
P
h

D
 D

issertatio
n

 b
y D

u
n

can
 P

au
l A

ttard

Department of Computer Science | Reykjavik University

2024

PhD Dissertation by
Duncan Paul Attard

R
untim

e M
onitoring for A

synchronous R
eactive C

om
ponents

Runtime Monitoring for
Asynchronous Reactive
Components

Duncan Paul Attard

Runtime Monitoring for

Asynchronous Reactive Components

Supervised by Adrian Francalanza, Luca Aceto, Anna Ingólfsdóttir

Submitted in partial fulfilment of the requirements for the degree of PhD in Computer Science

Reykjavik University and University of Malta · February 8, 2024

ISBN 978-9935-539-28-1 · Print version

ISBN 978-9935-539-29-8 · Electronic version

0000-0002-2448-5394 · Duncan Paul Attard

The copyright of this thesis rests with the author and is made available under

the Creative Commons Attribution Non-Commercial No Derivatives licence. Re-

searchers are free to copy, distribute or transmit this material on the condition that

they attribute it, that they do not use it for commercial purposes, and that they do

not alter, transform or build upon it. In case of reuse or redestribution, researchers

must clafiry to others the licence terms of this work.

Declaration of Authenticity

I, the undersigned, declare that the dissertation titled

Runtime Monitoring for Asynchronous Reactive Components

is my work, except where acknowledged and referenced.

Duncan Paul Attard · February 8, 2024

i

Acknowledgements

First and foremost, I want to express my deepest gratitude to my supervisors, Adrian

Francalanza, Luca Aceto, and Anna Ingólfsdóttir. I have been singularly blessed to have

worked with these three very remarkable people. Adrian, Luca, and Anna were present

every step of the way, provided me with unwavering guidance and inspired me throughout

these past years. They instilled in me a deep appreciation of the scientific pursuit not

just through words but through their action, while at the same time, reminding me that

there is more to life than just work. The three of them—each in their own manner—went

above and beyond in nurturing and shaping my growth as a researcher. Luca, Anna, and

especially, Adrian, thanks for being a steadfast source of moral support whenever my

spirits flagged. I remain in your debt and aspire to follow in your footsteps. Thanks also

to Antonis Achilleos, a friend and colleague who was always available to discuss ideas

and give feedback during my time in Iceland.

My second thanks goes to my examiners, Emilio Tuosto, David Basin, and Keith Bugeja,

for their constructive assessment and insightful comments, and for making my viva

a very pleasant experience. Keith has been an invaluable reference when discussing

implementation ideas and has been supportive throughout these past years. Emilio, whom

I initially met in Leicester in the very first months of my programme, has always given me

frank and constructive feedback whenever we chanced to meet at conferences or other

academic settings. He is a person I respect and greatly admire. Another thanks goes to

Simon Fowler and Phil Trinder for their suggestions on improving the presentation of my

work and for helping me prepare for my viva.

This journey would have not been the same without the warm bonds of friendship.

I count Adrian De Barro as one of the closest, together with Jasmine Xuereb and Elli

Anastasiadi. Adrian has been a constant companion through the highs and lows of my

academic and personal life. We spent countless nights working together until the wee

hours of the morning. I cannot help but fear that I would have not met most of my

deadlines had it not been for your honest encouragement and solidarity. Thank you,

Jasmine, for not only being an incredible friend but also for generously dedicating your

iii

iv

valuable time to proofread sections of this manuscript.

I extend my thanks to the inhabitants of our postgraduate office at Reykjavik University,

including Joshua, Shalini, and Majd, in addition to colleagues from the University of Malta:

Matthew, Gerard, Caroline, Chris, and Stefania, who kept me company from afar on

numerous occasions. Thanks also to Andy, Mandy, Roderick, Josef, and Josef for checking

in on me from time to time.

My parents, Raymond and Geltrude, as well as my siblings Daphne and Björn, have

been a boundless source of motivation. They have endured my fair share of complaints

and moments of despondency, which they repaid me tenfold with gentle words of care

and encouragement. I feel incredibly fortunate to have you in my life. This PhD is yours

as much as it is mine.

These past years have been a wonderful journey of personal growth and self-discovery.

Pursuing a doctorate was always a vague notion that I entertained, albeit not one I believed

in. Never have I thought that mid-life I could gather sufficient courage to quit my job,

forgo a stable lifestyle, and embark on an undertaking about which I knew little and feared

much. Reflecting on it, I suppose I would not have mustered the courage to take the leap.

But I met Joe Cordina, a cherished friend from the past, whom I lastly thank. He urged

me to follow my heart, rather than dwell on whether the path one travels in consequence

leads to success or failure. For life is too short not to risk living it.

My research was supported by the Reykjavik University Research Fund, the Doctoral

Student Grant (No: 207055) under the Icelandic Research Fund, and the ENDEAVOUR

Scholarship Scheme (Group B - National Funds).

If you can dream—and not make dreams your master;

If you can think—and not make thoughts your aim;

If you can meet with Triumph and Disaster

And treat those two impostors just the same;

If you can fill the unforgiving minute

With sixty seconds’ worth of distance run,

Yours is the Earth and everything that’s in it,

And—which is more—you’ll be a Man, my son!

(excerpt from If, by Rudyard Kipling)

v

Publications

These papers have been published as a result of the research work conducted in this

thesis, and are used as its main contributing source. The list of publications is presented in

reverse chronological order and includes a short description identifying my contributions.

• Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza,

and Anna Ingólfsdóttir. A Monitoring Tool for Linear-Time `HML. Sci. Comput.

Program., 232:103031, 2024

Contribution Principal author of the paper and developer of the software artefact.

This paper is the journal version of the one cited next.

• Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza,

and Anna Ingólfsdóttir. A Monitoring Tool for Linear-Time `HML. In COORDINATION,

volume 13271 of LNCS, pages 200–219, 2022

Contribution Principal author of the paper and developer of the software artefact and

the accompanying tutorial. Section 2 of the paper forms a significant part of section 2.2

and chapter 3. Section 3 also contributes to chapter 3, whereas the implementation

presented in section 4 of the paper provides the material for sections 4.1, 4.2, 4.5 and 4.6.

• Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. On

Benchmarking for Concurrent Runtime Verification. In FASE, volume 12649 of LNCS,

pages 3–23, 2021

Contribution Principal author of the paper and developer of the software artefact.

This work has been conducted under the advice of my supervisors. Most of the material

in the paper is integrated in chapter 6.

• Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. A

Choreographed Outline Instrumentation Algorithm for Asynchronous Components.

Technical report, Reykjavik University, IS, 2021

vii

viii

Contribution Principal author of the technical report and developer of the software

artefact. This work has been conducted under the advice of my supervisors. The

content of the technical report, apart from the empirical results section, forms the basis

of chapter 5. Parts of the argumentation in chapter 7 is modelled on section 4 of the

technical report, but the evaluation we present has been conducted again on newer

hardware and extended further to a new direction.

• Duncan Paul Attard, Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna In-

gólfsdóttir, and Karoliina Lehtinen. Better Late than Never or: Verifying Asynchronous

Components at Runtime. In FORTE, volume 12719 of LNCS, pages 207–225, 2021

Contribution Principal author of the paper and developer of the software artefact,

website and tutorial material. This work has been conducted under the advice of my

supervisors. Some of the material in sections 4, 5 and 6 in the paper is integrated in

chapter 4.

• Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar,

Dario Della Monica, and Anna Ingólfsdóttir. A Foundation for Runtime Monitoring. In

RV, volume 10548 of LNCS, pages 8–29, 2017

Contribution Helped with writing sections of the paper, illustration of all the dia-

grams as well as poof reading. Parts of sections 3 and 4 in the paper are included in

chapters 2 and 3.

• Ian Cassar, Adrian Francalanza, Duncan Paul Attard, Luca Aceto, and Anna Ingólfsdót-

tir. A Suite of Monitoring Tools for Erlang. In RV-CuBES, volume 3 of Kalpa Publications

in Computing, pages 41–47, 2017

Contribution Helped with writing sections of the paper as well as proofreading.

This work has been conducted under the advice of my supervisors. None of this work

is included in this thesis.

• Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfs-

dóttir. Introduction to Runtime Verification. In Behavioural Types: from Theory to Tools,

Automation, Control and Robotics, pages 49–76. River, 2017

ix

Contribution Principal author of the book chapter and developer of the software

artefact and tutorial material. This work has been conducted under the advice of my

supervisors. Small parts of section 1.1 in the book chapter are included in chapters 2

and 3, whereas section 1.2 contributes minimally to chapter 4.

• Duncan Paul Attard and Adrian Francalanza. Trace Partitioning and Local Monitoring

for Asynchronous Components. In SEFM, volume 10469 of LNCS, pages 219–235, 2017

Contribution Co-author with my supervisor and principal developer of the software

artefact and tutorial material. This work has been conducted under the advice of my

supervisors. Some of the material of section 2 in the paper contributes to chapters 2

and 3. Ideas in sections 3 and 4 of the paper have also been lifted and adapted to

chapter 4.

Abstract

Modern software is built on reactive principles, where systems are responsive, resilient,

elastic, and message-driven. Despite the benefits they engender, these aspects make

the correctness of reactive systems in terms of their expected behaviour hard to ascer-

tain statically. This thesis investigates how the correctness of reactive systems can be

ascertained dynamically at runtime. It considers a lightweight monitoring technique,

called runtime verification, that circumvents the issues associated with traditional pre-

deployment techniques. One major challenge of runtime verification lies in choosing a

monitoring approach that does not impinge on the reactive aspects of the system under

scrutiny. Such a goal is met only if the monitoring system is itself reactive. We propose a

novel monitoring approach grounded on this precept. It treats the system as a black box,

instrumenting monitors dynamically and in an asynchronous fashion, which is in tune

with the requirements of reactive architectures. Our development approach is systematic,

permitting us to directly map the constituent parts of our formal model to implementable

modules. This gives assurances that the results obtained in the theory are preserved in

the implementation.

The first part of the thesis builds on established theoretical results. It lifts these results to

a first-order setting to accommodate scenarios where systems manipulate data. We define

an asynchronous instrumentation relation that decouples the operation of the system

from that of its monitors. This definition forms the basis of our decentralised outline

monitoring algorithm presented in the second part of the thesis. Our algorithm employs a

tracing infrastructure to collect trace events as the system executes and uses key events

as cues to instrument new monitors or terminate redundant ones dynamically. It accounts

for the interleaving of events that arises from the asynchronous execution of the system

and monitors, guaranteeing that events are analysed by monitors in the correct sequence

and without gaps.

Part three develops a runtime verification benchmarking framework that is tailored

for reactive systems. The framework can generate models that faithfully capture the

realistic behaviour of master-worker systems under typical load characteristics. Our tool

xi

xii

collects different performance metrics suited to reactive applications, to give a multi-

faceted depiction of the overhead induced by runtime monitoring tools. Part four of

this thesis embarks on an extensive evaluation of our decentralised outline monitoring

algorithm using the benchmarking tool developed in part three. The algorithm is compared

against our implementation of inline and centralised monitoring—two prevalent methods

used in state-of-the-art runtime verification tools. Apart from demonstrating that our

monitoring algorithm is reactive, the experiments we conduct testify that it induces

acceptable overhead that, in typical cases, is comparable to that of inlining. These results

also confirm that centralised monitoring is prone to scalability issues, poor performance,

and failure, making it generally inapplicable to reactive system settings. We are unaware

of other comprehensive empirical runtime verification studies such as ours that compare

decentralised, centralised, and inline monitoring.

Contents

1 Introduction 1

1.1 Motivation and Contributions Summary 2

1.1.1 Asynchronous Runtime Monitoring with Data 3

1.1.2 Decentralised Outline Monitor Instrumentation 3

1.1.3 Quantifying Runtime Overhead Reliably 6

1.1.4 Evaluating Decentralised Outline Runtime Monitoring 8

1.2 Scope of the Study . 9

1.3 Outline . 10

1.3.1 How to Read this Thesis . 13

2 Preliminaries 15

2.1 Runtime Verification . 15

2.1.1 Specification Logics . 16

2.1.2 Monitors . 18

2.1.3 Monitorability . 20

2.1.4 Instrumentation for Online Monitoring 23

2.2 The Hennessy-Milner Logic with Recursion 26

2.3 The Syntax of `HMLd . 27

2.4 The Semantics of `HMLd . 28

2.5 Discussion . 31

3 Monitors and Instrumentation 33

3.1 Trace Properties . 34

3.2 Synchronous Runtime Monitoring . 36

3.3 Monitorable Logic Fragments . 39

3.4 Monitor Synthesis . 41

3.5 Asynchronous Runtime Monitoring . 45

3.6 Discussion . 49

xiii

xiv

4 Runtime Monitoring 53

4.1 Revisiting the Data Model . 54

4.2 Synthesising Erlang Monitors . 57

4.3 The Monitoring Algorithm . 58

4.4 Selective Instrumentation . 60

4.5 Inline Instrumentation . 61

4.6 Case Study: Monitoring the Cowboy-Ranch Protocol 64

4.7 Discussion . 65

4.7.1 Related Work . 67

5 Decentralised Outline Instrumentation 69

5.1 Modelling Decentralised Outline Instrumentation 70

5.1.1 Processes and Trace Events . 72

5.2 The Instrumentation Algorithm . 74

5.2.1 Tracing . 76

5.2.2 Trace Partitioning . 77

5.2.3 Trace Event Routing . 78

5.2.4 Trace Event Routing with Priorty 80

5.2.5 Detaching Tracers . 84

5.2.6 Selective Instrumentation . 85

5.2.7 Garbage Collection . 85

5.3 Correctness Validation . 85

5.3.1 Implementability . 86

5.3.2 Invariant Implementation . 86

5.4 Discussion . 90

5.4.1 Related Work . 91

6 Reactive Runtime Monitoring Benchmarking 95

6.1 A Configurable Benchmark Design . 95

6.1.1 Load Generation . 96

6.1.2 Load Configuration . 97

6.1.3 Wall-Clock Time . 97

6.1.4 Worker Scheduling . 98

6.1.5 System Responsiveness . 99

xv

6.2 Implementability . 101

6.3 Measurement Collection . 101

6.4 Benchmark Expressiveness and Coverage 102

6.4.1 Experiment Set-up . 102

6.4.2 Measurement Precision . 103

6.4.3 Result Repeatability . 104

6.4.4 Response Time Tuning . 104

6.4.5 Veracity of the Synthetic Models 105

6.4.6 Load Profile Models . 106

6.5 Benchmark Validation . 107

6.5.1 Runtime Monitoring Set-up . 108

6.5.2 Synthetic Benchmarks . 108

6.5.3 OTS Application Benchmarks . 112

6.6 Discussion . 113

6.6.1 Related Work . 114

7 Evaluating Decentralised Outline Runtime Monitoring 117

7.1 Reactive System Monitoring . 117

7.1.1 Experiment Set-Up . 118

7.1.2 Runtime Monitoring Set-up . 119

7.1.3 Precautions . 120

7.2 Monitoring High Concurrency Systems 121

7.2.1 Instrumentation Overhead . 123

7.2.2 Monitoring Overhead . 124

7.2.3 Instrumentation Cost . 127

7.2.4 Scaled Set-up . 129

7.2.5 Resource Usage . 132

7.3 Monitoring Lower Concurrency Systems 136

7.4 Discussion . 139

7.4.1 Related Work . 140

8 Conclusion 145

8.1 Avenues of Future Research . 147

8.1.1 Parametrised Recursion Variables 147

xvi

8.1.2 Managing the Number of Active Monitor States 148

8.1.3 Component Replication and Monitorable Properties 148

8.1.4 Failure Injection . 149

8.1.5 Decentralised Inline and Outline Monitoring 150

A Further Decentralised Outline Instrumentation Details 151

B Case Study: Monitoring Reactive Applications 153

B.1 Monitoring the Master-Worker Model . 153

B.2 The Cowboy and Ranch Communication Protocol 155

B.3 Monitoring Cowboy and Ranch . 157

C Auxiliary Data Plots for Benchmarks 163

C.1 Moderate Loads . 163

C.2 High Loads . 164

D A Summary of the State of the Art 169

D.1 Concurrent Monitoring . 169

D.2 Distributed Monitoring . 169

Acronyms 175

Figures

2.1 RV for the classical set-up with one execution trace 17

2.2 The interpretation of formal logics on system models and system executions 18

2.3 Inline (synchronous) and outline (asynchronous) instrumentation for process 𝑄 25

2.4 Syntax, linear-time and branching-time semantics for the `HMLd 27

3.1 Token server that issues integer identification tokens to client programs . . . 34

3.2 Syntax, small-step semantics for parallel monitors, and synchronous instru-

mentation . 37

3.3 Small-step semantics for asynchronous instrumentation 46

4.1 Theoretical and corresponding implementation RV set-ups 54

4.2 Erlang adaptation of the token server of figure 3.1 56

4.3 Translation from maxHMLd formulae to Erlang code (excerpt) 57

4.4 Instrumentation pipeline for inlined monitors using Erlang source-level weaving 61

4.5 Transformations to the AST of the ts program (shown as code) 63

5.1 Decentralised outline monitoring set-up consisting of tracer and monitor roles 70

5.2 SuS with processes 𝑃 , 𝑄 , and 𝑅 instrumented with three independent monitors 74

5.3 Outline tracer instrumentation for processes 𝑃 , 𝑄 and 𝑄 (monitors omitted) . 77

5.4 Hop-by-hop trace event routing using tracer routing maps Π (monitors omitted) 78

5.5 Trace event order preservation using priority (•) and direct (◦) tracer modes

(monitors omitted) . 82

6.1 Master 𝑀 scheduling worker processes𝑊𝑗 and allocating work requests . . 98

6.2 Collector tracking the round-trip time for work requests and responses . . . 102

6.3 System reactiveness benchmarks modelled by Pr(𝑠𝑒𝑛𝑑) and Pr(𝑟𝑒𝑐𝑣) 106

6.4 Fitted probability distributions on response time for Steady loads for 20k

workers . 107

6.5 Steady, Pulse and Burst load distributions of 500 k workers for 100 s 107

xvii

xviii

6.6 Master-worker and Cowboy-Ranch benchmarks instrumented with inline

local monitors . 109

6.7 Mean runtime overhead for master and worker processes (20 k workers) . . 110

6.8 Mean runtime overhead for master and worker processes (500 k workers) . . 111

6.9 Mean overhead for synthetic and Cowboy benchmarks (20 k threads) 113

7.1 Master-worker benchmarks instrumented with decentralised and centralised

outline monitors (internal) . 120

7.2 Instrumentation overhead on system under moderate load benchmarks (100k

workers) . 123

7.3 Monitoring overhead on system under moderate load benchmarks (100k

workers) . 126

7.4 Gap in instrumentation and monitoring overhead on the system under mod-

erate load benchmarks (100k workers) . 128

7.5 Monitoring overhead on system under high load benchmarks (500k workers) 129

7.6 Monitoring overhead for complete experiment runs under high load bench-

marks (500k workers) . 132

7.7 Resource usage for (de)centralised monitoring under high load benchmarks

(500k workers) . 133

7.8 Resource consumption for decentralised monitoring under high load bench-

marks (500k workers) . 135

7.9 Gap in decentralised monitoring overhead on the system under high load

benchmarks (500k vs. 5k workers) . 137

B.1 The Cowboy and Ranch communication protocol 156

B.2 Monitor𝑚𝜑rp justifies how the verdict no is reached along the trace 159

C.1 Gap in instrumentation and monitoring overhead on the system under mod-

erate load benchmarks (100k workers) . 163

C.2 Gap in decentralised monitoring overhead on the system under moderate load

benchmarks (100k vs. 1k workers) . 164

C.3 Gap in instrumentation and monitoring overhead on the system under high

load benchmarks (500k workers) . 165

xix

C.4 Gap in instrumentation and monitoring overhead on the system under high

load benchmarks (500k workers) . 166

C.5 Resource consumption for decentralised monitoring under high load bench-

marks (500k workers) . 167

C.6 Load on scheduler threads for complete experiment runs under high load

benchmarks (500k workers) . 168

Tables

4.1 Actions capturing the behaviour exhibited by Erlang processes 55

5.1 Trace event messages, action label, and data field names 73

5.2 Challenges addressed by decentralised outline monitoring to ensure correct

and elastic runtime analyses . 76

6.1 Load profile and system reactiveness configuration for benchmarks 100

7.1 Experiment configurations and message throughput at maximum Steady loads 118

7.2 Mean time (µs) taken by monitors to persist or analyse one trace event . . . 120

7.3 Experiments for high concurrency systems (RSH) investigating overhead,

claims, and expected outcomes . 122

7.4 Percentage overhead on RSH (500 k workers) and RSL (5 k workers) w.r.t.

baseline at maximum load . 139

D.1 State-of-the-art on concurrent monitoring classified by characteristics (∗ de-

notes both) . 169

D.2 State of the art on distributed monitoring classified by characteristics (∗
denotes both) . 174

xxi

Listings

1 Monitoring algorithm that reduces monitors following the small-step rules

of figure 3.2 . 59

2 Instrumentation operations for direct and priority tracer modes 79

3 Tracer loop that handles direct (◦) trace events, message routing and

forwarding . 81

4 Tracer loop that handles priority (•) trace events and message forwarding 83

5 Operations used by the (◦) and priority (•) tracer loops 151

6 System starting operation and root tracer 152

7 Abstraction of the operations offered by the tracing infrastructure 152

xxiii

Conventions and Notation

Textual content and illustrations in this thesis adopt the following conventions. Shadows

are used to highlight illustration elements that are important in the surrounding context.

Text

Emphasised text denotes key concepts, phrases, and term definitions

Small Capitals identify process, function, or set names in mathematical notation

Teletype text identifies source code snippets or keywords

Sans Serif denotes functions or values in mathematical notation

‘Quoted’ italic text symbolises the textual description of correctness properties

Illustrations

𝑥𝑥 𝑥 variable binding and scoping

n sequential steps in a figure or formula

(fork) creation of a child process

(exit) process termination

(send) uni-directional communication between processes

(trace) pairing between the process and the monitor tracing it

(read or write) read or write from or to queue

𝑃 process or groups of processes of the SuS

𝑇 tracer process

𝑀 outlined monitor process

𝑀 inlined monitor code

xxv

xxvi

𝑒 trace event

✓ monitor verdict

process abstraction or system boundary

2 arbitrarily long queue of objects

𝑝 process state

1 Introduction

Modern software applications are architected in terms of concurrent components that

execute independently to one another without recourse to a global clock or shared state [15,

140]. Instead, components interact together and with their environment via non-blocking

messaging [136] to create a dynamic, loosely-coupled software organisation known as a

reactive system [2, 153]. Reactive systems must:

• respond in a timely manner (be responsive),

• remain available in the face of failure (be resilient),

• grow and shrink to accommodate variable computational loads (be elastic), and

• react to inputs from users or their environment (be message-driven).

Such architectures facilitate incremental updates (maintainability) and permit the various

constituent components to execute on different locations (distribution) [153, 83, 120]. At

the same time, the benefits of reactive systems make the correctness in terms of their

expected behaviour hard to verify statically [119].

This thesis investigates how the correctness of reactive systems can be established at

runtime. We consider runtime verification (RV), which is a dynamic technique that checks

the current execution of a system under scrutiny (SuS) to determine whether it satisfies or

violates some correctness property. RV uses monitors—computational machines that are

synthesised from formal property descriptions. Monitors are instrumented with the SuS

to incrementally analyse its execution (expressed as a trace of events) and reach verdicts

about its observed behaviour. We make the following contributions.

(i) Build on previous theoretical results [6, 8] and extend their specification language,

monitor operational model, and monitor synthesis procedure with predicates to

reason on the data carried by trace events. We implement these extensions and

give a technique for instrumenting inline monitors. Additionally, we define an

asynchronous instrumentation relation that decouples the operation of the SuS from

that of its monitors, in line with a reactive approach.

1

1 Introduction · 2

(ii) Devise a decentralised outline monitoring algorithm that realises the asynchronous

instrumentation definition of (i). Our algorithm accounts for the interleaving arising

from asynchronous execution and guarantees that trace events are reported to

monitors in the correct order and without loss.

(iii) Develop a configurable benchmarking framework that can generate synthetic SuS

models which reproduce the realistic behaviour of master-worker systems. This

tool collects various performance metrics to give a multi-faceted view of overhead

that is relevant to reactive runtime monitoring.

(iv) Give a comprehensive empirical evaluation of the overhead induced by the instanti-

ation of the formalisation developed in contribution (i) as the algorithm in (ii), using

the benchmarking framework of (iii). We compare (ii) against our implementations

of inline and centralised instrumentation—also based on contribution (ii)—to demon-

strate that our decentralised approach induces feasible overhead that, in typical

cases, is proportionate to, or outperforms the latter methods.

1.1 Motivation and Contributions Summary

Our ultimate research goal is to construct a suite of runtime monitoring tools for reactive

systems founded on the contributions (i) to (iv). We use these tools as a vehicle to:

• demonstrate that the formalisation and method proposed in contributions (i) and (ii)

can be implemented in a general-purpose language that targets reactive applications

(chapters 4 and 5);

• debunk the commonly-held belief [90, 25] that decentralised outline instrumentation is

necessarily infeasible (section 7.2) and show that in typical cases, inline and outline

instrumentation induce comparable runtime overhead (section 7.3);

• confirm that centralised monitoring approaches are generally inapplicable in settings

exhibiting moderate to high concurrency, and are prone to poor performance or failure

(section 7.2).

Based on these conclusions, we immediately note that decentralised outline monitoring

is the only viable approach when inlining cannot be employed (refer to discussion in

section 2.1.4). Sections 1.1.1 to 1.1.4 respectively detail the research gaps that each of

contributions (i) to (iv) addresses.

1.1 Motivation and Contributions Summary · 3

1.1.1 Asynchronous Runtime Monitoring with Data

RV approaches that are not equipped to handle data explicitly have very limited appli-

cability in practice. For instance, the property stating ‘always greater than zero’, is easily

expressed as the linear temporal logic (LTL) formula G 1∨G 2, when the set of actions

that a SuS can exhibit is {0,1,2}. However, a generalisation of this requirement to the

domain of integers cannot be expressed in a finite way. Equipping the specification logic

with a predicate over data values and variables enables us to compactly represent this

requirement using the formula G (𝑥 >0). The same reasoning can be extended to monitors

that runtime check such specifications against system executions.

Our work follows this route. It builds on the theoretical results of Aceto et al. [6, 8] that

use the linear-time interpretation of the Hennessy-Milner logic with recursion (`HML), a

highly-expressive modal logic that can encode other logics such as LTL. This gives our

work a sufficiently-general basis. In op. cit., the authors define an operational model of

regular monitors and a compositional synthesis procedure that generates monitors from

monitorable fragments of the logic. We lift their results and extend the logic, monitors,

and synthesis procedure with predicates over data. One challenge that arises upon

introducing data predicates is that of variable binding and scoping, that gives rise to

subtle dependencies between sub-formulae and complicates their runtime checking. We

address this aspect from two angles. First, our synthesis procedure generates parallel

monitors whose constituent sub-monitors runtime check different sub-formulae and can

reach independent verdicts. Second, the executable monitor code generated delegates the

binding and scoping aspects to the implementation language to streamline the synthesis.

In addition to augmenting the model of Aceto et al. [6, 8] with data predicates, we provide

an alternative asynchronous instrumentation definition to the synchronous one given by

the aforesaid authors. Our definition is preferable in reactive systems settings since the

SuS and monitors can be organised into independent components. Separating the SuS

and monitors minimises the dependencies between these entities and the risk that the

system is impacted by the operation of monitors.

1.1.2 Decentralised Outline Monitor Instrumentation

We claim that reactive applications necessitate a RV monitoring set-up that is itself

reactive and, crucially, does not impinge on any of the reactive characteristics of the SuS.

One of the main challenges in constructing RV tools lies in choosing an instrumentation

1 Introduction · 4

technique that suits the architecture of SuS one wants monitored. Intuitively, instrumen-

tation can be seen as a procedure ⊳ that takes a SuS and its monitors, and composes them

together as a monitored system, which we denote by

Monitors ⊳ 𝑆𝑢𝑆

State-of-the-art approaches that focus on monolithic programs generally prefer syn-

chronous instrumentation in the form of monitor inlining (see section 2.1.4 for details),

since the targeted systems are typically single-threaded and do not scale (e.g. [197, 70,

68, 175, 24, 148, 138]). Numerous other works that consider decentralised or distributed

systems and use synchronous or asynchronous instrumentation methods assume a static

SuS whose number of components is known and remains fixed at runtime (e.g. [31, 45, 67,

122, 180, 203, 208, 219]). Observe that in both cases described, the SuS is not reactive as it

is neither resilient (single-threaded) nor elastic (static).

The RV approaches that do support dynamic systems mostly adopt inline instrumenta-

tion. Inlining remains the predominant method used in decentralised and distributed RV

(e.g. [60, 148, 89, 87, 34, 45, 110, 13]). One possible reason behind this is that most efforts

extend mature tools that were originally conceived for monolithic RV, where inlining

has traditionally performed well. It is, therefore, natural to want to extend this proven

approach to a new domain such as decentralised monitoring, rather than abandon the

prior implementation investment in favour of a completely new approach. However,

inlining creates a tight dependency between the SuS and its monitors. This dependency is

known to hamper the responsiveness of the SuS when the inlined monitors are slow in

their runtime analysis [61, 51]; it can also impinge on the resiliency of the system when

monitors suffer from faults or failures. For these reasons, we view inline instrumentation

as producing a monitored system i.e., Monitors ⊳ 𝑆𝑢𝑆 , that might not be reactive.

Centralised monitoring is an approach occasionally adopted when inlining cannot be

administered to the SuS (see section 2.1.4 for reasons). In a centralised set-up, it is often

the case that a singleton monitor is instrumented to execute apart of the reactive SuS

via outlining. Trace events exhibited by different components of the SuS are directed

to a central collection point, such as a queue, that the monitor then accesses to analyse

these events (e.g. [71, 21, 219, 113, 51, 52, 207, 101]). While the serialisation of events on

the centralised monitor may facilitate the runtime analysis, it creates contention and

sacrifices the scalability of the system. This means that a centralised monitoring set-up

can experience diminishing returns as new computational resources are introduced [18].

1.1 Motivation and Contributions Summary · 5

Moreover, the reliance on one monitoring entity makes centralised set-ups susceptible to

single point of failures (SPOFs) [153, 152]. We hold that these two shortcomings (evidence

of both is given in our empirical investigation of chapter 7) renders the monitored system,

Monitor ⊳Queue ⊳ 𝑆𝑢𝑆 , not reactive.

We propose an algorithm that dynamically instruments decentralised outline monitors

as the SuS executes. The asynchronous instrumentation definition we give as part of the

contribution outlined in section 1.1.1 is used as the basis of our decentralised algorithm. The

algorithm generalises the configuration Monitor ⊳Queue⊳𝑆𝑢𝑆 to different SuS components,

where each is organised with a separate monitor and trace event message queue:

(Monitor ⊳Queue ⊳Component)𝑖

To the best of our knowledge, this approach is novel. In fact, the latest taxonomy of RV

tools in Falcone et al. [100, Tables 3 and 4] shows that none of the works it catalogues use

outlining combined with decentralisation1. Another recent classification for decentralised

and distributed monitoring in Francalanza et al. [119, Tables 1 and 2] also indicates that

the approach we propose remains unexplored2. One rationale why outlining is seldom

considered for decentralised RV arises from its perceived infeasibly high overhead when

compared to inlining. This is partly because inlining statically identifies the designated

monitor instrumentation points within the SuS, whereas outlining defers this decision

post-deployment. The perception about high overheads is reinforced when the overhead

in decentralised RV is gauged in terms of criteria that are applicable to monolithic, batch-

style systems (e.g. percentage slowdown) that are hardly relevant to reactive settings (see

e.g. [158, 184, 185, 62, 61, 197, 43]). This lack of proper RV benchmarking tools for reactive

systems motivates our third contribution of section 1.1.3.

However, the foremost reason for the scarce adoption of decentralised outline instru-

mentation is that reactive systems impose onerous terms that make it hard to build. Chief

among these requirements is the capacity for a reactive system to grow and shrink in

response to fluctuating computational demands, obliging the RV set-up to scale accord-

ingly. With the use of inlining, such elastic behaviour emerges naturally as a byproduct

1While THEMIS [88] and StateRover [85] are marked as decentralised outline approaches in [100], both are

simulation tools.
2The authors use the label ‘Distributed Monitoring’, but this refers to concurrent monitors on the same

machine.

1 Introduction · 6

of the monitor logic that is weaved into the components of the reactive system itself.

By contrast, elasticity must be explicitly engineered in the decentralised outline case

so that the instrumentation can reconfigure its monitoring set-up while the runtime

analysis is underway. Decoupling the SuS from its monitors calls for the instrumentation

to contend with the inherent race conditions (e.g. message reordering) that arise from the

asynchronous execution of the SuS and monitors. As section 2.1.4 later stresses, instrumen-

tation that is tailored for verification purposes must ensure that the trace events collected

from the SuS are reported to the correct monitors in the proper order and with no loss,

lest this invalidates the runtime analysis [25]. The lock-step execution of the weaved

system-monitor components spares inline monitoring these complications. Despite the

challenges that decentralised outline instrumentation poses, the monitored system that

results from this set-up is reactive (refer to section 5.4).

1.1.3 Quantifying Runtime Overhead Reliably

The overhead induced by monitors is a manifestation of the formal framework that

underpins the RV model and the implementation effort that instantiates it as a concrete

software artefact. Runtime overhead is the litmus test that determines whether a moni-

toring tool is applicable in practice [25]. Benchmarking is a commonly-accepted practice

of gauging runtime overhead in software [165] which is also adopted by the RV com-

munity [25, 119]. The usefulness of benchmarking tools rests on two aspects, namely,

(i) the coverage of scenarios of interest, and (ii) the quality of runtime metrics collected

by the benchmark harness [108]. Benchmarking tools (e.g. [215, 40, 212, 193]) generally

employ third-party off-the-shelf (OTS) programs to capture scenarios of interest. OTS

software is appealing, as it inherently provides realistic scenarios and can be readily

integrated within an existing benchmarking suite. In a bid to broaden and diversify the

coverage of real-world scenarios, benchmarking tools rely on a range of OTS programs

(e.g. DaCapo [40] uses 11 open-source libraries, Renaissance [193] uses 21). Yet, using

such programs as benchmarks poses certain challenges. By design, OTS programs do not

expose hooks that enable harnesses to easily and accurately gather the runtime metrics

of interest. When OTS software is treated as a black box, benchmarks become harder

to control, impacting their ability to produce repeatable results. OTS software-based

benchmarks are also limited when inducing specific edge cases—this aspect is critical

when assessing the safety of software, such as runtime monitors, that are often assumed

1.1 Motivation and Contributions Summary · 7

to be dependable [25, 112]. Custom-built synthetic programs (e.g. Savina [137]) are an al-

ternative way to perform benchmarking [46]. These tend to be less popular due to the

perceived drawbacks associated with developing such programs from scratch and the

lack of ‘real-world’ behaviour intrinsic to benchmarks based on OTS software. However,

synthetic benchmarks offer benefits that offset these drawbacks. For example, specialised

hooks can be built into the synthetic set-up to collect specific runtime metrics. Moreover,

synthetic benchmarks can also be parametrised to emulate variations on the same core

benchmark behaviour; this is usually harder to achieve via OTS programs that, often,

implement very specific use cases.

Established benchmarking frameworks such as SPECjvm2008 [215], DaCapo [40], Scal-

aBench [212] and Savina [137]—developed for the Java virtual machine (JVM)—have

been adopted by the RV community as the benchmarking tools of choice, e.g. see [185,

62, 61, 197, 43, 176, 124]. Apart from [176], the cited works assess the runtime overhead

solely in terms of the execution slowdown, i.e., the difference in running time between

the system fitted with and without monitors. While this metric is suited to batch-style

monolithic programs [68, 100], it is inapplicable to the reactive setting, where systems

are engineered to not terminate. The response time (or latency) between communicating

components is one of the fundamental aspects that quantifies the quality of a reactive sys-

tem [153]. Concretely, it reflects the responsiveness from a client standpoint (e.g. interactive

apps) [187, 217, 211, 73]; in the broader sense, it indicates the service degradation that one

should manage to ensure adequate quality of service [49, 151]. The first competition on

runtime verification (CRV) [26] advocates for the memory consumption as another measure

that gives a more complete view of runtime overhead. However, the CRV disregards the

scheduler (or CPU) utilisation that, for component-based applications, indicates how well

the tool being benchmarked maximises the capacity of the processing elements provided

by the host platform.

Arguably, benchmarking tools like the ones above (e.g. Savina) should provide even

more. RV set-ups for reactive systems need to scale in response to dynamic changes, and

the capacity for a benchmark to emulate high loads cannot be overstated. In practice, these

loads assume characteristic profiles (e.g. spikes or uniform rates), which are hard to admin-

ister with the benchmarking tools mentioned earlier. The state of the art in benchmarking

for concurrent RV suffers from another core issue. At one end, existing benchmarking

tools are repurposed for RV, but are not made to account for concurrent scenarios where

1 Introduction · 8

RV is realistically put to use. For instance, SPECjvm2008, DaCapo, and ScalaBench lack

workloads that leverage the JVM concurrency primitives [193]; meanwhile, Blessing et al.

[41] show that the Savina microbenchmarks are essentially sequential and that the rest

of the programs in the suite are sufficiently simple to be regarded as microbenchmarks,

too. This makes it challenging to generalise the results obtained from experiments based

on these benchmarks. At the other end, the RV-centric CRV suite mostly targets mono-

lithic software with limited concurrency, where the potential for scaling to high loads is,

therefore, severely curbed. Its recent editions [98, 198, 27] acknowledge that concurrency

remains uncatered for.

In the absence of a suitable solution that provides for reactive systems, we propose a

synthetic benchmarking framework that addresses the deficiencies described above. The

framework records three performance metrics—response time, memory consumption,

and scheduler utilisation—that give a comprehensive depiction of runtime overhead. Our

tool is configurable. It can generate different benchmarking models of master-worker

systems based on various parameters and subject these models to load profiles that

are typically observed in practice. Despite the synthetic nature of the tool, the models

it generates capture the realistic behaviour of software which is conducive to reliably

quantifying overhead. This improves the likelihood that conclusions drawn from the

synthetic experiments are portable to real-world applications of the evaluated RV tool.

1.1.4 Evaluating Decentralised Outline Runtime Monitoring

The benchmarking tool developed in section 1.1.3 is used to empirically assess the three

monitor instrumentation techniques, inline, outline decentralised, and outline centralised,

mentioned in section 1.1.2. Our experiment set-up is extensive. It considers two configura-

tions to model edge-case scenarios based on limited hardware, and general-case scenarios

using modern hardware. We subject the three instrumentation algorithms to high loads

that go beyond the state of the art and use realistic load profiles that, to wit, are not

considered in the literature.

This empirical study shows that our decentralised instrumentation algorithm is, in fact,

reactive, and does not impinge on the reactive characteristics of the SuS. It further deems

the overhead our algorithm induces feasible for soft real-time applications [149]. We

also certify that the known shortcomings of centralised architectures (see discussion in

section 1.1.2) apply to our RV setting, too, where (i) the exhaustion of system resources

1.2 Scope of the Study · 9

leads the set-up to crash in the edge-case scenario due to its SPOF, and (ii) the central

monitor does not avail of the ample hardware capacity provided by the general-case

scenario. We are unaware of other comprehensive empirical RV studies such as ours that

compare decentralised, centralised and inline monitoring.

1.2 Scope of the Study

We adopt the actor model of computation [133, 15] to conduct our scientific study. The

actor model provides a simple, yet powerful paradigm to design and implement systems

that follow the reactive principles introduced on page 1. Actors—the basic unit of decom-

position in this model—are abstractions of concurrent entities that do not share mutable

memory with other actors. Instead, actors interact through asynchronous messaging and

alter their internal state based on messages they consume. Each actor is equipped with

an incoming message buffer called the mailbox, from where messages deposited by other

actors may be selectively read. Besides sending and receiving messages, actors can fork

other actors. Actors are uniquely identifiable via their dynamically-assigned process

identifier (PID) that they use to directly address one another.

The actor model is instantiated by a number of languages and frameworks, including

Erlang [19, 57], Elixir [142], Akka [199] for Java [169], Thespian [194] for Python [173],

and Pony [218]. We choose Erlang as our implementation language since it is specifically

engineered for high-concurrency, soft real-time applications. BEAM, the Erlang virtual

machine (EVM) implements actors as isolated lightweight processes which enables the

remarkable scalability and fault tolerance of Erlang applications. The EVM uses per-process

garbage collection that—unlike JVM implementations—does not subject the entire virtual

machine to non-deterministic pauses [139, 188]. This aspect is particularly crucial to our

empirical experiments conducted for the contribution of section 1.1.4 because it helps to

stabilise the variance in our measurements. Conveniently, the EVM provides a native

tracing infrastructure which tames the technical challenges that arise when implementing

decentralised outline monitoring (see section 1.1.2). The terms actor and process are used

synonymously in Erlang-related literature, and we adopt the same nomenclature in the

rest of this thesis.

The inherent concurrency of components in reactive applications gives rise to natural

partitions in the global execution of the SuS in the form of isolated sub-traces for each

component. Our decentralised instrumentation algorithm exploits this view to gener-

1 Introduction · 10

ate trace partitions. These partitions make it possible to conceive of the overall system

correctness as a collection of local properties that describe the behaviour of independent

components. Such an approach gives certain advantages. It allows one to be selective about

the SuS components that require runtime checking, and to specify properties accordingly.

A similar technique called parametric trace slicing (PTS) [62, 201] is used in monolithic

RV where properties are often specified on objects, the unit of decomposition of OOP

paradigms [138, 176, 197]; by contrast, we focus on concurrent components. Being selec-

tive about the components to verify means that local properties need only be concerned

about the trace events related to the component under scrutiny. This simplifies the corre-

sponding specifications. The notion of local properties can be leveraged to dynamically

instrument component replicas with monitors, free from assumptions about the number

of components the SuS is expected to have, making the RV set-up elastic. Besides, the

set-up benefits from a modicum of resiliency since failure in a system component or its

corresponding monitor does not imperil the execution or runtime analysis of analogous

components.

This thesis focusses on online RV [100], where the analysis that runtime monitors

conduct takes place whilst the SuS executes. In this setting, we scope our study to reactive

systems where failures do not arise, i.e., we assume no link or communication omission

failures [83], and no fail-stop or Byzantine failures [157].

1.3 Outline

The body of this thesis is organised into six main chapters. Chapter 2 introduces the

classical RV set-up that assumes a single execution. Our development follows the modular

approach advocated by Aceto et al. [6, 8] that delineates the semantics of the specification

logic and the semantics of the monitor operational model. The chapter overviews the

notions of monitors, monitorability in terms of soundness and completeness, and monitor

instrumentation in the context of reactive systems. We lift definitions of these concepts

from op. cit. and restate them as templates; these are instantiated w.r.t. a concrete definition

of the logic and monitor model in chapter 3. Chapter 2 concludes with an outline of the

linear-time and branching-time interpretations of the `HML. The logic is augmented with

symbolic actions, consisting of variables and predicates that enable the reasoning about

data carried by process actions; we refer to these extensions as `HMLd. This thesis adopts

the linear-time semantics of the `HMLd.

1.3 Outline · 11

The third chapter builds on the principles of chapter 2. It reviews the linear-time

`HMLd that is used to describe properties about the current execution, and shows how

properties concerning data can be flexibly specified. We borrow the operational model of

monitors used by Aceto et al. [6, 8] and extend it with the symbolic actions of chapter 2.

The logic and monitor model, together with the synchronous instrumentation relation

specified in the cited work suffice to give concrete definitions of soundness, completeness,

and monitorability. Based on these concrete definitions, we restate the minimal and

maximal monitorable fragments of `HMLd that Aceto et al. [6] show to be maximally-

expressive. Chapter 3 also adapts the synthesis procedure given in the latter work for the

case of regular monitors to generate monitors that handle data. We define an alternative

instrumentation relation to the one in Aceto et al. [6] that composes the SuS and monitors

asynchronously. This asynchronous definition lays the foundation for our decentralised

outline instrumentation algorithm described in chapter 5

Chapter 4 revisits the symbolic actions of chapter 2 and generalises them by introducing

pattern matching, enabling the logic and monitors to reason on composite data types (e.g.

tuples, lists, etc.). We use tuples to define a simple model that describes the process events:

fork (process creation), initialise (process initialisation), exit (process termination), send,

and receive. This chapter concretises our synthesis procedure of chapter 3 to generate

executable monitors—these use a subset of the Erlang syntax to delegate variable binding,

scoping, and pattern matching to the language runtime. The monitoring algorithm that we

give encodes the monitor operational semantics defined in chapter 3 and is used to evaluate

synthesised monitors. One aspect that the instrumentation relations of chapter 3 leave

unspecified is how processes of the SuS can be selectively instrumented. We generalise

our instrumentation definitions to make use of the instrumentation map that identifies

the processes to be monitored based on the signature of the function used to fork them.

Chapter 4 also details an implementation of synchronous instrumentation that instruments

monitors selectively. The procedure inlines monitors by manipulating the abstract syntax

tree (AST) of Erlang programs via source-level weaving, which results in a modified

program.

Decentralised outline instrumentation adopts a non-invasive approach that treats the

SuS and its components as a black box. Outlining assumes a tracing infrastructure that

collects events from the running system. By contrast to inlining, which instruments

monitors statically, our algorithm of chapter 5 uses key events in the execution trace as

1 Introduction · 12

cues to instrument monitors dynamically. Decoupling the SuS and monitors introduces

complications that arise due to the interleaved execution of the system and monitors. The

main part of chapter 5 is devoted to describing the methods we use to overcome these

challenges. We elucidate how our algorithm instantiates the instrumentation definition of

chapter 3 while ensuring that the events reported to monitors are in the correct order and

with no loss. Chapter 5 discusses briefly how the algorithm we give is mappable to Erlang

actors, followed by a series of precautions taken to ensure its correct operation. Our

implementation is validated further via the comprehensive empirical study of chapter 7.

Chapter 6 proposes a benchmarking framework that targets RV tools built for reactive

systems. The framework follows the master-worker model—an architecture that is perva-

sive in both distributed and concurrent systems. Our tool is configurable and can generate

different synthetic master-worker models for high loads and under commonly-observed

load profiles. The benchmarking environment gathers different metrics (see contribu-

tion (iii)) that give a multi-faceted view of runtime overhead. In spite of the synthetic

models it generates, we empirically show that our tool can be tuned to approximate the

realistic behaviour of web server traffic with high degrees of fidelity and repeatability. We

showcase the efficacy of our benchmarking tool via a two-part case study. First, we use

our inline monitoring tool of chapter 4 to demonstrate how the framework can induce

edge-case scenarios. The second case-study confirms that the results obtained from our

experiments with a real-world use-case set up with OTS software coincide with the ones

obtained by the synthetic experiments.

Chapter 7 presents an comprehensive evaluation of three instrumentation approaches:

(i) our decentralised outline algorithm of chapter 5, (ii) its different configuration for

centralised monitoring, and (iii) the inlining approach developed in chapter 4. Through

our extensive experiment set-up, we show that decentralised outline monitoring is reactive

and that it induces feasible runtime overhead that makes it practicable in soft real-time

settings. By contrast, our configuration with centralised monitoring crashed when the

resources were scarce, and failed to scale properly when additional resources were made

available. Chapter 7 makes other observations as a byproduct of our experiments, e.g.

a considerable amount of the monitoring overhead is carried by the instrumentation.

In particular, we remark that in cases where the SuS does not continually create and

terminate processes, decentralised outline monitoring induces comparable overhead to

inline monitoring.

1.3 Outline · 13

The main contributions of this thesis are found in chapters 4 to 7. Our extensions to

the logic, monitor operational semantics and synthesis procedure of Aceto et al. [6] in

chapters 2 and 3 are vehicles supporting the work in the aforementioned chapters; the

definition of the asynchronous instrumentation, meanwhile, formalises part of the ideas

of chapter 5.

1.3.1 How to Read this Thesis

Readers familiar with the fundamentals of RV may skip chapter 2 on first reading.

Chapter 3 introduces the notions that chapter 4 and the initial part of chapter 5 build upon.

Chapter 5 lists the pseudocode of our decentralised outline instrumentation algorithm,

accompanied by the challenges that arise and the steps taken to address them. The material

is technical and readers may find table 5.2 helpful to navigate through the sections in this

chapter. Chapter 6 can be fully understood independently of the other chapters, and is

likewise technical. Chapter 7 makes frequent references to the configuration parameters

offered by our benchmarking framework of chapter 6. A summary of these parameters is

provided in table 6.1 for convenience. Whilst discussing the results, chapter 7 mentions

certain specifics of the algorithms developed in chapters 4 and 5. It is therefore advisable

to embark on chapter 7 only after having read these chapters. Table 7.1 lists the set-ups

used in our experiments, whereas table 7.3 summarises our claims and the outcomes

expected from each experiment. Readers may find it helpful to consult these table when

reading chapter 7. Supporting material for the algorithm of chapter 5 is provided in

appendix A; additional results for chapter 7 may be found in appendix C. While reading

these appendices is not necessary to understanding the work in the main text, one may

benefit from skimming this content.

2 Preliminaries

There are three key aspects to RV: the specification formalism used to express properties,

the monitors that conduct the runtime checking, and the instrumentation that composes

monitors with the SuS. These aspects are linked by the notion of monitorability that

identifies what expressible properties can be runtime checked. This chapter adopts the

modular approach advocated by Aceto et al. [6, 8], which delineates the semantics of the

specification formalism, and the verdicts that monitors flag as a result of their runtime

analysis. Following op. cit., we regard monitors as machines that (i) analyse finite trace

prefixes, and (ii) reach irrevocable verdicts, that once given, cannot be retracted. The

unified monitorability definition of Aceto et al. [8] for the finite and infinite trace domain

uses the notions of soundness and completeness which are based on two predicates

that determine whether monitors accept or reject traces. We adapt these definitions to

include the branching-time setting where specifications describe the execution graphs

of processes [118, 6]. Our definitions are given as templates—they lay the foundation for

chapter 3 where we instantiate them w.r.t. a concrete operational model of monitors that

adheres to the requirements (i) and (ii) above. We:

• introduce the classical RV set-up assuming a single execution, overviewing the notions

of monitorability and instrumentation in the context of reactive systems, Section 2.1;

• review the `HML, a highly-expressive modal logic that we extend and adopt as our

specification formalism, Section 2.2.

Section 2.2 presents both the linear-time and branching-time semantics of the `HML.

It gives a full account of the logic and draws contrast between the two interpretations.

This thesis adopts the linear-time semantics of the `HML for the reasons discussed in the

concluding section 2.5.

2.1 Runtime Verification

Traditional pre-deployment verification techniques have limited applicability to reactive

applications. Commonly-used practices, such as testing [181], only reveal the presence of

15

2 Preliminaries · 16

errors [82], whereas exhaustive approaches such as model checking [141] are laborious [65]

and often scale poorly due to state explosion problems. Reactive settings pose even more

challenges. For instance, static verification techniques often rely on having access to

the system source code or model, which is not necessarily available when software is

constructed from libraries or components that are subject to third-party restrictions.

Moreover, certain components may be offered as services that are not always known

pre-deployment but discovered dynamically at runtime. These aspects tend to increase

the complexity of software and the resources required to verify it, while at the same time,

decreasing the time available to conduct its verification.

RV is a post-deployment technique that can complement static techniques to increase cor-

rectness assurances about a program or SuS. It circumvents the obstacles of pre-deployment

methods by dynamically checking the current execution to determine whether the SuS

satisfies or violates some correctness requirement. These requirements are generally

specified using a high-level formalism, e.g. logic, automata, etc., to unambiguously spec-

ify properties about the behaviour of the SuS. RV synthesises correctness specifications

into monitors—computational entities that are instrumented with the SuS to analyse its

execution (expressed as a trace of events). Monitors typically analyse the trace incremen-

tally up to the current point of execution to reach a verdict. Synthesising monitors from

correctness specifications implies that, on some level, the meaning of a specification and

the verdict that a synthesised monitor declares should correspond. Figure 2.1a depicts the

traditional RV set-up where a specification 𝜑 (1) is synthesised into the monitor 𝑀𝜑 (2)

that is instrumented with the SuS to analyse its execution as the events 𝛼1,𝛼2 . . . (3) until

a satisfaction (✓) or rejection (✗) verdict is reached by 𝑀𝜑 .

2.1.1 Specification Logics

Various specification languages are employed to describe correctness properties of the

SuS, ranging from temporal logics [36, 207, 210, 31, 118], to automata-based formalisms [24,

69, 197, 124, 166, 23] and (extensions of) regular expression (RE) [115, 206, 63, 23, 176].

Logics and regular expressions provide a ‘declarative’ way of expressing properties where

specifications stipulate what to verify. Automata-based formalisms, meanwhile, tend to

have a more ‘imperative’, operational flavour that is close to the verification technique,

dictating how a property is verified. The former approaches benefit from compositionality,

since complex specifications can be easily constructed from simpler terms. For instance,

2.1 Runtime Verification · 17

Specification 𝜑

synthesis

runtime

𝑀𝜑 SuS𝛼1 𝛼2 . . .

trace

linear-time

interpretation

✓

?

✗

accept reject

inconclusive

1

2

3

(a) Property 𝜑 describes the current execution trace of the SuS

Specification 𝜑

synthesis

runtime

𝑀𝜑 SuS𝛼1 𝛼2 . . .

trace

branching-time

interpretation

✓

?

