
RESEARCH ARTICLE

Lipidomic study of cell lines reveals

differences between breast cancer subtypes

Finnur Freyr Eiriksson1,2,3☯, Martha Kampp Nøhr1,4☯, Margarida Costa1,3, Sigridur
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Abstract

Breast cancer (BC) is the most prevalent type of cancer in women in western countries. BC

mortality has not declined despite early detection by screening, indicating the need for better

informed treatment decisions. Therefore, a novel noninvasive diagnostic tool for BC would

give the opportunity of subtype-specific treatment and improved prospects for the patients.

Heterogeneity of BC tumor subtypes is reflected in the expression levels of enzymes in lipid

metabolism. The aim of the study was to investigate whether the subtype defined by the

transcriptome is reflected in the lipidome of BC cell lines. A liquid chromatography mass

spectrometry (LC-MS) platform was applied to analyze the lipidome of six cell lines derived

from human BC cell lines representing different BC subtypes. We identified an increased

abundance of triacylglycerols (TG)� C-48 with moderate or multiple unsaturation in fatty

acyl chains and down-regulated ether-phosphatidylethanolamines (PE) (C-34 to C-38) in

cell lines representing estrogen receptor and progesterone receptor positive tumor sub-

types. In a cell line representing HER2-overexpressing tumor subtype an elevated expres-

sion of TG (� C-46), phosphatidylcholines (PC) and PE containing short-chained (� C-16)

saturated or monounsaturated fatty acids were observed. Increased abundance of PC� C-

40 was found in cell lines of triple negative BC subtype. In addition, differences were

detected in lipidomes within these previously defined subtypes. We conclude that subtypes

defined by the transcriptome are indeed reflected in differences in the lipidome and, further-

more, potentially biologically relevant differences may exist within these defined subtypes.

Introduction

Breast cancer (BC) is mainly diagnosed using routine mammography and self-examination.

Recent large scale retrospective studies of Norwegian, European and North American women

indicated that these routine examinations had little or no impact on BC mortality [1, 2]. The

treatment and subsequent outcome for the patient is dependent on the underlying BC subtype.

Therefore, there is a need for novel noninvasive tools for identification of BC subtype at an

early stage to enable informed treatment decisions.
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BC represents a group of diverse subtypes with genetic, clinical and molecular differences

resulting in different proliferation and metastatic potential. Based on transcriptomic analysis

BC is divided into five main subtypes. In clinical practice this information is used to identify

subtypes by determining hormone receptor status of the estrogen receptors (ER) and the pro-

gesterone receptors (PgR) and whether human epidermal growth factor receptor 2 (HER2/

neu) is amplified. The subtypes are: I) luminal A (ER+, PgR+, HER2-), II) luminal B (ER+,

PgR+, HER2-/+), III) HER2-overexpressing (ER-, PgR-,HER2+), IV) triple negative breast

cancer (TNBC; ER-, PgR-, HER2-) and, V) normal-like subtype [3–5]. Even though the BC

tumors are classified according to these subtypes, several studies categorize BC cell lines differ-

ently and there seems to be a lack of consistency in classification of the BC subtypes [6]. Fur-

thermore, it has been reported that high heterogeneity also exists within individual BC

subtypes [5, 7].

Lipids are essential in many cellular functions related to carcinogenic pathways [8–10]. Gly-

cerophospholipids (GPL) are important signaling molecules and have been shown to be

involved in regulation of migration, apoptosis and neurotransmission [8, 9, 11, 12], and diacyl-

glycerols (DG) are second messengers involved in apoptosis and mediate signal transduction

in cancer cells [10, 13]. Multiple lipid metabolism enzymes have been investigated as potential

targets for cancer therapy [14]. Altered expression of enzymes involved in lipid synthesis, stor-

age, activation and degradation has been identified in breast tumors [11, 12, 15–17]. Mutations

in the tumor suppressor TP53 gene play a major role in carcinogenesis and cancer progression

[13, 18] by several mechanisms, including effects on metabolism. Thus TP53 has been shown

to regulate glucose metabolism and modulate the expression of fatty acid synthase (FASN)

involved in lipid synthesis [13, 18] and TP53 mutation leads to changes in phosphatidylinositol

acyl chain composition [19]. Dysfunctional TP53 indicates poor outcomes for BC patients,

irrespective of BC subtype, especially in PgR-negative tumors [13, 18]. Heterogeneity between

the BC tumor subtypes is also reflected in the alterations of mRNA and/or protein expression

levels of enzymes involved in lipid metabolism [16, 17, 20] and subtype-specific lipid profiles

have been reported [21]. Collectively, these studies indicate that TNBC rely more on uptake

and storage of exogeneous fatty acids (FA), whereas the luminal subtypes upregulate de novo
FA synthesis and oxidation [17]. HER2 subtypes rely on de novo FA synthesis as well as

increased storage and oxidation of FA [16, 17, 20]. These lipid metabolism pathways are linked

to other metabolic pathways by energy consumption and supply of building blocks to drive

lipid synthesis. Glutamine and glucose metabolism provides acetyl-CoA which is a precursor

for FA and lipid derivatives [10] demonstrating the complexity of predicting lipid metabolism.

A few studies have focused on comparing lipid content of different BC cell lines to a non-

malignant reference cell line [22–25]. These studies mainly found changes between BC cells

and reference cells in GPL, not related to the underlying BC subtype [22–25]. Interestingly,

Cifkova et al. described several specific lipids with a different abundance in BC cells compared

to normal cells as well as between human BC tissues and surrounding normal tissues. They

demonstrated that changes observed in BC tissues are mainly caused by different lipidomic

profiles of tumor cells and that these changes correlated with the lipidomics composition of

the individual BC cell lines [23].

Collectively, these studies indicate that the diversity in lipid metabolism on the mRNA and

protein level is indeed reflected in the lipidome. Therefore, we hypothesize that the lipidome

can be used to identify BC subtypes. We test this using human BC cell lines and investigate

whether the subtypes defined by the transcriptome are reflected in the lipidome of BC cells

and whether further subgroups can be detected within previously known BC subtypes. This

knowledge would in turn provide the opportunity for non-invasive diagnostic tools (on e.g.

plasma samples) and improved accurate diagnosis of BC patients for personalized subtype-
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specific treatment. We used a UPLC-QTOF-MS platform to analyze the lipidome of six cell

lines derived from human BC carcinomas representing different BC subtypes.

