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A B S T R A C T

The spectral boundary integral (SBI) method has been widely employed in the study of fractures
and friction within elastic and elastodynamic media, given its natural applicability to thin or
infinitesimal interfaces. Many such interfaces and layers are also prevalent in porous, fluid-
filled media. In this work, we introduce analytical SBI equations for cracks and thin layers
in a 3D medium, with a particular focus on fluid presence within these interfaces or layers.
We present three distinct solutions, each based on different assumptions: arbitrary pressure
boundary conditions, arbitrary flux boundary conditions, or a bi-linear pressure profile within
the layer. The bi-linear pressure solution models the flux through a thin, potentially pressurized,
leaky layer. We highlight conditions under which the bi-linear SBI equations simplify to either
the arbitrary flux or arbitrary pressure SBI equations, contingent on a specific non-dimensional
parameter. We then delve into the in-plane pressure effects arising from a shear crack in a
poroelastic solid. While such pressurization has been suggested to influence frictional strength in
various ways and only occurs in mode II sliding, our findings indicate that a significant portion
of the crack face is affected in 3D scenarios. Additionally, we investigate non-dimensional
timescales governing the potential migration of this pressurization beyond the crack tip, which
could induce strength alterations beyond the initially ruptured area.

. Introduction

The spectral boundary integral method (SBIM) is a subset of boundary integral methods that employs the superposition of
nalytical solutions in the time-wavenumber domain (both time and spatial Fourier domains). The term ‘‘spectral’’ denotes expansion
sing a spectral or Fourier basis. Leveraging the highly efficient Fast Fourier Transform (FFT) algorithms, this method offers
n optimal approach for simulating problems like crack propagation and frictional slip on planar interfaces. It has been widely
dopted in fields such as engineering, mechanics, and geophysics. However, like other boundary integral methods, SBIM is typically
onstrained to linear material properties and straightforward geometries. Consequently, its primary applications center around
nterface friction and fracture in both dynamic and quasi-static elasticity.

The FFT, as previously mentioned in the context of SBIM, has been utilized in boundary integral methods addressing frictional
nd fracture issues in elastic solids. This allows for efficient spatial convolution (e.g. Quin and Das, 1989; Rice, 1993), while still
mploying Green’s functions or fundamental solutions in the conventional space–time domain. Although SBIM leverages FFT, it
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distinctly employs analytical solutions in both time and wavenumber domains, indicating that one or more spatial dimensions
undergo Fourier transformation. In line with other boundary integral methods, SBIM relies on the superposition of analytical
solutions. Additionally, it establishes relationships between two interconnected fields, such as slip and shear stress, presenting them
as algebraic expressions in the Fourier domain. Illustrative examples of this concept will be provided in subsequent sections.

The derivation and application of spectral boundary integral equations have predominantly been confined to two primary
roblem classes. The first encompasses quasi-static and fully elastodynamic full-spaces (e.g., Geubelle and Rice, 1995; Perrin and
ice, 1994; Lapusta et al., 2000; Lapusta and Liu, 2009), while the second pertains to quasi-static and fully elastodynamic half-
paces (e.g., Geubelle and Breitenfeld, 1997; Breitenfeld and Geubelle, 1998). A particularly promising advancement in the use of
alf-space spectral boundary integral solutions is their coupling with volume-based methods in hybrid schemes (Hajarolasvadi and
lbanna, 2017; Ma et al., 2019; Albertini et al., 2021). This strategy facilitates the truncation of extensive computational domains
y substituting them with a half-space, represented through a dimensionally reduced boundary integral. Such an approach not only
ignificantly enhances computational efficiency but also offers an economical solution to a prevalent challenge in simulating wave
ropagation using volume-based methods: the reflections from artificial boundaries.

While the advancements and applications of spectral boundary integral equations have been pivotal in understanding various
eophysical and geomechanical phenomena related to friction and fracture, another crucial aspect of geomechanics is the behavior
f geo-materials in contact with fluids. Specifically, the study of materials that exhibit both fluid-filled porous structures and
lastic properties – known as poroelasticity – has garnered significant attention. This is particularly relevant when considering
he intricate interplay between solid and fluid phases in fault structures, which can have profound implications for earthquake and
ault mechanics.

With this context in mind, the study of fracture and frictional problems within a poroelastic medium boasts a rich history (e.g.,
udnicki and Koutsibelas, 1991; Atkinson and Craster, 1991; Rudnicki and Rice, 2006). This attention is well-justified, given its
rofound relevance to earthquake and fault mechanics. Notably, in the shallow crust – where the majority of earthquakes transpire
the crust exhibits behavior akin to a poroelastic solid (Jónsson et al., 2003). In recent times, the poroelastic properties of the

rust have been explored in various problems associated with fault slip or the triggering of seismicity during injection/extraction
rocesses (e.g., Segall and Lu, 2015; Chang and Segall, 2016; Rinaldi et al., 2020). Moreover, there is a growing interest in
nderstanding earthquake or frictional ruptures within a poroelastic medium (e.g., Lubis et al., 2012; Jha and Juanes, 2014;
orberntsson et al., 2018; Norbeck et al., 2018; Noda, 2022; Heimisson and Rinaldi, 2022; Heimisson et al., 2022). Hydrogel
rictional experiments have also unveiled intriguing slip phenomena, such as the spontaneous emergence of slow slip pulses (e.g.,
aleano et al., 2000; Baumberger et al., 2002; Ronsin et al., 2011). Such observations are postulated to be linked to the poroelastic
roperties of these gels, potentially sharing origins with slow slip events observed on terrestrial faults (Heimisson et al., 2019).

Broadly speaking, understanding the intricacies of thin fluid-bearing layers – whose lateral extent significantly exceeds their
hickness – is essential in fields like geomechanics, hydrology, reservoir applications, and soft matter physics. The ‘thin layer’
onceptualization serves not only as a valuable tool for characterizing fault zones and frictional interfaces in the realm of poroelastic
ehavior but also finds relevance in areas such as gas reservoirs, aquifers, and gels (e.g., Smith et al., 2022; Alghamdi et al.,
020; Yoon et al., 2010). As touched upon earlier, boundary integral methods shine in elucidating the deformation and mechanics
f frictional, fracturing, and other interface challenges, which can be conceptualized as thin layers with infinitesimal width.
evertheless, boundary integral techniques can be extended to layers with finite thickness, provided the essential separation of

cales remains intact.
As previously mentioned, the theory of poroelasticity has been applied in various contexts, either to represent the bulk

urrounding an interface or fracture or around a thin layer. Given this, it is understandable that several boundary integral and
islocation approaches have emerged (e.g., Rice and Cleary, 1976; Cheng and Liggett, 1984; Cheng and Detournay, 1988; Atkinson
nd Craster, 1991; Cheng and Detournay, 1998; Song and Rudnicki, 2017). A notable challenge in deriving and applying these
olutions lies in the assumptions made about pore pressure at the sliding/fracture interface or the thin layer interface. Commonly,
ssumptions of no flux across the interface or continuous pressure are made. These assumptions implicitly suggest that the interface
s either impermeable or that it equilibrates pressure instantaneously, respectively (Heimisson et al., 2019). In many pertinent
pplications, the interface or thin layers might possess their own hydraulic structure. Song and Rudnicki (2017) tackled this
y examining a plane strain dislocation on a leaky interface where pressure can equilibrate over a finite duration. To feasibly
haracterize this leaky interface, a linear approximation of the pressure in the interface/layer is made. Song and Rudnicki (2017)’s
nalysis did not account for potential internal pressurization or depressurization within the interface/layer. Expanding on their
ork, Heimisson et al. (2021) introduced a bi-linear approximation (detailed in Section 2.2) that permits the interface/layer to
ndergo pressurization or depressurization. This approximation was subsequently integrated into a plane-strain SBIM for faulting and
racturing in a poroelastic solid Heimisson et al. (2022). To the author’s best knowledge, this was among the earliest derivations of an
BIM for a poroelastic medium—a somewhat unexpected development considering the success of this approach in elastic mediums.
nother derivation was by Noda (2022), who utilized the plane strain space–time domain boundary integral solutions from Cheng
nd Detournay (1988) and applied Fourier transforms along the spatial dimension of the fracture interface, thereby achieving an
BI representation of a poroelastic bulk. However, this method adopts the boundary conditions from Cheng and Detournay (1988),
hich mandates the interface pressure to be zero, thus constraining the solution’s broader applicability.

In this work, I build upon the studies of Heimisson et al. (2021, 2022) by deriving SBI solutions for a planar interface/layer
ithin a 3D poroelastic medium. This interface is capable of undergoing simultaneous Mode I, II, and III displacements. Additionally,
rocesses leading to the internal pressurization or depressurization of the layer are considered. While I focus on the applications
2

f the solutions based on a bi-linear pressure profile, I acknowledge that this approximation does not lend itself to studies that
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carry out detailed modeling of the internal dynamic of the thin layer. I thus also introduce more generalized solutions that assume
arbitrary pressurization or fluid flux at the interface boundaries, thereby accommodating asymmetric pressure or flux scenarios.
These spectral boundary integral equations have not been published before in either 2D or 3D. I demonstrate that the bi-linear
representation can be simplified to either the arbitrary pore pressure scenario or the arbitrary fluid flux scenario, contingent upon
a single non-dimensional parameter present in all stress–displacement relations, however novel terms, without an correspondence
to the bi-linear pressure solution, arise in stress-flux or pressurization relationships and pressure or flux equations.