✗

accept reject

inconclusive

1

2

3

(b) Property 𝜑 describes the execution graph of the SuS

Figure 2.1. RV for the classical set-up with one execution trace

two formulae, 𝜑1 and 𝜑2, that express different requirements can be combined into a new

specification, 𝜑1∧𝜑2, demanding that both formulae hold. This benefit also permeates

to the verification layer, where constituent parts of a specification (e.g. 𝜑1 and 𝜑2) may

be verified independently. By contrast, automata-based specification languages tend to

lack these qualities. As an example, two automata 𝑀1 and 𝑀2 that respectively express

the same requirements as the aforementioned formulae, 𝜑1 and 𝜑2, must be intersected to

describe the requirement equivalent to 𝜑1∧𝜑2. This makes automata-based specifications

monolithic, cumbersome to work with, and prone to state blow-ups. Declarative specifica-

tions also have an edge in terms of modularity: they make the formalism and verification

technique amenable to separate study and development (see section 2.1.3). In RV, this

formalism-verification gap is bridged by a synthesis procedure that is responsible for

reconciling differences to preserve semantic correspondence. For the reasons mentioned,

this thesis looks to logics as property specification languages, as these are also portable to

other verification platforms, such as model checkers.

Temporal logics are generally categorised into two classes, based on their underlying

notion of time [141, 156]. In linear-time logics such as LTL [141] and the `-calculus with a

linear-time interpretation [6], formulae describe the behaviour of sets of (possibly infinite)

traces that a system model is able to generate. From a temporal perspective, each compu-

tational step that a system performs is considered to have one possible future. By contrast,

branching-time logics such as computation tree logic (CTL) [141] and the `HML [159, 2]

2 Preliminaries · 18

Complete model as the

system execution graph

f

es

e

e

𝜑 = [f] (⟨s⟩ tt∧ ⟨e⟩ tt) =⊤

Complete model as the

set of all possible traces

f e e

f s e e

𝜑 =X¬f∨F e=⊤

Branching-time logics can reason

on multiple execution paths

Linear-time logics reason

on a single execution

(a) Checking formulae at runtime against the complete system models

Partial model view as

the current execution path

f

es

e

e

𝜑 = [f] (⟨s⟩ tt∧ ⟨e⟩ tt) =?

Partial view as the

current execution trace

f e e

f s e e

𝜑 =X¬f∨F e=✓

Branching-time reasoning is limited

to single and finite executions

Linear-time reasoning is limited

to (single and) finite executions

(b) Checking formulae at runtime against the current system execution

Figure 2.2. The interpretation of formal logics on system models and system executions

describe graphs of the system execution whose states may (non-deterministically) tran-

sition to many possible futures. Figure 2.2a (left) depicts a system execution graph that

satisfies the branching-time specification given in HML; 2.2a (right) shows a set of traces

that satisfy the linear-time specification given in LTL.

2.1.2 Monitors

Monitors are classified based on the timeliness with which execution traces are anal-

ysed [100, 25]. Online monitors actively analyse events the SuS exhibits while it executes;

this analysis is deferred after the system terminates in the case of offline monitoring.

Offline monitors have access to the complete trace, which enables them to move forward

or backward along the execution timeline. Their online counterpart typically analyses the

execution in a unidirectional fashion, discarding past events to keep the runtime analysis

as lightweight as possible. Readers are referred to [100] for details.

The partial view of an execution that an online monitor has can be seen as a prefix of a

2.1 Runtime Verification · 19

larger (possibly infinite) trace, or of a finite path within the computation graph of the SuS.

We shall refer to finite or infinite traces as finfinite traces [6]. A monitor is a machine (or a

sequence recogniser [204, 166]),𝑚, that analyses this prefix and determines set of traces or

process states of the SuS that it accepts and rejects [8, 6]. The restriction on analysing finite

traces stems from the online setting, where monitors are constrained to partial views of

runs of the SuS that are current, up to the latest event. One non-negotiable requirement

is that the verdicts flagged by monitors are irrevocable, since verdicts that are subject to

revision depending on future trace events are ephemeral, thus not dependable. These two

aspects distil the core monitor definitions found in the literature (e.g. [25, 35, 6]).

The set-ups of figure 2.1 are generalised by Aceto et al. [8] as a monitoring system,

comprised of a non-empty set of monitors, Mon, and two predicates, acc and rej, defined

over monitors 𝑚 ∈Mon, process states, and finfinite traces. Monitors determine whether

to accept or reject traces or processes via acc and rej respectively. The interpretation of the

trace prefix by acc and rej in definition 2.1 depends on the linear-time or branching-time

semantics of the formalism used to express properties.

Definition 2.1 (Linear-time and branching-time acceptance and rejection [8, adapted from

Definition 3.1]). A monitor𝑚,

(i) for every process 𝑝 and finite prefix 𝑠:

• accepts (resp. rejects) 𝑝 along 𝑠 , denoted as acc(𝑚,𝑝,𝑠) (resp. rej(𝑚,𝑝,𝑠)), if for all

of its finfinite continuations 𝑓 , acc(𝑚,𝑝,𝑠 𝑓) (resp.rej(𝑚,𝑝,𝑠 𝑓))
(ii) for every process 𝑝 and finfinite trace 𝑓 :

• accepts (resp. rejects) 𝑓 produced by 𝑝 , denoted acc(𝑚,𝑝, 𝑓) (resp. rej(𝑚,𝑝, 𝑓)), if

there exists a finite prefix 𝑠 of 𝑓 and acc(𝑚,𝑝,𝑠) (resp. rej(𝑚,𝑝,𝑠))
• accepts (resp. rejects) 𝑝 along 𝑓 , denoted acc(𝑚,𝑝, 𝑓) (resp. rej(𝑚,𝑝, 𝑓)), if there

exists a finite prefix 𝑠 of 𝑓 and acc(𝑚,𝑝,𝑠) (resp. rej(𝑚,𝑝,𝑠)) ■

Point (i) of definition 2.1 captures the notion of irrevocable verdicts, where monitors

pass judgements w.r.t. trace prefixes and preserve it along all the (possibly infinite)

trace continuations. It is worth mentioning that standard finite automata do not satisfy

requirement (i): they do not operate on infinite traces and can transition from final to

non-final states, which compromises verdict persistence. Point (ii) demands that the

analysis that monitors conduct is necessarily finite. It expresses the notions of good and

bad prefixes [155, 17]. Informally, a good prefix is a finite trace such that any of its infinite

2 Preliminaries · 20

extensions is accepted; dually, a bad prefix is a finite trace such that any of its infinite

extensions is rejected. Standard Büchi automata fail to meet condition (ii), since they

require an infinite trace to be read before an acceptance or rejection verdict, can be flagged.

2.1.3 Monitorability

Not all expressible properties can be runtime checked in an online RV setting that is

limited to a single, partial execution [25, 117, 94, 58]. For instance, the satisfaction of a

(linear-time or branching-time) safety property, i.e., ‘something bad does not happen’,

cannot be determined by observing a finite trace, but its violation can. Figure 2.2b (left)

gives another example of a branching-time property that requires certain behaviour to

hold from the same state. Clearly, one execution will never suffice to deduce whether

such a property holds.

This limitation is generally tackled in one of two ways. In the first approach, one either

(i) restricts the expressive power of the specification language by adapting formalisms such

as REs (e.g. [115, 192, 23]) or automata to describe finite executions (e.g. [68, 70, 176]), or

(ii) redefines the semantics of existing logics to reflect the limitations of the runtime setting

(e.g. [36, 35, 34, 128, 203, 182, 45]). The latter approach leaves the formalism unaltered and

identifies subsets that can be verified at runtime (e.g. [118, 6, 8]).

Both strategies have their merits. The specification formalism in the former approach

is closely linked with the monitors, thereby facilitating certain aspects of correctness.

Semantics that are bespoke to the RV set-up, on the other hand, complicate its integration

with other methods (e.g. model checking) that use standard formalisms (e.g. LTL). For

instance, Bauer et al. [35, 36] adopt this approach, altering the semantics of LTL to assign

the truth values ⊤ (satisfied), ⊥ (violated), and ? (inconclusive) to formulae in their logic,

LTL3. The second strategy preserves the full expressive power of the formalism. Isolating

the semantics of the formalism from the operational semantics of monitors makes it

possible to establish what aspects of the SuS need to be verified, agnostic of the technique

used for the verification task. Separating these concerns facilitates the construction of

hybrid verification set-ups, where parts of a property can be runtime checked, and other

parts verified through more powerful techniques [9, 179]. One body of work adhering to

the second method is by [118, 6, 8] which we adopt and build upon in this thesis.

The second strategy also facilitates the study of monitorability. Monitorability concerns

itself with delineating the properties that can be runtime checked and those that can

2.1 Runtime Verification · 21

not [25, 117, 6]. It is the study of the relationship between the semantics of the specification

formalism on the one hand (i.e., satisfactions and violations of logic formulae in our case),

and the verdicts that are reached by monitors on the other (i.e., acceptances and rejections).

Monitorability relies on what a correct monitor for a given specification is, which, in turn,

establishes what it means for that specification to be monitorable. Apart from providing

the formal underpinning for monitor correctness [112, 111, 113, 160], monitorability instils

a principled approach to constructing RV tools by guiding the development of automated

syntheses procedures that generate monitors from specifications. Delimiting the mon-

itorable properties from non-monitorable ones carries other practical advantages. For

instance, the synthesis procedure can be optimised to generate monitors for monitorable

properties only. In certain cases, syntactic characterisations of monitorable properties

can be determined (e.g. [6, 118, 58]), which improves the usability of RV tools that reject

non-monitorable properties via lightweight syntactic checks (e.g. [21, 221]). Most crucially,

this guarantees that non-rejected specifications generate monitors that are always able to

reach meaningful verdicts.

Aceto et al. [8] argue that monitorability comes in a spectrum which establishes a

trade-off between the guarantees that monitors provide, and the properties that can be

monitored under these guarantees. The least such non-negotiable guarantee is soundness,

where the verdicts that monitors report do not contradict the meaning ascribed to the

monitored specification 𝜑 . We define the predicate sat(𝜑,𝑓) to denote that a finfinite trace

𝑓 satisfies 𝜑 ; analogously sat(𝜑,𝑝) denotes that a process 𝑝 satisfies 𝜑 .

Definition 2.2 (Linear-time and branching-time monitor soundness [8, adapted from

Definition 3.3]). A monitor𝑚 is sound,

(i) for linear-time property 𝜑 if, for every process 𝑝 and finfinite trace 𝑓 :

• acc(𝑚,𝑝, 𝑓) implies sat(𝜑, 𝑓), and

• rej(𝑚,𝑝, 𝑓) implies ¬sat(𝜑, 𝑓)
(ii) for branching-time property 𝜑 if, for every process 𝑝 and finfinite trace 𝑓 :

• acc(𝑚,𝑝, 𝑓) implies sat(𝜑,𝑝), and

• rej(𝑚,𝑝, 𝑓) implies ¬sat(𝜑,𝑝) ■

Monitors can easily fulfil the soundness condition by not producing a verdict. This calls

for completeness guarantees that relate to the verdicts that monitors can reach. These

guarantees depend on the requirements of the monitoring set-up. For example, a monitor

2 Preliminaries · 22

that can reach a verdict at least once even though it might miss other viable detections,

may be adequate for certain cases. Other scenarios could impose stricter constraints,

such as being able to identify all possible satisfactions (satisfaction-completeness) or all

possible violations (violation-completeness) for a property [6]. Generally, the stronger the

completeness guarantees demanded, the smaller the set of monitorable properties (see [8]

for more details).

Definition 2.3 (Linear-time and branching-time monitor completeness [8, adapted from

Definition 3.5]). A monitor𝑚 is satisfaction-complete,

(i) for a linear-time property 𝜑 , if for all processes 𝑝 and finfinite traces 𝑓 :

• sat(𝜑,𝑓) implies acc(𝑚,𝑝,𝑓), and is violation complete if¬sat(𝜑,𝑓) implies rej(𝑚,𝑝,𝑓)
(ii) for a branching-time property 𝜑 , if for all processes 𝑝 and finfinite traces 𝑓 :

• sat(𝜑,𝑝) implies acc(𝑚,𝑝,𝑓), and is violation complete if¬sat(𝜑,𝑝) implies rej(𝑚,𝑝,𝑓)
A monitor is complete

1 for a property 𝜑 if it is both satisfaction-complete and violation-

complete, and partially-complete if it is either. ■

In their general framework, Aceto et al. [8] give a unifying account of existing no-

tions of monitorability for the linear-time domain over finfinite traces; monitorability

for branching-time settings is studied in [118, 6]. The authors show that soundness and

the various grades of completeness guarantees produce different monitorability defini-

tions (e.g. informative monitorability, partially-complete monitorability, etc.). Recall that

monitorability establishes how a finite execution prefix is to be interpreted by a monitor

and correctly mapped to the property expressed by some specification 𝜑 . Intuitively, a

monitor that checks for property satisfactions analyses the execution to find one witness

confirming that the property holds. Dually, monitoring for property violations requires

the monitor to find one counter witness confirming that the property does not hold.

More formally, a linear-time property is a language over trace events, denoted as 𝑃lt.

By analysing events from the trace, a monitor determines whether the event sequence

read so far constitutes the prefix of a word in the property language. Words in (resp. not

in) 𝑃lt denote property satisfactions (resp. violations). A branching-time property is a

1As Aceto et al. [8] show, full monitor completeness is only possible for trivial properties, namely all the

formulae that are semantically equivalent to true or false.

2.1 Runtime Verification · 23

set of program states, denoted as 𝑃bt, that correspond to the behaviour the system can

exhibit. By analysing events, a monitor determines whether the event sequence read

so far constitutes a path leading to program states described by the property. States in

(resp. not in) 𝑃bt denote property satisfactions (resp. violations). Figure 2.2b sketches how

branching-time and linear-time properties would be runtime checked against the current

execution trace (cf. figure 2.2a that has access to complete models).

Aceto et al. [8] discuss that monitorability can be specified in terms of monitor sound-

ness and different levels of strictness of completeness that depend on the guarantees

expected of monitors. The approach taken in this body of work, by contrast to others

in the field (e.g. [35, 34, 68, 24, 45, 203]), adheres to the tenets of modular verification

advocated earlier in section 2.1.3. The authors consider the `HML as their touchstone

specification formalism. The authors identify maximally-expressive (i.e., characterises all

semantically equivalent specifications) monitorable syntactic fragments of the `HML for

the linear-time interpretation of their logic. We adopt their framework, and instantiate

definitions 2.1 to 2.3 under specific completeness guarantees in chapter 3 w.r.t. a concrete

operational model of monitors that builds on theirs. Chapter 3, also formalises the defini-

tions of the predicates acc and rej via an instrumentation relation, followed by a synthesis

procedure that generates correct monitors that can handle data. We start by concretising

the abstract predicates sat mentioned above in section 2.2.

2.1.4 Instrumentation for Online Monitoring

Instrumentation lies at the heart of runtime monitoring [164, 117, 25]. It refers to the

extraction of information from executing software and its reporting to monitors, following

one of two approaches. In the inline approach, instrumentation is implemented by manu-

ally implanting the SuS with tracing instructions, or automatically, using aspect-oriented

programming (AOP) [146] frameworks that inject the instrumentation code with the sys-

tem via source or object code weaving (e.g. AspectJ [147], SpringAOP [223], BCEL [76], etc.).

Inlining offers a number of benefits, such as timely detections of anomalous behaviour

and the ability to intervene and steer the system execution if required. Nevertheless, these

qualities do not necessarily make inlining the ideal approach for monitoring large-scale

reactive systems. Despite its reputation for inducing low overhead, the synchronous

coupling that inlining creates with the SuS can impinge on the operation of the sys-

tem [61, 51, 25, 68], e.g. slow runtime analyses manifest as high response time latencies,

2 Preliminaries · 24

faulty monitors may break the system, etc. Moreover, certain kinds of monitoring errors,

such as deadlocks [61] or component crashes [221], may be difficult to detect since the

monitoring logic shares the execution thread of the affected component. In cases where

the SuS sources or binaries are unavailable (e.g. closed-source components, licensing

agreements, third-party services, etc.), inlining cannot be used. Inlining is typically pro-

gramming language-dependent, which limits its application to heterogeneous components.

It is also hard to undo once administered, requiring restarts or redeployments of the SuS.

Outline instrumentation [100, 25] is an alternative approach to inlining, where the SuS

and monitors are encapsulated into respective concurrent entities [15]. It leverages a

tracing infrastructure that gathers information externally (e.g. DTrace [50], LTTng [80],

Erlang Trace [57], OpenJ9 Trace [86]). This minimal coupling between the SuS and mon-

itors begets a number of advantages that are attuned to the characteristics of reactive

systems [153]. For instance, outline monitors can treat the SuS as a black (or grey) box

and only react to certain events exhibited in the system execution trace. Besides serving

the runtime analysis, the trace information can be leveraged to scale the instrumenta-

tion dynamically, proportionate to the computational demands of the SuS. Since tracing

frameworks do not necessitate access to the SuS, it makes the set-up language agnostic.

Additionally, monitors may be enabled and disabled on demand without system rede-

ployments or restarts, which is invaluable when profiling or live debugging concurrency

bugs that emerge for particular execution paths. Decoupling the SuS from monitors

carries another advantage. It induces a degree of resiliency in the set-up in the forms of

partial failure (faulty monitors do not compromise the system, and vice versa) and monitor

redundancy (a failed monitor does not hamper other instances from monitoring replicas

of the same component).

Tracing information reported by the instrumentation can assume different forms, and is

often tailored to specific uses. For instance, coarse-grained or aggregated data suffices for

compiling usage statistics or for application performance monitoring (APM) and tuning.

Applications such as live debuggers, auditing or verification tools require data as program

events that advertise changes in the state of the SuS. Our abstract definition of RV monitors

from section 2.1.2 demands stringent guarantees from the instrumentation, namely that

the (i) trace events reported to monitors are consistent with the order in which they are

exhibited by the SuS, and (ii) that traces have no missing events.

The instrumentation determines how the SuS and monitor execution evolves as time

2.1 Runtime Verification · 25

progresses. Synchronous monitoring interleaves the SuS-monitor execution such that

both run in lock-step, i.e., the system is paused until the monitor completes its analysis.

Synchronous monitoring is implemented using inlining [70, 13, 130, 148, 197, 88, 84].

Certain tools [60, 51, 52] externalise monitors as processes that synchronise with the

SuS on each event it exhibits. While their authors refer to these monitors as ‘outline’,

we classify them as inline since the instrumentation must modify the system to inject

monitor synchronisation points. Asynchronous monitoring uses outline instrumentation,

enabling the SuS to execute unencumbered by monitor computation. To the best of our

knowledge, relatively few instances of asynchronous monitoring tools exist, some of

which employ the Erlang tracing infrastructure to report events to a central monitor

that executes alongside the SuS [71, 221, 219, 113]. Figure 2.3 illustrates typical monitor

arrangements for the synchronous and asynchronous cases. Monitor 𝑀𝑄 is inlined as part

of process𝑄 (2.3a), whereas tracer𝑇𝑄 obtains the events of process𝑄 by way of the tracing

infrastructure that acts as a middleware (2.3b). The events that tracer 𝑇𝑄 receives are, in

turn, reported to monitor 𝑀𝑄 for analysis. The material in the rest of this thesis regards

inline (resp. outline) instrumentation and synchronous (resp. asynchronous) monitoring

as synonymous.

In principle, the instrumentation composes monitors with the SuS to yield a monitored

system [118]. A monitored system could potentially manifest different behaviour to the

𝑃

𝑄 𝑀𝑄

SuS

𝑅

Runtime

fork

{a
d
d
,.

.
.
} {

o
k
,.

.
.
}

(a) Synchronous monitors via weaving

𝑃

𝑄

SuS

𝑅

Runtime

fork

{a
d
d
,.

.
.
} {

o
k
,.

.
.
}

Tr
ac

in
g

𝛼1𝛼1 . . . 𝛼𝑜𝛼𝑜

𝛽1𝛽1 . . . 𝛽𝑛𝛽𝑛 𝑇𝑄 𝑀𝑄

(b) Asynchronous monitors via the tracing infrastructure

Figure 2.3. Inline (synchronous) and outline (asynchronous) instrumentation for process 𝑄

2 Preliminaries · 26

unmonitored SuS—a product of (i) the instrumentation method adopted [112], e.g. outline,

and (ii) the assurances given by monitors [160], e.g. passive monitors. Although core

monitor concerns, such as correctness [210, 67, 70, 71, 68], efficiency [207, 208, 209, 175,

96, 24, 63], security [102, 91], and even failure [34, 180, 31], have been treated to different

degrees in the RV literature, instrumentation has not been studied in its own right.

This theme recurs in particular RV tool development practices, where instrumentation

is occasionally portrayed to induce low overhead [95, 55, 68, 25, 100], albeit with no

quantifiable backing [175, 209, 42, 61, 207, 99, 24] (we elaborate on these arguments in

chapter 7 and in particular, section 7.4).

A recent body of work [118, 112, 6, 8] is one of the few notable efforts that investigates

monitors in the context of an instrumented system set-up from a formal aspect. The oper-

ational definition of the instrumentation given relates SuS and monitor states to produce

a monitored system where monitors are passive. Despite their passive role, [112] shows

that certain monitors that behave inertly when considered in isolation can still interfere

with an instrumented system. For instance, it is natural to expect the instrumentation not

to prematurely terminate monitors before a verdict is flagged, but wait for their internal

computation to complete. However, too lengthy or divergent computations can slow or

even stall the SuS. The execution slowdown [26] observed in practice is a manifestation

of this phenomenon, and is one of the main drawbacks of synchronous (i.e., inline) ap-

proaches [61, 51, 25, 68]. Such subtle interdependencies that arise between the SuS and

monitors are not edge-case scenarios, but practical issues that the design of monitoring

tools must tackle from the outset. Particularly, [112, 6] make a strong case that the definition

of correct monitors needs to comprise the instrumentation. As far as we can understand,

the above-mentioned works that use inlining do not reconcile the gap between the monitor

formalisations at one end, and the instrumentation aspect in their ensuing prototype tools

at the other (e.g. [210, 67, 70, 71, 68, 207, 208, 209, 175, 96, 24, 63, 102, 91, 34, 180]).

2.2 The Hennessy-Milner Logic with Recursion

We overview our chosen logic [6, 8], `HML [159, 2], which we use to specify correctness

properties. The `HML is a reformulation of the highly-expressive modal `-calculus [150]

that can embed other prevalent logics, such as CTL and LTL [141], making it suitable to

express a wide range of properties. It has a branching-time semantics to specify properties

about the execution graph of processes, and a linear-time semantics (adapted from the

2.3 The Syntax of `HML
d · 27

modal `-calculus) describing properties of the current program execution (see section 2.1.1).

The logic presented in Aceto et al. [6, 8] can express regular properties, which arguably

limits its applicability to a broader setting where systems deal with data. We, therefore,

extend the `HML of op. cit. to a first-order setting, where logic formulae can specify

properties that reason about the data carried in trace events. Sections 2.3 and 2.4 recall

the syntax and semantics of the logic and formalise the concepts of traces and processes

introduced in section 2.1.2.

2.3 The Syntax of `HML
d

Figure 2.4 shows our extension of `HML, called `HMLd. It assumes a set of external

actions, 𝛼,𝛽 ∈Act, together with a distinguished internal action 𝜏 ∉Act that represents

one internal step of computation. External actions range over values taken from some

(potentially infinite) data domain, D. The `HMLd syntax also uses a denumerable set

of propositional variables, 𝑋,𝑌 ∈ PVar. In addition to the standard Boolean constructs,

`HML
d

Syntax

𝜑,𝜓 ∈ `HMLdF tt | ff | ⟨𝑥𝑥,𝑏 ⟩𝜑 | [𝑥𝑥,𝑏]𝜑 | 𝜑∨𝜓 | 𝜑∧𝜓 | min𝑋 . (𝜑) | max𝑋 . (𝜑) | 𝑋

`HML
d

Linear-Time Semantics

Jtt,𝜎 Klt ≜Act𝜔 Jff,𝜎 Klt ≜ ∅

J⟨𝑥𝑥,𝑏 ⟩𝜑,𝜎 Klt ≜
{
𝑡 | (∃𝑢. ∃𝛼. 𝑡 =𝛼𝑢 and 𝑏 [𝛼/𝑥]⇓tt and 𝑢 ∈ J𝜑 [𝛼/𝑥],𝜎 Klt)

}
J [𝑥𝑥,𝑏]𝜑,𝜎 Klt ≜

{
𝑡 | (∀𝑢. ∀𝛼. (𝑡 =𝛼𝑢 and 𝑏 [𝛼/𝑥]⇓tt) implies 𝑢 ∈ J𝜑 [𝛼/𝑥],𝜎 Klt)

}
J𝜑∨𝜓,𝜎 Klt ≜ J𝜑,𝜎 Klt∪J𝜓,𝜎 Klt J𝜑∧𝜓,𝜎 Klt ≜ J𝜑,𝜎 Klt∩J𝜓,𝜎 Klt

Jmin𝑋 . (𝜑),𝜎 Klt ≜
⋂{

𝑇 | J𝜑,𝜎 [𝑋 ↦→𝑇]Klt ⊆𝑇
}

Jmax𝑋 . (𝜑),𝜎 Klt ≜
⋃{

𝑇 |𝑇 ⊆ J𝜑,𝜎 [𝑋 ↦→𝑇]Klt
}

J𝑋,𝜎 Klt ≜𝜎 (𝑋)

`HML
d

Branching-Time Semantics

Jtt,𝜌 Kbt ≜ Prc Jff,𝜌 Kbt ≜ ∅

J⟨𝑥𝑥,𝑏 ⟩𝜑,𝜌 Kbt ≜
{
𝑝 | (∃𝑞. ∃𝛼. 𝑝 𝛼

=⇒𝑞 and 𝑏 [𝛼/𝑥]⇓tt and 𝑞 ∈ J𝜑 [𝛼/𝑥],𝜌 Kbt)
}

J [𝑥𝑥,𝑏]𝜑,𝜌 Kbt ≜
{
𝑝 | (∀𝑞. ∀𝛼. (𝑝 𝛼

=⇒𝑞 and 𝑏 [𝛼/𝑥]⇓tt) implies 𝑞 ∈ J𝜑 [𝛼/𝑥],𝜌 Kbt)
}

J𝜑∨𝜓,𝜌 Kbt ≜ J𝜑,𝜌 Kbt∪J𝜓,𝜌 Kbt J𝜑∧𝜓,𝜌 Kbt ≜ J𝜑,𝜌 Kbt∩J𝜓,𝜌 Kbt

Jmin𝑋 . (𝜑),𝜌 Kbt ≜
⋂{

𝑃 | J𝜑,𝜌 [𝑋 ↦→𝑃]Kbt ⊆ 𝑃
}

Jmax𝑋 . (𝜑),𝜌 Kbt ≜
⋃{

𝑃 | 𝑃 ⊆ J𝜑,𝜌 [𝑋 ↦→𝑃]Kbt
}

J𝑋,𝜌 Kbt ≜ 𝜌 (𝑋)

Figure 2.4. Syntax, linear-time and branching-time semantics for the `HML
d

2 Preliminaries · 28

the logic can express recursive and least and greatest fixed point formulae, min𝑋 . (𝜑)
and max𝑋 . (𝜑), that bind the free occurrences of 𝑋 in 𝜑 . The existential and universal

modalities, ⟨𝑥𝑥, 𝑏 ⟩𝜑 and [𝑥𝑥, 𝑏]𝜑 , express the dual notions of possibility and necessity

respectively. We augment these two modal constructs with symbolic actions, denoting

them by (𝑥𝑥,𝑏), to enable reasoning on the data carried by external actions. Symbolic

actions are pairs consisting of data binders, 𝑥,𝑦 ∈DVar, and decidable Boolean constraint

expressions, 𝑏,𝑐 ∈ BExp. Data binders also range over the domain D of data values, and

bind the free occurrences of 𝑥 in the expression 𝑏 of the modality and in the continuation

formula𝜑 . The set BExp, defined overD andDVar, consists of the usual Boolean operators,

including, ¬ and ∧, together with a set of relational operators that depends on D, and

which we leave unspecified. For clarity, we omit writing the Boolean constraint expression

𝑏 when 𝑏 = tt, and use bold italicised lettering to identify binders in symbolic actions.

In the sequel, the standard concepts of open and closed expressions, scoping, and formula

equality up to alpha-conversion are used. A formula is said to be guarded if every fixed

point variable 𝑋 appears within the scope of a modality that is itself in the scope of 𝑋 .

For example, the formula max𝑋 . ([𝑥𝑥]ff∧ [𝑦𝑦]𝑋) is guarded, as is max𝑋 .
(
[𝑥𝑥] ([𝑦𝑦]ff∧𝑋)

)
,

while [𝑥𝑥]max𝑋 . ([𝑦𝑦]ff∧𝑋) is not.

2.4 The Semantics of `HML
d

The linear-time interpretation of `HMLd is given by the denotational semantic function

J−Klt that maps a formula to a set of executions. Executions (or traces) are infinite

sequences of external system actions that abstractly represent complete system runs. We

reserve the metavariables 𝑡,𝑢 ∈ Act𝜔 to range over infinite traces, 𝑇 ⊆ Act𝜔 to range

over sets of infinite traces, and use 𝛼𝑡 to denote an infinite trace that starts with 𝛼 and

continues with 𝑡 . Finite traces, 𝑠,𝑟 ∈Act∗, represent prefixes of infinite or finite executions.

The function J−Klt uses valuations, 𝜎 :PVar→2Act
𝜔

, to define the semantics inductively

on the structure of formulae. The value 𝜎 (𝑋) is the set of traces that are assumed to satisfy

𝑋 . In the definition of J−Klt, modal formulae are interpreted w.r.t. symbolic actions. A

symbolic action (𝑥𝑥,𝑏) describes a set of external system actions, referred to as an action

set. An action 𝛼 is in this set when the data value it carries satisfies the Boolean constraint

expression 𝑏 that is instantiated with the applied substitution [𝛼/𝑥], i.e., 𝑏 [𝛼/𝑥] ⇓ tt (see

figure 2.4). The existential modality ⟨𝑥𝑥,𝑏 ⟩𝜑 denotes all the traces 𝛼𝑢 where 𝛼 is in the

action set (𝑥𝑥,𝑏) and 𝑢 satisfies the continuation 𝜑 [𝛼/𝑥]. Dually, [𝑥𝑥,𝑏]𝜑 denotes all the

2.4 The Semantics of `HML
d · 29

traces 𝛼𝑢 that, if prefixed by any 𝛼 from the action set (𝑥𝑥,𝑏), 𝑢 then satisfies 𝜑 [𝛼/𝑥]. Note

that if 𝛼 is not in the action set, the trace 𝛼𝑢 satisfies [𝑥𝑥,𝑏]𝜑 trivially. The set of traces

satisfying the least (resp. greatest) fixed point formulae min𝑋 . (𝜑) (resp.max𝑋 . (𝜑)) is the

intersection (resp. union) of all the pre-fixed (resp. post-fixed) point solutions, 𝑇 ⊆Act𝜔 ,

of the function induced by the formula 𝜑 .

The branching-time interpretation of `HMLd, denoted by J−Kbt, is defined over process

states of a labelled transition system (LTS) [145]. A LTS is a triple, ⟨Prc,(Act∪{𝜏}),−→⟩,
consisting of a set of process states, 𝑝,𝑞 ∈Prc, a set of actions including 𝜏 , and a transition

relation, −→⊆Prc×(Act∪{𝜏})×Prc. The variable `∈Act∪{𝜏} is reserved for external or

internal actions, and 𝑃 ⊆Prc for sets of processes. We use the suggestive notation 𝑝
`
−→ 𝑝′

to denote labelled state transitions, ⟨𝑝,`,𝑝⟩ ∈ −→ , and 𝑝 ̸
`
−→ to mean ¬(∃𝑝′ ·𝑝

`
−→ 𝑝′).

Weak transitions, 𝑝 (𝜏−→)∗𝑝′, are denoted as 𝑝 =⇒𝑝′, whereas 𝑝
𝛼
=⇒𝑝′ is written in lieu

of 𝑝 =⇒ · 𝛼−→ · =⇒𝑝′, referring to 𝑝′ as the 𝛼-derivative of 𝑝 . A transition sequence,

𝑝
𝛼1
=⇒ ···

𝛼𝑛
=⇒𝑝′, is compactly written as 𝑝

𝑠
=⇒𝑝′, where 𝑠 = 𝛼1 · ··𝛼𝑛 is a finite trace of

external actions. We say that a process 𝑝 generates the trace 𝑡 = 𝛼1𝛼2 · ·· if there is an

infinite sequence 𝑝0,𝑝1,𝑝2, . . . of processes such that 𝑝 =𝑝0 and 𝑝0
𝛼1
=⇒𝑝1

𝛼2
=⇒𝑝2 · ··.

Figure 2.4 also defines the branching-time semantics of `HMLd via the function J−Kbt
that uses valuations 𝜌 : PVar→ 2Prc. Most cases follow the linear-time counterpart; the

main differences are w.r.t. modal formulae. Existential modalities, ⟨𝑥𝑥,𝑏 ⟩𝜑 , require at least

one 𝛼-derivative of a process 𝑝 for some 𝛼 in the action set (𝑥𝑥,𝑏) to satisfy 𝜑 . Its dual,

[𝑥𝑥,𝑏]𝜑 , requires all the 𝛼-derivatives of 𝑝 labelled by the actions in the set defined by

(𝑥𝑥,𝑏) to satisfy 𝜑 .

Since the interpretation of closed formulae does not depend on the environment 𝜎 or 𝜌 ,

we may use J𝜑 Klt and J𝜑 Kbt in lieu of J𝜑,𝜎 Klt and J𝜑,𝜌 Kbt respectively. We also write J𝜑 K
instead of J𝜑 Klt or J𝜑 Kbt whenever the correct semantic interpretation can be inferred

from the surrounding context or is unimportant. A trace 𝑡 (resp. process 𝑝) satisfies (the

closed) formula 𝜑 when 𝑡 ∈ J𝜑 Klt (resp. 𝑝 ∈ J𝜑 Kbt), and violates 𝜑 when 𝑡 ∉ J𝜑 Klt (resp.

𝑝 ∉ J𝜑 Kbt). Unless otherwise indicated, we assume that all formulae considered are closed.

To facilitate our exposition in this section and chapter 3, we let D=Z, and fix the set of

operators used in BExp to ¬, ∧ and =. Chapter 4 considers the general case where the

data carried by external actions can consist of composite data types.

Definition 2.4 (Linear-time and branching-time formula satisfaction). The predicates

sat(𝜑, 𝑓) and sat(𝜑,𝑝) assumed in section 2.1.3 can now be defined. Since the linear-time

2 Preliminaries · 30

interpretation of `HMLd given in figure 2.4 assumes an infinite domain, sat(𝜑, 𝑓), is

restricted to infinite traces, 𝑡 .

sat(𝜑,𝑡)≜ 𝑡 ∈ J𝜑 Klt sat(𝜑,𝑝)≜𝑝 ∈ J𝜑 Kbt ■

Example 2.1 (Interpretation and reasoning on data). Consider the formula:

[𝑥𝑥,𝑥 = 0]ff (𝜑1)

The symbolic action (𝑥𝑥, 𝑥 = 0) defines the singleton set, {0} ⊂ Z, of external system

actions. In the linear-time interpretation, modal formulae [𝑥𝑥,𝑏]𝜑 , state that, for any trace

prefix 𝛼 in the action set (𝑥𝑥,𝑏), the trace continuation 𝑢 must satisfy 𝜑 . However, no trace

satisfies ff, i.e., ∀𝑢. 𝑢 ∉ JffKlt. This means that traces that do not violate formula 𝜑1 are

those starting with actions 𝛼∉{0}. The interpretation under the branching-time semantics

is similar: [𝑥𝑥,𝑏]𝜑 requires that all the 𝛼-derivatives of a process 𝑝 , where 𝛼 is in the

action set (𝑥𝑥,𝑏), reach some state 𝑝′ that satisfies 𝜑 . Since 𝑝′ ∉ JffKbt for any 𝑝′, process

𝑝 satisfies 𝜑1 only when it exhibits actions other than 0; this includes the deadlocked

process that performs no action. ■

Example 2.2 (Comparison). Consider the two formulae 𝜑2 and 𝜑3, together with the

trace 𝑡1 = (0.1)𝜔 and the (non-deterministic process) given in CCS syntax [178], 𝑝1 =

rec𝑋 . (0 .1 .𝑋 +0 .0 .𝑋 +0 .nil). Note that in particular, 𝑝1 produces the infinite trace 𝑡1.

[𝑥𝑥,𝑥 = 0] [𝑦𝑦,𝑦 = 0]ff(𝜑2) [𝑥𝑥,𝑥 = 0] (⟨𝑦𝑦,𝑦 = 0⟩tt∨⟨𝑦𝑦,𝑦 ≠ 0⟩tt) (𝜑3)

While 𝑡1 ∈ J𝜑2Klt, 𝑝1 ∉ J𝜑2Kbt because 𝑝1 performs the transition 𝑝1
0

=⇒ 0 .𝑝1 along

one branch, and the derived process state 0 .𝑝1 ∉ J [𝑦𝑦,𝑦 = 0]ffKbt (see example 2.1). Un-

der the linear-time interpretation, the equality J⟨𝑦𝑦,𝑏 ⟩tt∨⟨𝑦𝑦,¬𝑏 ⟩ttKlt = JttKlt holds for

every symbolic action (𝑦𝑦, 𝑏). In our case, (𝑦𝑦, 𝑦 = 0) and (𝑦𝑦, 𝑦 ≠ 0) in formula 𝜑3 de-

fine the complementary action sets {0} and Z \ {0} respectively. Now, every infinite

trace must have a first element 𝛼 that is either 𝛼 ∈ {0} or 𝛼 ∈ Z\ {0}. This means that

J⟨𝑦𝑦,𝑦 = 0⟩tt∨⟨𝑦𝑦,𝑦 ≠ 0⟩ttKlt = JttKlt. From the semantic definitions of figure 2.4, one can

also deduce that J [𝑥𝑥,𝑏] ttK=JttK under both interpretations. As a result, 𝜑3 is equivalent to

tt under the linear-time semantics, and thus, 𝑡1 ∈ J𝜑3Klt for all traces 𝑡1. In the branching-

time setting, J⟨𝑦𝑦,𝑦 = 0⟩tt∨⟨𝑦𝑦,𝑦 ≠ 0⟩ttKbt ≠ JttKbt. One witness for this inequality is the

2.5 Discussion · 31

process nil, where nil∈ JttKbt, but nil∉ J⟨𝑦𝑦,𝑦 = 0⟩tt∨⟨𝑦𝑦,𝑦 ≠ 0⟩ttKbt since nil ̸𝛼−→ . In fact,

the transition 𝑝1
0

=⇒ nil does not fulfil the semantic condition of 𝜑3 that all 𝛼-derivatives

of 𝑝1, where 𝛼 ∈ {0}, reach a state 𝑝′1 that satisfies the continuation formula (clearly, nil

does not). Consequently, 𝑝1 ∉ J𝜑3Kbt. Note that the binders 𝑦𝑦 in ⟨𝑦𝑦,𝑦 =0⟩tt and ⟨𝑦𝑦,𝑦≠0⟩tt
of formula 𝜑3 have different scopes. ■

Example 2.3 shows how `HML can encode the core operators of LTL, a temporal logic

which is widely-adopted by the RV community, and that most tooling efforts employ as

their specification formalism (e.g. [35, 36, 34, 45, 31, 128, 208, 210, 203]).

Example 2.3 (Expressiveness). The core LTL operators, next and until, can be encoded

thus [141]:

X𝜑 ≜ ⟨𝑥𝑥 ⟩tt 𝜑 U𝜓 ≜min𝑌 .
(
𝜓 ∨ (𝜑∧⟨𝑥𝑥 ⟩𝑌)

)
■

Despite its widespread use, LTL has limited expressiveness. For instance, it cannot

describe properties such as ‘every even position in the execution satisfies some proposition

p’ [225, 8]. Such properties can be easily expressed in `HMLd (see example 3.3 on page 35).

2.5 Discussion

Runtime monitoring is amenable to lightweight verification settings where traditional

approaches cannot be used (e.g. expensive, not scalable). Despite the advantages it offers,

the technique suffers from limited expressiveness, where certain properties cannot be

runtime checked. This constraint arises from the partial view that monitors have of the

SuS, which is limited to a single and finite execution—one of the possible paths the system

follows at runtime. Monitorability provides a principled method to identify properties

that can be monitored from those that cannot. This, in turn, gives a precise meaning of

what it means to monitor for a property correctly. Monitorability is underpinned by the

notion of a monitor [8]: a machine that analyses finite event sequences to accept (acc) or

reject (rej) finfinite traces or process states of the SuS w.r.t. specific guarantees. We expect

two least guarantees, namely that (i) the verdicts that monitors report do not contradict

the meaning ascribed to specifications (soundness), and (ii) under some criterion, the

monitor can perform detections (completeness). We adopt the unified monitorability view

of Aceto et al. [8], where soundness and completeness are defined operationally in terms

2 Preliminaries · 32

of the predicates acc and rej; these predicates (definition 2.1), together with definitions 2.2

and 2.3 are concretised in chapter 3.

This chapter also discusses the instrumentation that composes monitors with the SuS

in inline (synchronous) or outline (asynchronous) fashion. In spite of its importance to

RV, the instrumentation is given limited consideration in the literature, with much of the

work focussing on the monitors, studied in a vacuum [210, 67, 70, 71, 68, 207, 208, 209,

175, 96, 24, 63, 102, 91, 34, 180, 31]; Aceto et al. [8] together with [118, 6] are few notable

exceptions that give the instrumentation a central role. Particularly, Aceto et al. [8] shows

that passive monitors can still produce side effects when instrumented with the SuS. The

authors make a strong case that the definitions of monitorability and monitor correctness

should incorporate the instrumentation.

The ongoing line of work by [1, 118, 3, 4, 5, 6, 7] studies the branching-time `HML

in the context of RV and hybrid approaches [9], and parts of the results have been

instantiated in a number of tools, i.e., the set-up of figure 2.1b. Readers are referred

to [21, 219, 220, 221, 53, 51, 52, 113] for more details. In this thesis, we adopt the linear-time

interpretation of `HML where specifications express properties on the current system

execution (figure 2.1a). Example 2.3 shows that the logic easily embeds other logics and

can express a wider range of properties; this gives us a good level of generality in our

results. The aforecited tools focussing on the branching-time interpretation of the `HML

employ the same operational model of monitors given in [118, 6], which we extend in

chapter 3. As a result, our synthesis procedure can generate executable monitor code

from linear-time specifications that is identical to monitors obtained from branching-time

specifications. This portability makes our subsequent results of chapters 6 and 7 applicable

to the tools mentioned, i.e., [21, 219, 220, 221, 53, 51, 52, 113].

3 Monitors and Instrumentation

Properties may be expressed using different formalisms. We adopt the linear-time

`HML that describes properties about the current execution trace (refer to section 2.2).

Section 2.1.3 establishes that the runtime setting limits what properties can be monitored

for under the constraints of a single, incomplete trace that is incrementally extended

as the execution of the SuS unfolds. This chapter instantiates the concepts introduced

there. It pins down a formal operational model of monitors whose description can be

executed. We give concrete definitions for the acceptance and rejection predicates, acc

and rej, w.r.t. the irrevocable verdicts that these monitors can reach. Our definitions

make use of a synchronous instrumentation relation that composes the monitors and SuS,

dictating how these verdicts are reached at runtime. Using acc and rej, we formalise the

notions of monitor soundness and completeness to recall the monitorability definition for

the linear-time `HML [6, 8], together with two maximally-expressive monitorable logic

fragments (refer to section 2.5 for reasons why we adopt the linear-time `HML).

Our work builds on the theoretical foundations of Aceto et al. [6, 8] that give an opera-

tional model of regular monitors and a compositional synthesis procedure that generates

correct monitors from the aforementioned monitorable fragments of `HML. We lift the

results of that study to a first-order setting and extend the monitoring model and synthesis

procedure with symbolic actions introduced in section 2.2 to account for data payloads

carried by trace events. Our adaptation of the monitor synthesis closely follows the one

of op. cit., giving us high assurances that the corresponding monitors are correct. The

modular approach followed by the authors has been translated to different implemen-

tations [21, 219, 221, 13, 114], including detectEr [221], a RV tool that targets programs

written for the Erlang/OTP platform. One aspect that Aceto et al. [6, 8] do not tackle

is how the SuS and monitors can be composed asynchronously to mitigate the issues

with lock-step execution and monitor inlining mentioned in section 2.1.4. This chapter

addresses this gap and gives an alternative instrumentation that disconnects the SuS from

its monitors. Crucially, our asynchronous instrumentation definition remains compatible

with the requirements that Aceto et al. [6, 8] expect of the monitoring model, making

33

3 Monitors and Instrumentation · 34

𝑞1𝑞2 𝑞3 𝑞4
-1

𝚥 ∈ Z

1

0

𝚤 ∈ N

Figure 3.1. Token server that issues integer identification tokens to client programs

their correctness results transferable to our framework as well. We:

(i) demonstrate how properties on the current execution can be flexibly expressed via

the linear-time `HMLd, Section 3.1;

(ii) overview our extended monitoring model and the synchronous instrumentation

relation of Aceto et al. [6, 8], Section 3.2;

(iii) define soundness, completeness, and monitorability w.r.t. the logic of (i) and models

of (ii), and recall the monitorable fragments of the linear-time `HMLd, Section 3.3;

(iv) outline our adaptation of the monitor synthesis procedure that generates parallel

monitors from monitorable linear-time `HMLd fragments, Section 3.4;

(v) define an instrumentation relation that composes monitor and SuS processes in

asynchronous fashion, Section 3.5.

3.1 Trace Properties

Figure 3.1 depicts a generalisation of process 𝑝1 from example 2.2, 𝑞1 = 1 .rec𝑋 . (0 .𝚤 .𝑋) +
−1 .rec𝑌 . (𝚥 .𝑌). The process 𝑞1 models a reactive token server that issues client programs

with identification tokens that they use as an alias to write logs to a remote logging server.

Clients request an identifier by issuing the command 0, which the server then fulfils by

replying with a new token, 𝚤 ∈N. Since the server is itself a program that also uses the

remote logging service, it is launched with its (reserved) identification token 1. Figure 3.1

shows that from its initial state 𝑞1, the token server either: (i) starts up with the token

1 and transitions to 𝑞3, where it awaits incoming client requests, or (ii) fails to start and

transitions with a status of −1 to the sink 𝑞2, thereafter exhibiting undefined behaviour,

𝚥 ∈Z. There are a number of properties we want executions of this token server to observe.

Example 3.1 (Necessity). One rudimentary property that the current execution of the

server 𝑞1 should uphold is that ‘no failure occurs at start up’. This safety requirement is

3.1 Trace Properties · 35

expressed as follows:

[𝑥𝑥,𝑥 =−1]ff (𝜑4)

The symbolic action (𝑥𝑥,𝑥 =−1) defines the singleton set {−1} ⊂ Z of external system

actions. This means that in order for server traces not to violate formula 𝜑4, they must

start with actions 𝛼 ∉{−1}. The set of traces 1.(0.N)𝜔 exhibited by 𝑞1 satisfies this property,

whereas −1.Z𝜔 does not. ■

Example 3.2 (Necessity and possibility). Further to the stipulation of example 3.2, we

require that ‘the server is initialised with the identification token 1’, expressed as:

[𝑥𝑥,𝑥 =−1]ff∧⟨𝑥𝑥,𝑥 = 1⟩tt (𝜑5)

The conjunct [𝑥𝑥,𝑥 =−1]ff guards against traces of 𝑞1 exhibiting failure when loading;

⟨𝑥𝑥,𝑥 = 1⟩tt asserts that the trace exhibits 1 at start-up, indicating a successful initialisation

of the server. Formula 𝜑5 is satisfied exactly by server traces of the form 1.N𝜔 . ■

The symbolic actions of examples 3.1 and 3.2 define sets of external actions by specifying

literal values (e.g. 1 and −1). Action sets can be more generally defined via constraint

expressions that refer to other data variables within the same scope.

Example 3.3 (Recursion). Amongst the executions satisfying𝜑5 are those where the server

accidentally returns its identifier token 1 in reply to client requests. We, therefore, demand

that ‘the server private identification token 1 is not leaked in client replies’. Formula 𝜑6

expresses this recursive property in a general way, i.e., it does not hardcode the token

value 1. Note that the Boolean constraint expressions 𝑏 = tt are elided.

[𝑥𝑥]max𝑋 .
(
[𝑦𝑦] ([𝑧𝑧,𝑥 = 𝑧]ff∧ [𝑧𝑧,𝑥 ≠ 𝑧]𝑋)

)
(𝜑6)

The symbolic action (𝑥𝑥, tt) in the first necessity defines the set of external actions Z. Its

binder, 𝑥𝑥 , binds the variable 𝑥 in max𝑋 .
(
[𝑦𝑦] ([𝑧𝑧,𝑥 = 𝑧]ff∧ [𝑧𝑧,𝑥 ≠ 𝑧]𝑋)

)
(marked in 𝜑6).

For some initial server action 𝛼 ∈ Z, applying the substitution [𝛼/𝑥] to this continuation,

followed by a single unfolding of the recursion variable, yields the residual formula:

3 Monitors and Instrumentation · 36

[𝑦𝑦]
(
[𝑧𝑧,𝛼 = 𝑧]ff∧ [𝑧𝑧,𝛼 ≠ 𝑧]max𝑋 .

(
[𝑦𝑦] ([𝑧𝑧,𝛼 = 𝑧]ff∧ [𝑧𝑧,𝛼 ≠ 𝑧]𝑋)

))
(𝜑 ′6)

Necessity [𝑦𝑦] maps 𝑦𝑦 to the second server action 𝛽 ∈ Z in the trace, i.e., [𝛽/𝑦]. Applying

the substitution [𝛽/𝑦] to [𝑧𝑧,𝛼 = 𝑧]ff and [𝑧𝑧,𝛼 ≠ 𝑧]max𝑋 .
(
[𝑦𝑦] ([𝑧𝑧,𝛼 = 𝑧]ff∧ [𝑧𝑧,𝛼 ≠ 𝑧]𝑋)

)
leaves both sub-formulae unchanged, since 𝑦𝑦 binds no variables in either. For the third

server action 𝛾 , the modalities [𝑧𝑧,𝛼 =𝑧] and [𝑧𝑧,𝛼≠𝑧] map 𝑧𝑧 to 𝛾 . Formula 𝜑6 is violated, ff,

when the constraint 𝛼 = 𝑧 [𝛾/𝑧] holds. Crucially, a fresh scope for data variables is created

upon each unfolding of 𝑋 , such that 𝑦𝑦 and 𝑧𝑧 can be mapped to new values. By contrast,

the value in 𝑥𝑥 is substituted for once in 𝜑 ′6 and remains fixed when 𝑋 is unfolded.

Formula 𝜑6 compares actions at every odd position in the trace against the one at the

head. When 𝜑6 is interpreted over all the possible traces that the token server generates

upon successful initialisation, the binder 𝑥𝑥 in the modal construct [𝑥𝑥] becomes instantiated

to the value 1. This ensures that, in particular, the set of traces 1.(0.{𝚤 ∈N | 𝚤 ≠ 1})∗.(0.1).N𝜔

are violating. Note that this property is not not expressible in LTL. ■

3.2 Synchronous Runtime Monitoring

Monitors may be viewed as processes via the syntax given in figure 3.2. This syntax

differs from its regular counterpart of Aceto et al. [6, 8] in that it augments the prefixing

construct with symbolic actions, (𝑥𝑥,𝑏) (cf. section 2.2). Besides the prefixing, external

choice, and recursion constructs of CCS [178], the syntax of figure 3.2 includes disjunctive,

⊕, and conjunctive, ⊗, parallel composition. We use the symbol ⊙ to refer to both ⊕
and ⊗ when needed. Monitor verdict states, 𝑣 ∈ Vrd, are expressed as yes, no, and end

respectively denoting the accept, reject and inconclusive verdicts.