Methods and materials

Materials

All cell lines were obtained from American type culture collection (ATCC, Manassas, VA,

USA). SPLASH1 Lipidomix1Mass Spec Standard was purchased from Avanti Polar Lipids

(Alabaster, AL, USA). All chemicals were from Sigma Aldrich (St. Louis, MO, USA), unless

otherwise stated. Culture flasks and plasticware were from Becton Dickinson (BD, Franklin

Lakes, NJ, USA). Culture media, except H14 media, were from Gibco Life Technologies (by

Fisher Scientific Company, Toronto, ON). Ultra-high purity water was prepared using a Milli-

Q waters purification system (Millipore corp., Billerica, MA, USA).

Cell lines

The cell lines used in this study were selected based on their similarities with different BC

tumour subtypes (Table 1). Two BC cell lines are ER- and PgR-positive and HER2 negative

(MCF7 and T-47D) and CAMA-1 is ER-positive, PgR-positive/negative and HER2-negative,

these are all considered luminal subtypes [6, 26–28]. Two cell lines (MDA-MB-231 and

MBA-MB-436) belong to the TNBC subtypes, in addition MDA-MB-436 has a BRCA1 muta-

tion [6, 29]. The HER2-overexpressing subtype is represented by SK-BR-3 cell line [6, 26–28].

The cell lines also differ in TP53 mutation status with T-47D and MDA-MB-231 expressing

the mutated protein (Table 1). MCF10A was derived from fibrocystic disease [26] and repre-

sents a non-cancer reference cell line. Since there is a lack of consistency in classification of the

luminal BC subtypes into A and B, we collectively regard these cell lines as luminal subtype.

Cultures were tested for mycoplasma every two months.

Cell culture

Culture media for MCF7, CAMA-1, MDA-MB-231, MDA-MB-436, and T-47D was RPMI-

1640 (Gibco Life Technologies). SK-BR-3 cells were grown in McCoy’s 5 (Gibco Life Technol-

ogies) and MCF10A cell were cultured in H14 media [35]. All media were supplemented with

10% FBS. In addition, the medium used for T-47D was supplemented with 5 μL/mL insulin.

Table 1. Overview of breast cancer cell line characteristics.

Cell line ATCC1No. Type of tumour
[30]

Original tissue
[30]

Cell type [30] ER status PgR status HER2

status

TP53[27] Subtype Ref.

MCF 10A CRL-

10317TM
NT Fibrocystic

disease

Epithelial - - - NT [26, 27, 31]

MCF7 HTB-22TM AC MS, PLE Epithelial + + - Luminal [6, 31–33]

T-47D HTB-133TM DC MS, PLE Epithelial + + - M Luminal [26, 27, 32, 34]

CAMA-1 HTB-21TM AC MS, PLE WLELP + +/- - Luminal [6, 26, 27]

MDA-MB-

436

HTB-130TM AC MS, PLE PMMCC - - - TNBC [6, 26, 27]

MDA-MB-

231

HTB-26TM AC MS, PLE Epithelial

like

- - - M TNBC [16, 26, 27, 31, 33,

34]

SK-BR-3 HTB-30TM AC MS, PLE Epithelial - - + HER2 [6, 31–33]

AC: adenocarcinoma, DC: ductal carcinoma, MS: metastatic site, PLE: pleural effusion, NT: Non-tumorigenic, PMMCC: Pleomorphic with multinucleated component

cells, WLELP: weakly luminal epithelial-like phenotype. TP53 mutational status: M mutant protein.

https://doi.org/10.1371/journal.pone.0231289.t001
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During cultivation, the medium was replaced every 2–3 days. The incubator was kept at 37˚C

and 5% CO2. Cells were harvested when the culture had reached 70% confluence, i.e. towards

the end of the proliferative phase. Cells were detached by trypsin/EDTA solution (0.25% w/v).

Soybean trypsin inhibitor (10 mg/mL) was added to inactivate the trypsin. The cells were

washed with phosphate buffered saline (PBS) followed by centrifugation for 3 min at 2000 rpm

and PBS removed. The cell pellet was resuspended in 2 mL of PBS at a cell count of 1 million

cells. Biological replicates of each cell line were harvested from three individual culture flasks

(3 biological replicates).

Sample preparation

SPLASH1 Lipidomix1Mass Spec Standard (Avanti Polar Lipids) was used as a reference

standard for verification of lipids retention time. The standard contains one deuterated lipid

(7–9 deuterium for each lipid) from the subclasses phosphatidylcholines (PC), phosphatidyleth-

anolamines (PE), phosphatidylglycerols (PG), phosphatidylserines (PS), phosphatidylinositols

(PI), Phosphatidic acids (PA), lysophosphatidylcholines (LPC), lysophosphatidylethanolamines

(LPE), cholesterol ester, monoacylglycerols (MG), sphingomyelins (SM), diacylglycerols (DG),

triacylglycerols (TG), and cholesterol. The cell pellets were extracted using a modified Folch

method [36]. Briefly, cell samples were thawed and transferred to a glass tube. Samples were

centrifuged and PBS aspirated. The cells were extracted twice into cold chloroform/methanol/

water (1:1:1, v/v/v). Before the extraction of the organic phase, 10 μL of the reference standard

was added to each sample. Both chloroform bottom layers were combined, and the solvent was

evaporated under a stream of N2 gas. The dried lipids were reconstituted into 10 μL chloro-

form/methanol (1:1, v/v) and diluted 10x with isopropanol/acetonitrile/water (2:1:1, v/v/v) for

ultra-performance liquid chromatography quadrupole time of flight mass spectrometry

(UPLC-QTOF-MS) analysis. A sample from each biological replicate (three) for each cell line

was prepared to be analyzed in triplicate (9 analyses for each cell line). Quality controls (QC)

were prepared by pooling all the samples. 11 QC samples were included within the sample

sequence.

