Schwertmann, 1998) for siderite found in low moor
peat samples. SEM imaging reveals large subhedral crystals, partially up to a few micrometers
(Fig. 2B).
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Figure 4A: XRD pattern of dried material from the greyish inclusions, all major peaks
correspond to reference pattern for siderite (bottom) as described by Effenberger et al. (1997),
an additional peak is observed at 28.0 °2Theta (*) that agrees with the main peak observed in
feldspars. B: The I(Q) of samples and standards (bottom) of the grey nodules and proximity.
Peaks for siderite are indicated by green dashed lines, and for ferrihydrite by orange dashed
lines. Data for siderite from Dideriksen et al., 2015.

No siderite could be identified in the red material (e.g. samples FS118r) surrounding the grey
inclusions. The PDF data of these samples largely matches the peaks observed for 2-line
ferrinydrite, indicating a possible transformation between siderite and ferrihydrite. Analysis of
the grey-red color boundary with SEM/EDX did not show any difference in
appearance/morphology or chemical composition within a scale of 1-2 mm.

Pair distribution function analysis and principal component analysis

Principal component analysis (PCA) was conducted in the range 1 <r < 60 A. The PCA results
in five principal components (PCs) accounting for 96 % of the variance in the analysis (see
supplementary Fig. ES1). Based on the determined chemical composition, XRD and I(Q), we
surmise that these PCs could reflect the presence of siderite, short range ordered silicates and
Fe-oxides, and silicates with longer range ordering. To derive patterns for real phases through
recombination of the PCs, the top five PCs were selected for deconvolution based on the
procedure used in Eiby et al. (in preparation). The recombination is based on the assumption
that a target pattern can be properly described by a weighted sum of the PCs. This
recombination was carried out in steps by fitting the weighing factors to minimize the sum of

the squared residual between the calculated pattern and the target pattern(s):

1. Combined, the chemical analysis and I(Q) indicate the presence of a short range ordered
Fe-oxide, presumably a ferrihydrite like phase. To probe how the PDF for this material might

look, a sample of Fe-oxides was taken from the nearby ditch. The PDF of this material is shown
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in supplementary figure ES2. This pattern greatly resembles the PDFs measured for natural
ferrinydrite (Cismasu et al., 2011). In the second step, it was tested if the PCs could be
recombined to yield the measured PDF. Supplementary Figure ES2 shows good agreement

between the measured and calculated PDF, which was assigned as PC1'.

1: Si-O

B 1 Me-Me and more distant pairs
L N

R

H2

H3

H4

I

|

W H5
\H\Mrvﬂl\f\/

Wt

MpAprnAmmtnmA, H7

H8

H11

H2

N
B
A

G(r)

FS119

FS127

| NSNS ETETET TS ETSNETETE B A AN AT STEEE TS STSTEEE L : :A: L L 1 L ! ! L
0 10 20 30 . 40 50 60 0 SD 10
r (A) r (A)

Figure 5: The PDFs of the samples showing A) and C) overview and B) and D) zoom of the
range 0-20 A from the soil horizons and the greyish horizon respectively. The measured
patterns are given in black, the calculated patterns from the deconvolution of principal
components in red, and the difference between the two in grey. Pattern for siderite has been
reproduced using Qmax = 24 from the data in Dideriksen et al., 2015. The data from the
different soil horizon is showing in the upper part and the data from the siderite containing
horizon in the lower section.
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2. Given that the XRD and I(Q) show the presence of siderite, a measured PDF reprocessed
from the data of Dideriksen et al. (2015) to have Qmax = 24 Al was used as the target pattern
to derive the first recombined principal component (PC2'). The measured PDF and PC2' is

shown in Figure ES2.

3. Given that our data also indicate the presence of short and longer range ordered silicates,
a final step was performed where two PC's were derived simultaneously using the measured
PDFs for the samples as target patterns. In this fitting, PC1' and PC2' were included and a
scaling factor for their contribution to the measured patterns for samples were fitted. To
stimulate the development of a short range ordered PC', one of the calculated patterns was
assigned a penalty for intensities at r > 20 A. This meant that the sum of the squared residuals
included contributions from both the mismatch between measured and calculated patterns for
the samples as well as for one PC', the difference from zero for intensities with r > 20 A, which
was given additional weight by a factor of 5. In this fitting it was finally imposed that the sum of
the scaling factors for the PC' should equal 1. After this fitting, a total of four PC's had been
derived (see ES1 and ES2). However, the intensities varied widely. To normalize for variation
in intensities, the PC's were scaled to have equal intensity for the major Si-O or Fe-O peak at
~1.6 A and ~2 A. The scaling factor for their contribution to the samples was then refitted,

again imposing a total of scaling factors of 1 for each sample.

The derived PC's for the two silicate components are shown in the supplementary Figure ES2.
The short range ordered PC' most likely represents basaltic glass, where it shows good
agreement with. Surprisingly the longer range ordered PC' agrees well with the pattern
measured for the nontronite standard, NAu-1, in particular at lower r values. Given the nature
of the PDFs, where peak intensities depend on both, the electron densities of the atom pairs
and the coordination number, the scaling factors cannot be readily recast into absolute
abundance. However, variation in scaling represents variation in abundance. Based on these

abundances, relative phase proportions were simulated.

Fourier-transform infrared spectroscopy

Adsorption bands within the retrieved spectra were assigned vibrational frequencies in order
to determine the mineral composition of the characterized samples. Additionally, detailed
assigned vibrational frequencies for selected samples, namely FS117, H1, H9, H10, H11, are
given in the Appendix in tables 1-5.

Vibrational frequencies indicative for moganite and different aluminum silicate clay minerals,
here allophane and imogolite, were found within the spectra of all samples within the 1200 to
400 cm? range, attributed to lattice vibrations within the clay minerals. Common Si-O
stretching vibrations, asymmetrical at 1160 cm® and symmetrical at 790 cm?, and anti-

symmetrical bending at 460 cm, could be assigned and are in agreement with literature
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(Lippincott et al. 1958, Saikia et al. 2008, Viana et al. 2012). Within the spectra of the samples
FS117, H10 and H11 adsorption bands could be attributed to siderite, an iron (II) carbonate.
Characteristic bands include the asymmetric stretching vibration within the carbonate group
between 1420 to 1410 cm* and out-of-plane bending vibrations at 861 cm (Dubrawski et al.
1989). A sharp adsorption band at 737 cm* confirms the presence of a crystalline carbonate
phase via in-plane bending vibrations (Dubrawski et al. 1989). Bands from water are visible at
1627 cm? and ~3400 cmt. Small features occurring at 2925 and 2854 cm were interpreted

as vibrations from methyl and O-CH, groups respectively.

Thermal analysis

Thermal analysis of the siderite samples up to 800 °C show a mass loss in 3 steps attributed
to the loss of water, CO, and minor amounts of NO,. Water is desorbed up to 100 °C.
Decarbonization occurs in 2 steps, with maximum CO: release around 270 °C and 400 °C
respectively. The same maxima are observed for the release of NO,. No mass loss is
measured after 450 °C. The theoretical mass loss that would occur during the transformation
of FeCOs to Fe20Os in the presence of O is ~31.5 %, whereas the average mass loss of the
samples, normalized to the mass at 100 °C, between 100 °C and 450 °C is 27.6 %. The
difference can be explained by accessory phases like feldspar and amorphous basaltic glass
that do not show a mass loss upon heating. No sulfur gases are observed during heating,
indicating the absence of accessory sulfide or sulfate minerals or organic material with

noticeable sulfur content.

Particle size and surface area

Particle size characterization of the dried samples show a monomodal distribution with d(0.5)
values mostly around 100-160 pm and d(0.9) of 500-790 um (see table 1 and supplementary
figure ES12). After ultrasonic treatment the d(0.5) and d(0.9) values decrease significantly to
20-28 ym and 110-150 um respectively, indicating particle aggregates disperse. Some
samples show a smaller d(0.5) value around 10 um even before the ultrasonic treatment, and
nearly no decrease in the particle size afterwards, indicating less aggregates. BET surface
area calculations using Nz infiltration reveal a surface area of 120-150 m? g-1. All samples show
sorption isotherms (Thommes et al. 2015) typical for platy materials. This is in agreement with

the observed crystals of the siderite in the SEM images (see Fig. 2B).
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Table 1: Mean particle size distributions of siderite inclusions before and after 15 min

ultrasonic treatment (US) respectively

Sample d(0.5) d(0.9) d(0.5) 15US d(0.9) 15US
Peat soil 110 790 20 112

FS112 319 1064 9 32

FS114 12 55 7.5 25

FS117 97 517 25 112

FS118 161 782 28 152

FS124 10.7 173 6.5 32

Discussion

Chemical analysis and PXRD results show that the greyish inclusions found inside the red
horizon in the outcrop are made off well-crystalline siderite. Lovley and Phillips (1988) and
Sparks et al. (1990) have shown that siderite can form as a product of microbial iron reduction
in a carbonate buffered systems. In addition, feldspar and pyroxene could be identified, which
are commonly found in basalt (bed rock) or as accessory minerals in basaltic glass (tephra).
Thermal analysis and FT-IR spectra give evidence for the presence of organic compounds,
most likely soil organic matter. The decomposition of these organics leads to the release
additional CO,. Chemical analyses of the bulk material show elevated concentrations of
elements (Ca, Mg, Al, Ti) commonly found in basaltic glass. Especially Ca and Mg can be
incorporated into siderite forming a solid solution but could also be derived from dissolution of
admixed basaltic material. From the total digestion method, no values for Si in the solid material
are available. Nevertheless, vibration bands for Si are present in the FT-IR spectra. Si can be
found in basaltic material, as well as in common secondary soil minerals like allophane as well

as Al-humic complexes (Arnalds 2008).

Besides the crystalline siderite additional short range ordered phases could be identified in the
soil horizons via pair distribution function analysis a principal component analysis. The results
were used to provide a semi-quantitative overview of the solid phases throughout the soil
profile (see Fig. 6). Most of the soil profile is dominated by basaltic glass, ferrihydrite and
nontronite can be found with varying amounts throughout the soil profile. The highest
nontronite concentration can be found at depth in sample H11. Siderite was only found in small
guantities in one soil sample H7, but in high quantities in most of the grey inclusions as
indicated by XRD. Allophane was not identified in any of the samples despite its predicted
abundance in the soils (Linke et al. 2024b, Arnalds 2015).
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Figure 6: Left: Schematic soil profile with soil horizons and identified tephra layers on the left
side and soil depth on the right side, sampling spots marked by green circles, Right: The
relative proportion of the PC' derived from the deconvolution of the PC with depth offset. Spot
samples from the grey material inside the box. PC1' represents ferrihydrite, PC2', siderite,
PC3', nontronite, and PC4', basaltic glass

PHREEQC reaction path modelling was used to recreate the possible evolution of iron-rich,

reduced soil waters that are the product of basalt-water interactions. The models suggest in

agreement with the synchrotron analysis that allophane is dissolved and a new iron-rich

aluminum silicate phase, nontronite, forms (Fig. 7 and Fig. ES6). Aluminum seems to be the

limiting element for nontronite in this system. Therefore, excessive iron is precipitated as

ferrinydrite upon oxidation. In sum these processes result in a decrease of pH and alkalinity.
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Figure 7: Simulated reaction path outcome when reacting anoxic allophane-rich soil water
solutions in the presence of oxygen, Moganite and Allophane are initially transformed into
Nontronite and Ferrihydrite until fully consumed, steps show that different mineral
compositions are possible in the soil based on reaction progress as observed in Fig. 6
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Figure 8: Schematic illustration of the main processes in the soil outcrop with changing
redox conditions, upper blue line marks the water table,
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The results of Linke et al. (2024b) show in agreement with other literature (Arnalds 2015) that
nanocrystalline phases like allophane and ferrihydrite, in oxic environments, are the prevalent
forming soil minerals in the studied Andosol. These phases form as products of the weathering
of basaltic material. Our results show that allophane as well as possibly present moganite and
siderite are transformed to nontronite and ferrihydrite upon oxidation (see Fig. 8 and Fig. ES6).
Nontronite precipitation keeps aluminum concentrations in the soil solutions at a minimum,
which is in agreement with the measured field data. Once, any aluminum sources are depleted,
ferrinydrite precipitation will be prevalent. Ferrihydrite is known to have a high affinity to take
up various heavy metals as well as phosphorus (Linke et al. 2018). Our soil water data shows
that heavy metal concentrations and phosphorus in the soil water are overall low, mostly below
the detection limits. Simultaneously, the oxidation of Fe?* and the precipitation of ferrihydrite
decrease the alkalinity. Therefore, future enhanced rock weathering projects should take the
iron content of the applied material into account to optimize the alkalinity production while
providing enough iron to immobilize all potential toxic trace metals via ferrihydrite precipitation

and adsorption.
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Abstract

The storage of carbon, metals and nutrients in peat lands at high latitude is sensitive to climate- and land usage changes. This work
shows that the thermodynamically most stable iron phases in Icelandic peat areas, like hematite or magnetite do not form, but rather
the metastable ferrihydrite, which forms in abundance. Model calculations suggest that this ferrihydrite is able to adsorb high
concentrations of natural derived heavy metals (Pb, As, Cr, Cu) and nutrients (P). If this ferrihydrite comes in contact with the
oceans, these elements will be released through ferrihydrite-seawater interaction. This process may have significant effects to the
chemistry of the near shore environments if ferrihydrite transport to the oceans increase due to future increased flooding and sea
level rise.
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1. Introduction

Peat lands cover huge areas in the sub-polar region and store vast amounts of organic carbon [1]. Their soil waters
are reduced and rich in dissolved carbon, metals and nutrients [2,3]. Peat lands buffer natural floods as well as metal-
and nutrient-fluxes to the oceans [2]. These fluxes are probably affected by climate change and man-made drainage
channels. The overall objective of this project is to define the in situ mineralogy and soil water composition in
Icelandic peat under conditions of high dust fluxes and their evolution along oxidation, pH and salinity gradients. The
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dust is mostly composed of basaltic glass and is the main source of the dissolved metals, and tends to increase the pH
and alkalinity of the soil solutions when it dissolves [4, 5]. Icelandic soils are reported to contain up to 8 wt. %
ferrihydrite (Fe10O14(OH),), typically estimated with ammonium oxalate extraction methods [6], whereas other
thermodynamically more stable secondary iron phases are absent [7]. However, most of the Icelandic rivers are of
drinking water quality; the concentrations of toxic metals are in most cases below the drinking water quality guidelines
published by the World Health Organization [8].

Some rivers and soil waters have high dissolved and particulate iron content, as evidenced by chemical analysis
and commonly observed as red precipitates. The importance of these widely observed iron phases and their role in
heavy metals and nutrients transport from within the soil until reaching the ocean, across oxygen, pH and salinity
gradients, is not yet fully understood. Through geochemical modelling, we attempt to get insight into this process.

Here we present: 1) the predominant fields of the metastable iron phases along pH, Eh, alkalinity and dissolved Fe
gradients and 2) a model of the adsorption and desorption of metals and nutrients on ferrihydrite surfaces along an Eh
and salinity gradient. The modelling was constrained by reported chemistry of soil waters under reduced conditions
within Icelandic peat [9]. The adsorption desorption modelling mimic the mechanical transport of ferrihydrite surfaces
saturated with adsorbed metals and nutrients to the ocean and its eventual interaction with ocean waters.

To understand these adsorption-desorption processes and transport along various gradients, the identification and
characterization of the mineral phases in the soil as well as the precipitates in the drainage channels is required. This
will be the focus of future studies.

2. Methods
2.1. Geochemical modelling

The stability of various iron mineral phases and dissolved species were predicted using PHREEQC Interactive
3.3.8.11728 [10] together with its minteq.v4 database [11] after adding data for green rust carbonate taken from Drissi
etal. [12]. The calculations include the chemical analysis of different soil water samples from West-Iceland containing
major and trace elements, alkalinity, pH as well as the reference temperature during the pH measurements [9].

In addition to PHREEQC and the databases described above, the graphical output program PhreePlot [13] was used
to illustrate the stability relations between the iron phases to predict the dominant solid phase or aqueous species as a
function of pH and Eh at 25 °C. Results are achieved by a simple looping feature, which can either calculate each
single point in the diagram by a ‘grid’ approach or track internal boundaries via a ‘hunt and track’ approach. While
the ‘hunt and track’ approach is faster, it also makes the assumption that all fields can be delineated by tracking the
boundaries starting from a domain boundary. In contrast, the ‘grid’ approach calculates the dominating phase for each
defined point. [13]

The diagrams in Fig. 1 and 2 are calculated for a pH range from 4 to 10 covering the most common pH range in
natural waters [14]. All calculations are limited by the stability of water under oxidized conditions (pO, > 0.21 atm)
and methane (pCH4 > 1 atm) under reduced conditions (the lower part of the diagrams). The predominance diagrams
were not extended to the lower stability line of water (pH> > 1 atm), which lies below the methane stability field,
because this would require and open system where the methane could degas from solution to keep the partial pressure
below 1 atm.

For the study of transport across Eh, pH and salinity gradients, the soil solution is specified (Table 1) and then
equilibrated with O, at atmospheric pressure to simulate the oxidation of the soil solution when in contact with the
atmosphere. In addition, ferrihydrite is allowed to precipitate and then used as a surface for adsorption and desorption.
The concentration of weak and strong adsorption sites are maintained as the default values of PHREEQC: 0.2 mol
weak sites per mol ferrihydrite with a surface area of 5.33x10* m*mol and 0.5x10 mol of strong sites per mol
ferrihydrite. It is then assumed that the adsorption-desorption process on ferrihydrite surfaces attained equilibrium at
25 °C and atmospheric O, pressure.

The oxidized solution and the precipitated ferrihydrite, as a surface adsorbent, are mixed with seawater during a
second reaction step using the composition published by Stefansdoéttir et al. [15] for North Atlantic seawater. The
mixing ratio of the oxidized soil solution and the seawater is varied from 3:1 to 1:100.000 in the models to simulate
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the effect of increasing fluid mixing. All element concentrations are then corrected for the dilution during mixing and
the final values are normalized to 100 % for each element compared to the original soil solution as shown in Fig. 3.