Figure 3.2 outlines the behaviour of monitors, where the transition rules mRec, mChsL,

and its symmetric case mChsR (omitted), are standard. Rule mAct describes the analysis

that monitors perform, where the binder 𝑥𝑥 in the symbolic action (𝑥𝑥,𝑏) is mapped to an

external system action 𝛼 , yielding the substitution [𝛼/𝑥] that is applied to the decidable

Boolean constraint expression 𝑏. The monitor (𝑥𝑥,𝑏) .𝑚 analyses 𝛼 only if the instantiated

constraint 𝑏 [𝛼/𝑥] is satisfied, whereupon 𝛼 is substituted for the free occurrences of the

variable 𝑥 in the body𝑚. When the premise 𝑏 [𝛼/𝑥] does not hold, the monitor action 𝛼

is disabled. Verdict irrevocability is modelled by mVrd, where once in a verdict state 𝑣 ,

any action can be analysed by monitors without altering 𝑣 . Rule mPar enables parallel

3.2 Synchronous Runtime Monitoring · 37

Monitor Syntax

𝑚,𝑛 ∈MonF 𝑣 | (𝑥𝑥,𝑏) .𝑚 | 𝑚+𝑛 | 𝑚⊕𝑛 | 𝑚⊗𝑛 | rec𝑋 . (𝑚) | 𝑋

𝑣 ∈VrdF yes | no | end

Monitor Small-Step Semantics

mVrd
𝑣

𝛼−→ 𝑣
mAct

𝑏 [𝛼/𝑥] ⇓ tt

(𝑥𝑥,𝑏) .𝑚 𝛼−→𝑚[𝛼/𝑥]
mChsL

𝑚
𝛼−→𝑚′

𝑚+𝑛 𝛼−→𝑚′

mTauL
𝑚

𝜏−→𝑚′

𝑚⊙𝑛 𝜏−→𝑚′ ⊙𝑛
mPar

𝑚
𝛼−→𝑚′ 𝑛

𝛼−→𝑛′

𝑚⊙𝑛 𝛼−→𝑚′ ⊙𝑛′
mVrdE

end⊙ end 𝜏−→ end

mDisYL
yes⊕𝑚 𝜏−→ yes

mDisNL
no⊕𝑚 𝜏−→𝑚

mConYL
yes⊗𝑚 𝜏−→𝑚

mConNL
no⊗𝑚 𝜏−→ no

mRec
rec𝑋 . (𝑚) 𝜏−→𝑚[rec𝑋 . (𝑚)/𝑋]

Monitor Instrumentation

iMon
𝑝

𝛼−→ 𝑝′ 𝑚
𝛼−→𝑚′

𝑚 ⊳ 𝑝
𝛼−→𝑚′ ⊳ 𝑝′

iTer
𝑝

𝛼−→ 𝑝′ 𝑚 ̸𝛼−→ 𝑚 ̸𝜏−→

𝑚 ⊳ 𝑝
𝛼−→ end ⊳ 𝑝′

iAsyP
𝑝

𝜏−→ 𝑝′

𝑚 ⊳ 𝑝
𝜏−→𝑚 ⊳ 𝑝′

iAsyM
𝑚

𝜏−→𝑚′

𝑚 ⊳ 𝑝
𝜏−→𝑚′ ⊳ 𝑝

Figure 3.2. Syntax, small-step semantics for parallel monitors, and synchronous instrumentation

sub-monitors to transition in lock-step when they analyse the same action 𝛼 , while mVrdE

consolidates parallel inconclusive verdicts. The rest of the rules (omitting the obvious

symmetric cases) cater to the internal reconfiguration of monitors. For instance, rules

mDisYL and mDisNL state that in disjunctive parallelism, yes supersedes the verdicts of

other monitors, whilst no does not affect the verdicts of other monitors; mConYL and

mConNL express the dual case for parallel conjunctions. Finally, mTauL and its symmetric

analogue permit sub-monitors to execute internal reconfigurations independently.

Monitors execute together with the SuS to analyse its actions. Figure 3.2 recalls the

instrumentation transition relation defined in Aceto et al. [6] that composes a monitor 𝑚

3 Monitors and Instrumentation · 38

with a system process 𝑝 to yield a monitored system, denoted as 𝑚 ⊳ 𝑝 . The relation ⊳ is

parametric w.r.t. the transition semantics of processes and monitors, providing the latter

supports the inconclusive verdict end. This instrumentation definition gives monitors

a passive role, whereby𝑚 ⊳ 𝑝 transitions via an external action only when 𝑝 transitions

with that action. Rules iMon and iTer capture this notion. iMon describes the analysis

that monitors perform. It dictates that whenever a process 𝑝 transitions via 𝛼 to some 𝑝′

and the monitor can analyse 𝛼 and transition to𝑚′, the monitored system transitions in

lock-step to𝑚′ ⊳𝑝′. Monitors that are unable to analyse actions, nor unfold internally, are

terminated by the instrumentation with an inconclusive state, as iTer states (note that

iTer still permits the system process to resume its execution). The remaining rules, iAsyP

and iAsyM, enable system and monitor processes to transition internally.

Example 3.4 (Synchronous instrumentation). The monitor (𝑥𝑥, 𝑥 = 1) . rec𝑋 .
(
(𝑦𝑦, 𝑦 =

0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no
)

that rejects traces of the form 1.0∗ .1.Z𝜔 , is instrumented with the

server of figure 3.1. When the server leaks its identification token 1, this monitor reaches

a rejection verdict along the transitions:

(𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1 .rec𝑋 . (0 .𝚤 .𝑋) +−1 .rec𝑌 . (𝚥 .𝑌)

1−→ rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ rec𝑋 . (0 .𝚤 .𝑋)

=⇒ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

0−→ rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

𝜏−→ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ 𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

1−→ no ⊳ rec𝑋 . (0 .𝚤 .𝑋) 𝜏−→ ···

However, for a different execution where the server replies to a client with the identifi-

cation token 2, the same monitor flags an inconclusive verdict.

(𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1 .rec𝑋 . (0 .𝚤 .𝑋) +−1 .rec𝑌 . (𝚥 .𝑌)

1.0.2
=⇒ end ⊳ rec𝑋 . (0 .𝚤 .𝑋) 𝜏−→ ···

The concluding transition, · ·· 2−→ end ⊳ rec𝑋 . (0 .𝚤 .𝑋), is obtained via the rule iTer, at

which point the token value 2 issued by the server cannot be analysed by the monitor (it

can only analyse either the action 0 or 1). Observe that the monitor does not interfere with

the operation of the server. Henceforth, the instrumented system transitions exclusively

3.3 Monitorable Logic Fragments · 39

through iMon, whereby any action that the server exhibits is analysed by the monitor

(rule mVrd) which persists in flagging the same verdict end. Rule mVrd enables our

monitors to meet the verdict irrevocability requirement (i) of definition 2.1. ■

3.3 Monitorable Logic Fragments

Accept and reject verdicts establish the monitoring counterpart to satisfactions and

violations of `HMLd formulae. Our definition of the accept and reject predicates, acc

and rej, from definition 2.1 is given for finfinite (i.e., finite or infinite) traces. Since

the linear-time semantics of the `HMLd is defined over infinite traces, we instantiate

definition 2.1 of chapter 2 w.r.t. to this domain using our operational model of monitors

and the instrumentation relation of figure 3.2.

Definition 3.1 (Linear-time acceptance and rejection [6, adapted from Definition 3.3]). A

monitor𝑚,

(i) for every process 𝑝 and finite prefix 𝑠:

• accepts (resp. rejects) 𝑝 along 𝑠 , denoted as acc(𝑚,𝑝,𝑠) (resp. rej(𝑚,𝑝,𝑠)), if 𝑚 ⊳

𝑝
𝑠

=⇒ yes ⊳ 𝑝′ (resp.𝑚 ⊳ 𝑝
𝑠

=⇒ no ⊳ 𝑝′) for some 𝑝′

We say that ‘𝑚 accepts 𝑠’ to mean ∀𝑝. acc(𝑚,𝑝,𝑠), and ‘𝑚 rejects 𝑠’ to mean that

∃𝑝. rej(𝑚,𝑝,𝑠).
(ii) for every process 𝑝 and infinite trace 𝑡 :

• accepts (resp. rejects) 𝑡 produced by 𝑝 , denoted acc(𝑚,𝑝,𝑡) (resp. rej(𝑚,𝑝,𝑡)), if

∃𝑠 . ∃𝑢 such that 𝑡 = 𝑠𝑢 and acc(𝑚,𝑝,𝑠) (resp. rej(𝑚,𝑝,𝑠))
We abuse notation and use acc(𝑚,𝑡) as a shorthand for acc(𝑚,𝑝,𝑡); similarly, rej(𝑚,𝑡)
is used to denote rej(𝑚,𝑝,𝑡). ■

Our concrete formalisation of soundness that instantiates definition 2.2 of chapter 2

uses the predicate sat given earlier in definition 2.4. Recall that the predicate sat(𝜑,𝑡)
determines whether an infinite trace 𝑡 satisfies the linear-time `HMLd formula 𝜑 , i.e.,

𝑡 ∈ J𝜑 K. We restate the soundness as follows.

Definition 3.2 (Linear-time soundness [6, adapted from Definition 4.1]). A monitor𝑚 is

sound for a linear-time formula 𝜑 ∈ `HMLd if, for every infinite trace 𝑡 :

• acc(𝑚,𝑡) implies 𝑡 ∈ J𝜑 K, and

• rej(𝑚,𝑡) implies 𝑡 ∉ J𝜑 K. ■

3 Monitors and Instrumentation · 40

As section 2.1.3 argues, soundness is the least requirement expected from RV monitors

since it ensures that verdicts reached by monitors do not contradict the corresponding logic

semantics. Recall that different grades of completeness may be deemed adequate (refer to

section 2.1.3), depending on the requirements of RV set-up. These requirements inform the

definition of monitorability that identifies the logic fragments that can be accordingly run-

time checked. We focus on partially-complete monitors which are satisfaction-complete

or violation-complete for the formulae they monitor for, but are not required to be both.

Definition 3.3 (Linear-time completeness [6, adapted from Definition 4.1]). A monitor𝑚

for a linear-time formula 𝜑 ∈ `HMLd and for every trace 𝑡 is,

• satisfaction-complete if 𝑡 ∈ J𝜑 K implies acc(𝑚,𝑡), and

• violation complete if 𝑡 ∉ J𝜑 K implies rej(𝑚,𝑡).
A monitor𝑚 is complete for a linear-time formula 𝜑 if it is both satisfaction-complete

and violation-complete for 𝜑 , and partially-complete if it is either. ■

Monitorability for linear-time `HMLd formulae follows from definitions 3.2 and 3.3.

Definition 3.4 (Monitorability [6, adapted from Definition 4.10]). A formula 𝜑 ∈ `HMLd

is monitorable for satisfaction (resp. violation) iff there exists a monitor𝑚 that is a sound

and satisfaction-complete (resp. violation-complete) monitor for 𝜑 . Formula𝑚 is partially-

monitorable when it is monitorable for satisfaction or for violation. ■

Definition 3.5 gives the two fragments of the linear-time `HMLwith data (`HMLd)

that are partially monitorable [6]: minHMLd, which is monitorable for satisfaction, and

maxHMLd, which is monitorable for violation. Our definition shows the fragments

extended with the data predicates presented in section 2.2 for the `HMLd.

Definition 3.5 (min and max fragments of the `HMLd [6, adapted from Definition 4.11]).

The least and greatest fixed point monitorable fragments of the `HMLd are respectively:

𝜑,𝜓 ∈minHMLdF tt | ff | ⟨𝑥𝑥,𝑏 ⟩𝜑 | [𝑥𝑥,𝑏]𝜑 | 𝜑∨𝜓 | 𝜑∧𝜓 | min𝑋 . (𝜑) | 𝑋

𝜑,𝜓 ∈maxHMLdF tt | ff | ⟨𝑥𝑥,𝑏 ⟩𝜑 | [𝑥𝑥,𝑏]𝜑 | 𝜑∨𝜓 | 𝜑∧𝜓 | max𝑋 . (𝜑) | 𝑋

Both fragments are maximally-expressive, i.e., for any 𝜑 ∈ `HMLd, if 𝜑 monitorable for

satisfaction (resp. violation), then there exists some𝜓 ∈minHMLd (resp.𝜓 ∈maxHMLd)

such that J𝜑 K= J𝜓 K. ■

3.4 Monitor Synthesis · 41

This means that up to logical equivalence, minHMLd is the largest fragment of the

`HMLd that is monitorable for satisfactions; dually, maxHMLd is the largest fragment

that is monitorable for violations.

Example 3.5 (Non-monitorable linear-time properties). The property ‘the token

server must eventually issue the identification token 100’, expressible in minHMLd as

𝜑7 =min𝑋 . (⟨𝑥𝑥, 𝑥 = 100⟩ tt∨ ⟨𝑥𝑥, 𝑥 ≠ 100⟩𝑋), is not monitorable for violations. For if it

were, a monitor 𝑚𝜑7 that runtime checks for 𝜑7 should be able to flag a violation after

analysing some finite execution 𝑠 that does not contain the token 100. However, our

token server will always be in a position to extend any such witness 𝑠 that 𝑚𝜑7 observes

with one new action that exhibits the value 100, which would satisfy 𝜑7. Formula 𝜑7 is

nevertheless monitorable for satisfactions since the monitor only commits itself to flag

a satisfaction once the token server provides the required witness. Dually, formula 𝜑6

of example 3.3 i.e., [𝑥𝑥]max𝑋 .
(
[𝑦𝑦] ([𝑧𝑧, 𝑥 = 𝑧]ff ∧ [𝑧𝑧, 𝑥 ≠ 𝑧]𝑋)

)
, is not monitorable for

satisfactions, since the server can always present the monitor𝑚𝜑6 for formula 𝜑6 with a

violating trace continuation after𝑚𝜑6 flags a satisfaction.

The liveness LTL formula GF𝜑 that describes the behaviour ‘𝜑 holds infinitely often’ is

not monitorable [36]. For if a corresponding monitor exists, then this must check that

at every position in the execution, F𝜑 holds. For any finite trace prefix 𝑠 where GF𝜑 is

declared satisfied, 𝑠 can be extended by one action, obliging the monitor to check for F𝜑

anew. Note that GF𝜑 is expressible in `HMLd as max𝑋 .
(
min𝑌 . (𝜑∨⟨𝑥 ⟩𝑌) ∧ [𝑥]𝑋

)
, but

in neither of the monitorable fragments of definition 3.5. ■

The formulae seen thus far in examples 2.1, 2.2 and 3.1 to 3.3 are in maxHMLd. We adopt

maxHMLd in the sequel and chapter 4, noting that the forthcoming synthesis procedure

of section 3.4 generates identical monitors from minHMLd and maxHMLd formulae.

3.4 Monitor Synthesis

Our adaptation L−M of the synthesis procedure for regular monitors [6, 8] is given in

definition 3.6. It generates monitors for 𝜑 ∈minHMLd∪maxHMLd, following the inductive

structure of formulae. The translation for truth and falsehood, and the least and greatest

fixed point and recursion variable constructs is direct; disjunction and conjunction are

transformed to their parallel counterparts. Modal constructs map to deterministic external

choices, where the left summand handles the case where a system action 𝛼 is in the set

3 Monitors and Instrumentation · 42

described by the symbolic action (𝑥𝑥,𝑏), and the right summand, the case where 𝛼 is not

in this set. This embodies the duality of possibility and necessity: when 𝛼 is not in the

action set (𝑥𝑥,𝑏), the formula ⟨𝑥𝑥,𝑏 ⟩𝜑 is violated, whereas [𝑥𝑥,𝑏]𝜑 is trivially satisfied.

Definition 3.6 (Monitor synthesis procedure for minHMLd and maxHMLd).

LttM= yes LffM= no

L⟨𝑥𝑥,𝑏 ⟩𝜑 M= (𝑥𝑥,𝑏) .L𝜑 M+ (𝑥𝑥,¬𝑏) .no L [𝑥𝑥,𝑏]𝜑 M= (𝑥𝑥,𝑏) .L𝜑 M+ (𝑥𝑥,¬𝑏) .yes

L𝜑∨𝜓 M= L𝜑 M⊕ L𝜓 M L𝜑∧𝜓 M= L𝜑 M⊗ L𝜓 M

Lmin𝑋 . (𝜑)M

Lmax𝑋 . (𝜑)M

}
= rec𝑋 . (L𝜑 M) L𝑋 M=𝑋

■

Definition 3.6 makes use of the disjunctive, ⊕, and conjunctive, ⊗, parallel composition

constructs of figure 3.2. These constructs are a convenient calculus for building monitors

in a compositional fashion, making it possible to view a monitor as a system of sub-

monitors that check for different sub-formulae. One byproduct of this construction

is that it facilitates the definition of our synthesis procedure and ensuing executable

monitor code (see section 4.2). The parallel transition rules mDisYL, mDisNL, mConYL,

and mConNL (and their symmetric counterparts) obviate the need for the instrumentation

rule iTer that terminates monitors, and consequently, the use of the monitor transition

rule mVrdE and the inconclusive verdict end. Note that our model can handle formulae

such as, ⟨𝑥𝑥,𝑥 = 1⟩ tt∧ ⟨𝑥𝑥,𝑥 ≠ 1⟩ tt, where the monitor generated,
(
(𝑥𝑥,𝑥 = 1) .yes+ (𝑥𝑥,𝑥 ≠

1) .no
)
⊗
(
(𝑥𝑥,𝑥 ≠ 1) .yes+ (𝑥𝑥,𝑥 = 1) .no

)
, together with the rules (mConNL and mConNR in

this case) make the verdict flagged (i.e., no) in line with the semantics of the logic.

Our monitor model assumes an infinite domain of data elements that—combined with

the variable binding and lexical scoping induced by symbolic actions—makes monitors

not possible to determinise in general (see example 3.6). At runtime, the view of monitors

is limited to a single finite trace prefix, one of the many possible paths the SuS takes while

executing. We exploit this partial view and use parallel monitors as a best-effort strategy

to unfold and lazily analyse the events for the current trace observed. This may be seen as

‘determinising on the fly’, and contrasts with static determinisation that computes all the

possible paths that a monitor can take a priori, only to follow a specific one at runtime.

Parallel monitors naturally handle the scoping and binding of variables between different

sub-monitor hierarchies by following the syntactic structure of formulae. The rules

3.4 Monitor Synthesis · 43

mDisYL, mDisNL, mConYL, mConNL, and their analogues ensure that the sub-monitor

hierarchies that result from ⊕ and ⊗ are kept compact by terminating superfluous monitor

branches. Using flat, automata-like approaches to manage the variable scoping and binding

aspects (e.g. register automata [143, 124, 104]) makes it hard to reason about monitors

compositionally. These challenges concerning data binding and scoping do not arise in

the framework of Aceto et al. [6, 8] that study regular monitors.

Example 3.6 (Non-determinisable monitors). Consider the property about our token

server of figure 3.1 stating that ‘when the server behaves erratically, it always generates

distinct error codes’. This can be expressed as the maxHMLd formula:

[𝑥𝑥,𝑥 =−1]max𝑋 .

(
[𝑦𝑦]

(
max𝑌 . ([𝑧𝑧,𝑦 = 𝑧]ff∧ [𝑧𝑧,𝑦 ≠ 𝑧]𝑌) ∧𝑋

))
(𝜑8)

Formula 𝜑8 cannot be synthesised into a monitor that is determinisable. The binder

𝑦𝑦 binds the variables 𝑦 inside the greatest fixed point max𝑌 . ([𝑧𝑧,𝑦 = 𝑧]ff∧ [𝑧𝑧,𝑦 ≠ 𝑧]𝑌),
creating a dependency between the inner scope under variable𝑌 and the outer scope under

𝑋 (marked by arrows). This dependency obliges the monitors to reserve an unbounded

number of variables (𝑦 in 𝜑8), one for each action analysed. It is necessary so that the

values of all the different instantiations of 𝑦𝑦 can be compared against future values in the

trace through the recursive sub-formula max𝑌 . ([𝑧𝑧,𝑦 = 𝑧]ff∧ [𝑧𝑧,𝑦 ≠ 𝑧]𝑌). Unfolding 𝜑8

once highlights the variables 𝑦 (𝛼-renamed to 𝑦1 and 𝑦2 for clarity) that track every action

in the execution.

[𝑦1𝑦1]
(
max𝑌 . ([𝑧𝑧,𝑦1 = 𝑧]ff∧ [𝑧𝑧,𝑦1 ≠ 𝑧]𝑌)∧

max𝑋 .

(
[𝑦2𝑦2]

(
max𝑌 . ([𝑧𝑧,𝑦2 = 𝑧]ff∧ [𝑧𝑧,𝑦2 ≠ 𝑧]𝑌) ∧𝑋

)))
(𝜑 ′8)

Each of 𝑦1,𝑦2, . . . is respectively instantiated with the server error code value carried by

actions in a trace 𝛼1,𝛼2, This makes the size of the monitor dependent on the length of

its input, which results in a monitor whose number of states can grow indefinitely. ■

Example 3.7 (Parallel monitors). Synthesising formula 𝜑5 produces the monitor𝑚𝜑5 :

L𝜑5M= L [𝑥𝑥,𝑥 =−1]ff∧⟨𝑥𝑥,𝑥 = 1⟩ttM= L [𝑥𝑥,𝑥 =−1]ffM⊗ L⟨𝑥𝑥,𝑥 = 1⟩ttM

=
(
(𝑥𝑥,𝑥 =−1) .no+ (𝑥𝑥,𝑥 ≠−1) .yes

)
⊗
(
(𝑥𝑥,𝑥 = 1) .yes+ (𝑥𝑥,𝑥 ≠ 1) .no

)
(𝑚𝜑5)

3 Monitors and Instrumentation · 44

When analysing the server traces −1.Z𝜔 , monitor 𝑚𝜑5 reduces to no⊗no via the rule

mPar. Its premises are obtained by applying the mChsL and mAct to the left sub-monitor,

and mChsR and mAct to the right sub-monitor, giving:

(𝑥𝑥,𝑥 =−1) .no+ (𝑥𝑥,𝑥 ≠−1) .yes −1−→ no and (𝑥𝑥,𝑥 = 1) .yes+ (𝑥𝑥,𝑥 ≠ 1) .no −1−→ no

The monitor no⊗no then transitions internally, no⊗no 𝜏−→ no, via either mConNL or

mConNR. Analogously, 𝑚𝜑5 reaches yes when analysing the server traces 1.N𝜔 . Recall

that from a verdict state, a monitor can always analyse future actions via mVrd, flagging

the same outcome. The behaviour of𝑚𝜑5 corresponds to the property that 𝜑5 describes. ■

Example 3.8 (Lazy unfolding). Consider the recursive monitor 𝑚𝜑6 synthesised from 𝜑6:

(𝑥𝑥) .rec𝑋 .

(
(𝑦𝑦) .

((
(𝑧𝑧,𝑥 = 𝑧) .no+ (𝑧𝑧,𝑥 ≠ 𝑧) .yes

)
⊗
(
(𝑧𝑧,𝑥 ≠ 𝑧) .𝑋 + (𝑧𝑧,𝑥 = 𝑧) .yes

)))
(𝑚𝜑6)

For the server traces 1.0.2.0.1.(0.N)𝜔 , 𝑚𝜑6 instantiates the binder 𝑥𝑥 to the value 1 at the

head, and applies the substitution [1/𝑥] to the residual monitor, giving:

rec𝑋 .

(
(𝑦𝑦) .

((
(𝑧𝑧, 1= 𝑧) .no+ (𝑧𝑧, 1≠ 𝑧) .yes

)
⊗
(
(𝑧𝑧, 1≠ 𝑧) .𝑋 + (𝑧𝑧, 1= 𝑧) .yes

)))
(𝑚′𝜑6

)

Hereafter, 𝑚′𝜑6
unfolds continually, ensuring that no action carries the value 1 observed

at the head of the trace. At every even position, 𝑦𝑦 is instantiated to 0, whereas the binders

𝑧𝑧 in each of the parallel sub-monitors compare the value carried by actions occurring at

odd trace positions against 1. Monitor𝑚′𝜑6
reaches the verdict no via these reductions:

𝑚′𝜑6

𝜏−→ (𝑦𝑦) .
((
(𝑧𝑧, 1= 𝑧) .no+ (𝑧𝑧, 1≠ 𝑧) .yes

)
⊗
(
(𝑧𝑧, 1≠ 𝑧) .𝑚′𝜑6

+ (𝑧𝑧, 1= 𝑧) .yes
))

(𝑚′′𝜑6
)

0−→
(
(𝑧𝑧, 1= 𝑧) .no+ (𝑧𝑧, 1≠ 𝑧) .yes

)
⊗
(
(𝑧𝑧, 1≠ 𝑧) .𝑚′𝜑6

+ (𝑧𝑧, 1= 𝑧) .yes
)

(𝑚′′′𝜑6
)

2−→ yes⊗𝑚′𝜑6

𝜏−→𝑚′𝜑6

𝜏−→𝑚′′𝜑6

0−→𝑚′′′𝜑6

1−→ no⊗yes 𝜏−→ no

𝚤−→ no

𝚤−→ ···

For the satisfying server traces 1.(0.{𝚤 ∈N | 𝚤 ≠ 1})𝜔 ,𝑚′𝜑6
visits the state yes⊗𝑚′𝜑6

indefi-

nitely, where𝑚′𝜑6
supersedes the uninfluential verdict yes following the rule mConYL. ■

3.5 Asynchronous Runtime Monitoring · 45

Readers may find it instructive to consult the definition of satisfaction-complete and

violation-complete monitors for the branching-time interpretation of the `HML, [6, Defi-

nition 5.1]. The latter definition demands that, whenever a monitor is presented with a

satisfying (resp. violating) process state, it reaches an accept (resp. reject) verdict. Simi-

larly, definition 3.3 above states that, whenever the monitor is presented with a satisfying

(resp.violating) trace, it reaches an accept (resp. reject) verdict. Yet, there is a subtle distinc-

tion in the way the execution trace of the SuS is interpreted. In the branching-time setting,

where the logic describes properties of execution graphs, a monitor may not reach an

acceptance (or rejection) verdict about some 𝜑 . This happens when the current execution

of the SuS does not provide evidence of satisfying (or violating) behaviour such that it en-

ables the monitor to come to a definitive conclusion. In such cases, the monitor withholds

its judgement (by flagging end) since there might be other unseen executions of the SuS

that possibly contain the evidence required. By contrast, the linear-time interpretation

of `HMLd concerns the current execution. The current execution provides the monitors

that we synthesise from our monitorable fragments (see definition 3.6) with sufficient

information to enable them to always flag a satisfaction or violation verdict.

3.5 Asynchronous Runtime Monitoring

The instrumentation relation of figure 3.2 is synchronous [118, 6], entwining the monitors

and SuS such that the monitored system,𝑚 ⊳ 𝑝 , evolves as a single entity. Synchronous

instrumentation is often implemented as inlined monitor code and is the de facto technique

for monolithic settings where systems execute in a single thread. For the reasons given in

section 2.1.4, the benefits of inlining are less suited to reactive settings where the SuS is

comprised of multiple independently executing processes. Asynchronous instrumentation

decouples monitors from SuS by introducing an intermediary buffer (or queue) where

trace events can be deposited in non-blocking fashion. Decentralised monitoring set-ups

replicate this arrangement: each monitor is equipped with a uniquely-addressable queue

that it uses to analyse events independent of other monitors and out-of-sync with the

SuS. This makes the technique less invasive and limits the side effects of monitors, e.g. a

slow analysis does not impede the system from resuming its execution. Outline monitors

are an embodiment of this approach, where individual monitor queues are connected

to the tracing infrastructure that provides independent streams of system events (see

section 2.1.4). One feature distinguishing synchronous and asynchronous instrumentation

3 Monitors and Instrumentation · 46

aiPrc
𝑝

𝛼−→𝑝′

𝑚 ⊳^ ⊳ 𝑝
𝛼−→𝑚 ⊳^ :𝛼 ⊳ 𝑝′

aiMon
𝑚

𝛼−→𝑚′

𝑚 ⊳𝛼 :^ ⊳ 𝑝
𝜏−→𝑚′ ⊳^ ⊳ 𝑝

aiAsyP
𝑝

𝜏−→ 𝑝′

𝑚 ⊳^ ⊳ 𝑝
𝜏−→𝑚 ⊳^ ⊳ 𝑝′

aiAsyM
𝑚

𝜏−→𝑚′

𝑚 ⊳^ ⊳ 𝑝
𝜏−→𝑚′ ⊳^ ⊳ 𝑝

Figure 3.3. Small-step semantics for asynchronous instrumentation

is that the latter form gives rise to multiple executions as a consequence of separating the

monitor and SuS processes. Chapter 5 details the complications that arise in asynchronous

decentralised set-ups and gives an algorithm that guarantees the correct order of events for

each monitor. In this section, we reformulate the instrumentation semantics of figure 3.2

and define the asynchronous interaction between monitors and system processes.

Figure 3.3 gives the transition rules for our asynchronous instrumentation relation,

𝑚 ⊳ ^ ⊳ 𝑝 . It assumes a FIFO queue of unbounded length, ^. We use the cons operator :

and write 𝛼 :^ to denote a queue of arbitrary length with head 𝛼 , and ^ :𝛼 to denote a

queue of arbitrary length with 𝛼 at its tail. An empty queue is denoted by Y. Same as the

instrumentation given in [118, 6], our relation𝑚 ⊳^ ⊳ 𝑝 is parametric w.r.t. the transition

semantics of processes and monitors, also relegating monitors to a passive role. The rules

aiPrc and aiMon capture the asynchronous operation of the system and monitors. Rule

aiPrc always enables system processes 𝑝 to transition to some 𝑝′ via an action 𝛼 that is

deposited in the queue, i.e., ^ :𝛼 . An action 𝛼 from the queue 𝛼 :^ is taken out by a monitor

whenever it can analyse 𝛼 , transitioning silently to𝑚′, as aiMon indicates. The remaining

rules, aiAsyP and aiAsyM, allow processes and monitors to transition internally.

The rules of figure 3.3 highlight the minimal interference that monitors have. Rule aiPrc

states that a monitored system 𝑚 ⊳ ^ ⊳ 𝑝 exhibits actions as soon as processes perform

them; monitors, however, conduct their asynchronous analysis silently. One may consider

an alternative formulation of aiPrc and aiMon that reverses the roles of processes and

monitors in the monitored system 𝑚 ⊳ ^ ⊳ 𝑝 . In this definition, processes can exhibit

external actions 𝛼 via aiPrc, but contrary to our rules of figure 3.3, the monitored system

transitions internally, i.e.,𝑚 ⊳^ ⊳ 𝑝
𝜏−→𝑚 ⊳^ :𝛼 ⊳ 𝑝′. The conclusion of rule aiMon would

then state that the monitored system emits external system actions only when these have

been analysed by monitors, i.e., 𝑚 ⊳ 𝛼 :^ ⊳ 𝑝
𝛼−→𝑚′ ⊳ ^ ⊳ 𝑝 . While this variation seems

3.5 Asynchronous Runtime Monitoring · 47

innocuous (asynchrony is still preserved), the rules subtly alter the behaviour of the

monitored system. Concretely, slowdowns (or deadlocks) in monitors delay (or prevent)

the monitored system from reporting actions to the external environment promptly. This

counters our aim of fully decoupling the SuS and monitors to induce minimal interference.

Finally, the definitions of figure 3.3 omit the analogue to iTer (cf. figure 3.2), which

terminates monitors that cannot analyse events or transition internally. Rule iTer is

required in a synchronous setting, otherwise, the system cannot progress when the monitor

is stuck. From a formal standpoint, eliding this rule in the asynchronous case does not

affect the overall behaviour, as the system can progress regardless of whether a monitor is

terminated or cannot analyse actions. Yet, terminating redundant monitors is crucial for

implementing tools that minimise the performance impact monitors have on the system.

Rule aiTer below accomplishes this task, providing a basis upon which the garbage

collection in our decentralised instrumentation algorithm of chapter 5 is built.

aiTer
𝑚 ̸𝛼−→ 𝑚 ̸𝜏−→

𝑚 ⊳𝛼 :^ ⊳ 𝑝
𝜏−→ end ⊳ Y ⊳ 𝑝

Example 3.9 (Asynchronous instrumentation). Monitor (𝑥𝑥,𝑥=1) .rec𝑋 .
(
(𝑦𝑦,𝑦=0) .𝑋+(𝑦𝑦,𝑦=

1) .no
)

from example 3.9 is instrumented with the token server of figure 3.1. When the

server leaks its identification token 1, a rejection verdict can be reached as follows:

(𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y ⊳ 1 .rec𝑋 . (0 .𝚤 .𝑋) +−1 .rec𝑌 . (𝚥 .𝑌)

1−→ (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y : 1 ⊳ rec𝑋 . (0 .𝚤 .𝑋)

𝜏−→ rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y ⊳ rec𝑋 . (0 .𝚤 .𝑋)

𝜏
=⇒ (𝑦𝑦,𝑦 = 0) .rec𝑋 .

(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ Y ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

0−→ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ Y :0 ⊳ 𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

𝜏−→ rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y ⊳ 𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

𝜏−→ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ Y ⊳ 𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

1−→ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ Y : 1 ⊳ rec𝑋 . (0 .𝚤 .𝑋)

𝜏−→ no ⊳ Y ⊳ rec𝑋 . (0 .𝚤 .𝑋) 𝜏−→ ···

This transition sequence depicts the case where the token server advances by one step,

and waits for the monitor to catch up and analyse the action deposited in the queue ^

3 Monitors and Instrumentation · 48

before proceeding with the next transition (i.e., ^ emulates a single-place buffer). It is but

one of various interleaved executions that the monitored system can exhibit. We give

it to elucidate how the intermediary queue ^ that decouples the token server from its

monitor, evolves as the latter effects its analysis. The execution obtained is similar to the

synchronous run given in example 3.4, albeit interleaved with extra internal transitions

performed by the monitor to reach a state where it is ready to analyse the next action.

The following run shows the token server executing ahead and completing one request-

response cycle before the monitor commences its analysis:

(𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y ⊳ 1 .rec𝑋 . (0 .𝚤 .𝑋) +−1 .rec𝑌 . (𝚥 .𝑌)

1−→ (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y : 1 ⊳ rec𝑋 . (0 .𝚤 .𝑋)

𝜏−→ (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1 ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

0−→ (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1 :0 ⊳ 𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

1−→ (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1.0: 1 ⊳ rec𝑋 . (0 .𝚤 .𝑋)

𝜏−→ (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1.0.1 ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

𝜏−→ rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 0.1 ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

𝜏−→ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ 0.1 ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

𝜏−→ rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1 ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

𝜏−→ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ 1 ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋)

𝜏−→ no ⊳ Y ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋) 0−→ ···

The last five 𝜏-transitions showcase asynchronous instrumentation, which permits

monitors to analyse the events accumulated in the queue independently of the server. Yet,

the price of this benefit is paid in terms of possible delays when flagging verdicts. ■

Example 3.10 (Monitor termination). For an alternate run where the token server emits

the trace 1.0.2.0.3 . . ., the monitor of examples 3.4 and 3.9 gets stuck, as it cannot analyse

actions that carry values other than 0 or 1. While unanalysed actions accumulate in the

instrumentation queue, the server execution is not hampered from progressing.

(𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y ⊳ 1 .rec𝑋 . (0 .𝚤 .𝑋) +−1 .rec𝑌 . (𝚥 .𝑌)

1.0.2
=⇒ (𝑦𝑦,𝑦 = 0) .rec𝑋 .

(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ 2 ⊳ rec𝑋 . (0 .𝚤 .𝑋)

0.3
=⇒ (𝑦𝑦,𝑦 = 0) .rec𝑋 .

(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ 2.0.3 ⊳ rec𝑋 . (0 .𝚤 .𝑋) 𝜏−→ ···

3.6 Discussion · 49

In practice, the steadily increasing queue size is detrimental to the runtime performance,

and rule aiTer is used to prematurely terminate the stuck monitor.

(𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y ⊳ 1 .rec𝑋 . (0 .𝚤 .𝑋) +−1 .rec𝑌 . (𝚥 .𝑌)

1.0.2
=⇒ end ⊳ Y ⊳ rec𝑋 . (0 .𝚤 .𝑋) 𝜏−→ ···

In principle, the asynchrony of our instrumentation naturally safeguards the SuS from

problematic monitors (e.g. the divergent monitors explored in [112]). Observe that this

does not necessarily apply in practice. For instance, events can accumulate in the queue

when the monitor is slow to analyse them. This can induce considerable overhead that

indirectly affects the applications being monitored. Section 7.2.2 demonstrates such an

occurrence, wherein an asynchronous centralised monitor is inefficient to the point that

it crashes the SuS. ■

3.6 Discussion

Organising the RV set-up into distinct components with cleanly delineated responsi-

bilities is the core theme of this chapter. The formalism, in our case, a logic, provides

a language through which properties can be expressed independently of the underly-

ing verification technique. RV monitors are instrumented with the SuS and tasked with

runtime checking properties against the trace that the system exhibits while executing.

Monitorability bridges these two aspects: satisfactions and violations of properties in the

logic on the one hand, and acceptances and rejections flagged by monitors on the other [8].

It establishes what it means for a monitor to be correct, which in turn, determines the

fragments of the logic that can be runtime checked. This correspondence between these

two distinct semantics can be mechanised into an automated synthesis procedure that

generates correct monitors from logic formulae [113].

This modular design [6, 8] is reflected in our approach. We choose a logic—the highly-

expressive linear-time `HMLd that describes properties of the current execution—and

show how properties that reason on the data carried by trace events can be flexibly

specified. We establish an operational model of parallel monitors [6] extended with data

predicates, that fulfils two requirements, namely that (i) monitors analyse finite trace

prefixes, and (ii) produce irrevocable accept or reject verdicts about these traces. Together

with the instrumentation relation [6], this model suffices to concretely define the notions

of trace acceptance and rejection, given by the predicates acc and rej. Monitor soundness

3 Monitors and Instrumentation · 50

and completeness are specified in terms of acc and rej, and a definition of monitorability for

partially-complete monitoring follows as a result. Our compositional synthesis procedure

translates monitorable linear-time `HMLd fragments to parallel monitors comprised of

sub-monitors that check for corresponding sub-formulae. We define an asynchronous

instrumentation relation alternative to the one of Aceto et al. [6, 8] to decouple the

execution of the monitors and SuS. Our definition follows the same assumptions as their

synchronous instrumentation, making it compatible with that framework.

One distinct advantage that this separation of concerns has over other bodies of work

(e.g. [210, 67, 70, 68, 24, 63, 34, 197]) when it comes to tool construction is that every layer

mentioned above is directly mappable to modular code. This provides high assurances

that the correctness results obtained in theory are transferred to the implementation.

Besides correctness, modularity makes it possible to reuse previously-established results

and by extension, existing tools. For instance, our framework easily supports the moni-

torable fragments of the branching-time `HMLd since the respective synthesis procedure

of [118, Definition 7] generates monitors described in a subset of the monitor calculus and

operational semantics given in figure 3.21. The instrumentation also benefits since the

same synthesised monitor (code) can be instrumented with the SuS in synchronous or

asynchronous modes. We highlight the indispensability of this aspect in section 4.7 and

showcase it in chapter 7.

The asynchronous instrumentation we give in section 3.5 fits well the reactive systems

setting. It keeps the SuS and monitors separate, in line with the concurrency-oriented

programming tenets [19], where different responsibilities are organised into independent

concurrent units. This fine-grained concurrent design increases the potential for paral-

lelisation since the monitor code is not embedded into the SuS. Our monitored system,

𝑚 ⊳^ ⊳ 𝑝 , that results from asynchronous instrumentation preserves the reactive qualities

of the uninstrumented SuS:

• the queue ^ enables the SuS to execute without waiting on monitors (responsive, exam-

ple 3.9),

• monitors can fail with minimal impacts on the SuS (resilient, example 3.10)

• monitors only analyse the events communicated by the instrumentation over the queue

^ (message-driven, examples 3.9 and 3.10)

1This approach is, in fact, already implemented in the detectEr tool.

3.6 Discussion · 51

Asynchronous instrumentation also opens the possibility for the monitored system to

exhibit elastic behaviour. While this is not evident in our simplified system set-ups of

examples 3.9 and 3.10, we detail how elasticity is attained via our decentralised monitoring

algorithm of chapter 5.

4 Runtime Monitoring

Developing the theoretical foundations of runtime monitoring in a modular approach

provides a blueprint against which RV tools can be systematically implemented and

evolved. As section 3.6 argues, delineating the key components of the RV set-up not only

facilitates their translation to code with minimal adaptation but gives increased assurances

that such translations are correct. In addition, limiting the assumptions that each RV

aspect makes on others (e.g. adopting a general logic that embeds other less-expressive

ones, decoupling the logic from the verification method, using a common monitor calculus,

etc.) makes it possible to reuse existing results and tools to assemble verification set-ups

that suit particular requirements. This chapter details how each RV aspect of the model

developed in chapter 3 can be mapped into its implementation equivalent. Figure 4.1a

outlines the different components of our theoretical set-up and their implementation

counterparts we present in this chapter, figure 4.1b (highlighted). While Erlang is our

implementation language of choice (see discussion in section 1.2), the techniques in this

chapter are not particularly tied to actor-oriented frameworks (e.g. Akka), but can also be

applied to monolithic programs (Java, Python, etc.). We:

(i) augment the notion of symbolic actions given in section 2.2 with pattern matching,

enabling the logic and monitors to reason on composite data types, which we use to

define a simple model of events that capture the actions performed by processes,

Section 4.1;

(ii) concretise the synthesis procedure stated in definition 3.6 to produce executable

Erlang monitor code, Section 4.2;

(iii) encode the small-step rules given in figure 3.2 as an algorithm that operates on

monitors generated by our synthesis, Section 4.3;

(iv) generalise the synchronous and asynchronous instrumentation relations of fig-

ures 3.2 and 3.3 to support selective process instrumentation, Section 4.4;

(v) detail an implementation of the synchronous instrumentation definition of (iv) based

on source-level weaving, Section 4.5.

53

4 Runtime Monitoring · 54

minHMLd and maxHMLd

fragments, Definition 3.5

minHMLd and maxHMLd

synthesis, Definition 3.6

`HML monitorable

fragments [118, Definition 6]

`HML

synthesis [118, Definition 7]

Common monitor calculus, Figure 3.2

Monitor operational semantics, Figure 3.2

Synchronous

instrumentation, Figure 3.2

Asynchronous

instrumentation, Figure 3.3

CCS process model, Section 2.4

trace model trace model

linear-time branching-time

(a) Modular theoretical RV set-up of chapters 2 and 3

Revisited maxHMLd

fragment, Section 4.1

minHMLd and maxHMLd

synthesis, Figure 4.3

detectEr RV toolchain

[113, 21, 219, 221, 56, 220]

detectEr RV toolchain

[113, 21, 219, 221, 56, 220]

Common subset of Erlang syntax, Figure 4.3

Monitoring algorithm, Listing 1

Inline (weaving)

instrumentation section 4.5

Outline (Erlang tracing)

instrumentation, chapter 5

Erlang process model [19, 57]

trace event messages trace event messages

linear-time branching-time

(b) Implementation components reflecting the modules of 4.1a

Figure 4.1. Theoretical and corresponding implementation RV set-ups

Our subsequent case study in section 4.6 demonstrates how properties can be flexibly

specified to instrument and runtime check third-party concurrent applications built on

top of the Erlang OTP middleware.

4.1 Revisiting the Data Model

We revise our definition of symbolic actions introduced section 2.2 to fit the Erlang

use-case, where data can consist of composite types, such as tuples and lists [19, 57]. Let

ℓ ∈ L be a finite set of action labels, and 𝑑1,𝑑2, . . . be data values taken from a set of data

domains, D =
⋃

𝑖∈N D𝑖 (e.g. integers, PIDs, tuples, lists, etc.). An external action, 𝛼 , is

redefined as a tuple, ⟨ℓ,𝑑2,. . .,𝑑𝑛⟩, where the first element 𝑑1=ℓ is the label of 𝛼 and 𝑑2,. . .,𝑑𝑛

is the data payload carried by 𝛼 . We use the notation ℓ ⟨𝑑2,. . .,𝑑𝑛⟩ to write 𝛼 .

Patterns, 𝑒∈Pat, are counterparts to external system actions. These are defined as tuples,

⟨ℓ,𝑥2𝑥2,. . .,𝑥𝑛𝑥𝑛⟩ (written as ℓ ⟨𝑥2𝑥2,. . .,𝑥𝑛𝑥𝑛⟩), where 𝑥2, . . .,𝑥𝑛 are pairwise-distinct data variables

names ranging overD. Our revised definition of symbolic actions in the modal constructs

⟨𝑒,𝑏 ⟩𝜑 and [𝑒,𝑏]𝜑 uses these patterns instead of variables (cf. section 2.2). The binders

𝑥2𝑥2, . . .,𝑥𝑛𝑥𝑛 in 𝑒 bind the free occurrences of 𝑥2, . . .,𝑥𝑛 in the Boolean constraint 𝑏, and in

the continuation 𝜑 . We define the function, match(𝑒,𝛼), to handle pattern matching.

4.1 Revisiting the Data Model · 55

Action 𝛼 Action pattern 𝑒 Variables Description

fork

initialise

_⟨𝑥1,𝑥2,𝑦1,𝑦2,𝑦3⟩

^⟨𝑥2,𝑥1,𝑦1,𝑦2,𝑦3⟩

𝑥1 PID of the parent process forking 𝑥2

𝑥2 PID of the child process forked by 𝑥1

𝑦1,𝑦2,𝑦3 Function signature forked by 𝑥1

exit ∗⟨𝑥1,𝑦1⟩
𝑥1 PID of the terminated process

𝑦1 Error datum, e.g. error reason, etc.

send ! ⟨𝑥1,𝑥2,𝑦1⟩

𝑥1 PID of the process sending the message

𝑥2 PID of the recipient process

𝑦1 Message datum, e.g. integer, tuple, etc.

receive ?⟨𝑥2,𝑦1⟩
𝑥2 PID of the recipient process

𝑦1 Message datum, e.g. integer, tuple, etc.

Table 4.1. Actions capturing the behaviour exhibited by Erlang processes

This function returns a substitution, 𝜋 : DVar⇀D, that maps the variables in 𝑒 to the

corresponding data values in the payload carried by 𝛼 when the shape of the pattern

matches that of the action, or ⊥ if the match is unsuccessful. Analogous to the symbolic

actions of section 2.2, (𝑒,𝑏) describes a set of actions. An action 𝛼 is in this set if (i) the

patten match succeeds, i.e., match(𝑒,𝛼) =𝜋 , and (ii) the instantiated Boolean constraint

expression 𝑏𝜋 holds.

We use the action label setL={_,^,∗, ! ,?}, that captures the lifecycle of, and interaction

between processes. The fork action, _, is exhibited by a process when it creates a child;

its dual, ^, is exhibited by the child process upon initialisation. An exit action, ∗, signals

process termination; send and receive, respectively ! and ?, denote interaction. Table 4.1

details the actions related to these labels and the data payload they carry.

Our token server of figure 3.1 is readily translatable to Erlang, as figure 4.2 shows.

The server starts when its main function, loop, in the Erlang module ts is invoked

(state 𝑞1, line 2). From 𝑞1, it transitions to 𝑞3 (line 4), exhibiting the initialisation event

^⟨PIDS,PIDP,ts,loop,[1,2]⟩; the placeholders PIDS and PIDP respectively denote the PID

values of the token server process and of the parent process forking the server. At 𝑞3,

the server accepts client requests, consisting of the tuple {PIDC,0}, where PIDC is the PID

4 Runtime Monitoring · 56

of the client, and 0, the command requesting a new identification token, line 5. From

state 𝑞4, the server replies with the new token value NextTok on line 6, and transitions

back to 𝑞3. This client-server interaction emits the server events ?⟨PIDS,{PIDC,0}⟩ and

! ⟨PIDS,PIDC,NextTok⟩. When the server fails at startup, it exhibits abnormal behaviour,

shown as ∗⟨PIDS,-1⟩, and terminates, state 𝑞3. Note that our translation of the server

abstraction of figure 3.1 transforms the sink 𝑞3 to a final state and removes its self-loop.

This coincides with our token server implementation of figure 4.2b which exits when

errors arise. While this adaptation prohibits the server from generating infinitely long

executions, one may still interpret termination as the trace −1.Z𝜔 , indicating that once

terminated, the server is permanently trapped in that state, 𝑞2.

Example 4.1. (Pattern matching) Formula 𝜑5 can be reformulated to fit the implementation

of figure 4.2:

[∗⟨𝑥1,𝑥2⟩,𝑥2 = -1]ff∧⟨^⟨𝑥1,𝑥2,𝑥3,𝑥4,[𝑥5,𝑦6]⟩,𝑥5 = 1⟩tt (𝜑9)

The patterns in the left and right conjuncts of 𝜑9 match the exit and initialisation

events respectively. When 𝑞1 crashes at start-up, match(∗⟨𝑥1,𝑥2⟩,∗⟨PIDS,-1⟩) yields the

substitution 𝜋 = [PIDS/𝑥1,-1/𝑥2], and the instantiated constraint (𝑥2 = -1)𝜋 holds. For the

same event, match

(
^⟨𝑥1,𝑥2,𝑥3,𝑥4,[𝑥5,𝑥6]⟩,∗⟨PIDS,-1⟩

)
=⊥ in the right conjunct, leading

to a violation of formula 𝜑9. The reverse argument applies when 𝑞1 loads successfully,

where 𝜑9 is satisfied. In 𝜑9, the pattern variables 𝑥1 in ∗⟨𝑥1,𝑥2⟩, and 𝑥1,𝑥2,𝑥3,𝑥4,𝑥6 in

𝑞1

𝑞2

𝑞3 𝑞4

∗⟨PIDS,-1⟩

∗⟨PIDS, 𝚥⟩

^⟨PIDS,PIDP,ts,loop,[1,2]⟩

?⟨PIDS,{PIDC,0}⟩

! ⟨PIDS,PIDC,NextTok⟩

(a) Token server model updated with concrete Erlang process actions

1 start(Tok) �
2 spawn(ts, loop, [Tok,Tok + 1]).

3 loop(Tok, NextTok) when Tok = 1 �
4 receive
5 {Clt, 0} �
6 Clt ! NextTok,
7 loop(Tok, NextTok + 1)
8 end.

(b) Erlang implementation as module ts

(excerpt)

Figure 4.2. Erlang adaptation of the token server of figure 3.1

4.2 Synthesising Erlang Monitors · 57

^⟨𝑥1,𝑥2,𝑥3,𝑥4,[𝑥5,𝑥6]⟩ are redundant.

[^⟨_,_,_,_,[𝑥5,_]⟩]max𝑋 .

(
[_]

(
[! ⟨_,_,𝑧3⟩,𝑥5 = 𝑧3]ff∧ [! ⟨_,_,𝑧3⟩,𝑥5 ≠ 𝑧3]𝑋

))
(𝜑10)

Formula 𝜑10 restates 𝜑6 with pattern matching. It uses the ‘don’t care’ pattern _, that

matches arbitrary values, eliding redundant patterns and variables. ■

4.2 Synthesising Erlang Monitors

Our synthesis from maxHMLd specifications to executable Erlang monitors follows

that of definition 3.6. Figure 4.3 omits the cases for the falsity, necessity, and conjunction

constructs, as these are analogous to the ones for tt, ⟨𝑒,𝑏 ⟩𝜑 and 𝜑 ∨𝜓 . The translation

from specifications to monitors is executed in three stages. First, a formula is parsed into

its equivalent AST. This is then passed to the code generator that visits each of its nodes,

mapping it to a monitor description as per the rules of figure 4.3. The monitor description is

encoded as an Erlang AST to simplify its handling. In the final stage, this AST is processed

by the Erlang compiler to emit the monitor source code or a BEAM [57] executable.

In this definition of L−M, tt (resp. ff) is translated to the Erlang atom yes (resp. no) that

indicates acceptance (resp. rejection). The remaining cases generate Erlang tuples whose

first element, called the tag, is an atom that identifies the kind of monitor. Disjunctions

(resp. conjunctions) are translated to the tuple tagged with or (resp. and), combining

two sub-monitor descriptions. Greatest fixed point constructs, max𝑋 . (𝜑), are mapped

to rec tuples consisting of named functions, fun X() � L𝜑 M end, that can be referenced

LttM= yes L𝜑∨𝜓 M= {or,L𝜑 M,L𝜓 M}

Lmax𝑋 . (𝜑)M= {rec, fun X()� L𝜑 M end} L𝑋 M= {rec, X}

L⟨𝑒,𝑏 ⟩𝜑 M=

{chs,

{act,

predicate︷ ︸︸ ︷
fun(𝑒) when 𝑏 � true; (_)� false end,

fun(𝑒)� L𝜑 M end},

 left action

{act, fun(𝑒) when 𝑏 � false; (_)� true end,

fun(_)� no end︸ ︷︷ ︸
monitor body

}

 right action

}

Figure 4.3. Translation from maxHML
d

formulae to Erlang code (excerpt)

4 Runtime Monitoring · 58

by L𝑋 M. Modal constructs are synthesised as a choice with left and right actions. An

action tuple, act, combines a predicate function and an associated monitor body that is

unfolded when the predicate is true. The predicate function encodes the pattern matching

and Boolean constraint evaluation as one operation, using two clauses. Its first clause,

fun(𝑒) when 𝑏, tests the constraint 𝑏 w.r.t. the variables in the pattern 𝑒 that become

dynamically instantiated with the data values carried by an action 𝛼 at runtime. The

second catch-all clause (_) covers the remaining cases, namely when: (i) either the action

under analysis fails to match the pattern, or (ii) the pattern matches but the Boolean

constraint does not hold. For the left action, the predicate clause fun(𝑒) when 𝑏 returns

true when the pattern match and guard test succeed, and false otherwise, i.e., (_). This

condition is inverted for the right action, modelling cases (i) and (ii) just described. Our

encoding of the aforementioned predicate in terms of Erlang function clauses spares us

from implementing the pattern matching and constraint evaluation mechanism. It also

enables monitors to support most of the Erlang data types and its full range of Boolean

constraint expression syntax [19]. For similar reasons, L ⟨𝑒,𝑏 ⟩𝜑 M encodes the monitor

body as fun(𝑒)�L𝜑 M end to delegate scoping to the Erlang language. This facilitates our

synthesis and optimises the memory management of monitors by offloading this aspect

onto the language runtime.

4.3 The Monitoring Algorithm

The synthesis procedure of definition 3.6 generates monitors that can runtime check

formulae in parallel against the same position in the trace via disjunctive and conjunctive

parallel composition. Our tool is however engineered to emulate parallel monitors, rather

than forking processes and delegating their execution to the Erlang runtime. While the

latter method tends to simplify the synthesis and runtime monitoring, we adopt the former

approach for two reasons.

(i) Previous empirical evidence suggests that parallelising via processes can induce

high overhead when the RV set-up is considerably scaled [219, 53]. A process-free

design may render this overhead more manageable [10].

(ii) Emulating parallel monitors requires us to tease apart the synthesised monitor

description from its operational semantics, which makes our set-up in line with the

definitions of figure 3.2.