2. Theory

2.1. Linear poroelasticity

Before delving into the specifics of our problem setup, which will be detailed in Section 2.2, it is essential to first understand
he foundational theory of poroelasticity. A particularly intuitive representation of the Biot theory of quasi-static poroelasticity is
he Navier form of the governing equations. Presented compactly in index notation, these can be expressed as (e.g. Detournay and
heng, 1995; Cheng, 2016):

𝐺𝑢𝑖,𝑘𝑘 +
𝐺

1 − 2𝜈
𝑢𝑘,𝑘𝑖 = 𝛼𝑝,𝑖 (1)

and
1
𝑀

𝑝,𝑡 − 𝜅𝑝,𝑘𝑘 = −𝛼𝑢𝑘,𝑘𝑡, (2)

In Eq. (1), the left-hand side mirrors the theory of quasi-static elasticity, characterized by the shear modulus 𝐺 and Poisson’s
atio 𝜈. Notably, in poroelasticity, this ratio is referred to as the drained Poisson’s ratio. The right-hand side introduces a source term
ependent on the spatial derivative of pore pressure, with its magnitude determined by 𝛼, the Biot coefficient, which ranges between
and 1. It is crucial to recognize that 𝑝, representing pore pressure, is consistently interpreted as a deviation from equilibrium in
fully saturated porous medium, allowing it to assume both negative and positive values.

Eq. (2), on the other hand, represents a standard diffusion equation complemented by a source term. This equation establishes
he conventional definition of hydraulic diffusivity in poroelasticity as 𝑐 = 𝑀𝜅. Here, 𝜅 denotes mobility, defined as the ratio
f permeability to dynamic fluid viscosity, and thus possesses units of m2/Pa s. 𝑀 represents the less commonly referenced Biot
odulus, defined at a constant volumetric strain as the fluid volume change per unit pressure change. The right-hand side of Eq. (2)

ntroduces an additional source term associated with volumetric strain. Consequently, the right-hand sides of the aforementioned
quations introduce significant complexity to any solution strategy, extending beyond the realms of mere porous media flow or
lasticity due to their two-way coupling. It is worth noting that, unlike in the analogous theory of thermoelasticity, simply decoupling
y neglecting one of the right-hand sides does not yield an accurate approximation in most cases.

Eq. (2) can be recast in terms of 𝜁 , representing the fluid mass content:

𝜁,𝑡 − 𝑐′𝜁,𝑘𝑘 = 0, (3)

This equation takes the form of another diffusion equation, defining an additional hydraulic diffusivity, 𝑐′. Historically, 𝑐′ is
eferred to as the consolidation coefficient. It can be expressed in terms of mobility and the storage coefficient 𝑆 as 𝑐′ = 𝜅∕𝑆. The
elationship between the two diffusion coefficients is given by:

𝑐′ = 𝑐
(1 − 2𝜈𝑢)(1 − 𝜈)
(1 − 2𝜈)(1 − 𝜈𝑢)

. (4)

Here, 𝜈𝑢 denotes the undrained Poisson’s ratio, which can be expressed in terms of the parameters introduced earlier:

𝜈𝑢 =
2𝐺𝜈 +𝑀𝛼2(1 − 2𝜈)
2𝐺 + 2𝑀𝛼2(1 − 2𝜈)

. (5)

While 𝑐 might be more intuitive for many readers, given the frequent use in studies on pressure diffusion, we will predominantly
present results in terms of 𝑐′, as it leads to more concise equations. Nonetheless, it is important to highlight that the values of the
two diffusivities are typically comparable.

For more streamlined expressions, we introduce Skempton’s coefficient:

𝐵 =
3𝑀𝛼(1 − 2𝜈)

2𝐺(1 + 𝜈) + 3𝑀𝛼2(1 − 2𝜈)
. (6)

This coefficient correlates the change in pore pressure with the change in volumetric stress under undrained conditions.
Additionally, 𝐵 and 𝜈𝑢 share the following relationship:

𝐵 =
3(𝜈𝑢 − 𝜈)

𝛼(1 − 2𝜈)(1 + 𝜈𝑢)
. (7)

In the subsequent discussions, we will generally describe poroelasticity and the boundary integral solutions in terms of 𝐺, 𝐵, 𝜈,
and 𝜈𝑢, which collectively define the mechanical properties of the medium. For the description of fluid-flow or hydraulic properties,
we will use either 𝑐, 𝑐′, or 𝜅. To summarize, we have the relationships 𝜅 = 𝑐∕𝑀 = 𝑐′𝑆 and the following useful equations:

𝑆 =
9(𝜈𝑢 − 𝜈)(1 − 𝜈𝑢) (8)
3

2𝐵2𝐺(1 − 𝜈)(1 + 𝜈𝑢)2
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𝑀 =
2𝐵2𝐺(1 − 2𝜈)(1 + 𝜈𝑢)2

9(1 − 2𝜈𝑢)(𝜈𝑢 − 𝜈)
(9)

2.2. Problem setup

Consider two identical isotropic linear quasi-static poroelastic half-spaces occupying the regions 𝑧 > 0 and 𝑧 < 0 within a 3D
omain, as illustrated in Fig. 1a. These half-spaces are separated by a thin layer extending from 𝑧 = 𝜖 to 𝑧 = −𝜖 (Fig. 1b-d).

In the forthcoming analysis, we assume 𝜖 → 0, implying that the interface has an infinitesimal thickness. This assumption is
ppropriate for analyzing a perfectly planar dislocation. However, it is important to note that solutions for a finite layer (𝜖 > 0) can
e well approximated by these results, provided that the inequalities 𝑘𝑥𝜖 ≪ 1 and 𝑘𝑦𝜖 ≪ 1 hold for all 𝑘𝑥 and 𝑘𝑦 in the 𝑥, 𝑦 plane at
= 0. Here, 𝑘𝑥 and 𝑘𝑦 represent the wavenumbers, inversely proportional to wavelengths (e.g., 𝑘𝑥 = 2𝜋∕𝜆𝑥). In simpler terms, for

ll non-zero Fourier coefficients in a 2D spatial Fourier series representation of the fields, the conditions 𝑘𝑥𝜖 ≪ 1 and 𝑘𝑦𝜖 ≪ 1 must
e satisfied.

In certain cases of implementing boundary conditions, we explicitly describe 𝜖 (Fig. 1d). This approach can be viewed as a
oundary layer solution, where the outer solution assumes an infinitesimal layer, while the inner solution accounts for a finite
idth, akin to the methodology in Rudnicki and Rice (2006, Appendix B). Nevertheless, all solutions can be approximately applied

o thin layer problems, which is crucial for three main reasons: First, in reality, interfaces, even highly localized shear cracks,
ossess a finite thickness. Second, problems involving thin layers, where the 𝑘𝑥𝜖 ≪ 1 and 𝑘𝑦𝜖 ≪ 1 separation of scales occurs, are
uite common, as highlighted in the introduction. Finally, in scenarios where pore pressure and slip are coupled, variations in pore
ressure and fluid flux can occur over extremely small length scales (e.g., Rice et al., 2014; Platt et al., 2014; Heimisson et al., 2021,
022). Thus, a versatile idealization of the shear zone as a thin layer is indispensable for upscaling and comprehending the impact
f small shear zone processes on large scale slip.

We introduce three distinct solutions based on the applied boundary conditions related to pressure and fluid flow, detailed
xplicitly in Section 2.4. The first solution allows for arbitrary pore pressure on either side of the thin layer/interface, with the
ressures (𝑝+(𝑥, 𝑦, 𝑡), 𝑝−(𝑥, 𝑦, 𝑡)) not necessarily being identical (as shown in Fig. 1b). The second solution permits arbitrary volumetric
luid flux on either side of the thin layer/interface (𝐽+(𝑥, 𝑦, 𝑡), 𝐽−(𝑥, 𝑦, 𝑡)), again without the need for pressures on both sides to match
illustrated in Fig. 1c). The final solution describes the pressure inside the shear zone using the following equations:

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑧
𝜖
(𝑝+(𝑥, 𝑦, 𝑡) − 𝑝𝑐 (𝑥, 𝑦, 𝑡)) + 𝑝𝑐 (𝑥, 𝑦, 𝑡) if 0 < 𝑧 < 𝜖

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑧
𝜖
(𝑝𝑐 (𝑥, 𝑦, 𝑡) − 𝑝−(𝑥, 𝑦, 𝑡)) + 𝑝𝑐 (𝑥, 𝑦, 𝑡) if − 𝜖 < 𝑧 < 0. (10)

This methodology can be likened to a boundary layer solution. While the outer solution treats the layer as infinitesimal, the inner
olution acknowledges its finite width, drawing parallels to the approach in Rudnicki and Rice (2006, Appendix B). In this context, 𝑝𝑐
enotes the pressure at the center of the layer (𝑧 = 0). Leveraging the pressure distribution, we can implement a pressure-dependent
lux boundary condition derived from Darcy’s law:

𝑑𝑝±

𝑑𝑧
|

|

|

|𝑧=0±
= ±

𝜅𝑐
𝜅

(𝑝±(𝑥, 𝑦, 𝑡) − 𝑝𝑐 (𝑥, 𝑦, 𝑡))
𝜖

(11)

Here, 𝜅𝑐 represents the assumed mobility (the ratio of permeability to dynamic viscosity) for fluid movement across the layer
in the 𝑧 direction. This boundary condition aims to incorporate fundamental aspects of the thin layer physics into the SBI. It is
noteworthy that when 𝑝𝑐 = 0, the bilinear boundary condition is identical the leaky layer model presented by Song and Rudnicki
(2017).