2.2. Soil water sampling and analysis

The soil solution used for calculations in this study (Table 1) was collected in the peat area in Hvammsendi on the
eastern shore of Hvalfjodur in western Iceland [9]. The sample 98-JA086 was collected on the 8" of September 1998
[9]. This samples was collected from a hole made using a stainless steel auger with 2.5 cm diameter at 45 ° to a depth
of 50 cm. A soil solution sampler used was made of PTFE (Teflon) and quartz (Prenart, Denmark) was installed as
reported in detail by Sigfusson et al. [3]. The soil solution was analyzed for pH, alkalinity (by titration with 0.1 M
HCI), major anions and cations (by ion chromatography and inductively coupled plasma atomic emission
spectrometry), trace elements (by High Resolution Inductively Coupled Plasma Mass Spectrometry) and nutrients (by
autoanalyzer) as described by Sigfusson et al. [5] and Gislason et al. [9]. The composition of this soil solution is given
in Table 1. This sample represents a typical soil water composition from natural peat areas in western Iceland.

Table 1: pH, alkalinity and concentrations of nutrients, major and trace elements of soil solution 98-JA086, used for the geochemical model

Major Concentration Nutrients Concentration Trace Concentration Trace Concentration
constituents per liter nmol/l elements nmol/l elements nmol/l
pH 6.39 NH,4 0.746 Al 634 Hg 0.02
alkalinity 1.170 meq NO, 0.086 As 3.08 Mn 7010
Ca 350 pmol NO; 0.145 Ba 20.5 Mo 1.21
Cl 810 pmol PO, 0.127 Cd 0.09 Ni 44.0
F 2.82 umol Co 60.6 Pb 0.12
Mg 320 pmol Cr 2.25 Sr 188
Na 900 pmol Cu 4.78 Ti 3.46
SiO, 480 pmol Fe 138000 Zn 42.1
SO, 240 pmol

3. Results

Based on the soil water composition shown in Table 1, predominance diagrams for the most stable iron phases
were calculated (Fig. 1). The iron concentrations in Fig. 1 were set at 50 and 500 pmol/l Fe to cover variations in the
measured soil water samples reported in Gislason et al. [9]. The most thermodynamically stable iron minerals are
hematite (a-Fe»O3;) and magnetite (Fe;O4). At low pH and at high reducing conditions the aqueous Fe?* specie
dominates the predominance diagram. By decreasing the iron concentration to 50 umol/l pyrite (FeS,) becomes
present (Fig. 1, right) in a narrow field covering most of the pH range at very reduced conditions right above the
stability line for methane (pCHy4 > 1 atm). These results are in agreement with the findings of Rickard and Luther [16]
for seawater conditions.

Despite these results, soil waters and associated minerals do not reach an equilibrium state under natural conditions
[17]. The reaction rates are the limiting factors for the formation of iron oxides like hematite and magnetite from
solution. Precipitation of ferrihydrite from Fe?'/Fe3* bearing solutions is favored over the formation of goethite
(FeO(OH) or hematite [18]. A wide range of literature shows that ferrihydrite is the most common iron phase in natural
soils, soil water and surface water [7, 16,18].
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Fig. 1: Predominance diagram of the most stable iron phases in natural soil waters with 500 pmol/l Fe (left) and 50 umol/l Fe (right), calculated
with PHREEQC assuming equilibrium state (see text).

Ferrihydrite transforms slowly into goethite and is therefore the most common but metastable iron phase [19, 20].
Hence, the pH Eh diagram showing hematite and magnetite as the dominant iron phases cannot be used as a guide for
natural processes, especially at low temperature in the sub-polar region.

By prohibiting the kinetically hindered mineral phases - hematite, magnetite, goethite and maghemite (y-Fe,O3) -
to form in the model, we constructed a new predominance diagram showing the metastable but natural occurring iron
phases. The robustness of the model was tested by varying the total dissolved iron and alkalinity concentrations within
reasonable range based on chemical analysis of soil water in western Iceland [9]. As shown in Fig. 2, all pH Eh
diagrams are dominated by the presence of ferrihydrite over the whole pH range at oxidizing and moderate reducing
conditions. In addition, iron carbonates can form at pH >7.5 at very reduced conditions. They are represented by
siderite (FeCOs) and green rust carbonate (GR), a mixed Fe?* Fe*" metal hydroxide phase with intercalated carbonate
anions (Fes(OH)2CO3). It is reported that green rust phases were found in soils and sediments under suboxic and
anoxic conditions [21, 22, 23]. While the variation of alkalinity shows little effect on the dominant phases, a decrease
in the iron concentration leads to the formation of pyrite under most reducing conditions. Our predominance diagrams
are in good agreement with published data [16, 19].

The superimposed data for peat bogs (shaded area in the upper left diagram, Fig. 2) from Baas Becking et al. [14]
show, that the pH-Eh conditions in peats can vary substantially and cover nearly the whole predominance diagram.
Therefore, the formation of all shown phases could be possible under natural conditions. Natural peat bogs can also
exhibit very low reducing conditions reaching down below CH4 degassing pressure (pCH4 > 1 atm). Presently, there
is very limited data about the occurrence of siderite in Icelandic soils [24]. As described by the author, siderite was
found only in very small amounts and with probably negligible importance [24]. To our knowledge, to date there is
no published data about any green rust phases in Icelandic soils. The pyrite predominance field disappears when
decreasing the dissolved sulfur concentration by a factor of 5 or more in the modeled solution. At alkaline pH, siderite
takes predominance over pyrite, whereas at lower pH aqueous Fe?* dominates, similar to what can be observed at
higher iron concentrations (Fig. 2, left side). The predominance fields of green rust and ferrihydrite are not affected
by these changes. The models show that the pyrite stability is mostly effected by the Fe:S ratio, whereas alkalinity has
less effect on the predominance field of pyrite in the pH-Eh diagrams. A change of the Fe and S concentrations while
keeping the total dissolved Fe : S ratio constant does not affect the extent of the pyrite field.
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Fig. 2. Predominance diagrams for metastable iron phases under varying iron and carbonate concentrations, shaded field in the upper left diagram
represents common pH Eh conditions in peat bogs (data from Baas Becking et al. [14]).

Based on the observation that ferrihydrite covers most of the predominance diagram, as shown in Fig. 2, and is
abundant in Icelandic peat areas [7], we modeled the oxidation of the soil solution in Table 2 to ferrihydrite and its
effect on other dissolved species. Furthermore, the stepwise mixing of the newly formed ferrihydrite and its oxidized
soil water with seawater simulates the transport of the ferrihydrite by water to the ocean and a subsequent mixing in
coastal waters across a salinity gradient. Our model shows that oxidation of a Fe?* rich soil water leads to the formation
of ferrihydrite, which then acts as a surface for adsorption processes. The initial oxidation of the fluid leads to a
decrease of the fluid concentration of (Fig. 3, circles): Ni by 4.1 %, Cd by 5.0%, Zn by 15.7 %, Cu by 92.8 %, Cr by
95.9%, P by 99.7 %, Pb by 99.8 %, and As by 99.8 %. Elements whose concentration changes less than 1 % during
the simulations are not shown in the diagram. After the equilibration of the reduced soil solution (Table 1) with
atmospheric Oz (pO, = 0.21 atm), the mixing of this fluid with seawater was simulated in 41 steps covering oxidized
soil water to seawater ratios from 3:1 to 1:100,000 — see Fig. 3.



Tobias Linke et al. / Energy Procedia 146 (2018) 30-37 35

100 100

A=

5 —2Cr

e
/ =

/ |

=

~

concentration in solution [%]

50 4
. —Pb
25 4 25
i /
[
0.1 1 10 100 1000 10000 100000

mixing ratio with seawater
Fig. 3. Modeled decrease in the dissolved concentration of heavy metals and phosphate in oxidized soil solution in the presence of ferrihydrite
(initial values as circles) and during its mixing with seawater (solid lines).

By mixing the oxidized peat water with seawater, the different adsorbed constituents are released from the
ferrihydrite. Cadmium is fully released during the first mixing step, followed by Ni, Zn, Cr and P at a ratio of 1:100,
whereas Cr and P was initially nearly completely adsorbed. Copper is fully desorbed at a ratio of 1:5°000, the release
during the first steps is relatively low. Arsenic and lead release requires the greatest quantity of seawater, 25 % of
each element is released at a ratio of 1:100 and 75 % at 1:1000. At a mixing ratio of 1:100,000 As and Pb are fully
desorbed, whereas ferrihydrite is still supersaturated with respect to the aqueous solution. Based on calculations from
Jones et al. [25] this mixing ratio could occur within the first 10 to 15 km from the river inlet into the ocean.

4. Discussion and conclusions

Based on geochemical modelling, we gained insight into the predominance of iron phases within Icelandic peat
soils and their effect on heavy metal and nutrient retention upon oxidation and a subsequent release in costal water.
Note that our models assume equilibrium between the solid phases and aqueous solutions, which may not be attained
under natural conditions [16, 17]. Also, the interaction of other phases, especially natural organic matter, are not
considered in our models. Models for adsorption of metals to humic and fulvic substances suggest strong Cu
adsorption onto these compounds. Therefore, the Cu concentration in aqueous solution might be lower than in our
model calculations. Additionally, the model is only capable of simulating the adsorption to pure ferrihydrite.
Incorporation of heavy metals by coprecipitation cannot be simulated or any modification of the adsorption behavior
of ferrihydrite by its interaction with other natural occurring phases or bacteria.

Our results indicating the high retention of phosphate, arsenate and lead by ferrihydrite are in good agreement with
published data [26, 27, 28]. Poorly crystalline ferrihydrite, which has a high surface area, shows high retention
capacity, but also so too do soils with high ferrihydrite content [29]. Therefore, the release of the adsorbed phases
directly from the soil should be investigated.

The work of Hawley et al. [30] proposed that the export of iron(oxy)hydroxides with surface adsorbed constituents
and their transport to the ocean is negligible in non-glacial Icelandic rivers. This conclusion is in contrast to the
calculations presented in this report. Nevertheless, even if the transport and release of heavy metals to the ocean is
limited at present, this process might become more important due to future flooding events or sea level rise.
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Highlights

e Dissolution of basalt in glacier melt waters leads to direct CO2 uptake from the
atmosphere

e The rate of surface normalized CO: uptake was governed by the CO2 gradient across
the water-air-interphase and windspeed

e Sub-zero temperature can result in ice cover, terminating water-air interactions

e Atmospheric CO2 concentration puts an upper limit on the rate of COz influx at fixed

wind speed
Abstract:

The contribution of CO:2 emissions from reservoirs to the atmosphere is continuously
increasing with rising energy demand. Therefore, it is important to quantify the emissions and
define the rate determining mechanism for degassing or uptake of CO: in man-made
reservoirs. Here we present results from two reservoirs in Iceland over a total time span of
16 years. The partial pressure of CO2 within the Hélslon reservoir, fed by meltwater loaded
with suspended basaltic particles at the northern edge of the Vatnajokull glacier NE-Iceland,
was considerably less than the CO:z pressure of the atmosphere during the years 2008-2013.
The calculated specific direct uptake of CO:z from the atmosphere into Halslon was
121£67.9 gco2 m? yr during the ice-free period of 6 months and resulted in more than 5000

tonnes of COz transferred from the atmosphere annually. The rate of uptake was governed by
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the CO2 gradient across the water-air-interphase and windspeed but less by temperature.
However, temperature will affect water-rock interactions within the water body and sub-zero
temperature can result in ice cover, terminating water-air interactions. Atmospheric CO2

concentration dictates the upper limit of the CO: influx rate at fixed wind speed.

The mixing of Halslon reservoir water with the CO2 emitting Lagarfljot reservoir downstream
resulted in a decrease of the CO2 emission from Lagarfljét, with 5335t CO2 yr'! before and
1670 t CO2 yr'! after the damming and mixing. These annual CO2 emissions from Lagarfljot
reservoir were equal to 28 % of the total annual dissolved inorganic carbon (DIC) flux to the
ocean but decreased to 4.9 % after the damming. The direct CO2 uptake by the Halslon
reservoir, as a percentage of the Lagarfljot DIC flux, was equal to 15 % for the years 2008-
2013. This study shows that dissolution of basalt in glacier melt waters leads to direct CO2
uptake from the atmosphere, which can potentially be utilised for future carbon removal from

the atmosphere.
1. Introduction

The present 8 Gt CO2yr ! release of CO2 from Earth’s terrestrial surface waters to the
atmosphere is a major contributor to the short-term carbon cycle (Raymond et al., 2013). This
flux from surface waters is much larger than the 2 Gt CO2 yr! degassing from the Earth’s
crust and the 0.5 Gt CO2 yr! combined CO2 drawdown from the atmosphere by weathering of
silicates and carbonates on the continents (Gaillardet et al. 2019; Hartmann et al. 2009).
According to Raymond and coworkers (2013), the majority of the CO2 release from terrestrial
surface waters is from wetlands. Furthermore, man-made drainage and burning of peat areas
world-wide releases 2 to 3 Gt CO2 yr! to the atmosphere (Hooijer et al. 2006; Crump, 2017;
Parish et al., 2008). Hence, a large fraction of the CO: degassing from terrestrial surface
waters originates from organic matter decomposition in wetlands, and most likely due to
draining of wetland soils worldwide. The contribution from lakes and reservoirs is estimated

at 1.1 Gt CO2 yr'! (Raymond et al. 2013).

Within the present study we quantify the water-air-CO2 exchange through the surface of the
Halslon reservoir constructed in 2003-2007, located at the northeastern edge of the
Vatnajokull glacier, Iceland, and the water-air-CO2 exchange before and after the modified
downstream Lagarfljot reservoir (Fig. 1). This field site in NE-Iceland represents the extreme

case where the reservoir waters are poor in suspended particulate organic matter but loaded
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with reactive basaltic particles, capable of lowering the partial pressure of COz in these waters

via water-rock interactions, resulting in direct uptake of CO2 from the atmosphere.

Here we report on, 1) the water chemistry and suspended material composition of the new
Halslon reservoir in NE-Iceland, the outflow from the associated Karahnjukar power plant,
and the down-stream Lagarfljot reservoir waters before and after mixing with the Halslon
reservoir waters, 2) the measured air temperature and wind speed distribution at the
Karahnjikar dam and the Lagarfljot reservoir at Egilsstadir, before and after commission of
the Karahnjikar dam, 3) the calculated in situ COz2 partial pressure of the reservoir waters in
comparison to the measured daily average CO:2 concentration in the atmosphere at the
National Oceanic and Atmospheric Administration (NOAA) Storh6foi South Iceland
monitoring station, 4) the calculated COz-fluxes between these reservoir waters and the
atmosphere during the sampling periods 1998-2003, and 2008-2013, and finally 5) a
comparison of the water-air-fluxes with the combined dissolved inorganic carbon (DIC) river

fluxes from these reservoirs to the ocean.

The chemistry of the river waters and their suspended material before the construction of the
Karahnjukar dam and the Halslon reservoir during 2003 — 2007, were described in detail by
Gislason et al. 2006; 2009; Eiriksdottir et al., 2008; 2013, 2014; 2015; and Louvat et al. 2008
and furthermore by Eiriksdottir et al., 2014; 2017 after the commission of the Karahnjukar
power plant in November 2007, showing a doubling of the river discharge through the
Lagarfljot reservoir at the Lagarfoss dam. Here we used this existing data to quantify the CO2
water-air fluxes using additional climatological data and established modelling approaches to

quantify the direct water-air-COz fluxes, and to illuminate the rate regulating factors.
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Fig. 1. Map showing the location of the two river catchments affected by the damming of the
Jokulsa & Dal glacial river in Eastern Iceland, the location of the sampling sites (white filled
circles), the Halslon reservoir (orange) created by the dam, the headrace tunnels (orange
dashed curves), the Powerhouse (orange square), and the Lagarfljot reservoir downstream
from the Powerhouse extending all the way down to the Lagarfoss dam. The Vatnajokull
glacier is shown in white in the lower left corner. Weather stations are close to the
Karahnjukar dam and Egilsstadir (white circles). Map data from the National Land Survey of
Iceland and Landsvirkjun, National Power Company of Iceland.

2. Methods
2.1. Field site

The location of the studied field site, which is affected by the damming of the Jokulsa & Dal
glacial river in Eastern Iceland, is shown in Fig. 1. Accompanying the power plant
construction in 2003-2007, the rivers have been monitored from 1998 to 2003, and after the
damming from 2008 to 2013. Officially, the Karahnjukar power plant started commercial
operation November 2", 2007. The Kéarahnjukar dam (Fig. 1) is the largest of its kind in
Europe, 198 m high and 700 m long and the geographic surface area of the reservoir can reach
up to 58.3 km? resulting in a total volume of 2.2 km? (Leifsson et al., 2009). The reservoir is
within 25 km of the northern edge of the Vatnajokull glacier (Leifsson et al., 2009;
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Gunnarsson et al., 2014). The reservoirs maximum operational level is at 625 m above sea
level (a.s.l.) (Leifsson et al. 2009). When exceeding this, the reservoir overflows into the old
Jokulsa a Dal river channel, around 40 days each year during August to September (Fig. 1 and
Fig. Al in Appendix 1). The practical minimum operational water level is at 570 m a.s.l.,
reached in May each year (Fig. A1), when the reservoir becomes ice-free and the surface area
is about 17 km? (Leifsson et al., 2009). If the Halslon reservoir reaches its minimum
operational level, the power plant uses water from two other reservoirs, Kelduralon (Fig. 1)

and Ufsarlon, situated in the catchment of the Jokulsa i Fljotsdal river.