Our monitoring algorithm (listing 1) takes a monitor description𝑚 generated by L−M,

4.3 The Monitoring Algorithm · 59

1 def DeriveAct(𝛼,𝑜)
2 match 𝑜 do

3 case yes∨no :
4 print ‘Verdict reached’
5 case {act, Pred,𝑚} :
6 return𝑚(𝛼) # Apply𝑚 to trace event 𝛼

7 case {chs,𝑚,𝑛} :
8 if (Holds(𝛼,𝑚) ∧¬Holds(𝛼,𝑛))
9 return DeriveAct(𝛼,𝑚)

10 else if ¬Holds(𝛼,𝑚) ∧Holds(𝛼,𝑛)
11 return DeriveAct(𝛼,𝑛)
12 case {Op,𝑚,𝑛}∧Op ∈ {or,and} :
13 𝑚′ =DeriveAct(𝛼,𝑚)
14 𝑛′ =DeriveAct(𝛼,𝑛)
15 return {Op,𝑚′,𝑛′}

Expect: Monitor is in a ready state

16 def AnalyseAct(𝛼,𝑚)
17 𝑚′ =DeriveAct(𝛼,𝑚)
18 return ReduceTau(𝑚′)

19 def DeriveTau(𝑜)
20 match 𝑜 do

21 case {or, yes,𝑚} : return yes

22 case {or, no,𝑚} : return𝑚

23 case {and, yes,𝑚} : return𝑚

24 case {and, no,𝑚} : return no

25 case {rec,𝑚} :
26 return𝑚() # Unfold monitor

27 case {Op,𝑚,𝑛}∧Op ∈ {or,and} :
28 if (𝑚′ =DeriveTau(𝑚)∧𝑚′ ≠⊥)
29 return𝑚′

30 else

31 return DeriveTau(𝑛)
32 case Otherwise : return ⊥

33 def ReduceTau(𝑚)
34 if (𝑚′ =DeriveTau(𝑚)∧𝑚′ ≠⊥)
35 return ReduceTau(𝑚′)
36 else

37 return𝑚 # No more 𝜏 reductions

Listing 1. Monitoring algorithm that reduces monitors following the small-step rules of figure 3.2

and performs successive reductions by applying𝑚 to events from the trace until a verdict

is reached. Simultaneously, the algorithm maintains all the possible active states of the

monitor as this is evolved from one state to the next. Listing 1 encodes this reduction

strategy using a series of case statements (lines 2 to 15 and 20 to 32), following the

operational semantics of figure 3.2. Each case maps the first part of a rule conclusion to a

pattern, enabling the monitoring algorithm to unambiguously match the rule to apply. The

body of cases consists of a return statement that corresponds to the outcome dictated by

the rule. Rules with premises (e.g. mChsL, mPar, etc.) are reduced recursively by reapplying

rules until an axiom is met, whereas axioms (e.g. mVrd, mDisNL, etc.) reduce immediately.

For example, the pattern {chs,𝑚,𝑛} on line 7 specifies that mChsL and mChsR only apply

to monitors of the form𝑚+𝑛. Selecting whether to reduce the left or right sub-monitor by

analysing 𝛼 is delegated to the function Holds. This instantiates the predicate encoded in

act tuples with the data from 𝛼 (see figure 4.3), returning the result of the predicate test.

When the condition Holds(𝛼,𝑚)∧¬Holds(𝛼,𝑛) is true,𝑚+𝑛 is reduced to𝑚, equivalent

to the application of mChsL; the argument for mChsR is symmetric.

4 Runtime Monitoring · 60

The function AnalyseAct of listing 1 conducts the runtime analysis. It ensures that

once an action is analysed, the monitor is left in a state where it is ready to analyse the

next action. We implement this logic by organising the application of the operational

rules of figure 3.2 into two functions, DeriveAct and DeriveTau, according to the kind

of action used to reduce the monitor. DeriveAct on line 17 reduces the monitor once by

applying it to the action under analysis, yielding 𝑚′. Subsequently, ReduceTau reapplies

the function DeriveTau until all the internal transitions of the monitor are exhausted

(lines 34 to 37). The cases on lines 21 to 24, corresponding to the axioms mDisYL, mDisNL,

mConYL, mConNL, terminate redundant monitor states, and may be seen as a form of

garbage collection (DeriveTau omits the cases symmetric to those of lines 21 to 24).

4.4 Selective Instrumentation

Concurrent RV requires a mechanism whereby monitors can be selectively instrumented

with different processes of the SuS. This set-up generalises the concept of a monitored

system induced by the instrumentation relation definitions of figures 3.2 and 3.3 (i.e.,

𝑚 ⊳ 𝑝 and𝑚 ⊳^ ⊳ 𝑝) to independent system processes. Localising the instrumentation on

the basis of processes naturally partitions the global trace of SuS events into isolated

sub-traces that each corresponds to a process under scrutiny. These trace partitions [219]

(or slices [62, 196]) permit monitors to consider only the trace events associated with

a particular system component, and spares them from handling extraneous events not

relevant to the property being checked (refer to motivation in section 1.2).

We model selective instrumentation via the notion of an instrumentation map, Φ : Sig⇀

Mon, from function signatures, 𝑔 ∈ Sig, to monitors, 𝑚 ∈Mon. Signatures 𝑔 are triples,

⟨𝑀,𝐹,𝐴⟩, comprised of the atomic module and function names, 𝑀 and 𝐹 , and the list of

arguments, 𝐴 = [𝑑1,. . .,𝑑𝑛], used to launch 𝑔 to execute as a process, 𝑝 ∈ Prc.

Definition 4.1 (Selective instrumentation). A monitor𝑚 is instrumented with a function

signature 𝑔 that is launched as the process 𝑝 whenever Φ(𝑔) =𝑚, giving the instrumented

process (𝑚 ⊳ 𝑝)𝑔 in the synchronous case and (𝑚 ⊳^ ⊳ 𝑝)𝑔 in the asynchronous case. ■

We implement selective instrumentation via the meta keywords with and check. These

enable us to specify instances of Φ via the syntax: with ⟨𝑀,𝐹,𝐴⟩1 check𝜑1,. . .,with ⟨𝑀,𝐹,𝐴⟩𝑛
check 𝜑𝑛 , where 𝜑𝑖 ∈maxHMLd. Our implementation translates these statements to the

map Φ= [L𝜑1M/⟨𝑀,𝐹,𝐴⟩1,. . .,L𝜑𝑛 M/⟨𝑀,𝐹,𝐴⟩𝑛], where L𝜑𝑖 M is the Erlang function encoding of the

4.5 Inline Instrumentation · 61

monitor synthesised by the procedure of figure 4.3. We abuse notation and denote the

Erlang monitor code L𝜑 M simply as𝑚.

4.5 Inline Instrumentation

To the best of our knowledge, there currently exists no inlining framework or library for

the Erlang ecosystem, apart from the AOP prototype developed by Cassar et al. [54] called

eAOP. Rather than adopting this framework, we opted to design our own instrumentation

library since eAOP suffers from a number of shortcomings. For instance, the code that it

generates gives rise to certain subtle bugs and the resulting weaved code is inefficient.

Efficiency is a key concern of our empirical studies of chapters 6 and 7, because we need to

scale our experiment to considerably high loads without risking biasing our results due to

superfluous inline instrumentation overhead. The eAOP library is no longer maintained,

lacks support for core or newer Erlang data types (e.g. binaries and maps), and is unable

to instrument applications built on the OTP middleware. We required the latter feature to

instrument third-party software, which we used in our case study of section 6.5.

Our inline instrumentation library assumes access to the source code of the SuS. It instru-

ments invocations to the function AnalyseAct discussed in listing 1 via code injection by

manipulating the program AST. We leverage the Erlang compilation pipeline that includes

a parse transformation phase [57] which offers an optional hook whereby the AST can be

processed externally, prior to code generation. This program code modification procedure

is outlined in figure 4.4. In step 1 , the Erlang program source code is preprocessed and

parsed into the corresponding AST, step 2 . Subsequently, the AST is passed to the parse

Preprocessing

and parsing
Parse

transform

Other

passes

Erlang compiler passes

Weaver

.

.

.

erl

Program sources

.

.

.

beam

Weaved binaries

.
beam

Monitoring

algorithm

.
beam

Synthesised

monitors

AST

AST AST′

AST′

1

2 3

4

5

6

Figure 4.4. Instrumentation pipeline for inlined monitors using Erlang source-level weaving

4 Runtime Monitoring · 62

transformer in step 3 : this invokes our custom-built weaver (step 4) that produces the

modified AST′ in step 5 . The decorated AST is compiled by the Erlang compiler into the

program binary in the final stage, step 6 . Note that this compilation phase, as well as

the SuS, assume two core dependencies, namely the (i) implementation equivalent of the

monitoring algorithm of listing 1, and (ii) monitor executable generated by our synthesis

given in figure 4.3.

Step 4 in figure 4.4 performs two transformations on the program AST (shown in

brown). Its first transformation initialises the monitor (encoded as an Erlang function

by the synthesis procedure of figure 4.3) and stores it in the process dictionary (PD) of

the instrumented process. PDs are process-local, mutable key-value stores that every

Erlang actor owns [19, 57]. The weaver identifies calls to the Erlang built-in function

(BIF) spawn() that carries the signature of the function that is forked to execute as a new

process. Our weaver replaces every spawn() with an overloaded version [19] that accepts

an anonymous function, fun(𝑒)� . . . end. This anonymous function is implemented such

that it: (i) embeds the monitor function in the PD, and (ii) applies the function specified

in the original call to spawn().

Figure 4.5a (top) recalls the function start() that forks our token server loop. The

weaved counterpart of its AST—given as Erlang code for illustration in figure 4.5a (bottom)—

performs the initialisation described (i) and (ii), as follows. Line 2 constructs the Erlang

triple MFA, initialising the variables M0, F0, and A0 with the atoms ts and loop, and the

argument list [Tok,Tok + 1]. Observe that MFA corresponds to the function forked by the

call to spawn() on line 2 in figure 4.5a (top). Next, the function load_mon_fun() on line 4

is used to determine whether a specific spawn() call should be instrumented or skipped.

It encapsulates the (omitted) boilerplate logic for the instrumentation map Φ described

in section 4.4. For example, if Φ = [𝑚/⟨ts,loop,[_,_] ⟩], load_mon_fun() returns the Erlang

monitor code𝑚 for the triple MFA. When no mapping can be found, i.e., Φ(𝑔)=⊥, the atom

undef is returned. Lines 6 to 11 replace the original call to spawn() of line 2 in figure 4.5a

(top) with the aforementioned anonymous function that:

(i) stores the monitor𝑚 in the PD via the BIF invocation put($mon_fun, MonFun0), and

(ii) applies the signature {M0, F0, A0} to replicate the original spawn() invocation men-

tioned earlier.

The second transformation decorates the program AST with calls at points of interest:

these correspond to the actions catalogued in table 4.1. Each call constructs an intermediate

4.5 Inline Instrumentation · 63

1 start(Tok) �
2 spawn(ts, loop, [Tok,Tok + 1]).

1 start(Tok) �
2 MFA = {M0 = ts, F0 = loop,
3 A0 = [Tok,Tok + 1]},
4 MonFun0 = load_mon_for(. . .)
5 P1 = self(),
6 P0 = spawn(
7 fun()→
8 put($mon_fun, MonFun0),
9 dispatch({^, self(), P1, MFA}),

10 apply(M0, F0, A0)
11 end)
12 dispatch({_, self(), P0, MFA}),
13 P0.

(a) Server initialised with analyser function

1 loop(Tok, NexTok) when Tok = 1 �
2 receive
3 M2 = {Clt, 0} �
4 dispatch(?, self(), M2),
5 (P1 = Clt) ! M1 = NextTok,
6 dispatch(! , self(), P1, M1),
7 loop(Tok, NextTok + 1)
8 end.

(b) Weaved analysis code in token server loop

1 dispatch(Act) �
2 MonFun0 = get($mon_fun)
3 MonFun1 = analyse_act(Act, MonFun0)
4 put($mon_fun, MonFun1)

(c) Analysis done by AnalyseAct of listing 1 (excerpt)

Figure 4.5. Transformations to the AST of the ts program (shown as code)

trace event description that is dispatched to the monitor for analysis. Lines 9 and 12 in

figure 4.5a forward the events ^ and _ to the monitor using the function dispatch()

defined in figure 4.5c. The function dispatch(),

(i) retrieves the monitor function𝑚 from the PD via the BIF invocation get($mon_fun),

(ii) analyses Act by delegating to analyse_act() that implements AnalyseAct of list-

ing 1, and

(iii) writes the residual monitor MonFun1 back to the PD, i.e., put($mon_fun, MonFun1).

Figure 4.5c omits the logic where the retrieved monitor function is equivalent to the atoms

undef (mapping in Φ was not defined) or end (monitor terminated), in which case the

analysis step on line 3 is bypassed. The events ? and ! are analogously handled on lines 4

and 6 in figure 4.5b.

Our monitoring algorithm, the choice of process events to collect, together with the

two AST transformations discussed, reflect the operational rules of the synchronous

instrumentation defined in figure 3.2. The monitoring algorithm of listing 1 ensures that a

monitor is fully unfolded and left in a ready state, which captures rule iAsyM. Weaving

particular points in the AST that correspond to the events of table 4.1 models the case

where a process can transition internally (e.g. call other functions, write to standard

output, etc.) via the rule iAsyP. The function dispatch() combines the rules iMon and

4 Runtime Monitoring · 64

iTer that always permit the monitored system𝑚 ⊳𝑝 to transition to a next state, providing

the system process can perform an action (i.e., the premise 𝑝
𝛼−→ 𝑝′). Note that the state

reached by 𝑚 ⊳ 𝑝 is dictated by whether the monitor can analyse the exhibited process

action (iMon) or is stuck (iTer). In the former case, the function analyse_act() on line

3 is invoked; in the latter, the atom end is returned and future analyses are skipped by

dispatch() (code omitted).

4.6 Case Study: Monitoring the Cowboy-Ranch Protocol

We demonstrate the usability of inline monitoring by applying it to an off-the-shelf

Erlang webserver called Cowboy [134]. Cowboy delegates its socket management to

Ranch (a socket acceptor pool for TCP protocols [135]), but forwards incoming HTTP

client requests to protocol handlers that are forked dynamically by the webserver to service

requests independently. Our aim is to runtime check fragments of the request handling

protocol between the Cowboy and Ranch components to:

• demonstrate the expressiveness of our extended logic maxHMLd by capturing properties

of real-world software (section 4.1), and

• validate the applicability of our monitoring and inline instrumentation technique to

third-party applications built on top of the Erlang/OTP middleware (sections 4.2 and 4.5).

Details of this protocol can be found in appendix B.2. The implementation of inline

monitoring, along with the properties discussed, are further validated in chapters 6 and 7

through extensive empirical tests.

For this case study, we redesign the token server of figure 4.2 as a REST web service

that is deployed on Cowboy. The server generates identification tokens in one of two

formats, UUID, or short alphanumeric strings. Clients request new tokens by issuing

GET requests with the parameter, type=uuid or type=short, specifying the token format

required. The web service offers a standard interface: (i) it returns HTTP 200 when

requests are properly formatted, (ii) HTTP 400 when the type parameter is omitted from

the request, and (iii) HTTP 500 when an unsupported type is used. We also simulate

intermittent faults in Cowboy components by injecting random process crashes based on

a fair Bernoulli trial [191]. This enables us to formulate properties that describe process

termination. Our case study considers a selection of properties that describe the Cowboy-

Ranch request handling protocol; the full list of properties may be found in appendix B.3.

4.7 Discussion · 65

Example 4.2 (Cowboy-Ranch protocol). One such property, 𝜑rp, concerns Cowboy request

processes that service client requests. It states that in its (current) execution, ‘a request

process does not issue HTTP responses with code 500, nor does it crash’.

max𝑋 .

©«
[! ⟨rprcrprc,_,{tagtag, codecode, . . . }⟩, tag = resp∧code = 200]𝑋∧

[! ⟨rprcrprc,_,{tagtag, codecode, . . . }⟩, tag = resp∧code = 500]ff∧

[∗⟨rprcrprc,statstat⟩, stat = crash]ff

ª®®®®¬
(𝜑rp)

In 𝜑rp, the binders tagtag and codecode become instantiated with the atom resp designating

a response message, and the HTTP code of the response returned to requesting clients.

Besides ensuring that response messages sent by request processes do not contain the

code 500, i.e., tag = resp∧code = 500, formula 𝜑rp also asserts that these processes do not

crash, i.e., stat = crash. The binder rprcrprc, referring to the request process PID, is included

in 𝜑rp for clarity. ■

4.7 Discussion

This chapter details an implementation of the core building blocks that comprise a RV

set-up following the modular blueprint established in chapter 3. We use Erlang as a vehicle

to concretise these formal concepts in terms of different software components that fit

together according to the schematic of figure 4.1b. The account we give makes minimal

assumptions on the underlying implementation framework and can be instantiated to

other languages such as Java.

We extend the notion of symbolic actions from section 2.2 with pattern matching to

reason about composite data types (e.g. tuples and lists), and define a basic model of events

that suffices to capture the core behaviour of system processes. Section 4.2 replicates the

synthesis procedure of definition 3.6 to generate executable Erlang monitors. It leverages

the standard concepts of functional paradigms (e.g. pattern matching, variable scoping)

to streamline the synthesis and delegate these aspects to the programming language,

thereby minimising the chances of translation errors. The resulting monitors emulate

parallelism, in that these simultaneously explore the possible paths that can lead monitors

to reach a verdict. Our choice to forego parallel monitors stems from the overhead that

these induce [219, 53]. While fine-grained concurrency does advocate for decomposing

multiple tasks into processes, forking a process for every parallel operator (that may

4 Runtime Monitoring · 66

be potentially nested into recursive constructs) rapidly increases the consumption of

memory. Moreover, sub-monitor processes are typically short-lived, which would result in

the continual triggering of the Erlang garbage collector, provoking further scheduler utili-

sation. Consolidating the different verdicts reached by sub-monitors requires additional

communication that further aggravates the overhead.

The core monitor calculus of figure 3.2 that the synthesised monitors and monitoring

algorithm assume is crucial: it acts as an intermediate encoding that enables the monitoring

algorithm to operate on any monitor expressed in that calculus (see figure 4.1). There are

two advantages to this scheme. First, the semantics of monitors are not reliant on the

specification formalism (the formalism-to-monitor mapping is handled by the synthesis).

Second, the monitors and monitoring algorithm that interprets them can be treated as a

black box that fulfils our general definition of a runtime monitor proposed in section 2.1.2,

i.e., a monitor is a machine 𝑚 (or sequence recogniser) that analyses finite trace prefixes

and reaches irrevocable verdicts.

One challenging aspect in implementing the instrumentation is to provide a standard

mechanism via which monitors can be selectively attached to the SuS. Section 4.4 defines

the notion of an instrumentation map, Φ, that generalises the instrumentation relations

of figures 3.2 and 3.3. Instances of Φ designate particular points in the system execution

at which monitors are to be instrumented. For our concurrency use case, we specify

instrumentation points as function signatures that are launched by the SuS to execute

as independent processes. The same scheme can also be adapted to (monolithic) object-

oriented scenarios where monitors are often instrumented with class constructors. Our

monitor inlining procedure implements selective instrumentation through source-level

weaving by manipulating the AST of Erlang programs. It adheres to the instrumentation

rules of figure 3.2 and is compatible with applications that are built atop the Erlang OTP

libraries; see section 4.6.

In chapter 5, we show how the same definition of the instrumentation map is imple-

mented for the case of outline monitoring (figure 4.1b, bottom right). The common interface

that selective instrumentation establishes between the SuS and monitors, together with

our treatment of monitors as black-box machines, makes the ensuing Erlang monitors

‘synthesise once, instrument anywhere’. This aspect is key to our empirical experiments of

chapters 6 and 7, where using the same monitor executable with both inlined and outlined

benchmarks eliminates the possibility of inducing runtime biases that could arise from

4.7 Discussion · 67

disparities in the synthesised monitor code.

4.7.1 Related Work

Our synthesis procedure of section 4.2 contrasts with another alluded to in sections 2.2,

2.5 and 3.6 that operates on the monitorable fragments of the branching-time `HML [116,

118, 7, 4] (figure 4.1a, top right). The latter synthesis generates monitors with non-

deterministic behaviour that, while sufficient for the theoretical results required in op. cit.,

may lead to missed detections in practice. An early materialisation of [116, 118] as the

tool detectEr [21, 220, 56, 113] addresses this shortcoming by parallelising monitors using

processes, enabling them to reach verdicts along all possible paths. The monitors in these

studies use a subset of the core calculus defined in figure 3.2, making them compatible

with our framework (see component labelled ‘detectEr’ in figure 4.1b, top right). While

effective, [219, 53] show that these monitors scale poorly.

There are other approaches to monitoring systems with events that carry data, e.g., [30,

33, 131, 128, 129, 37, 216]. One work that shares characteristics with ours is PTS [62],

where the global trace is projected into local sub-traces called slices, based on parametric

specifications. These are properties specified in terms of symbolic events whose param-

eters are instantiated to values from events in the global trace. Our mechanism of the

instrumentation map identifies the SuS components to be instrumented and filters out

events to obtain trace slices (see section 4.4). PTS is adopted by a number of RV tools

that handle data (see e.g., [16, 78]), notably JavaMOP [176, 138, 61] and MarQ [197, 24]

for Java, and Elarva [71] for Erlang. JavaMOP and MarQ use inlining to instrument Java

objects with local monitors to obtain trace slices naturally. Both of these tools target

monolithic architectures and do not provide support for concurrent RV. Elarva takes a

different strategy to PTS. It uses the Erlang tracing infrastructure to centrally collect trace

events that are demultiplexed between monitors, thereby fabricating slices at runtime.

Due to its centralised architecture, this technique is susceptible to suffering from consid-

erable overheads and is unable to scale in practice. As we show in chapter 7, centralised

approaches such as these are bound to fail.

5 Decentralised Outline Instrumentation

Outlining is an alternative instrumentation method that circumvents the limitations of

inlining discussed in section 2.1.4. It decouples the SuS from its monitors and treats it as a

black box, which makes it the only viable option when the system cannot be modified

through inlining. This chapter devises a first, general, reactive algorithm that instantiates

the asynchronous instrumentation definition formalised in section 3.5, extending it to

decentralised components. In our study, we delineate instrumentation and monitor anal-

ysis to: (i) isolate and address the complications of instrumenting decentralised outline

monitors, and (ii) understand the impact of separating the instrumentation and analysis

w.r.t. overhead (refer to section 7.2.3). This adheres to our modular set-up of figure 4.1b

where outline instrumentation is encapsulated as a separate component (bottom right)

that provides the monitoring layer with trace events. Our algorithm assumes a tracing

infrastructure, such as the ones discussed in section 2.1.4, to reap the benefits of outlining.

This design choice, however, complicates the collection and reporting of trace events to

outline monitors due to the interleaved execution of the SuS and the instrumentation

processes. We:

• detail how our algorithm overcomes the challenges of scaling the monitoring set-up

with the SuS, elaborating on the issues that stem from the dynamic reconfiguration of

outline monitors in our asynchronous setting, Section 5.1;

• demonstrate its implementability by overviewing our tool that monitors programs

written for the EVM, and discuss how the correctness of our implementation is validated

via rigorous invariant testing, Section 5.3.

Chapter 7 validates our implementation further by subjecting it to a comprehensive

empirical evaluation that gives us high assurances of its correctness and feasibility in

practice.

69

5 Decentralised Outline Instrumentation · 70

𝑃

𝑄

SuS

fork

send

receive

__ !! . . . ∗∗

trace event messages

?? . . . ∗∗

trace event extraction externalised event analysis

𝑇𝑃

𝑇𝑄

𝑀𝑃

𝑀𝑄

exhibits

exhibits

delegates

delegates

routing detach

(a) Tracer and monitor organised as separate processes (external)

internalised event analysis

𝑇𝑃 𝑀𝑃

𝑇𝑄 𝑀𝑄

. . . ∗∗

. . . ∗∗

routing detach

(b) Merged tracer and monitor processes (internal)

Figure 5.1. Decentralised outline monitoring set-up consisting of tracer and monitor roles

5.1 Modelling Decentralised Outline Instrumentation

The decentralised outline algorithm we propose addresses the instrumentation gap

identified in section 1.1.2. There are several constraints that the reactive system setting

necessarily imposes on our operational model of processes and monitors:

C1 Local clocks. Components do not share a common global clock.

C2 Elastic. The number of components fluctuates.

C3 Point-to-point messaging. A sender component interacts directly with one receiver at

a time.

C4 Message reordering. The order of messages as sent from different components is not

guaranteed at the recipient end. This does not apply to point-to-point messaging, i.e.,

successive messages exchanged between pairs of components are delivered in the

same sequence issued.

Online monitors are instrumented to run with the SuS. A reactive system, therefore,

entails that the monitoring set-up is itself reactive, which further requires the runtime

analysis to be:

C5 Decentralised. No central entity coordinates monitors so that the set-up is scalable

and not susceptible to SPOFs.

C6 Passive. Monitors react to SuS events but do not steer or block its execution.

C7 Reliable. Trace events are not lost, nor reported to monitors out of order.

Since our study considers neither failure nor security aspects (refer to section 1.2), we

assume:

5.1 Modelling Decentralised Outline Instrumentation · 71

A1 Reliable components. Components are not subject to fail-stops or Byzantine failures.

A2 Reliable communication. Messages are not tampered with, always delivered, and never

duplicated.

The design of our instrumentation approach abides by constraints C1 to C7. Our defi-

nition of monitors as sequence recognisers (refer to section 2.1.2) satisfies constraint C6.

The algorithm instruments monitors to run asynchronously with the SuS, in line with

constraint C1; this turns out to be the general case for distributed set-ups. Note that distri-

bution can be obtained by weakening assumptions A1 and A2. Constraints C2 and C5 call

for the instrumentation to scale dynamically by continually reconfiguring the monitoring

set-up in response to changes in the SuS. Finally, constraint C7 guards against issues

arising from constraint C4, which is vital for analyses that are sensitive to the temporal

ordering of trace events, as argued in section 2.1.4. C7 enables to pin down our notion of

valid traces.

Definition 5.1 (Valid trace). A finite trace 𝑠 is said to be valid w.r.t. a process 𝑝 iff

• 𝑠 contains all the trace events exhibited by 𝑝 so far, i.e., no events are missing, and

• the order of these events corresponds to the one in which these occur locally at 𝑝 . ■

Figure 5.1 shows the variants of outline instrumentation that we consider. It depicts

a two-process SuS where the trace events (encoded as messages) of processes 𝑃 and 𝑄

are respectively directed to tracers 𝑇𝑃 and 𝑇𝑄 and analysed by monitors 𝑀𝑃 and 𝑀𝑄 . The

externalised analysis (external) arrangement in figure 5.1a consists of independent tracer

and monitor processes. It teases apart the tasks of trace event handing and monitor

reorganisation, performed by tracers, 𝑇 , from the task of event analysis, effected by

monitors, 𝑀 . Decoupling the tracers from monitors follows the single responsibility tenet

advocated in fine-grained concurrency design [15, 19], but at the expense of introducing

a separate monitor component. The internalised analysis variant (internal) merges the

tracer and monitor to forgo this extra component (figure 5.1b). Our algorithm relies on a

tracing infrastructure, such as the ones mentioned in section 2.1.4, to gather streams of

event messages for the traced SuS components. Tracers can start and stop these event

streams at runtime. The model also assumes that:

A3 System processes may share tracers. A tracer can trace multiple processes simultane-

ously. This makes it possible for monitors to treat multiple processes of the SuS as

5 Decentralised Outline Instrumentation · 72

one component1.

A4 Tracers do not share system processes. A process of the SuS is traced by one tracer at

any point in time. This keeps our core logic manageable. If multiple monitors need

to analyse the behaviour of the same component, the tracer can duplicate the events

and report them to the monitors accordingly.

A5 System processes inherit tracers. A newly forked process in the SuS is automatically

assigned the tracer of its parent. This behaviour facilitates assumption A3 as it allows

tracers to consider sets of processes as a unit by default.

Assumption A5 requires a tracer to intervene if it needs to monitor a particular process

independently from others: it must first stop the active tracer before it can take over

and resume tracing this process itself. In the absence of such interventions, the SuS is

implicitly traced as one entity by the (central) tracer, which is instrumented with the root

system process. This design choice follows the approach of existing centralised monitoring

tools, e.g., [21, 53, 71, 180].

5.1.1 Processes and Trace Events

Our model of processes and trace events builds on the one introduced in sections 4.1

and 4.4. It assumes a denumerable set of PIDs to reference processes. We distinguish

between system, tracer, and monitor process forms, denoting them respectively by the

sets Pids, Pidt and Pidm, where 𝑝s ∈ Pids, 𝑝t ∈ Pidt, 𝑝m ∈ Pidm. Processes are created via

the function fork(𝑔) that takes the signature of the code to be run by the forked process,

𝑔 ∈ Sig, and returns its fresh PID. We refer to the process invoking fork as the parent,

and to the forked process as the child. To create monitor processes, the function fork

is overloaded to accept executable monitor code, 𝑚, and return the corresponding PID,

𝑝m. Tracer processes are forked analogously. Recall that the code𝑚 is generated by the

synthesis procedure described in section 4.2 from some maxHMLd specification 𝜑 that

one wishes to runtime check. Since our account focusses mostly on the tracing aspect, we

use the terms tracer and monitor interchangeably whenever the distinction is unimportant.

We refer to a grouping of one or more processes of the SuS as a component.

Following a reactive model, our processes communicate via asynchronous messages.

Each process owns a message buffer, ^ , from where it can read messages out-of-order and

1This is something that is not easily achieved with inlining.

5.1 Modelling Decentralised Outline Instrumentation · 73

Event Action (𝑒.act) Field name Description

fork _

src PID of the parent process forking 𝑒.tgt via fork(𝑔)

tgt PID of the child process forked by 𝑒.src

sig Function signature 𝑔 forked by 𝑒.tgt

exit ∗ src PID of the terminated process

send !
src PID of the process sending the message

tgt PID of the recipient process

receive ? src PID of the recipient process

Table 5.1. Trace event messages, action label, and data field names

in non-blocking fashion. Messages, 𝑘 ∈Msg, adopt an analogous definition to the trace

events given in section 4.1. They are tuples, ⟨𝜕,𝑑2,. . .,𝑑𝑛⟩, where the first element 𝑑1 = 𝜕 is

the qualifier and 𝑑2, . . .,𝑑𝑛 ∈D (see section 4.1) is the data payload carried by the message.

The message qualifier, 𝜕 ∈ {evt,dtc,rtd}, indicates the type of message:

• evt : trace event message collected by the tracing infrastructure,

• dtc : detach command message that tracers exchange to reorganise the monitor chore-

ography, and

• rtd : routing message that embeds evt or dtc messages forwarded between tracers.

We use the dot notation (.) to access elements of the data payload carried in messages,

𝑑1,𝑑2, . . .,𝑑𝑛 , via indexable field names, e.g. the message qualifier 𝜕 is read through 𝑘.type.

The metavariables 𝑒 , 𝑐 , and 𝑟 are reserved for message types evt, dtc, and rtd respectively.

Trace events are encoded as messages, ⟨evt,ℓ,. . .,𝑑𝑛⟩, where the label, 𝑑2=ℓ ∈L, identifies

the action exhibited by the SuS, and the remainder, . . .,𝑑𝑛 , is the action payload described

in section 4.1. The event action label is accessed using 𝑒.act. As in section 4.1, we let

L = {_,∗, ! ,?} denote process actions fork (_), exit (∗), send (!) and receive (?); initialise

(^) is omitted since this is not used by our algorithm. We use the action label ℓ in lieu of

the full trace event message payload (i.e., omitting 𝜕 and . . .,𝑑𝑛) to simplify our exposition

when suitable. Table 5.1 adapts table 4.1 and catalogues the relevant trace events and

corresponding data.

5 Decentralised Outline Instrumentation · 74

5.2 The Instrumentation Algorithm

Our algorithm covers the two variants of figure 5.1. Listings 2 to 4 describe the core

logic found in each tracer. Every tracer maintains an internal state, 𝜍 , that consists of

three maps:

(i) the routing map, Π, governing how events are routed to other tracers,

(ii) the instrumentation map from section 4.4, Φ, that enables selective instrumentation,

and

(iii) the traced-component map, Γ, maintaining processes of the SuS that the tracer

currently tracks.

Recall that our monitors are sequence recognisers, which allows tracers to remain

agnostic to their encapsulated analysis logic. We overload the function AnalyseAct

described in listing 1 to link the tracing and monitors. The algorithm we give uses these

overloads to analyse events by forwarding them to a monitor externalised in its own

process (figure 5.1a), or analyse them internally (figure 5.1b), following the exact method

detailed in the function dispatch() of figure 4.5c.

The message buffer that tracer processes are equipped with is a materialisation of the

queue ^ that our asynchronous instrumentation definition given in section 3.5 uses to

decouple the SuS from its monitors. This buffer enables the system to execute without

waiting for the monitors to complete their analysis, in agreement with rule aiPrc of

figure 3.3. The instrumentation infrastructure tends to the collection of the trace events

exhibited by the SuS and their delivery to the message buffer of the appropriate tracer.

Tracers can independently analyse their buffer of trace events through invocations of the

𝑃

𝑄

𝑅

ps

qs

rs

fork send

receive fork exit

(a) Interaction sequence of 𝑃 , 𝑄 and 𝑅

𝑇𝑃

𝑇𝑄

𝑇𝑅

pt

qt

rt

⟨evt,_,p
s
,q
s
,𝑔𝑄 ⟩ ⟨evt, ! ,p

s
,q
s
⟩

⟨evt,?,q
s
⟩ ⟨evt,_,q

s
,rs ,𝑔𝑅 ⟩ ⟨evt,∗,q

s
⟩

(no events)

(b) Trace partitions for𝑇𝑃 ,𝑇𝑄 and𝑇𝑅 (monitors omitted)

Figure 5.2. SuS with processes 𝑃 , 𝑄 , and 𝑅 instrumented with three independent monitors

5.2 The Instrumentation Algorithm · 75

function AnalyseAct; this corresponds to rule aiMon. Rule aiAsyM is embodied by our

monitoring algorithm of listing 1 that always unfolds monitors to a ready state. Analogous

to the reasoning of section 3.5, capturing only specific events (i.e., fork, exit, send, and

receive) models the unobservable transitions that processes can follow via aiAsyP. The

rule aiTer given in section 3.5 is central to garbage collection, where redundant tracers

are terminated. While aiTer is specific to analyses that reach the inconclusive verdict

(end), our algorithm extends this rule to handle (yes) and reject (no) verdicts. The reason

for this is that the verdicts flagged by monitors are irrevocable, which permits monitors

to terminate, knowing that future analyses can never overturn the verdict flagged. Note

that verdict flagging alone does not decide whether tracers are terminated; section 5.2.7

outlines other conditions that our algorithm considers during garbage collection.

Example 5.1. Consider a SuS consisting of three processes, {𝑃,𝑄,𝑅}. 𝑃 forks process 𝑄

and communicates with it; afterwards, 𝑄 forks 𝑅 and terminates. 𝑃 , 𝑄 , and 𝑅 are assigned

PIDs ps, qs, and rs respectively. This interaction, captured in figure 5.2a, is fundamentally

sequential due to the synchronous dependency between processes: e.g., 𝑄 is created by 𝑃 ,

and 𝑅 is forked by 𝑄 only after 𝑄 receives the message from 𝑃 .

There are a number of ways in which this system can be instrumented with monitors

(or tracers). For instance, a central tracer may be set up for all of {𝑃,𝑄,𝑅}; alternatively

one could choose to trace {𝑃,𝑄} as a single component and use a separate tracer for the

singleton process {𝑅}, etc. In this example, we instrument the SuS with independent tracer,

one for each of {𝑃}, {𝑄}, and {𝑅}. Figure 5.2b shows these tracers labelled as 𝑇𝑃 , 𝑇𝑄 and

𝑇𝑅 , their corresponding PIDs, and the valid sequence of events (definition 5.1) each tracer

is meant to analyse. ■

Despite its small size and sequential operation, the SuS and monitoring set-up of ex-

ample 5.1 may still be subject to multiple interleaved executions. This results from the

asynchronous organisation of the SuS and monitor components, whose execution depends

on external factors such as process scheduling.

Table 5.2 summarises the challenges inherent to decentralised outline monitoring we

tackle in the forthcoming sections 5.2.1 to 5.2.7. These sections detail how our algorithm

reports trace events to independent monitors while abiding by the reliability guarantees

that RV requires, i.e., trace events are not lost, nor reported out of order (definition 5.1).

Along with ensuring these guarantees, we elaborate on the technique our algorithm

5 Decentralised Outline Instrumentation · 76

Challenge Solution

Non-invasive monitors
Collecting trace events from the SuS via asynchronous tracing, Sec-

tion 5.2.1

Scaling up the set-up
Instrumenting new monitors dynamically for partitioned traces,

Section 5.2.2

No trace event loss
Routing trace events to deliver them to the correct monitors, Sec-

tion 5.2.3

No trace event reorder-

ing

Prioritising forwarded events before analysing any other event,

Section 5.2.4

Independent monitors
Detach tracers from their ancestors once all the trace events have

been forwarded, Section 5.2.5

Targeted monitoring Selective instrumentation of forked processes, Section 5.2.6

Scaling down the set-up Garbage collecting redundant monitors, Section 5.2.7

Table 5.2. Challenges addressed by decentralised outline monitoring to ensure correct and elastic

runtime analyses

uses to achieve elastic behaviour via dynamic instrumentation and garbage collection of

monitors.

5.2.1 Tracing

The operations Trace, Clear and Preempt provide access to the underlying tracing

infrastructure. Trace enables a tracer with PID 𝑝t to register its interest in receiving trace

events (in the form of messages) of a system process with PID 𝑝s. This operation can be

undone using Clear, which blocks the calling tracer 𝑝t and returns once all the event

messages for 𝑝s that are in transit to 𝑝t have been delivered (assumption A2). Preempt

combines Clear and Trace, enabling a different tracer 𝑝′t to take over the tracing of

process 𝑝s from the current tracer, 𝑝t. Tracing is inherited by every child process that a

traced system process forks, following assumption A5. Clear or Preempt can be used

to alter this arrangement, as section 5.2.2 explains. Readers are referred to listing 7 for

specifics on these operations.

5.2 The Instrumentation Algorithm · 77

5.2.2 Trace Partitioning

Processes (or threads) originate as a hierarchy, starting from the root process that forks

child processes, and so forth, e.g. CreateThread() in Windows [177], pthread_create()

for POSIX threads [48], ActorContext.spawn() in Akka [199], and spawn() in Erlang [57]

and Elixir [142]. We borrow standard terminology to describe process relationships

in this hierarchy (e.g. parent, ancestor, descendant, etc.). In our algorithm, tracers are

programmed to react to fork (_) and exit (∗) events in the trace. Figure 5.3 illustrates how

the hierarchical process creation sequence of the SuS is exploited to instrument tracers. A

tracer instruments other tracers whenever it encounters _ events in the execution. In

figure 5.3a, the root tracer 𝑇𝑃 analyses the top-level process 𝑃 , step 1 . It instruments a

new tracer, 𝑇𝑄 , for process 𝑄 when it observes the fork event ⟨evt,_,ps,qs,𝑔𝑄 ⟩ exhibited

by 𝑃 in step 3 . The field 𝑒.tgt (refer to table 4.1) carried by _ designates the SuS process

(ID) to be instrumented with the new tracer, qs in this case. From this point onwards, 𝑇𝑄
takes over the tracing of process 𝑄 from𝑇𝑃 by invoking Preempt to trace 𝑄 independently

of 𝑇𝑃 , as shown in steps 4 and 5 of figure 5.3b. Meanwhile, 𝑇𝑃 resumes its analysis and

receives the send event ⟨evt, ! ,ps,qs⟩ in step 10 after 𝑃 messages 𝑄 in step 6 of figure 5.3c.

Subsequent _ events observed by 𝑇𝑃 and 𝑇𝑄 are handled as described earlier in steps

𝑃 𝑄

𝑇𝑃

_ 3

fork 2

1 2

(a) Process 𝑃 forks 𝑄 ;𝑇𝑃 also traces 𝑄 , assumption A5

𝑃 𝑄

𝑇𝑃 𝑇𝑄

instr. 4

5

(b)𝑇𝑃 instruments new tracer𝑇𝑄 for process 𝑄

𝑃 𝑄 𝑅

𝑇𝑃 𝑇𝑄

send 6

! 10

receive 7

? 9 _ 11

fork 8

8

(c)𝑇𝑃 and𝑇𝑄 analyse trace events independently

𝑃 𝑄 𝑅

𝑇𝑃 𝑇𝑄 𝑇𝑅

instr. 12

exit 15

∗ 14

13

(d) Processes 𝑃 , 𝑄 , 𝑅 and corresponding tracers

Figure 5.3. Outline tracer instrumentation for processes 𝑃 , 𝑄 and 𝑄 (monitors omitted)

5 Decentralised Outline Instrumentation · 78

3 to 5 . Figures 5.3c and 5.3d show how the final tracer, 𝑇𝑅 , is instrumented as 𝑄 forks

its child 𝑅. It is worth mentioning that prior to instrumenting 𝑇𝑄 in step 4 , process 𝑄

automatically inherits tracer 𝑇𝑃 of its parent 𝑃 in step 2 , following assumption A5. 𝑇𝑄 is

analogously assigned to process 𝑅 in step 8 before 𝑇𝑄 instruments the new tracer 𝑇𝑅 for

𝑅 in step 12 .

5.2.3 Trace Event Routing

The asynchrony between the SuS and tracer components may give rise to different inter-

leaved executions. Figure 5.4 shows an interleaving alternative to that of figures 5.3b to 5.3d.

In figure 5.4a, 𝑇𝑃 is slow to handle the fork event of 𝑄 (received in step 3 in figure 5.3a),

and fails to instrument 𝑇𝑄 promptly. As a result, the events ? and _ exhibited by 𝑄

are received by 𝑇𝑃 in steps 7 and 9 . Figure 5.4a shows the case where ⟨evt,?,qs⟩ is

processed by 𝑇𝑃 , step 11 , rather than by the correct tracer 𝑇𝑄 that would be eventually

instrumented by 𝑇𝑃 . This interleaving corrupts the runtime analysis, as the events that

should be processed by one tracer reach unintended ones.

To address this issue, tracers keep the events they should handle and forward the rest to

neighbouring tracers. This scheme follows hop-by-hop routing used in IP networks [174].

𝑃 𝑄 𝑅

𝑇𝑃

send 4

receive 5

fork 6

? 7 _ 9

! 8

6

Message buffer ^ of𝑇𝑃

^ _

10

?

11

! _

𝑇𝑃

(a) Trace events for 𝑃 , 𝑄 , and 𝑅 observed by𝑇𝑃

𝑃 𝑄 𝑅

𝑇𝑃 𝑇𝑄 𝑇𝑅

instr. 11

? 15 _ 19

instr. 22

12 23

Message buffers ^ and routing maps Π of𝑇𝑃 and𝑇𝑄

^ _

10

?

14

!

17

_

18

Π

Pids Pidt

qs qt 13

rs qt 20

^ ?

16

_

21

Π
Pids Pidt

rs rt 24

(b) Trace events for 𝑄 routed from𝑇𝑃 to𝑇𝑄

Figure 5.4. Hop-by-hop trace event routing using tracer routing maps Π (monitors omitted)

5.2 The Instrumentation Algorithm · 79

We define the notion of a router tracer as one that receives the trace events of a system

process that are meant to be handled by another tracer. The role of router tracers (or

routers for short) is to (i) embed trace events evt or detach commands dtc into routing

messages, rtd, and (ii) dispatch them to neighbouring tracers. Routing messages are

transmitted in a hop-by-hop fashion by tracers until they reach their destination tracer.

For instance,𝑇𝑃 in figure 5.4a becomes the router tracer for 𝑄 since it initially receives the

events ? and _ of 𝑄 (steps 7 and 9), although these are meant to be handled by 𝑇𝑄 . 𝑇𝑃
routes these events as follows. It first instruments 𝑇𝑄 with 𝑄 in step 11 . Next, it prepares

⟨evt,?,qs⟩ and ⟨evt,_,qs,rs,𝑔𝑅⟩ for transmission by embedding them in rtd messages (steps
14 and 18), forwarding them to 𝑇𝑄 in steps 15 and 19 . The event ⟨evt, ! ,ps,qs⟩ is handled

by𝑇𝑃 , step 17 . Concurrently,𝑇𝑄 acts on the forwarded events ? and _ in steps 16 and 21 ,

and instruments 𝑇𝑅 with 𝑅 as a result in step 22 .

Tracers determine which events to keep or forward by means of the routing map,

Π : Pids ⇀ Pidt, that relates SuS and tracer PIDs. Each tracer queries its routing map

for every event 𝑒 it processes using the source PID, 𝑒.src. An event is forwarded to a

tracer with PID 𝑝t only if Π(𝑒.src) = 𝑝t, otherwise it is handled by the tracer itself since

a route for the event does not exist, i.e., Π(𝑒.src) =⊥. HandleFork, HandleExit and

HandleComm in listing 3 implement this forwarding logic on lines 19, 27 and 35.

A tracer populates its routing map Π whenever it processes a fork event ⟨evt,_,𝑝s,𝑝
′
s,𝑔⟩.

It considers one of two cases for the originator of the event, PID 𝑝s:

CK Π(𝑝s) =⊥. This is a cue to adapt the monitor choreography to account for the forked

Expect: 𝑒.act=_
1 def Instrument◦(𝜍,𝑒,𝑝t)
2 𝑝s← 𝑒.tgt
3 if ((𝑚← 𝜍 .Φ(𝑒.sig)) ≠⊥)
4 𝑝′t← fork(Tracer(𝜍,𝑚,𝑝s,𝑝t))
5 𝜍 .Π← 𝜍 .Π∪{⟨𝑝s,𝑝′t⟩}
6 else

In ◦mode, there is no PID 𝑝s to detach

from a router; add 𝑝s to Γ in ◦mode

7 𝜍 .Γ← 𝜍 .Γ∪{⟨𝑝s,◦⟩}
8 return 𝜍

Expect: 𝑒.act=_
9 def Instrument•(𝜍,𝑒,𝑝t)

10 𝑝s← 𝑒.tgt
11 if ((𝑚← 𝜍 .Φ(𝑒.sig)) ≠⊥)
12 𝑝′t← fork(Tracer(𝜍,𝑚,𝑝s,𝑝t))
13 𝜍 .Π← 𝜍 .Π∪{⟨𝑝s,𝑝′t⟩}
14 else

Detach PID 𝑝s from router 𝑝t
15 Detach(𝑝s,𝑝t)
16 𝜍 .Γ← 𝜍 .Γ∪{⟨𝑝s,•⟩} # Add 𝑝s in •mode

17 return 𝜍

Listing 2. Instrumentation operations for direct and priority tracer modes

5 Decentralised Outline Instrumentation · 80

process 𝑝′s. The tracer keeps the fork event and instruments a second tracer 𝑇𝑃 ′ with

PID 𝑝′t for the process 𝑝′s. It then adds the mapping 𝑝′s ↦→𝑝′t to its routing map Π.

CF Π(𝑝s) = 𝑝′t. A route to the neighbouring tracer 𝑝′t exists for trace events originating

from the process with PID 𝑝s. This informs the tracer that the event is meant for

another tracer. The tracer forwards the fork event of process 𝑝s to tracer 𝑝′t, and adds

the mapping 𝑝′s ↦→𝑝′t to its routing map Π.

In cases CK and CF, the addition of 𝑝′s ↦→ 𝑝′t ensures that future events originating from

𝑝′s can always be forwarded to neighbouring tracers 𝑝′t. Figure 5.4b shows the routing

maps of 𝑇𝑃 and 𝑇𝑄 . 𝑇𝑃 adds qs ↦→ qt, step 13 , after processing ⟨evt,_,ps,qs,𝑔𝑄 ⟩ from the

message buffer in step 10 and instrumenting tracer 𝑇𝑄 with 𝑄 in step 11 ; an instance of

case CK. The function Instrument in listing 2 details this on line 5, where the mapping

𝑒.tgt ↦→ 𝑝′t (with 𝑒.tgt= 𝑝′s) is added to Π, following the creation of tracer 𝑝′t. Step 20 of

figure 5.4b is an instance of case CF: 𝑇𝑃 adds rs ↦→ qt after processing ⟨evt,_,qs,rs,𝑔𝑅⟩ for

𝑅 in step 18 . Crucially, 𝑇𝑃 does not instrument a new tracer, but delegates this task to 𝑇𝑄
by forwarding the fork event in question. Lines 21 and 64 in listing 3 (and later line 21 in

listing 4) are manifestations of this, where the mapping 𝑒.tgt ↦→ 𝑝′t is added after the fork

event 𝑒 is routed to the next tracer 𝑝′t.

Note that in figure 5.4b, the mappings inside𝑇𝑃 point to tracer𝑇𝑄 , and the mapping in𝑇𝑄
points to𝑇𝑅 . This arises from cases CK and CF, where every tracer in the choreography can

only forward events to adjacent tracers. For instance, the events that 𝑅 might exhibit and

that are collected by 𝑇𝑃 must be forwarded twice to reach the intended tracer 𝑇𝑅—from

tracer 𝑇𝑃 to 𝑇𝑄 , and from 𝑇𝑄 to 𝑇𝑅 . The routing map entries of neighbouring tracers

form a connected directed acyclic graph (DAG), ensuring that every trace event message

is eventually delivered to its correct destination. Our algorithm implements hop-by-

hop routing using the operations Route and Forwd (see appendix A). Route creates a

wrapper message, 𝑟 , with type rtd, denoting a routing message or command, and embeds

the message to be routed. Tracers then process routing messages by (i) either extracting

the embedded message through the field 𝑟 .emb, e.g. line 53 in ForwdDtc, or (ii) forwarding

it to the next tracer using Forwd, e.g. line 55 in ForwdDtc.

5.2.4 Trace Event Routing with Priorty

Hop-by-hop routing does not guarantee that tracers receive events in an order that

reflects the correct SuS execution. This reordering can arise when a tracer collects trace

5.2 The Instrumentation Algorithm · 81

1 def Loop◦(𝜍,𝑝m)
2 forever do

3 𝑘← next message from buffer ^
4 if (𝑘.type= evt)
5 𝜍← HandleEvent◦(𝜍,𝑘,𝑝m)
6 else if 𝑘.type= dtc

route dtc back to issuer

7 𝜍←RouteDtc(𝜍,𝑘,𝑝m)
8 else if 𝑘.type= rtd

9 𝜍← ForwdRtd◦ (𝜍,𝑘,𝑝m)

10 def HandleEvent◦(𝜍,𝑒,𝑝m)
11 if (𝑒.act=_)
12 𝜍← HandleFork◦(𝜍,𝑒,𝑝m)
13 else if 𝑒.act= ∗

14 𝜍← HandleExit◦(𝜍,𝑒,𝑝m)
15 else if 𝑒.act ∈ { ! ,?}
16 HandleComm◦(𝜍,𝑒,𝑝m)
17 return 𝜍

18 def HandleFork◦(𝜍,𝑒,𝑝m)
19 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
20 Route(𝑒,𝑝t)

Route for 𝑒.tgt goes via the tracer of 𝑒.src

21 𝜍 .Π← 𝜍 .Π∪{⟨𝑒.tgt,𝑝t⟩}
22 else

23 AnalyseAct(𝑒,𝑝m) # Analyse event

24 𝜍← Instrument◦(𝜍,𝑒,self ())
25 return 𝜍

26 def HandleExit◦(𝜍,𝑒,𝑝m)
27 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
28 Route(𝑒,𝑝t)
29 else

30 AnalyseAct(𝑒,𝑝m) # Analyse event

31 𝜍 .Γ←𝜍 .Γ\{⟨𝑒.src,◦⟩} # Remove dead 𝑒.src

32 TryGC(𝜍,𝑝m)
33 return 𝜍

34 def HandleComm◦(𝜍,𝑒,𝑝m)
35 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
36 Route(𝑒,𝑝t)
37 else

38 AnalyseAct(𝑒,𝑝m) # Analyse event

39 def RouteDtc(𝜍,𝑐,𝑝m)
40 if ((𝑝t← 𝜍 .Π(𝑐.tgt)) ≠⊥)
41 Route(𝑐,𝑝t)
42 𝜍 .Π←𝜍 .Π\{⟨𝑐.tgt,𝑝t⟩} # Clear 𝑐.tgt route

43 TryGC(𝜍,𝑝m)
44 return 𝜍

45 def ForwdRtd◦(𝜍,𝑟,𝑝m)
46 𝑘← 𝑟 .emb
47 if (𝑘.type= dtc)
48 𝜍← ForwdDtc(𝜍,𝑟,𝑝m)
49 else if 𝑘.type= evt

50 𝜍← ForwdEvt(𝜍,𝑟)
51 return 𝜍

52 def ForwdDtc(𝜍,𝑟,𝑝m)
53 𝑐← 𝑟 .emb
54 if ((𝑝t← 𝜍 .Π(𝑐.tgt)) ≠⊥)
55 Forwd(𝑟,𝑝t)
56 𝜍 .Π←𝜍 .Π\{⟨𝑐.tgt,𝑝t⟩} # Clear 𝑐.tgt route

57 TryGC(𝜍,𝑝m)
58 return 𝜍

Expect: 𝜍 .Π(𝑟 .emb.src) ≠⊥
59 def ForwdEvt(𝜍,𝑟)
60 𝑒← 𝑟 .emb
61 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
62 Forwd(𝑟,𝑝m)

Route for 𝑒.tgt goes via the tracer of 𝑒.src

63 if (𝑒.act=_)
64 𝜍 .Π← 𝜍 .Π∪{⟨𝑒.tgt,𝑝t⟩}
65 return 𝜍

Listing 3. Tracer loop that handles direct (◦) trace events, message routing and forwarding

5 Decentralised Outline Instrumentation · 82

𝑃 𝑄 𝑅

𝑇𝑃 𝑇𝑄

instr. 11

? 17

exit 14

∗ 15

12

Message buffers ^ and routing maps Π of𝑇𝑃 and𝑇𝑄

^ _

10

?