2.3. Solution strategy

Rather than directly addressing the governing equations in their explicit and coupled form ((1), (2)), we adopt a strategy that
employs a decoupled system of equations. We leverage the displacement functions initially introduced by McNamee and Gibson
(1960) for plane-strain deformation, which were later expanded to 3D by Schiffman and Fungaroli (1965). The formalism was
further extended to account for compressible fluids with minor modifications by Verruijt (1971). In this work, we adhere to the
relations as detailed by Cheng (2016, pages 225–226).

In essence, McNamee and Gibson (1960), Schiffman and Fungaroli (1965), Verruijt (1971) demonstrated that solving the
governing equations can be equated to addressing a bi-harmonic diffusion equation:

𝜕
𝜕𝑡

(

∇2
)

− 𝑐′∇4 = 0 (12)

Accompanied by two Laplace’s equations:

∇2 = 0 and ∇2 = 0. (13)

Subsequently, the relationships outlined by Cheng (2016, chapter 6.6.3) facilitate the transformation of these displacement
unctions, namely  , , and , into tangible fields, such as displacements and pore pressure.
4
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Fig. 1. Schematic representation of the problem setup. a Depicts two linear isotropic poroelastic half-spaces with identical material properties, separated by a
thin layer or interface at 𝑧 = 0. The interface, which may be considered as having a finite dimension in the 𝑧 direction if its half-thickness 𝜖 is much smaller
than the wavelength of any field in the 𝑥, 𝑦 plane (thin layer), can undergo homogeneous and/or inhomogeneous Mode I fracture mode or slip in either 𝑥 or
𝑦 direction. Three distinct boundary integral solutions are presented, each differing in pore pressure boundary conditions at the interface. b Prescribes pore
pressure on either side (𝑝+(𝑥, 𝑦, 𝑡) and 𝑝−(𝑥, 𝑦, 𝑡)). c Specifies volumetric flux on either side (𝐽+(𝑥, 𝑦, 𝑡) and 𝐽−(𝑥, 𝑦, 𝑡)). d Assumes a bi-linear pressure profile within
he thin layer.

Our solution strategy begins with the introduction of the combined Laplace - 2D Fourier transform, defined as:

̄̂𝛿𝑥(𝑠, 𝑘𝑥, 𝑘𝑦) = ∫

∞

0 ∫

∞

−∞ ∫

∞

−∞
𝛿𝑥(𝑡, 𝑥, 𝑦)𝑒

−𝑖𝑘𝑥𝑥−𝑖𝑘𝑦𝑦−𝑠𝑡𝑑𝑥𝑑𝑦𝑑𝑡 (14)

Here, the transform is applied to the slip or displacement discontinuity across the layer/interface in the 𝑥 direction, as illustrated
n Fig. 1 (further elaborated in the subsequent section).
5
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By applying the Laplace - 2D Fourier transform to Eqs. (12) and (13), we obtain ordinary differential equations. These can be
traightforwardly solved in both the upper and lower half-spaces (as depicted in Fig. 1), yielding:

̄̂± = 𝐶±
1 exp(±𝑘𝑦) + 𝐶±

2 exp(±𝑘
√

1 + 𝑠∕(𝑐′𝑘2)𝑦), (15)
̄̂± = 𝐶±

3 exp(±𝑘𝑦), (16)
̄̂± = 𝐶±

4 exp(±𝑘𝑦). (17)

After eliminating terms that diverge at infinity, the superscript ± denotes the upper and lower half-space, respectively. The
onstants 𝐶 will be defined by the boundary conditions. The term 𝑘 =

√

𝑘2𝑥 + 𝑘2𝑦 represents the length of the wavenumber vector.
In the transform domain, these solutions can be connected to displacements and pressure by transforming the relations provided
by Cheng (2016, chapter 6.6.3):

̄̂𝑢±𝑥 = −𝑖𝑘𝑥
̄̂± + 𝑖𝑘𝑥𝑧

̄̂± + 2𝑖𝑘𝑦
̄̂±, (18)

̄̂𝑢±𝑦 = −𝑖𝑘𝑦
̄̂± + 𝑖𝑘𝑦𝑧

̄̂± − 2𝑖𝑘𝑥
̄̂±, (19)

̄̂𝑢±𝑧 = − 𝜕 ̄̂±

𝜕𝑧
+ 𝑧 𝜕

̄̂±

𝜕𝑧
− (3 − 4𝜈𝑢)

̄̂±, (20)

̄̂𝑝± = −𝐺
2(1 − 𝜈)
𝛼(1 − 2𝜈)

[

−𝑘2 ̄̂± + 𝜕2 ̄̂±

𝜕𝑦2
−

2(𝜈𝑢 − 𝜈)
1 − 𝜈

𝜕 ̄̂±

𝜕𝑦

]

. (21)

Other expressions, such as those for stresses or flux, can be derived from the above using Hooke’s law or Darcy’s law. For a more
comprehensive list, refer to Cheng (2016, chapter 6.6.3), albeit not in the transform domain.

2.4. Boundary conditions

In this section, we outline the standard boundary conditions employed across all the spectral boundary integral solutions.

lim
𝑧→±∞

𝑢±𝑥 (𝑥, 𝑦, 𝑧, 𝑡) = 0, (22)

lim
𝑧→±∞

𝑢±𝑦 (𝑥, 𝑦, 𝑧, 𝑡) = 0, (23)

lim
𝑧→±∞

𝑢±𝑧 (𝑥, 𝑦, 𝑧, 𝑡) = 0, (24)

lim
𝑧→±∞

𝑝±(𝑥, 𝑦, 𝑧, 𝑡) = 0, (25)

lim
𝑧→0

𝑢+𝑥 (𝑥, 𝑦, 𝑧, 𝑡) − 𝑢−𝑥 (𝑥, 𝑦, 𝑧, 𝑡) = 𝛿𝑥(𝑥, 𝑦, 𝑡), (26)

lim
𝑧→0

𝑢+𝑦 (𝑥, 𝑦, 𝑧, 𝑡) − 𝑢−𝑦 (𝑥, 𝑦, 𝑧, 𝑡) = 𝛿𝑦(𝑥, 𝑦, 𝑡), (27)

lim
𝑧→0

𝑢+𝑧 (𝑥, 𝑦, 𝑧, 𝑡) − 𝑢−𝑧 (𝑥, 𝑦, 𝑧, 𝑡) = 𝛿𝑧(𝑥, 𝑦, 𝑡), (28)

lim
𝑧→0

𝜎+𝑥𝑧(𝑥, 𝑦, 𝑧, 𝑡) − 𝜎−𝑥𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 0, (29)

lim
𝑧→0

𝜎+𝑦𝑧(𝑥, 𝑦, 𝑧, 𝑡) − 𝜎−𝑦𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 0, (30)

lim
𝑧→0

𝜎+𝑧𝑧(𝑥, 𝑦, 𝑧, 𝑡) − 𝜎−𝑧𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 0, (31)

The initial four conditions ensure that all fields diminish to zero at infinity, implying that the solutions are suitable for a full
space. These conditions are inherently incorporated into the Displacement functions  , , and  by excluding terms that diverge at
infinity.

The subsequent three conditions establish arbitrary displacement discontinuities at the layer or interface boundaries. Specifically,
𝛿𝑥(𝑥, 𝑦, 𝑡) represents slip in the 𝑥 direction, 𝛿𝑦(𝑥, 𝑦, 𝑡) indicates slip in the 𝑦 direction, and 𝛿𝑧(𝑥, 𝑦, 𝑡) denotes the opening or closing
(Mode I) of the interface (refer to Fig. 1 for visualization).

The last three of the boundary conditions ensures the continuity of traction across the layer or interface. When applying the
boundary integral solutions to a scenario with a finite layer, this condition necessitates that the layer is sufficiently thin, as indicated
by the conditions 𝑘𝑥𝜖 ≪ 1 and 𝑘𝑦𝜖 ≪ 1. Moreover, this assumption suggests that the layer’s inertia can be disregarded, as noted
by Rice et al. (2014). See some discussion of inertial effects in the discussion Section 5.1.

For a distinct solution, two additional boundary conditions are essential. In this context, we delve into the modification of
boundary conditions based on the characterization of pore pressure or flux.

2.4.1. General pressure
The general pressure boundary condition can be expressed as:

lim 𝑝+(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝+(𝑥, 𝑦, 𝑡), (32)
6
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lim
𝑧→0−

𝑝−(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝−𝑏 (𝑥, 𝑦, 𝑡), (33)

Here, the subscript 𝑏 is introduced to emphasize that the boundary pressure field is a predefined condition and is not a variable
in the solution. However, it is pertinent to mention that one could determine these pressure values using an alternative approach.
This type of boundary condition might be particularly relevant when modeling phenomena like propagating hydraulic fractures,
where the pressure at the fluid boundaries interacts with the response of the surrounding poroelastic medium.