The reservoir water is diverted from the Jokulsa a4 Dal river catchment into the Lagarfljot
reservoir via a headrace tunnel to the Powerhouse (see Fig. 1), creating a 600 m vertical drop
as the water flows through the Karahnjukar power plant. This water is then released into the
Jokulsa i Fljotsdal river (normal water level ~25 m a.s.l., Leifsson et al. 2009) and eventually
into the Lagarfljot reservoir. Its average water level at the Lagarfoss dam was at 19.9 m a.s.l.
before the operation of the Karahnjukar dam (Axelsson 2012). The Lagarfljot reservoir is a
35 km long lake with a geographic surface area of 53 km?, a maximum depth of 112 m, and a
volume of 2.7 km® (Hallgrimsson, 2005). The average discharge through the Kérahnjukar
headrace tunnel is 110 m® s! (Landsvirkjun, 2009), causing the average discharge from the
Lagarfljot at Lagarfoss to double after the commissioning of the Kérahnjikar power plant,
November 2", 2007. Consequently, the water residence time in the Lagarfljot reservoir was
halved, from one year to six months (Témasson and Hardardéttir, 2001). The water level of
the Lagarfljot reservoir rose by about 30 cm at the inlet of the reservoir and northward
towards the town of Egilsstadir (Fig. 1). North of the town the water level drops gradually and
at the outlet at Lagarfoss the water level is 36 cm lower compared to the year 2004 due to

modifications at the Lagarfoss outlet (Axelsson 2007).

These river catchments are partially glaciated, with glaciers covering 43 % and 6 %,
respectively, of the catchments at Jokulsa a Dal and Lagarfljot above the monitoring sites in
Hjardarhagi and Lagarfoss (Fig. 1) before the installation of the Kédrahnjikar dam (Kardjilov,
2008). The glacier cover of the Halslon reservoir catchment is 78 % (Leifson et al. 2009).
Every year after the Halslon reservoir fills up during late summer, and overflows via a
spillway into the Jokulsa & Dal river channel for a few weeks, it dramatically changes the river
discharge and the riverine concentration of suspended and dissolved material downstream of

the reservoir (Eiriksdottir et al., 2017).
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2.2. Water sampling and analysis

The collection and analysis of samples was previously described by Eiriksdottir et al. (2013,
2014; 2015; 2017). Samples were collected throughout the year to account for seasonal
changes on the chemical compositions of the rivers and the outlet from the power plant
(Tables A1-5 and A7). Additionally, 21 samples, given in Tab. A6, were collected from the
Halslon reservoir closest to its maximum depth at 64°5624.24"N 15°47'32.46"W, at various
depths in May 2008 through 80 cm thick ice (Fig. A3-4, Tab. A6) and by boat in August 2008
(Fig. A5). Again, in August 2009 from 5 m depth, and later that year in September as surface
sample pulled in from the shore. One more surface sample was taken in August 2010. After
that, samples were taken from a boat at various depths above the maximum depth of the
reservoir at 64°56'29.28"N 15°47'40.56"W when water was overflowing the dam via the
spillway in 2011, 2012 and 2013 (Fig A5). All these reservoir samples were collected with a
Niskin sampler and treated in similar fashion as the river samples. Simultaneously, detailed
temperature profiles from the surface and down to about 130-160 m depth were measured in
2008, 2011, 2012 and 2013 (Fig. A5 and Tab. A6 in the Appendix). A more detailed sampling

description can be found in the supplementary material and the above cited literature.
2.3. Chemical speciation and CO; flux calculations

The flux F (mol m~2 s7!) of slightly soluble nonreactive gases such as COz across the air-water
interface can be defined as the product of the gas transfer velocity k (ms') and the
concentration difference between the top and bottom of the liquid boundary layer (Wanninkof
2009).

Fco2 =k (Cw — Co) (eq.1)

where Co is the CO2 concentration at the water surface and Cw is the CO2 concentration of the
well-mixed bulk fluid below (mol m™). Assuming a chemical equilibrium between the
atmosphere and the water phase boundary, Co can be expressed as the product of the CO2

concentration in air and the dimensionless Ostwald solubility coefficient o resulting in:
Fcoz =k (Cw — a Catm), (eq.2)

Fcoz is negative for a gas flux from the atmosphere to the water. Expressing equation 2 in

terms of partial pressure of the gas in air and water results in:

Fco2 = k Ku(pCO2w — pCO2atm) (eq.3)
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where the in situ pCO2w and pCOzam are the partial pressures (atm) of CO2 in the well mixed
bulk fluid, calculated with PHREEQC interactive software version 3.4.0 (Parkhurst and
Appelo, 1999) using the minteq.v4.dat database (Allison et al., 1991; U.S. Environmental
Protection Agency, 1998) and in the water surface film that is in equilibrium with the
atmosphere, respectively (e.g., Alin et al., 2011). Kn is the temperature and salinity dependent
CO:2 gas solubility constant, sometimes referred to as the Henry’s law constant (mol m™
atm™'). Assuming CO:z behaves as an ideal gas, Ku is related to o by Ku = a (R Tw) !, where

R (m® Pa K™! mol™) is the ideal gas constant and Tw is the water temperature in Kelvin.

The transfer velocity k can be estimated using the approach by Wannninkhof (1992), where k
is parameterized to the temperature-dependent nondimensional Schmidt’s number Sc, which
is the ratio of the kinematic viscosity of water v and the molecular diffusivity D, and is equal

to 600 for CO2 at 20°C in fresh water (Jahne et al., 1987).
k=ke0o(Scco2/600)" (eq. 4)

Where keoo is the gas transfer velocity normalized to Sc of CO2 at 20°C with n = 2/3 for wind
speeds U less than 3.6 m s~! and n= 1/2 for wind speeds above 3.6 m s™' (Jihne et al., 1987).

The Schmidt’s number Sccoz2 can be extrapolated to other water temperatures using the

following equation (Roehm et al, 2009, Wanninkhof et al., 1992):

Sccor = 1911.1 — 118.11%Ty + 3.4527% Tu? — 0.041320* T3 (eq.
5)

with the water temperature Tw in °C. In the calculations of the present study monthly median
air temperatures from nearby meteorological stations measured at 2 m above ground level
(a.g.l.) were used. For all calculations all temperatures at or below 0°C were set to 0.1°C, to

avoid numerical problems.

Multiple studies have attempted to parameterize keoo, in this study the equation proposed by

Cole and Caraco (1998) was used:
keoo = 2.07 +0.215+U10"”7 (eq. 10)

together with the wind speeds measured at 10 m hight from nearby meteorological stations.
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2.4 Wind speed and air temperature

The wind speed and air temperature data are received from the data base of the Icelandic
Meteorological Office (IMO) with a temporal resolution of 1 hour. Data is obtained from two
stations, Karahnjukar (No. 5933, 64°56'49.6"N 15°47'34.5"W, 639 m a.s.l.) by the Halslon
reservoir and Egilsstadir airport (No. 4271, 65°1629.0"N 14°24'23.3"W, 23.5 m a.s.l.) by the
Lagarfljot reservoir (see Fig. 1). The wind velocity was measured by standard Young
anemometers, with an accuracy of £0.3 m s at 10 m a.g.l. and the air temperature by Logan
platinum resistance thermometers, with an accuracy of £0.1 K at 2 m a.g.l. Data was retrieved
from the Karahnjukar station for the time period of June 2008 to September 2013, including
the duration of the water monitoring period of the Halslon and the Lagarfljot reservoirs, and
from the Egilsstadir airport weather station from November 1998 to November 2003 (before
the deviation of the Jokulsa 4 Dal river into Lagarfljot) and from November 2007 to

December 2013 (after the deviation).

2.5 Estimation of Ice cover

The determination of the ice cover of the reservoirs is done by visual assessment through web
cameras owned by the Landsvirkjun power company. In rare cases the reservoirs are inspected
on site. During spring and autumn when changes in the ice conditions are expected, web
cameras are regular examined and the conditions of the reservoirs are noted. Low visibility
during weather events (snow/fog) can affect the estimation of the dates, leading to some
additional uncertainty if the web cameras cannot capture the entire lagoon. A lake is
considered ice-free when there is little or no ice cover on the lake. Estimation of ice formation
is more precise as the reservoirs usually freeze over all at once. The freezing and melting

dates have an uncertainty of up to one week.
3. Results
3.1. Temperature and wind speed.

The wind speed and temperature distribution measured at Karahnjukar and Egilsstadir airport
for each calendar month are shown in Fig. 2 as boxplots and the underlying data are provided
in Table A8 in the Appendix. Generally, the highest wind speeds are observed during the
winter months, while the lower wind speeds are present during summer when higher
temperatures occur. During storm events, the wind speeds can exceed 30 m s™!, but typically

1

only lasting for a few hours. Wind speeds above 13 ms™ were typically not observed for

more than 24 consecutive hours. Therefore, this time span was used to estimate maximum
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fluxes from high wind speed events. The wind speeds measured at the Kéarahnjukar weather
station are higher than that at the weather station at the Egilsstadir airport, while the
Karahnjukar temperatures are lower, due to the higher elevation. The air temperatures are
similar during the two monitoring periods at the Egilsstadir airport, but the wind speeds have

declined slightly with time.

Karahnjukar weather station Egilsstadir 1998-2003 Egilsstadir 2007-2013
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Fig. 2. The distribution of air temperature (°C) at 2 m a.g.l. in the top row with the dashed
grey line representing 0°C, and wind speed (ms') at 10 m a.g.l. in the bottom row with
dashed grey reference lines for 3.6 ms™' and 13 ms™!, for each calendar month. At the
Karahnjukar weather station, by the Karahnjikar dam (Fig. 1), from beginning of June 2008
to end of September 2013 (left). At the Egilsstadir airport weather station (Fig. 1) from
November 1998 to November 2003 (middle), and November 2007 to December 2013 (right).
The box plot shows the monthly median (horizontal line) and the lower and upper quartiles
(25 % and 75 %) as well as the hourly outliers. The whiskers extend to the lowest/largest
value no further than 1.5 inter-quartile range from the lower/upper quartile. The blue
diamonds show the monthly mean values. Calculations are based on hourly measurements.

Water temperature profiles within the Halslon reservoir water body were measured from a
boat in August 2008 at the deepest part of the reservoir shown by the white filled circle in the
Halslon reservoir in Fig. 1, and again at the same location in September when the water level
had reached the spillway at more than 625 m a.s.l. and yet again in 2011, 2012 and 2013
(Eiriksdottir et al., 2014; Fig. AS5). The air temperature was higher during the August
campaign than during those in September, and strong wind prevailed before and during the
2011, 2012 and 2013 campaigns. The water temperature from the surface down to ~50 m

water depth was higher in August 2008 (~6°C) than during September of the following years
(only 3-4°C, Tab. A5).
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Additional temperature profiles were measured in Halslon six times per year, from June to
November, 2009 to 2012, by the Landsvirkjun Power Company (Bodvarsdottir and Axelsson,
2014). The highest measured temperatures are in late July to early August (6° to 8°C), the
lowest temperatures are present in early June and late November (1°C to 2.5°C). The
shallowest measurements reported were at 1 m depth in 2009-2011 and at 10 m depth in 2012.
Hence, the temperature span of all the shallow waters (0-10 m depth, Figs. A4-AS5) during the
ice-free period, ranges from an average temperature of 4.5+4°C. This is in good agreement
with the monthly median air temperature in Fig. 2 from the Karahnjukar weather station
during the ice-free period. In the following, monthly mean air temperatures and wind speeds

were used to calculate the monthly mean gas transfer.
3.2. Ice cover

The monthly median, the lower and upper quartiles for the air temperature at the Karahnjtkar
weather station are at or below zero from November to March, and most of April (Fig. 2).
Field observations show that the Halslon reservoir was fully covered with ice from mid to end
of November during the water monitoring period from 2009 to 2013. The average and median
air temperature at Halslon was above zero degrees Celsius in May, but not the lower quartiles.
The June median, average and the lower quartile were well above zero (Fig. 2). Ice was fully
melted by 1% to 12" of June during 2009 to 2012. No ice cover data is available for the
Halslon reservoir for the year 2008, but the reservoir was fully covered with ice May 19,
2008, when the temperature profile was measured (Fig. A3-4) The reservoir was ice-free for

about half a year in 2014-2019, from June to November-December (average 179 days).
3.3. Chemical composition of water samples

The chemical compositions of the studied rivers before and after the damming and the
associated reservoirs are presented in Appendix 2. Much of this data has been previously
reported by Eiriksdottir et al., 2015, 2017. Here we have added the composition of the
Lagarfljot reservoir waters and particles before the installation of the Karahnjukar dam (Tab.
A4). Furthermore, to all tables we have added the mass percent of organic carbon in the
suspended organic and inorganic particle, the molar precent of dissolved organic carbon
(DOC) in the total dissolved carbon (TDC = DIC + DOC) in each sample, the C/N molar ratio
of the organic particles, the in situ pH, the in situ pCO2w and COx(q) the in situ concentration
of dissolved COz2 in the water. In situ refers to the calculated value at the measured water

temperature at the time of sampling.
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3.3.1 Lagarfljot reservoir

The calculated pCOaw for the Lagarfljot reservoir are shown in Fig. 3 and in the Appendixes
in Table A4 and AS. Before the damming (1998-2003) the average pCO2w was 507 patm. The
pCOz2w values were mostly at or above the partial pressure of the atmosphere, pCO2zatm, at the
time of sampling (avg. 367 patm). After the construction of the Karahnjukar power plant in
2007 and the ensuing change in the Lagarfljot reservoir’s inflow, the pCO2w values decrease
to an average of 444 patm, while the atmospheric pCO2atm values increased due to continuous
rise in man-made global CO2 emissions (avg. 397 patm). Overall, the partial pressure values
were above the atmospheric reference in both cases, indicating a CO2 flux from the reservoir
to the atmosphere, but the difference (pCO2w-pCO2am) became smaller decreasing the CO2
flux to the atmosphere after the construction of the Karahnjikar power plant (see Fig. 3, Tab.
1 and 2).
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Fig. 3. Time evolution, before (grey filled squares) and after the erection of the Karahnjukar
dam (black filled squares), of the in situ partial pressure of CO2 in the Lagarfljot reservoir
water at the Lagarfoss dam and in the outlet from the Karahnjukar power plant (red filled
squares) sampled close to the powerhouse (Fig. 1). The light blue graph represents the partial
pressure CO2 concentration in the atmosphere at the NOAA Storh6foi south Iceland CO2
monitoring station (Lan et al. 2023).
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The COz2 fluxes from the Lagarfljot reservoir before (1998-2003) and after the damming of
the Halslon reservoir (2007-2013) were calculated from the difference of pCOzam and pCOzw,
using the pCOzam derived from the average pCO: values (367 patm and 392 patm) over the
measuring period from the NOAA station and the average pCO2w of all measured water
samples before (507 patm) and after the damming (444 patm) respectively. Flux calculations
were done for each month, using median monthly air temperatures and median monthly wind
speeds, and a constant surface area of 53 km?. Error estimates were done using the upper and
lower quartile of the median monthly temperatures and wind speeds. Additionally, we
estimated potential high fluxes during short time (24 h) high wind speed events based on the
highest hourly outliers of wind speed measured for each month. The average annual flux was
calculated as a sum of the monthly fluxes, with additional information from the error
estimates. The ice cover during the winter is assumed to prevent any gas exchange of the
reservoir, reducing potential fluxes during these months. But as the Lagarfljot reservoir was
not reported to fully freeze during the winter months, no ice cover has been assumed,

therefore the fluxes represent maximum values without any effects of blockage by ice.

Table 1: Mean monthly CO:2 fluxes (tonne CO2) of the Lagarfljot reservoir in 1998-2003
before the construction of the power plant, their estimated errors based on mean monthly
temperature and wind speed variations and the effect of high wind speed events over 24 h as
well as the estimated annual flux for the observation period.

Month Mean CO; flux Error Max flux at high
(t) (t) wind speed (t/24h)

January 459 227 166

February 511 241 161

March 459 227 111

April 510 311 93

May 509 242 89

June 509 242 93

July 410 212 73

August 367 197 55

September 367 198 102

October 410 213 93

November 411 213 145

December 412 212 93

sum +5335 +2736

The annual CO:2 evasion from the Lagarfljot reservoir was estimated to be around
5335+2736 t before the construction of Karahnjukar power plant. The annual flux was less
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than one third,1670+2741 t, for the observation period of 2007-2013. While changes in
temperature throughout the year are substantial, their effect on the flux is negligible. As the
surface area of the reservoir is assumed to be constant, the main change of the mean monthly
fluxes is caused by variations in wind speed. As shown by the calculated fluxes at the highest
hourly measured wind speeds (up to 25 m s, see Fig. 2) over a period of 24 hours, the mean
monthly COz flux can be increased by up to 50 %. The period of full ice cover is uncertain,
but assuming a coverage of 3 months during winter would decrease the fluxes by around

25 %.

Table 2: Mean monthly CO: fluxes of the Lagarfljot reservoir in 2007-2013, after the
construction of the Karahnjukar power plant, their estimated errors based on mean monthly
temperature and wind speed variations and the effect of high wind speed events over 24 h as
well as the estimated annual flux for the observation period 2007-2013.

Month Mean CO; flux Error Max flux at high
(t) (t) wind speed (t/24h)

January 153 232 54
February 113 210 50
March 171 255 43

April 153 255 54

May 170 255 36

June 170 255 21

July 152 231 22
August 124 209 24
September 122 210 39
October 116 210 36
November 113 210 50
December 113 210 54

sum +1670 +2741

3.3.2 Halslon reservoir

The data from the Halslon reservoir show clearly that the pCO2w values are always at or
below the atmospheric pCOzam pressure (Fig. 4 and Tab. A6). All but the first two samples
were sampled in August and September each year. Some samples are at less than 10 patm.
The measured depth profiles overall show a decrease of pco2 with increasing depth. Caution
must be taken, as the sample dates and methods were not uniform as described in the method
and introduction sections. This is observed by very low pCO2w values for one 5 m deep

sample. The average pCOaw of all the samples from the Halslon reservoir was 174 patm
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(median: 138 patm), while the corresponding average pCOzatm during the study period of
2007-2013 was 392 patm.
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Fig. 4. Time evolution of the in situ partial pressure of COz in the Halslon reservoir water
(blue filled squares) and in the outlet from the Karahnjukar Powerhouse (red filled squares).
The sample numbers refer to the Halslon water depth at which the samples were taken. The
light blue graph represents the partial pressure CO2 concentration in the atmosphere at the
NOAA Storhofoi south Iceland CO2 monitoring station (Lan et al. 2023).