16

! _

Π
Pids Pidt

ps pt 13

𝑇𝑃

^ ∗

18

?

Π Pids Pidt

𝑇𝑄

(a)𝑇𝑄 observes event ∗ before𝑇𝑃 routes ?

𝑃 𝑄 𝑅

𝑇𝑃 𝑇𝑄 𝑇𝑅

instr. 11

dtc 13

exit 15

∗ 16

? 18 _ 21

instr. 25

dtc 29

12 26

31

Message buffers ^ and routing maps Π of𝑇𝑃 and𝑇𝑄

^ _

10

?

17

!

19

_

20

dtc

28

Π

Pids Pidt

qs qt 14

rs qt 22

^ ∗

32

?

23

_

24

dtc

30

Π
Pids Pidt

rs rt 27

(b)𝑇𝑄 processes priority events routed by𝑇𝑃 first

Figure 5.5. Trace event order preservation using priority (•) and direct (◦) tracer modes (monitors

omitted)

events of a SuS component and simultaneously receives routed events concerning this

component from other tracers. Figure 5.5a gives a different interleaving to the execution

of figure 5.4b to showcase the deleterious effect this race condition has on the runtime

analysis when events are reordered for 𝑇𝑄 . In step 12 , 𝑇𝑄 takes the place of 𝑇𝑃 and

continues tracing process 𝑄 , collecting the event ∗ in step 15 ; this happens before 𝑇𝑄

receives the routed event ? concerning 𝑄 in step 17 of figure 5.5a. When 𝑇𝑄 analyses

trace events from its message buffer in the order it receives them, as in step 18 , it violates

the temporal event ordering determined in figure 5.2b of example 5.1. A naïve handling

of ∗ followed by ? would erroneously mean that 𝑄 receives messages after it terminates,

contradicting definition 5.1.

Tracers circumvent this issue by prioritising the processing of routed event messages.

This captures the invariant that routed events temporally precede all other events that

are to be analysed by the tracer. A tracer operates on two levels, priority mode and direct

mode, respectively denoted by • and ◦ in our algorithm. Figure 5.5b shows that when in

priority mode, 𝑇𝑄 dequeues and handles the routed events ? and _ (labelled by •) first; ?

5.2 The Instrumentation Algorithm · 83

1 def Loop•(𝜍,𝑝m)
2 forever do

3 𝑟← next rtd message from buffer ^
4 𝑘← 𝑟 .emb
5 if (𝑘.type= evt)
6 𝜍← HandleEvent•(𝜍,𝑟,𝑝m)
7 else if 𝑘.type= dtc

dtc routed back from router
8 𝜍←HandleDtc(𝜍,𝑟,𝑝m)

9 def HandleEvent•(𝜍,𝑟,𝑝m)
10 𝑒← 𝑟 .emb
11 if (𝑒.act=_)
12 𝜍← HandleFork•(𝜍,𝑟,𝑝m)
13 else if 𝑒.act= ∗

14 𝜍← HandleExit•(𝜍,𝑟,𝑝m)
15 else if 𝑒.act ∈ { ! ,?}
16 HandleComm•(𝜍,𝑟,𝑝m)

17 def HandleFork•(𝜍,𝑟,𝑝m)
18 𝑒← 𝑟 .emb
19 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
20 Forwd(𝑟,𝑝t)
21 𝜍 .Π← 𝜍 .Π∪{⟨𝑒.tgt,𝑝t⟩}
22 else

23 AnalyseAct(𝑒,𝑝m) # Analyse event

24 𝑝′t← 𝑟 .rtr
25 𝜍← Instrument•(𝜍,𝑒,𝑝′t)

26 return 𝜍

27 def HandleExit•(𝜍,𝑟,𝑝m)
28 𝑒← 𝑟 .emb
29 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
30 Forwd(𝑟,𝑝t)
31 else

32 AnalyseAct(𝑒,𝑝m) # Analyse event

33 𝜍 .Γ←𝜍 .Γ\{⟨𝑒.src,•⟩} # Remove dead 𝑒.src

34 TryGC(𝜍,𝑝m)
35 return 𝜍

36 def HandleComm•(𝜍,𝑟,𝑝m)
37 𝑒← 𝑟 .emb
38 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
39 Forwd(𝑟,𝑝t)
40 else

41 AnalyseAct(𝑒,𝑝m) # Analyse event

Expect: 𝑟 .emb.iss= self () ∨𝜍 .Π(𝑟 .emb.tgt) ≠⊥
42 def HandleDtc(𝜍,𝑟,𝑝m)
43 𝑐← 𝑟 .emb
44 if ((𝑝t← 𝜍 .Π(𝑐.tgt)) ≠⊥)
45 Forwd(𝑟,𝑝t)
46 else

47 𝜍 .Γ← 𝜍 .Γ\{⟨𝑐.tgt,•⟩}
48 𝜍 .Γ← 𝜍 .Γ∪{⟨𝑐.tgt,◦⟩}
49 𝛾 = {⟨𝑝s,𝑑⟩ | ⟨𝑝s,𝑑⟩ ∈ 𝜍 .Γ,𝑑 = •}
50 if (𝛾 =∅) # All processes in Γ are detached

51 Loop◦(𝜍,𝑝m) # Switch tracer to ◦mode

52 return 𝜍

Listing 4. Tracer loop that handles priority (•) trace events and message forwarding

is analysed in step 23 , whereas _ results in the instrumentation of tracer𝑇𝑅 in step 25 of

figure 5.5b. Note that 𝑇𝑄 can still receive trace events directly from process 𝑄 while this

handling of events underway. However, the direct trace events from 𝑄 are only considered

once 𝑇𝑄 transitions to direct mode. Newly-instrumented tracers default to priority mode

to process routed events first (see line 7 in listing 5 of appendix A).

Loop• in listing 4 shows the logic that prioritises the processing of routed events

dequeued on line 3 and handled on line 6. The operations HandleFork, HandleExit,

and HandleComm in Loop◦ and Loop• in listings 3 and 4 handle trace events differently.

5 Decentralised Outline Instrumentation · 84

In direct mode, a tracer can (i) analyse trace events, (ii) forward the events that have been

routed its way to neighbouring tracers, or (iii) start routing events that it directly collects

when these need to be handled by other tracers. By contrast, tracers in priority mode

only handle routed trace events according to (i) and (ii), e.g. the branching statement on

lines 19 to 25 in listing 4, and no routing is performed.

5.2.5 Detaching Tracers

A tracer in priority mode coordinates with the router tracer associated with a particular

system process that it traces to determine when all of the process trace events have been

routed to it. Each tracer keeps a record of the processes it traces in the traced-component

map, Γ : Pids ⇀ {◦,•}. Entries to Γ are added when the tracer starts collecting events for

a process (lines 7 and 16 in listing 2) and removed when processes terminate (lines 31 in

listing 3 and 33 in listing 4). Coordination with the router is effected by a tracer in priority

mode for every process in Γ, before the tracer can safely transition to direct mode and start

operating on the events it collects directly. The tracer issues a special detach command

message, 𝑐 , with type dtc, to notify the router tracer that it is now responsible for tracing

a particular system process. The dtc command contains the PID of the tracer issuing the

request and the PID of the system process to be detached from the router tracer. These

are read respectively via the fields 𝑐.iss and 𝑐.tgt. A tracer marks a process as detached by

updating its mapping 𝑐.tgt ↦→ • in Γ to 𝑐.tgt ↦→ ◦ (see lines 47 and 48 in listing 4).

Figure 5.5b shows𝑇𝑄 in priority mode sending command ⟨dtc,qt,qs⟩ for 𝑄 , step 13 , after

it starts tracing this process in step 12 . This transaction is implemented by Detach on

line 15 in listing 2 (see appendix A). The dtc command issued by 𝑇𝑄 is deposited in the

message buffer of (router tracer) 𝑇𝑃 after the events ? and _. 𝑇𝑃 processes the contents

of its message buffer sequentially in steps 10 , 17 , 19 , 20 and 28 , and forwards ? and _
to 𝑇𝑄 , steps 18 and 21 . It also routes the dtc command back to the issuer tracer 𝑇𝑄 , step
29 . 𝑇𝑄 eventually handles the events forwarded by 𝑇𝑃 in the correct order, as stipulated

by figure 5.2b (steps 23 and 24). It then handles dtc in step 30 , marking process 𝑄 as

detached. This update on the traced-component map Γ of𝑇𝑄 is performed by HandleDtc

in listing 4 on lines 47 and 48. A tracer transitions to direct mode once all the processes

in its Γ are marked as detached; see lines 49 and 50 in listing 4. For the case of 𝑇𝑄 in

figure 5.5b, this transition takes place in step 31 when the single process 𝑄 that it traces is

detached. Finally, 𝑇𝑄 handles event ∗ in the correct order in step 32 (as opposed to step

5.3 Correctness Validation · 85

18 in figure 5.5a).

A detach command ⟨dtc,𝑝t,𝑝s⟩ that is directed to some tracer 𝑝t by a router tracer may

perform multiple hops before it reaches 𝑝t. Every tracer en route to 𝑝t purges the mapping

for 𝑝s from its routing map Π once it forwards dtc to the neighbouring tracer. This clean-

up logic is performed by RouteDtc and ForwdDtc in listing 3. Figure 5.5b does not

illustrate this flow. However, we remark that after receiving dtc,𝑇𝑃 would remove from Π

the mapping qs ↦→ qt, calling RouteDtc to route back the detach command ⟨dtc,qt,qs⟩
it receives from 𝑇𝑄 . Similarly, 𝑇𝑃 removes rs ↦→ qt for 𝑅 once it handles ⟨dtc,rt,rs⟩ from

𝑇𝑅 . When𝑇𝑄 receives the routed detach command ⟨rtd,pt,⟨dtc,rt,rs⟩⟩ from𝑇𝑃 , it removes

rs ↦→ rt from Π and forwards it, in turn, to 𝑇𝑅 .

5.2.6 Selective Instrumentation

To monitor multiple processes as one component, rather than having a dedicated moni-

tor for each as in example 5.1, our algorithm uses the instrumentation map discussed in

section 4.4. The signature 𝑔, carried as part of the fork trace event 𝑒 , can be retrieved

using the field 𝑒.sig; see table 5.1. Listing 2 shows the instrumentation operations In-

strument that apply Φ to 𝑒.sig (lines 3 and 11) to check whether a process is eligible

for instrumentation. When Φ(𝑒.sig) =⊥, no instrumentation is effected, and the tracer

becomes automatically shared by the new process 𝑒.tgt, as per assumptions A3 and A5.

5.2.7 Garbage Collection

Our outline instrumentation can shrink the tracer choreography by discarding unneeded

tracers. Apart from determining whether a tracer can be terminated based on flagged

monitoring verdicts (refer to introductory part of section 5.2), the algorithm checks that

both the routing Π and traced-component Γ maps of the tracer are empty. A tracer

purges process references from Γ when handling exit trace events via HandleExit◦ and

HandleExit• (listings 3 and 4). When Γ= ∅ and a tracer has no processes to analyse, it

could still be required to forward events to neighbouring tracers, i.e., Π≠ ∅. Therefore,

the garbage collection check, TryGC, is performed each time mappings from Π or Γ are

removed; see lines 32, 43 and 57 in listing 3, and line 34 in listing 4.

5.3 Correctness Validation

The decentralised outline algorithm of section 5.1 is assessed in two stages. First, we

confirm its implementability by instantiating the core logic of listings 2 to 4 to Erlang,

5 Decentralised Outline Instrumentation · 86

which is tailored for the demands of reactive systems (see section 1.2). Our development

follows a test-driven approach [38] to ensure that the tracer logic is implemented correctly.

Second, we validate the correctness of our implementation by augmenting the logic given

in listings 2 to 4 with runtime checks that guarantee a number of invariants [22] w.r.t.

message routing between tracers.

5.3.1 Implementability

Our implementation of decentralised outline instrumentation maps the tracer processes

to Erlang actors, where the logic detailed in listings 2 to 4 is directly translatable to Erlang

code. We implement the routing (Π), instrumentation (Φ), and traced-component (Γ) maps

that represent the tracer state 𝜍 as Erlang maps for efficient access. The tracer mailbox

coincides with the message buffer ^ of section 5.1.1 and figure 3.3 used for asynchronous

communication. Every tracer obtains events from components of the SuS by leveraging

the native tracing infrastructure exposed by the EVM [57] that deposits event messages

inside the mailbox of the calling tracer. The EVM tracing complies with assumptions A3

and A4, i.e., a system process can be traced by at most one tracer, although one tracer may

trace multiple processes. To meet assumption A5, we configure the EVM tracing with the

set_on_spawn [57] flag that instructs the infrastructure to atomically set newly-created

child processes to use the tracer of their parent, thereby preventing trace event loss. In

addition, we use the send, receive, and procs tracing flags that inform the EVM to only

emit trace event messages for send, receive, spawn (i.e., fork) and exit process actions.

One advantage of the EVM is that it can natively trace any program that is compiled

to BEAM, making our instrumentation algorithm accessible to languages that produce

this type of intermediate object code, e.g. Clojerl [92], Elixir [142]. For instance, our

implementation has been used to verify parts of the RAFT [190] consensus algorithm

written in Elixir [162]. The implementation we give covers both the externalised and

internalised analysis variants of figure 5.12.

5.3.2 Invariant Implementation

One salient aspect that our algorithm addresses is that of reporting SuS trace events

to the analysis component in a reliable manner; this is demanded by constraint C7. The

2The full source code can be found on the GitHub repository: https://github.com/duncanatt/detecter.

https://github.com/duncanatt/detecter

5.3 Correctness Validation · 87

invariants listed below ensure the correct handling of events by tracers. Together with

the core logic of listings 2 to 4, these enable us to reason about general properties the

tracer choreography should observe. For instance, our algorithm guarantees that ‘every

trace event that is routed between tracers eventually reaches the intended tracer’, that

‘the monitor choreography grows dynamically’, and that ‘redundant tracers are always

garbage collected’. We implement these invariant checks in the form of assertions. The

invariants below make use of the following two notions introduced earlier:

• direct trace event (recalled from section 5.2.4): an event that is not routed but collected

straight from a system process via the tracing infrastructure.

• router tracer (recalled from section 5.2.3): a tracer that receives the trace events of a

system process that are meant to be handled by a another tracer.

Tracer choreography invariants Ensure that the dynamic trace event routing topology

between tracers always maintains a DAG.

I1 A tracer has a corresponding analyser.

I2 The root tracer has no router tracers.

I3 A tracer never terminates unless its routing map, Π, and traced-component map, Γ, are

empty.

I4 A tracer never adds a process that already exists in its traced-component map Γ.

I5 A tracer never removes a non-existing process from its traced-component map Γ.

I6 A tracer acts on a _ event by adding the process to its traced-component map Γ.

Depends on invariant I4.

I7 A tracer acts on an ∗ event by removing the process from its traced-component map Γ.

Depends on invariant I5.

I8 A tracer never adds a route that already exists in its routing map Π.

I9 A tracer never removes a non-existing route from its routing map Π.

I10 A tracer acts on a _ event by adding a route to its routing map Π. Depends on

invariant I8.

I11 A router tracer that routes a _ event adds a route to its routing map Π. Depends on

invariant I8.

I12 A tracer that forwards a _ event adds a route to its routing map Π. Depends on

invariant I8.

5 Decentralised Outline Instrumentation · 88

I13 A router tracer that routes a dtc command removes a route from its routing map Π.

Depends on invariant I9.

I14 A tracer that forwards a dtc command removes a route from its routing map Π. Depends

on invariant I9.

Message routing invariants Ensure that trace events are reported to analysers per

definition 5.1, and depend on the guarantees given by invariants I1 to I14

I15 A tracer never routes or forwards a message unless a route exists in its routing map Π.

Depends on invariants I10 to I12.

I16 A tracer in • mode prioritises routing messages until it switches to ◦ mode.

I17 A tracer in • mode transitions to ◦ mode only when all of the processes in its traced-

component map Γ are marked as ◦ or Γ is empty.

I18 The total amount of dtc commands a tracer issues is equal to the sum of the number of

processes in its traced-component map Γ and the number of terminated processes for

the tracer. Depends on invariants I6 and I7.

I19 A tracer in ◦ mode acts on a direct event by analysing or routing it. Depends on

invariants I1 and I15.

I20 A tracer in ◦ mode acts on a routed event by forwarding it. Depends on invariant I15.

Analysing a routed trace event in ◦ mode implies that the tracer dequeued a priority

event, violating invariant I16.

I21 A tracer in ◦ mode acts on a routed dtc command by forwarding it. Depends on

invariants I14 and I15. Handling a routed command in ◦ mode implies that the tracer

dequeued a priority command, violating invariant I16.

I22 A tracer in • mode acts on a routed event by analysing or forwarding it, i.e., it never

routes events. Only tracers in ◦ mode can route events, and these events are direct

events. Routing in • mode implies that the tracer dequeued a non-priority event,

violating invariant I16.

I23 A tracer in • mode acts on a routed dtc command by handling or forwarding it, i.e., it

never routes commands. Depends on invariants I14 and I15. Only (router) tracers in ◦
mode can route commands, and these are received directly from the tracers wishing to

detach system processes from the router. Routing in • mode implies that the tracer

dequeued a non-priority command, violating invariant I16.

I24 A router tracer that receives a dtc command must route it. Depends on invariants I13

5.3 Correctness Validation · 89

and I15. If routing is not possible, the command was issued by mistake.

We implement a suite of unit tests that exhaustively operate on the invariants listed

above. These tests ascertain that race conditions are correctly handled by the tracer

choreography while it simultaneously analyses trace events. Other tests validate the

elasticity aspect of our algorithm in terms of the dynamic instrumentation of tracers and

corresponding garbage collection. To drive these tests, we built a harness that can load

and replay pre-scripted interleaving scenarios for various systems, such as the one of

example 5.1. The harness adheres to assumptions A3 to A5 to emulate the native EVM

tracing infrastructure. Our comprehensive suite of scenarios is specifically designed to

exercise the core logic in listings 2 to 4 and induce edge-case behaviour.

We also use the invariants above in large-scale general tests that delegate the generation

of interleaved executions directly to the EVM. Our aim is twofold: (i) we instrument

independent monitors to track random groupings of processes, which implicitly controls

the size of the traced-component map Γ, and (ii) the interleaving of processes induced by

the EVM schedulers dictate how the routing map Π of each monitor evolves over time.

This induces dynamic arrangements in the monitor choreography DAG and provides us

with high assurances that the algorithm of listings 2 to 4 and its translation to Erlang

code is correct. We accomplish (i) by overloading our instrumentation map definition of

section 4.4, Φ(𝑔), to admit a value, Pr(instr), that controls the probability that a function

signature 𝑔 requires a monitor to be instrumented. This overload, ΦPr(instr) (𝑔), is modelled

on Bernoulli trial [191]. It returns a monitor 𝑚 for 𝑔 whenever 𝑋 ≤ Pr(instr), i.e., the

Bernoulli trial succeeds, or ⊥ otherwise; 𝑋 is drawn from a uniform distribution on the

real interval [0,1]. Gradually increasing the value of the parameter Pr(instr) enables us to

monitor a SuS

• centrally, via a singleton monitor, i.e., Pr(instr) = 0,

• in a fully-decentralised fashion with one monitor per process, such as example 5.1, i.e.,

Pr(instr) = 1, or

• as randomised groups of processes with independent monitors for each group, i.e.,

0 < Pr(instr) < 1.

For these tests, we employ the benchmarking framework described in the next chapter,

using the same high loads as in chapter 7 (e.g. ≈ 40M trace events). The scalability and

efficiency facets of our implemented algorithm are extensively treated in the latter chapter.

5 Decentralised Outline Instrumentation · 90

5.4 Discussion

This chapter proposes a first decentralised outline instrumentation approach for mon-

itoring reactive systems. Section 5.2 details a concrete algorithm, describing how the

instrumentation of a component-based SuS is attained in a scalable fashion by relying

exclusively on trace events exhibited by the running system. Our reactive design sets

itself apart from the state of the art in these aspects. It:

• asynchronously instruments the SuS without modifying it to minimise interference

(responsive),

• delineates the SuS and monitor components to allow for independent failure (resilient),

• does not assume a fixed number of SuS components, but scales accordingly (elastic),

and

• reorganises the monitor choreography dynamically in response to SuS trace events

(message-driven).

The algorithm leverages the tracing concepts commonly provided by tracing infrastruc-

tures, which makes it applicable in cases where inlining cannot be used. This flexibility

comes at the expense of introducing asynchrony between the SuS and monitor compo-

nents, complicating our RV set-up. Our exposition in section 5.2 identifies the intricacies

that the algorithm addresses in order to guarantee that trace events of the SuS are reported

and analysed correctly (listings 2 to 4). We express our algorithm in terms of general

software engineering concepts (e.g. encapsulated component states, separation of the

routing and analysis concerns) to facilitate its adoption to a variety of settings and tech-

nologies. The algorithm presented is evaluated in two respects. First, section 5.3 confirms

the implementability of choreographed outline instrumentation. It describes how our

general algorithm of listings 2 to 4 can be naturally mapped to a tool implementation in

a mainstream concurrent language. We augment this with an account of the principled

approach employed to ensure the correct translation of our algorithm to code. Second,

the claims on the reactive characteristics of our algorithm and its implementation are

corroborated further via the empirical evaluation of chapter 7.

Our solution adopts a principle similar to the black-box-style of monitoring used by

APM tools that are geared towards maintaining large-scale decentralised software. APMs

operate externally to the SuS, similar to our approach. They are used extensively to identify

and diagnose performance problems such as bottlenecks and hotspots; they presently have

5.4 Discussion · 91

an edge on static analysis tools for critical path analysis [226] and unearthing performance

anti-patterns [213, 214]. The methods proposed in section 5.2 are general enough to be

applied—at least in part—to APM tools in order to make them more decentralised. Although

our algorithm is implemented in Erlang, we argue that it is still sufficiently general to be

instantiated to other language frameworks (e.g. Elixir, Akka for Scala [189], Thespian [194]

for Python [173]) that follow constraints C1 to C4 and assumptions A1 to A5. In particular,

it can be used by RV tools that target other platforms, such as the JVM.

Hyperlogics [66] have recently emerged as an expressive formalism for describing

complex properties about decentralised systems (e.g. non-interference, non-inference, etc.).

Broadly, these logics can specify conditions across distinct traces, where quantifications

range over potentially infinite trace domains. One branch in this line of study is the

verification of such properties at runtime (e.g. [44, 106, 12]). Although we are unaware

of any attempts at runtime verifying such properties using outline instrumentation, the

inherent dynamicity required to analyse an unbounded number of traces would certainly

make our instrumentation method applicable in this setting. Our approach from section 5.2

already disentangles the instrumentation from the analysis, thus providing a platform for

plugging new analyses that implement monitoring for hyperproperties.

5.4.1 Related Work

There are other bodies of work that address decentralised monitoring besides the ones

already discussed (see also section 1.1.2). The majority of these studies instrument monitors

via inlining. For instance, Sen et al. [210] study decentralised monitors that are attached

to different threads to extract and analyse trace events internally; see figure 5.1b. In their

earlier work, Sen et al. [208] investigate the use of decentralised monitors on distributed

SuS components, focussing on the communication efficiency between monitors. Another

line of research by Scheffel and Schmitz [203] uses the same instrumentation approach

as [210, 208], but employs a past-time three-valued temporal logic in contrast to the

two-valued logic used in the former studies. Efficient communication is also the focus

of Mostafa and Bonakdarpour [180]. In their setting, the SuS consists of distributed asyn-

chronous processes that interact via message-passing over reliable channels. Similar to our

case, their monitoring algorithm does not rely on a global notion of timing (constraint C1),

nor does it tackle aspects of failure (assumptions A1 and A2). The work by Basin et al.

[31] is one of the few that considers distributed system monitoring where components

5 Decentralised Outline Instrumentation · 92

and network links may fail. While their algorithm does not employ a global clock, it

is based on the timed asynchronous model for distributed systems [75] that assumes

highly-synchronised physical clocks across nodes. In a different spirit, [45, 110] address

the problem of crashing monitors; this is something that we presently do not address,

although our decentralised set-up enables us to fail partially (see section 5.3).

Other efforts for decentralised monitoring, such as [138, 87, 148, 207], weave the SuS

with code instructions that extract trace events and delegate their analysis to independent

processes—this mirrors our externalised event analysis variant of figure 5.1b. While these

approaches are occasionally classified as outline [100], they do not treat the SuS as a

black box, making them prone to the shortcomings of inlining discussed in section 2.1.4.

Crucially, the aforecited works assume a static system arrangement, which spares them the

challenges of dealing with the dynamic reconfiguration of outline tracers and reordering

of tracer events.

Tools such as [185, 219] target the Erlang ecosystem. In Neykova and Yoshida [185], the

authors propose a method that statically analyses the program communication flow that

is specified in terms of a multiparty protocol. Monitors attached to system processes then

check that the messages received coincide with the projected local type (similar to the

analysis conducted by our monitors), and in the case of failure, the associated processes

are restarted. The authors show that their recovery algorithm induces less communication

overhead and improves upon the static process structure recovery mechanisms offered by

the Erlang/OTP platform. Similarly, Attard and Francalanza [219] focus on decentralised

outline monitoring in a concurrent setting, but assume a static SuS. By contrast to Neykova

and Yoshida [185], they leverage the native tracing infrastructure offered by the EVM, as

done in other tools such as [113, 21, 222, 51, 71] for centralised monitoring set-ups.

Schneider et al. [205] follow a different approach to the ones mentioned thus far to

achieve independent monitors. Unlike our setting that concentrates on local properties

(see section 1.2), the authors tackle the general monitoring case where slicing can lead to

event duplication that, in turn, inflates runtime overhead. The set-up proposed by the

authors is external to the SuS and extends their prior work [32] that targets scalable offline

monitoring. It adapts database hash-based partitioning techniques to the monitoring

setting, in order to alleviate the overhead induced by slicing. These techniques are

implemented in an automatic data slicer that runs on Apache Flink, where trace event

streams are obtained via log files or TCP sockets. They can achieve scalability by using data

5.4 Discussion · 93

parallelisation to treat monitoring algorithms as a black box, running them on different

segments of the trace. The monitoring algorithm of listing 1 that we attach to tracers is

an instantiation of this approach. One aspect that distinguishes our setting from that

of Schneider et al. [205] is that the event source they use is sequential, whereas ours

becomes concurrent when tracers invoke the operation Preempt to partition the trace.

Our trace event routing detailed in section 5.2 ensures that trace events are reported to

the correct monitors, despite the reordering that may arise from these partitions. We note

that the runtime overhead in op. cit. is less detrimental to the SuS since their RV set-up is

deployed externally, which is not possible in our case. It is worth mentioning that for their

evaluation, Schneider et al. [205] develop a tool to emulate online monitoring scenarios by

replaying them from a file; this approach is analogous to the one we use when evaluating

our algorithm in section 5.3.2.

6 Reactive Runtime Monitoring Benchmarking

Instrumenting a SuS with monitors induces inevitable runtime overhead that should

be kept minimal since this impacts the applicability of monitoring tools [95, 100]. While

the worst-case complexity bounds for monitor-induced overheads can be calculated

via standard methods (see, e.g. [154, 44, 7, 114]), benchmarking is, by far, the preferred

method for assessing these overheads [25, 119]. One reason for this is that benchmarks

tend to better represent the overhead observed in practice [123, 49]. Benchmarking also

provides a common platform for gauging workloads, making it possible to compare different

monitoring tools, or rerun experiments to reproduce and confirm existing results.

This chapter presents a benchmarking framework for evaluating runtime monitoring

tools written for reactive component systems. The framework we describe generates

synthetic system models following the master-worker paradigm [202]. This architecture

is pervasive in both distributed (e.g. Big Data frameworks, render farms) and concurrent

(e.g. web servers, thread pools) system settings [217, 121, 77, 227], which justifies our aim

in building a benchmarking tool targeting this paradigm. We:

• detail the design of a configurable benchmarking tool that emulates various master-

worker models under commonly-observed load profiles and gathers relevant metrics

that give a multi-faceted view of runtime overhead, Section 6.1;

• demonstrate that our synthetic benchmarks can be tuned to approximate the realistic

behaviour of web server traffic with high degrees of fidelity and repeatability, Section 6.4;

• present a case study that (i) shows how the load profiles and parametrisability of

benchmarks can produce edge cases that can be measured through our performance

metrics to asses runtime monitoring tools in a comprehensive manner, and (ii) confirms

that the results from (i) coincide with those obtained via a real-world use case using

OTS software, Section 6.5.

6.1 A Configurable Benchmark Design

Our benchmarking tool addresses the limitations discussed in section 1.1.3. The set-up

scales to accommodate high loads and emulates a range of system models that can be

95

6 Reactive Runtime Monitoring Benchmarking · 96

subjected to various load profiles that are typically observed in practice. It collects three

core metrics to give a comprehensive view of runtime overhead that captures the operation

of reactive components, namely the

(i) mean response time, measured in milliseconds (ms), that captures how the reactive-

ness of the SuS is affected when monitors are introduced,

(ii) mean memory consumption, recorded in GB, that gauges the impact monitors have

on the SuS, and

(iii) mean scheduler utilisation, as a percentage of the total available processing capacity,

that shows how well the monitors under evaluation maximise its use.

While the mean execution duration, measured in seconds (s), is the least relevant metric

(see section 1.1.3), we track it in our experiments to indicate to readers the amount of

time that monitors require to complete their runtime analysis. Henceforth, we use the

shortened metric name (e.g. response time instead of mean response time, etc.) for the

sake of brevity.

Our tool considers master-worker architectures, where one central process, called the

master, creates and allocates tasks to worker processes [202]. Workers process tasks

concurrently and relay the result to the master when ready; the latter then combines

these results to yield the final result. Each worker is an abstraction of sets of cooperating

processes that can be treated as a single unit. We focus on reactive architectures that

execute on a single node, although our design adheres to the three criteria that facilitate its

extension to a distributed setting. Specifically, master and worker components: (i) share

neither a common clock, (ii) nor memory, and (iii) communicate exclusively via asyn-

chronous messages. Our model assumes that communication is reliable and components

do not fail (see section 1.2)1. Table 6.1 on page 100 summarises the benchmark parameters

that are described next in sections 6.1.1 to 6.1.3 and 6.1.5.

6.1.1 Load Generation

Load on the system is induced by the master when it creates worker processes and

allocates tasks. The total number of workers in one benchmark run can be set via the

parameter 𝑛. Tasks are allocated to worker processes by the master and consist of one

1This coincides with our process model introduced in section 5.1 that fulfils constraints C1 to C4 and assump-

tions A1 and A2.

6.1 A Configurable Benchmark Design · 97

or more work requests that a worker receives, handles, and transmits back. A worker

terminates its execution when all of its allocated work requests have been processed and

acknowledged by the master. The number of work requests that can be batched in a task

is controlled by the parameter𝑤 ; the actual batch size per worker is then drawn randomly

from a normal distribution with mean ` =𝑤 and standard deviation 𝜎 = `×0.02. This

induces a modicum of variability in the amount of work requests exchanged between the

master and worker processes. The master and workers communicate asynchronously: an

allocated work request is delivered to the incoming task queue of a worker process where

it is eventually handled. Work responses issued by a worker are queued and processed

similarly on the master.

6.1.2 Load Configuration

We consider three load profiles (see figure 6.5 for examples) that determine how the

creation of workers is distributed along the load timeline, specified by the parameter 𝑡 .

The timeline is modelled as a sequence of discrete logical time units that represent instants

at which a new set of workers is created by the master. Steady loads replicate executions

where a system operates under stable conditions. These are modelled on a homogeneous

Poisson distribution with rate _, specifying the mean number of workers that are created

at each time instant along the load timeline with duration 𝑡 = ⌈𝑛/_⌉. Pulse loads emulate

settings where a system experiences gradually increasing load peaks. The Pulse load

shape is parametrised by 𝑡 and the spread, 𝑠 , that determines how slowly or sharply the

system load increases as it approaches its maximum peak, halfway along 𝑡 . Pulses are

modelled on a normal distribution with ` = 𝑡/2 and 𝜎 = 𝑠 . Burst loads capture scenarios

where a system is stressed due to load spikes; these are based on a log-normal distribution

with ` = ln(𝑚2/√𝑝2+𝑚2) and 𝜎 =
√︁

ln(1+𝑝2/𝑚2), where𝑚 = 𝑡/2, and parameter 𝑝 is the

pinch controlling the concentration of the initial load burst.

6.1.3 Wall-Clock Time

A load profile created for some logical timeline 𝑡 is put into effect by the master process

when the system starts running. The master does not create the worker processes that are

set to execute in a particular time unit all at once, since this naïve strategy risks saturating

the system, deceivingly increasing the load. In following this strategy, the system may

become overloaded not because the mean request rate is high, but because the created

workers overwhelm the master when they send their requests simultaneously. We address

6 Reactive Runtime Monitoring Benchmarking · 98

this issue by introducing the notion of concrete time that maps one discrete time unit in 𝑡

to wall clock time period, 𝜋 . The parameter 𝜋 is given in ms, and defaults to 1000 ms.

6.1.4 Worker Scheduling

The master process employs a scheduling scheme to distribute the creation of workers

uniformly across the period 𝜋 . It makes use of three queues: the Order queue, Ready

queue, and Await queue, denoted by𝑄O,𝑄R, and𝑄A respectively. 𝑄O is initially populated

with the load profile, step 1 in figure 6.1a. A load profile consists of an array, 𝑙1,𝑙2,. . .,𝑙𝑡 ,

with 𝑡 elements—each corresponding to a discrete time instant in 𝑡—where the value 𝑙𝑖
of every element indicates the number of workers to be created at that instant. Workers,

𝑊1,𝑊2,. . .,𝑊𝑛 , are scheduled and created in rounds, as follows. The master picks the first

Legend: Selected for processing Worker created Worker terminated

𝑄O 4 2 1 1

𝑡 =4 units

𝑄R
𝑝1 𝑝2 𝑝3 𝑝4

𝑐 𝑐+𝜋

𝑄A

𝜋ms

t

l

1 2 3 4

1

2

3

4

Load profile

+

𝑀

𝑙 =4

1

2 3

(a) Master schedules the first batch of four workers for

execution in 𝑄R

𝑄O 2 1 1

𝑄R
𝑝1 𝑝2 𝑝3 𝑝4

𝑄A𝑊1 𝑊2

Time unit 1; round 1

𝑀

𝑊1 𝑊2

fork req. fork

4

5 6

7

8

(b) Workers𝑊1 and𝑊2 created and added to 𝑄A; a

work request is sent to𝑊1

𝑄O 2 1 1

𝑄R
𝑝3 𝑝4

𝑄A𝑊1 𝑊2 𝑊3 𝑊4

Time unit 1; round 2

𝑀

𝑊3 𝑊4 𝑊1 𝑊2

fork req. fork

exit

9

10 11

12

13 14

(c) Workers𝑊3 and𝑊4 created and added to 𝑄A;

worker𝑊2 completes its execution

𝑄O 2 1 1

𝑄R
𝑝1 𝑝2

𝑄A𝑊1 𝑊3 𝑊4 𝑊5

Time unit 2; round 1

𝑀

𝑊5 𝑊1 𝑊3 𝑊4

𝑙 =2

resp.fork reqs.

15
16

1718

19

20

(d) 𝑄R becomes empty; master schedules the next

batch of two workers

Figure 6.1. Master 𝑀 scheduling worker processes𝑊𝑗 and allocating work requests

6.1 A Configurable Benchmark Design · 99

element from 𝑄O to compute the upcoming schedule, step 2 , that starts at the current

time, 𝑐 , and finishes at 𝑐 +𝜋 . A series of 𝑙𝑖 time points, 𝑝1,𝑝2,. . .,𝑝𝑙𝑖 , in the schedule period

𝜋 are cumulatively calculated by drawing the next 𝑝𝑘 from a normal distribution with

` = ⌈𝜋/𝑙𝑖⌉ and 𝜎 = `×0.1. Each time point stipulates a moment in wall-clock time when

a new worker 𝑊𝑗 is to be created; this set of time points is monotonic and constitutes

the Ready queue, 𝑄R, step 3 . The master checks 𝑄R, step 4 in figure 6.1b, and creates

the workers whose time point 𝑝𝑘 is smaller than or equal to the current wall-clock time2,

steps 5 and 6 in figure 6.1b. The time point 𝑝𝑘 of a newly-created worker is removed

from 𝑄O, and a corresponding entry for the worker𝑊𝑗 is appended to the Await queue

𝑄A; this is shown in step 7 for 𝑊1 and 𝑊2. Workers in 𝑄A are now ready to receive

work requests from the master process, e.g. step 8 . 𝑄A is traversed by the master at this

stage so that work requests can be allocated to existing workers. The master continues

processing queue 𝑄R in subsequent rounds, creating workers, issuing work requests, and

updating 𝑄R and 𝑄A accordingly, as shown in steps 9 to 13 in figure 6.1c. At any point,

the master can receive responses, e.g. step 17 in figure 6.1d; these are buffered inside the

incoming task queue of the master process and handled once the scheduling and work

allocation phases are complete. A fresh batch of workers from 𝑄O is scheduled by the

master whenever 𝑄R becomes empty, step 15 , and the described procedure is repeated.

The master stops scheduling workers when all the entries in 𝑄O are processed. It then

transitions to work-only mode, where it continues allocating work requests and handling

incoming responses from workers.

6.1.5 System Responsiveness

Systems generally respond to load with differing rates, due to the computational com-

plexity of the task at hand, IO, or slowdown when the system itself becomes gradually

loaded. We simulate these phenomena using the parameters Pr(𝑠𝑒𝑛𝑑) and Pr(𝑟𝑒𝑐𝑣). The

master interleaves the processing of work requests to allocate them uniformly among the

various workers: Pr(𝑠𝑒𝑛𝑑) and Pr(𝑟𝑒𝑐𝑣) bias this behaviour. Concretely, Pr(𝑠𝑒𝑛𝑑) controls

the probability that a work request is sent by the master to a worker, whereas Pr(𝑟𝑒𝑐𝑣)
determines the probability that a work response received by the master is processed.

Sending and receiving is turn-based and modelled on a Bernoulli trial [191]. The master

2We assume that the platform scheduling the master and worker processes is fair.

6 Reactive Runtime Monitoring Benchmarking · 100

Parameter Description

Master-Worker Model

𝑛 Total number of worker processes

𝑤 Number of work requests batched in a task

𝑡 Load timeline (not specified for Steady loads)

𝜋 Wall clock time period

Load Profile

_ Steady rate

𝑠 Pulse spread

𝑝 Burst pinch

System Reactiveness

Pr(𝑠𝑒𝑛𝑑) Probability that the master issues a work request

Pr(𝑟𝑒𝑐𝑣) Probability that the master dequeues a work response

Table 6.1. Load profile and system reactiveness configuration parameters for benchmarks

picks a worker 𝑊𝑗 from 𝑄A and sends at least one work request when 𝑋 ≤ Pr(𝑠𝑒𝑛𝑑),
i.e., the Bernoulli trial succeeds; 𝑋 is drawn from a uniform distribution on the interval

[0,1]. Further requests to the same worker are allocated following this scheme (steps
8 , 13 and 20 in figure 6.1) and the entry for𝑊𝑗 in 𝑄A is updated accordingly with the

number of work requests remaining. When 𝑋 > Pr(𝑠𝑒𝑛𝑑), i.e., the Bernoulli trial fails, the

worker misses its turn, and the next worker in 𝑄A is picked. The master also queries its

incoming task queue to determine whether a response can be processed. It dequeues one

response when 𝑋 ≤ Pr(𝑟𝑒𝑐𝑣), and the attempt is repeated for the next response in the

queue until 𝑋 > Pr(𝑟𝑒𝑐𝑣). The master signals workers to terminate once it acknowledges

all of their work responses (e.g. step 14). Due to the load imbalance that may occur when

the master becomes overloaded with work responses relayed by workers [202], dequeuing

is attempted |𝑄A | times. This encourages an even load distribution in the system as the

number of workers fluctuates at runtime.

6.2 Implementability · 101

6.2 Implementability

We instantiate the set-up of section 6.1 in Erlang. Our implementation maps the master

and worker processes to actors, where workers are forked by the master via the Erlang BIF

spawn(); in Akka and Thespian ActorContext.spawn() and Actor.createActor() can be

respectively used to the same end. The work request queues for both master and worker

processes coincide with actor mailboxes. We abstract the task computation and model

work requests as Erlang messages. Workers emulate no delay, but respond instantly to

work requests once these have been processed; delay in the system can be induced via

parameters Pr(𝑠𝑒𝑛𝑑) and Pr(𝑟𝑒𝑐𝑣) introduced in section 6.1.5. To maximise efficiency, the

Order, Ready, and Await queues used by our scheduling scheme are maintained locally

within the master. The master process keeps track of other details, such as the total

number of work requests sent and received to determine when the system should stop

executing. For the purposes of experiment taking, we extend the parameters of table 6.1

with a seed parameter, 𝑟 , to fix the Erlang pseudorandom number generator to output

reproducible number sequences.

6.3 Measurement Collection

The measurement of application performance is closely linked with the functionality

offered by the platform on which benchmarks execute, and one typically leverages native

operations to maintain low overhead levels. Our implementation relies on the BIFs

provided by Erlang to gather the metrics identified in section 6.1 (response time, memory

consumption, and scheduler utilisation). These are collected centrally via a designated

process, called the Collector, that samples the runtime to obtain periodic snapshots of

the execution environment (see figure 6.2). We use global sampling and avoid tracking

the resource usage per process to minimise any potential perturbations that may be

induced by our measurement taking. This is crucial in high-concurrency settings where

components tend to be very sensitive to latency [127]. Our sampling frequency is set to

500 ms. This figure was determined empirically, whereby the measurements gathered

are neither too coarse, nor excessively fine-grained such that the sampling itself affects

the runtime. Every sampled snapshot combines the aforementioned metrics and formats

them as records that are written asynchronously to disk to minimise IO delays.

The memory and scheduler readings are gathered via the EVM. We record the scheduler

utilisation, rather than the CPU used by the EVM since the latter keeps scheduler threads

6 Reactive Runtime Monitoring Benchmarking · 102

𝑀

𝑊1

𝑊2

𝑊𝑛

Collector

.

.

.

csv

Metric

records

.

.

.

10 % samples𝑇start

round-trip=𝑇start−𝑇finish

⟨•1,
re

q
.⟩

⟨•2,req.⟩

⟨•2,resp.⟩

⟨•2,req.⟩

⟨•2,resp.⟩

time in master queue

recorded metrics

timestamped reference

1 2

3

4

5

Figure 6.2. Collector tracking the round-trip time for work requests and responses

momentarily spinning to avoid going to sleep and impacting latency [132]. The overall

system responsiveness is reflected in the mean response time metric. To track this value,

the Collector exposes a hook that the master uses to obtain unique timestamps, step 1

in figure 6.2. These are embedded in every work request message the master issues to

workers. Each timestamp enables the Collector to track the time taken for a specific

message to travel from the master to a worker and back, including the time it spends in the

mailbox of the master until dequeued, i.e., the round-trip in steps 2 to 5 . To efficiently

compute the response time, the Collector samples the total number of messages exchanged

between the master and workers and calculates the running mean using the algorithm by

Welford [224].

6.4 Benchmark Expressiveness and Coverage

We tune the synthetic system models generated by our benchmarking tool implemen-

tation via a series of empirical experiments to evaluate it in several ways. Section 6.4.2

discusses sanity checks for its measurement collection mechanisms and section 6.4.3

assesses the repeatability of the results obtained from synthetic system model executions.

Sections 6.4.4 and 6.4.5 provide evidence that the tool is sufficiently expressive to cover a

number of execution profiles that emulate realistic scenarios. In particular, we establish

a set of benchmark configuration parameter values to create experiment set-ups whose

behaviour approximates that of web server systems typically found in practice.

6.4.1 Experiment Set-up

An experiment consists of ten benchmarks. Each experiment is performed by running

the benchmarked set-up with increasing loads, applied in steps of 𝑛/10, where 𝑛 is the

6.4 Benchmark Expressiveness and Coverage · 103

total number of worker processes (see table 6.1). Every benchmark is executed on a fresh

instance of the EVM to ensure that the runtime environment is uninfluenced by previous

runs. All experiments in this chapter are conducted on an Intel Core i7 M620 64-bit

machine with 8GB of memory, running Ubuntu 18.04 LTS and Erlang/OTP 22.2.1.

The parameters of the benchmarking tool can be configured to model a range of master-

worker scenarios. However, not all of these configurations yield meaningful system

models in practice. For example, setting Pr(𝑠𝑒𝑛𝑑)=0 does not enable the master to allocate

work requests to workers; with Pr(𝑠𝑒𝑛𝑑) = 1, the work allocation is enacted sequentially,

defeating the purpose of a concurrent master-worker system. The objective is thus, to

tune the benchmarking tool to generate different models of the master-worker set-up

and find valid parameter values that enable our experiments to adequately approximate

the behaviour of realistic web server systems. Our experiments are fixed with 𝑛 = 500k

workers and 𝑤 = 100 work requests per worker. This configuration generates ≈𝑛×𝑤 ×
(work requests and responses)=100M message exchanges between the master and worker

processes. We initially set Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣)=0.9 and focus on Steady loads (i.e., Poisson

process) since these can be replicated using industry-strength load testing tools such as

Tsung [186], Gatling [74] and JMeter [109]. Figure 6.5 (left) shows the load applied at

each benchmark run, e.g. on the tenth run, the benchmark creates ≈ 5k workers/s. In all

experiments, the total loading time is set to 𝑡 = 100s.

6.4.2 Measurement Precision

A series of trials were conducted to select the appropriate sampling window size for

measuring the response time. This step is crucial, as it directly affects the capability of

the benchmark to scale in terms of its number of worker processes and work requests

while remaining responsive. The sampling frequency described in section 6.3 (see also

figure 6.2) was calibrated by taking various window sizes over numerous runs for different

load profiles ranging from ≈ 10k to ≈ 1M workers. These results were compared to

the actual mean calculated on all the work request and response messages exchanged

between master and workers. Window sizes close to 10 % yielded the best results (≈±1.4%

discrepancy from the actual response time). Smaller window sizes produced excessive

discrepancy; larger sizes induced noticeably higher system overhead. The precision of

our measured samples, including the memory consumption and scheduler utilisation

figures was cross-checked against readings obtained from the Erlang Observer tool [57]

6 Reactive Runtime Monitoring Benchmarking · 104

to confirm that these coincide.

6.4.3 Result Repeatability

Data variability affects the repeatability of experiments [103] and plays a role when

determining the number of repeated readings, 𝑚, required before the data measured is

deemed sufficiently representative. Choosing the lowest𝑚 is crucial when experiment runs

are time-consuming. The coefficient of variation (CV) [81], i.e., the ratio of the standard

deviation to the mean, CV=𝜎/𝑥 , can be used to establish the value of𝑚 empirically, as

follows. Initially, the CV𝑚 for one batch of experiments for some number of repetitions𝑚

is calculated. The result is then compared to the CV𝑚′ for the next batch of repetitions

𝑚′ =𝑚+𝑏, where 𝑏 is the batch increment. When the difference between successive CV

metrics, 𝑚′ and 𝑚, is sufficiently small (for some 𝜖), the value of 𝑚 is selected, otherwise,

the described procedure is repeated with 𝑚′. Crucially, the condition CV𝑚′ −CV𝑚 < 𝜖

must hold for all the variables measured in the experiment before 𝑚 can be fixed. For the

results presented next, the CV values have been calculated manually. The mechanism that

determines the CV automatically is left for future work.

We minimise the data variability between experiments by seeding the Erlang pseu-

dorandom number generator (parameter 𝑟 in section 6.2) with a constant value. Fixing

the seed typically requires fewer repeated runs before the metrics of interest—response

time, memory consumption, and scheduler utilisation—converge to an acceptable CV. We

conduct experiments set with 𝑚 ∈ {3,6,9} repetitions to determine the least 𝑚 that meets

this condition. We obtained the CV values of 0.52 %, 0.15 %, and 0.17 % for the response

time, memory consumption, and scheduler utilisation respectively using three repeated

runs with threshold 𝜖 ≈ 0.04% against𝑚 = 3. Since these figures are sufficiently low, we

adopt the number of repetitions 𝑚 = 3 for all experiment runs in the sequel. Note that

fixing the seed still permits our models to exhibit a degree of variability that stems from

the inherent interleaved execution of components due to process scheduling.

6.4.4 Response Time Tuning

The responsiveness of master-worker systems correlates with the time each worker

spends idle, which, in turn, affects the capacity of the system to handle workloads. For

instance, the less frequently the master assigns tasks (i.e., low throughput), the larger

the portion of idle workers and the shorter the response time (i.e., low latency). As this

aspect can influence the results obtained when assessing runtime overhead, we use the

6.4 Benchmark Expressiveness and Coverage · 105

parameters Pr(𝑠𝑒𝑛𝑑) and Pr(𝑟𝑒𝑐𝑣) to regulate the speed with which the system reacts

to load (refer to section 6.1.5). We illustrate how these parameters affect the overall

performance of master-worker models set up with Pr(𝑠𝑒𝑛𝑑) = Pr(𝑟𝑒𝑐𝑣) ∈ {0.1,0.5,0.9}.
Figure 6.3 shows the results, where each performance metric (e.g. memory consumption,

𝑦-axis) is plotted against the total number of workers for ten benchmarks, starting at 50k

up to 500k (𝑥-axis). Our charts also plot the execution duration for reference.

With Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣)=0.1, the system has the lowest response time out of the three

configurations (bottom left), as indicated by the gradual linear increase of the plot. This

confirms the fact that smaller loads enable worker processes to rapidly handle incoming

work requests. As expected, this prolongs the execution duration, when compared to

that of the system set with Pr(𝑠𝑒𝑛𝑑) =Pr(𝑟𝑒𝑐𝑣) ∈ {0.5,0.9} (bottom right). The effect of

idle workers can be gleaned from the relatively lower scheduler utilisation as well (top

left). Idling increases the consumption of memory (top right) since the worker processes

created by the master typically are kept alive for longer periods. By contrast, the plots

set with Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣) ∈ {0.5,0.9} exhibit markedly lower gradients in the memory

consumption and execution duration charts; corresponding linear slopes for these two

settings can be observed in the response time chart. This indicates that values between 0.5

and 0.9 yield system models that (i) consume tolerable amounts of memory, (ii) execute

to completion in a reasonable amount of time, and (iii) maintain a decent response time.

Master-worker architectures are typically employed in high throughput, low latency

settings, and using values smaller than 0.5 goes against this principle. In what follows,

we opt for Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣)=0.9 due to the negligible differences in the response time

and execution duration between Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣)=0.5 and Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣)=0.9,

but reasonably low memory consumption achieved using the latter setting.

6.4.5 Veracity of the Synthetic Models

Our benchmarks can be configured to closely model realistic web server traffic where

the request intervals observed at the server are known to follow a Poisson process [126,

168, 144]. The probability distribution of the response time of web application requests is

generally right-skewed and approximates log-normal [126, 64] or Erlang distributions [144].

We conduct three experiments using Steady loads fixed with 𝑛 = 20k for Pr(𝑠𝑒𝑛𝑑) =
Pr(𝑟𝑒𝑐𝑣) ∈ {0.1,0.5,0.9} to establish whether the response time in our system set-ups

follows the aforementioned distributions. Our results, summarised in figure 6.4, are

6 Reactive Runtime Monitoring Benchmarking · 106

100 200 300 400 500
0

25

50

U
til

is
at

io
n

(%
)

Scheduler

100 200 300 400 500

2.00

3.00

4.00

5.00

C
on

su
m

pt
io

n
(G

B)

Memory

100 200 300 400 500

Total workers (K)

0

500

1000

1500

2000

2500

T
im

e
(m

s)

Response

100 200 300 400 500

Total workers (K)

1000

2000

3000
D

ur
at

io
n

(s
)

Execution

Pr(𝑠𝑒𝑛𝑑) =Pr(𝑟𝑒𝑐𝑣) =0.1 Pr(𝑠𝑒𝑛𝑑) =Pr(𝑟𝑒𝑐𝑣) =0.5 Pr(𝑠𝑒𝑛𝑑) =Pr(𝑟𝑒𝑐𝑣) =0.9

Figure 6.3. System reactiveness benchmarks modelled by Pr(𝑠𝑒𝑛𝑑) and Pr(𝑟𝑒𝑐𝑣)

obtained by estimating the parameters for a set of candidate probability distributions (e.g.

normal, log-normal, gamma, etc.) using maximum likelihood estimation [200] on the

response time obtained from each experiment. We then perform goodness-of-fit tests on

these parametrised distributions using the Kolmogorov-Smirnov test, selecting the most

appropriate response time fit for each of the three experiments. The fitted distributions in

figure 6.4 indicate that the response time of our system models concurs with the findings

reported in [126, 64, 144]. This makes a strong case in favour of our benchmarking tool

striking a balance between the realism of benchmarks based on OTS programs and the

controllability offered by synthetic benchmarking. Lastly, we point out that figure 6.4

matches the observations made in figure 6.3, which show an increase in the response time

as the system throughput increases. This is evident in the histogram peaks that grow

shorter as Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣) progresses from 0.1 to 0.9.