UPLC-QTOF-MS settings

The setup of UPLC-QTOF-MS method was based on previously published method by Castro-

Perez and colleagues [37]. The lipid samples were analyzed using Acquity UPLC (Waters

corp., Milford, USA), coupled to a Synapt G1 mass spectrometer (Waters corp., Manchester,

UK) equipped with electrospray ionization (ESI) probe in MSE acquisition mode. The analyti-

cal column ACQUITY UPLC HSS T3 1.8 μm (2.1 mm x 100 mm) (Waters corp., Milford,

USA) was used for separation. Mobile phase A was acetonitrile:water (40:60 v/v) and mobile

phase B was isopropanol:acetonitrile (90:10 v/v), both supplemented with 10 mM ammonium

acetate (pH 5.0). The flow rate was maintained at 0.4 mL/min. A linear gradient was used from

40 to 100% B during the first 10 min, followed by a column clean up at 100% B for 2 min and

reconditioning at the initial conditions for 2.5 min. The total chromatographic run time was

14.5 min. The sample manager temperature was maintained at 4.0˚C. The capillary voltage

was set to 3.0 kV, the cone voltage to 35 V and extraction cone to 4.0 V. The scan time was 0.1

seconds in the mass range of 100–1000 Dalton. Source temperature 120˚C; desolvation tem-

perature 400˚C at a flow rate of 800 L h-1 (N2) and cone gas flow rate 50 L h-1. The data was

captured as centroid data with a resolution of 9000 (full width at half maximum). Leucine

enkephalin was used as reference lock mass calibrant. The acquisition was run in positive

mode and data acquisition was carried out using MassLynx 4.1 software (Waters corp., Man-

chester, UK). The samples were randomized prior to analysis.
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Data pre-processing

Acquired data was processed using Progenesis QI software version 2.3 (Nonlinear Dynamics,

Newcastle, UK). Raw data files (centroid data, dead time correction deselected) were uploaded

to the software running automatic alignment using the QC samples (pooled samples) to select

an alignment reference. The retention time window for peak picking was set to 1.0–11.0 min

in positive mode, minimum peak width was fixed to 0.05 min and sensitivity of the peak pick-

ing algorithm was set to two. Other parameters were set to default. With these settings Progen-

esis QI returned 1318 ion features distinguished by retention time and m/z. Ion features with

coefficient of variance (CV%)� 30% in the QC samples and m/z> 350 Da were selected and

resulted in 439 ion features, which were further analyzed using multivariate data analysis

(MVDA). For normalization, the default setting in Progenesis QI “normalise to all compounds”
was applied. This normalizes all the peak abundances in a sample by the same normalization

factor. The normalization factor is calculated on the basis of peaks present in both a reference

QC sample and the sample in question. Only peaks that fall within a calculated distance from a

median value are included in calculation of the factor. This means that outliers are not

included e.g. ions with an abundance of zero for either the normalized or QC sample are not

included in the calculation.

Multivariate data analysis

Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis

(OPLS-DA) were applied for MVDA using SIMCA software (version 15, Sartorius Stedim Bio-

tech, Sweden). In the analysis 439 ion features were included. The data was pareto scaled prior

to modelling. OPLS-DA was performed to determine the most discriminative feature between

the reference cell line MCF10A and the individual BC cell line. S-plot visualizes the covariance

and the correlation structure between the variables and the predictive score of the predictive

component. MCF10A was assigned to the -1 class and each cancer cell line was assigned in

class 1. Ion features that were most up- or down-regulated in the specific BC cell line were

selected at the cut-off value p(corr)� 0.9 for up-regulated and� -0.9 for the down-regulated

ion features, furthermore, ion features with a value of p� 0.14 or� - 0.14 were included (p

(corr) > 0.5 or < -0.5).

Identification of markers

The analytical method allowed detection of lipid species from the classes PC, ether-PC, LPC,

PE, ether-PE, LPE, SM, DG and TG in positive mode. The individual lipids were identified

according to their mass to charge ratio (m/z), relevant adducts and retention time. The inter-

nal standards served as markers for the retention time of lipid subclasses. Possible adducts

were assigned to each ion feature in Progenesis QI. GPL and sphingolipids (SL) were identified

mainly by identification of the ion adducts [M+H]+ and [M+Na]+, furthermore, neutral loss of

headgroup choline or ethanolamine were used to confirm the identity of PC, SM, and PE,

respectively. Glycerolipids (GL) were identified mainly by [H+NH4]+, [M+H-H2O]+, and [M

+Na]+. A combination of an in-house database containing lipid identifier (ID), estimated

retention time and neutral mass, online databases e.g. LipidMaps [38, 39] and possible adducts

were used in assigning possible lipid ID to each ion feature [40]. A possible ID was assigned

to 106 of the included 439 ion features (S1 Table). Mass error up to 5 ppm for neutral species

was accepted. Data acquisition software Masslynx 4.1 and Targetlynx XS (Waters Corp., Mil-

ford, MA, USA) were applied in the estimation of retention times to build up the in-house

database.
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Annotation

Lipids from the classes GPL, GL, SL were investigated in this study. The lipids are annotated

according to their lipid subclass; PC, LPC, PE, LPE, PG, PI, SM, DG and TG. Individual lipids

are characterized by length and composition of the fatty acyls and are annotated as “lipid sub-

class total carbon number in fatty acyl chains: total number of double bonds” e.g. PC 30:0.

Ether-PC and -PE are subdivided into plasmenyl (containing a vinyl group next to the ether

bond, also known as plasmalogen) or plasmanyl and will be denoted with the prefix P- or O-

respectively [41] e.g. PC P-34:1 or O-34:2. In this paper we do not distinguish between e.g. PC

P-34:1 and PC O-34:2. The analytical platform does not allow identification of length of acyl

chains and placement of the double bonds, therefore, this is not annotated in this paper.

Graphical presentation and statistical analysis

RStudio (version 1.1.463, RStudio, Boston, MA, USA) was applied for data analysis, generation

of heatmap with hierarchical dendrogram (Euclidean distance and Ward’s linkage method)

and statistics. GraphPad Prism 5.03 (GraphPad Software, La Jolla, CA, USA) was used for

graphical presentation and statistical analysis. Student t-test and two-way ANOVA followed

by Bonferroni correction were applied to test statistical difference between mean abundance in

BC cell lines and reference cell line for individual lipids.