The samples collected from the Karahnjukar Powerhouse outflow channel are mostly at or
below atmospheric pCO:2 values as depicted by the red filled squares in Fig. 3 and 4 (Tab.
A7). The highest measured value is at 814 patm, approximately double the atmospheric pCO2
value, some values are as low as the deepest samples from the Halslon reservoir at ~10 patm.
Data interpretation of the outlet waters has to be done with caution, as the Karahnjukar
hydropower station is fed by two additional reservoirs, that are partially mixing in the
headrace tunnels with each other or with water from the Halslon reservoirs in May to July

each year.

Monthly mean fluxes for the Halslon reservoir were calculated as described for Lagarfljot but

multiplied with the average surface area (Tab. A9) for each month derived from the reservoir
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water level (see Fig. Al and A2) and added up over the entire ice-free period in
correspondence with table A10. The reservoir is often frozen till end of May and then fully ice
covered around the last week of November. As the surface area in May is quite small, the flux
is very small too, while the water fill level of the reservoir in November is nearly at its peak.
This induces some additional uncertainty as the ice cover affects the gas flux. Therefore, the
annual flux of the reservoir has been estimated by adding the values from June to November.

Potential fluxes for May are provided in table 3 but are not included in the annual flux.

CO:z2 flux from the Halslon reservoir is estimated to be -5131 to -5515 t over the entire ice-free
period from June to November for each year with an error of £3011 to +3188 t. This value has
a high uncertainty, as the average pCOzw value of 174 patm likely does not represent the
overall reservoir. Changes in pCO2w throughout the reservoir waterbody, as well as with
seasons and over the years are large. Changes in the reservoir surface area contributed to
water usage and precipitation increase the error. High wind speed events (Fig. 2 and Tab. A8)
can lead to increased flux rates but are limited by ice cover and by the short event durations

but can still be as large as 30 %.

Table 3: Mean monthly CO2 fluxes (tonne) from the Halslon reservoir, potential fluxes in
May in brackets, their estimated errors based on monthly median temperature and wind speed
variations and the effect of high wind speed events over 24 h as well as the estimated annual
flux calculated for June to late November.

Month mean CO2 flux Error Max flux at high wind
(t (t speed (t/24h)

May (-255) (121) (-72)

June -316 to -382 159 to 192 -60 to -72

July -399 to -619 196 to 305 -94 to -146

August -673 to -868 320 to 412 -198 to -255

September -1169 756 -301

October -1172 755 -256

November -1306 to -1402 767 to 824 -382

Sum -5131 to -5515 +3011 to +3188

4. Discussion

The highest calculated in situ partial pressure of CO2 (pCO2w) in the waters of the present
study was ~850 patm from the Lagarfljot reservoir before the construction of the Karahnjukar
dam March 1%, 1999. This was more than twice the atmospheric pCO2am at the time of
sampling. Hence, CO2 was then released from the water and to the atmosphere (Fig. 3 and

Tab. A7). Nevertheless, this is a relatively low maximum pCOzw as values as high as
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100,000 patm are observed in organic-rich wetland soil waters before their exposure to the
atmosphere (Linke et al. 2024a and 2024b). The lowest pCO2w was about 10 patm at 130-
160 m depth within the Halslon reservoir and comparable to the lowest value in the outlet
from Karahnjikar powerhouse in late summer of 2009 (Figs. 4 and 5 and Tab. A6 and A7).
The lowest reported pCO2w in Iceland is around 0.32 patm, measured in spring water

emerging from glassy basaltic rocks at pH 10.10 and 2°C (Gislason et al. 1996).

The annual CO2 flux from the Lagarfljot reservoir to the atmosphere was estimated to be
around 5335+2736 t before the construction of Karahnjikar power plant. The annual flux
decreased to one third, 1670£2741 t, for the observation period of 2007-2013. A 3-month ice
cover during wintertime would decrease these fluxes further by ~25°%. The CO: fluxes of the
Halslon reservoir are negative, from the atmosphere into the reservoir water, -5131 t to -5515 t
over the entire ice-free period of around 6 months per year with an error of +£3011t to

+3188 t, making it a COz sink.

The fluxes are mainly affected by variation in ice cover, changes in total water surface area as
a function of reservoir fill level and wind speed. High wind speed events that lasted for only
24 hours can affect the monthly mean flux by up to 30 %, but often occur during winter when
the Halslon reservoir is ice-covered. Apart from causing ice formation, temperature variations
are less important, this can be seen in Lagarfljot over the months where the temperature varies
by up to 10°C but the wind speeds are relative constant, resulting in fluxes that are nearly
equal throughout the year. Temperature changes of around 10°C affect the fluxes within a few
percentages, while as the increase of wind speed from 5 to 10 m s results in more than
doubling of the flux, and even more at higher wind speeds as the gas transfer velocity kw

becomes much larger with wind speed depending on the approach (see Fig. 2 and egs. 5-10).

While the specific emission of water bodies to the atmosphere can be large, such as those
waters emerging from organic-rich wetland soils in southern Iceland (Linke et al., 2024a and
b), the potential uptake via negative fluxes is limited by ApCO2 (~400 patm) as shown in
Fig. 5. Assuming an atmospheric partial pressure pCOzatm of roughly 400 patm, the maximum
uptake of CO2 from the atmosphere at a pCO2w value of zero is equal to ~800 t km2 yr! at
10°C and 10 m s~! wind speed as shown in Fig. 5. Meanwhile, any positive ApCOz values that
are greater than approximately 400 patm result in CO2 emissions that are larger than any
potential uptake under the before mentioned parameters, e.g. 2100 and 7800 t km™ yr! for
3ms'and 10 m s respectively at a ApCOazw value that is 10-times higher (4000 patm).
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Fig. 5. The specific COz flux F at 10°C as a function of ApCO2 (pCOz2w - pCO2atm), assuming
fixed wind velocities at 3.0 ms™! and 10 ms™!, the blue line at ApCO2 = 0 indicates the
equilibrium between COz partial pressure of the atmosphere and the water phase. Note that
CO2 uptake at values below 0 is displayed in linear scale, while emissions are displayed in
logarithmic scale to cover a larger scale.

Eiriksdottir et al. (2017) calculated an increase of the dissolved inorganic carbon (DIC) flux
from 19,016 t yr!' to 34,048 t yr'! for Lagarfljot at Lagarfoss and a decrease from 21,558 t yr'
to 11,618 t yr! for Jokulsa 4 Dal at Hjardarhagi for the time periods 1998-2003 and 2008-
2013 respectively, with a total increase of these DIC fluxes to the ocean by 13 %. These
changes are attributed to the change of the river course following the damming of Jokulsa &
Dal and the construction of the Karahnjukar power plant, and about 10% climate induced
increase in runoff during this period (Eiriksdottir et al. 2017). Compared to these river fluxes,
the here presented potential CO2 emissions from the Lagarfljot reservoir of 5335 t before and
1670t after damming decreased by a factor of 3. Before the damming the annual CO:
emissions from the Lagarfljot reservoir to the atmosphere were equal to 28 % of the riverine
DIC fluxes to the ocean but decreased to 4.9 % after the damming. The CO:z uptake by the
Halslon reservoir as a percentage of the Lagarfljot DIC flux is equal to 15 % for the time span

2008-2013.

Carbon to nitrogen (C:N) ratios of the river suspended organic particulate matter in most river

samples are around 20 to 23 indicating a terrestrial plant source, while lower ratios (C:N =
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6.6) typically indicate algae or phytoplankton (Redfield 1934). The C:N ratio of mineral soils
is reported with a ratio of 10.9 (Batjes 2009). The Jokulsa 4 Dal river at Hjardartangi shows a
maximum C:N ratio of 29, which might indicate the influence of the surrounding peat areas

that are known to reach very high C:N ratios of 60 and above (Loisel et al. 2014).

The Halslon reservoir’s average soil thickness before dam construction was 2.2 m and the
carbon content was low: 10 % in the top part, 1.5 — 2.5 % in the middle and 3.8 — 4.8 % in the
lower part of the soil sections (Arnalds and Gisladottir, 2001). The bedrock consists of
basaltic rocks that are relatively young, about 1 Myr (Gislason et al. 2009). The river
suspended basaltic particles in Jokulsa a Dal, before damming, were reactive Mg-rich basalt
(Eiriksdottir 2008, Gislason et al. 2006), and as can be seen in Table A3, the average
concentration of suspended particulate organic carbon particles was only 0.38 weight-% of the
total river suspended inorganic particle concentration. Similarly, the average concentration of
suspended organic carbon particles from the outlet of the Karahnjukar power plant was only
0.22 weight-% of the total concentration of suspended inorganic and organic particles in the
river. Concentrations in Halslon at various depths were 0.24 weight-%, highlighting the
dominating effect of water rock interactions rather than organic processes such as

photosynthesis and respiration, and break down of river transported organic matter.

The specific median flux of CO: to the atmosphere from the Lagarfljot reservoir over the
entire year was estimated to be 100.7+51.6 gcoo m™ yr~' (units equal to tkm2yr!) and
31.5£51.7 gcoo m2 yr ! before and after the damming respectively. These fluxes are relatively
low compared to the specific fluxes from temperate reservoirs of 511 gcoo m2yr! (21
reservoirs, Louis et al. 2000 and references therein) or German reservoirs of 611 gco2 m™ yr!
(39 reservoirs, Saidi and Koschorreck, 2017), while data from tropical reservoirs typically
show a higher average flux (e.g. 1277 gcoo m2 yr'! in Louis et al. 2000). This is caused by
much higher median pCOazw values in tropical freshwater lakes 1910 patm compared to non-
tropical freshwater lakes 1120 patm (Raymond et al. 2013). The specific median flux of COz
from the atmosphere into the Halslon reservoir, which was constantly undersaturated with
respect to atmospheric pCO2am, was estimated to be -121.4+67.9 gco2 m? during the ice-free
period of 6months. If no ice cover was present the flux would be
approximately -208 gco2 m~2 yr~!, with a large uncertainty caused by the varying geographical
reservoir surface area and very high wind speeds observed during winter. The Halslon
reservoir shows much higher specific fluxes than the Lagarfljot reservoir despite having

similar total fluxes. This is cause by the large surface area variation of the Halslon reservoir
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over the year, and the presence of higher wind speeds at higher altitude compared to those at
the protected Lagarfljot reservoir. The here observed fluxes are of the same order of
magnitude as the estimated CO> drawdown by alkalinity export (~62 gco m™ yr!) from soil
waters emerging from organic-rich soils in South Iceland or the average net annual carbon
accumulation rate of corresponding soils (95-190 gco2 m~ yr!) (Linke et al. 2024b). Overall,
the CO: sink effect that is observed in the Halslon reservoir is small, which agrees with data
from Barros et al. (2011) that observed on average only up to 4-times smaller influxes
compared to reservoir emissions (see average emission values above). Additionally, CO2
emissions from “young reservoirs” are often elevated in the first 15 to 20 years after their
construction (Raymond et al. 2013), which is caused by the flooding and decomposition of
organic material in soils. It is noteworthy that the soil present in the area of the Halslon
reservoir had a low carbon content (Gisladottir et al. 2014), hence flooding of this soil did not
lead to large emissions. Despite the overall positive effect with respect to the
decrease/negative CO2 emissions of the study area, it has to be noted that degassing of
wetlands, that were drained due to the diversion of the river course, is not accounted for in
this study. In addition, it must be emphasized that the observed CO2 drawdown is caused by
natural processes, as a result of mechanical and chemical weathering of the rocks at the base
of the glaciers and airborne dust (Gislason et al. 1996, Eiriksdottir et al. 2013, Raiswell and
Thomas 1984) mostly under the glaciers before reaching the reservoirs. The dissolution of
highly reactive basaltic particles creates alkalinity and raises the pH, resulting in CO2
drawdown when in contact with the atmosphere (Gislason and Eugster 1987a and b). The
chemical weathering of the glacier fed rivers is highly affected by temperature and runoff
(Gislason et al. 2009; Eiriksdottir et al. 2013) and will rise with increasing temperature and

runoff and will be affected by changes in the river courses by damming.

5. Conclusions

Our work suggests that the diversion of water from one catchment to another caused by the
construction of the Karahnjukar power plant led to a decrease in CO2 emissions from the
Lagarfljot reservoir over the study period. In comparison to the riverine DIC fluxes reported
by Eiriksdottir et al. (2017), the CO2 emissions to the atmosphere were only 28 % and 5 % of
the total riverine DIC fluxes before and after the diversion of the rivers, respectively. The CO2
uptake from the atmosphere of feeding reservoir Halslon is about 5000 t CO2 annually. But
the rate of CO2 uptake is limited by the CO2 concentration in the atmosphere. The main
factors affecting the total CO2 fluxes are, the concentration difference between the water and

the atmosphere, wind speed and total geographic surface area. Meanwhile, the temperature
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has less of an effect on the flux across the water-air interface but will affect the water-rock

interactions within the water body.

The observed water rock interactions of glacier meltwater with basaltic bedrock, river
suspended reactive material, and reactive dust provide a considerable source of alkalinity that
leads to the uptake of COz. These natural processes known for Icelandic glacier waters (e.g.
Gislason et al. 1996) are similar to currently investigated enhanced rock weathering methods
for CO2 draw down from the atmosphere and can be considered as natural analogues, which

can provide further insight (Linke et al. 2024a and b).
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Supplementary Material

The geochemical evolution of basalt Enhanced Rock Weathering systems quantified

from a natural analogue

T. Linke, E. H. Oelkers, K. Dideriksen, S. Moéckel, S. Nilabh, F. Grandia, and S.R. Gislason

The dataset includes the following: 1) measured soil water chemistry, 2) additions to the
thermodynamic database and 3) the chemical composition of the rainwater used for the
modelling, 4) temporal evolution of the soil water chemistry, 5) the redox values different
redox couples in comparison to the measured data, 6) the calculations of the surface

normalized dissolution rate of basalt.
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S2: Additions to the minteq.v4.dat (Allison et al., 1991; U.S. Environmental Protection
Agency, 1998) thermodynamic database used for the geochemical modelling calculations
performed in the present study.

Phase Reaction Log K Ref
Allophane (Al203Si02)(H20)2.53 + 4.47H20 = 2AI(OH)4™ + 2H* + -32.16 Stefanson and Gislason
HaSiO4 2001
Al/Si=2.02
Allophane (Al203(Si02)1.22)(H20)2.5 + 4.94H20 = 2AI(OH)s™ + 2H* + -33.47 Stefanson and Gislason
1.22H4SiOa4 2001
Al/Si=1.64
Allophane (Al203(Si02)1.59)(H20)2.63 + 5.55H20 = 2AI(OH)4™ + 2H* + -35.04 Stefanson and Gislason
1.59H4SiO4 2001
Al/Si=1.26
Imogolite (Al2SiO3)((OH)4) + 5H20 = 2AI(OH)* + 2H* + H4SiO4 -33.79 Stefanson and Gislason
2001
Natural Gel
Moganite SiO2 + 2H20 = H4SiO4 -3.025 Gislason et al. 1997
Albite NaAlSizOs + 8H20 = Na* + Al(OH)4™ + 3H4SiO4 -18.002  Parkhurst and Appelo
1999
Anorthite CaAlz>Si20g + 8H20 = Ca?* + 2 Al(OH)4™ + 2H4SiO4 -19.714  Parkhurst and Appelo
1999
K-feldspar KAISi3Og + 8H20 = K* + Al(OH)4 + 3H4SiO4 -20.573  Parkhurst and Appelo
1999
Diopside CaMgSi20s + 4H* = Ca?* + Mg?* + 2H20 + 2SiO2 20.9643  Voigt et al. 2018
Fayalite Fe2SiOas + 4H* = SiO2 + 2Fe?* + 2H20 19.1113  Voigt et al. 2018
Forsterite Mg2SiO4 + 4H* = SiO2 + 2 H20 + 2Mg?* 27.8626  Voigt et al. 2018
On-Site Basaltic ~ SiAlo.33sFe0.26sMgo.165Ca0.22Na0.12K0.01903.222 + 0.75* Oelkers and Gislason
Glass 1.104H*+2.118H20 = H4SiO4 + 0.335AI(OH)4” + 2001
0.265Fe?* + 0.165Mg?*+0.22Ca?* + 0.12Na* +0.019K*
Al-Oxalate+ Al®* + Oxalate? = AlOxalate* 6.1 IUPAC stability constant
database, Version 5.84*
Al-Oxalate2- AR + 20xalate? = Al(Oxalate)z” 12.38 IUPAC stability constant
database, Version 5.84*
Al-Oxalate3-3 Al%* + 30xalate? = Al(Oxalate)s* 15.12 IUPAC stability constant

database, Version 5.84*

* ScQuery v.5.84, 2005 The IUPAC Stability Constant Database, Academic Software, (2005)




Table S3: Average rainwater composition from Mjoéanes (southern Iceland) as reported by
Eiriksdottir et al. (2014)

Constituent Concentration
pH 5.6

Ca* 10 pumol Kgwater
Cl 225 pmol kQwater *
K* 4 pumol KQwater *
Mg?* 25 pumol kgwater
Nat 261 pmol Kgwater
So 5 umol Kgwater*




S4: Elemental concentrations, pH and Eh of measured water samples as a function of time
during the present study. The color of the symbols indicates the depth of the sample as
indicated in the figure.
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S5: Variation of sampled soil water Eh as a function of the corresponding fluid pH. The Eh
measured using a redox electrode are shown as black squares. The Eh calculated from the
measured Fe?*/Fe®* concentration ratio are shown as blue circles. The Eh calculated from the
measured HS/SO.% concentration ratios are shown as blue circles. The close correspondence
between measured Eh values and those calculated using measured iron speciation suggests
that iron speciation is controlling the oxidation potential in this system.