6.4.6 Load Profile Models

Our benchmarking tool implementation can generate the load profiles introduced in

section 6.1.2, enabling us to gauge the behaviour of monitored systems under varying forms

6.5 Benchmark Validation · 107

0 100 200

Mean response time (ms)

0.000

0.005

0.010

0.015

N
or

m
al

is
ed

de
ns

ity

Pr(𝑠𝑒𝑛𝑑) =Pr(𝑟𝑒𝑐𝑣) =0.1

Log-normal
Mean: 50.88
Mode: 13

0 100 200

Mean response time (ms)

0.000

0.005

0.010

0.015

Pr(𝑠𝑒𝑛𝑑) =Pr(𝑟𝑒𝑐𝑣) =0.5

Log-normal
Mean: 55.43
Mode: 33

0 100 200 300 400

Mean response time (ms)

0.000

0.005

0.010

0.015

Pr(𝑠𝑒𝑛𝑑) =Pr(𝑟𝑒𝑐𝑣) =0.9

Gamma
Mean: 77.32
Mode: 17

Figure 6.4. Fitted probability distributions on response time for Steady loads for 20k workers

of strain. These loads make it possible to mock specific system scenarios that exercise

different aspects of the monitoring tool being considered. For example, a benchmark

configured with load bursts could uncover buffer overflows in a particular monitoring tool

implementation that only arise under stress, when the length of the trace event processing

queue exceeds some preset length. Figure 6.5 shows the distribution of Steady, Pulse, and

Burst load that the master induces it creates worker processes with 𝑛 = 500k.

6.5 Benchmark Validation

We demonstrate how our benchmarking tool can be used to assess the runtime overhead

comprehensively via a concurrent RV case study. By controlling the benchmark parameters

and subjecting the system to specific workloads, we show that our multi-faceted view of

overhead reveals nuances in the observed runtime behaviour, benefiting the interpretation

0 25 50 75 100

Timeline (s)

0

1

2

3

4

5

C
on

cu
rr

en
tw

or
ke

rs
(K

/s
)

Steady

25 50 75 100

Timeline (s)

0

2

4

6

8

Pulse

25 50 75 100

Timeline (s)

0

5

10

15

Burst

Benchmark run number: 1 2 3 4 5 6 7 8 9 10

Figure 6.5. Steady, Pulse and Burst load distributions of 500 k workers for 100 s

6 Reactive Runtime Monitoring Benchmarking · 108

of empirical results. We further assess the veracity of these synthetic benchmarks against

the overhead measured from a use case that is set up with industry-strength OTS software.

6.5.1 Runtime Monitoring Set-up

Our experiments use the implementation of the monitoring inlining tool discussed in

section 4.5. The monitor code instructions that the tool injects share the process space

of components of the SuS, which induces minimal runtime overhead. This enables us to

scale benchmarks to considerably high loads, even on our modest experiment set-up of

section 6.4.1.

We perform two sets of experiments. For the experiments of section 6.5.2 that focus

on the synthetic master-worker models generated by our benchmarking tool, we use

properties that ensure the correct operation of worker processes, along with properties

that certify the validity of the tasks that workers receive from the master. Readers

are directed to appendix B.1 for details about these properties. Section 6.5.3 considers

the Cowboy web server introduced in section 4.6. The client request delegation that

Cowboy performs to Ranch protocol handlers follows closely our master-worker set-

up of section 6.1, which abstracts minutiae such as TCP connection management and

HTTP protocol parsing. We monitor fragments of the Cowboy-Ranch communication

protocol used to handle client requests, the particulars of which is found in appendix B.2

together with descriptions of the properties used. All properties selected for these tests

are parametric w.r.t. system components (refer to section 1.2) to yield monitors that (i) do

not interact and can reach verdicts independently, and (ii) loop continually to exert the

maximum runtime overhead possible. Figure 6.6 depicts the two instrumented set-ups

described. In figure 6.6a, workers are weaved with the monitor code synthesised from the

properties in appendix B.1; figure 6.6b shows the instrumented Cowboy-Ranch protocol

handlers with monitors corresponding to properties from appendix B.2. During the course

of benchmark runs, monitors communicate their verdicts to a central coordinating process

that tracks the expected number of verdicts to determine when a run can be shut down

without loss of messages.

6.5.2 Synthetic Benchmarks

Our first set of benchmarks use mild loads with 𝑛 = 20k and high loads 𝑛 = 500k;

Pr(𝑠𝑒𝑛𝑑) = Pr(𝑟𝑒𝑐𝑣) is fixed at 0.9 as in section 6.4.4. These configurations generate

≈𝑛×𝑤×(work requests and responses)=4M and 100M messages respectively to produce

6.5 Benchmark Validation · 109

𝑀

𝑊1 𝑀1 𝑊2 𝑀2 . . . 𝑊𝑛 𝑀𝑛

work requests/responses

(a) Monitoring worker processes𝑊1,𝑊2, . . .,𝑊𝑛

𝐶

𝑃1 𝑀1 𝑃2 𝑀2 . . . 𝑃𝑛 𝑀𝑛

HTTP requests

(b) Monitoring Cowboy-Ranch protocol handlers 𝑃1,𝑃2, . . .,𝑃𝑛

Figure 6.6. Master-worker and Cowboy-Ranch benchmarks instrumented with inline local monitors

8M and 200M analysable trace events per run. We use a total loading time of 𝑡 = 100s

in our experiments, and perform three experiment repetitions under the Steady, Pulse,

and Burst load profiles. Figure 6.5 depicts the number of workers instantiated by the

master at each benchmark run for the mentioned loads. The results are summarised in

figures 6.7 and 6.8. Every chart in these figures plots the particular performance metric

(e.g. memory consumption, 𝑦-axis) against the number of worker processes (𝑥-axis). Since

inlining prevents us from delineating the system and monitor-induced runtime overhead,

we follow the standard practice in the literature (e.g. [219, 113, 61, 52, 163, 184, 183]) and

include baseline plots, i.e., the unmonitored system, to compare the relative overhead

between our different monitoring set-ups.

Mild loads Figure 6.7 illustrates the plots for the system set with 𝑛=20k. These loads are

similar to those employed by the state-of-the-art frameworks used to evaluate component-

based runtime monitoring, e.g. [203, 219, 39, 87, 185], although ours are slightly higher. We

remark that none of the benchmarks used in these works consider different load profiles:

they either model load on a Poisson process, or fail to specify the kind of load applied. In

figure 6.7, the execution duration chart (bottom right) shows that, regardless of the load

profile used, the running time of each experiment is comparable to the baseline. Under this

mild load, the execution duration alone fails to convey a detailed enough view of runtime

overhead, although our benchmarks provide broad coverage in terms of the Steady, Pulse,

and Burst load profiles. This trend is mirrored in the scheduler utilisation plot (top left),

where both baseline and monitored systems induce a constant load of ≈ 17.5%. On this

account, we deem these results to be inconclusive. By contrast, our three load profiles

induce different overhead for the response time (bottom left), and, to a lesser extent,

the memory consumption plots (top right). Specifically, when the system is subjected

6 Reactive Runtime Monitoring Benchmarking · 110

to a Burst load, it exhibits a surge in the response time for the baseline and monitored

system alike at a load of ≈ 16k workers. While this is not reflected in the consumption

of memory, the Burst plots do exhibit a larger—albeit linear—rate of increase in memory

when compared to their Steady and Pulse counterparts. The latter two plots once again

show analogous trends, indicating that both Steady and Pulse loads exact similar memory

requirements and exhibit comparable responsiveness under the respectable load of 20k

workers. Crucially, the data plots in figure 6.7 do not enable us to confidently extrapolate

our results. The edge case in the response time chart for Burst plots raises the question of

whether the surge in the trend observed at ≈ 16k remains consistent when the number

of workers goes beyond 20k. Similarly, although for a different reason, the execution

duration plots do not allow us to distinguish between the overhead induced by monitors

for different loads at such a (small) scale. This arises due to the perturbations introduced

by the underlying OS (e.g. scheduling other processes, IO, etc.) that affect the sensitive

time-keeping of the benchmark metrics.

2 5 7 10 12 15 17 20
0

25

50

U
til

is
at

io
n

(%
)

Scheduler

2 5 7 10 12 15 17 20
1.584

1.586

1.588

1.590

1.592

1.594

C
on

su
m

pt
io

n
(G

B)

Memory

2 5 7 10 12 15 17 20

Total workers (k)

1.0

2.0

3.0

4.0

5.0

T
im

e
(m

s)

Response

2 5 7 10 12 15 17 20

Total workers (k)

101.0

101.1

101.2

101.3

101.4

101.5

D
ur

at
io

n
(s

)

Execution

Steady baseline monitors Pulse baseline monitors Burst baseline monitors

Figure 6.7. Mean runtime overhead for master and worker processes (20 k workers)

6.5 Benchmark Validation · 111

High loads We increase the load to 𝑛 = 500k workers to determine whether our bench-

mark set-up can show how the monitored system performs under stress. The response

time chart in figure 6.8 indicates that for Burst loads (bottom left), the overhead induced

by monitors grows linearly in the number of workers. This conflicts with the results

in figure 6.7, and supports our claim of section 1.1.3 that the inability of benchmarks to

scale makes it hard to extrapolate to general conclusions or identify potential trends. For

instance, the evidence in figure 6.7 can easily mislead one to deduce that the RV tool

under scrutiny scales poorly under Burst loads of mild and larger sizes. By subjecting the

system to high loads, we also expose the dissimilarity between the response time (bottom

left) and memory consumption (top right) gradients for the Steady and Pulse plots that

appeared to be comparable under the mild loads of 20k workers. Note that, considering

the execution duration chart (bottom right of figure 6.8) as the sole indicator of overhead

falsely suggests that the monitored system exhibits virtually identical overhead, regardless

of the load profile applied. This erroneous observation is, however, refuted by the memory

consumption and response time plots that indicate otherwise, stressing the benefit that

multiple metrics offer when interpreting overhead.

100 200 300 400 500
0

25

50

U
til

is
at

io
n

(%
)

Scheduler

100 200 300 400 500
1.60

1.80

2.00

2.20

2.40

2.60

C
on

su
m

pt
io

n
(G

B)

Memory

100 200 300 400 500

Total workers (k)

0

2000

4000

6000

8000

T
im

e
(m

s)

Response

100 200 300 400 500

Total workers (k)

200

400

600

800

1000

1200

1400

D
ur

at
io

n
(s

)

Execution

Steady baseline monitors Pulse baseline monitors Burst baseline monitors

Figure 6.8. Mean runtime overhead for master and worker processes (500 k workers)

6 Reactive Runtime Monitoring Benchmarking · 112

We extend the argument for a multi-faceted view of runtime overhead to the sched-

uler utilisation metric in figure 6.8 that reveals a subtle aspect of our concurrent set-up.

Specifically, the charts show that while the response time, memory consumption, and

execution duration plots grow in the number of worker processes, scheduler utilisation

plateaus at ≈ 22.7%. This is partly caused by the master-worker design that becomes

susceptible to bottlenecks when the master is overloaded with requests [202]. In addition,

the preemptive scheduling of the EVM [57, 132] obliges the master to share the computa-

tional resources of the same machine with the rest of the workers. We conjecture that,

in a distributed set-up where the master resides on a dedicated node, the overall system

throughput may be further pushed.

6.5.3 OTS Application Benchmarks

In this second set of benchmarks, we evaluate the overheads induced by our inline

monitoring tool under examination using the Cowboy web server and show that the

conclusions we draw are in line with those reported earlier for our synthetic benchmark

results. The experiment is configured to generate load on Cowboy using the popular load

testing tool JMeter [109] that issues HTTP requests. JMeter is hosted on a dedicated node

that accesses the local network where the experiment-taking machine of section 6.4.1

running Cowboy resides. To emulate the typical behaviour of web clients (e.g. browsers)

that fetch resources via multiple HTTP requests, our Cowboy application serves files of

various sizes that are randomly accessed by JMeter during the benchmark.

Mild loads Figure 6.9 plots our results for Steady loads from figure 6.7, together with the

ones obtained from the Cowboy benchmarks; JMeter did not enable us to reproduce the

Pulse and Burst load profiles. For the Cowboy benchmarks, we fixed the total number of

JMeter request threads to 20k over the span of 100s, where each thread issued 100 HTTP

requests. This configuration coincides with parameter settings used in the experiments

of figure 6.7. In figure 6.9, the scheduler utilisation, memory consumption, and response

time charts (top, bottom left) show conformity between the baseline plots of our synthetic

benchmarks and those taken with Cowboy and JMeter. This indicates that, for these

metrics, our synthetic system model exhibits analogous characteristics to the ones of

the OTS system, under the chosen load profile. The argument can be extended to the

monitored versions of these systems which follow identical trends. We point out the

similarity in the response time gradients of our synthetic and Cowboy benchmarks, even

6.6 Discussion · 113

though the latter set of experiments was conducted over a local network. This suggests

that, for our single-machine configuration, the synthetic master-worker benchmarks

manage to adequately capture local network conditions. The𝑦-axis interval separating the

plots of the two experiment set-ups stems from the implementation specifics of Cowboy

and our synthetic model. This discrepancy is also attributable to how the runtime metrics

are collected, e.g. JMeter cannot sample the scheduler utilisation from within the EVM and

has to rely on measuring the CPU usage instead. The deviation in the execution duration

plots (bottom right) arises for the same reason.

High loads Our efforts to run tests with 500k request threads were stymied by the

scalability issues we experienced with Cowboy and JMeter on our experiment set-up of

section 6.4.1.

6.6 Discussion

RV for reactive systems necessitates benchmarking tools that can scale dynamically to

accommodate considerable load sizes and can provide a multi-faceted view of runtime

2 5 7 10 12 15 17 20
0

25

50

75

100

U
til

is
at

io
n

(%
)

Scheduler/CPU (Steady)

2 5 7 10 12 15 17 20

1.585

1.590

1.595

1.600

1.605

C
on

su
m

pt
io

n
(M

B)

Memory (Steady)

2 5 7 10 12 15 17 20

Total workers/request threads (k)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
(m

s)

Response (Steady)

2 5 7 10 12 15 17 20

Total workers/request threads (k)

0

2000

4000

6000

D
ur

at
io

n
(s

)

Execution (Steady)

Synthetic benchmark baseline monitors Cowboy baseline monitors

Figure 6.9. Mean overhead for synthetic and Cowboy benchmarks (20 k threads)

6 Reactive Runtime Monitoring Benchmarking · 114

overhead. This chapter presents a benchmarking tool that fulfils these requirements. We

demonstrate its implementability in Erlang, arguing that the design is easily instantiatable

to other actor frameworks such as Akka and Thespian. Our set-up emulates various system

models through configurable parameters and scales to reveal behaviour that emerges

only when software is pushed to its limit. The benchmark harness gathers different

performance metrics to give a comprehensive perspective on runtime overhead that, to

wit, other state-of-the-art tools do not currently offer. Our experiments demonstrate that

these metrics benefit the interpretation of empirical measurements: they increase visibility

and help uncover insufficiently general, or otherwise, erroneous conclusions. We establish

that—despite its synthetic nature—our master-worker model faithfully approximates the

response times observed in realistic web server traffic. We also compare the results of

our synthetic benchmarks against those obtained using a OTS application use-case to

confirm that our tool captures the behaviour of this realistic set-up. It is worth noting that,

while the empirical measurements discussed in sections 6.4 and 6.5 depend on our chosen

implementation language, the conclusions we draw are transferable to other frameworks,

such as Akka and Play [167] that adopt a concurrency model similar to our own.

6.6.1 Related Work

There are other benchmarking tools targeting the JVM besides those mentioned in sec-

tion 1.1.3. Renaissance [193] employs workloads that leverage the concurrency primitives

of the JVM, focussing on the performance of compiler optimisations, similar to DaCapo

and ScalaBench. These benchmarks gather metrics that measure software quality and

complexity, as opposed to metrics that gauge runtime overhead. Basho Bench [28] is one

of the first benchmarking tools available for the Erlang/OTP that was originally imple-

mented to benchmark Riak [29] and has been extended for use with other applications.

The tool focusses on capturing throughput and latency metrics. It creates workers to

which operations specific to a benchmarking scenario are assigned, e.g. issuing HTTP

requests. Worker processes can then invoke these operations either by maximising the

throughput or at intervals following a Poisson process. Bench also accepts parameters

that configure the number of concurrent workers, total benchmark loading time, and

randomisation seed, so that tests can be executed in a repeatable fashion. Despite the

similarities to our tool in these respects, Bench is similar to other load generation tools

like JMeter [109], Tsung [186], and Gatling [74] that assess the performance of APIs (e.g.

6.6 Discussion · 115

web services, middleware).

By contrast, bencherl [20] assess the scalability of Erlang applications, rather than

their performance. This framework combines a suite of synthetic microbenchmarks that

measure the Erlang-specific execution behaviour (e.g. process spawning, message sending,

etc.), together with a collection of OTS programs to identify bottlenecks in the EVM.

The CRV suite [26] is an initial attempt at standardising the evaluation of RV tools but

mainly focusses on RV for monolithic programs written for the JVM. We are unaware of

RV-centric benchmarks for reactive systems, such as ours, that are specifically designed

to scale dynamically and accommodate high loads that follow realistic patterns.

In Liu et al. [168], the authors propose a queueing model to analyse web server traffic

deployed on Apache [161], and develop a distributed benchmarking tool to validate it. Their

model coincides with our master-worker set-up and considers loads based on a Poisson

process; we also assess other forms of load. A study of message-passing communication on

parallel computers is conducted in Grove and Coddington [126]. The authors employ a MPI-

based benchmarking tool that measures the probability distributions of communication

times between systems loaded with different numbers of processes. This is similar to

our approach of sections 6.4.4 and 6.4.5 for synthetic loads. They exclusively focus on

MPI, which makes their tool inapplicable to our use case. However, the experiments of

section 6.4 that validate our benchmarking tool, and in particular, establish the veracity

of the models it generates (cf. section 6.4.5), agree with the empirical findings reported

by Liu et al. [168] and Grove and Coddington [126].

7 Evaluating Decentralised Outline

Runtime Monitoring

Chapter 1 claims that a decentralised approach to monitoring reactive component

systems overcomes the challenges that render its centralised counterpart inadequate. It

argues that the runtime monitoring technique itself must be reactive, lest it undermines

the reactiveness of the SuS. This chapter evaluates the Erlang implementation of our

decentralised algorithm given in chapter 5 via a systematic empirical study, demonstrating

that it exhibits the characteristics of a reactive system. In particular, it

• effects timely detections with feasible impact on the SuS (responsive, sections 7.2.1, 7.2.2

and 7.2.4),

• maximises resource usage but does not crash (resilient, sections 7.2.2 to 7.2.4),

• grows and shrinks to accommodate dynamic changes in load (elastic, sections 7.2.2

and 7.2.5), and

• reconfigures monitors in reaction to SuS trace events (message-driven, sections 7.2.2

and 7.2.5).

We evaluate decentralised and centralised outline monitoring alongside inlining (refer to

section 4.5) since it is widely adopted and generally regarded as the most efficient online

monitoring technique [91, 90, 25]. This gives us a sound basis against which our results

can be compared and generalised. As a by-product of this evaluation, we derive other

observations that challenge certain commonly-accepted notions that are not satisfactorily

explored in the RV literature cited in section 7.4 (e.g. we show that a considerable portion

of the runtime monitoring overhead stems from the instrumentation, and that outline

monitoring induces overhead comparable to inline monitoring in certain cases).

7.1 Reactive System Monitoring

Our goal is to study decentralised and centralised monitoring under induced edge-

case (e.g. limited memory) and general-case (e.g. typical number of processing elements)

scenarios. We judge whether these monitoring approaches scale and optimise the use of

117

7 Evaluating Decentralised Outline Runtime Monitoring · 118

Set-up System Schedulers Workers 𝑛 Work requests 𝑤 ≈Messages ≈Messages/s

SUE
RSH

4
100 k 100 20 M 196 k

RSL 1 k 10 k 20 M 201 k

SUG
RSH

16
500 k 100 100 M 345 k

RSL 5 k 10 k 100 M 637 k

Table 7.1. Experiment configurations and message throughput at maximum Steady loads

available computational resources to determine whether they exhibit reactive behaviour.

For this reason, our experiments use two different set-ups:

SUE edge-case scenarios, which reuse the set-up of section 6.4.1 to capture systems with

constrained hardware resources, and

SUG general-case scenarios, which use an Intel Core i9 9880H 64-bit machine with 16GB

of memory, running macOS 12.3.1 and Erlang/OTP 25.0.3, replicating platforms with

modern commodity hardware.

The differences in hardware, OS, and Erlang/OTP versions increase our confidence that

the conclusions drawn from this chapter are portable to other settings. To broaden the

scope of this investigation and generalise our results, we also consider two archetypal

models of reactive systems that:

RSH exhibit high degrees of concurrency and perform short-lived tasks. Web server

applications instantiate this model, where the server receives numerous HTTP

requests from clients and fulfils them by fetching resources or executing commands

(e.g. Nginx [79]), or

RSL deal with lower concurrency levels and engage in long-running, computationally-

intensive tasks. Big data stream processing frameworks are one example (e.g. Apache

Spark [228]).

We model these scenarios on set-ups SUE and SUG using the benchmarking tool of chapter 6

to show that our decentralised monitoring approach can be feasibly applied to all cases.

7.1.1 Experiment Set-Up

Our EVMs on set-ups SUE and SUG are configured to use 4 and 16 scheduler threads

respectively. The setting for each platform is selected to coincide with the number of

7.1 Reactive System Monitoring · 119

logical processors available on the SMP machine [19]. The loads we use to generate

our benchmarking models reflect the hardware capacity that SUE and SUG afford. For

the experiments in sections 7.2.1 to 7.2.3, set-up SUE is configured for moderate loads

with 𝑛 = 100k workers and 𝑤 = 100 work requests per worker. This model generates

≈𝑛×𝑤 × (work requests and responses) = 20M message exchanges between the master

and worker processes, totalling 20M× (send and receive trace events) = 40M analysable

trace events. Set-up SUG adopts the same high load settings of section 6.4.1, i.e., 𝑛 = 500k

workers, each with 𝑤 = 100 work requests to produce 100M messages and 200M trace

events. These load configurations embody the first model of reactive systems, RSH, with

high concurrency, and are used in sections 7.2.4 and 7.2.5.

Section 7.3 uses loads that model the second reactive system, RSL. The benchmarks on

set-up SUE are configured with 𝑛 = 1k and 𝑤 = 10k work requests per worker, and SUG

sets 𝑛 = 5k and 𝑤 = 10k. These parameter values roughly yield the same number of trace

events as their respective counterparts with moderate (i.e., 𝑛 = 100k, 𝑤 = 100) and high

(i.e., 𝑛 = 500k, 𝑤 = 100) loads on system RSH.

In all our experiments, a total loading time of 𝑡 = 100s is set. The parameters Pr(𝑠𝑒𝑛𝑑)
and Pr(𝑟𝑒𝑐𝑣)that control the speed at which the system reacts to load, use the values

Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣) = 0.9. These generate benchmark models that consume reasonably

low memory and emulate realistic response times (refer to section 6.1.5). We subject

each benchmark to the three load profiles—Steady, Pulse, and Burst—offered by our

benchmarking tool of chapter 6. Each experiment is performed three times, based on our

CV values calculated according to section 6.4.3. Table 7.1 summarises these experiment

configurations and includes the message throughput under maximum Steady loads (i.e.,

100 k, 500 k, etc.) for reference.

7.1.2 Runtime Monitoring Set-up

By contrast to the set-up of section 6.5.1, the experiments in this chapter monitor both

the master and worker processes. Figure 7.1 illustrates the arrangement of decentralised

and centralised outline monitors for the case where events are analysed internally by

tracers (cf. figure 5.1b). The system with inline monitors is organised similarly to the one

in figure 6.6a. It is worth mentioning that the centralised set-up (figure 7.1b) is obtained

by instrumenting the master process only. By virtue of automatic tracer inheritance

(assumption A5), every worker that the master creates gets traced by the monitor at the

7 Evaluating Decentralised Outline Runtime Monitoring · 120

𝑀 𝑀𝑀

𝑊1 𝑀1 𝑊2 𝑀2 . . . 𝑊𝑛 𝑀𝑛

(a) Decentralised master and worker process monitoring

𝑀

𝑀𝐶

𝑊1 𝑊2 . . . 𝑊𝑛

(b) Centralised master and worker process monitoring

Figure 7.1. Master-worker benchmarks instrumented with decentralised and centralised outline

monitors (internal)

master, giving rise to the set-up of figure 7.1b. See concluding discussion of section 5.1 on

page 72.

7.1.3 Precautions

Our benchmarking tool of chapter 6 focusses on collecting the memory consumption

and scheduler utilisation metrics globally to minimise impacting the behaviour of the

master-worker models it generates [127]. This measurement-taking strategy prevents us

from isolating the operating expense of the monitors from that of the SuS. We, therefore,

follow the same approach of section 6.5 and insert the baseline system plots for reference

in the charts that follow.

Online monitors may introduce runtime overhead biases owed to various specific factors,

such as the non-determinism a monitor admits, its size in terms of the number of states,

monitor optimisations, persisting trace events, etc. As an example, table 7.2 lists the mean

Event operation Number of events in trace

1 k 10 k 100 k 1 M

Write to file 30.76 33.18 29.59 27.84

Analysis using monitors from formulae 𝜑13 to 𝜑16 302.55 304.44 308.99 306.71

Analysis using monitors from formulae 𝜑rp to 𝜑cp 693.46 667.97 715.95 654.96

Table 7.2. Mean time (µs) taken by monitors to persist or analyse one trace event

7.2 Monitoring High Concurrency Systems · 121

time in microseconds (µs) that monitors spend processing events for traces of different

lengths. The values in the topmost entry record the time it takes to write an event to

file (e.g., for offline monitoring), while the remaining tabulate the average time spent

by the monitors synthesised from the properties of appendices B.1 and B.3 to analyse

each event. To objectively compare the overhead induced in different monitoring set-ups,

our benchmarks simulate this runtime analysis cost via a configurable delay. We set this

analysis cost to a very conservative ≈ 5µs per event to manufacture a best-case scenario

under which decentralised and, in particular, centralised monitoring can be evaluated.

Runtime checking local properties (i.e., ones specified w.r.t. system components) against

a global trace can be done efficiently via an approach called parametric trace slicing

(PTS) [62, 196], mentioned in section 4.7.1. Recall that PTS partitions the global trace

into multiple sub-traces, where each corresponds to the behaviour observed locally at

different components. Every sub-trace is then analysed independently of the others by

a dedicated local monitor that reaches its verdict based on the events reported thus far.

Our centralised monitor implements PTS by demultiplexing the global stream of trace

events to different local monitors. It maintains a monitor map that is indexed by the PID

of system components to quickly access the associated monitors and analyse events. The

central monitor ensures that every local monitor is created when needed and removed

when its analysis is completed. This ensures the lowest possible overhead and does not

bias our results in favour of decentralised monitoring.

7.2 Monitoring High Concurrency Systems

This section gives a comprehensive view of runtime monitoring that highlights,

(i) the effect overhead has on the SuS as it executes, and

(ii) the average resources monitors consume until their analysis runs to completion

Aspect (i) elucidates how the memory consumption and scheduler utilisation influence the

response time that a client might experience in practice (sections 7.2.1 to 7.2.4). Conversely,

aspect (ii) reveals whether the monitoring set-up optimally maximises the memory and

scheduler capacity provided by the hosting platform and whether monitors can effect

timely verdict detections (section 7.2.5). The experiments in this section use set-up SUE to

capture edge-case scenarios with limited resources, and set-up SUG, capturing general-

case scenarios with modern hardware. Both set-ups focus on RSH, which models high-

concurrency systems that execute short-lived tasks.

7 Evaluating Decentralised Outline Runtime Monitoring · 122

Our general aims for aspects (i) and (ii) are broken down in table 7.3. It lists claims

that we make about experiments, together with the outcomes expected as a result of

our interpretation of the corresponding empirical evaluation. Each section named in

table 7.3 details the methodology followed in each evaluation and is accompanied by a

discussion of the graphed results. We adopt this nomenclature in what follows. The term

instrumentation is used to mean the ‘isolated instrumentation’, i.e., without the analysis of

runtime monitors, and monitoring to mean the ‘instrumentation and the runtime analysis

Experiment Set-up Claim and expected outcome

(i) Effect that overhead has on the SuS as it executes

Instrumentation Overhead SUE

Instrumentation induces non-negligible overhead

We expect the centralised set-up to induce the highest

overhead

Monitoring Overhead SUE

Instrumentation and runtime analysis add further over-

head

We expect the centralised set-up to induce the highest

overhead

Instrumentation Cost SUE

Much of the monitoring overhead arises from instru-

mentation

We expect the overhead gap between the instrumented

and monitored set-ups for decentralised monitors to be

relatively small

Scaled Set-up SUG

Decentralised monitoring leverages the added resource

capacity

We expect the centralised set-up not to scale

(ii) Average resources monitors consume until analysis runs to completion

Resource Usage SUG

Decentralised monitoring is elastic following the load

model

We expect the centralised set-up to be unaffected by

load model

Table 7.3. Experiments for high concurrency systems (RSH) investigating overhead, claims, and

expected outcomes

7.2 Monitoring High Concurrency Systems · 123

of monitors’. Decentralised monitoring refers to both the inline and outline forms of

monitoring.

7.2.1 Instrumentation Overhead

Our first set of experiments isolates the overhead induced on the SuS due to instrumen-

tation, i.e., the cost of tracing system components and reporting events to the intended

monitors. They show that the instrumentation induces non-negligible overhead, de-

spite the fact that no runtime analysis is conducted by monitors (table 7.3, claim 1). The

benchmarks are executed on set-up SUE, where the master-worker models are run with

moderate loads (𝑛 = 100k, 𝑤 = 100, and 4 scheduler threads). Figure 7.2 shows the results

0

250

500

750

1000

1250

1500

1750

T
im

e
(m

s)

Steady Load

Response

Pulse Load

Response

Burst Load

Response

2.0

2.5

3.0

3.5

C
on

su
m

pt
io

n
(G

B)

Memory Memory Memory

20 40 60 80 100

Total workers (k)

15

20

25

30

35

U
til

is
at

io
n

(%
)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

baseline inline decentralised centralised

Figure 7.2. Instrumentation overhead on system under moderate load benchmarks (100k workers)

7 Evaluating Decentralised Outline Runtime Monitoring · 124

obtained from these benchmarks for the decentralised inline (inline), decentralised outline

(decentralised), and centralised outline (centralised) forms of instrumentation.

For the three load profiles, Steady, Pulse, and Burst, figure 7.2 indicates that (i) all types of

instrumentation induce overhead that is by no means insignificant, and (ii) that centralised

instrumentation carries the larger penalty. Centralised instrumentation occupies more

memory due to the backlog that gradually accumulates in the mailbox of the tracer

process (i.e., the message buffer ^ described in section 5.1.1 on page 72). This build-up

is a manifestation of two aspects. Worker processes concurrently deposit trace events

into the mailbox of the central tracer. At the same time, the tracer does not manage to

consume the events in its mailbox at the same rate at which these are being produced by

workers as a result of its sequential nature. Evidence of this bottleneck can be gleaned

from the scheduler plots which demonstrate high utilisation levels that settle at ≈ 36% for

the benchmarks with ≈ 40k workers under Steady load, and ≈ 60k workers under Pulse

and Burst load. Considering the scheduler utilisation charts in isolation may suggest that,

rather than a bottleneck, centralised instrumentation has the potential to scale since it

displays low usage. Its steadily growing memory consumption plots in figure 7.2, however,

contradict this hypothesis.

By contrast, our decentralised approach uses considerably fewer resources and yields

lower response times throughout the three load profiles of figure 7.2. Readers may notice

that the decentralised instrumentation scheduler utilisation plots also plateau slightly

in the Steady (≈ 60k workers) and Pulse (≈ 70k workers) load charts. This behaviour is

induced by the bottleneck intrinsic to the master-worker paradigm [202] that throttles the

production of trace events, rather than by the inability of our decentralised approach to

scale. One easily supports this assertion by looking at corresponding memory consumption

plots that exhibit a gentle rise in the number of worker processes.

7.2.2 Monitoring Overhead

The second set of experiments extends the results of section 7.2.1 by combining the

overhead incurred by the analysis performed by the monitors and instrumentation, i.e., the

full cost of runtime monitoring. We demonstrate that the added cost of runtime analysis

induces further growth in the overhead and that centralised monitoring performs poorly

as a result (table 7.3, claim 2). Our benchmarks are executed on configuration SUE and

introduce the ≈ 5µs delay described in section 7.1.3 to stabilise the analysis overhead.

7.2 Monitoring High Concurrency Systems · 125

Figure 7.3 illustrates the overhead incurred by the monitored master-worker system under

the Steady, Pulse, and Burst load models. In addition to the baseline and inline benchmarks,

our charts plot the overhead for two variants of decentralised and centralised monitoring

(see figure 5.1) that internalise the event analysis within tracers (internal), or delegate it

to dedicated monitor processes (external). These are included to examine whether the

benefit of process isolation obtained by separating the tracer and monitor logic justifies

the extra overhead induced due to additional concurrency.

Figure 7.3 shows that centralised monitoring exhibits analogous memory consumption

and scheduler utilisation patterns to the instrumentation overhead charts of figure 7.2. It

reveals that simulating a best-case analysis slowdown of ≈ 5µs per event aggravates the

overhead to the point of crashing (this is marked by ✕ in figure 7.3). This behaviour is

consistent across Steady, Pulse, and Burst loads for both the internal and external forms of

centralised monitoring. By analysing the crash dumps produced by these benchmarks, we

were able to attribute these abrupt terminations to memory exhaustion. The dumps also

confirm that the significant amount of memory consumed is due to the central monitor

process, which appears to result from the accumulated backlog of trace messages that

ultimately leads the EVM to fail. This suggests that centralised monitoring is neither

scalable nor resilient.

Decentralised inline and outline monitoring is not afflicted by the analysis slowdown,

but rather scales to accommodate this cost. This may be confirmed by cross-referencing

the low memory consumption and scheduler utilisation plots of figures 7.2 and 7.3 (refer

also to summary in figure C.1). Dissecting these metrics uncovers two important subtleties

of decentralisation. First, outline monitors process events quickly (attested by the absence

of excessive memory growth) and spend much of their time idle, waiting for trace events

(lower scheduler utilisation than centralised monitoring), i.e., they are passive and message-

driven. Second, the effectiveness of inline monitors should not be judged solely by the low

memory and scheduler costs. Inlining entwines the SuS and monitors, and slowdowns in

the analysis risk impacting the overall system responsiveness [25, 68].

Figure 7.3 (top) shows that both forms of decentralised monitoring induce latency, yet

for crucially different reasons. Our algorithm presented in chapter 5 enables us to deduce

that the latency in the case of outline monitoring stems indirectly from the dynamic

reconfiguration monitors perform to manage the choreography. In contrast, the effects

of inlining are due to the dependency it has on the analysis slowdown. This reasoning

7 Evaluating Decentralised Outline Runtime Monitoring · 126

0

500

1000

1500

T
im

e
(m

s)

Steady Load

Response

Pulse Load

Response

Burst Load

Response

2.0

2.5

3.0

3.5

4.0

4.5

C
on

su
m

pt
io

n
(G

B)

Memory Memory Memory

20 40 60 80 100

Total workers (k)

15

20

25

30

35

U
til

is
at

io
n

(%
)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

baseline inline decent. (internal) decent. (external) cent. (internal) cent. (external)

Figure 7.3. Monitoring overhead on system under moderate load benchmarks (100k workers)

follows from the fact that the SuS and monitors execute in lock-step according to the

synchronous instrumentation definition of figure 3.2 and our corresponding implemen-

tation of section 4.5. We note that other works (e.g. [61, 51]) report similar observations.

Section 7.3 elaborates further on the slowdowns induced by inlining and shows that

increasing the event analysis throughput can deteriorate the response time further.

The latency introduced by decentralised monitoring is decidedly lower than its cen-

tralised equivalent (figure 7.3), making decentralisation the better option due to the

scalability and resiliency it offers. Figure 7.3 also indicates that our outline approach

induces feasible response time overhead when judged against inline monitoring. Moreover,

in cases that do not warrant strict timely detections, outlining is preferable to inlining as

7.2 Monitoring High Concurrency Systems · 127

it does not increase the sequentiality (called ‘sequentialness’ in Armstrong [19]) of the

SuS, leaving it more amenable to parallelisation.

Effects of less sequentiality are visible in the plots of figure 7.3—despite the limited

parallelism offered by our current configuration, set-up SUE, with four scheduler threads.

Here, the variants of decentralised and centralised outline monitoring that tease apart the

instrumentation and trace event analysis (see figure 5.1a) put the scheduler to more use, as

opposed to the internalised versions. The decentralised form of externalised monitoring

consumes more memory due to the extra monitor processes it creates to delegate the

analysis task. By contrast, both variants of the centralised approach consume comparable

(Steady and Pulse load) or slightly less (Burst load) amounts of memory since the backlog

of trace events occurs only on the instrumentation side. This asynchronously forwards

events to its corresponding singleton monitor process and helps to relieve some of the

pressure build-up on the tracer process. As a result, these two processes handle trace

events concurrently and seems to be the reason why the externalised analysis variant of

centralised monitoring consistently crashes at higher loads in figure 7.3. Our deduction is

supported by the crash dumps resulting from these benchmarks.

7.2.3 Instrumentation Cost

Figure 7.4 compares the instrumentation and monitoring overhead of figure 7.2 and

figure 7.3 for the two load profile extremities, Steady and Pulse. Readers are pointed to

figure C.1 for the plots that include Pulse load. We show that in our experiments, much of

the runtime overhead is induced by the instrumentation, rather than by the analysis that

monitors conduct (table 7.3, claim 3). In figure 7.4, the centralised approach demonstrates

a considerable disparity between the instrumentation (i.e., without runtime analysis)

and monitoring (i.e., instrumentation and runtime analysis) overhead for both memory

consumption and scheduler utilisation as the load in the number of worker processes

increases. This trend is consistent across all load profiles. Evidence of the centralised

monitoring bottlenecks are clear in the memory and scheduler values (memory increases

but the scheduler plateaus). These values start to grow beyond ≈ 30k and ≈ 20k workers

for the Steady and Burst loads respectively. The resulting overhead increase leads our

experiments to crash (denoted by a missing bar plot in figure 7.4) at the≈70k workers mark

under Steady load and at ≈80k under Burst load. Both plots in the figure also demonstrate

a degradation in the response time for centralised instrumentation as the load in the

7 Evaluating Decentralised Outline Runtime Monitoring · 128

0

250

500

750

1000

1250

1500

1750

T
im

e
(m

s)

Steady Load

Response

Burst Load

Response

0.0

1.0

2.0

3.0

4.0

C
on

su
m

pt
io

n
(G

B)

Memory Memory

20 40 60 80 100

Total workers (k)

0

5

10

15

20

25

30

35

U
til

is
at

io
n

(%
)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

inline (instr.) inline (mon.) decent. (instr.) decent. (mon.) cent. (instr.) cent. (mon.)

Figure 7.4. Gap in instrumentation and monitoring overhead on the system under moderate load

benchmarks (100k workers)

number of workers increases, which seems to be a byproduct of the consistently-high

demands on the scheduler.

Decentralised inline and outline instrumentation exhibit comparable overhead mea-

surements to the ones taken with monitors. However, the respective bar plots for inline

instrumentation and inline monitoring show a growing pairwise gap in the response time

values under Burst load that starts developing at ≈ 80k workers (figure 7.4, top right).

Such divergence in the response time readings is arguably smaller in decentralised outline

instrumentation and decentralised outline monitoring. Based on this observation and the

fact that outline instrumentation decouples the SuS from its monitors, we conjecture that

7.2 Monitoring High Concurrency Systems · 129

outlining is robust and absorbs the additional analysis slowdown. This would enable it to

accommodate intricate monitors that runtime check richer correctness properties.

7.2.4 Scaled Set-up

Our benchmarks conducted on SUE study how decentralised and centralised monitoring

behave in edge-case situations where the memory is constrained and the possibility of

parallelism is limited. Under these conditions, our findings show that the centralised

approach is neither scalable (it utilises the scheduler reasonably, but at the same time,

keeps considerable amounts of memory occupied), nor resilient (it exhausts the memory

until eventually crashing due to its single point of failure). Decentralised monitoring is

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(m

s)

Steady Load

Response

Pulse Load

Response

Burst Load

Response

5.0

10.0

15.0

20.0

25.0

30.0

35.0

C
on

su
m

pt
io

n
(G

B)

Memory Memory Memory

100 200 300 400 500

Total workers (k)

4

6

8

10

12

14

U
til

is
at

io
n

(%
)

Scheduler

100 200 300 400 500

Total workers (k)

Scheduler

100 200 300 400 500

Total workers (k)

Scheduler

baseline inline decent. (internal) decent. (external) cent. (internal) cent. (external)

Figure 7.5. Monitoring overhead on system under high load benchmarks (500k workers)

7 Evaluating Decentralised Outline Runtime Monitoring · 130

not subject to these shortcomings. We transition to the second set-up, SUG, and scale our

experiments to confirm that the aforestated observations are transferable to more general

cases. In particular, we show that decentralisation yields scalable runtime monitoring that

(i) capitalises on the additional memory and processing capacity, and (ii) copes well with

high load sizes (table 7.3, claim 4).

Figure 7.5 shows our benchmark results set with 𝑛=500k workers,𝑤=100 work requests

per worker, and a simulated analysis slowdown of ≈ 5µs per trace event. The number of

scheduler threads on the EVM is increased from 4 to 16. Interested readers can consult

figure C.3 which charts the instrumentation and monitoring overhead. Our memory

consumption and scheduler utilisation plots of figure 7.5 magnify the bottleneck that

adversely affected centralised monitoring in figure 7.3. In the latter benchmarks with 100 k

workers, centralised monitoring exhibits higher scheduler utilisation levels (e.g. 31.87 %

for the internalised analysis variant at 50 k workers under Steady load), by comparison

to the plots in figure 7.5 (e.g. 4.67 % at an equivalent number of workers and under the

same Steady load). The drop in scheduler utilisation stems from two reasons. First, the

centralised monitor is limited in its use of computational resources due to its sequentiality

(see section 7.2.2). Second, the mean utilisation value is calculated over 16 scheduler

threads. On set-up SUE, this value grows because the EVM schedules processes on a

limited number of threads, which concentrates their use; in contrast, processes are spread

across more schedulers on set-up SUG. While the larger number of schedulers on the latter

set-up does improve the parallelism in our experiments, this processing capability is not

exploited to its fullest due to the throttling of tasks the master-worker model is susceptible

to. Comparing the scheduler utilisation baseline in figures 7.3 and 7.5 corroborates this

hypothesis. Nevertheless, the added parallelism gained through the extra schedulers on

SUG instigates the workers to collectively generate more trace events than in the previous

set-up with 100k workers (e.g. the throughput with 100k workers is ≈ 196k messages/s,

vs. ≈ 345k messages/s in the experiments with 500k workers, table 7.1). The higher

message throughput exacerbates the load on the central monitor that is unable to exploit

the parallelism offered by set-up SUG to analyse events. We emphasise that the absence

of crashes in these experiments is attributable to the considerable amount of memory

set-up SUG provides, rather than to the ability of the central monitor to manage load.

Figure 7.5 demonstrates that the sustained increase in memory consumption by centralised

monitors will eventually lead to failure, once the available resources are exhausted.

7.2 Monitoring High Concurrency Systems · 131

Decentralised outline monitors benefit from the hardware capacity of set-up SUG, which

manifests as conservative memory consumption and increased scheduler utilisation,

supporting our observations in section 7.2.2. The growth in scheduler utilisation follows

as a result of the monitor reconfiguration and the routing of trace events effected by our

algorithm of chapter 5. As is the case in figure 7.3, the external variant of decentralised

outline monitoring (that uses dedicated processes to analyse events) induces slightly

higher memory overhead than its internal analogue as a result of the extra processes it

creates. Figure 7.5 shows that centralised outline monitoring is also outperformed by

inlining, which carries the lowest cost out of the three monitoring approaches considered.

The plots of figure 7.5 exhibit a positive correlation between the scheduler utilisation

and the latency induced by decentralised and centralised outline monitoring (i.e., the more

the scheduler utilisation increases, the higher the latency). This relationship, equally

visible in figure 7.3, is a consequence of our master-worker benchmarks that focus on

CPU-intensive tasks (refer to section 6.1.5 on page 99). We assert that the response time

of our benchmarks in figure 7.5 degrades since decentralised outline monitors compete

for the same pool of scheduler threads in use by worker processes. As a result, workers

reside in the run queue [132] for longer periods, which impacts their ability to respond to

the master promptly. The singleton monitor employed in the centralised approach adds

minimal demands on the EVM schedulers and uses its allotted time slice to keep up with its

backlog of trace events. In fact, figure 7.5 shows that organising the instrumentation and

runtime analysis into separate processes improves the scheduler utilisation of centralised

monitoring: this materialises as the small decrease in the memory consumption (middle)

and an imperceptible drop in latency (top) across the three load profiles.

Decentralised outline monitoring affects the response time of the SuS, but this comes

at the cost of replicating monitors to achieve resilient set-ups that address the SPOF and

scalability limitations which make centralised monitoring inept. Besides, decentralised

outline monitoring circumvents the issues where inlining cannot be applied (see discussion

in section 2.1.4). Figure 7.5 demonstrates that our decentralised approach to monitoring

leverages the added hardware capacity and copes with high loads (memory consumption

is very gradual). It also induces feasible latency that is adequate in many practical

applications such as soft real-time or on-line systems [57], where the response time

requirement is often in the order of seconds [149].

7 Evaluating Decentralised Outline Runtime Monitoring · 132

500

1000

1500

2000

2500

D
ur

at
io

n
(s

)

Steady Load

Execution

Pulse Load

Execution

Burst Load

Execution

10.0

20.0

30.0

40.0

50.0

60.0

70.0

C
on

su
m

pt
io

n
(G

B)

Memory Memory Memory

100 200 300 400 500

Total workers (k)

4

6

8

10

12

14

U
til

is
at

io
n

(%
)

Scheduler

100 200 300 400 500

Total workers (k)

Scheduler

100 200 300 400 500

Total workers (k)

Scheduler

baseline inline decent. (internal) decent. (external) cent. (internal) cent. (external)

Figure 7.6. Monitoring overhead for complete experiment runs under high load benchmarks (500k

workers)

7.2.5 Resource Usage

Sections 7.2.1 to 7.2.4 demonstrate the effects of monitoring overhead on the SuS. Through

the mean response time, figures 7.3 and 7.5 capture the overall system responsiveness

from the point of view of interacting clients, such as end-users or other applications.

The memory consumption and scheduler utilisation plots presented in these figures are

confined to the time period in which the system runs, thereby giving a truthful depiction

of these metrics. This section reinterprets the same metrics collected for the experi-

ments of sections 7.2.2 and 7.2.4. It presents an alternative view that assesses monitoring

overhead in its entirety—from the time the SuS starts executing until monitors complete

7.2 Monitoring High Concurrency Systems · 133

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

C
on

su
m

pt
io

n
(G

B)

Steady Load

Memory

Burst Load

Memory

0 500 1000 1500 2000 2500

Execution duration (s)

0

10

20

30

40

50

60

70

U
til

is
at

io
n

(%
)

Scheduler

0 500 1000 1500 2000 2500

Execution duration (s)

Scheduler

baseline inline decent. (internal) decent. (external) cent. (internal) cent. (external)

Figure 7.7. Resource usage for (de)centralised monitoring under high load benchmarks (500k workers)

their analysis—to investigate whether each monitoring technique puts to optimal use the

resources offered by its hosting platform. Through this view, we show that decentralised

inline and outline monitoring dynamically adapt to the load applied, i.e., they are elastic,

and that centralised monitoring exhibits no such quality (table 7.3, claim 5). The system

response time is not relevant to this discussion (it is an attribute of the SuS, not of the

monitors), and we replace it by the execution duration metric that records the time taken

by experiments to execute to completion. We only consider the results taken on set-up SUG

with 500k workers processes, since the experiments on SUE for centralised monitoring

discussed earlier crashed (see section 7.2.2).

The mean metrics calculated over complete experiment runs, depicted in figure 7.6,

reaffirm the memory consumption trend for centralised monitoring observed in figure 7.5.

One striking difference between these two figures is in the scheduler utilisation, where

the plots for the two variants of centralised monitoring (i.e., internal and external) in

figure 7.6 dip below the baseline system. This effect results from skewness in the mean

due to the asymmetry in the distribution of the scheduler utilisation samples collected

by our benchmarking tool (refer to section 6.3). Figure 7.7 plots the sampled memory

7 Evaluating Decentralised Outline Runtime Monitoring · 134

consumption and scheduler utilisation (averaged over the 16 schedulers, 𝑦-axis) against

the execution duration (𝑥-axis) to capture the resource usage during the course of a

single experiment run. It underscores the aforementioned lopsidedness in the sampled

scheduler utilisation values. This arises because the samples register higher values when

the master-worker system and centralised monitor execute concurrently, and lower values

once the system terminates but the centralised monitor lingers, processing its backlog of

events. The protracted processing of trace events—reflected in figure 7.7 by the ‘tail’ in

the scheduler utilisation plots—also suggests that centralised monitors are susceptible to

flagging late monitoring verdicts, making them unsuited for cases when timely detections

are required. For instance, our benchmark runs for 500 k with centralised monitors

(internal) respectively take ≈862% and ≈843% longer to finish executing than the baseline

system under Steady and Burst loads.

Figure 7.6 shows that decentralised outline and inline monitoring take considerably less

time to complete their runtime analysis. As an example, our same set-up with decentralised

outline monitors (internal) prolongs the execution of experiments by ≈ 73% and ≈ 85%

w.r.t. the baseline system under Steady and Burst loads respectively, and ≈1% and ≈31% for

inlined monitors. The memory consumption plots in figure 7.6 (and also figures 7.3 and 7.5)

demonstrate the potential of decentralised approaches to scale as the SuS is subjected to

increasing load. These figures give the mean memory consumption over the duration of

the benchmark executions, which conceals how our decentralised algorithm uses this

resource optimally at runtime.

Figure 7.8 replots the decentralised monitoring runs in figure 7.7 to highlight this

perspective. The memory consumption patterns in figure 7.8 mirror the profiles of the

loads applied (see figure 6.5 for examples), confirming that our decentralised approach

grows and shrinks in response to dynamic fluctuations in the load (cf. figure C.5 for Steady

vs. Pulse load). This elasticity results from instrumenting monitors when needed and

garbage collecting them when these become redundant to minimise the memory footprint

(see section 5.2.7). Centralised monitoring does not exhibit this adaptable behaviour

and its use of memory grows steadily, regardless of the load profile applied (figure 7.7

accentuates the substantial difference in memory consumption between decentralised

and centralised monitors). Similarly, its scheduler utilisation is largely insensitive to the

load profile applied. This occurs despite load profiles dictating different worker creation

schemes, which, however, have no effect since the trace events exhibited by workers are

7.2 Monitoring High Concurrency Systems · 135

2.0

3.0

4.0

5.0

6.0

7.0

C
on

su
m

pt
io

n
(G

B)

Steady Load

Memory

Burst Load

Memory

0 100 200 300 400 500

Execution duration (s)

0

10

20

30

40

50

U
til

is
at

io
n

(%
)

Scheduler

0 100 200 300 400 500

Execution duration (s)

Scheduler

baseline inline decent. (internal) decent. (external)

Figure 7.8. Resource consumption for decentralised monitoring under high load benchmarks (500k

workers)

always funnelled through a single monitor. In the decentralised approach, the creation and

termination of monitors follows that of worker processes. This influences the scheduler

utilisation, as figure 7.8 indicates, albeit on a small scale. For the case of Steady load,

the utilisation oscillates consistently due to the continual influx of trace events, whereas

under Burst load, utilisation is less concentrated and increases slightly towards the end.

Closely inspecting the frequency and amplitude of the scheduler utilisation plots in

figures 7.7 and 7.8 corroborates the observation made in section 7.2.2 about decentralised

monitoring, namely that, monitors process events quickly and revert to waiting. The

prompt handling of trace events by decentralised monitors appears to manifest as peaks in

figure 7.8, whereas waiting periods (where monitors are placed on the EVM run queues) are

reflected in the regions that show stable scheduler utilisation. Peaks with high amplitude

suggest the simultaneous use of multiple scheduler threads. The absence of such peaks in

the plots of figure 7.7 for centralised monitoring comes from the single-process monitor

that is unable to leverage other unoccupied EVM scheduler threads. This is especially

evident in the sub ≈ 3.08% scheduler utilisation under both Steady and Burst loads.

7 Evaluating Decentralised Outline Runtime Monitoring · 136

Figure C.6 depicts the load on the individual 16 EVM schedulers to certify this deduction.

It indicates evenly-distributed utilisation across schedulers S1 to S16 for decentralised

monitoring (top) under Steady and Burst loads throughout the benchmark run. This

makes it consistent with the peaks in the mean scheduler utilisation plot of figure 7.8. By

contrast, the load distribution for centralised monitoring in figure C.6 (bottom) becomes

concentrated on scheduler S1 and S2 once the master-worker system stops executing.