2.4.2. General flux
The flux boundary condition can be defined as:

lim
𝑧→0+

−𝜅 𝜕
𝜕𝑧

𝑝+(𝑥, 𝑦, 𝑧, 𝑡) = 𝐽+(𝑥, 𝑦, 𝑡), (34)

lim
𝑧→0−

−𝜅 𝜕
𝜕𝑧

𝑝−(𝑥, 𝑦, 𝑧, 𝑡) = 𝐽−(𝑥, 𝑦, 𝑡), (35)

In this scenario, we assume that the volumetric fluid flux on either side of the layer can be both asymmetric and arbitrary. Such
boundary conditions might be employed when the layer is conceptualized as a porous medium, allowing for the internal pressure
gradient and flux into the bulk to be synchronized and interconnected.

2.4.3. Bi-linear pressure profile
While the general flux and pore pressure conditions necessitate that the fluid flux or pore pressure fields of the layer/interface

are either known or imposed externally, there are alternative approaches. One such method involves deriving these conditions by
addressing another internal problem, such as explicitly simulating flow within a hydraulic fracture or modeling porous media flow
within a thin layer. The bi-linear pressure profile, as detailed in Eq. (11), serves as an approximation of this latter method. This
approximation is valid under the conditions where the flux across the layer adheres to Darcy’s law, and the pressure distribution
closely aligns with the representation in Eq. (10).

As demonstrated by Heimisson et al. (2022), this bi-linear approximation facilitates a dimensional reduction in the simulation of
the layer. Specifically, this means that the internal problem can be simplified to address a two-dimensional (𝑥, 𝑦) domain, eliminating
the need to solve for a more complex domain (𝑥, 𝑦, 𝑧) where −𝜖 < 𝑧 < 𝜖. In the study by Heimisson et al. (2022), which focused on a
plane strain problem, the internal domain was effectively reduced from 2D to 1D. In such scenarios, 𝑝𝑐 can be the primary pressure
variable to solve for, from which the values of 𝑝± can subsequently be determined.

2.5. Solutions in Fourier-Laplace domain

In this section, we apply the boundary conditions outlined in the preceding section to determine the eight unknown constants,
𝐶±
1−4, that emerge when solving for the displacement functions for each set of pressure or flux boundary conditions. To manage the

algebraic complexity, we employ Matlab’s symbolic manipulator. To validate the solutions, we insert them into the Navier form of
the governing Eqs. (1) and (2) within the combined Laplace - 2D Fourier domain.

The subsequent step, after obtaining the solution in the Laplace - 2D Fourier domain, is to set 𝑧 = 0 or apply the appropriate limit
for fields that might exhibit discontinuities, such as pore pressure. This action significantly streamlines the expressions, enabling
the analytical inversion of the Laplace transform. As a result, the known values are confined to the layer/interface plane. This
approach aligns with common practices in other spectral boundary integral methodologies (Geubelle and Rice, 1995). Notable
exceptions exist, such as in simulations of parallel faults (Barbot, 2021) or off-fault responses where the Laplace transform is
inverted numerically (Heimisson and Rinaldi, 2022). However, it is essential to emphasize that having knowledge of the field at
the interface/layer boundaries allows for efficient mapping, for instance, from slip to stress or from slip to pore pressure, or from
flux to stress. This capability is invaluable for addressing a wide range of pertinent physical problems where such relationships are
crucial.

Before delving into the Laplace–Fourier solution, we first explore mathematical functions that consistently appear across most
solutions. These functions pertain to convolution kernels in the time-Fourier domain and account for the temporal evolution resulting
from fluid diffusion.

In the Bi-linear pressure diffusion problem, the functions below emerge:

𝐻̄1(𝑠, 𝑘) = 1 −
2(𝜈𝑢 − 𝜈)
1 − 𝜈

𝑐′𝑘2

𝑠
1 + 

 +
√

1 + 𝑠∕𝑐′𝑘2

(
√

1 + 𝑠∕𝑐′𝑘2 − 1
)

, (36)

and

𝐻̄2(𝑠, 𝑘) =

√

1 + 𝑠∕𝑐′𝑘2 − 1
√

1 + 𝑠∕𝑐′𝑘2 + 
, (37)

where  is a dimensionless group that characterizes the importance of flux across the layer:

 =
𝜅𝑐 1 . (38)
7
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a

I
a

The functions 𝐻̄1(𝑠, 𝑘) and 𝐻̄2(𝑠, 𝑘) bear a striking resemblance to the corresponding functions presented by Heimisson et al. (2022),
lbeit for a plane strain problem with a bi-linear pressure distribution. It is important to emphasize that in this context, 𝑘 =

√

𝑘2𝑥 + 𝑘2𝑦.
However, in scenarios where either 𝑘𝑥 or 𝑘𝑦 = 0, these equations revert to the plane-strain limit, as anticipated.

In the undrained limit (characterized by a low 𝑐′ or short time duration), both 𝐻̄1 and 𝐻̄2 approach 1. However, these functions
also exhibit other notable limiting cases. For instance, when  = 0, the layer acts as an impenetrable barrier to flow. Conversely, as
 → ∞, the layer becomes highly permeable or poses no resistance to flow. This could occur, for example, if the layer’s thickness
𝜖 → 0, allowing for instantaneous pressure equilibration.

These limiting cases will be further explored in the context of the general pressure boundary condition and the general flux
boundary condition. Specifically, the Laplace–Fourier representation of the convolution kernels for the general flux (as discussed in
Section 2.4.2) is related to the Bi-linear boundary condition (as detailed in Section 2.4.3) when  = 0.

In the special case where  = 0, the functions 𝐻̄1 and 𝐻̄2 simplify to:

𝐻̄1( = 0) = 1 −
2(𝜈𝑢 − 𝜈)
1 − 𝜈

𝑐′𝑘2

𝑠

√

1 + 𝑠∕𝑐′𝑘2 − 1
√

1 + 𝑠∕𝑐′𝑘2
, (39)

𝐻̄2( = 0) =

√

1 + 𝑠∕𝑐′𝑘2 − 1
√

1 + 𝑠∕𝑐′𝑘2
. (40)

Conversely, in the limit as  → ∞, which corresponds to the scenario where the layer becomes highly permeable, the functions
𝐻̄1 and 𝐻̄2 are given by:

𝐻̄1( → ∞) = 1 −
2(𝜈𝑢 − 𝜈)
1 − 𝜈

𝑐′𝑘2

𝑠

(
√

1 + 𝑠∕𝑐′𝑘2 − 1
)

, (41)

𝐻̄2( → ∞) = 0. (42)

Additionally, we introduce another kernel, 𝐻̄3, defined as:

𝐻̄3 =
1

𝐻̄2( = 0) − 1
= −

√

1 + 𝑠∕𝑐′𝑘2. (43)

This kernel, 𝐻̄3, emerges in a specific relationship used to calculate flux within the context of the general pore pressure boundary
condition.

Next, we present the spectral boundary integral solutions corresponding to the three boundary conditions related to pressure
and flux, as detailed in sections 2.4.1, 2.4.2, and 2.4.3.

2.6. General pore pressure

The stress components relevant to the plane of the layer are:

̄̂𝜎𝑥𝑧 = −
𝐺 ̄̂𝛿𝑥
2𝑘

(

𝑘2𝑥
𝐻̄1( → ∞)

1 − 𝜈𝑢
+ 𝑘2𝑦

)

+
𝐺 ̄̂𝛿𝑦𝑘𝑥𝑘𝑦

2𝑘

(

1 −
𝐻̄1( → ∞)

1 − 𝜈𝑢

)

+⋯ (44)

+
𝑖𝑘𝑥
𝑘

3
4𝐵(1 + 𝜈𝑢)

( ̄̂𝑝+𝑏 − ̄̂𝑝−𝑏 )
(

𝐻̄1( → ∞) − 1
)

,

̄̂𝜎𝑦𝑧 =
𝐺 ̄̂𝛿𝑥𝑘𝑥𝑘𝑦

2𝑘

(

1 −
𝐻̄1( → ∞)

1 − 𝜈𝑢

)

−
𝐺 ̄̂𝛿𝑦
2𝑘

(

𝑘2𝑦
𝐻̄1( → ∞)

1 − 𝜈𝑢
+ 𝑘2𝑥

)

+⋯ (45)

+
𝑖𝑘𝑦
𝑘

3
4𝐵(1 + 𝜈𝑢)

( ̄̂𝑝+𝑏 − ̄̂𝑝−𝑏 )
(

𝐻̄1( → ∞) − 1
)

,

̄̂𝜎𝑧𝑧 = −
𝐺𝑘 ̄̂𝛿𝑧

2(1 − 𝜈𝑢)
𝐻̄1( → ∞) + 3

4𝐵(1 + 𝜈𝑢)
( ̄̂𝑝+𝑏 + ̄̂𝑝−𝑏 )

(

𝐻̄1( → ∞) − 1
)

. (46)

n this scenario, we have ̄̂𝑝± = ̄̂𝑝±𝑏 . However, it may be beneficial to have an expression that provides the volumetric fluid flux in
nd out of the layer in the 𝑧 direction.