Results

Identification of lipid species by UPLC-QTOF-MS

In order to evaluate the lipidome of BC cell lines, a fit-for-purpose analytical method is needed

for detection and identification of lipids. Here we report a UPLC-QTOF-MS method for anal-

ysis of extracted lipids from cultured cell lines. The estimated retention times of individual

lipid subclass were 1.5–3.0 min for LPC and LPE, 4.5–8.5 min for PC, PE and SM, 7.0–8.5 min

for DG, and 8.5–10 min for TG (Fig 1).

Differences in lipidome between breast cancer cell lines as identified by

multivariate data analysis

PCA modelling of 439 ion features detected in Progenesis QI shows that each cell line clustered

separate from other cell lines including the reference cell line MCF10A (Fig 2). Principal com-

ponent (PC) 1 on the x-axis explained 29.9% of the variance while PC 2 (y-axis) explained

20.5%. When the QC samples were included, they cluster in the center of the PCA score scatter

plot indicating high analytical precision and accuracy (S1 Fig). The biological replicates from

each individual cell line clustered together indicating low variance within the cell lines. Nota-

bly, BC cell lines MCF7, SK-BR-3 and MDA-MB-231 cluster furthest from each other and

from the reference cell line, showing the largest difference between components in these cells.

The cell lines CAMA-1 and T-47D cluster separate from these BC cell lines and closer to the

reference cell line and the MDA-MB-436 cell line. The least difference based on the compo-

nential analysis seems to be between MDA-MB-436 and MCF10A.

An OPLS-DA model for MCF7 cell line compared to the reference cell line (MCF10A) was

utilized to uncover the most reliable class discriminating variables (Fig 3, OPLS-DA plots for

remaining cell lines can be found in S2 and S3 Figs). Scores scatter plot (Fig 3A) highlights the

between-cell-lines variance. The explained variance in the predictive component was 74.5%

and 8.99% in the orthogonal component, indicating that the variance between the cell lines

was larger than between biological and technical replicates of MCF10A or MCF7 cell lines.

The selection from the S-plot returned 76 up-regulated (red) and 98 down-regulated (blue)
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ion features in MCF7 cells compare with MCF10A (Fig 3B). The ion features selected across

the BC cell lines based on OPLS-DA models included 242 ion features in total and there was

substantial overlap between the cell lines.

A possible lipid ID was assigned to 67 of the 242 ion features belonging to the lipid classes

PC, PE, SM, DG and TG. The normalized abundance (log transformed) of these 67 lipid fea-

tures was included in a heatmap with hierarchical dendrogram (Fig 4). The dendrogram

showed closest similarity between the biological replicates within each cell line. The cell lines

MDA-MB-231 and MDA-MB-436 representing TNBC subtype cluster together and so do cell

lines T-47D and MCF7 representing luminal BC subtype. However, high similarity was found

between the reference cell line (MCF 10A) and the cell line CAMA-1. These cell lines share

similarities with MDA-MB-231 and MDA-MB-436 cell lines. SK-BR-3 cell line was distin-

guished clearly from the remaining cell lines in the dendrogram.

In the middle of the heatmap, a group of highly abundant lipids of the subclasses SM and

PC across all cell lines is seen (lipids with high abundance in all BC cell lines including the ref-

erence cell line, see S2 Table). These are mainly C-32 to C-36 lipids, except for two C-42 SM.

A group of ether-PE and -PC (C-34 to C-38) had a very low abundance (green color, Fig 4) in

MCF7 and T-47D compared to the other cell lines. Some of the TG grouped together and

showed a high abundance in either MCF7 or SK-BR-3. Otherwise, the heatmap shows that dif-

ferences between BC cell lines were related to individual lipids belonging to subclasses PC, PE,

SM and DG, which will be elaborated below.

Specific lipids are up- or down-regulated in individual breast cancer cell

lines

In two BC cell lines, SK-BR-3 and MCF7, TG were found to be especially abundant (Fig 5). In

SK-BR-3 cells, TG� C-46 with saturated or monounsaturated FA (MUFA) in side chains (TG

40:0, TG 40:1, TG 42:0, TG 42:1, TG 44:0, TG 44:1, TG 46:1 and TG 46:2) were found to be up-

regulated compared with all other cell lines (Fig 5A). MCF7 cells showed a significantly higher

abundance of TG 46:1 and 46:2, and C-48 to C-56 TG (Fig 5B). The abundance was

Fig 1. Base peak intensity UPLC-QTOF-MS chromatogram of a QC sample. Retention time windows (min) for investigated lipid subclasses. Positive

ionization mode. Time (min) is shown on x-axis and % of the highest peak on y-axis. Peak annotation: LPC–lysophosphatidylcholines, LPE–

lysophosphatidylethanolamines, PC–phosphatidylcholines, PE–phosphatidylethanolamines, SM–sphingomyelins, DG–diacylglycerols, TG–triacylglycerols.

https://doi.org/10.1371/journal.pone.0231289.g001
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remarkably high in TG with di- or tri-unsaturated FAs (TG 48:2, TG 50:2, TG 50:3, TG 52:2,

TG 52:3, TG 54:2 and TG 54:3) when compared with the other cell lines (Fig 5B). TG�C-50

were generally down-regulated in SK-BR-3 and in one or both of the MDA-MB-436 or

MDA-MB-231 TNBC cell lines (Fig 5B).