Dissolution rate calculations

Average Size calculation  pm e (LM) defr (cm)
size min 10 28.50 0.00285
max 62
Surface area 779.7 cm? gt
Observed Basalt dissolution 2.60*10° mol kgw*
Total rain per cm? 925 mm
Annual Water Flux 0.925 kgw cm? surface
Annual Basalt dissolution 2.41*10° mol cm surface
Percent of remaining basalt each year
Maximum mass of basalt added 800 gyrim?
Mass of basalt dissolved 310 g kgw'
Mass of basalt dissolved annually 286.75 gyrt

Estimate of basalt in soil column
mass of soil column calculation

soil column height 27 m

density of basalt 2.7 gcm®

volume of basalt in 2.7 m 40.5 cm®

mass of basalt in column 109.35 ¢
Estimation of reaction rate

total surface area 85263 cm?

rate 2.82*10% mol yr?

surface normalized rate 9.17*10'® mol cm?s?!

kgw = kilogram water
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Soil Classification and Soil Evolution in Iceland

Iceland is built of volcanic rocks, which are predominantly (80—85 %) of basaltic composition, the remainder being
intermediate and silicic volcanics and clastic sediments that are mostly of basaltic composition (Saemundsson, 1979).
The oldest exposed rocks are about 15 Myr (McDougall ef al., 1984). Iceland was fully covered with glaciers at the Last
Glacial Maximum (~20 kyr BP). The ice sheet retreated close to the present coastline around 10.3 kyr BP, and at about
8.0 kyr BP Icelandic glaciers were of similar, or little lesser extent, than at the present (Norddahl et al., 2008). Hence,
all Icelandic soils are of Holocene age younger than ~10 kyr BP (Arnalds, 2008).

Andosols are the dominant soils in Iceland, Vitrisols are present in desert areas and organic-rich Histosols are
found in some wetland areas (Arnalds, 2008). Andosols are not common in Europe, but they are widespread in the active
volcanic areas of the world (Arnalds, 2008). Two main factors are commonly used to classify Icelandic soils: deposition
of aeolian (volcanic) material and drainage (Arnalds, 2004). Aeolian material mostly originates from the sandy desert
areas located near active volcanic zones or from glaciofluvial outwash plains. After the settlement in Iceland, around

1076 yr BP, the extent of barren areas that are a source for aeolian material significantly increased (Gisladottir et al.,
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2008, Dugmore et al., 2009). Andosols are often found in the wetland areas of Iceland where substantial acolian input
is present, lowering the relative organic content, or where some drainage is present, whereas organic-rich Histosols are
found in wetlands with little aeolian input. The progression of soil types with improving drainage conditions from wet
to dry follows: Histosols (>20 % C), Histic Andosols (12-20 % C), Gleyic Andosols (>1 to < 12 % C, poorly drained),
and Brown Andosols (>1 to <12 % C, freely drained) and Vitrisols with <1 % organic carbon (Arnalds, 2008). This
order also reflects the decreasing distance from the volcanic zones and the source of acolian materials. The transition
between these soil types is fluent, and changes in drainage or aeolian input can lead to a change of the soil type. It is
postulated that in absence of the volcanic influences, Icelandic wetland soils would largely be organic Histosols, typical
of the arctic environments (Arnalds, 2015, 2008). This suggests that applying enhanced weathering EW by the addition
of basaltic dust to an organic-rich Histosol can lead to its transition to a more mineral-rich soil such as an Andosol, as
found in our study area.

Histosols or peatlands are classified further as ombrotrophic or minerotrophic, based on the origin and mineral
content of the waters feeding them (Rydin and Jeglum, 2013). While minerotrophic soils receive mostly ground water
that has interacted with the bedrock upstream, leading to an enrichment of the mineral content in the water, ombrotrophic
soils are dominantly fed by rainwater, and are therefore nearly free of rock derived dissolved constituents (Rydin and
Jeglum, 2013). Our studied field site receives mostly rainwater. Therefore, all dissolved constituents in our soil water
are assumed to originate from the interaction of rainwater with the embedded dust of our soil, and the decay of organic
matter. Based on this assumption, we compare our data (see Fig. 3) with data from other sites reported in the literature

as mostly ombrotrophic, implying limited interaction with the underlying bedrocks.

Detailed Field Site Description
The field site is located above the source of the Raudalekur (“Red creek™) river at 63° 53'42.5" N 20° 21' 15.9" W,

7 km north of the town of Hella, South Iceland. This field site has not been used for agriculture or fertilized for at least
the past 10 years prior to this study, hence limited anthropogenic contamination is therefore expected. Based on data
from the Icelandic Meteorological Office, the average soil temperature is ~7 °C during the summer (Petersen and Berber,
2018). At 100 cm soil depth, the annual maximum temperature is 9 °C and the annual minimum temperature is 1 °C.
The soil can, however, temporarily freeze down to a depth of 50 cm (Petersen and Berber, 2018). The annual rainfall in
this area is 1250 + 200 mm. The average storm yields an average of 15 mm of rain with a maximum duration of 20 hours

(www.en.vedur.is/climatology/data). The surface of the studied soil is hummocky, and the vegetation is characterized

by graminoids with a clear predominance of Poaceae. The direction of the groundwater flow, estimated based on the
surrounding drainage channels, is towards S/SE. Based on field observations, the groundwater table fluctuates near a
depth of 50 cm.

The field site is adjacent to a natural escarpment allowing for the characterization of the subsurface soil profile.

Several tephra layers were identified within a cleared vertical face of the escarpment. Layers of organic-rich soil
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admixed with air-borne basaltic dust separate the tephra layers. The dust in these layers is finer grained than the basalt
in the tephra layers. The tephra layers can be assigned to specific volcanic eruptions, as each volcanic eruption in Iceland
has its own chemical fingerprint (Dugmore et al., 2009; Gronvold et al., 1995). These allow determination of the soil
accumulation rates. As can be seen in Figure 1b, over the last 3300 years about 220 cm of soil has accumulated,
averaging to a soil thickening rate of 0.067 cm yr~'. The ‘Settlement layer’, a tephra layer from an eruption of the
Vatnadldur volcanic system at 1079 + 2 BP (Gronvold et al., 1995), which approximately coincides with the initial
settlement (Landnam) of Iceland, was barely discernible in the soil profile. Although the exact depth of this Settlement
tephra at around 96 cm depth is somewhat uncertain, its location suggests an average soil accumulation rate of
0.086 cm yr" during the last 1120 years. This is consistent with Gisladéttir et al. (2011) who reported that the dust flux
over South-Central Iceland increased following the emplacement of the Settlement layer. A detailed description of the
soil profile is provided in Table S-1 of the Supplementary Information following the guidelines provided in

Schoeneberger et al. (2012).

Details of Field Sampling

In situ soil waters were sampled 10 m North from the escarpment in the field with suction cup samplers obtained from
Prenart, Denmark. Four suction cup samplers were installed into holes drilled at an angle of 60° at depths of 76, 121,
173, 260 cm on 8 November 2017, following the method of Sigfusson et al. (2006). The samplers were left in the field
over the winter to allow settling of the soil around the samplers and tubing. The first samples from these suction cup
samplers were collected during May 2018 and the last were collected November 2018. The suction cup samplers, which
are 95 mm long and 21 mm in outer diameter, consist of a 48/52 % mixture of Polytetrafluorethylene (PTFE) and quartz
with an average pore size of 2 um. These samplers were connected by 1.8 mm inner diameter Teflon (Fluorinated
ethylene propylene) tubing to the surface. Four 60-mL syringes located at the surface were connected via 3-way valves
and 100 cm long connection polyethylene tubing to the Teflon tubing of the subsurface samplers. The first 30—50 mL
of extracted soil water during any sampling was discarded to avoid contamination. It took about 68 hours to fill the
60 mL sampling syringes. During the sampling the syringes were kept in a closed cooling box to prevent heating and
exposure to sunlight. This approach was adapted to avoid any degassing of the soil solutions and oxidation of the samples.
No colour change of the soil solutions due to iron oxidation was observed during the sampling.

Initial sample analysis was performed in the field including sample pH, temperature and Eh measurements,
conductivity determination and H,S titration. Subsamples for major and trace element analysis via ICP-OES and ICP-
MS as well as for ion chromatography to determine Fe*'/Fe*", DOC analysis and alkalinity titration were collected and

stabilized on site and analysed later in the lab.
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Analytical Methods

The redox potentials (Emeas) of the collected fluids were measured directly in the sample syringes in the field using a
Microelectrodes Inc MI-800 Micro-ORP Ag/AgCl micro combination redox electrode with a £10 mV uncertainty.
These values were converted to equivalent potentials for a standard hydrogen electrode (Esue) using a +199 mV
reference potential, E°, for the Ag/AgCl electrode (Sawyer et al., 1995). This calculation was performed using the Nernst
equation:
Este = Emeas T In(10) ¢ (R*T)/F * pH + E°ag/agci ,

where R refers to the gas constant, F designates the Faraday’s constant, and 7 symbolizes the temperature in kelvin.
Subsequently, ~5 mL of each sampled fluid was transferred into 10 mL polypropylene vials for pH temperature,
dissolved oxygen, and conductivity measurement. The pH was measured using a Eutech pH 6+ electrode with an
uncertainty of £0.01 pH units. The dissolved oxygen and conductivity of the samples were measured using a Micro
electrodes MI-730 Micro-Oxygen Electrode with an uncertainty of 0.5 % and a Eutech COND 6+ with an uncertainty
of £10 uS, respectively. For major and trace element analysis, 10 mL of each fluid sample was first filtered through
0.2 pm cellulose acetate in-line filters then transferred into acid washed polypropylene bottles. A small quantity of 65 %
Merck suprapure HNO; was added to acidify these samples to 0.5 % HNOs. Samples for iron speciation measurement
were first filtered through 0.2 um cellulose acetate in-line filters then placed into acid cleaned polypropylene bottles.
Merck HCI was added to these samples to attain a final acid concentration of 0.5 %. Samples for dissolved organic
carbon analysis were collected in acid washed polycarbonate bottles and acidified with 0.5 M suprapure, Merck HCI to
a final acid concentration of 3.3 %.

Dissolved hydrogen sulphide, H»S, was determined in the field by precipitation titration immediately after
sampling with an uncertainty of +0.7 umol kg~!, using mercury acetate solution Hg(CH3COO), of a known
concentration as described by Arnérsson (2000). Alkalinity titrations were performed immediately after returning the
samples to the laboratory. For each titration, ~5 mL of fluid was transferred in a 10 mL vial and titrated to pH 3.3 by
addition of 0.1 M HCI while constantly stirring the fluid. The pH of the fluid was recorded using a glass pH electrode
together with a pH 110, Eutech instruments millivolt meter. The alkalinity was calculated by the Gran method using the
inflection points (Gran, 1952). The final measured alkalinity values are given in meq kg~' with an uncertainty of +5 %

or less.

Elemental Analysis

Major element compositions of all fluid samples were determined using a Ciros Vision, Spectro Inductively Coupled
Plasma Optical Emission Spectrometer (ICP-OES). The instrument was calibrated using the SEL-11 in-house standard,
which was referenced to the SPEX CertiPrep commercial standard material. All standards and measured samples were
acidified to 0.5 % using suprapure HNOs prior to analysis. All measurements were run in duplicate. Blank solutions

were measured after every 5 samples and uncertainties were below +5 % for each element.
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Iron species were determined using a Dionex 3000 ion chromatography system equipped with a Variable
Wavelength Detector using the method described by Kaasalainen ez al. (2016). This method separates Fe** and Fe**
using pyridine-2,6-dicarboxylic acid (PDCA) as a chelating agent. It detects the distinct Fe cations by post-column
derivatization using 4-(2-pyridylazo)resorcinol with a peak absorbance at 530 nm, a detection limit of ~2 pg L™! and an
uncertainty of +2 % or less for Fe** and +10 % for Fe** for 200-1000 pL samples.

Dissolved organic carbon concentrations were determined by size exclusion chromatography using a Liquid
Chromatography — Organic Carbon Detection system (LC-OCD) obtained from DOC Labor in Karlsruhe, Germany,
following the method of Huber ef al. (2011). The system was calibrated for the molecular masses of humic and fulvic
acids using standard material from the Suwannee River, provided by the International Humic Substances Society (IHSS).

All DOC measurements have an uncertainty of 5 % or less.

Calculation of Alkalinity Creation and Export in Our Studied Soil

Alkalinity export in our field site was determined by multiplying the mass of water passing through the soil by the
alkalinity generated in the soil, taking account the loss of alkalinity as the soil solution interacted with the atmosphere.
Any effect of eventual changes in this alkalinity after the fluids arrive in the oceans is not taken into account. The
alkalinity of the soil solution after its equilibration with the atmosphere was calculated using the PHREEQC software
version 3.4.0 (Parkhurst and Appelo, 1999) together with the minteq.v4 thermodynamic database (Allison et al., 1991;
US Environmental Protection Agency, 1998). This alkalinity was determined from the average of all measured major
element concentrations, pH and alkalinity in the deepest soil water samplers (see Table S-2). This fluid was equilibrated
with atmospheric O concentration. Ferrihydrite is allowed to precipitate at local equilibrium as the fluid oxidized. The
resulting fluid was then equilibrated with the 400 ppm CO; concentration of the atmosphere to account for fluid
degassing.

The mass of fluid passing through the soil was estimated to be equal to the difference between the mean
precipitation for the field site minus the evapotranspiration and the direct runoff. The mean precipitation is equal to
1250 £ 200 mm yr~', based on the records from the measurement station in Hella located ~7 km away from the field site

operated by the Icelandic Metrological Office Vedurstofa Islands (https:/en.vedur.is/climatology/data). The

evapotranspiration at the field site was estimated based on Johannesson et al. (2007) to be equal to 16 % of the
precipitation corresponding to 200 mm yr'. The direct surface runoff is estimated to be 10 %, based on data published
by Sigurdsson et al. (2004). After subtracting the evapotranspiration and direct surface runoff, approximately
925 + 150 kg m~ yr~' of water are estimated to pass through the studied soil annually.

The soil water alkalinity in the deep soil was 2.59 + 0.34 meq kg™’ based on the average of the measurements at
260 cm depth. The average alkalinity for the surface waters after oxidation and the precipitation of ferrihydrite calculated
with PHREEQC is 1.53 +0.2 meq kg™'. Note that the oxidation from Fe*" to Fe'" releases H'. The consequential

formation of ferrihydrite from the Fe** releases additional H*, decreasing the pH and alkalinity as well as decreasing
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CO:; solubility. Multiplying this 1.53 + 0.2 meq kg ™' average alkalinity value by the estimated annual water flux through
the soil yields an annual alkalinity export via surface waters of 1.45 £ 0.3 eq m 2 yr!. Multiplying this number by the
atomic weight of carbon yields an annual carbon flux of 17 £3.6 gm2 yr' or 0.17 £ 3.6 t ha™' yr' of C. Note the long-
term fate of this captured carbon may evolve once the river water transporting this carbon arrives in the oceans. It should
be emphasized that the alkalinity drawn down by the increasing alkalinity could include some contribution from
decaying organic material in the soil column. This carbon was originally removed from the atmosphere by
photosynthesis, so contributes to the carbon drawdown from the atmosphere as does the direct dissolution of CO, from
the atmosphere.

To extrapolate the annual mass of carbon drawdown to the gigaton scale, we divided one gigaton of CO», which
is equal to 2.73 x 10® tons of C by the 0.17 t ha™' yr~' of C drawdown in rivers provoked by the addition of basaltic dust
to our field site. This yielded a surface area of 1.6 x 10° ha. This surface area is equal to 1.6 x 10" km This is larger
than the surface area of the United States, which is equal to 9.8 x 10° km® The mass of dust needed to be added to
1.6x10” km? annually to attain the same 500-800 g m~ yr~' of dust added to our study site is obtained by multiplying
this flux and surface area. This calculation yields 8 to 13 x 10° t yr', which equals 8 to 13 Gt yr".

One additional caveat to applying alkalinity generation from enhanced weathering of soils on the continents to
global carbon drawdown from the atmosphere is the fate of soil generated alkalinity after its transport in rivers to the
oceans. The exact mass of CO, removed from the oceans due to alkalinity input is currently debated, but is likely
attenuated by carbonate mineral precipitation (Renforth and Henderson, 2017; Moras et al., 2022; Hartmann et al.,
2023). Recent estimates suggest a CO, uptake efficiency of only 0.6 to 0.8 mol of CO, for each mole of alkalinity added
to the oceans (He and Tyka, 2023). Such observations suggest that the total carbon drawdown from the atmosphere by
alkalinity generation on the continents will depend on the eventual fate of this alkalinity and it is likely decreased by

marine processes.

Estimated Organic Carbon Storage Within the Studied Soil

A substantial mass of carbon is stored by soils in organic material. The rate of organic carbon buildup in our studied soil
can be estimated by taking account of the rate of soil formation and the organic content of this soil. The average soil
formation rate at our study site is estimated to be 0.067 cm yr~'. This estimate is made by dividing the current 2.2 m soil
thickness by 3300 years, the time the soil developed (see Fig. 1). The organic carbon content of the studied Histic/Gleyic
Andosol is between ~12 % and 20 % of the dry mass and it has a porosity between 50 % and 75 % (Snabjornsson, 1982;
Orradottir et al., 2008). The mass of organic carbon in our studied soil was estimated by considering it is comprised of
two parts, an upper part formed after the settlement (1076 yr BP) and a lower part formed from 1076 down to 3300 yr BP
(Fig. 1). This separation is based on the report of an increase in dust flux after this time (Gisladottir ez al., 2008; Dugmore
et al., 2009). These parts are divided based on the position of tephra layers that allow the direct determination of the net

rates of soil accumulation, including the effects of soil erosion, over time. The upper part is a Gleyic Andosol containing
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<12 % C by dry weight extending down to ~90 cm, while the lower part is a Histic Andosol containing 12-20 % C by
dry weight from ~90 to 218 cm. These maximum soil carbon values of 12 and 20 % were multiplied by the height of
each soil section, assuming a porosity between 50 and 75 % (Sneabjornsson, 1982; Orradottir et al., 2008) to estimate
the total carbon present in the studied soil. The combination of this range of carbon content and porosity values yield an
estimated total mass of organic carbon stored in this soil equal to 86—172 kg C m™. The total mass of carbon estimated
in our study area compares well with corresponding estimates of Oskarsson ez al. (2004), who estimate the C stocks of
Histosols in Iceland to be on average 197 kg C m™, and the more mineral-rich Histic Andosols in Iceland to be
89 kg C m™. Further details of this calculation are provided in Table S-4. Dividing this mass by the 3300-year age of
the soil column yields an average organic carbon production rate of 26-52 gC m™ yr'. Note that the mass of carbon in
organic material, reported in units of mass of C can be converted to the equivalent mass CO; by multiplying the former

by the ratios of their respective molar masses: 44/12.