̄̂𝐽± = −
𝑖𝑘𝑥𝐺𝐵𝑘𝜅 ̄̂𝛿𝑥

3
1 + 𝜈𝑢
1 − 𝜈𝑢

(1 + 𝐻̄3) −
𝑖𝑘𝑦𝐺𝐵𝑘𝜅 ̄̂𝛿𝑦

3
1 + 𝜈𝑢
1 − 𝜈𝑢

(1 + 𝐻̄3) (47)

±
𝑘𝐺𝐵𝑘𝜅 ̄̂𝛿𝑧 1 + 𝜈𝑢 (1 + 𝐻̄3) ∓ ̄̂𝑝±𝑘𝜅𝐻̄3.
8
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2

2.7. General flux

The stress components relevant to the plane of the layer are:

̄̂𝜎𝑥𝑧 = −
𝐺 ̄̂𝛿𝑥
2𝑘

(

𝑘2𝑥
𝐻̄1( = 0)
1 − 𝜈𝑢

+ 𝑘2𝑦

)

+
𝐺 ̄̂𝛿𝑦𝑘𝑥𝑘𝑦

2𝑘

(

1 −
𝐻̄1( = 0)
1 − 𝜈𝑢

)

+⋯ (48)

𝑖𝑘𝑥
𝑘2

3
4𝐵𝜅(1 + 𝜈𝑢)

( ̄̂𝐽+ + ̄̂𝐽−)
(

𝐻̄1( = 0) − 1
)

,

̄̂𝜎𝑦𝑧 =
𝐺 ̄̂𝛿𝑥𝑘𝑥𝑘𝑦

2𝑘

(

1 −
𝐻̄1( = 0)
1 − 𝜈𝑢

)

−
𝐺 ̄̂𝛿𝑦
2𝑘

(

𝑘2𝑦
𝐻̄1( = 0)
1 − 𝜈𝑢

+ 𝑘2𝑥

)

+⋯ (49)

𝑖𝑘𝑦
𝑘2

3
4𝐵𝜅(1 + 𝜈𝑢)

( ̄̂𝐽+ + ̄̂𝐽−)
(

𝐻̄1( = 0) − 1
)

,

̄̂𝜎𝑧𝑧 = −
𝐺𝑘 ̄̂𝛿𝑧

2(1 − 𝜈𝑢)
𝐻̄1( = 0) + 1

𝑘
3

4𝐵𝜅(1 + 𝜈𝑢)
( ̄̂𝐽+ − ̄̂𝐽−)

(

𝐻̄1( = 0) − 1
)

. (50)

The pore pressure at the layer boundaries is:

̄̂𝑝± = ∓
𝑖𝑘𝑥𝐺𝐵 ̄̂𝛿𝑥

3
1 + 𝜈𝑢
1 − 𝜈𝑢

𝐻̄2( = 0) ∓
𝑖𝑘𝑦𝐺𝐵 ̄̂𝛿𝑦

3
1 + 𝜈𝑢
1 − 𝜈𝑢

𝐻̄2( = 0) (51)

+
𝑘𝐺𝐵 ̄̂𝛿𝑧

3
1 + 𝜈𝑢
1 − 𝜈𝑢

𝐻̄2( = 0) ∓
̄̂𝐽±

𝑘𝜅
(

𝐻̄2( = 0) − 1
)

.

.8. Bi-linear pressure

The stress components relevant to the plane of the layer are:

̄̂𝜎𝑥𝑧 = −
𝐺 ̄̂𝛿𝑥
2𝑘

(

𝑘2𝑥
𝐻̄1(𝑠, 𝑘)
1 − 𝜈𝑢

+ 𝑘2𝑦

)

+
𝐺 ̄̂𝛿𝑦𝑘𝑥𝑘𝑦

2𝑘

(

1 −
𝐻̄1(𝑠, 𝑘)
1 − 𝜈𝑢

)

, (52)

̄̂𝜎𝑦𝑧 = −
𝐺 ̄̂𝛿𝑦
2𝑘

(

𝑘2𝑦
𝐻̄1(𝑠, 𝑘)
1 − 𝜈𝑢

+ 𝑘2𝑥

)

+
𝐺 ̄̂𝛿𝑥𝑘𝑥𝑘𝑦

2𝑘

(

1 −
𝐻̄1(𝑠, 𝑘)
1 − 𝜈𝑢

)

, (53)

̄̂𝜎𝑧𝑧 = ̄̂𝑝𝑐
3

2𝐵(1 + 𝜈𝑢)


 + 1
(𝐻̄1(𝑠, 𝑘) − 1) −

𝐺𝑘 ̄̂𝛿𝑧
2(1 − 𝜈𝑢)

𝐻̄1(𝑠, 𝑘). (54)

The pore pressure at the layer boundaries is:

̄̂𝑝± = ∓
𝑖𝑘𝑥𝐺𝐵 ̄̂𝛿𝑥

3
1 + 𝜈𝑢
1 − 𝜈𝑢

𝐻̄2(𝑠, 𝑘) ∓
𝑖𝑘𝑦𝐺𝐵 ̄̂𝛿𝑦

3
1 + 𝜈𝑢
1 − 𝜈𝑢

𝐻̄2(𝑠, 𝑘) (55)

− ̄̂𝑝𝑐


 + 1
(

𝐻̄2(𝑠, 𝑘) − 1
)

+
𝑘𝐺𝐵 ̄̂𝛿𝑧

3
1 + 𝜈𝑢
1 − 𝜈𝑢

𝐻̄2(𝑠, 𝑘).

Comparing the Bi-linear pressure expressions above to those derived in Heimisson et al. (2021, 2022), it is evident that setting
one wavenumber to 0 yields the plane-strain solutions, as anticipated.

While it turns out that all these expressions can be expressed in terms of the same 𝐻̄1−3(𝑠, 𝑘) functions for different limiting cases
of  , it is important to stress that the SBI equations for general pressure and flux are not just special limits of the bi-linear pressure.
The reader can observe in the last term of Eqs. (44)–(46) and (48)–(50) that the stress depends on the pressure or flux. This is not
the case for the Bi-linear pressure due to imposed symmetries. Further, 𝐻̄3(𝑠, 𝑘) has not correspondence in the bi-linear solution as
far as the author can identify.

3. Fourier-time domain solutions

3.1. Laplace inversion

In this subsection, we focus on inverting the Laplace transform. Drawing parallels with Heimisson et al. (2022), we segregate
the instantaneous undrained response from the transient poroelastic response by introducing:

𝐾̄1 = 𝐻̄1 − 1 and 𝐾̄2 = 𝐻̄2 − 1. (56)

While there is no need for a similar separation for 𝐻̄3, we define

𝐾̄ = 𝐻̄ , (57)
9
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F

to maintain consistent notation.
The inverse transforms of 𝐾̄1 and 𝐾̄2 are provided by Heimisson et al. (2022). They only differ in the definition of 𝑘:

𝐾1(𝑡, 𝑘) = −
2(𝜈𝑢 − 𝜈)
1 − 𝜈

𝑐𝑘2(1 +  )
(

1 + 1
 − 1

[

𝑒(
2−1)𝑐𝑘2𝑡erfc

(


√

𝑐𝑘2𝑡
)

−  + erf
(√

𝑐𝑘2𝑡
)])

, (58)

𝐾2(𝑡, 𝑘) = −𝑐𝑘2(1 +  )

[

𝑒−𝑐𝑘2𝑡
√

𝜋𝑐𝑘2𝑡
− 𝑒(

2−1)𝑐𝑘2𝑡erfc
(


√

𝑐𝑘2𝑡
)

]

. (59)

When considering the limits of  = 0 and  → ∞, we can derive the corresponding limits from Eqs. (39) and (41):

𝐾1( = 0) = −
2(𝜈𝑢 − 𝜈)
1 − 𝜈

𝑐𝑘2erfc
(√

𝑐𝑘2𝑡
)

, (60)

𝐾1( → ∞) = −
2(𝜈𝑢 − 𝜈)
1 − 𝜈

𝑐𝑘2
(

𝑒−𝑐𝑘2𝑡
√

𝜋𝑐𝑘2𝑡
− erfc

(√

𝑐𝑘2𝑡
)

)

. (61)

or Eq. (40), we have:

𝐾2( = 0) = −𝑐𝑘2 𝑒−𝑐𝑘2𝑡
√

𝜋𝑐𝑘2𝑡
, (62)

However, the limit 𝐾2( → ∞) = 0.
Lastly, while the 𝐾3(𝑡, 𝑘) kernel has not been previously published in this context, its inversion is straightforward:

𝐾3(𝑡, 𝑘) =
𝑒−𝑐′𝑘2𝑡

2
√

𝜋
√

𝑐′𝑘2𝑡3∕2
, (63)

3.2. Solutions

We now invert the Laplace transforms to the time domain using the convolution theorem and the kernels 𝐾1−3. We list the
corresponding solutions to those listed in sections 2.6, 2.7, and 2.8 here below. We thus arrive at the time-wavenumber domain
representation of the spectral boundary integral.