The heatmap (Fig 4) showed that the trends for the lipid subclasses PC, PE, SM and DG,

were not as clear as for the TG. However, even though many of the identified lipids were pres-

ent in multiple BC cell lines, a differences were found in up- or down-regulation of specific lip-

ids between the cell lines (Fig 6). PC with a low number of total carbons and saturated FA or

MUFA in side chains PC 28:0, PC 28:1, or PC 30:1 were up-regulated in MCF7, CAMA-1 and/

or SK-BR-3, but not in MDA-MB-231 or MDA-MB-436 (Fig 6A–6D). A shared tendency

between MCF7 and T-47D was a significant down-regulation in ether-PE (Fig 6A and 6B),

whereas in CAMA-1 PE P-34:1/O-34:2, PE P-34:2/O-34:3 and PE P-32:1 were significantly up-

regulated (Fig 6C). In SK-BR-3 PE P-32:1 and PE P-34:2/O-34:3 were also up-regulated, how-

ever, PE P-36:4 or O-36:5 and PE P-38:4 or O-38:5 were down-regulated (Fig 6D). The luminal

cell lines and SK-BR-3 cells shared features in significant up-regulation of specific PE (PE 32:2

Fig 2. PCA score scatter plot of ion features in breast cancer cell lines and reference cell line. Abundance of 439 ion features normalized to all compounds (CV%�

30%, m/z> 350Da). Pareto scaling and normalization applied to data prior to modelling. Score scatter plot of principal component (PC) 1 and PC 2 after PCA

modelling visualizes the differences and similarities in the ion feature profile between the individual cell lines. The white sphere in the model plot represents the

Hotelling T2 with 95% confidence. Three biological replicates were analyzed three times with each dot representing one analytical sample.

https://doi.org/10.1371/journal.pone.0231289.g002
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and PE 36:5 were up-regulated in MCF7, T-47D, SK-BR3 and PE 36:3 in CAMA-1). In

CAMA-1 and T-47D PE 38:0 was significantly up-regulated. SM 44:1 and SM 44:2 were highly

up-regulated in CAMA-1 cells, which was not the case for SM of shorter chain lengths, thus

SM 32:1 was significantly down-regulated (Fig 6C). SM 44:2 was also up-regulated in MCF7

(Fig 6A and 6B). Some shared features between MDA-MB-231 and MDA-MB-436 cell lines

were a significant up-regulation of PC 34:0 and PC O-34:0 for both cell lines and PE P-34:1/O-

34:2 down-regulation (Fig 6E and 6F). In these cell lines, there was a tendency for up-regula-

tion of PC�C-40 compared to the reference. Some of these PC were also upregulated in

MCF7 (PC 40:2) and T-47D (PC 42:1 and 44:1). SM 32:1 was significantly down-regulated in

MDA-MB-231, whereas SM 34:2 was significantly up-regulated in MDA-MB-436. In both

MDA-MB-231 and MDA-MB-436 cell lines, DG 32:0 and DG 34:0 were significantly up-regu-

lated (Fig 6E and 6F) which was similarly observed for CAMA-1 and T-47D cell lines (Fig 6B

and 6C). Six LPC were identified (LPC 14:0, LPC 16:0 LPC 16:1, LPC 18:0, LPC 18:1 and LPC

18:2) with the abundance being largely similar to the reference cell line (S4 Fig). MCF7 showed

the most significant differences in LPC, with up-regulation in all LPC except for LPC 18:0.

LPC 16:0 and LPC 18:0 was up-regulated in T-47D and MDA-MB-436, but for MDA-MB-231

only LPC 18:0 was upregulated. Among LPE only LPE 20:1 was identified in the dataset with

similar abundance across all cell lines.

Discussion

The PCA scatter plot clearly defined clustering of each BC cell line indicating that the ion fea-

tures detected are sufficient to distinguish between the cell lines analyzed. Clustering of the cell

lines in a hierarchical dendrogram based on lipids from the subclasses PC, PE, SM, DG and

TG, showed the relative similarities between the cell lines. The closest similarities were

observed between cell lines MDA-MB-231 and MDA-MB-436 which are both TNBC tumor

subtype. Furthermore, the luminal cell lines MCF7 and T-47D were similarly clustered in the

dendrogram. These similarities found in the dendrogram are reflected in the PCA by

Fig 3. Comparison of MCF7 cell line to reference cell line MCF10A (reference). a) OPLS-DA score scatter plot of MCF7 cell line compared to

reference cell line (MCF10A). Scores scatter plot highlights the between-class variance in the predictive component on the x-axis (R2Xo[1]) and the

within-class variation in the orthogonal component on the y-axis (to[1]). The black spheres represent MCF10A and green represents MCF7. b)

Corresponding S-plot comparing MCF7 to the reference cell line MCF10A. Each green sphere represents an ion feature. The confidence of the ion

feature as a discriminant of variance increases with increasing numerical values on the y-axis (-1 or 1) and the size of the contribution increases with

increasing numerical values on the x-axis. Ion features selected from S-plots for further identification and processing (cut-off values shown with red

dashed lines) are highlighted in red for ion features up-regulated in MCF7 and blue for down-regulated in MCF7. Abundance of 439 ion features

normalized to all compounds (CV%� 30%, m/z> 350Da).

https://doi.org/10.1371/journal.pone.0231289.g003
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clustering in the same quadrant (MDA-MB-231 and MDA-MB-436 in 4th quadrant and

MCF7 and T-47D in 3rd quadrant). CAMA-1 was, however, more related to the reference cell

line than the other luminal cell lines based on the dendrogram and in the PCA plot it was in

quadrant 1 close to the reference cell line, suggesting similarities in the lipidome of these cells.

Conflicting results exist in the literature regarding the PgR status of CAMA-1 which is

reported to be positive or negative in different studies. Furthermore, the TP53 status is differ-

ent for the three luminal cell lines with T-47D expressing mutated protein [6, 27] and TP53 is

known to regulate lipid metabolism in cancer [42]. This indicates within-group differences in

the lipidome of cells representing the luminal subtype and suggests that CAMA-1 should not

necessarily be classified as the same luminal subtype as MCF7 and T-47D. The cell line that

was most dissimilar from the other cell lines based on both PCA and dendrogram was SK-BR-

3 cell line. SK-BR-3 is a representative of HER2 overexpressing tumor subtype that is known

to have increased FASN activity resulting in increased lipid synthesis and changes in the lipi-

dome [43, 44]. The clustering verified that BC subtypes could be distinguished based on the

lipidome and suggests that there is within-subclass variation in the lipidome.