Effect of Basalt on Organic Carbon

The degree to which the addition of basalt increases or decreases the total mass of organic carbon in a soil is currently
poorly constrained. Vicca et al. (2022) argued that the efficiency of enhanced weathering effort is governed by biologic
processes. These authors noted that nutrients released by the addition of ground rocks to soils could enhance plant
growth and promote organic carbon storage in soils. They also postulated that the addition of this material could
accelerate organic material decay in the subsurface. Goll et al. (2021) suggested that the addition of basalt to soils would
improve the fertility potentially, enhancing organic carbon storage in soils. Some supporting evidence was reported by
Angst et al. (2018), who observed that soils derived from a basaltic rock stored more organic carbon than soils derived
from sandstone or from loess. This was interpreted by these authors to be due to a combination of a higher clay content
and greater availability of nutrients in the basalt derived soils. Similarly, da Silva et al. (2016) concluded that the organic
carbon content of soils derived from granitic rocks increased with increasing mafic content of the parent rock due to
increased clay mineral content. Mdckel et al. (2021a, 2021b) provided evidence that volcanic mineral dust, and soil and
tephra layers hamper organic carbon decomposition in Histosols of natural peatlands in Iceland. In contrast, other studies
found that soil parent material and mineral oxide compositions have little effect on the mass of organic carbon in soils
(Araujoet al., 2017). One factor that is clearly detrimental to the preservation of soil organic carbon is tilling. Soil tilling
has been shown to accelerate greatly soil organic carbon degradation (Wang et al., 2020; Shakoor et al., 2021; Li et al.,
2023). Such observations suggest that the way that basaltic dust is added to soil during enhanced weathering efforts may
be critical for increasing the net carbon drawdown in these soils. In either case, consideration of the relative rates of
carbon drawdown through inorganic compared to organic processes presented in this study suggests that the latter may
dominate the net carbon storage in soils due to enhanced weathering. This makes the quantification of the role of basaltic

dust on productivity and organic preservation a critical factor in optimizing enhanced weathering efforts.
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Table S-3 Literature data included in Figure 3.

pH Alkalinigf Classification Reference Location
(meq kg™)

3.96 0 Bog

393 0

5.38 0.198 Poor fen

5.44 0.371 Vitt et al. Central Alberta,

6.28 0.764 Forested moderately rich (1995) Canada

6.21 0.743 fen

6.00 0.623 Open moderately rich fen

593 0.695

5.17 0.055 NE Scotland,
Not specified Dawson et al. | United Kingdom

533 0.01 (2002) Mid Wales,

United Kingdom

5.46 0.5 Minerotrophic lawns

4.68 0.2 Ombrotrophic carpets Bragazza et | Wolfl Moor,

4.74 0 Ombrotrophic lawns al. (2005) South Tyrol, Italy

4.52 0 Ombrotrophic hummocks

5.04 0.7 Minerotrophic lawns

3.76 0 Ombrotrophic carpets Bragazza et | Ryggmossen,

3.75 0 Ombrotrophic lawns al. (2005) Uppsala, Sweden

3.68 0 Ombrotrophic hummocks

4.2 0.02 Kulzer et al. | Western

4.17 0.02 Bog water (2001) Washington, King

4.66 0.076 County, USA

3.6 0 Ombrotrophic bog Verry (1975) | Minnesota, USA

6.5 1.082 Groundwater fen
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Table S-4 Estimates of the carbon stock of the field site and annual accumulation rates with varying porosity.

75 % porosity 50 % porosity
Depth 0-90 cm soil 90-218 cm soil 0-90 cm soil 90-218 cm soil
cm of tephra (zero - 10 cm - 10 cm
organic carbon)
C content 12 % 20 % 12 % 20 %
Soil height 90 cm 118 cm 90 cm 118 cm
Soil mass 225kgm™ 295 kg m™ 450 kg m™ 590 kg m™
mass organic carbon 27kgCm™ 59kg Cm? 54kgCm? 118kgCm™
Total C stored 86 kg C m™* 172 kg C m>
Timespan 1140 years 2180 years 1140 years 2180 years
C accumulation rate | 0.024kgCm72yr' | 0.027kgCm?yr' | 0.047kgCm>yr' | 0.054kgCm*yr'
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Figure ES2: The deconvoluted PC' (red) and the patterns measured for ferrihydrite, siderite
and nontronite Nau-1. The siderite pattern is based on reproduction of the data in Dideriksen
et al., 2015 using Qmax = 24. PC4' resembles a short range ordered SiO- phase,
presumably basaltic glass, nanocrystalline silica or a mixture of these phases
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iron-rich soil waters
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Figure ES7: FT-IR spectra of the dried sample FS117 from 4000 to 400 cm* with band

o_
8 459

Table ES1: Band positions of the FT-IR spectra of FS117 with corresponding assignments
and literature references.

vibration of the CH2- and CHs-groups

band assignment literature

position

[cm?]

3568- Vv(OH) (O-H) stretching vibration of Hernandez-Moreno et al. (1978);

3221 hydroxyl groups from main layer Kloprogge & Frost (2004); Labajos et

) o al. (1992); Richardson & Braterman

v1,v3(H20) (H-O-H) stretching vibration (2006)
of interlayer water; broadening due to
hydrogen bridge bonds

2921 vas(CH2) antisymmetric (C-H) stretching | Pretsch et al. (2010); Zhang et al.
mode of the CHz-groups (2017)

2851 vs(CH2,CHs) symmetric (C-H) stretching | Pretsch et al. (2010); Zhang et al.
vibration of CHz- and CHs-groups (2017)

2507

1805 sh vi+vs (COs) symmetric vibration in | Huang & Kerr 1960, Rodriguez-
poorly crystalline polymorphs Blanco et al. 2010

1630 8(H20) bending vibration of hydroxyl Hernandez-Moreno et al. (1978);
groups from the interlayer water Kloprogge & Frost (2004); Labajos et

al. (1992); Richardson & Braterman
(2006)
1468 (sh) | 8(CHz), das(CHs) (C-H) bending Pretsch et al. (2010); Zhang et al.

(2017)




(Vas/s(COO") antisymmetric/ symmetric
stretching vibration of the carboxyl-
groups)

(Naymbo et al. (2008); Pretsch et al.
(2010)

1421 vs (COs) antisymmetric stretching Dubrawski & Channon 1989
vibration of carbonate

1267 Stretching vibration in G-bands of lignin | Bock & Gierlinger 2019

1167 Si-O stretching vibration Lippincott et al. 1958, Viana et al.

(2012)

1040 Si-O stretching vibration Lippincott et al. 1958

860 9(CO3) out-of-plane bending vibration Dubrawski & Channon 1989
(v2)

737 8(COs) in-plane bending vibration (va) Dubrawski & Channon 1989

459 (O-Me-0) vibration/ Hernandez-Moreno et al. (1978);

Oas (Si-O) antisymmetric bending
vibration

Kloprogge & Frost (2004); Labajos et
al. (1992); Richardson & Braterman
(2006)/

Saikia et al. 2008, Lippincott et al.
1958




Supplementary information:

samples

Figure ES8: FT-IR spectra of the dried sample H1 from 4000 to 400 cm with band

Table ES2: Band positions of the FT-IR spectra of H1 with corresponding assignments and

FT-IR Band position and assignments of selected soil
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positions.

literature references.

groups from the interlayer water

band assignment literature

position

[em?]

3519- v(O-H) stretching vibration of hydroxyl Hernandez-Moreno et al. (1978);

3329 groups from main layer/ Kloprogge & Frost (2004); Labajos et

) . ) al. (1992); Richardson & Braterman

v1,v3(H-O-H) stretching vibration of (2006)
interlayer water; broadening due to
hydrogen bridge bonds/

3215 vs(N-H) symmetric vibrations in N-H Battacharya et al. 2018; Pretsch et al.
groups (2010)

2975 Vas(CHs) antisymmetric (C-H) stretching Pretsch et al. (2010); Zhang et al.
vibration of CHs-groups (2017)

2924 Vas(CHz) antisymmetric (C-H) stretching Pretsch et al. (2010); Zhang et al.
mode of CHz-groups (2017)

2850 vs(CH2,CHs) symmetric (C-H) stretching | Pretsch et al. (2010); Zhang et al.
vibration of CH2- and CHs-groups (2017)

1763 v(C=0) stretching vibration Naymbo et al. (2008); Pretsch et al.

(2010); Zhang et al. (2017)
1636 8(H20) bending vibration of hydroxyl Hernandez-Moreno et al. (1978);

Kloprogge & Frost (2004); Labajos et




al. (1992); Richardson & Braterman
(2006)

1595 Vasis(COO") antisymmetric/symmetric Naymbo et al. (2008); Pretsch et al.
stretching vibration of carboxyl-groups; (2010); Zhang et al. (2017)
8(CHz2), 8as(CHs) (C-H) bending vibration
of CH2- and CHa- groups; Battacharya et al. 2018;
v (C=N) aromatic C=N; Bock & Gierlinger 2019
(C=C) stretching vibration
1455 8(C-H) Bending vibration in Aliphat. C-H/ | Battacharya et al. 2018/
5(CHz2), 8as(CHs) (C-H) bending vibration | Hernandez-Moreno et al. (1978);
of the CH2- and CHzs-groups Kloprogge & Frost (2004); Labajos et
al. (1992) ; Richardson & Braterman
(2006); Pretsch et al. (2010); Zhang et
al. (2017)
1413 vs (COs) antisymmetric stretching
vibration of carbonate
1384 0s(CHs) symmetric (C-H) bending | Hernandez-Moreno et al. (1978);
vibration of the CHs-groups Kloprogge & Frost (2004); Labajos et
al. (1992) ; Richardson & Braterman
(2006); Pretsch et al. (2010); Zhang et
al. (2017)
1380 v3(COO) symmetric stretching vibration Battacharya et al. 2018
in carboxylates
1325 0s(CHs) symmetric (C-H) bending Hernandez-Moreno et al. (1978);
vibration of the CHs-groups Kloprogge & Frost (2004) ; Richardson
& Braterman (2006)
1160 Bas(CHz) antisymmetric (C-H) bending Pretsch et al. (2010); Zhang et al.
vibration of the CHs-groups/ (2017)/
v(Si-0) stretching Viana et al. (2012)
1085 vs (Si-O) asymm. Stretching vibration/ Saikia et al. 2008/
(C-C) stretching vibration in aliphatic Bock & Gierlinger 2019
chains
1048 vs(SO2) symmetric (S-O) stretching Pretsch et al. (2010); Viana et al.
vibration (2012) Zhang et al. (2017)
*881
790 (sh) 5(Si-OH) bending vibration/ Bishop et al. 2013
v(C-S) stretching vibrations Pretsch et al. (2010)/
706 p(CHz2) rocking vibrations of the CH2- Pretsch et al. (2010); Hernandez-
groups, Moreno et al. (1978); Kloprogge &
) o Frost (2004; Richardson & Braterman
6(Me-OH) (Me-OH) bending vibrations/ (2006)/
O(AI-OH) bending vibration Bishop et al. 2013
632 (Me-OH), metal-hydroxyl-translation Hernandez-Moreno et al. (1978);
motions Kloprogge & Frost (2004); Labajos et
al. (1992); Richardson & Braterman
(2006)
565 Si-O-Al bending Bishop et al. 2013




466

(O-Me-0) vibration/

Oas (Si-O) asymmetrical bending
vibration

Hernandez-Moreno et al. (1978);
Kloprogge & Frost (2004); Labajos et
al. (1992); Richardson & Braterman
(2006)/

Saikia et al. 2008




Supplementary information:

samples

Figure ES9: FT-IR spectra of the dried sample H9 from 4000 to 400 cm'* with band

Table ES3: Band positions of the FT-IR spectra of H9 with corresponding assignments and

FT-IR Band position and assignments of selected soil
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positions.

literature references.

band assignment literature
position
[cm]
3564- v(OH) (O-H) stretching vibration of Hernandez-Moreno et al. (1978);
3245 hydroxyl groups from main layer/ Kloprogge & Frost (2004); Labajos et
) o al. (1992); Richardson & Braterman
v1,v3(H20) (H-O-H) stretching vibration of (2006)
interlayer water; broadening due to
hydrogen bridge bonds
2928 vas(CH2) asymmetric (C-H) stretching Pretsch et al. (2010); Zhang et al.
mode of the CHz-groups (2017)
2851 vs(CHz,CHs) symmetric (C-H) stretching | Pretsch et al. (2010); Zhang et al.
vibration of CHz- and CHs-groups (2017)
1632 8(H20) bending vibration of hydroxyl Hernandez-Moreno et al. (1978);
groups from the interlayer water Kloprogge & Frost (2004); Labajos et
al. (1992); Richardson & Braterman
(2006)
1595 Vasis(COO") asymmetric/symmetric

stretching vibration of carboxyl-groups;
8(CHz2), das(CHs) (C-H) bending vibration
of CHz- and CHs- groups;

v (C=N) aromatic C=N;

(C=C) stretching vibration

Naymbo et al. (2008); Pretsch et al.
(2010); Zhang et al. (2017)

Battacharya et al. 2018;
Bock & Gierlinger 2019




1511

1457
1414
1384 0s(CHs) symmetric (C-H) bending | Hernandez-Moreno et al. (1978);
vibration of the CHs-groups Kloprogge & Frost (2004); Labajos et
al. (1992) ; Richardson & Braterman
(2006); Pretsch et al. (2010); Zhang et
al. (2017)
1334 8s(CHs) symmetric (C-H) bending Hernandez-Moreno et al. (1978);
vibration of the CHs-groups Kloprogge & Frost (2004) ; Richardson
& Braterman (2006)
1267 Stretching vibration in G-bands of lignin Bock & Gierlinger 2019
1221 Stretching vibration in G-bands of lignin Bock & Gierlinger 2019
1162 0as(CHs) asymmetric (C-H) bending Pretsch et al. (2010); Zhang et al.
vibration of the CHs-groups/ (2017)/
v(Si-0) stretching/ Viana et al. (2012)/
vas(SOz°) antisymmetric (S-O) stretching
vibration of the SOs—groups
1126 (C-H) bending associated to ring Bock & Gierlinger 2019
structures
1040 vs(SO2) symmetric (S-O) stretching Pretsch et al. (2010); Viana et al.
vibration (2012) Zhang et al. (2017)
830
558 Si-O-Al bending Bishop et al. 2013




Supplementary information: FT-IR Band position and assignments of selected soil
samples
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Figure ES10: FT-IR spectra of the dried sample H10 from 4000 to 400 cm™* with band
positions.

Table ES4: Band positions of the FT-IR spectra of H10 with corresponding assignments and
literature references.

band assignment literature

position

[cm™]

3539- Vv(OH) (O-H) stretching vibration of Hernandez-Moreno et al. (1978);
3235 hydroxyl groups from main layer/ Kloprogge & Frost (2004); Labajos et

. ) ) al. (1992); Richardson & Braterman
v1,v3(H20) (H-O-H) stretching vibration of | (2006)

interlayer water; broadening due to
hydrogen bridge bonds

2975 Vas(CHs) asymmetric (C-H) stretching Pretsch et al. (2010); Zhang et al.
vibration of CHs-groups (2017)
2920 Vas(CH2) asymmetric (C-H) stretching Pretsch et al. (2010); Zhang et al.
mode of CHz-groups (2017)
2850 vs(CH2,CHs) symmetric (C-H) stretching | Pretsch et al. (2010); Zhang et al.
vibration of CHz- and CHs-groups (2017)
1634 8(H20) bending vibration of hydroxyl Hernandez-Moreno et al. (1978);
groups from the interlayer water Kloprogge & Frost (2004); Labajos et
al. (1992); Richardson & Braterman
(2006)
1594 Vasis(COO") asymmetric/symmetric Naymbo et al. (2008); Pretsch et al.

stretching vibration of carboxyl-groups; (2010); Zhang et al. (2017)
3(CHz2), 8as(CHs) (C-H) bending vibration
of CH2- and CHzs- groups; Battacharya et al. 2018;




v (C=N) aromatic C=N;

(C=C) stretching vibration

Bock & Gierlinger 2019

1509

1384 0s(CHs) symmetric (C-H) bending | Richardson & Braterman (2006);
vibration of the CHs-groups Pretsch et al. (2010); Zhang et al.