3.3. General pore pressure

𝜎̂𝑥𝑧 = − 𝐺
2𝑘

(

𝑘2𝑥
1 − 𝜈𝑢

(

𝛿𝑥 + ∫

𝑡

0
𝛿𝑥(𝑡′)𝐾1( → ∞, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

+ 𝑘2𝑦𝛿𝑥

)

(64)

+
𝐺𝑘𝑥𝑘𝑦
2𝑘

(

𝛿𝑦 −
1

1 − 𝜈𝑢

(

𝛿𝑦 + ∫

𝑡

0
𝛿𝑦(𝑡′)𝐾1( → ∞, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′

))

+⋯

+
𝑖𝑘𝑥
𝑘

3
4𝐵(1 + 𝜈𝑢) ∫

𝑡

0
(𝑝̂+𝑏 (𝑡

′) − 𝑝̂−𝑏 (𝑡
′))𝐾1( → ∞, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′,

𝜎̂𝑦𝑧 = − 𝐺
2𝑘

(

𝑘2𝑦
1 − 𝜈𝑢

(

𝛿𝑦 + ∫

𝑡

0
𝛿𝑦(𝑡′)𝐾1( → ∞, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

+ 𝑘2𝑥𝛿𝑦

)

(65)

+
𝐺𝑘𝑥𝑘𝑦
2𝑘

(

𝛿𝑥 −
1

1 − 𝜈𝑢

(

𝛿𝑥 + ∫

𝑡

0
𝛿𝑥(𝑡′)𝐾1( → ∞, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′

))

+⋯

+
𝑖𝑘𝑦
𝑘

3
4𝐵(1 + 𝜈𝑢) ∫

𝑡

0
(𝑝̂+𝑏 (𝑡

′) − 𝑝̂−𝑏 (𝑡
′))𝐾1( → ∞, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′,

̄̂𝜎𝑧𝑧 = − 𝐺𝑘
2(1 − 𝜈𝑢)

(

𝛿𝑧 + ∫

𝑡

0
𝛿𝑧(𝑡′)𝐾1( → ∞, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

(66)

+ 3
4𝐵(1 + 𝜈𝑢) ∫

𝑡

0
(𝑝̂+𝑏 (𝑡

′) + 𝑝̂−𝑏 (𝑡
′))𝐾1( → ∞, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′,

𝐽± = −
𝑖𝑘𝑥𝐺𝐵𝑘𝜅

3
1 + 𝜈𝑢
1 − 𝜈𝑢

(

𝛿𝑥 + ∫

𝑡

0
𝛿𝑥(𝑡′)𝐾3(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

(67)

−
𝑖𝑘𝑦𝐺𝐵𝑘𝜅

3
1 + 𝜈𝑢
1 − 𝜈𝑢

(

𝛿𝑦 + ∫

𝑡

0
𝛿𝑦(𝑡′)𝐾3(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

± 𝑘𝐺𝐵𝑘𝜅 1 + 𝜈𝑢
(

𝛿𝑧 +
𝑡
𝛿𝑧(𝑡′)𝐾3(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

∓ 𝑘𝜅
𝑡
𝑝̂±(𝑡′)𝐾3(𝑡 − 𝑡′, 𝑘)𝑑𝑡′.
10
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3.4. General flux

𝜎̂𝑥𝑧 = − 𝐺
2𝑘

(

𝑘2𝑥
1 − 𝜈𝑢

(

𝛿𝑥 + ∫

𝑡

0
𝛿𝑥(𝑡′)𝐾1( = 0, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

+ 𝑘2𝑦𝛿𝑥

)

(68)

+
𝐺𝑘𝑥𝑘𝑦
2𝑘

(

𝛿𝑦 −
1

1 − 𝜈𝑢

(

𝛿𝑦 + ∫

𝑡

0
𝛿𝑦(𝑡′)𝐾1( = 0, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′

))

+⋯

+
𝑖𝑘𝑥
𝑘

3
4𝐵𝜅(1 + 𝜈𝑢) ∫

𝑡

0
(𝐽+(𝑡′) + 𝐽−(𝑡′))𝐾1( = 0, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′,

𝜎̂𝑦𝑧 = − 𝐺
2𝑘

(

𝑘2𝑦
1 − 𝜈𝑢

(

𝛿𝑦 + ∫

𝑡

0
𝛿𝑦(𝑡′)𝐾1( = 0, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

+ 𝑘2𝑥𝛿𝑦

)

(69)

+
𝐺𝑘𝑥𝑘𝑦
2𝑘

(

𝛿𝑥 −
1

1 − 𝜈𝑢

(

𝛿𝑥 + ∫

𝑡

0
𝛿𝑥(𝑡′)𝐾1( = 0, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′

))

+⋯

+
𝑖𝑘𝑦
𝑘

3
4𝐵𝜅(1 + 𝜈𝑢) ∫

𝑡

0
(𝐽+(𝑡′) + 𝐽−(𝑡′))𝐾1( = 0, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′,

̄̂𝜎𝑧𝑧 = − 𝐺𝑘
2(1 − 𝜈𝑢)

(

𝛿𝑧 + ∫

𝑡

0
𝛿𝑧(𝑡′)𝐾1( = 0, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

(70)

+ 1
𝑘

3
4𝐵𝜅(1 + 𝜈𝑢) ∫

𝑡

0
(𝐽+(𝑡′) − 𝐽−(𝑡′))𝐾1( = 0, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′,

̄̂𝑝± = ∓
𝑖𝑘𝑥𝐺𝐵

3
1 + 𝜈𝑢
1 − 𝜈𝑢

(

𝛿𝑥 + ∫

𝑡

0
𝛿𝑥(𝑡′)𝐾2( = 0, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

(71)

∓
𝑖𝑘𝑦𝐺𝐵

3
1 + 𝜈𝑢
1 − 𝜈𝑢

(

𝛿𝑦 + ∫

𝑡

0
𝛿𝑦(𝑡′)𝐾2( = 0, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

+ 𝑘𝐺𝐵
3

1 + 𝜈𝑢
1 − 𝜈𝑢

(

𝛿𝑧 + ∫

𝑡

0
𝛿𝑧(𝑡′)𝐾2( = 0, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

∓ 1
𝑘𝜅 ∫

𝑡

0
𝐽±(𝑡′)𝐾2( = 0, 𝑡 − 𝑡′, 𝑘)𝑑𝑡′.

.5. Bi-linear pressure

𝜎̂𝑥𝑧 = − 𝐺
2𝑘

(

𝑘2𝑥
1 − 𝜈𝑢

(

𝛿𝑥 + ∫

𝑡

0
𝛿𝑥(𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

+ 𝑘2𝑦𝛿𝑥

)

(72)

+
𝐺𝑘𝑥𝑘𝑦
2𝑘

(

𝛿𝑦 −
1

1 − 𝜈𝑢

(

𝛿𝑦 + ∫

𝑡

0
𝛿𝑦(𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

))

,

𝜎̂𝑦𝑧 = − 𝐺
2𝑘

(

𝑘2𝑦
1 − 𝜈𝑢

(

𝛿𝑦 + ∫

𝑡

0
𝛿𝑦(𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

+ 𝑘2𝑥𝛿𝑦

)

(73)

+
𝐺𝑘𝑥𝑘𝑦
2𝑘

(

𝛿𝑥 −
1

1 − 𝜈𝑢

(

𝛿𝑥 + ∫

𝑡

0
𝛿𝑥(𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

))

,

̄̂𝜎𝑧𝑧 = − 𝐺𝑘
2(1 − 𝜈𝑢)

(

𝛿𝑧 + ∫

𝑡

0
𝛿𝑧(𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

+ 3
2𝐵(1 + 𝜈𝑢)


 + 1 ∫

𝑡

0
𝑝̂𝑐 (𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘)𝑑𝑡′, (74)

̄̂𝑝± = ∓
𝑖𝑘𝑥𝐺𝐵

3
1 + 𝜈𝑢
1 − 𝜈𝑢

(

𝛿𝑥 + ∫

𝑡

0
𝛿𝑥(𝑡′)𝐾2(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

(75)

∓
𝑖𝑘𝑦𝐺𝐵

3
1 + 𝜈𝑢
1 − 𝜈𝑢

(

𝛿𝑦 + ∫

𝑡

0
𝛿𝑦(𝑡′)𝐾2(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

+ 𝑘𝐺𝐵
3

1 + 𝜈𝑢
1 − 𝜈𝑢

(

𝛿𝑧 + ∫

𝑡

0
𝛿𝑧(𝑡′)𝐾2(𝑡 − 𝑡′, 𝑘)𝑑𝑡′

)

− 
 + 1 ∫

𝑡

0
𝑝̂𝑐 (𝑡′)𝐾2(𝑡 − 𝑡′, 𝑘)𝑑𝑡′. (76)

.6. Inversion of the fourier transform

The spectral boundary integral approach’s pivotal step involves utilizing expressions, like those outlined in the preceding section,
11

o ascertain relationships vital for simulations. These simulations could encompass areas like fracturing, frictional dynamics, or
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solving flow problems. By expanding the fields associated with boundary conditions (e.g., slip, layer boundary pressure, or flux)
in a Fourier series, this can be achieved with high efficiency. Although we will illustrate an example of this process, we will not
transform every equation from Section 3.2 for brevity. Comprehensive explanations of this procedure can be found in prior works,
such as those by Geubelle and Rice (1995), Lapusta et al. (2000), Heimisson et al. (2022).

