ARTICLE B v

https://doi.org/10.1038/541467-021-25845-4 OPEN

Quantum fluids of light in all-optical scatterer
lattices
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One of the recently established paradigms in condensed matter physics is examining a
system’s behaviour in artificial potentials, giving insight into phenomena of quantum fluids in
hard-to-reach settings. A prominent example is the matter-wave scatterer lattice, where high
energy matter waves undergo transmission and reflection through narrow width barriers
leading to stringent phase matching conditions with lattice band formation. In contrast to
evanescently coupled lattice sites, the realisation of a scatterer lattice for macroscopic
matter-wave fluids has remained elusive. Here, we implement a system of exciton-polariton
condensates in a non-Hermitian Lieb lattice of scatterer potentials. By fine tuning the lattice
parameters, we reveal a nonequilibrium phase transition between distinct regimes of polar-
iton condensation: a scatterer lattice of gain guided polaritons condensing on the lattice
potential maxima, and trapped polaritons condensing in the potential minima. Our results
pave the way towards unexplored physics of non-Hermitian fluids in non-stationary mixtures
of confined and freely expanding waves.
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rtificial lattices are highly attractive for obtaining insight

into properties of crystal structures in the solid-state, and

for creating patterned structures not found in nature.
They can be used to investigate spin frustration in triangular
geometries!, massless Dirac fermions in honeycomb structures?,
and strongly correlated states in dispersionless flat bands®. Con-
ventionally, the physical properties of lattices are investigated
through an appropriate choice of confined single-particle states
(Wannier functions), such as electrons bound to their atoms,
ultracold atoms in optical traps?, or index-guided electromagnetic
waves in photonic crystals®. The evanescent transfer of energy
between lattices sites is then captured within the tight-binding
approximation to explain crystal band formation, the centrepiece
of solid-state physics®.

However, in contrast to lattices of tightly confined states there
exists the inverse case of coherent matter-wave scattering in the
diffractive regime of lattices made up of repulsive potentials much
smaller in size than the lattice spacing. There, waves with wave-
length smaller than the lattice constant experience strong reflec-
tion and diffraction from the lattice (e.g., Bragg’s law). Since the
early work of Kronig and Penney’, an ordered arrangement of
spherically symmetric scatterers is known to give rise to bands
and bandgaps. The study of elastic scattering of incoming and
outgoing states on a static object is at the heart of mechanical,
electromagnetic-, Schrodinger-, and sound-wave scattering
theory®. However, the realisation of lattices of scatterers acting on
matter waves with coherence length exceeding the scatterer spa-
cing is much harder than the implementation of lattices of con-
fined (evanescently coupled) wavefunctions, and the connection
between the two regimes remains mostly unexplored.

Semiconductor microcavities in the strong coupling regime are
especially appealing for engineering artificial lattices as they host
matter-wave modes known as exciton-polaritons (from here on
polaritons)®. These modes possess large nonlinearities, picosecond
scale response times, and permit easy optical write-in and read-out
of information. Polaritons can undergo power-driven none-
quilibrium Bose—Einstein condensation, making them favourable
candidates to study low threshold room-temperature lasing!?,
optical many-body hydrodynamic phenomenal!®-12, topological
phases!'314, and implementation of optical information processing!”.
Moreover, strong interparticle interactions result in repulsion of
condensate polaritons from a background of uncondensed particles
(i.e., photoexcited exciton reservoir), co-localised with the pumped
areal®!”. This enables all-optical design of non-Hermitian (ie.,
optical gain and blueshift) potential landscapes for polaritons!8-20,
in analogy to dipole optical traps for cold atoms?! or photorefractive
crystals??. Indeed, with non-Hermitian potentials the wavefunction
norm is no longer conserved and, in conjunction with stabilising
condensate nonlinearities, synchronisation can spontaneously
appear amplifying the matter-wave similarly to phase-locked laser
arrays?324,

Here, we demonstrate a non-resonantly optically imprinted
repulsive (scatterer) lattice (see Fig. 1a, d) wherein scattered high
energy polariton waves, emitted from the pump areas, result in
robust interference patterns due to their ability to dynamically
adjust their phase in order to condense into the highest gain
Bloch state. Our scatterer lattice is chosen to have the edge-
centred square (Lieb) arrangement, a configuration not found
usually in nature, which offers comparison against the conven-
tional tight-binding Lieb lattice (see Fig. lc, f) which we also all-
optically engineer. We perform full momentum-energy space
tomography to unveil the engineered lattice band structures and
their reshaping by altering the lattice parameters. We observe a
gradual nonequilibrium phase transition from the scatterer lattice
of ballistically expanding polariton waves (Fig. la, d) to a tight-
binding lattice of trapped condensates (Fig. 1b, e) bridged by an

unstable regime of multimodal condensation due to gain com-
petition. Moreover, underscoring the flexibility of our optical
approach, we provide direct observation of dispersionless
P-flatband condensation achieved by using an excitation profile
forming an “inverse” Lieb lattice (Fig. 1c, f) in the same spirit as
the vacancy lattice created in electronic systems?>2® or optical
lattices of cold atoms?”-28. We point out that the majority of our
findings are not strongly dependent on the choice of Lieb lattice
arrangement and can be extended to other types such as square,
honeycomb, and triangle lattices.