(2017)

1330 8s(CHs) symmetric (C-H) bending Hernandez-Moreno et al. (1978);

vibration of the CHs-groups Kloprogge & Frost (2004) ; Richardson
& Braterman (2006)

1170 Bas(CHz) asymmetric (C-H) bending Pretsch et al. (2010); Zhang et al.
vibration of the CHs-groups/ (2017)/
v(Si-0) stretching/ Viana et al. (2012)/
vas(SO3") asymmetric (S-O) stretching
vibration of the SOs—groups

1086 vs3 (Si-O) asymm. Stretching vibration/ Saikia et al. 2008/
(C-C) stretching vibration in aliphatic Bock & Gierlinger 2019
chains

1050 vs(SOz2) symmetric (S-O) stretching Pretsch et al. (2010); Viana et al.
vibration (2012) Zhang et al. (2017)

*881 8(COs) out-of-plane bending vibration Dubrawski & Channon 1989

787 (sh) 8(Si-OH) bending vibration/ Bishop et al. 2013
v(C-S) stretching vibrations Pretsch et al. (2010)/

688 Hindered rotation of H-bonded OH- Bock & Gierlinger 2019
groups

575 Si-O-Al bending Bishop et al. 2013

459 (O-Me-0) vibration/ Hernandez-Moreno et al. (1978);

das (Si-O) asymmetrical bending
vibration

Kloprogge & Frost (2004); Labajos et
al. (1992); Richardson & Braterman
(2006)/

Saikia et al. 2008
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Figure ES11: FT-IR spectra of the dried sample H11 from 4000 to 400 cm™* with band

Table ES5: Band positions of the FT-IR spectra of H11 with corresponding assignments and
literature references.

stretching vibration of carboxyl-groups;
3(CHz2), 8as(CHs) (C-H) bending vibration
of CHz- and CHs- groups;

(2010); Zhang et al. (2017)

Battacharya et al. 2018;

band assignment literature Possible
position Mineral
[em™]
3568- Vv(OH) (O-H) stretching vibration of Hernandez-Moreno et al. (1978);
3228 hydroxyl groups from main layer/ Kloprogge & Frost (2004); Labajos et
. ) ) al. (1992); Richardson & Braterman
v1,v3(H20) (H-O-H) stretching vibration of (2006)
interlayer water; broadening due to
hydrogen bridge bonds
2974 Vas(CHs) asymmetric (C-H) stretching Pretsch et al. (2010); Zhang et al.
vibration of CHs-groups (2017)
2924 Vas(CH2) asymmetric (C-H) stretching Pretsch et al. (2010); Zhang et al.
mode of CHz-groups (2017)
2851 vs(CH2,CHs) symmetric (C-H) stretching | Pretsch et al. (2010); Zhang et al.
vibration of CHz- and CHs-groups (2017)
1632 8(H20) bending vibration of hydroxyl Hernandez-Moreno et al. (1978);
groups from the interlayer water Kloprogge & Frost (2004); Labajos et
al. (1992); Richardson & Braterman
(2006)
1548 Vasis(COO") asymmetric/symmetric Naymbo et al. (2008); Pretsch et al.




v (C=N) aromatic C=N;

(C=C) stretching vibration

Bock & Gierlinger 2019

1513
1455 0(C-H) Bending vibration in Aliphat. C-H/ | Battacharya et al. 2018/
8(CH) (C-H) bending vibration of the Hernandez-Moreno et al. (1978);
CH2- and CHs-groups Kloprogge & Frost (2004); Labajos et
al. (1992) ; Richardson & Braterman
(2006); Pretsch et al. (2010); Zhang et
al. (2017)
1410 vs (COs) asymmetric stretching vibration | Dubrawski & Channon 1989 Sid
of carbonate
1384 0s(CHs) symmetric (C-H) bending | Richardson & Braterman (2006);
vibration of the CHs-groups Pretsch et al. (2010); Zhang et al.
(2017)
1328 8s(CHs) symmetric (C-H) bending Hernandez-Moreno et al. (1978);
vibration of the CHs-groups Kloprogge & Frost (2004) ; Richardson
& Braterman (2006)
1264 Stretching vibration lignin Bock & Gierlinger 2019
1158 8as(CHs) asymmetric (C-H) bending Pretsch et al. (2010); Zhang et al. All, Mac
vibration of the CHs-groups/ (2017)/
v(Si-0) stretching/ Viana et al. (2012)/
vas(SOz3") asymmetric (S-O) stretching
vibration of the SOs—groups
1085 v (Si-O) asymm. Stretching vibration/ Saikia et al. 2008/
(C-C) stretching vibration in aliphatic Bock & Gierlinger 2019
chains
1048 vs(SOz2) symmetric (S-O) stretching Pretsch et al. (2010); Viana et al.
vibration (2012) Zhang et al. (2017)
881* 8(CO0s) out-of-plane bending vibration Dubrawski & Channon 1989 Sid
790 (sh) 8(Si-OH) bending vibration/ Bishop et al. 2013 All/imo
v(C-S) stretching vibrations Pretsch et al. (2010)/
706 p(CHz2) rocking vibrations of the CH2- Pretsch et al. (2010); Hernandez- All/lmo
groups in the alkyl chain; 8(Me-OH) (Me- | Moreno et al. (1978); Kloprogge &
OH) bending vibrations/ Frost (2004; Richardson & Braterman
o (2006)/
O(AI-OH) bending vibration
Bishop et al. 2013
632 (Me-OH), metal-hydroxyl-translation Hernandez-Moreno et al. (1978);
motions Kloprogge & Frost (2004); Labajos et
al. (1992); Richardson & Braterman
(2006)
565 Si-O-Al bending Bishop et al. 2013 All
466 (O-Me-0) vibration/ Hernandez-Moreno et al. (1978); All

das (Si-O) asymmetrical bending
vibration

Kloprogge & Frost (2004); Labajos et
al. (1992); Richardson & Braterman
(2006), Saikia et al. 2008
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Figure ES12: PSD analysis via laser diffraction of different siderite containing samples
including d(0.1), d(0.5) d(0.9) and D(4,3) values after different durations of ultrasonic

treatment
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Figure ES13: Isotherm linear plots from the surface area analysis after the BET method via
N2 infiltration for selected siderite containing samples
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Appendix 1:

Figure Al: Probable water levels in Halslén Reservoir

Figure A2: Relationship of the surface area and the usable volume of the Halsldn reservoir
to the reservoir fill level shown as elevation above sea level

Figure A3: Map including the 3 sampling locations of the temperature profiles

Figure A4: The temperature profiles H1, H2 and H3 (19t May 2018)

Figure A5: Temperature profiles of the Halslon reservoir (August 2018, September

2011/2012/2013)

Appendix 2:

The appendix 2 contains the chemical compositions including temperature, pH, alkalinity and
major elements of the Jokulsa 4 Dal river at Hjardarhagi before (Tab A1) and after (Tab A2) the
damming at Karahnjukar, Jokulsd a Dal at Bru before damming (Tab A3), the Lagarfljét reservoir
at Lagarfoss before (Tab A4) and after (Tab A5) damming. Additional data from Halsléon
reservoir collected at various depths and times (tab A6), and Karahnjukar power plant outlet
(Tab A7) are included. Much of this data has been previously reported by Eiriksdottir et al.,
2015, 2017. Here, we have added the composition of the Lagarfljot reservoir waters and
particles before the installation of the Karahnjukar dam (Table A4). Furthermore, to all tables
we have added the mass percent of organic carbon in the suspended organic and inorganic
particle, the C/N molar ratio of the organic particles, the in-situ pH, the in-situ pCO2w and
CO2(aq) the in-situ concentration of dissolved CO; in the water. In-situ refers to the calculated
value at the measured water temperature at the time of sampling. Temperature and wind

speed data presented in figure 3 are provided (Tab. A8).

Table Al. Jokulsa a Dal at Hjardarhagi 18 November 1998 - 27 November 2003
Table A2. Jokulsa a Dal at Hjardarhagi 28 November 2007 - 10 December 2013
Table A3. Jokulsa a Dal at Bri 21 November 2000 - 27 November 2003

Table A4. Lagarfljét at Lagarfoss 1998-2003

Table A5. Lagarfljét at Lagarfoss Dam 28 November 2007 - 10 December 2013

Table A6. Halslén reservoir 19 June 2008 - 10 September 2013

Table A7. Outlet from Karahnjukar Power Plant 28.11.2007-10.12.2013

Table A8. Wind speed and temperature data accompanying Figure 3
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Figure Al. Probable water levels in Halslon Reservoir according to simulation results of
Landsvirkjun energy operations over 20 years, from 1 Sept. 1985 to 31 August 2005 (modified
from Leifsson et al. 2009, with permission from Landsvirkjun). The grey shaded area shows the
approximate time of ice cover.
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Figure A2. Relationship of the surface area and the usable volume of the Halslén reservoir to
the reservoir fill level shown as elevation above sea level (from Leifsson et al. 2009, with
permission from Landsvirkjun)
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Figure A3. Map including the 3 sampling locations of the temperature profiles.
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Figure A4. The temperature profiles H1, H2 and H3 measured at 3 locations (see Fig. A3)
through snow covered ice 19 May 2008 down to a depth of 70, 72 and 139 m respectively. H3
is at the deepest part of the Halslén Reservoir.
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Figure A5. Temperature profiles of the Halslon reservoir from August 2008, and September
2011, 2012 and 2013 from the deepest part of the reservoir, shown by the white filled circle
in Figure 1.
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Table A8. Wind speed and temperature data accompanying Figure 3

Karahnjukar weather station

Temperature Month 1 2 3 4 5 6 7 8 9 10 11 12
min -18.4 -209 -185 -16 -8.2 -4 -06 -1.1 -6.6 -12.6 -15.3 -20.8
q25 -73 87 -79 -6 -12 28 57 45 08 -41 -62 -96
median -32 -39 -44 -27 12 51 78 68 4 -1 -31 -59
q75 01 -05 -08 04 35 77 105 89 68 17 02 -21
max 7 71 7.7 92 105 15 17.6 154 155 104 83 6.5

Windspeed Month 1 2 3 4 5 6 7 8 9 10 11 12
min 0.0 00 00 00 00 00 00 00 00 0.0 0.0 0.0
q25 4.2 33 41 33 31 21 26 3 383 33 35 38
median 7.2 6.1 69 58 53 42 46 5 6 57 66 64
q75 112  10.1 104 89 8 65 69 72 93 89 97 97
max 21.6 20 19.8 17.2 153 13 13.3 134 183 17.2 189 185
Egilsstadir 1998-2003

Temperature Month 1 2 3 4 5 6 7 8 9 10 11 12
min -15.4 -16.6 -15.7 -12 6 -18 05 06 -1 -8 -12.4 -146
q25 -47 -5.3 5 -19 26 58 81 82 59 1 -22 -4
median -07 -17 -15 13 52 81 103 105 8.1 4 16 -0.2
q75 25 23 23 52 85 112 135 133 106 7 46 31
max 13.2 10.1 13.2 158 173 193 214 209 176 156 144 1138

Windspeed Month 1 2 3 4 5 6 7 8 9 10 11 12
min 0.0 00 00 00 00 00 00 00 00 00 0.0 0.0
q25 2.00 280 210 24 280 280 220 1.80 1.90 2.10 1.90 2.00
median 430 530 430 4.7 480 490 420 360 3.60 4.20 3.80 4.10
q75 780 820 690 7.5 7.00 6.70 6.20 590 5.90 6.50 6.10 6.70
max 16,5 163 14.1 151 13.1 123 11.8 118 119 129 124 137
Egilstadir 2007-2013

Temperature Month 1 2 3 4 5 6 7 8 9 10 11 12
min -184 -209 -185 -16 -8.2 -4 -06 -11 -6.6 -12.6 -15.3 -20.8
q25 73 87 -79 -6 -12 28 57 45 08 -41 -62 -96
median 32 -39 -44 -27 12 51 78 68 4 -1 -31 -59
q75 01 -05 -08 04 35 77 105 89 68 17 02 -21
max 7 71 7.7 92 105 15 17.6 154 155 104 83 6.5

Windspeed Month 1 2 3 4 5 6 7 8 9 10 11 12
min 0.0 00 00 00 00 00 00 00 00 0.0 0.0 0.0
q25 1.8 16 22 21 25 23 21 19 18 16 18 17
median 4 36 44 42 46 44 4 38 38 33 39 37
q75 6.8 65 69 65 66 62 59 58 6.1 55 66 66
max 143 13.8 13.9 13 12.7 12 115 116 125 11.3 13.7 139




Table A9: Average water level and surface area of the Halslon reservoir during ice-free months.

Month Water level (m a.s.l.) | Surface area
[m] [km?]

May 580 17

June 585-595 24-29

July 595-615 29-45

August 615-625 45-58

September 625 58

October 625 58

November 623-625 54-58

Table A10: Observed ice-free periods of the Halslon reservoir.

year melted frozen
2009 4. Jun 30. Nov
2010 11.Jun 25. Nov
2011 9. Jun 21. Nov
2012 1.Jun 22. Nov
2013 12.Jun 17.Nov
2014 8.Jun 10. Dec
2015 20.Jun 28. Nov
2016 >3.Jun >21.Nov
2017 20. May 22. Nov
2018 31. May 26. Nov
2019 18. May 5. Nov
2020 3.Jun 22. Nov
2021 13.Jun 18. Nov
2022 7.Jun 5. Dec
2023 24. May 24.Nov
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Table ES2: Measured data from different Rhizon samples installed in the outcrop wall

Date sampleNo  waterT PH Tlab PH lab cond 02 ER(SHE)  Alkalinity ICP-OES  ICP-OES  ICP-OES  ICP-OES  ICP-OES  ICP-OES  ICP-OES  ICP-OES
Sias 5102 Na K ca Mg 504 ct P
°c °c s % my mea/kg _mg/kg meg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
L0Q 01 03 0.10 0.0 0.0 020 10 0.02
200617  Rhizon samgR1-1 20 671 033 185 55 3.82 18 10 098 46 0.00
Rhizon samp R2-1 20 643 026 347 6.4 573 39 21 563 128 0.15
Rhizon samp R3-1 220 637 012 242 6.2 283 28 15 658 85 0.03
Rhizon samg R4-1 220 665 028 225 7.7 328 51 30 362 105 0.00
Rhizon samg R6-1 20 657 043 232 7.5 263 68 33 664 109 0.01
Rhizon samg R6-1 20 644 070 355 8.0 228 65 a7 890 106 0.00
Rhizon samg R7-1 20 643 048 320 78 266 66 36 7.27 106 0.01
Rhizon samp R&-1 20 629 044 390 84 169 73 a2 1381 110 0.09
Rhizon samp Re-1 220 632 029 389 81 150 62 34 12,05 1086 0.01
Rhizon samf R10-1 220 602 041 395 80 1.30 81 44 16.17 104 0.01
Rhizon samg R11-1 20 613 062 381 7.8 148 61 35 1274 109 0.00
Rhizon samg R12-1 20 594 074 400 86 159 9.4 54 1159 103 0.02
Rhizon samg R13-1 20 605 0% 397 92 182 11 6.2 10.19 107 0.01
Rhizon samg R14-1 20 613 082 423 89 157 93 57 866 108 0.00
040817  Rhizon sampR1-2 20 663 193 49 3.40 19 09 195 06 0.00
Rhizon samp R2-2 220 648 273 63 297 30 16 522 60 0.00
Rhizon samg R3-2 empty empty empty. empty empty empty empty empty empty empty. empty empty empty empty empty
Rhizon samg R4-2 20 667 234 7.4 321 55 a1 49 85 0.01
Rhizon samg R5-2 20 673 274 92 315 107 53 931 9.4 0.01
Rhizon samg R6-2 20 660 a6 94 250 101 56 11.80 9.0 0.00
Rhizon samp R7-2 20 634 209 91 159 97 5.4 18.03 108 0.00
Rhizon samp R8-2 220 594 2.0 95 182 91 47 18.38 11 0.00
Rhizon samp R9-2 220 649 3.1 9.2 270 99 53 13.15 96 0.00
Rhizon samg R10-2 220 607 2.4 90 123 14 58 28.33 97 0.01
Rhizon samg R11-2 20 606 29 90 163 97 5.2 24.47 108 0.00
Rhizon samg R12-2 20 625 138 98 170 133 7.3 376 100 0.00
Rhizon samg R13-2 20 603 28 99 178 19 65 246 102 0.00
Rhizon samg R14-2 20 616 47.0 100 175 136 78 26.41 1.3 0.00
13.08.18 H1-1 empty empty empty. empty empty empty. empty. empty empty empty. empty empty empty empty empty
H21 230 604 180 56.0 249 487 109 172 19.9 108 2268 125 <0.0875
H31 X 20 605 200 707 302 476 103 126 176 123 18.33 110 <0.0875
Ha-1 X 230 572 188 500 383 80 103 135 153 111 3494 105 <0.0875
H5-1 X 2.0 5.40 213 55.0 a0 538 16 1.80 22 168 109.37 0.1 <0.0875
He-1 X 2.0 572 207 510 a9 237 109 160 175 1.4 34.15 10.4 <0.0875
H7-1 230 630 217 790 339 lowVolume - - - - - -
He-1 X 230 634 261 47.0 219 %5 103 112 163 123 185 108 <0.0875
Ho-1 X 20 660 - 830 176 leftovernigh 346 122 192 155 116 182 125 <0.0875
H10-1 X 2.0 632 255 720 172 leftovernigh 340 137 117 15 1.3 <10 16 <0.0875
18.09.18 H1-2 notworking  empty empty. empty. empty empty. empty. empty. empty empty. empty empty empty. empty empty
H22 14 622 22 629 152 314 283 198 459 11 163 25 19 28.34 86 <0.0875
H3-2 1.4 610 22 620 140 a2 354 174 493 107 124 195 132 288 97 <0.0875
Ha-2 150 5.98 22 582 222 471 359 09  50.0 7 141 26 158 7851 98 <0.0875
Hs-2 15 572 27 572 265 30 389 06 556 126 171 25 214 4571 9.0 <0.0875
He-2 134 5.88 27 591 229 389 3%9 127 450 13 120 205 132 4681 92 <0.0875
H72 empty empty empty empty. empty. empty empty empty empty empty empty. empty empty
He-2 empty empty empty empty empty empty empty empty empty empty empty. empty empty.
Ho-2 136 626 27 65 155 3.0 169 278 363 1.4 0.90 6.1 123 <1 110 <0.0875
H10-2 127 648 27 65 - - 152 22 346 139 1.09 1.7 s <1 107 <0.0875
291018 H1-3 notworking  empty empty empty empty empty. empty empty empty empty. empty empty empty. empty empty
H23 25 614 264 150 377 109 198 185 97 1871 186 <0.0875
H33 25 611 a5 186 476 110 122 210 144 2045 10,0 <0.0875
Ha3 25 584 219 108 476 108 139 193 134 51.28 110 <0.0875
H5-3 25 557 379 060 546 126 164 24 216 143.40 29 <0.0875
He-3 25 588 406 135 458 s 116 213 141 47.78 100 <0.0875
H7-3 25 655 204 234 - - - - - -
Hg3 25 660 215 228 - - - - - -
Ho-3 25 634 197 256 37.0 15 085 163 124 <1 1.2 <0.0875
H10-3 25 633 229 218 386 139 1.30 152 1.8 <1 1.2 <0.0875
211118 H1-4 notworking  empty empty. empty. empty empty. empty. empty. empty empty. empty. empty empty. empty. empty.
H24 26 619 277 192 412 1086 177 207 11 23.18 16 <0.0875
H3-4 26 607 352 207 461 11 115 213 7 17.92 99 <0.0875
Ha-a - 26 19
H5-4 26 553 aa9 068 520 116 154 %6 180 108.75 108 <0.0875
He-4 26 628 a19 143 438 110 115 200 131 37.10 115 <0.0875
H7-4 26 647 204 282 376 105 088 207 140 1.24 95 <0.0875
He-4 broken empty 26 empty empty. empty empty empty. empty empty. empty empty empty. empty empty.
He-4 26 635 169 288 362 13 087 185 124 <1 108 <0.0875
H10-4 26 651 239 258 309 17 110 19 17 <1 11 <0.0875