Consider the 2D Fourier series of the slip in the 𝑥 direction:

𝛿𝑥(𝑡, 𝑥, 𝑦) =
𝑁∕2−1
∑

𝑛=−𝑁∕2

𝑀∕2−1
∑

𝑚=−𝑀∕2
𝐷(𝑛,𝑚)

𝑥 (𝑡)𝑒𝑖𝑘
𝑛
𝑥𝑥+𝑖𝑘

𝑚
𝑦 𝑦, (77)

here 𝑘𝑛𝑥 = 2𝜋𝑛∕𝐿𝑥 and 𝑘𝑛𝑦 = 2𝜋𝑛∕𝐿𝑦 with 𝐿𝑥 and 𝐿𝑥 being the domain sizes in the 𝑥 and 𝑦 directions respectively and thus the
domain is discretized in by 𝑁 ×𝑀 with an area of 𝐿𝑥 × 𝐿𝑦. The summation assumes 𝑁 and 𝑀 are even numbers. Similarly for 𝛿𝑦
we write

𝛿𝑦(𝑡, 𝑥, 𝑦) =
𝑁∕2−1
∑

𝑛=−𝑁∕2

𝑀∕2−1
∑

𝑚=−𝑀∕2
𝐷(𝑛,𝑚)

𝑦 (𝑡)𝑒𝑖𝑘
𝑛
𝑥𝑥+𝑖𝑘

𝑚
𝑦 𝑦, (78)

where 𝐷(𝑛,𝑚)
𝑥 (𝑡) and 𝐷(𝑛,𝑚)

𝑦 (𝑡) signify individual Fourier coefficients in each Fourier series for the two slip fields. Analogous expansions
can be applied to other pertinent fields, like 𝑝𝑐 (𝑡, 𝑥, 𝑦) or 𝐽+(𝑡, 𝑥, 𝑦).

The equations in Section 3.2 provide a methodology to map the Fourier coefficients of known fields, which are associated with
boundary conditions, to the Fourier coefficients of unknown fields, such as stress. For instance, Eq. (72) can be used to deduce the
corresponding Fourier coefficient of 𝜎𝑥𝑧(𝑡).

𝛴𝑛,𝑚
𝑥𝑧 (𝑡) = − 𝐺

2𝑘(𝑛,𝑚)

(

(𝑘𝑛𝑥)
2

1 − 𝜈𝑢

(

𝐷(𝑛,𝑚)
𝑥 (𝑡′) + ∫

𝑡

0
𝐷(𝑛,𝑚)

𝑥 (𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘(𝑛,𝑚))𝑑𝑡′
)

+ (𝑘𝑚𝑦 )
2𝐷(𝑛,𝑚)

𝑥 (𝑡′)

)

+
𝐺𝑘𝑛𝑥𝑘

𝑚
𝑦

2𝑘(𝑛,𝑚)

(

𝐷(𝑛,𝑚)
𝑦 (𝑡′) − 1

1 − 𝜈𝑢

(

𝐷(𝑛,𝑚)
𝑦 (𝑡′) + ∫

𝑡

0
𝐷(𝑛,𝑚)

𝑦 (𝑡′)𝐾1(𝑡 − 𝑡′, 𝑘(𝑛,𝑚))𝑑𝑡′
))

(79)

here then 𝑘(𝑛,𝑚) =
√

(𝑘𝑛𝑥)2 + (𝑘𝑚𝑦 )2 =
√

(2𝜋𝑛∕𝐿𝑥)2 + (2𝜋𝑚∕𝐿𝑦)2 and 𝐿𝑥 and 𝐿𝑦 represent the size of the computational domain in
the 𝑥 and 𝑦 dimensions.

In practical applications, Fourier coefficients 𝐷(𝑛,𝑚)
𝑥 and 𝐷(𝑛,𝑚)

𝑦 are determined at each time step using a two-dimensional fast
Fourier transform (2D FFT). The above equation then operates on the 𝐷(𝑛,𝑚)

𝑥 and 𝐷(𝑛,𝑚)
𝑦 coefficients to compute the 𝛴𝑛,𝑚

𝑥𝑧 coefficient.
Subsequently, an inverse 2D FFT is employed to derive 𝜎𝑥𝑦(𝑡) from all 𝛴𝑛,𝑚

𝑥𝑧 coefficients. For a comprehensive understanding of how
this general methodology integrates into more complex frictional and fracture problem simulations, we direct readers to works
by Geubelle and Rice (1995), Lapusta et al. (2000), Lapusta and Liu (2009), Heimisson et al. (2022).

This approach offers two primary advantages. Firstly, leveraging FFT and IFFT ensures operations scale as (𝑁𝑀 log(𝑁𝑀)). In
contrast, addressing the problem through matrix multiplication, as seen in conventional boundary element methods, would lead to
(𝑁2𝑀2) scaling. Secondly, the modal independence is evident as the (𝑛,𝑚) Fourier coefficient of 𝜎𝑥𝑦, denoted as 𝛴𝑛,𝑚

𝑥𝑧 , exclusively
elies on other (𝑛,𝑚) Fourier coefficients. This means operations on each Fourier coefficient, like the convolution in Eq. (79), can be
xecuted without referencing other Fourier coefficients. This facilitates parallel processing in a seamless manner.

. In-plane pressure field of a penny-shaped crack

Frictional sliding on an interface within a poroelastic medium can lead to intriguing effects on frictional strength, effects that
emain not fully understood. For mode II or in-plane sliding around a crack tip, compression and dilation lobes manifest on either
ide of the crack tip within the surrounding bulk. This anti-symmetry, while present in a simple linear elastic medium, does not
lter the normal stress at the interface unless the materials on either side exhibit different compressibilities (e.g., Weertman, 1980).
n an isotropic poroelastic medium, however, compression on one side of the rupture elevates the pore pressure, while dilation on
he other side reduces it. This results in a pronounced gradient across the frictional interface. Such an effect has been postulated to
otentially destabilize velocity-strengthening friction around a steady state, even with minor perturbations (Heimisson et al., 2019).
his phenomenon mirrors the bimaterial effects observed by Rice et al. (2001) and the effective bimaterial effects due to the absence
f geometrical reflection symmetry as noted by Aldam et al. (2016). The first term of Eq. (76) illustrates that in-plane slip across
layer leads to an increase in pore pressure on one side and a decrease on the other, exhibiting an anti-symmetric pattern. This is

urther depicted in Fig. 2.
The exact influence of pore pressure anti-symmetry on the frictional strength of the interface remains a topic of debate.

onetheless, it has been proposed that the peak pore pressure across the interface might dictate the maximum frictional strength
f the layer. If this hypothesis holds, the dynamics of such ruptures could be significantly impacted.

In Mode III or anti-plane sliding, there is no such effect, neither on a poroelastic material interface nor in bimaterial sliding.
owever, a interface rupture on a 2D plane in a 3D medium can be understood as the combination of mode II and III and perhaps
ode I if there is a opening component or dilatation. To explore this further we solve Eq. (76).

Let us first delve into the relevant non-dimensional time scales. From the convolution kernels 𝐾1 and 𝐾2 we can infer two
ertinent time scales:

𝑡 = 1 , (80)
12
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Fig. 2. Schematic representation of the pressure induced by a typical mode II crack with an elliptical slip distribution across the layer. Given the assumed slip
orientation, the pressure increases at one crack tip and decreases at the other. This is attributed to the compressional and dilatational lobes at the tip region,
which induce pressure changes due to poroelastic coupling. On the opposite side of the layer, the pattern is inverted. This phenomenon is evident in the ± sign
of the first term of Eq. (76) and the dependence on 𝑘𝑥 in the same equation, indicating a directional pressure field dependency.

which denotes the diffusion time scale into the bulk. This scale is universally applicable across various boundary conditions, be it
arbitrary flux, arbitrary pressure, or the bi-linear pressure. The second time scale is:

𝑡𝑓 = 1
2𝑐𝑘2

= 𝜅2𝜖2

𝜅2
𝑐 𝑐

, (81)

hich characterizes the rate at which pressure equilibrates across the layer under the bi-linear pressure model. The other boundary
onditions do not explicitly define the flow properties of the layer. Nevertheless, it might be plausible to view this scale as
pproximately representative for most physical layers, especially when assuming they are thin relative to the x-y dimensions of
he slip patch.

To better understand this, let us visualize the pressure field. We choose 𝑘 = 2𝜋∕𝑅, where 𝑅 represents the radius of a penny-
haped crack with an elliptical opening (indicative of a constant stress drop crack). This gives 𝑡𝑏 = 𝑅2

4𝜋2𝑐 . Notably, 𝑡𝑓 remains
independent of this length scale, provided the layer remains thin compared to the x-y dimensions of the slip patch.

Fig. 3 primarily visualizes the elastic response resulting from the crack slip, i.e., the undrained response. To replicate this
figure using linear elasticity, one can utilize the relationship between volumetric stress and undrained pore pressure, given by
𝑝𝑢𝑛 = −𝐵(𝜎𝑘𝑘)∕3.