The potential of triacylglycerols to distinguish between BC cell lines

TG stored in the cell as lipid droplets represent a reservoir of FAs ready to undergo β-oxida-

tion. We detected significant changes in TG particularly in SK-BR-3 and MCF7 cells. The peri-

lipins (PLIN 1–5) are generally involved in regulation of TG storage. PLIN1 suppresses the

hydrolysis of TG from lipid droplets and is generally down-regulated in BC with the lowest

expression in TNBC [11, 17]. In contrast, HER2 tumors have a higher expression of PLIN1

[11], which could explain our finding of increased abundance of TG� C-46 in SK-BR-3. In

breast tumor tissue, where lipids were investigated using evaporating ionization MS, TG� C-

50 were significantly decreased [45]. The investigated tissues were mainly ER-positive and

HER2-negative [45], similar to luminal subtypes. These results are not in line with our find-

ings, indicating a significant increase in TG� C-48 in MCF7. In another study TG were

mainly unaltered or down-regulated in BC tissue when compared with normal, with no signifi-

cant difference based on ER or HER2 status. However, there was a tendency for up-regulation

of TG in the PgR-negative compared with PgR-positive tumor tissues [46]. Recently Paul et al.

showed that in malignant BC tissue the total amount of TG measured by NMR was decreased

compared with benign BC tissue [47], subtype not specified. Interestingly, in several studies

the plasma levels of TG were elevated in BC patients [48–50]; however, the BC subtypes were

not reported in these studies. Mammary glands are known to produce TG containing shorter

chain FA [51] and in peroxisomes, β-oxidation in peroxisomes can produce chain-shortened

acyl-CoAs that can be incorporated into lipids [52]. β-oxidation is mediated by acyl-CoA oxi-

dases (ACOX 1–2) and the protein level of ACOX-1 was shown to be increased in HER2-cell

line and tumor tissue compared with other BC subtypes [11, 17]. Therefore, increased β-oxida-

tion in HER2-overexpressing cells could explain the difference in TG between SK-BR-3 and

other cell lines. The trend of up-regulation of TG� C-50 and down-regulation of TG� C-50

in SK-BR-3 is also true for other lipid subclasses: PC and PE (� C-32) were up-regulated in

SK-BR-3 and PC� C-34 with longer chain lengths were significantly down-regulated. Fur-

thermore, ether-PC (C-30) and two ether-PE (C-32 and C-34) were up-regulated while three

ether-PE (C-36 and C-38) with multiple double bonds were down-regulated. Hilvo et al. and

Fig 4. Heatmap including dendrogram of the abundance of selected lipids. Log normalized abundance of selected ion features assigned a

possible lipid ID (abundance of lipids ranged from 0 (green) - 106 (red)). The dendrogram shows a hierarchical clustering of the cell lines.

Each cell line is represented by three biological replicates (1–3).

https://doi.org/10.1371/journal.pone.0231289.g004
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Fig 5. Normalized abundance of selected triacylglycerols (TG). a) C-40 to C-46 TG and b) C-48 to C-56 TG. Bars represent mean

abundance of three biological replicates, error bars represent standard deviation (SD). The normalized abundance is shown on the y-axis.

Statistically significant increase of TG normalized abundance compared to MCF10A is indicated by � (p< 0.05), �� (p<0.01), ���

(p<0.001), insignificant changes are unmarked. # indicates significant up-regulation after adjusting for multiple testing using two-way

ANOVA followed by Bonferroni correction (p<0.05).

https://doi.org/10.1371/journal.pone.0231289.g005
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Kang et al. reported a significantly increased levels of PC 30:0 in ER- and PgR-negative and

HER2 tumor subtypes compared with the corresponding ER- and PgR-positive and HER2-ne-

gative subtypes [21, 46] in line with the findings for SK-BR-3 in our study. Overall, our results

Fig 6. Normalized abundance of most significantly up- or down-regulated lipids in each cell line. a) MCF7, a) T-47D, c)

CAMA-1, d) SK-BR-3, e) MDA-MB-231, and f) MDA-MB-436 compared to the reference cell line MCF10A cell line. Bars

represent mean abundance of three biological replicates, error bars represent SD. Normalized abundance is shown on the y-axis.

Statistically significant up- or down-regulation in normalized abundance compared to MCF10A is indicated by � (p< 0.05), ��

(p<0.01), ��� (p<0.001).

https://doi.org/10.1371/journal.pone.0231289.g006
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suggest that mainly short-chain moderately unsaturated FAs are incorporated in GPL and TG

in SK-BR-3 cells.

Highly abundant lipids contain C-16 and C-18 fatty acyl chains

In our study, the most abundant PC and PE had a composition of C-32 to C-36 saturated or

moderately unsaturated (S2 Table), indicating that the side chains were C-16:0, C-16:1, C-

18:0, or C-18:0 FA which are predominantly synthesized via FASN [16, 20] and are the most

prevalent constituents of lipids in mammalian cell membranes [10, 53]. Other studies of

human BC cell lines (T-47D and MDA-MB-231 and non-cancerous MCF10A) similarly

reported the highest abundance of PC and PE of similar compositions in all cell lines and can-

cer tissue [21, 24, 25, 46]. In these studies there were variations in these abundant lipids

between BC and reference cell lines, however, different lipids were found to be upregulated

[24, 25, 54]. In our study, the abundance of these lipids varied up to 2.9 fold between individual

BC cell lines, whereas we generally found the highest fold differences in abundance compared

to reference for PC< C-32 or> C-36 (Fig 6). Therefore, these abundant lipids will not be con-

sidered further for distinguishing BC subtypes in this paper.