Date sampleNo  waterT PH Tlab pHlab cond 02 Eh ER(SHE)  Alkalinity ICP-OES  ICP-OES  ICP-OES  ICP-OES  ICP-OES  ICP-OES  ICP-OES  ICP-OES
Sias 5102 Na K ca Mg 504 ct P
°c us % mv meq/kg _mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
L0Q 01 03 0.10 0.0 X 020 10 0.02
200617  R1-1 220 671 033 185 55 382 18 10 098 46 0.00
R2-1 20 643 026 347 6.4 573 39 21 563 128 0.15
R3-1 20 637 012 242 6.2 283 28 15 658 85 0.03
R4-1 20 665 028 225 7.7 328 5.1 30 362 105 0.00
R5-1 220 657 043 232 75 263 68 33 664 109 0.01
R6-1 20 644 070 355 8.0 228 65 a7 890 106 0.00
R7-1 20 643 048 320 78 266 66 36 7.27 106 0.01
R8-1 20 629 044 390 84 169 73 a2 1381 110 0.09
R9-1 20 632 029 389 81 150 62 34 12,05 1086 0.01
R10-1 20 6.02 041 395 80 1.30 81 44 16.17 104 0.01
R11-1 220 613 062 381 7.8 148 61 35 1274 109 0.00
R12-1 220 594 074 400 86 159 9.4 54 1159 103 0.02
R13-1 20 6.05 0% 397 92 182 11 6.2 10.19 107 0.01
R14-1 20 613 082 423 89 157 93 57 866 108 0.00
040817  R1-2 220 6.63 193 49 3.40 19 09 195 06 0.00
R2:2 20 6.48 273 63 297 30 16 522 60 0.00
R3-2 empty. empty empty empty. empty empty empty empty empty empty empty. empty empty empty empty empty
R4-2 220 667 234 7.4 321 55 a1 49 85 0.01
R5-2 20 673 274 92 315 107 53 931 9.4 0.01
R6-2 20 6.60 a6 94 250 101 56 11.80 9.0 0.00
R7-2 20 634 209 91 159 97 5.4 18.03 108 0.00
R8-2 20 594 2.0 95 182 91 a7 18.38 11 0.00
R9-2 20 649 3.1 9.2 270 99 53 13.15 96 0.00
R10-2 220 6.07 2.4 90 123 14 58 28.33 97 0.01
R11-2 220 6.06 29 90 163 97 5.2 24.47 108 0.00
R12:2 20 625 138 98 170 133 7.3 .76 100 0.00
R13-2 20 6.03 28 99 178 19 65 246 102 0.00
R14-2 20 616 47.0 100 175 136 78 26.41 13 0.00
130818  H11 empty. empty. empty empty. empty empty empty. empty. empty. empty empty. empty empty empty. empty empty.
H21 2.0 6.04 180 56.0 50.0 249 487 109 172 199 108 2268 125 <0.0875
H31 x 230 6.05 200 70? 103.0 302 476 103 126 176 123 18.33 110 <0.0875
Ha-1 x 230 572 188 50.0 184.0 383 80 103 135 153 111 3494 105 <0.0875
H5-1 x 230 5.40 213 55.0 241.0 a0 538 16 180 22 168 109.37 101 <0.0875
He-1 x 20 572 207 510 250.0 a9 237 109 160 175 114 34.15 104 <0.0875
H7-1 2.0 630 217 79.0 140.0 339 lowVolume - - - - - -
He-1 X 2.0 634 261 470 500 219 %5 103 112 163 123 185 108 <0.0875
Ho-1 x 230 6.60 - 83.0 230 176 leftovernigh 346 122 192 155 116 182 125 <0.0875
H10-1 X 230 632 255 72.0 -27.0 172 leftovernigh 340 137 117 15 1.3 <10 16 <0.0875
180918  H1-2 notworking  empty empty empty. empty. empty empty. empty. empty. empty empty. empty. empty empty. empty empty
H2:2 144 622 22 629 152 314 8.0 283 198 459 11 163 25 19 28.34 86 <0.0875
H3-2 144 610 22 620 140 a2 155.0 354 174 493 107 124 195 132 2288 97 <0.0875
Ha2 15.0 598 22 592 2 471 160.0 359 09 500 7 141 26 158 7851 98 <0.0875
H5-2 145 572 27 572 265 30 190.0 389 06 556 126 171 25 214 4571 9.0 <0.0875
He-2 134 588 27 591 29 389 2000 3%9 127 450 13 120 205 132 4681 92 <0.0875
H7-2 empty empty. empty empty empty. empty. empty empty empty. empty empty empty. empty empty
He-2 empty empty empty empty. empty. empty empty empty empty. empty empty empty. empty empty.
He-2 136 626 27 65 155 36.0 -30.0 169 278 363 114 090 6.1 123 <1 110 <0.0875
H10-2 127 648 27 65 - - -47.0 152 22 346 19 1.09 1.7 s <1 107 <0.0875
291018 H13 notworking  empty empty empty. empty empty empty. empty. empty empty empty. empty empty empty. empty empty
H2:3 icP 25 614 65.0 264 150 377 109 198 185 97 1871 186 <0.0875
H33 icP 25 611 146.0 a5 186 476 110 122 210 144 2045 100 <0.0875
Ha3 icp 25 584 2200 219 108 476 108 139 193 134 51.28 110 <0.0875
H53 icp 25 557 180.0 379 060 546 126 164 24 216 143.40 29 <0.0875
He-3 IcP 25 5.88 207.0 406 135 458 s 116 213 41 47.78 100 <0.0875
H7-3 IcP 25 655 50 204 234 - - - - - -
Hg-3 IcP 25 6.60 16.0 215 228 - - - - - -
Ho-3 icP 25 634 20 197 256 37.0 15 085 163 124 <1 1.2 <0.0875
H10-3 icP 25 633 300 229 218 386 139 1.30 152 1.8 <1 1.2 <0.0875
211118 H14 notworking  empty empty empty. empty. empty empty. empty. empty. empty empty. empty. empty empty. empty. empty.
H2-4 26 619 78.0 277 192 412 1086 177 207 11 23.18 16 <0.0875
H3-4 26 607 153.0 a2 207 461 11 115 213 17 17.92 99 <0.0875
Ha-a - 226 19
H5-4 26 553 2500 19 068 520 116 154 %6 180 108.75 108 <0.0875
He-4 26 628 2500 19 143 438 110 115 200 131 37.10 15 <0.0875
H7-4 26 647 50 204 282 376 105 088 207 140 1124 95 <0.0875
He-4 broken empty 26 empty. empty empty. empty. empty empty empty empty. empty empty empty. empty empty.
He-4 26 635 -30.0 169 288 362 13 087 185 124 <1 108 <0.0875
H10-4 26 651 40.0 239 258 309 37 110 19 7 <1 11 <0.0875



Date sample No 1C 3000 1C 3000 ICP-OES  ICP-OES 1C 3000 ICP-OES  ICP-OES  ICP-OES ICP-OES  ICP-OES

Fe 2+ Fe 3+ Sr Mn Mn 2+ Ti Li Mo B Br Doc
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg pgc/
LOQ 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.08
20.06.17 R1-1 0.16 0.01 0.00 0.00 0.00 0.00 <0.05 0.08
R2-1 0.17 0.02 0.01 0.00 0.00 0.00 <0.05 0.09
R3-1 0.09 0.01 0.01 0.02 0.00 0.00 <0.05 0.06
R4-1 0.16 0.02 0.00 0.00 0.00 0.00 <0.05 0.04
R5-1 0.12 0.02 0.01 0.01 0.00 0.00 <0.05 0.05
R6-1 0.09 0.02 0.01 0.01 0.00 0.00 <0.05 0.04
R7-1 0.09 0.02 0.00 0.01 0.00 0.00 <0.05 0.04
R8-1 0.13 0.02 0.03 0.02 0.00 0.00 <0.05 0.07
R9-1 0.08 0.02 0.01 0.00 0.00 0.00 <0.05 0.05
R10-1 0.32 0.03 0.01 0.01 0.00 0.00 <0.05 0.05
R11-1 0.12 0.02 0.01 0.01 0.00 0.00 <0.05 0.07
R12-1 0.11 0.03 0.04 0.00 0.00 0.00 <0.05 0.07
R13-1 0.05 0.04 0.03 0.00 0.00 0.00 <0.05 0.06
R14-1 0.29 0.03 0.14 0.00 0.00 <LOD <0.05 0.07
04.08.17 R1-2 0.03 0.01 0.00 0.00 0.00 0.00 <0.05 0.16
R2-2 0.02 0.01 0.00 0.00 0.00 0.00 <0.05 0.14
R3-2 empty empty empty empty empty empty empty empty empty
R4-2 0.03 0.02 0.00 0.00 0.00 0.00 <0.05 0.04
R5-2 0.01 0.03 0.00 0.00 0.00 0.00 <0.05 0.03
R6-2 0.02 0.03 0.00 0.00 0.00 0.00 <0.05 0.08
R7-2 0.04 0.03 0.00 0.00 0.00 0.00 <0.05 0.07
R8-2 0.02 0.03 0.00 0.00 0.00 0.00 <0.05 0.06
R9-2 0.03 0.03 0.00 0.00 0.00 0.00 <0.05 0.06
R10-2 0.06 0.04 0.01 0.00 0.00 0.00 <0.05 0.04
R11-2 0.05 0.03 0.01 0.00 0.00 0.00 <0.05 0.07
R12-2 0.24 0.04 0.07 0.00 0.00 0.00 <0.05 0.07
R13-2 0.06 0.04 0.05 0.00 0.00 0.00 <0.05 0.04
R14-2 0.96 0.05 0.31 0.00 0.00 0.00 <0.05 0.07
13.08.18 H1-1 empty empty empty empty empty empty empty empty empty
H2-1 9.77 3.11 0.06 0.80 0.67 <0.0125 <0.025 <0.025 <0.05 <0.375 4726
H3-1 0.20 0.86 0.06 0.39 0.22 <0.0125 <0.025 <0.025 <0.05 <0.375 4140
H4-1 0.22 0.06 0.20 0.00 <0.0125 <0.025 <0.025 <0.05 <0.375 5656
H5-1 0.06 0.10 0.47 0.34 <0.0125 <0.025 <0.025 <0.05 <0.375 3636
H6-1 0.05 0.07 0.14 0.00 <0.0125 <0.025 <0.025 <0.05 <0.375 6059
H7-1
H8-1 21.74 3.64 0.06 1.80 1.79 <0.0125 <0.025 <0.025 0.06 <0.375 2941
Ho-1 10.29 214 0.06 1.64 1.60 <0.0125 <0.025 <0.025 <0.05 <0.375 3074
H10-1 21.29 1.38 0.06 1.52 1.42 <0.0125 <0.025 <0.025 0.06 <0.375
18.09.18 H1-2 empty empty empty empty empty empty empty empty empty
H2-2 6.13 1.00 0.07 1.04 0.94 <0.0125 <0.025 <0.025 <0.05 <0.375
H3-2 0.45 0.64 0.06 0.39 0.22 <0.0125 <0.025 <0.025 <0.05 <0.375
H4-2 0.04 0.08 0.28 0.10 <0.0125 <0.025 <0.025 <0.05 <0.375
H5-2 0.06 0.13 0.52 0.40 <0.0125 <0.025 <0.025 <0.05 <0.375
H6-2 0.04 0.08 0.15 0.00 <0.0125 <0.025 <0.025 <0.05 <0.375
H7-2 empty empty empty empty empty empty empty empty empty
H8-2 empty empty empty empty empty empty empty empty empty
H9-2 29.15 1.65 0.06 1.88 181 <0.0125 <0.025 <0.025 0.07 <0.375
H10-2 13.53 15.32 0.06 1.60 <0.0125 <0.025 <0.025 0.07 <0.375
29.10.18 H1-3 empty empty empty empty empty empty empty empty empty
H2-3 7.13 1.03 0.06 0.83 0.66 <0.0125 <0.025 <0.025 <0.05 <0.375
H3-3 1.25 0.37 0.07 0.43 0.26 <0.0125 <0.025 <0.025 <0.05 <0.375
H4-3 0.17 0.35 0.07 0.27 0.09 <0.0125 <0.025 <0.025 <0.05 <0.375
H5-3 0.38 0.60 0.12 0.79 0.75 <0.0125 <0.025 <0.025 <0.05 <0.375
H6-3 0.15 0.46 0.08 0.29 0.13 <0.0125 <0.025 <0.025 <0.05 <0.375
H7-3
H8-3 30.26 1.52 1.97
H9-3 29.81 0.93 0.07 1.92 1.80 0.22 <0.025 <0.025 0.09 <0.375
H10-3 29.96 4.18 0.06 2.01 1.77 <0.0125 <0.025 <0.025 0.09 <0.375
21.11.18 H1-4 empty empty empty empty empty empty empty empty empty
H2-4 0.34 9.87 0.06 0.99 <0.0125 <0.025 <0.025 <0.05 <0.375
H3-4 0.01 1.87 0.07 0.43 <0.0125 <0.025 <0.025 <0.05 <0.375
Ha-4
H5-4 0.00 0.81 0.10 0.88 <0.0125 <0.025 <0.025 <0.05 <0.375
Hé6-4 0.00 0.09 0.07 0.38 <0.0125 <0.025 <0.025 <0.05 <0.375
H7-4 0.27 221 0.08 171 <0.0125 <0.025 <0.025 <0.05 <0.375
H8-4 empty empty empty empty empty empty empty
H9-4 11.56 16.56 0.06 1.90 <0.0125 <0.025 <0.025 0.07 <0.375

H10-4 0.26 9.56 0.06 1.60 <0.0125 <0.025 <0.025 <0.05 <0.375



Date sample No ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS
As v i

Ba cd Co cr cu Hg Ni b se n agTi 95Mo 1185n
ppt ug/t ppt ppt ppt ppt ppt ppt ppt ppt ppt ppt ppt ppt ppt
L0Q 203 19 19 40 40 53 11.2 6 334 102 289 11 29
200617  R1-1
R2-1
R3-1
R4-1
R5-1
R6-1
R7-1
R&-1
R9-1
R10-1
R11-1
R12-1
R13-1
R14-1
04.08.17 R1-2
R2-2
R3-2
R4-2
R5-2
R6-2
R7-2
R8-2
R9-2
R10-2
R11-2
R12-2
R13-2
R14-2
130818 H1-1
H2-1 <LOD <LOD 886 m <LOD 560 <LOD <LoD 83991 777 28073 14 105
H3-1 <LOD <LoD 1085 102 176 638 <LOD <LOD 21557 273 25051 30 475
H4-1 <L0Q <LOD 193 83 <LOD 72 <LOD <LOD 57680 1547 22173 41 487
H5-1 <LoD <LoD 1522 175 <L0Q 489 <LoD <LOD 51877 1619 34305 2 159
Hé6-1 <LOD 24 371 103 354 437 35.6 <LOD 74932 1847 24894 77 234
H7-1
H8-1 <L0Q <LOD 178 78 <LOD 133 <LOD <LOD 48282 1043 22886 50 339
Ho-1 <LoD <LoD 173 66 <LoD 388 <LoD <LoD 57900 <LoD 21079 97 577
H10-1 <L0Q <LOD 329 55 <LOD 164 <LOD <LoD 30239 1262 20153 76 82
18.09.18 H1-2
H2-2 <LOD <LOD 788 <LOD <LOD 721 <LOD <LOD 29988 <LOD 31415 <LOD <LOD
H3-2 <LoD <LoD 473 <LoD <LoD 158 <LoD <LoD 28013 180 26967 1 <LoD
Ha-2 <LOD <LOD 636 <L0Q <LOD 89 24.0 <LoD 87746 2705 32688 48 <L0Q
H5-2 <LOD <LOD 1958 <L0Q 55 964 <LOD <LOD 47825 2003 44520 20 <LOD
H6-2 <LOD <L0Q 562 <L0Q 264 499 <LOD <LOD 70779 3157 27714 113 <LoD
H7-2
Hg-2
H9-2 <LOD <LOD 106 <LOD <LOD <LOD <LOD <LOD 13223 302 22733 <L0Q <LOD
H10-2 <LOD <LOD 174 <L0Q <LOD <L0Q <LOD <LOD 16918 3100 20744 <L0Q <LOD
201018 H1-3
H2-3 <LoD <LOD 704 372 370 644 <LOD <LoD 18890 134 26538 <LoD <LoD
H3-3 <LOD <LOD 642 216 <LOD 246 <LOD <LOD 15463 254 29315 13 <LOD
H4-3 <LOD <LOD 745 172 <LOD 139 <LOD <LOD 8121 1157 28093 32 <LOD
H5-3 <LoD <LoD 3219 178 <l0Q 1321 <LoD <LoD 15036 608 46146 16 <LoD
He-3 <LoOD <L0Q 1214 186 456 704 <LOD <LOD 14150 1235 33694 101 <LoD
H7-3
HE-3
Ho-3 <LoD <LoD 194 204 <L0Q 116 305 <LOD 28542 650 38858 <LoD <LoD
H10-3 <LOD <LOD 2265 706 1102 848 70.8 <LoD 23502 7721 218948 11 <LOD
21.11.18 H1-4
H2-4 <LOD 55 900 137 397 718 1130.8 <LOD 19634 189 34997 <LoD <LOD
H3-4 <LoD <LoD 611 267 <LoD 197 <LoD <LoD 18008 261 30601 12 <LoD
H4-4
H5-4 <LOD <LOoD 3464 231 86 1137 <LOD <LOD 25217 668 3629 13 <LOD
H6-4 <LOD <L0Q 1615 412 664 961 <LOD <LOD 90554 1267 28846 100 <LOD
H7-4 <LoD <LoD 2597 347 <LoD 2464 <LoD <LoD 43202 <LoD 30879 a4 <LoD
He-4
Ho-4 <LOD <LOD 98 474 <LOD 168 <LOD <LOD 17574 136 23620 <LOD <LOD

H10-4 <LoD <LoD 200 248 121 <LoD <LoD <LoD 19029 877 24013 <LoD <LoD
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