A striking feature of the pressure distribution is the extensive pressure variation across a large portion of the crack. This occurs
despite the mode III component of the fracture not inducing such a response. Research focusing on frictional ruptures under plane
strain or mode II sliding has identified this pressure response as a significant factor influencing rupture dynamics (Rudnicki and
Koutsibelas, 1991; Rudnicki and Rice, 2006; Jha and Juanes, 2014; Torberntsson et al., 2018; Heimisson et al., 2019, 2021). This
observation implies that the effect might also be significant for a planar rupture in a 3D medium.

While the undrained response (Fig. 3) provides insights, it does not elucidate the time scales at which the coupled pore pressure
and slip effects are relevant. To address this, we examine the pressure distribution in relation to the undrained response (Fig. 4).
This comparison underscores the significance of the two time scales emerging from the bi-linear pressure distribution solutions: 𝑡𝑓
and 𝑡𝑏. In scenarios where 𝑡𝑓∕𝑡𝑏 ≪ 1 (as seen in column a of Fig. 4), pore pressure dissipates via bulk diffusion, leading to pressure
migration along the crack interface. Such migration might introduce intriguing effects, potentially allowing further destabilization
of growing cracks through diffusion. However, this hypothesis requires validation in future studies. For 𝑡𝑓∕𝑡𝑏 = 1 (column b in
ig. 4), pressure decreases more rapidly due to layer flux, driven by the pressure gradient depicted in Fig. 2. Yet, for 𝑡𝑓∕𝑡𝑏 = 10
column c in Fig. 4), pressure equilibrates swiftly across the layer, substantially diminishing the less-understood effect of slip-induced
nti-symmetric pore pressure at the layer interface.

In conclusion, our simulations of the pressure distribution adjacent to a penny-shaped crack with an elliptical slip profile along the
13

-axis (as shown in Fig. 3b) using Eq. (76) reveal that a significant portion of the crack tip and interface undergoes notable pressure
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Fig. 3. The undrained pressure response (𝑝+) in a for a penny-shaped crack with the slip distribution 𝛿𝑥 shown in b (assuming 𝛿𝑦 and 𝛿𝑧 are 0). Both the
pressure and slip distributions are normalized by their maximum values, and distances are normalized by the crack radius. The results reveal a pronounced
anti-symmetric pressure response within the crack circle. Notably, the pressure response significantly affects most parts of the crack, excluding the center axis.
This occurs even though the volumetric stress response of the surrounding medium is exclusive to mode II sliding.

changes. Moreover, when 𝑡𝑓∕𝑡𝑏 ≲ 1, the poroelastically induced pressure can migrate beyond the crack tip. We propose that the
directional properties of the pressure distribution, combined with the migration of pressure changes along the crack plane, could
profoundly influence frictional dynamics on interfaces where poroelasticity is a factor. This is particularly relevant for geotrials,
biomaterials, soft materials, and gels.

5. Discussion

5.1. Potential inclusion of more complex physics

The primary objective of this work has been to present the spectral boundary integral (SBI) equations in a format applicable to
carrying out simulations and to facilitate the understanding of various physically significant problems. In light of this, it is pertinent
to address some of the limitations of the current approach and explore potential avenues for incorporating additional complexities,
particularly focusing on inertial effects and non-planarity.

In considering inertial effects, it is crucial to address both the inertia of the layer and the bulk. The SBI equations for general
flux and pressurization of the layer, while not making explicit assumptions about the layer’s properties beyond its thinness, could
potentially include inertial terms. However, the bulk physics in our current model assumes quasi-static deformation. Adapting these
equations for a layer that accounts for inertial effects would necessitate modifications to the bulk physics as well.

Noda (2022) have successfully integrated elastodynamic spectral boundary integral convolution kernels at high slip rates,
effectively treating the bulk as elastodynamic while maintaining an undrained poroelastic response. This approach has often proven
effective (Heimisson and Rinaldi, 2022), yet it does not constitute a rigorous treatment of poroelastodynamics. In the bi-linear
pressure distribution equations derived in our study, quasi-static Darcy’s law is employed, explicitly excluding inertia effects. While it
might be feasible to adapt Darcy’s law to be compatible with poroelastodynamics (e.g., Cheng, 2016), this might not be advantageous
without a rigorous treatment of a poroelastodynamic bulk.

However, treating the layer deformation as quasi-static may often be a reasonable approximation. Rice (2006) posited that if the
layer is sufficiently thin, the stress variations over small distances are minimal, allowing for the inertia of the layer to be disregarded,
even though it might be relevant for the bulk at larger slip scales. This assumption was further examined by Platt et al. (2014) in
their thermo-poroelastic one-dimensional simulations. They proposed a critical slip velocity defined as:

𝑉𝑐 =

√

𝜎̄𝑎
100𝜌

, (82)

where 𝜌 represents the density in a reference state of the gouge, and 𝜎̄𝑎 is the ambient effective normal stress. In many geophysical
and geomechanical contexts, the ambient effective stress typically ranges from 10 to 100 MPa, with a density around 3000 kg/m3.
Consequently, the inertia of the layer becomes significant when the slip rate exceeds approximately 5 m/s, a velocity that is relatively
high, but could occur in large seismic events. Such slip speed and larger has been observed in simulations (Dunham et al., 2011a,b).
However, at these slip speeds, off-fault plasticity plays a significant role, which is a further complication that cannot easily be
considered in a boundary integral formulation unless the plastic deformation of can be characterized as being within the thin layer.
14
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Fig. 4. Evolution of pore pressure (𝑝+) following an instantaneous slip on a penny-shaped crack (as depicted in Fig. 3). Column a assumes 𝑡𝑓 ∕𝑡𝑏 = 0, b assumes
𝑡𝑓 ∕𝑡𝑏 = 1, and c assumes 𝑡𝑓 ∕𝑡𝑏 = 10. The top row represents time 𝑡∕𝑡𝑏 = 0.1, the second row 𝑡∕𝑡𝑏 = 0.2, and the third row 𝑡∕𝑡𝑏 = 0.3. For low-permeability
layers (𝑡𝑓 ∕𝑡𝑏 ≤ 1), pressure dispersion occurs along the layer boundary. However, for high-permeability layers (𝑡𝑓 ∕𝑡𝑏 = 10), pressure equilibration happens swiftly
through layer flux.

Another critical assumption in our analysis is the planarity of the layer. However, natural surfaces, including fractures and
faults, are seldom perfectly planar. Geological faults, in particular, exhibit universal roughness, and it has been suggested that their
topography may be statistically fractal in nature (Power et al., 1987). Consequently, there are likely scales or specific locations
where the assumption of planarity does not hold true.

One approach to accommodate fault roughness is to conceptualize the rough surface as being encompassed within the thin
layer. This method aligns with the strategies employed in hybrid methods that utilize purely elastic SBIM schemes (Hajarolasvadi
and Elbanna, 2017; Ma et al., 2019; Albertini et al., 2021). While the half-space poroelastic SBI equations are not currently known
analytically to the best of my knowledge, it is plausible that some of the terms would be consistent with those presented in this
study.

The hybrid methods typically employ half-space SBI equations (Breitenfeld and Geubelle, 1998), they are thus less constrained by
the need for a strict separation of scales. However, some degree of scale separation is still necessary to achieve notable improvements
in computational efficiency. Recent advancements have demonstrated that mild non-planarity can be effectively approximated in
elastodynamic SBI equations (Romanet and Ozawa, 2021). This suggests the potential for a similar approach to be applied in the
context of poroelasticity. Such a development could significantly enhance the applicability of SBI methods in more complex, realistic
15

geological scenarios where planarity cannot be assumed.
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6. Conclusion

This study has advanced the application of the spectral boundary integral (SBI) method in terms of poroelastic media with
otential applications of fluid-filled interfaces in natural and synthetic systems such as geological and biological layers. By deriving
nalytical SBI equations for 3D cracks and thin layers, we have provided a framework that can capture the complex interplay
etween poroelasticity, fracture mechanics, and fluid dynamics.

We present three core solutions, each tailored to specific boundary conditions in flow or pressure: arbitrary pressure, arbitrary
lux, and a bi-linear pressure profile. The bi-linear pressure solution, in particular, serves as a versatile model for thin, leaky
ayers subject to pressurization. Further, it bridges parts the other two solutions under certain limiting cases of a non-dimensional
arameters  .

A significant insight from our work is the identification of in-plane pressure effects due to shear cracks in poroelastic solids.
ontrary to the limited scope of mode II sliding in 2D, we demonstrate that in a 3D context, the pressurization impacts a substantial
rea of the crack face. This finding suggests a broader influence on the frictional strength of the interface than previously recognized.

Moreover, we have explored non-dimensional timescales that dictate the dynamics of pressure migration and its potential to
xtend beyond the crack tip. This suggests that poroelastic effects could propagate changes in frictional strength to regions away
rom the initial rupture, influencing the dynamics of crack growth and stability.

In conclusion, our analytical solutions offer a robust toolset for probing the mechanics of poroelastic interfaces. The potential to
ccount for pressurization of the interface that can migrate and alter the frictional properties of a medium opens new avenues for
nderstanding and predicting the behavior of fractures and faults in a variety of settings, from geological subsurfaces to engineered
aterials.
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