7.3 Monitoring Lower Concurrency Systems

Section 7.2 attests that our decentralised monitoring approach is reactive. At the same

time, it preserves the reactive aspect of the SuS by inducing feasible runtime overhead.

Centralised monitoring lacks both of these traits. This section considers the second type of

reactive architecture, RSL, which models systems with comparably lower concurrency that

focus on long-running computational tasks. We demonstrate that a centralised approach

fails to scale in such settings. We also show that decentralised outline monitoring scales

even better than on system RSH, and induces overheads on par with its inline counterpart.

In these experiments, our master-worker models use moderate loads of 𝑛 = 1k workers

with𝑤 =10k work requests per worker on set-up SUE (edge-case scenarios), and high loads

with 𝑛=5k and𝑤 = 10k on SUG (general-case scenarios). As before, we set the EVM with 4

scheduler threads on set-up SUE and 16 threads on SUG, keeping the simulated slowdown

of ≈ 5µs per trace event. The changes in the benchmark configuration alter the way the

execution of our master-worker models unfolds w.r.t. the ones in section 7.2. Concretely,

the master instantiates most of its worker processes relatively early in runs and spends

the remainder of its execution busy, allocating work requests. This increases the message

throughput within the system, e.g. table 7.1 shows almost a two-fold growth in throughput

for the experiments performed with 5 k workers by comparison to the ones with 500 k

in section 7.2. Consequently, our attempts at benchmarking centralised monitors on set-

ups SUE and SUG were consistently hampered by the rapid accumulation of trace events

in the backlog of the central monitor that, eventually, exhausts the available memory. For

this reason, we only consider the inline and outline (internal variant, figure 5.1b) forms of

decentralised monitors in what follows.

Figure 7.9 draws the comparison between our experiments of section 7.2 taken with

500 k workers and the ones taken on set-up SUG with 5 k workers under Steady and Burst

loads. Since the two experiment set-ups are incomparable in their number of processes,

7.3 Monitoring Lower Concurrency Systems · 137

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(m

s)

Steady Load

Response

Burst Load

Response

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
on

su
m

pt
io

n
(G

B)

Memory Memory

2 4 6 8 10

Benchmark iteration

0

2

4

6

8

10

12

U
til

is
at

io
n

(%
)

Scheduler

2 4 6 8 10

Benchmark iteration

Scheduler

baseline (500 k) baseline (5 k) inline (500 k) inline (5 k) outline (500 k) outline (5 k)

Figure 7.9. Gap in decentralised monitoring overhead on the system under high load benchmarks

(500k vs. 5k workers)

figure 7.9 plots the performance metric (e.g. memory consumption, 𝑦-axis) against the

benchmark iteration number (𝑥-axis). We recall that each 500 k and 5 k benchmark run

generates approximately the same number of message exchanges between the master and

worker processes, enabling us to compare the two (cf. table 7.1).

The bar plots in figure 7.9 show that decentralised outline monitoring (outline) in

system RSL with 5 k workers induces less memory and scheduler overhead, compared

to the experiments of system RSH with 500 k workers. This occurs despite the fact that

both of these configurations generate an approximately equal amount of load in terms

of analysable trace event messages (see table 7.1). Table 7.4 estimates these overheads

7 Evaluating Decentralised Outline Runtime Monitoring · 138

w.r.t. the baseline systems RSH and RSL for the maximum loads at 500 k and 5 k workers

respectively. For instance, outline monitors increase the memory overhead by 8 % in our

experiments on system RSL vs. 23 % on RSH under Steady load, and by 10 % vs. 56 % on

RSL and RSH respectively under Burst load. The corresponding scheduler plots exhibit

analogous trends, with 52 % overhead increase (system RSL) vs. 123 % (system RSH) under

Steady load, and 50 % (system RSL) vs. 123 % (system RSH) under Burst loads. We conclude

that this decrease in overhead for outlining on system RSL stems from the lower number

of worker processes the master creates, that (i) requires our decentralised algorithm to

perform fewer reconfigurations to manage the monitor choreography, and (ii) minimises

the trace event routing performed as a result (refer to section 5.2.3). By contrast to

outlining, decentralised inline monitoring (inline) registers negligible changes in both

memory consumption and scheduler utilisation between our experiment set-ups RSL and

RSH. While outline monitoring does not lower the relative response time w.r.t. the baseline

set-up on RSH, it does induce less latency than inline monitoring on system RSL. Table 7.4

reveals that the response time overhead on system RSH for outline monitoring increases

by 95 % and 97 % under Steady and Burst loads respectively, and by 194 % and 190 % on

RSL. By comparison, inline monitoring inflates the response time by 4 % and 55 % under

Steady and Burst loads on RSH, and by 246 % and 193 % on system RSL. In fact, the absolute

response time due to inline monitoring is slightly higher than that of outline monitoring

on system RSL (115.80 ms vs. 98.40 ms under Steady load and 181.85 ms vs. 179.65 ms under

Burst load). Figure 7.9 shows that both approaches consume comparable amounts of

memory. However, decentralised outline monitoring utilises more of the scheduler than

its inline equivalent, owing to the reconfiguration and trace event routing that outline

monitors conduct.

Despite the cost paid in terms of scheduler utilisation, our decentralised approach yields

marginally lower latency than inline monitoring. We note that the slight degradation

in the response time for inline monitoring arises from a combination of the increased

trace event throughput and delay in the analysis, which results in frequently ‘pausing’

worker processes. As remarked in section 7.2.2, this behaviour for inlined monitors

could potentially deteriorate further in cases of slower runtime analyses. Decentralised

monitoring mitigates this issue by decoupling the instrumentation and analysis tasks. The

results of our experiments conducted on set-up SUE using system RSH (100 k workers)

and system RSL (1 k workers) are plotted in figure C.2, and are in line with the conclusions

7.4 Discussion · 139

System Load Response time % Memory consumption % Scheduler utilisation %

Inline Outline Inline Outline Inline Outline

RSH

Steady 4 95 1 23 0 123

Pulse 50 134 11 41 0 126

Burst 55 97 16 56 0 123

RSL

Steady 246 194 1 8 3 52

Pulse 212 198 0 8 6 57

Burst 193 190 1 10 4 50

Table 7.4. Percentage overhead on RSH (500 k workers) and RSL (5 k workers) w.r.t. baseline at

maximum load

drawn above.

7.4 Discussion

Monitoring reactive systems calls for component-based techniques that are reactive,

i.e., they are responsive, resilient, elastic, and message-driven. This chapter validates our

decentralised outline monitoring algorithm detailed in chapter 5 w.r.t. these four reactive

characteristics via a systematic empirical study. We show that the qualitative arguments

for decentralised outline monitoring in section 1.1.2 are in line with the quantitative

evidence collected in experiments, confirming that our algorithm is, indeed, reactive. In

particular, these experiments affirm that the overhead induced by decentralised outline

monitoring is feasible in practice. Our comprehensive evaluation of sections 7.2 and 7.3

considers (i) different combinations of hardware and software, set up with (ii) two reactive

system models that test edge-case and general-case scenarios, under (iii) high loads that

go beyond the state of the art in RV, using (iv) realistic load profiles that, to the best of

our knowledge, are not considered in the literature. These parameters give us assurance

that our conclusions are portable to other platforms, generalisable to various reactive

architectures under different load models, and, more importantly, applicable to real-world

cases; this is generally not done in other studies e.g. [184, 185, 62, 61, 197, 43, 176, 52, 53, 219,

71, 72, 70, 113, 87, 89, 39, 180, 158, 47]. Our evaluation of decentralised outline monitoring

is conducted alongside its widely-adopted inline counterpart [91, 90, 25], providing us

7 Evaluating Decentralised Outline Runtime Monitoring · 140

with a reference point against which our results can be interpreted in a general way.

Under these conditions, we also demonstrate that centralised monitoring exhibits none of

the attributes of reactive systems due to its inherent analysis bottleneck (e.g. Schneider

et al. [205] make a similar observation about bottlenecks in their experiments). Moreover,

centralised set-ups are prone to failure in scenarios with high-loads such as the ones we

used.

Section 7.3 compares decentralised outline and inline monitoring in further detail. It

shows that in situations with low to mild concurrency, where system components engage

in long-running tasks, outline monitoring performs better than in scenarios involving

short-lived tasks (cf. section 7.2). In fact, outline monitoring induces comparable memory

and response time overhead to that of inline monitors, making it the preferred choice in

such cases owing to the other benefits it offers (see section 2.1.4)

We conjecture that outlining also yields low overhead—on par with inlining—in high

concurrency settings where the number of system components becomes stable, as in

section 7.3. In such cases, our decentralised approach should perform well, since it

minimises the reconfiguration and message routing that is needed to organise the monitor

choreography continually. Since we aim for generality, the results presented in this

chapter assume a worst case scenario where every component of the SuS is monitored. On

this account, we expect decentralised outline monitoring to induce even lower overhead

when the number of system components monitored is reasonable (e.g. a few hundreds).

Both of these assertions warrant further investigation and are left as future work.

7.4.1 Related Work

Our empirical study explores various aspects of runtime monitoring, such as the in-

strumentation overhead, robustness, and scalability of monitoring approaches, using

different metrics to gauge the effect of runtime overhead. While these topics are discussed

at different depths by the RV community, our observations in sections 7.2 and 7.3 call

into question some of these notions that tend to be occasionally overlooked by, or not

satisfactorily tackled in the literature.

Numerous works (e.g. [124, 34, 71, 67, 70, 68]) based on inlining do not delineate the

instrumentation and runtime analysis aspects. This is common in monolithic settings

(see section 2.1.4), where the instrumentation and analysis tasks are coalesced, and the

former is often assumed to induce minimal runtime overhead [91, 25]. Consequently, many

7.4 Discussion · 141

inlining-based approaches focus on the efficiency of the analysis without considering

the instrumentation cost (e.g. Falcone et al. [95] attribute the overhead to the analysis

aspect alone). This line of reasoning for single-component systems is often ported to the

concurrent setting. For instance, [175, 209, 42, 61, 207, 99, 24] propose efficient runtime

monitoring algorithms but do not account for, nor quantify the overhead due to collecting

trace events. Similarly, [209, 61, 101] inline components with variants of vector clocks to

exchange partial information via messaging but overlook the potential memory overhead

that may result from the increased size of the message payloads. Section 7.2.1 shows

that the overhead due to inlining in component-based settings is non-negligible, which

makes the efficiency claims in the cited works unsubstantiated from an instrumentation

overhead point of view. Tools such as [53, 51, 219, 47, 113, 229] that do quantify the runtime

overhead, aggregate the instrumentation and runtime analysis costs, making it difficult to

gauge whether potential inefficiencies arise from one or the other. Since the overhead

due to the analysis of events depends on different factors (e.g. table 7.2), the inability to

isolate the respective costs of the instrumentation and analysis limits the interpretability

of their results.

The notion of perceived minimal overhead induced by instrumentation is often extended

to offline monitoring [100], where events are persisted for subsequent processing. Certain

surveys [95, 55] or introductory textbooks [68] either claim that offline monitoring imposes

low overhead because the system observation consists ‘only’ in recording trace events,

or are otherwise vague about this overhead [25, 100]. Section 7.2.1 makes a strong case

that all forms of instrumentation induce a degree of overhead that is unavoidable when

observing software systems. In addition, this overhead will be influenced by the technique

employed to persist events (e.g. file, DB, pub-sub infrastructures [217]) for the case of

offline monitoring. We have also shown that the instrumentation overhead depends on

the load that the SuS is subjected to, e.g., the difference in overhead between the inline

and baseline plots is more evident under Burst load than with Steady load (figure 7.2).

Moreover, section 7.2.3 reveals that in our benchmarks, a sizeable portion of the runtime

monitoring overhead originates from the instrumentation for the cases of inline and

decentralised outline monitoring.

Figures 7.3 and 7.5 show how the performance of our online centralised monitors

degrades when a minimal analysis cost is added on top of the instrumentation. Despite

this bottleneck-induced issue that leads to crashes in figure 7.3, centralised monitoring

7 Evaluating Decentralised Outline Runtime Monitoring · 142

is still employed by RV tools that target concurrent software. One plausible reason

for this is that the empirical evaluation of such RV tools lacks proper benchmarking

(e.g. [71, 21, 209, 101, 131]), or utilises meager loads that fail to exercise the tool and

expose the shortcomings of centralised approaches (e.g. [180, 113, 51, 53, 52, 12, 170]).

Another potential motive is that centralised offline approaches can avoid overloading

the central monitor by controlling the rate at which trace events are read from storage

and subsequently analysed [99, 101]. In offline mode, this is done under the assurance

that, regardless of the speed pre-recorded traces are processed with, no event loss occurs.

However, implementing this strategy in online use cases is typically hard in reactive

scenarios where system components continually generate streams of trace events directed

toward one central monitor. Throttling events in an asynchronous setting, while possible

by applying back-pressure [153] to system components, cannot be achieved unless the

monitor heavily interferes with the SuS.

Monitoring is a cross-cutting concern [146] that can be encapsulated in own logic

unit [95, 59, 68]. Various RV tools such as [70, 60, 52, 221, 13, 197] follow this separation-of-

concerns approach where the monitor analysis is kept isolated from the logic of the SuS.

Our decentralised outline algorithm extends this notion and separates the execution of

the monitor logic from the system by executing monitors as independent processes. This

makes the approach less sensitive to slowdowns in the analysis, enabling it to runtime

check richer properties whose corresponding monitors could potentially induce varying

delays (refer to discussion in section 7.2.3). Online tools using centralised monitoring

(e.g. [71, 23]) are sensitive to delays in the analysis since these indirectly affect the speed

with which events are processed from the central tracing entity. As seen in section 7.2,

this increases the consumption of memory, which coupled with the SPOF, could render

such tools inapplicable in practice.

RV for single-component systems generally uses the execution slowdown as its principal

indicator of runtime overhead (see discussion in section 1.1.3). In reactive settings, this

one-dimensional view is inadequate, as the omitted evidence could bias the interpretation

of empirical results, e.g. in consulting only figure 7.6 (top), one would falsely conclude

that inlining induces the lowest slowdown without affecting the response time. Despite

this, approaches for concurrent RV still base their findings on the execution slowdown

(e.g. Neykova and Yoshida [185]) or memory consumption (e.g. Meredith et al. [176]); [51,

52, 219, 47, 205] are few of the notable exceptions that account for the response time.

7.4 Discussion · 143

Others [67, 87, 96] abstract from these metrics, and concentrate instead on the volume of

messages that are exchanged between component monitors. While the count of messages

exchanged is indicative of efficient communication, it makes it difficult to quantify the

overhead in practical terms e.g. response time, and memory consumption. The volume

of message exchanges is not a metric we track in our benchmarks. Yet, it warrants

further consideration, particularly when used alongside our current metrics identified in

section 6.1.

8 Conclusion

This thesis investigates how the correctness of reactive systems can be established

dynamically at runtime. It considers a lightweight monitoring approach called RV that

circumvents the issues connected with traditional pre-deployment verification methods,

such as testing and model checking. One major obstacle of RV for reactive systems is in

choosing a monitoring technique that does not impinge on the reactive characteristics of

the SuS. We hold that this is attainable only if the monitoring set-up is itself reactive.

This thesis investigates a novel decentralised outline monitoring approach based on this

precept. The approach treats the SuS as a black box: it instruments monitors dynamically

and in an asynchronous fashion, which is more attuned to the requirements of reactive

architectures. Our development is systematic. We adopt the modular RV practice advo-

cated by Aceto et al. [6, 8], which delineates the semantics of the specification language

used to describe the properties that the SuS should comply with, and the semantics of

the monitors that check for these property descriptions. The separation of concerns

prescribed by the authors gives a principled approach for studying what correct monitors

are, and for identifying properties that can be monitored at runtime. This enables the

construction of mechanical syntheses procedures that generate correct monitors for mon-

itorable properties. Equally crucial, it permits us to directly map the constituent parts of

our formal model to executable code modules, giving us assurances that the correctness

results obtained in the theory [6, 8] are preserved in the implementation. Through our

study, we make the following contributions.

(i) Build on the theoretical results of Aceto et al. [6] and augment their specification

formalism, operational semantics of monitors, and monitor synthesis procedure

with predicates to reason on the data carried by trace events. Our extensions

make their model amenable to practical use. We implement these extensions and

give a technique for instrumenting inline monitors. Additionally, we define an

asynchronous instrumentation relation that decouples the operation of the SuS and

monitors, in line with the tenets of reactive architectures.

(ii) Devise a decentralised outline monitor instrumentation algorithm that instantiates

145

8 Conclusion · 146

the asynchronous instrumentation of contribution (i). Our algorithm employs a

tracing infrastructure to collect events as the SuS executes and instruments monitors

dynamically based on key events observed in the trace. The algorithm accounts

for the interleaving of trace events that arise from the asynchronous execution of

the SuS and monitors, guaranteeing that the events are reported to monitors in the

correct order and without loss.

(iii) Develop a configurable RV benchmarking framework tailored for reactive systems.

The framework can generate synthetic SuS models that are shown to reproduce

the realistic behaviour of master-worker systems. Our tool collects performance

metrics relevant to reactive software, thereby giving a multi-faceted depiction of

the overhead induced by monitoring tools. This is conducive to assessing such tools

reliably, increasing our confidence in their real-world application.

(iv) Give an extensive evaluation of the overhead induced by our implementation of

decentralised outline instrumentation of contribution (ii), using the benchmarking

tool developed in (iii). We compare this algorithm against our implementations of

inline and centralised outline instrumentation—two popular methods used in the

state-of-the-art RV tools. These benchmarks demonstrate that the decentralised

approach we propose induces feasible overhead, which for typical cases, is compa-

rable to or outperforms, the inline and centralised approaches. We are unaware of

other comprehensive empirical RV studies such as ours that compare decentralised,

centralised, and inline monitoring.

These contributions culminated in a suite of tools towards our research goal that:

• demonstrates that the formalisations and methods proposed in contributions (i) and (ii)

are implementable in a general-purpose language that targets applications built on the

reactive principles;

• debunks the commonly-held belief that decentralised outline instrumentation is neces-

sarily infeasible, showing that it induces acceptable overhead, which in typical cases, is

comparable to inlining;

• confirms that centralised monitoring is prone to scalability issues, poor performance,

and failure, which makes it generally inapplicable to reactive system settings.

In cases where inlining cannot be performed (see section 2.1.4 for reasons why), a

decentralised outline instrumentation approach such as the one we propose is the only

8.1 Avenues of Future Research · 147

viable method to conduct runtime monitoring. Readers may access the source code for

the artefacts developed for this thesis here.

8.1 Avenues of Future Research

Our investigation is by no means conclusive; we believe that other research avenues may

be followed as a result of our work. The ones suggested below are listed in no particular

order.

8.1.1 Parametrised Recursion Variables

Certain properties cannot be expressed in our logic `HMLd. Consider an asynchronous

server that exhibits the actions con, end, req, and res. The actions con and end respectively

demarcate the start and termination of a communication session with our server, whereas

req and res denote asynchronous requests and responses. One safety property that this

system should observe is that in any communication session (starting with con and

terminating with end), all requests are fulfilled. This property describes the language

of 𝜔-words in which every finite communication session, the number of observed req

actions equals the number of observed res actions. Such a property is not 𝜔-regular.

We propose an extension to the logic that augments the (i) least and greatest fixed

point constructs with parametrised variables 𝑥,𝑦 ∈ DVar, and expressions 𝑒, 𝑓 ∈ Exp,

i.e., min𝑋 (𝑥𝑥). (𝜑) (𝑒) and max𝑋 (𝑥𝑥). (𝜑) (𝑒), and (ii) recursion variables with expressions,

i.e., 𝑋 (𝑒). This enables data values to be handed down between successive unfolding of

recursive constructs (see also [171, 125]). Via this logic, the aforementioned property can

be expressed as the formula below, where the counter 𝑦 is used to track the number of

requests and responses processed by the server.

max𝑋 (𝑥).
(
[con]max𝑌 (𝑦).

(
[req]𝑌 (𝑦+ 1) ∧ [res]𝑌 (𝑦− 1)∧

[end,𝑦 = 0]𝑋 (0) ∧ [end,𝑦 ≠ 0]ff
)
(𝑥)

)
(0)

We envisage this investigation to replicate the programme of study carried out in [118, 6, 8].

This entails determining possible monitorable logic fragments (e.g. safety and co-safety),

studying whether the fragments identified can syntactically characterise all the expressible

monitorable properties, and devising syntheses procedures that generate monitors from

these fragments. The study can be undertaken for both the linear-time and branching-time

interpretations of this logic.

http://duncanatt.github.io/detecter

8 Conclusion · 148

8.1.2 Managing the Number of Active Monitor States

Our monitoring algorithm of section 4.3 considers all the possible monitor states, thereby

ensuring that monitors are partially-complete (definition 3.3). The operational rules

mDisYL, mDisNL, mConYL, and mConNL (and their symmetric counterparts) of figure 3.2

are used to terminate redundant monitor states as soon as these are encountered during

the runtime analysis. Section 4.3 also argues that emulating the disjunctive and con-

junctive parallel composition constructs minimises overhead, by comparison to forking

independent component sub-monitors. Monitoring performance may be further opti-

mised by placing a bound on the number of active monitor states that our algorithm

manages at runtime. This pragmatic trade-off comes at the expense of sacrificing partial-

completeness, which manifests as possibly-missed verdict detections (e.g., the work by

Grigore et al. [124]). Monitors that are subject to missed detections may not always be

ideal in monolithic settings where applications often consist of a single instance. However,

reactive architectures can alleviate the effect of missed detections by virtue of replicated

components: such a set-up improves the chance that potential detections missed by one

monitor may still be reached by other monitor replicas. Note that missed detections still

preserve our non-negotiable requirement of sound monitoring, i.e., accept (resp. reject)

verdicts that monitors flag imply formulae satisfactions (resp. violations) in the logic.

8.1.3 Component Replication and Monitorable Properties

Component replication opens the possibility of analysing more than one trace of the

same component instance and, potentially, monitoring for more properties. For instance,

the regular `HML branching-time formula, 𝜑11 = [a]ff ∨ [b]ff (see section 2.2), is not

monitorable in a traditional RV set-up assuming a single execution [6]. Intuitively, this is

because observing one trace prefix, say a, that leads to a violation of [a]ff, still requires a

second trace to determine whether 𝜑11 is violated. However, multiple traces of the same

component instance, e.g. one trace prefix that starts with a and another starting with b,

provide the monitor with sufficient evidence to flag a rejection [4].

The above rudimentary example conceals several challenges. Consider the branching-

time formula 𝜑12 = [a] ([b]ff∨ [c]ff), expressing the requirement that ‘after performing

the action a, the state that the system reaches can neither perform the action b nor c’. Trace

prefixes such as a.b and a.c do not give sufficient information as to whether this property

is violated. The reason behind this is that the transitions 𝑝1
a−→ 𝑝2

b−→ 𝑝3 −→ ··· and

8.1 Avenues of Future Research · 149

𝑞1
a−→𝑞2

c−→𝑞3 −→ ··· (for some 𝑝𝑖 ,𝑞 𝑗) that give rise to these traces, potentially refer to

unrelated paths of the component execution graph. When the states 𝑝1 =𝑞1 and 𝑝2 =𝑞2,

the traces a.b and a.c share the same initial state 𝑝1 and a-derivative state 𝑝2; since 𝑝2

can perform both actions b and c, formula 𝜑12 is violated. If 𝑝2 ≠𝑞2, however, 𝜑12 is not

violated.

Different methods can be explored to address the lack of information in execution traces.

One conceivable route is to annotate traces by inlining the monitored component to

produce trace events that embed component state metadata. In actor-based paradigms

(e.g. Erlang, Akka), such a notion of state could consist of a snapshot of all the internal

variables that a process mutates over time as a side-effect of the messages it sends and

receives. For example, the monitor inlining procedure of section 4.5 can be modified

to extend the event payload (e.g. lines 4 and 6 in figure 4.5b) to include the values of

variables Tok and NextTok. It is worth noting that the solution we describe may be subject

to the limitations of inlining (see section 2.1.4), and implementing a similar procedure

with outlining will depend on the flexibility of the tracing infrastructure used.

8.1.4 Failure Injection

Our benchmarking framework of chapter 6 can be naturally extended to accommodate

a second widespread software architecture, namely peer-to-peer systems. This gives the

tool more scenario coverage and could circumvent the performance bottleneck associated

with master-worker set-ups [202]. Another aspect that warrants consideration is the

addition of controlled fault injection based on the probability distributions we currently

employ to induce load on benchmark models (i.e., Steady, Pulse, and Burst loads). Randtoul

and Trinder [195] propose a reliability benchmark for Erlang systems that inject faults in

pairs of actor processes that exchange messages. The authors induce failures by forking

dedicated ‘killer’ processes at predetermined intervals to terminate processes, thereby

simulating fail-stops [83]. This approach may not be applicable to our case since the

creation of ‘killer’ processes induces additional overhead that can influence the execution

of benchmark models, and subsequently, bias the results of empirical experiments. We

propose an alternative lightweight design that integrates the termination logic within

system processes. Link and communication omission failures [83] are a class of failures

whereby work requests that are in transit between components (e.g. master and worker)

can be dropped, delayed, duplicated, or mutated. This can be implemented by adding

8 Conclusion · 150

proxy logic inside system processes to emulate these failures. Modelling failures enable us

to test other facets of runtime monitoring. One metric worth considering is the detection

time, which measures the time monitors take to reach verdicts in the face of failure. This

metric is particularly relevant to a set-up where monitors consider traces from replicated

components since it can be used to gauge the efficacy of verdict detection under different

probability models and failure severity.

8.1.5 Decentralised Inline and Outline Monitoring

Our decentralised outline monitoring instrumentation leverages the native tracing

infrastructure provided by the EVM, making it accessible to any application that executes

on the platform (e.g. Le Brun et al. [162] use outline monitors to verify properties of an

Elixir implementation of the Raft consensus algorithm [190]). Inline instrumentation

relies on source-level weaving, and is, therefore, limited to Erlang code. The next stage of

development is to revisit inlining and add support for BEAM object code compiled with

debugging symbols. Lifting assumption A1 (i.e., components do not fail-stop or exhibit

Byzantine failures) and A2 (i.e., messaging is reliable) opens up our decentralised approach

to distributed settings, introducing various challenges. Chief among these challenges is

the capacity of the instrumentation to manage failure. Notable works that can inform this

research direction are those by Basin et al. [31], which considers the problem of monitoring

distributed systems with failing components and network links, and Bonakdarpour et al.

[45] that address failure within monitors themselves, specifically, in the case of fail-stop.

A Further Decentralised Outline Instrumentation

Details

Our message routing and forwarding operations described in section 5.2 enable tracers

to implement hop-by-hop routing. These operations are given in listing 5. The function

self () on line 2 returns the PID of the calling process. Listing 5 includes the Tracer

function that is forked in listing 2 to execute the core tracer logic of listings 3 and 4.

Detach is used to signal to the router tracer 𝑝t that the system process 𝑝s is being tracer

by a new tracer, 𝑝′t. Prior to issuing the message, detach invokes Preempt so that 𝑝′t takes

over the tracing of system process 𝑝s. TryGC determines whether a tracer can be safely

terminated. For the case of the external analysis variant of figure 5.1a, TryGC also signals

the analyser to terminate. The analyser terminates asynchronously so that it can process

potential trace events it might still have in its message buffer.

Start in listing 6 launches the SuS and monitoring system in tandem. The operation

Expect: 𝑘.type= evt∨𝑘.type= dtc

1 def Route(𝑘,𝑝t)
2 𝑝t ! ⟨rtd,self (),𝑘⟩

3 def Tracer(𝜍,𝑚,𝑝s,𝑝t)
New tracer state 𝜍 ′ initialised with an

empty routing map ∅, a copy of the

instrumentation map 𝜍 .Φ, and the

traced-component map is set to the

(first) process being traced, 𝑝s

4 𝜍 ′←⟨Π←∅,𝜍 .Φ,Γ←{⟨𝑝s,•⟩}⟩
5 Detach(𝑝s,𝑝t)
6 𝑝m← fork(𝑚) executable monitor

Start in •mode to prioritise routed events

7 Loop•(𝜍 ′,𝑝m)

Expect: 𝑘.type= rtd

8 def Forwd(𝑘,𝑝t)
9 𝑝t !𝑘

10 def Detach(𝑝s,𝑝t)
11 𝑝′t← self ()
12 Preempt(𝑝s,𝑝′t)
13 𝑝t ! ⟨dtc,𝑝′t,𝑝s⟩

14 def TryGC(𝜍,𝑝m)
15 if (𝜍 .Γ= ∅∧𝜍 .Π= ∅)
16 Signal analyser 𝑝m to terminate
17 Terminate tracer

Listing 5. Operations used by the (◦) and priority (•) tracer loops

151

A Further Decentralised Outline Instrumentation Details · 152

1 def Start(𝑔,Φ)
Pausing allows root tracer to be set

up; no initial message loss

2 𝑝s← fork(𝑔) in paused mode
3 𝑝t← fork(Root(𝑝s,Φ))
4 return ⟨𝑝s,𝑝t⟩

5 def Root(𝑝s,Φ)
6 Trace(𝑝s,self ())
7 Resume system 𝑝s

8 𝜍←⟨Π←∅,Φ,Γ←{⟨𝑝s,◦⟩}⟩
Root tracer has no monitor

9 Loop◦(𝜍,⊥)

Listing 6. System starting operation and root tracer

accepts the code signature 𝑔, as the entry point of the SuS, together with the instrumen-

tation map, Φ. As a safeguard that prevents the initial loss of trace events, the SuS is

launched in a paused state (line 2) to permit the root tracer to start tracing the top-level

system process. Root resumes the system (line 7), and begins its trace inspection in direct

mode, as shown on line 9.

The tracing mechanism is defined by the operations Trace, Clear, and Preempt listed

in listing 7, and are overviewed in section 5.2.1.

1 def Trace(𝑝s,𝑝t)
2 if (𝑝s is not traced)
3 Set tracer for 𝑝s to 𝑝t

𝑝t will trace descendants of 𝑝s , A5

4 while 𝑝s’s tracer is set do

5 𝑠← next event exhibited by 𝑝s

6 𝑒← encode 𝑠 as a message
7 𝑝t ! 𝑒
8 end while

Expect: 𝑝s’s tracer is set
9 def Clear(𝑝s,𝑝t)

10 if (𝑝s is traced)
11 Clear tracer 𝑝t from 𝑝s

𝑝t still traces descendants of 𝑝s , A5

12 repeat

Wait for 𝑝s ’s in-transit trace event

messages to get delivered to 𝑝t , A2

13 until trace events of 𝑝s are delivered to

𝑝t

14 def Preempt(𝑝s,𝑝t)
15 𝑝′t← 𝑝s’s tracer
16 Clear(𝑝s,𝑝′t)
17 Trace(𝑝s,𝑝t)

Listing 7. Abstraction of the operations offered by the tracing infrastructure

B Case Study: Monitoring Reactive Applications

Our tool implementation supports a succinct pattern notation where atomic values can

be directly specified in patterns, e.g. ∗⟨_,𝑥2𝑥2⟩,𝑥2 = atom may be written as ∗⟨_,atom⟩. This

notation is employed in the ensuing examples. We elide redundant binders and variables

from formulae patterns for succinctness using the ‘don’t care’ pattern _, when necessary.

B.1 Monitoring the Master-Worker Model

The master-worker model used in our benchmarking tool of chapter 6 employs a

simple protocol to track the work requests distributed to different workers. Workers are

initialised with IDs, which we denote by the placeholder Id, which enables the master

to track the progress of tasks assigned. Each worker task is comprised of a sequence of

work requests totalling NumReqs. Work requests in a task are incrementally numbered

with a sequence number, ReqNum, where 1≤ ReqNum≤NumReqs, identifying the request

submitted to a worker. The master process relies on the request number to determine

when a task assigned to a particular worker is completed. Tasks are marked complete

when ReqNum=NumReqs, at which point, the master sends a termination instruction to

the worker. Work requests are uniquely identifiable from all other work requests issued by

the master via the triple ⟨Id, ReqNum,NumReqs⟩. The work responses relayed by workers

to the master are identified in the same manner. The following summarises the different

messages exchanged between the master and worker processes:

• ⟨Pidm, ⟨chunk, ⟨Id, ReqNum,NumReqs⟩⟩⟩: work request message sent by the master

process to the worker

• ⟨Pidm, ⟨term, ⟨Id, ReqNum,NumReqs⟩⟩⟩: termination message sent by the master pro-

cess to the worker once a task is complete, i.e., ReqNum=NumReqs

• ⟨Pidw, ⟨𝑐ℎ𝑢𝑛𝑘, ⟨Id, ReqNum,NumReqs⟩, ack⟩⟩: work response message sent by the worker

process to the master

• ⟨Pidw, ⟨𝑐ℎ𝑢𝑛𝑘, ⟨Id, ReqNum,NumReqs⟩, complete⟩⟩: completion message sent by the

worker process to the master when the last work request in a task has been processed,

i.e., ReqNum=NumReqs

153

B Case Study: Monitoring Reactive Applications · 154

The local properties used in section 6.5.1 to monitor the master-worker models concern

the operation of workers, and are specified from their point of view.

Example B.1. Consider the property stating that ‘no worker ever crashes’, specified as the

recursive maxHMLd formula:

[^⟨_,_,_,_,_⟩]max𝑋 .
(
[?⟨_,_⟩] ([! ⟨_,_,_⟩]𝑋 ∧ [∗⟨_,_⟩]ff) ∧ [∗⟨_,_⟩]ff

)
(𝜑13)

Formula 𝜑13 does not make use of the data embedded in work requests issued by the

master. It merely matches the shape of the crash event (∗) that is not allowed to arise once

the worker process enters its work request-response handling loop. ■

Example B.2. The property that states that ‘the work number is larger than 0’ is written

as follows:

[^⟨_,_,_,_,_⟩]max𝑋 .

©«
[?⟨_,⟨_, ⟨chunk, _, ReqNumReqNum, _⟩⟩⟩,ReqNum ≥ 1] [! ⟨_,_,_⟩]𝑋

∧

[?⟨_,⟨_, ⟨chunk, _, ReqNumReqNum, _⟩⟩⟩,ReqNum< 1]ff

ª®®®®¬
(𝜑14)

Formula 𝜑14 checks the work request sequence number to determine whether it carries

a value larger than 0. The second pair of necessities that match the receive event shape

and work request payload instantiates the variable ReqNum with the value of the work

request sequence number. A violation of 𝜑14 occurs when ReqNum < 1, otherwise the

formula unfolds after the third necessity [! ⟨_,_,_⟩] matches a send event. ■

Example B.3. The property stating that ‘workers do not receive more requests than expected’

is specified as:

[^⟨_,_,_,_,_⟩]

max𝑋 .

©«
[?⟨_,⟨_, ⟨chunk, _, ReqNumReqNum,NumReqsNumReqs⟩⟩⟩,ReqNum ≤NumReqs] [! ⟨_,_,_⟩]𝑋

∧

[?⟨_,⟨_, ⟨chunk, _, ReqNumReqNum,NumReqsNumReqs⟩⟩⟩,ReqNum>NumReqs]ff

ª®®®®¬
(𝜑15)

B.2 The Cowboy and Ranch Communication Protocol · 155

Similar to example B.2, formula 𝜑15 relies on the current work request sequence number

issued by the master process and the total number of expected requests. The variable

NumReqs becomes instantiated with the latter value when a receive trace event, together

with its work request payload, matches the second necessity modality. Subsequently,

NumReqs is compared against ReqNum to determine whether the work request sequence

number has been exceeded. ■

Example B.4. The property stating that ‘workers receive only their responses’ is specified

thus:

[^⟨_,_,_,_,[Id1Id1, _]⟩]max𝑋 .

©«
[?⟨_,⟨_, ⟨chunk, Id2Id2, _, _⟩⟩⟩, Id1 = Id2] [! ⟨_,_,_⟩]𝑋

∧

[?⟨_,⟨_, ⟨chunk, Id2Id2, _, _⟩⟩⟩, Id1 ≠ Id2]ff

ª®®®®¬
(𝜑16)

Formula𝜑16 compares the worker ID to detect whether a work request sent by the master

was meant for another worker. The very first necessity, ^⟨_,_,_,_,[Id1Id1, _]⟩, matches the

process initialisation event pattern, including the shape of the argument list used to launch

worker processes. Worker processes are initialised with two arguments, the first of which

is the worker ID assigned by the master; 𝜑16 stores this value in the variable Id1. In the

second pair of necessity modalities that match the receive event and the shape of the

embedded work request payload, instantiate the variables Id2. The Boolean constraint

Id1 ≠ Id2 in the symbolic action of the violating conjunct of 𝜑16 ensures that the formula is

violated only when the worker does not match with the worker ID carried by the work

request. ■

B.2 The Cowboy and Ranch Communication Protocol

Figure B.1 describes a fragment of the interaction protocol that Cowboy and Ranch use

to service HTTP requests. In this protocol, acceptors wait on the socket for incoming

client connections, step 1 . When a connection is established on the server, the acceptor

exchanges the newly-acquired transmission control protocol (TCP) socket information

with the connections supervisor, as steps 2 and 3 indicate. This instruction notifies

the connections supervisor that a new client connection needs handling; in turn, the

former forks a new connection process and delegates this task, steps 4 and 5 . The

B Case Study: Monitoring Reactive Applications · 156

Cowboy and Ranch

Connections supervisor

𝐴1

.

.

.

𝐴𝑛

PIDcs

PIDA1

PIDAn

Protocol handler

Connection process

Request process

PIDCP

PIDRP

Client

Code = 200 | 500 | 400. . .

Status = normal | crash

TCP connect

{conns_sup, start_prot, PIDA1, . . . }

PIDCS

HTTP request

{tcp, “GET /token. . . ”}

HTTP reply

tcp_cls

f
o
r
k

{h
an
ds
ha
ke
,
.
.
.
}

{E
XI
T,

PI
D C
P
,
St
at
us
}

f
o
r
k
,
“G
ET

/t
ok
en
.
.
.
”

{r
es
p,

Co
de
,
:4
a
61

73
}

{E
XI
T,

PI
D R
P
,
St
at
us
}

exit

exit

1

2

3

4 5
6

7

8

9

10

1
1

12

1314

1
5

Figure B.1. The Cowboy and Ranch communication protocol

acceptor is informed accordingly in step 6 , where it waits anew for future connections.

Henceforth, the connection process has complete ownership of and communicates directly

with the client socket. Step 8 illustrates the point when the connection process forks

the request process, specifying as argument the HTTP request data it acquires from the

socket in step 7 . Once the request process completes its execution, it issues a reply to its

connection process and terminates, steps 9 and 10 . This reply is comprised of the HTTP

response code and respective payload that the connection process communicates to the

client in step 12 . A socket closed notification is sent by the Erlang TCP library, step 13 ,

whereupon the connection process terminates in step 14 . Messages {EXIT, Pid, Status}

in steps 11 and 15 result from Erlang process linking, and are issued by the EVM when

B.3 Monitoring Cowboy and Ranch · 157

processes terminate [57]. The connection and request process pair is termed the protocol

handler, where the interaction between the two happens in lockstep, i.e., steps 8 to 13

are sequential.

B.3 Monitoring Cowboy and Ranch

Example B.5. Recall the formula 𝜑rp from section 4.6, stating that ‘a request process does

not issue HTTP responses with code 500, nor does it crash’.

max𝑋 .

©«
[! ⟨_,_,{resp, codecode, . . . }⟩, code = 200]𝑋∧

[! ⟨_,_,{resp, codecode, . . . }⟩, code = 500]ff∧

[∗⟨_,statstat⟩, stat = crash]ff

ª®®®®¬
(𝜑rp)

Its corresponding synthesised monitor,𝑚𝜑rp , consists of a recursion construct whose

body is composed of the three sub-monitors𝑚200,𝑚500, and𝑚crash conjuncted in parallel.

The monitor 𝑚200 handles the case when the HTTP response code is 200, unfolding the

monitor via the recursion variable 𝑋 if code = 200, or reaches the verdict yes otherwise.

Monitor𝑚500 flags a rejection verdict no when it analyses a response message containing

the response code 500. Analogously, monitor𝑚crash flags no when an error event with

the status crash is detected.

𝑚𝜑rp = rec𝑋 . (𝑚200 ⊗𝑚500 ⊗𝑚crash) (𝑚𝜑rp)

𝑚200 =

(! ⟨_,_,{resp, codecode, . . . }⟩, code = 200) .𝑋+

(! ⟨_,_,{resp, codecode, . . . }⟩, code≠ 200) .yes
(𝑚200)

𝑚500 =

(! ⟨_,_,{resp, codecode, . . . }⟩, code = 500) .no+

(! ⟨_,_,{resp, codecode, . . . }⟩, code≠ 500) .yes
(𝑚500)

𝑚crash =

(∗⟨_,statstat⟩, stat = crash) .no+

(∗⟨_,statstat⟩, stat ≠ crash) .yes
(𝑚crash)

Figure B.2 details how the trace ‘ ! ⟨PIDRP,PIDCP,{resp, 500, . . . }⟩.. . .’ exhibited by a

Cowboy request process bearing the PID PIDRP leads the monitor𝑚𝜑rp to a violation verdict.

Before analysing events, monitor𝑚𝜑rp unfolds the recursion variable 𝑋 of sub-monitor

𝑚200 by transitioning internally via mRec in step 1 . The resulting parallel composition

B Case Study: Monitoring Reactive Applications · 158

of monitors is reduced by applying the rule mPar twice. In sub-derivation 2.1 , mPar

reduces
(
(! ⟨_,_,{resp, codecode, . . . }⟩,code=200) .𝑚rp+(! ⟨_,_,{resp, codecode, . . . }⟩,code≠

200) .yes
)
⊗𝑚500 to the monitor yes ⊗ no, using the respective sub-derivations 2.1.1

and 2.1.2 obtained from mChsR and mChsL. For example, mChsL applied to 𝑚500 re-

duces the monitor to no when the trace event ! ⟨PIDRP,PIDCP,{resp, 500, . . . }⟩ is anal-

ysed. This follows from rule mAct, where match

(
! ⟨PIDRP,PIDCP,{resp, 500, . . . }⟩,

! ⟨_,_,{resp, codecode, . . . }⟩
)

yields the substitution [500/code], and the instantiated Boolean

constraint, (code = 500) [500/code], is satisfied. The application of mChsR to monitor 𝑚crash

in sub-derivation 2.2 follows a similar argument. Finally, sub-derivations 2.1 and 2.2 are

used as premises to mPar, yielding yes⊗no⊗yes in 2 . The latter monitor is reduced via

mConYRand mConYLto reach the violating verdict no.

The remaining examples briefly overview other properties that were used when evalu-

ating Cowboy. Readers should consult the depiction of the protocol of figure B.1 while

reading these examples.

B.3 Monitoring Cowboy and Ranch · 159

𝛼
=
!⟨
PI

D R
P
,P
ID

CP
,{
re

sp
,
50

0,
.
.
.
}
⟩

r
e
c
𝑋
.(
𝑚

20
0
⊗
𝑚

50
0
⊗
𝑚

cr
as

h
)

𝜏 −→
((!⟨_

,_
,{
re
sp
,
c
o
d
e

c
o
d
e
,
.
.
.
}
⟩,
c
o
d
e
=
20
0
).
𝑚

rp
+
(!
⟨_
,_
,{
re
sp
,
c
o
d
e

c
o
d
e
,
.
.
.
}
⟩,
c
o
d
e
≠
20
0
).
y
e
s

) ⊗𝑚 5
00
⊗
𝑚

cr
as

h

m
Re

c
1

m
a
t
c
h
(𝛼
,
!⟨

_,
_,
{r
es
p,

c
o
d
e

c
o
d
e
,
.
.
.
}
⟩)

=
[5
00
/ co

d
e
]∧

(c
o
d
e
≠
20
0
)[
50
0 / c

o
d
e
]⇓

t
r
u
e

(!
⟨_
,_
,{
re
sp
,
c
o
d
e

c
o
d
e
,
.
.
.
}
⟩,
c
o
d
e
≠
20
0
).
y
e
s

𝛼 −→
y
e
s

m
A
ct

((!⟨_
,_
,{
re
sp
,
c
o
d
e

c
o
d
e
,
.
.
.
}
⟩,
c
o
d
e
=
20
0
).
𝑚

rp
+

(!
⟨_
,_
,{
re
sp
,
c
o
d
e

c
o
d
e
,
.
.
.
}
⟩,
c
o
d
e
≠
20
0
).
y
e
s

) 𝛼 −→
y
e
s

m
C
h
s R

2
.1
.1

m
a
t
c
h
(𝛼
,
!⟨

_,
_,
{r
es
p,

c
o
d
e

c
o
d
e
,
.
.
.
}
⟩)

=
[5
00
/ co

d
e
]∧

(c
o
d
e
=
50
0
)[
50
0 / c

o
d
e
]⇓

t
r
u
e

(!
⟨_
,_
,{
re
sp
,
c
o
d
e

c
o
d
e
,
.
.
.
}
⟩,
c
o
d
e
=
50
0
).
n
o

𝛼 −→
n
o

m
A
ct

𝑚
50

0
𝛼 −→

n
o

m
C
h
s L

2
.1
.2

y
e
s
⊗
n
o

m
Pa

r
2
.1

· · · · · · · · · · · · · · · · · · ·

m
a
t
c
h
(𝛼
,∗
⟨_
,s
t
a
t

s
t
a
t
⟩)

=
⊥

(∗
⟨_
,s
t
a
t

s
t
a
t
⟩,
s
t
a
t
≠
cr
as
h
).
y
e
s

𝛼 −→
y
e
s

m
A
ct

𝑚
cr

as
h

𝛼 −→
y
e
s

m
C
h
s R

2
.2

((!⟨_
,_
,{
re
sp
,
c
o
d
e

c
o
d
e
,
.
.
.
}
⟩,
c
o
d
e
=
20
0
).
𝑚

rp
+
(!
⟨_
,_
,{
re
sp
,
c
o
d
e

c
o
d
e
,
.
.
.
}
⟩,
c
o
d
e
≠
20
0
).
y
e
s

) ⊗𝑚 5
00
⊗
𝑚

cr
as

h
𝑎 −→

y
e
s
⊗
n
o
⊗
y
e
s

m
Pa

r
2

y
e
s
⊗
n
o
⊗
y
e
s

𝜏 −→
y
e
s
⊗
n
o

m
C
on

Y R
3

y
e
s
⊗
n
o

𝜏 −→
n
o

m
C
on

Y L
4

F
i
g

u
r
e

B
.
2
.

M
o
n

i
t
o
r
𝑚
𝜑
r
p

j
u

s
t
i
fi

e
s

h
o
w

t
h

e
v
e
r
d
i
c
t
no

i
s

r
e
a
c
h

e
d

a
l
o
n

g
‘
!⟨
PI
D R

P
,P
ID

CP
,{
re
sp
,
50
0,

.
.
.
}⟩
..
..

’

B Case Study: Monitoring Reactive Applications · 160

Example B.6. Formula 𝜑acc concerns Ranch acceptor components that listen to incoming

TCP requests.

max𝑋 .

©«
[! ⟨acc1acc1,csup1csup1,{conns_sup, start_prot, _, _}⟩]©«
[?⟨acc2acc2,csup2csup2⟩,acc1 = acc2∧csup1 = csup2]𝑋∧

[?⟨acc2acc2,csup2csup2⟩,acc1 = acc2∧csup1 ≠ csup2]ff
ª®¬
ª®®®®¬

(𝜑acc)

It states that when a new connection is established, the acceptor, denoted by the binder

acc1acc1, issues the request {conns_sup, . . . } to the connections supervisor process, csup1csup1.

The property ensures that the same process acknowledges back to the sending acceptor,

i.e., acc1 = acc2∧csup1 = csup2. ■

Example B.7. Formula 𝜑cp specifies the interaction protocol that a Cowboy connection

process should follow when servicing a client HTTP request.

max𝑋 .

©«

[?⟨cprc1cprc1,{handshake, . . . }⟩] [?⟨cprc2cprc2,{tcp, req1req1}⟩, cprc1 = cprc2] ↱

[_⟨cprc3cprc3,rprc1rprc1,req_prc,start,req2req2⟩, cprc2 = cprc3∧ req1 = req2] ↱

©«

[?⟨cprc4cprc4,{resp, 200, . . . }⟩, cprc3 = cprc4] ↱

©«
[?⟨cprc5cprc5,{EXIT, rprc2rprc2, normal}⟩, cprc4 = cprc5∧ rprc1 = rprc2] ↱

[?⟨cprc6cprc6,tcp_cls⟩, cprc5 = cprc6]𝑋∧

[?⟨cprc5cprc5,{EXIT, rprc2rprc2, crash}⟩, cprc4 = cprc5∧ rprc1 = rprc2]ff

ª®®®®¬
∧

[?⟨cprc4cprc4,{resp, 500, . . . }⟩, cprc3 = cprc4]ff

ª®®®®®®®®®®®¬

ª®®®®®®®®®®®®®®®®®®¬
(𝜑cp)

Connection processes interact with the connections supervisor through a handshake be-

fore reading the HTTP request directly from the TCP socket (steps 5 and 7 in figure B.1).

This interaction is given by [?⟨cprc1cprc1,{handshake, . . . }⟩] [?⟨cprc2cprc2,{tcp, req1req1}⟩, cprc1 =

cprc2] in formula 𝜑cp. The binder cprc1cprc1 in the first necessity becomes instantiated with the

PID of the connection process, whereas req1req1 in the second necessity becomes instantiated

with the HTTP request data read from the socket. The third necessity uses the fork

action pattern _⟨cprc3cprc3,rprc1rprc1,req_prc,start,req2req2⟩. It describes the protocol step where

the connection process under analysis forks a request process via the function start in

module req_prc, where the argument specified must be the request data acquired from

B.3 Monitoring Cowboy and Ranch · 161

the socket. This constraint is imposed by req1 = req2. If the fork trace event exhibited by

the connection process matches the aforementioned fork action pattern, the binder rprc1rprc1

is instantiated with the PID of the newly-forked request process (step 8 in figure B.1).

The necessity [?⟨cprc4cprc4,{resp, 200, . . . }⟩, cprc3 = cprc4] dictates that the connection,

cprc4cprc4, process receives a HTTP 200 response message from the request process. A vi-

olation of 𝜑cp occurs when HTTP 500 is contained in the response message instead,

[?⟨cprc4cprc4,{resp, 500, . . . }⟩, cprc3 = cprc4]ff. We remark that the latter two necessities

describing the receive actions w.r.t. HTTP response codes are the counterparts to the send

messages of formula 𝜑rp. The final steps of the protocol requires it to wait for the request

process rprc2rprc2 to terminate its execution normally, {EXIT, rprc2rprc2, normal} and afterwards,

wait for the TCP socket to close, receiving the message tcp_cls. The formula is how-

ever violated when the connection process receives the message {EXIT, rprc2rprc2, crash},

informing it that the request process crashed. Note that formula 𝜑cp ensures that all the

sub-formulae describe the behaviour of the same connection process (see figure B.1) by

ensuring that cprc1 = cprc2 = cprc3 = cprc4 = cprc5 = cprc6. ■

C Auxiliary Data Plots for Benchmarks

C.1 Moderate Loads

0

250

500

750

1000

1250

1500

1750

T
im

e
(m

s)

Steady Load

Response

Pulse Load

Response

Burst Load

Response

2.0

2.5

3.0

3.5

4.0

4.5

C
on

su
m

pt
io

n
(G

B)

Memory Memory Memory

20 40 60 80 100

Total workers (k)

15

20

25

30

35

U
til

is
at

io
n

(%
)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

baseline inline (instr.) inline (mon.) decent. (instr.) decent. (mon.) cent. (instr.) cent. (mon.)

Figure C.1. Gap in instrumentation and monitoring overhead on the system under moderate load

benchmarks (100k workers)

163

C Auxiliary Data Plots for Benchmarks · 164

0

200

400

600

800

1000

1200

1400

T
im

e
(m

s)

Steady Load

Response

Burst Load

Response

0.0

0.5

1.0

1.5

2.0

C
on

su
m

pt
io

n
(G

B)

Memory Memory

2 4 6 8 10

Benchmark iteration

0

5

10

15

20

25

U
til

is
at

io
n

(%
)

Scheduler

2 4 6 8 10

Benchmark iteration

Scheduler

baseline (100 k) baseline (1 k) inline (100 k) inline (1 k) outline (100 k) outline (1 k)

Figure C.2. Gap in decentralised monitoring overhead on the system under moderate load benchmarks

(100k vs. 1k workers)

C.2 High Loads

C.2 High Loads · 165

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(m

s)

Steady Load

Response

Burst Load

Response

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

C
on

su
m

pt
io

n
(G

B)

Memory Memory

100 200 300 400 500

Total workers (k)

0

2

4

6

8

10

12

U
til

is
at

io
n

(%
)

Scheduler

100 200 300 400 500

Total workers (k)

Scheduler

inline (instr.) inline (mon.) decent. (instr.) decent. (mon.) cent. (instr.) cent. (mon.)

Figure C.3. Gap in instrumentation and monitoring overhead on the system under high load

benchmarks (500k workers)

C Auxiliary Data Plots for Benchmarks · 166

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(m

s)

Steady Load

Response

Pulse Load

Response

Burst Load

Response

5.0

10.0

15.0

20.0

25.0

30.0

35.0

C
on

su
m

pt
io

n
(G

B)

Memory Memory Memory

100 200 300 400 500

Total workers (k)

4

6

8

10

12

U
til

is
at

io
n

(%
)

Scheduler

100 200 300 400 500

Total workers (k)

Scheduler

100 200 300 400 500

Total workers (k)

Scheduler

baseline inline (instr.) inline (mon.) decent. (instr.) decent. (mon.) cent. (instr.) cent. (mon.)