Increased phosphatidylcholine synthesis in triple negative breast cancer

cells

In our study particularly DG 32:0 and DG 34:0 were significantly more abundant in BC cell

lines than the reference cell line, especially, in the TNBC cell lines and CAMA-1. Increased

plasma levels of DG (C-32 to C-38) have also been reported in BC patients [49, 50]. DG are

precursors to GPL which are synthesized de novo, and to TG stored in droplets [15, 55]. Lipin-

1 (LPIN1) catalyzes the conversion of phosphatic acid to DG and is involved in the accumula-

tion of lipids in droplets [17, 55]. LPIN1 has been shown to be overexpressed in TNBC, be

lower in HER2 and lowest in luminal subtypes [17]. In combination with elevated DG levels

and decreased level of TG in TNBC this may indicate an increased production of GPL in the

TNBC cell lines. In the TNBC cell lines the PC that showed the most significant difference

from the reference cell line were PC� C-40. In plasma and tissue from BC patients the levels

of PC C-30 to C-38 were increased [46, 49, 56, 57]. However, above PC 40:0 the literature offers

conflicting information. In accordance with our study, PC 40:4 and PC 40:6 were significantly

increased in BC tumor tissue with a higher abundance in ER-negative than ER-positive tumor

subtype [46]. PC 40:6 was increased in plasma whereas PC 40:2 and PC 40:4 were decreased

(subtype of tumors not reported) [57]. Elongation of saturated FAs is mediated by ELOVL 1–7

[58]. ELOVL 1 and 6 mRNA levels were up-regulated in TNBC when compared with the lumi-

nal A subtype and up-regulated in both compared with normal tissue [59]. This suggests that

the increase in PC� C-40 in TNBC cell lines may be explained by an increased production of

long-chain FAs. Some PC (� C-30) with saturated FAs or MUFAs in acyl chains were up-reg-

ulated in MCF7, CAMA-1 and/or SK-BR-3, but not TNBC cell lines, which also correlates

with the expression data for ELOVL. Collectively, it seems that an increased level of PC� C-

40 may be related to the TNBC subtype.

Ether-glycerophospholipids are down-regulated in ER- and PgR-positive

cancer cells

Ether-GPL are abundant in biological membranes, they play a role as second messengers, in

differentiation and storage of long-chain PUFAs, they are abundant in lipid raft microdomains

and they are suggested to protect cells from reactive oxygen species [60]. The biosynthesis of
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these lipid species is, however, not fully understood [61]. To our knowledge, the enzymes

involved have not been investigated in relation to BC. The most abundantly produced ether-

GPL are esterified with PUFA (i.e. C-22:6 or C-20:4) at the sn-2 position of the glycerol back-

bone, whereas sn-1 position is saturated or moderately unsaturated with a length of C-16 or C-

18 [60]. These combinations result in C-36 to C-40 with 4 to 6 double bonds, which corre-

sponds to the most reported ether-PE in the literature, in combination with ether-PE contain-

ing a total of 34 carbons [24, 25]. In our study, the abundances of ether-PE were generally

lower in the luminal cell lines MCF7 and T-47D. A similar trend was reported in MCF7 and

T-47D by Katz-Brull et al. [23] and by Sterin et al. in MCF7 and two other luminal cell lines

[22]. The general trend reported by Cifkóva et al. was that P-PC and P-PE were similar or

down-regulated in BC cell lines when compared with the reference [25]. Interestingly, we

show here a higher abundance of three PE in SK-BR-3 and CAMA-1 when compared with the

reference cell line, which may indicate that the ether-PE down-regulation is related to the ER-

and PgR-positive status subtypes (contradicting reports of CAMA-1 PgR status [27]). Doria

et al. showed highest relative abundance of PC O-34:1 and PC O-36:1 in MDA-MB-231 when

compared with reference and T-47D [24]. In our study the same trend was seen for PC O-34:0

which was significantly up-regulated only in the TNBC cell lines. Tissue samples from benign

hyperplastic-dysplastic and malignant BC showed an increase in ether-PE and ether-PC when

compared with normal tissue [62]. BC subtype was not reported. In support of our findings,

Hilvo et al. reported significantly lower levels of ether-PE in ER-positive than ER-negative can-

cer subtypes [46]. Based on our results ether-PE may be down-regulated in ER- and PgR-posi-

tive compared to ER- and PgR-negative BC subtype.

Limitations of the study design

This study is based only on cell lines. This has the advantage of using well-defined material

that has also been used in other lipidomic studies, thus offering the opportunity for compari-

son. A major drawback is that each cell line can only reflect the individual tissue of origin and

caution is needed in generalizing findings. Furthermore, these cell lines have been in culture

for a long time and have adapted to in-vitro conditions. The cell lines represent different

defined subtypes of breast cancer, but only one cell line was derived from a HER2-positive can-

cer. The comprehensive comparison of Jiang et al. of 68 breast cancer cell lines and primary

breast cancer tissue revealed strong correlations particularly for mRNA expression but weaker

for genomic profiles and protein expression. In a combined correlation score the T47-D,

CAMA-1 and SK-BR-3 cell lines scored high, but MCF-7 and MDA-MB-231 and MDA-MB-

436 had a lower score [63]. The conventional 2D cultures are a further limitation. Cell shape

and microenvironment influence cellular lipid content and composition [64] and 2D cultures

do not bring out site-specific transcriptomic profiles of metastases [65]. The added serum is

the main source of lipids on the culture medium, and this was the same for all cell lines.

Conclusion

In this work, we describe the most significant differences in the lipidome between individual

BC cell lines and a reference cell line. Firstly, we established the overall similarities in the lipi-

dome of the cell lines based on PCA and hierarchical dendrogram. The most similar cell lines

belonged to the same subtypes; the TNBC cell lines (MDA-MB-231 and MDA-MB-436) and

the two luminal cell lines (T-47D and MCF7). The luminal cell line CAMA-1 did not share

strong similarity with the other luminal cell lines revealing within-subtype variations in the

lipidome. The cell line that differed most based on the lipidome from the other cell lines was

the HER2-overexpressing, SK-BR-3 cell line. Some general trends in the lipidome may be
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useful for distinguishing between BC tumor subtypes in clinical samples, particularly if applied

to plasma samples. Most interestingly, we suggest that ER- and PgR-positive tumor subtypes

can be identified by a significantly increased abundance of TG� C-48 with moderate or multi-

ple unsaturated FA chains, which in contrast are significantly down-regulated in ER- and PgR-

negative subtypes (HER2 and TNBC). Furthermore, ether-PE, especially those containing the

most abundant fatty acyls C-16, C-18 and C-22:6 or C-20:4 may be down-regulated in ER- and

PgR-positive subtypes and to a lesser degree in ER- and PgR-negative subtypes. Therefore,

these PE could be of particular interest for distinguishing between ER- and PgR-positive and

-negative subtypes. Furthermore, we suggest that the HER2-overexpressing tumor subtype is

characterized by elevated levels of TG, PC and PE containing saturated FA or MUFA� C-16

in the side-chains. Significantly increased abundance of PC� C-40 may be useful for identifi-

cation of the TNBC subtype. In addition, differences were detected in lipidomes within these

previously defined subtypes. We conclude that subtypes defined by the transcriptome are

indeed reflected in the lipidome which may be used to define further subdivision within the

BC subtypes.