Figure C.4. Gap in instrumentation and monitoring overhead on the system under high load

benchmarks (500k workers)

C.2 High Loads · 167

2.0

2.5

3.0

3.5

4.0

4.5

C
on

su
m

pt
io

n
(G

B)

Steady Load

Memory

Pulse Load

Memory

0 100 200 300 400 500

Execution duration (s)

0

10

20

30

40

50

U
til

is
at

io
n

(%
)

Scheduler

0 100 200 300 400 500

Execution duration (s)

Scheduler

baseline inline decent. (internal) decent. (external)

Figure C.5. Resource consumption for decentralised monitoring under high load benchmarks (500k

workers)

C Auxiliary Data Plots for Benchmarks · 168

0

20

40

60

80

100

U
til

is
at

io
n

(%
)

Steady Load

Scheduler (decent.)

Burst Load

Scheduler (decent.)

0 500 1000 1500 2000 2500

Execution duration (s)

0

20

40

60

80

100

U
til

is
at

io
n

(%
)

Scheduler (cent.)

0 500 1000 1500 2000 2500

Execution duration (s)

Scheduler (cent.)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

Figure C.6. Load on scheduler threads for complete experiment runs under high load benchmarks

(500k workers)

D A Summary of the State of the Art

D.1 Concurrent Monitoring

There are a number of works [113, 21, 219, 52, 51, 71, 210, 39] that address RV in a local

concurrent setting; others [34, 97] use the term decentralised to refer to synchronous

monitoring. A comparison of their various characteristics is provided in table D.1.

D.2 Distributed Monitoring

Previous work for decentralised local monitoring [34] was extended by Colombo and

Falcone [67] to a distributed setting while retaining a number of core characteristics

D
ec

en
tr

al
is

ed

G
lo

ba
l s

ta
te

A
sy

nc
hr

on
ou

s

Sh
ar

ed
m

em
or

y

M
es

sa
ge

pa
ss

in
g

To
ta

l o
rd

er
in

g

D
yn

am
ic

se
t-

up

Attard and Francalanza [21] · ✓ ✓ · ✓ · ·

Duncan Paul Attard and Francalanza [219] ✓ ∗ ✓ · ✓ · ·

Aceto et al. [13] ✓ · · · ✓ ✓ ✓

Bauer and Falcone [34] ✓ ✓ · · ✓ ✓ ·

Berkovich et al. [39] · ✓ · ✓ · ✓ ·

Cassar and Francalanza [51] · ✓ ✓ · ✓ · ·

Cassar and Francalanza [52] · ✓ ✓ · ✓ · ·

Colombo et al. [71] · · ✓ · ✓ · ✓

Falcone et al. [97] · ✓ · · ✓ ✓ ·

Francalanza and Seychell [113] · ✓ ✓ · ✓ · ·

Sen et al. [210] ✓ ✓ ✓ ✓ · · ·

Table D.1. State-of-the-art on concurrent monitoring classified by characteristics (∗ denotes both)

169

D A Summary of the State of the Art · 170

such as the decentralised approach, and in particular, the availability of a common clock.

Correctness properties over the global system state are specified via LTL3; these are

synthesised into decentralised component sub-monitors that are organised across nodes

on a network. The monitor choreography is arranged in the form of a tree, reflecting the

compositional structure of formulae, such that each child feeds intermediate results to

its parent. System components operate in synchronous rounds, meaning that a unique

global trace can be reconstructed by combining multiple sub-traces collected locally by

monitors at each component. Monitor judgements are obtained by rewriting formulae in a

compositional fashion: sub-constituents of a formula are evaluated on events from the

trace and progressively simplified by monitors until the formula eventually equates to ⊤
or ⊥, at which point, the monitoring stops. The authors give a proof of correctness of the

monitor synthesis and show that a decentralised monitoring set-up induces substantially

lower communication overheads when compared to centralised or migrating monitors.

While the monitoring algorithm does not make any assumptions on the delay of messages,

it does assume a reliable connection between system components and monitors and also

requires the number of system components to remain fixed at runtime.

Basin et al. [31] is one of the few works that consider the problem of monitoring

distributed systems with failing components and network links. Despite the absence of

a global clock, the monitoring algorithm is based on the timed asynchronous model for

distributed systems [75] that assumes the availability of highly-synchronised physical

clocks across nodes. Correctness properties are specified over the global system state using

metric temporal logic (MTL), a logic that allows the specification of real-time properties.

Monitors synthesised from MTL formulae are arranged in a choreographed fashion in

the form of a directed acyclic graph, following the compositional structure of formulae.

A monitor rooted at the graph handles the top-level formula being monitored, while

other sub-monitors are responsible for its sub-formulae constituents. During execution,

sub-monitors propagate messages to their parents to inform them about verdicts that

have been reached for their respective sub-formulae under analysis at that point in time.

This enables the root monitor to formulate and eventually report its verdict for the entire

formula. Monitors attached to system components collect trace events locally; these are

timestamped by the system before being communicated to monitors, thereby enabling

the latter to compute the precise delay between events and check whether real-time

constraints are met. In addition, events are equipped with a locally-unique sequence

D.2 Distributed Monitoring · 171

number that allows monitors to detect gaps that may arise between subsequent trace

events, due to lost or delayed messages and process crashes. We observe that events

are totally ordered locally, and even though these may be delivered out-of-order due to

the asynchronous communication between monitors, a global ordering of events may

still be possible by virtue of the local timestamps. This is in contrast to the time-free

model [107], where events in a distributed system can only be partially ordered using

logical clocks. The authors argue that while the physical time drift that occurs between

clocks on different locations might impinge on certain monitoring verdicts, this is often

acceptably small, and relying on timestamps from local clocks for monitoring purposes

is good enough in practical scenarios. They also show soundness for their algorithm in

the presence of failures, and completeness when no failure is assumed, i.e., a monitor

eventually reports a verdict for the given specification.

Bonakdarpour et al. [45] address failure within monitors themselves, specifically in the

case of fail-stop. They propose a framework for distributed fault-tolerant RV using a multi-

valued temporal logic that redefines the semantics of LTL, where the truth values represent

a degree of certainty that a formula has been satisfied or violated. Correctness properties

are synthesised as choreographed automaton monitors that interact asynchronously using

the wait-free read/write shared memory model, which is known to be equivalent to a

message-passing model where less than half of the processes can fail-stop [83]. Monitors

have a partial view of the global system state and communicate with each other for a

fixed number of rounds until a verdict about the global system state is reached. Verdicts

are given from a set of possible truth values associated with the property being monitored.

The authors show that verdicts collectively provided by monitors can be mapped to one

that is computed by a centralised monitor having a full view of the SuS.

RV of shared state concurrency programs has also been studied by Sen et al. [210], where

decentralised monitors are attached to different threads to collect and process trace events

locally. In an earlier work by the same authors [208], this investigation is conducted in a

distributed setting using decentralised monitors that are weaved into the SuS. Correctness

properties are expressed in terms of PtDTL, a variant of past-time LTL that is equipped with

epistemic operators, allowing formulae specified on the local state of system components

to internally refer to the state of other remote components. In this sense, a property about

a particular component is interpreted over a projection of the global system state. A PtDTL

formula is synthesised into a monitor choreography reflecting its structure; these are

D A Summary of the State of the Art · 172

attached to different system components in order to collect trace events locally to minimise

communication overheads. Monitors in the choreography interact via asynchronous send

and receive operations and exchange partial information about the system state that

is relevant to the property under consideration. This information takes the form of a

knowledge vector, a data structure similar to a vector clock [172, 105], that summarises the

local state of the system components related to the monitored PtDTL formula. Monitors

exchange local copies of their knowledge vector by attaching them to outgoing messages

sent by system components and update their local knowledge vector state in turn with

the most recent information received. A formula is evaluated in a step-wise fashion by

cooperating monitors by consulting their local knowledge vector whenever it gets updated

until a verdict is eventually reached. The authors focus on the efficiency of the monitoring

set-up and argue that the monitoring information piggybacked on messages already being

passed between system components does not incur additional overheads. However, this

renders the monitoring algorithm incomplete, since monitors only gain knowledge of the

system through the existing communication among its components, and in cases where

these rarely communicate, the little information exchanged may lead to missed detections.

The set-up is also not amenable to scenarios where node or link failure is present, due the

to dependency monitors have on the architecture of the SuS.

Scheffel and Schmitz [203] argue that the two-valued semantics of PtDTL is insufficient

to enable monitors to distinguish between verdicts relating to safety or fulfilment proper-

ties. They adopt an approach similar to Sen et al. [208], but allow correctness properties

to be expressed in DTL—an extended version of PtDTL equipped with the three-valued

semantics of LTL3. As in Sen et al. [208], correctness properties specified over the local

state of system components can, in turn, include sub-properties that reference the state

of other remote components through epistemic operators. Monitors disseminate partial

information using the notion of knowledge vectors of Sen et al. [208], employing the

same mechanism that piggybacks monitoring information on asynchronous messages

exchanged between system components, making their algorithm efficient but incomplete.

Minimising communication and memory overhead is also the focus of Mostafa and

Bonakdarpour [180]. In this setting, the SuS consists of distributed asynchronous pro-

cesses that communicate together via message-passing primitives over reliable channels.

Correctness specifications given in terms of LTL3 are specified over the global system state:

these are synthesised into automaton monitors and composed with system processes.

D.2 Distributed Monitoring · 173

The monitor algorithm does not assume a common global clock and partially orders

the trace events collected locally by monitors using vector clocks. To contend with the

non-determinism that arises due to this partial ordering, each automaton in the monitor

maintains a number of possible verdicts that are continually updated when new local

state information is exchanged between monitors. This spares monitors from having to

consider system states that are not relevant to the property under consideration. The

algorithm progresses by merging similar monitor states to keep the number of possible

verdicts manageable throughout the monitoring process until the final verdict is eventually

issued.

Graf et al. [122] adopt a hybrid verification approach that employs model checking to pre-

calculate the states of a program that enable violations to be reported by a monitor acting

alone. Invariants are specified via knowledge properties [93] over the global system state;

these are synthesised into asynchronous decentralised monitors that communicate with

each other to obtain additional information about the local state of remote components.

When the information computed a priori during the model checking phase determines

that monitors cannot reach a verdict in isolation, synchronisation ensues to enable them

to cooperatively conclude whether the invariant is violated. In this manner, monitors may

operate independently and engage in synchronous communication only when necessary,

contributing to lower overheads. The pre-calculation step assumes that components

within the system are reliable and that their number remains fixed throughout the entire

execution.

A summary of the discussed works is given in table D.2. The various monitoring

approaches use decentralised monitors to collect and process trace events locally at

each component; this tends to better address the communication overhead that arises

in centralised approaches, and at the same time, eliminates SPOFs. While works such

as Sen et al. [210] and Mostafa and Bonakdarpour [180] do not explicitly focus on failure,

their decentralised set-ups may still benefit from a modicum of fault containment when

correctness properties target only specific components.

D A Summary of the State of the Art · 174

Decentralised

Globalstate

Globalclock

Asynchronous

Sharedmemory

Messagepassing

Totalordering

Messageloss

Failure

Dynamicset-up

Ba
si

n
et

al
.[

31
]

✓
✓

·
✓

·
✓

✓
✓

✓
·

Bo
na

kd
ar

po
ur

et
al

.[
45

]
✓

✓
·

✓
✓

·
·

·
✓

·

C
ol

om
bo

an
d

Fa
lc

on
e

[6
7]

✓
✓

✓
·

·
✓

✓
·

·
·

G
ra

fe
ta

l.
[1

22
]

✓
✓

·
∗

·
✓

∗
·

·
·

M
os

ta
fa

an
d

Bo
na

kd
ar

po
ur

[1
80

]
✓

✓
·

✓
·

✓
·

·
·

·

Sc
he

ffe
la

nd
Sc

hm
itz

[2
03

]
✓

·
·

✓
·

✓
·

·
·

·

Se
n

et
al

.[
20

8]
✓

·
·

✓
·

✓
·

·
·

·

T
a
b

l
e

D
.
2
.

S
t
a
t
e

o
f

t
h

e
a
r
t

o
n

d
i
s
t
r
i
b
u

t
e
d

m
o
n

i
t
o
r
i
n

g
c
l
a
s
s
i
fi

e
d

b
y

c
h

a
r
a
c
t
e
r
i
s
t
i
c
s

(
∗

d
e
n

o
t
e
s

b
o
t
h

)

Acronyms

maxHML
d greatest fixed point fragment of `HML with data.

minHML
d least fixed point fragment of `HML with data.

`HML Hennessy-Milner logic with recursion.

`HML
d `HMLwith data.

AOP aspect-oriented programming.

API application programming interface.

APM application performance monitoring.

AST abstract syntax tree.

BEAM Bogdan’s Erlang Abstract Machine.

BIF built-in function.

CCS calculus of communicating systems.

CPU central processing unit.

CRV competition on runtime verification.

CTL computation tree logic.

CV coefficient of variation.

DAG directed acyclic graph.

DB database.

DTL distributed temporal logic.

175

Acronyms · 176

EVM Erlang virtual machine.

FIFO first in first out.

HTTP hypertext transfer protocol.

IO input/output.

IP internet protocol.

JVM Java virtual machine.

LTL linear temporal logic.

LTS labelled transition system.

MPI message passing interface.

MTL metric temporal logic.

OOP object oriented programming.

OS operating system.

OTP open telecom platform.

OTS off-the-shelf.

PD process dictionary.

PID process identifier.

PtDTL past-time distributed temporal logic.

PTS parametric trace slicing.

RE regular expression.

REST representational state transfer.

Acronyms · 177

RV runtime verification.

SMP symmetric multiprocessing.

SPOF single point of failure.

SuS system under scrutiny.

TCP transmission control protocol.

UUID universally unique identifier.

Bibliography

[1] Luca Aceto and Anna Ingólfsdóttir. Testing Hennessy-Milner Logic with Recursion.

In FoSSaCS, volume 1578 of LNCS, pages 41–55, 1999.

[2] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiří Srba. Reactive

Systems: Modelling, Specification and Verification. Cambridge University Press, 2007.

[3] Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. Moni-

toring for silent actions. In FSTTCS, volume 93 of LIPIcs, pages 7:1–7:14, 2017.

[4] Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. A

Framework for Parameterized Monitorability. In FoSSaCS, volume 10803 of LNCS,

pages 203–220, 2018.

[5] Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir. On Runtime

Enforcement via Suppressions. In CONCUR, volume 118 of LIPIcs, pages 34:1–34:17,

2018.

[6] Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoli-

ina Lehtinen. Adventures in Monitorability: From Branching to Linear Time and

Back Again. PACMPL, 3:52:1–52:29, 2019.

[7] Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Sæ-

var Örn Kjartansson. Determinizing Monitors for HML with Recursion. JLAMP,

111:100515, 2020.

[8] Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoli-

ina Lehtinen. An Operational Guide to Monitorability with Applications to Regular

Properties. Softw. Syst. Model., 20:335–361, 2021.

[9] Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoli-

ina Lehtinen. The Best a Monitor Can Do. In CSL, volume 183 of LIPIcs, pages

7:1–7:23, 2021.

179

BIBLIOGRAPHY · 180

[10] Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. On

Benchmarking for Concurrent Runtime Verification. In FASE, volume 12649 of

LNCS, pages 3–23, 2021.

[11] Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. A

Choreographed Outline Instrumentation Algorithm for Asynchronous Components.

Technical report, Reykjavik University, IS, 2021.

[12] Luca Aceto, Antonis Achilleos, Elli Anastasiadi, and Adrian Francalanza. Monitoring

Hyperproperties with Circuits. In FORTE, volume 13273 of LNCS, pages 1–10, 2022.

[13] Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Fran-

calanza, and Anna Ingólfsdóttir. A Monitoring Tool for Linear-Time `HML. In

COORDINATION, volume 13271 of LNCS, pages 200–219, 2022.

[14] Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Fran-

calanza, and Anna Ingólfsdóttir. A Monitoring Tool for Linear-Time `HML. Sci.

Comput. Program., 232:103031, 2024.

[15] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A Foundation for

Actor Computation. JFP, 7:1–72, 1997.

[16] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren, Sascha

Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and

Julian Tibble. Adding Trace Matching with Free Variables to AspectJ. In OOPSLA,

pages 345–364, 2005.

[17] Bowen Alpern and Fred B. Schneider. Defining Liveness. Inf. Process. Lett., 21:

181–185, 1985.

[18] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities. In AFIPS Spring Joint Computing Conference, vol-

ume 30 of AFIPS Conference Proceedings, pages 483–485, 1967.

[19] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic

Bookshelf, 2007.

[20] Stavros Aronis, Nikolaos Papaspyrou, Katerina Roukounaki, Konstantinos Sago-

nas, Yiannis Tsiouris, and Ioannis E. Venetis. A Scalability Benchmark Suite for

Erlang/OTP. In Erlang Workshop, pages 33–42, 2012.

BIBLIOGRAPHY · 181

[21] Duncan Paul Attard and Adrian Francalanza. A Monitoring Tool for a Branching-

Time Logic. In RV, volume 10012 of LNCS, pages 473–481, 2016.

[22] Ralph-Johan Back. Invariant Based Programming: Basic Approach and Teaching

Experiences. Formal Aspects Comput., 21:227–244, 2009.

[23] Howard Barringer, David E. Rydeheard, and Klaus Havelund. Rule Systems for

Run-time Monitoring: from Eagle to RuleR. J. Log. Comput., 20:675–706, 2010.

[24] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E. Ry-

deheard. Quantified Event Automata: Towards Expressive and Efficient Runtime

Monitors. In FM, volume 7436 of LNCS, pages 68–84, 2012.

[25] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to

Runtime Verification. In Lectures on Runtime Verification, volume 10457 of LNCS,

pages 1–33. Springer, 2018.

[26] Ezio Bartocci, Yliès Falcone, Borzoo Bonakdarpour, Christian Colombo, Normann

Decker, Klaus Havelund, Yogi Joshi, Felix Klaedtke, Reed Milewicz, Giles Reger,

Grigore Rosu, Julien Signoles, Daniel Thoma, Eugen Zalinescu, and Yi Zhang. First

International Competition on Runtime Verification: Rules, Benchmarks, Tools, and

Final Results of CRV 2014. STTT, 21:31–70, 2019.

[27] Ezio Bartocci, Yliès Falcone, and Giles Reger. International Competition on Runtime

Verification (CRV). In TACAS, volume 11429 of LNCS, pages 41–49, 2019.

[28] Basho. Bench, 2017. URL https://github.com/basho/basho_bench.

[29] Basho. Riak, 2022. URL https://github.com/basho/riak.

[30] David A. Basin, Felix Klaedtke, Samuel Müller, and Eugen Zalinescu. Monitoring

Metric First-Order Temporal Properties. J. ACM, 62:15:1–15:45, 2015.

[31] David A. Basin, Felix Klaedtke, and Eugen Zalinescu. Failure-Aware Runtime

Verification of Distributed Systems. In FSTTCS, volume 45 of LIPIcs, pages 590–603,

2015.

[32] David A. Basin, Germano Caronni, Sarah Ereth, Matús Harvan, Felix Klaedtke, and

Heiko Mantel. Scalable Offline Monitoring of Temporal Specifications. FMSD, 49:

75–108, 2016.

https://github.com/basho/basho_bench
https://github.com/basho/riak

BIBLIOGRAPHY · 182

[33] David A. Basin, Felix Klaedtke, and Eugen Zalinescu. Runtime Verification of

Temporal Properties over Out-of-Order Data Streams. In CAV, volume 10426 of

LNCS, pages 356–376, 2017.

[34] Andreas Bauer and Yliès Falcone. Decentralised LTL Monitoring. FMSD, 48:46–93,

2016.

[35] Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing LTL Semantics

for Runtime Verification. J. Log. Comput., 20:651–674, 2010.

[36] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime Verification for

LTL and TLTL. ACM Trans. Softw. Eng. Methodol., 20:14:1–14:64, 2011.

[37] Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach. The Ins and Outs of First-

Order Runtime Verification. FMSD, 46:286–316, 2015.

[38] Kent Beck. Test Driven Development: By Example. Addison-Wesley, 2002.

[39] Shay Berkovich, Borzoo Bonakdarpour, and Sebastian Fischmeister. Runtime Verifi-

cation with Minimal Intrusion through Parallelism. FMSD, 46:317–348, 2015.

[40] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S.

McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,

Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee,

J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel

von Dincklage, and Ben Wiedermann. The DaCapo Benchmarks: Java Benchmark-

ing Development and Analysis. In OOPSLA, pages 169–190, 2006.

[41] Sebastian Blessing, Kiko Fernandez-Reyes, Albert Mingkun Yang, Sophia

Drossopoulou, and Tobias Wrigstad. Run, Actor, Run: Towards Cross-Actor Lan-

guage Benchmarking. In AGERE!@SPLASH, pages 41–50, 2019.

[42] Eric Bodden. The Design and Implementation of Formal Monitoring Techniques.

In OOPSLA Companion, pages 939–940, 2007.

[43] Eric Bodden, Laurie J. Hendren, Patrick Lam, Ondrej Lhoták, and Nomair A. Naeem.

Collaborative Runtime Verification with Tracematches. J. Log. Comput., 20:707–723,

2010.

BIBLIOGRAPHY · 183

[44] Borzoo Bonakdarpour and Bernd Finkbeiner. The Complexity of Monitoring Hy-

perproperties. In CSF, pages 162–174, 2018.

[45] Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, David A. Rosenblueth,

and Corentin Travers. Decentralized Asynchronous Crash-Resilient Runtime Veri-

fication. In CONCUR, volume 59 of LIPIcs, pages 16:1–16:15, 2016.

[46] Werner Buchholz. A Synthetic Job for Measuring System Performance. IBM Syst. J.,

8:309–318, 1969.

[47] Christian Bartolo Burlò, Adrian Francalanza, and Alceste Scalas. On the Monitora-

bility of Session Types, in Theory and Practice. In ECOOP, volume 194 of LIPIcs,

pages 20:1–20:30, 2021.

[48] David R. Butenhof. Programming with POSIX threads. Addison-Wesley, 1997.

[49] Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski. Cloud Computing:

Principles and Paradigms. Wiley-Blackwell, 2011.

[50] Bryan Cantrill. Hidden in Plain Sight. ACM Queue, 4:26–36, 2006.

[51] Ian Cassar and Adrian Francalanza. On Synchronous and Asynchronous Monitor

Instrumentation for Actor-based Systems. In FOCLASA, volume 175 of EPTCS, pages

54–68, 2014.

[52] Ian Cassar and Adrian Francalanza. On Implementing a Monitor-Oriented Program-

ming Framework for Actor Systems. In IFM, volume 9681 of LNCS, pages 176–192,

2016.

[53] Ian Cassar, Adrian Francalanza, and Simon Said. Improving Runtime Overheads

for detectEr. In FESCA, volume 178 of EPTCS, pages 1–8, 2015.

[54] Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. eAOP: An

Aspect Oriented Programming Framework for Erlang. In Erlang Workshop, pages

20–30, 2017.

[55] Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. A Survey of

Runtime Monitoring Instrumentation Techniques. In PrePostiFM, volume 254 of

EPTCS, pages 15–28, 2017.

BIBLIOGRAPHY · 184

[56] Ian Cassar, Adrian Francalanza, Duncan Paul Attard, Luca Aceto, and Anna In-

gólfsdóttir. A Suite of Monitoring Tools for Erlang. In RV-CuBES, volume 3 of Kalpa

Publications in Computing, pages 41–47, 2017.

[57] Francesco Cesarini and Simon Thompson. Erlang Programming: A Concurrent

Approach to Software Development. O’Reilly Media, 2009.

[58] Edward Y. Chang, Zohar Manna, and Amir Pnueli. Characterization of Temporal

Property Classes. In ICALP, volume 623 of LNCS, pages 474–486, 1992.

[59] Feng Chen and Grigore Rosu. Towards Monitoring-Oriented Programming: A

Paradigm Combining Specification and implementation. Electron. Notes Theor.

Comput. Sci., 89:108–127, 2003.

[60] Feng Chen and Grigore Rosu. Java-MOP: A Monitoring Oriented Programming

Environment for Java. In TACAS, volume 3440 of LNCS, pages 546–550, 2005.

[61] Feng Chen and Grigore Rosu. Mop: An Efficient and Generic Runtime Verification

Framework. In OOPSLA, pages 569–588, 2007.

[62] Feng Chen and Grigore Rosu. Parametric Trace Slicing and Monitoring. In TACAS,

volume 5505 of LNCS, pages 246–261, 2009.

[63] Feng Chen, Patrick O’Neil Meredith, Dongyun Jin, and Grigore Rosu. Efficient

Formalism-Independent Monitoring of Parametric Properties. In ASE, pages 383–

394, 2009.

[64] David M. Ciemiewicz. What Do You mean? - Revisiting Statistics for Web Response

Time Measurements. In CMG, pages 385–396, 2001.

[65] Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo Zuliani. Model

Checking and the State Explosion Problem. In LASER Summer School, volume 7682

of LNCS, pages 1–30, 2011.

[66] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The

Hierarchy of Hyperlogics. In LICS, pages 1–13, 2019.

[67] Christian Colombo and Yliès Falcone. Organising LTL Monitors over Distributed

Systems with a Global Clock. FMSD, 49:109–158, 2016.

BIBLIOGRAPHY · 185

[68] Christian Colombo and Gordon J. Pace. Runtime Verification - A Hands-On Approach

in Java. Springer, 2022.

[69] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Dynamic Event-Based

Runtime Monitoring of Real-Time and Contextual Properties. In FMICS, volume

5596 of LNCS, pages 135–149, 2008.

[70] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. LARVA — Safer Moni-

toring of Real-Time Java Programs (Tool Paper). In SEFM, pages 33–37, 2009.

[71] Christian Colombo, Adrian Francalanza, and Rudolph Gatt. Elarva: A Monitoring

Tool for Erlang. In RV, volume 7186 of LNCS, pages 370–374, 2011.

[72] Christian Colombo, Adrian Francalanza, Ruth Mizzi, and Gordon J. Pace. polyLarva:

Runtime Verification with Configurable Resource-Aware Monitoring Boundaries.

In SEFM, volume 7504 of LNCS, pages 218–232, 2012.

[73] Oscar Cornejo, Daniela Briola, Daniela Micucci, and Leonardo Mariani. In the Field

Monitoring of Interactive Application. In ICSE-NIER, pages 55–58, 2017.

[74] Gatling Corp. Gatling, 2020. URL https://gatling.io.

[75] Flaviu Cristian and Christof Fetzer. The Timed Asynchronous Distributed System

Model. IEEE Trans. Parallel Distrib. Syst., 10:642–657, 1999.

[76] Markus Dahm. Byte Code Engineering with the BCEL API. Technical report, Java

Informationstage 99, 2001.

[77] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters. Commun. ACM, 51:107–113, 2008.

[78] Normann Decker, Jannis Harder, Torben Scheffel, Malte Schmitz, and Daniel Thoma.

Runtime Monitoring with Union-Find Structures. In TACAS, volume 9636 of LNCS,

pages 868–884, 2016.

[79] Derek DeJonghe. NGINX Cookbook: Advanced Recipes for High-Performance Load

Balancing. O’Reilly Media, 2020.

https://gatling.io

BIBLIOGRAPHY · 186

[80] Mathieu Desnoyers and Michel Dagenais. The LTTng Tracer: A Low Impact Perfor-

mance and Behavior Monitor for GNU/Linux. Technical report, École Polytechnique

de Montréal, 2006.

[81] Jay L. Devore and Kenneth N. Berk. Modern Mathematical Statistics with Applications.

Springer, 2012.

[82] Edsger W. Dijkstra. Chapter I: Notes on Structured Programming, page 1–82. Academic

Press Ltd., 1972.

[83] Jean Dollimore, Tim Kindberg, and George Coulouris. Distributed Systems: Concepts

and Design. Addison-Wesley, 2005.

[84] Doron Drusinsky. Monitoring Temporal Rules Combined with Time Series. In CAV,

volume 2725 of LNCS, pages 114–117, 2003.

[85] Doron Drusinsky. Modeling and verification using UML statecharts - a working guide

to reactive system design, runtime monitoring and execution-based model checking.

Elsevier, 2006.

[86] Eclipse/IBM. OpenJ9, 2021. URL https://www.eclipse.org/openj9.

[87] Antoine El-Hokayem and Yliès Falcone. Monitoring Decentralized Specifications.

In ISSTA, pages 125–135, 2017.

[88] Antoine El-Hokayem and Yliès Falcone. THEMIS: A Tool for Decentralized Moni-

toring Algorithms. In ISSTA, pages 372–375, 2017.

[89] Antoine El-Hokayem and Yliès Falcone. On the Monitoring of Decentralized

Specifications: Semantics, Properties, Analysis, and Simulation. ACM Trans. Softw.

Eng. Methodol., 29:1:1–1:57, 2020.

[90] Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforce-

ment. PhD thesis, Cornell University, US, 2004.

[91] Úlfar Erlingsson and Fred B. Schneider. SASI Enforcement of Security Policies: A

Retrospective. In NSPW, pages 87–95, 1999.

[92] Joan Facorro. Clojerl Language, 2021. URL http://clojerl.org.

https://www.eclipse.org/openj9
http://clojerl.org

BIBLIOGRAPHY · 187

[93] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Vardi. Reasoning About

Knowledge. MIT Press, 2004.

[94] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify

and enforce at runtime? STTT, 14:349–382, 2012.

[95] Yliès Falcone, Klaus Havelund, and Giles Reger. A Tutorial on Runtime Verification.

In Engineering Dependable Software Systems, volume 34 of NATO Science for Peace

and Security Series, D: Information and Communication Security, pages 141–175. IOS

Press, 2013.

[96] Yliès Falcone, Tom Cornebize, and Jean-Claude Fernandez. Efficient and Generalized

Decentralized Monitoring of Regular Languages. In FORTE, volume 8461 of LNCS,

pages 66–83, 2014.

[97] Yliès Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Marius Bozga, and Saddek

Bensalem. Runtime Verification of Component-Based Systems in the BIP Framework

with Formally-Proved Sound and Complete Instrumentation. SoSyM, 14:173–199,

2015.

[98] Yliès Falcone, Dejan Nickovic, Giles Reger, and Daniel Thoma. Second International

Competition on Runtime Verification CRV 2015. In RV, volume 9333 of LNCS, pages

405–422, 2015.

[99] Yliès Falcone, Hosein Nazarpour, Mohamad Jaber, Marius Bozga, and Saddek Ben-

salem. Tracing Distributed Component-Based Systems, a Brief Overview. In RV,

volume 11237 of LNCS, pages 417–425, 2018.

[100] Yliès Falcone, Srdan Krstic, Giles Reger, and Dmitriy Traytel. A Taxonomy for

Classifying Runtime Verification Tools. STTT, 23:255–284, 2021.

[101] Yliès Falcone, Hosein Nazarpour, Saddek Bensalem, and Marius Bozga. Monitoring

Distributed Component-Based Systems. In FACS, volume 13077 of LNCS, pages

153–173, 2021.

[102] Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem Torfah. A

Stream-Based Specification Language for Network Monitoring. In RV, volume 10012

of LNCS, pages 152–168, 2016.

BIBLIOGRAPHY · 188

[103] Dror G. Feitelson. From Repeatability to Reproducibility and Corroboration. ACM

SIGOPS Oper. Syst. Rev., 49:3–11, 2015.

[104] Thomas Ferrère, Thomas A. Henzinger, and N. Ege Saraç. A Theory of Register

Monitors. In LICS, pages 394–403, 2018.

[105] Colin J. Fidge. Timestamps in Message-Passing Systems that Preserve the Partial

Ordering. Proceedings of the 11th Australian Computer Science Conference, 10:56–66,

1988.

[106] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Moni-

toring hyperproperties. In RV, volume 10548 of LNCS, pages 190–207, 2017.

[107] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of Distributed

Consensus with One Faulty Process. J. ACM, 32:374–382, 1985.

[108] Philip J. Fleming and John J. Wallace. How Not to Lie with Statistics: The Correct

Way to Summarize Benchmark Results. Commun. ACM, 29:218–221, 1986.

[109] Apache Software Foundtation. JMeter, 2020. URL https://jmeter.apache.org.

[110] Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. On the Number of

Opinions Needed for Fault-Tolerant Run-Time Monitoring in Distributed Systems.

In RV, volume 8734 of LNCS, pages 92–107, 2014.

[111] Adrian Francalanza. Consistently-Detecting Monitors. In CONCUR, volume 85 of

LIPIcs, pages 8:1–8:19, 2017.

[112] Adrian Francalanza. A Theory of Monitors. Inf. Comput., 281:104704, 2021.

[113] Adrian Francalanza and Aldrin Seychell. Synthesising Correct Concurrent Runtime

Monitors. FMSD, 46:226–261, 2015.

[114] Adrian Francalanza and Jasmine Xuereb. On Implementing Symbolic Controllability.

In COORDINATION, volume 12134 of LNCS, pages 350–369, 2020.

[115] Adrian Francalanza, Andrew Gauci, and Gordon J. Pace. Distributed System Con-

tract Monitoring. JLAMP, 82:186–215, 2013.

https://jmeter.apache.org

BIBLIOGRAPHY · 189

[116] Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. On Verifying Hennessy-

Milner Logic with Recursion at Runtime. In RV, volume 9333 of LNCS, pages 71–86,

2015.

[117] Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar,

Dario Della Monica, and Anna Ingólfsdóttir. A Foundation for Runtime Monitoring.

In RV, volume 10548 of LNCS, pages 8–29, 2017.

[118] Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the

Hennessy-Milner Logic with Recursion. FMSD, 51:87–116, 2017.

[119] Adrian Francalanza, Jorge A. Pérez, and César Sánchez. Runtime Verification for

Decentralised and Distributed Systems. In Lectures on RV, volume 10457 of LNCS,

pages 176–210. Springer, 2018.

[120] Vijay K. Garg. Elements of Distributed Computing. Wiley, 2014.

[121] Sukumar Ghosh. Distributed Systems: An Algorithmic Approach. CRC, 2014.

[122] Susanne Graf, Doron A. Peled, and Sophie Quinton. Monitoring Distributed Systems

Using Knowledge. In FORTE, volume 6722 of LNCS, pages 183–197, 2011.

[123] Jim Gray. The Benchmark Handbook for Database and Transaction Processing Systems.

Morgan Kaufmann, 1993.

[124] Radu Grigore, Dino Distefano, Rasmus Lerchedahl Petersen, and Nikos Tzevelekos.

Runtime Verification Based on Register Automata. In TACAS, volume 7795 of LNCS,

pages 260–276, 2013.

[125] Jan Friso Groote and Radu Mateescu. Verification of Temporal Properties of Pro-

cesses in a Setting with Data. In AMAST, volume 1548 of LNCS, pages 74–90,

1998.

[126] Duncan A. Grove and Paul D. Coddington. Analytical Models of Probability Dis-

tributions for MPI Point-to-Point Communication Times on Distributed Memory

Parallel Computers. In ICA3PP, volume 3719 of LNCS, pages 406–415, 2005.

[127] Mark Harman and Peter W. O’Hearn. From Start-ups to Scale-ups: Opportunities

and Open Problems for Static and Dynamic Program Analysis. In SCAM, pages

1–23, 2018.

BIBLIOGRAPHY · 190

[128] Klaus Havelund and Doron Peled. Runtime Verification: From Propositional to

First-Order Temporal Logic. In RV, volume 11237 of LNCS, pages 90–112, 2018.

[129] Klaus Havelund and Doron Peled. BDDs for Representing Data in Runtime Verifi-

cation. In RV, volume 12399 of LNCS, pages 107–128, 2020.

[130] Klaus Havelund and Grigore Rosu. An Overview of the Runtime Verification Tool

Java PathExplorer. FMSD, 24:189–215, 2004.

[131] Klaus Havelund, Giles Reger, Daniel Thoma, and Eugen Zalinescu. Monitoring

Events that Carry Data. In Lectures on Runtime Verification, volume 10457 of LNCS,

pages 61–102. Springer, 2018.

[132] Fred Hebert. Stuff Goes Bad: Erlang in Anger. Manning, 2014.

[133] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A Universal Modular

ACTOR Formalism for Artificial Intelligence. In IJCAI, pages 235–245, 1973.

[134] Loïc Hoguin. Cowboy, 2020. URL https://ninenines.eu.

[135] Loïc Hoguin. Ranch, 2020. URL https://ninenines.eu.

[136] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions. Addison-Wesley, 2003.

[137] Shams Mahmood Imam and Vivek Sarkar. Savina - An Actor Benchmark Suite:

Enabling Empirical Evaluation of Actor Libraries. In AGERE!@SPLASH, pages 67–80,

2014.

[138] Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Rosu. Java-

MOP: Efficient Parametric Runtime Monitoring Framework. In ICSE, pages 1427–

1430, 2012.

[139] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Handbook:

The Art of Automatic Memory Management. CRC, 2020.

[140] Nicolai M. Josuttis. SOA in Practice: The Art of Distributed System Design: Theory in

Practice. O’Reilly Media, 2007.

[141] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model Checking. MIT

Press, 1999.

https://ninenines.eu
https://ninenines.eu

BIBLIOGRAPHY · 191

[142] Saša Jurić. Elixir in Action. Manning, 2019.

[143] Michael Kaminski and Nissim Francez. Finite-Memory Automata. Theor. Comput.

Sci., 134:329–363, 1994.

[144] Bill Kayser. What is the expected distribution of website re-

sponse times?, 2017. URL https://blog.newrelic.com/engineering/

expected-distributions-website-response-times.

[145] Robert M. Keller. Formal Verification of Parallel Programs. Commun. ACM, 19:

371–384, 1976.

[146] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In

ECOOP, volume 1241 of LNCS, pages 220–242, 1997.

[147] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William G. Griswold. An Overview of AspectJ. In ECOOP, volume 2072 of LNCS,

pages 327–353, 2001.

[148] Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokol-

sky. Java-MaC: A Run-Time Assurance Approach for Java Programs. FMSD, 24:

129–155, 2004.

[149] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded

Applications (Real-Time Systems Series). Springer, 2011.

[150] Dexter Kozen. Results on the Propositional `-Calculus. In ICALP, volume 140 of

LNCS, pages 348–359, 1982.

[151] Ajay D. Kshemkalyani. Distributed Computing: Principles, Algorithms, and Systems.

Cambridge University Press, 2011.

[152] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles,

Algorithms, and Systems. Cambridge University Press, 2011.

[153] Roland Kuhn, Brian Hanafee, and Jamie Allen. Reactive Design Patterns. Manning,

2016.

https://blog.newrelic.com/engineering/expected-distributions-website-response-times
https://blog.newrelic.com/engineering/expected-distributions-website-response-times

BIBLIOGRAPHY · 192

[154] Lars Kuhtz and Bernd Finkbeiner. LTL Path Checking is Efficiently Parallelizable.

In ICALP, volume 5556 of LNCS, pages 235–246, 2009.

[155] Orna Kupferman and Moshe Y. Vardi. Model Checking of Safety Properties. FMSD,

19:291–314, 2001.

[156] Leslie Lamport. "Sometime" is Sometimes "Not Never" - On the Temporal Logic of

Programs. In POPL, pages 174–185, 1980.

[157] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine Generals

Problem. ACM Trans. Program. Lang. Syst., 4:382–401, 1982.

[158] Julien Lange and Nobuko Yoshida. Verifying Asynchronous Interactions via Com-

municating Session Automata. In CAV, volume 11561 of LNCS, pages 97–117, 2019.

[159] Kim Guldstrand Larsen. Proof Systems for Satisfiability in Hennessy-Milner Logic

with Recursion. TCS, 72:265–288, 1990.

[160] Jonathan Laurent, Alwyn Goodloe, and Lee Pike. Assuring the Guardians. In RV,

volume 9333 of LNCS, pages 87–101, 2015.

[161] Ben Laurie and Peter Laurie. Apache: The Definitive Guide. O’Reilly Media, 2002.

[162] Matthew Alan Le Brun, Duncan Paul Attard, and Adrian Francalanza. Graft: General

Purpose RAFT Consensus in Elixir. In Erlang Workshop, pages 2–14, 2021.

[163] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus Weninger.

A Comprehensive Java Benchmark Study on Memory and Garbage Collection

Behavior of DaCapo, DaCapo Scala, and SPECjvm2008. In ICPE, pages 3–14, 2017.

[164] Martin Leucker and Christian Schallhart. A Brief Account of Runtime Verification.

JLAP, 78:293–303, 2009.

[165] Bryon C. Lewis and Albert E. Crews. The Evolution of Benchmarking as a Computer

Performance Evaluation Technique. MIS Q., 9:7–16, 1985.

[166] Jay Ligatti, Lujo Bauer, and David Walker. Edit Automata: Enforcement Mechanisms

for Run-Time Security Policies. Int. J. Inf. Sec., 4:2–16, 2005.

[167] Lightbend. Play Framework, 2020. URL https://www.playframework.com.

https://www.playframework.com

BIBLIOGRAPHY · 193

[168] Zhen Liu, Nicolas Niclausse, and César Jalpa-Villanueva. Traffic Model and Perfor-

mance Evaluation of Web Servers. Perform. Evaluation, 46:77–100, 2001.

[169] Mark Loy, Patrick Niemeyer, and Daniel Leuck. Learning Java: An Introduction to

Real-World Programming with Java. O’Reilly Media, 2020.

[170] Qingzhou Luo and Grigore Rosu. EnforceMOP: A Runtime Property Enforcement

System for Multithreaded Programs. In ISSTA, pages 156–166, 2013.

[171] Radu Mateescu. Local Model-Checking of an Alternation-Free Value-Based Modal

Mu-Calculus. In VMCAI, volume 98, 1998.

[172] Friedemann Mattern. Virtual Time and Global States of Distributed Systems. In

Parallel and Distributed Algorithms, pages 215–226, 1989.

[173] Eric Matthes. Python Crash Course: A Hands-On, Project-Based Introduction to

Programming. No Starch Press, 2019.

[174] Deep Medhi and Karthik Ramasamy. Chapter 3 - routing protocols: Framework

and principles. In Network Routing (Second Edition), The Morgan Kaufmann Series

in Networking, pages 64–113. Morgan Kaufmann, 2018.

[175] Patrick O’Neil Meredith and Grigore Rosu. Efficient Parametric Runtime Verification

with Deterministic String Rewriting. In ASE, pages 70–80, 2013.

[176] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore

Rosu. An Overview of the MOP Runtime Verification Framework. STTT, 14:249–289,

2012.

[177] Microsoft. MSDN, 2021. URL https://msdn.microsoft.com.

[178] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[179] Dario Della Monica and Adrian Francalanza. Pushing Runtime Verification to the

Limit: May Process Semantics Be With Us. In OVERLAYAI*IA, volume 2509 of

CEUR Workshop Proceedings, pages 47–52, 2019.

[180] Menna Mostafa and Borzoo Bonakdarpour. Decentralized Runtime Verification of

LTL Specifications in Distributed Systems. In IPDPS, pages 494–503, 2015.

https://msdn.microsoft.com

BIBLIOGRAPHY · 194

[181] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing.

Wiley, 2011.

[182] Samaneh Navabpour, Yogi Joshi, Chun Wah Wallace Wu, Shay Berkovich, Ramy

Medhat, Borzoo Bonakdarpour, and Sebastian Fischmeister. RiTHM: A Tool for

Enabling Time-Triggered Runtime Verification for C Programs. In ESEC/SIGSOFT

FSE, pages 603–606, 2013.

[183] Rumyana Neykova. Multiparty Session Types for Dynamic Verification of Distributed

Systems. PhD thesis, Imperial College London, UK, 2017.

[184] Rumyana Neykova and Nobuko Yoshida. Multiparty Session Actors. LMCS, 13,

2017.

[185] Rumyana Neykova and Nobuko Yoshida. Let it Recover: Multiparty Protocol-

Induced Recovery. In CC, pages 98–108, 2017.

[186] Nicolas Niclausse. Tsung, 2017. URL http://tsung.erlang-projects.org.

[187] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1993.

[188] Scott Oaks. Java Performance: In-Depth Advice for Tuning and Programming Java 8,

11, and Beyond. CRC, 2020.

[189] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima Inc.,

2020.

[190] Diego Ongaro and John K. Ousterhout. In Search of an Understandable Consensus

Algorithm. In USENIX Annual Technical Conference, pages 305–319, 2014.

[191] Athanansios Papoulis. Probability, Random Variables, and Stochastic Processes. Mc-

Graw Hill, 1991.

[192] Amir Pnueli and Aleksandr Zaks. PSL Model Checking and Run-Time Verification

via Testers. In FM, volume 4085 of LNCS, pages 573–586, 2006.

[193] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tuma,

Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon, Thomas

Würthinger, and Walter Binder. Renaissance: Benchmarking Suite for Parallel

Applications on the JVM. In PLDI, pages 31–47, 2019.

http://tsung.erlang-projects.org

BIBLIOGRAPHY · 195

[194] Kevin Quick. Thespian, 2020. URL http://thespianpy.com.

[195] Aidan Randtoul and Phil Trinder. A Reliability Benchmark for Actor-Based Server

Languages. In Erlang Workshop, pages 21–32, 2022.

[196] Giles Reger and David E. Rydeheard. From First-Order Temporal Logic to Parametric

Trace Slicing. In RV, volume 9333 of LNCS, pages 216–232, 2015.

[197] Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. MarQ: Monitoring at

Runtime with QEA. In TACAS, volume 9035 of LNCS, pages 596–610, 2015.

[198] Giles Reger, Sylvain Hallé, and Yliès Falcone. Third International Competition on

Runtime Verification - CRV 2016. In RV, volume 10012 of LNCS, pages 21–37, 2016.

[199] Raymond Roestenburg, Rob Bakker, and Rob Williams. Akka in Action. Manning,

2015.

[200] Richard J. Rossi. Mathematical Statistics: An Introduction to Likelihood Based Infer-

ence. Wiley, 2018.

[201] Grigore Rosu and Feng Chen. Semantics and Algorithms for Parametric Monitoring.

LMCS, 8, 2012.

[202] Sartaj Sahni and George L. Vairaktarakis. The Master-Slave Paradigm in Parallel

Computer and Industrial Settings. J. Glob. Optim., 9:357–377, 1996.

[203] Torben Scheffel and Malte Schmitz. Three-Valued Asynchronous Distributed

Runtime Verification. In MEMOCODE, pages 52–61, 2014.

[204] Fred B. Schneider. Enforceable Security Policies. ACM Trans. Inf. Syst. Secur., 3:

30–50, 2000.

[205] Joshua Schneider, David A. Basin, Frederik Brix, Srdan Krstic, and Dmitriy Traytel.

Scalable Online First-Order Monitoring. Int. J. Softw. Tools Technol. Transf., 23:

185–208, 2021.

[206] Koushik Sen and Grigore Rosu. Generating Optimal Monitors for Extended Regular

Expressions. Electron. Notes Theor. Comput. Sci., 89:226–245, 2003.

[207] Koushik Sen, Grigore Rosu, and Gul Agha. Runtime Safety Analysis of Multi-

threaded Programs. In ESEC / SIGSOFT FSE, pages 337–346, 2003.

http://thespianpy.com

BIBLIOGRAPHY · 196

[208] Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. Efficient Decentralized

Monitoring of Safety in Distributed Systems. In ICSE, pages 418–427, 2004.

[209] Koushik Sen, Grigore Rosu, and Gul Agha. Online Efficient Predictive Safety

Analysis of Multithreaded Programs. Int. J. Softw. Tools Technol. Transf., 8:248–260,

2006.

[210] Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. Decentralized Runtime

Analysis of Multithreaded Applications. In IPDPS, 2006.

[211] Steven C. Seow. Designing and Engineering Time: The Psychology of Time Perception

in Software. Addison-Wesley, 2008.

[212] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. DaCapo con

Scala: design and analysis of a Scala benchmark suite for the JVM. In OOPSLA,

pages 657–676, 2011.

[213] Connie U. Smith and Lloyd G. Williams. Software Performance AntiPatterns;

Common Performance Problems and their Solutions. In CMG, pages 797–806, 2001.

[214] Connie U. Smith and Lloyd G. Williams. New Software Performance AntiPatterns:

More Ways to Shoot Yourself in the Foot. In CMG, pages 667–674, 2002.

[215] SPEC. SPECjvm2008, 2008. URL https://www.spec.org/jvm2008.

[216] Volker Stolz. Temporal Assertions with Parametrized Propositions. J. Log. Comput.,

20:743–757, 2010.

[217] Sasu Tarkoma. Overlay Networks: Toward Information Networking. Auerbach, 2010.

[218] The Pony Team. Ponylang, 2021. URL https://tutorial.ponylang.io.

[219] Duncan Paul Attard and Adrian Francalanza. Trace Partitioning and Local Mon-

itoring for Asynchronous Components. In SEFM, volume 10469 of LNCS, pages

219–235, 2017.

[220] Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna In-

gólfsdóttir. Introduction to Runtime Verification. In Behavioural Types: from Theory

to Tools, Automation, Control and Robotics, pages 49–76. River, 2017.

https://www.spec.org/jvm2008
https://tutorial.ponylang.io

BIBLIOGRAPHY · 197

[221] Duncan Paul Attard, Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna

Ingólfsdóttir, and Karoliina Lehtinen. Better Late than Never or: Verifying Asyn-

chronous Components at Runtime. In FORTE, volume 12719 of LNCS, pages 207–225,

2021.

[222] Germán Vidal. Computing Race Variants in Message-Passing Concurrent Program-

ming with Selective Receives. In FORTE, volume 13273 of LNCS, pages 188–207,

2022.

[223] Craig Walls. Spring in Action. Manning, 2022.

[224] B. P. Welford. Note on a Method for Calculating Corrected Sums of Squares and

Products. Technometrics, 4:419–420, 1962.

[225] Pierre Wolper. Temporal Logic Can be More Expressive. Inf. Control., 56:72–99,

1983.

[226] Cui-Qing Yang and Barton P. Miller. Critical Path Analysis for the Execution of

Parallel and Distributed Programs. In ICDCS, pages 366–373, 1988.

[227] Jiali Yao, Zhigeng Pan, and Hongxin Zhang. A Distributed Render Farm System for

Animation Production. In ICEC, volume 5709 of LNCS, pages 264–269, 2009.

[228] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient Dis-

tributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.

In NSDI, pages 15–28, 2012.

[229] Teng Zhang, Greg Eakman, Insup Lee, and Oleg Sokolsky. Overhead-Aware De-

ployment of Runtime Monitors. In RV, volume 11757 of LNCS, pages 375–381, 2019.

	Introduction
	Motivation and Contributions Summary
	Asynchronous Runtime Monitoring with Data
	Decentralised Outline Monitor Instrumentation
	Quantifying Runtime Overhead Reliably
	Evaluating Decentralised Outline Runtime Monitoring

	Scope of the Study
	Outline
	How to Read this Thesis

	Preliminaries
	Runtime Verification
	Specification Logics
	Monitors
	Monitorability
	Instrumentation for Online Monitoring

	The Hennessy-Milner Logic with Recursion
	The Syntax of recHMLd
	The Semantics of recHMLd
	Discussion

	Monitors and Instrumentation
	Trace Properties
	Synchronous Runtime Monitoring
	Monitorable Logic Fragments
	Monitor Synthesis
	Asynchronous Runtime Monitoring
	Discussion

	Runtime Monitoring
	Revisiting the Data Model
	Synthesising Erlang Monitors
	The Monitoring Algorithm
	Selective Instrumentation
	Inline Instrumentation
	Case Study: Monitoring the Cowboy-Ranch Protocol
	Discussion
	Related Work

	Decentralised Outline Instrumentation
	Modelling Decentralised Outline Instrumentation
	Processes and Trace Events

	The Instrumentation Algorithm
	Tracing
	Trace Partitioning
	Trace Event Routing
	Trace Event Routing with Priorty
	Detaching Tracers
	Selective Instrumentation
	Garbage Collection

	Correctness Validation
	Implementability
	Invariant Implementation

	Discussion
	Related Work

	Reactive Runtime Monitoring Benchmarking
	A Configurable Benchmark Design
	Load Generation
	Load Configuration
	Wall-Clock Time
	Worker Scheduling
	System Responsiveness

	Implementability
	Measurement Collection
	Benchmark Expressiveness and Coverage
	Experiment Set-up
	Measurement Precision
	Result Repeatability
	Response Time Tuning
	Veracity of the Synthetic Models
	Load Profile Models

	Benchmark Validation
	Runtime Monitoring Set-up
	Synthetic Benchmarks
	ots Application Benchmarks

	Discussion
	Related Work

	Evaluating Decentralised Outline Runtime Monitoring
	Reactive System Monitoring
	Experiment Set-Up
	Runtime Monitoring Set-up
	Precautions

	Monitoring High Concurrency Systems
	Instrumentation Overhead
	Monitoring Overhead
	Instrumentation Cost
	Scaled Set-up
	Resource Usage

	Monitoring Lower Concurrency Systems
	Discussion
	Related Work

	Conclusion
	Avenues of Future Research
	Parametrised Recursion Variables
	Managing the Number of Active Monitor States
	Component Replication and Monitorable Properties
	Failure Injection
	Decentralised Inline and Outline Monitoring

	Further Decentralised Outline Instrumentation Details
	Case Study: Monitoring Reactive Applications
	Monitoring the Master-Worker Model
	The Cowboy and Ranch Communication Protocol
	Monitoring Cowboy and Ranch

	Auxiliary Data Plots for Benchmarks
	Moderate Loads
	High Loads

	A Summary of the State of the Art
	Concurrent Monitoring
	Distributed Monitoring

	Acronyms