Closing remarks

The cells analyzed in this study are grown under controlled conditions. They represent good

and reasonably stable models of clinical phenotypes and reflect to some extent molecular char-

acteristics of primary tumors [33, 63]. The biological variation and complexity of lipid metabo-

lism in clinical samples is expected to be greater. Therefore, the trends and specific up- or

down-regulations presented here cannot be directly extrapolated to clinical plasma or tissue

samples. Clinical investigations of the lipidome in healthy individuals show that the plasma

levels of lipids exhibit large inter- and intra-individual variation which follow a circadian

rhythm and fluctuate over time [66]. Even comparison with other studies investigating the

same or similar BC cell lines sometimes offered dissimilar results which could have various

reasons, including changes acquired with time and differences in culture conditions and sam-

ple preparation methods. Performing and interpreting lipidomic analysis, including sample

preparation, analytical setup, lipid identification and data interpretation is complex and chal-

lenging [67]. Furthermore, the availability of essential lipids as building blocks for e.g. GPLs is

likely to be quite different in vitro and in vivo. The potential of lipidomics as a diagnostic tool

needs to be investigated further, and the recently published study of Santoro et al. implies that

this is a promising approach [68]. The results presented here need, firstly, to be confirmed by a

targeted MS approach. Secondly, the similarity of the lipidome of the in vitro cultured BC cell

lines and actual BC tumor subtypes needs to be confirmed in clinical samples.

Supporting information

S1 Table. Normalized abundance of 106 identified lipids from the 439 ion features

included in the PCA.

(XLSX)

S2 Table. High abundant lipids expressed in all cell lines.

(DOCX)

S1 Fig. PCA score scatter plot of ion features in breast cancer cell lines, reference cell line

and QC samples. Abundance of 439 ion features normalized to all compounds (CV%� 30%,

m/z> 350Da). Pareto scaling and normalization applied to data prior to modelling. Score scat-

ter plot of principal component (PC) 1 and PC 2 after PCA modelling visualizes the differences

and similarities in the ion feature profile between the individual cell lines. The white sphere in
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the model plot represents the Hotelling T2 with 95% confidence. Three biological replicates

were analyzed three times with each dot representing one analytical sample and QC samples

consisted of 11 injections throughout the analytical batch.

(TIF)

S2 Fig. Comparison of T-47D, CAMA-1, and SK-BR-3 cell lines to reference cell line

MCF10A. a) OPLS-DA score scatter plot of T-47D cell line compared to reference cell line the

reference cell line MCF10A. b) Corresponding S-plot comparing T-47D to the reference cell

line MCF10A. c) OPLS-DA score scatter plot of CAMA-1 cell line compared to reference cell

line MCF10A. The black spheres represent MCF10A and green represents CAMA-1. d) Corre-

sponding S-plot comparing CAMA-1 to the reference cell line MCF10A. e) OPLS-DA score

scatter plot of SK-BR-3 cell line compared to reference cell line MCF10A. The black spheres

represent MCF10A and green represents SK-BR-3. f) Corresponding S-plot comparing

SK-BR-3 to the reference cell line MCF10A. Scores scatter plots highlight the between class

variance in the predictive component on the x-axis (R2Xo [1]) and the within class variation

in the orthogonal component on the y-axis (to[1]). In OPLS-DA each green sphere represents

an ion feature. The confidence of the ion feature as a discriminant of variance increases with

increasing numerical values on the y-axis (-1 or 1) and the size of the contribution increases

with increasing numerical values on the x-axis. Ion features selected from S-plots for further

identification and processing (cut-off values shown with red dashed lines) are highlighted in

red for ion features up-regulated in BC cell line and blue for down-regulated in BC cell line

compared to reference. Abundance of 439 ion features normalised to all compounds (CV%�

30%, m/z> 350Da).

(TIF)

S3 Fig. Comparison of MDA-MB-231 and MDA-MB-436 cell lines to reference cell line

MCF10A. a) OPLS-DA score scatter plot of MDA-MB-231 cell line compared to reference

cell line MCF10A. The black spheres represent MCF10A and green represents MDA-MB-231.

b) Corresponding S-plot comparing MDA-MB-231 to the reference cell line MCF10A. c)

OPLS-DA score scatter plot of MDA-MB-436 cell line compared to reference cell line

MCF10A. The black spheres represent MCF10A and green represents MDA-MB-436. d) Cor-

responding S-plot comparing MDA-MB-436 to the reference cell line MCF10A. Scores scatter

plots highlight the between class variance in the predictive component on the x-axis (R2Xo

[1]) and the within class variation in the orthogonal component on the y-axis (to[1]). In

OPLS-DA each green sphere represents an ion feature. The confidence of the ion feature as a

discriminant of variance increases with increasing numerical values on the y-axis (-1 or 1) and

the size of the contribution increases with increasing numerical values on the x-axis. Ion fea-

tures selected from S-plots for further identification and processing (cut-off values shown with

red dashed lines) are highlighted in red for ion features up-regulated in BC cell line and blue

for down-regulated in BC cell line compared to reference. Abundance of 439 ion features nor-

malised to all compounds (CV%� 30%, m/z > 350Da).

(TIF)

S4 Fig. Normalised abundance of identified LPCs. Bars represent mean abundance of three

biological replicates, error bars represent SD. Normalised abundance is shown on the y-axis.

Statistically significant up- or down-regulation in normalised abundance compared to

MCF10A is indicated by � (p< 0.05), �� (p<0.01), ��� (p<0.001), insignificant changes are

unmarked.

(TIF)
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