Results

Scatterer Lieb lattice of polariton condensates. A strain com-
pensated 21 GaAs-based planar microcavity with embedded three
pairs of IngggGaggrAs quantum wells2? and an exciton-photon
detuning of —4meV is held at =4K in a closed-cycle helium
cryostat. The non-resonant excitation (single-mode laser tuned at
1.5578 V) is amplitude modulated at a frequency of 5 kHz (duty
cycle 1%) with an acousto-optical modulator to avoid sample
heating. A desired pump profile is shaped by a computer-
controlled reflective phase-only spatial light modulator?® and
projected onto the sample through a microscope objective (NA =
0.42). We collect the real space polariton photoluminescence
(PL), directly proportional to the condensate density, in trans-
mission geometry and spectrally filter it from the excitation laser.
We denote the horizontal and vertical momentum space coor-
dinates as k= (k,, k,), corresponding to the spatial frequencies
along horizontal (x-axis) and vertical (y-axis) real space coordi-
nates, respectively.

As mentioned above, the flexibility in tuning the lattice
properties through optical excitation structuring makes a system
of microcavity polaritons appealing to access various lattice
physics in a recyclable setting. The height of the potential
landscape is determined by the excitation intensity and, in this
study, constructed by an arrangement of Gaussian-shaped pump
spots. On one hand, in the scatterer lattice where the pump spots
have large separation distances in multiples of the polariton
wavelength, polaritons condense on the maxima of the pumped
potentials (see Fig. la, d) characterised by gain guided bright
centres and ballistically expanding envelopes!®20-%31. On the
other hand, for closely spaced pump spots, they can condense in
the minima of the potential landscape (see Fig. 1b, ¢, e, f)
becoming optically trapped3>~3* partly because of their strong
interactions that help them relax in energy. In the former case, the
system shares analogies with antiguided laser arrays24, whereas in
the latter case with two-dimensional (2D) electron transport2.

In Fig. 2a we show the real space PL of an optically pumped
scatterer lattice with 96 polariton condensates at threshold power
(P = Py,) arranged into a Lieb geometry (corresponding to Fig. 1a,
d). Each condensate is strongly gain guided with a bright centre
co-localised with its respective pump spot. The size of the
Gaussian pump spots sustaining the condensates is =2 um full
width at half maximum and the lattice constant is set to
D =20.3 um. As schematically shown in the inset of Fig. 2a, the
Lieb lattice is composed of three square sublattices denoted with
the letters A, B, and C. Being close to threshold, the spatial
coherence of each condensate does not extend outside its
respective pump spot>> making them isolated (uncoupled) objects.
Figure 2b, e shows the real and momentum space polariton PL
above threshold (P=12Py,), while Fig. 2c, d shows energy
—momentum space PL along k, =0 and k, = 27/D, respectively.
By driving the system above threshold, we increase both the
coherence and particle outflow from each condensate resulting in
stronger coupling between the radiating condensates and the
appearance of interference fringes (signature of synchronisation)
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Fig. 1 Schematic of the optical excitation pattern and resulting polariton condensates. a, b Excitation intensity profile composed of Gaussian pump spots
arranged in a Lieb pattern for two different lattice constants D and ¢ an inverse Lieb pattern with the potential minima (dark areas) forming a conventional
Lieb lattice. d—f Corresponding black-white surface plots of the pump induced potential landscapes with the polariton condensate density overlaid as red
envelope. In d polariton condensation occurs on the potential maxima (gain guided condensates) resulting in highly energetic (ballistic) condensate waves
whereas in e, f condensation takes place in the potential minima between pump spots.
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Fig. 2 Scatterer Lieb lattice of polariton condensates. a Measured PL from a scatterer lattice of polariton condensates with a lattice constant set to
D =20.3 pm excited at P=Py,, and b at P =1.2Py,. Inset in b shows the calculated Bloch state density for comparison. The inset in a shows sublattices
denoted with letters A, B, C forming the lattice. ¢, d Energy-resolved momentum space polariton PL at P =1.2Py, for k, =0 and k, = 2z/D values
respectively, marked on e with vertical lines and yellow letters “c” and “d". e Energy integrated momentum space polariton PL at P =1.2P,,, and

f—h energy-resolved “slices” of momentum space at energies 1.6, 1.3, and 1 meV with respect to the bottom of the lower polariton branch (dispersion). i
Calculated lattice bands with the red circle corresponding to the Bloch state in the inset in (b). j—I Numerically calculated "slices" of polariton momentum
space PL from Monte-Carlo simulations on the 2D dissipative Schrédinger equation.
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as well as distinct Bragg diffraction peaks in momentum space.
Specifically, we observe the condensates populating an excited
Bloch state characterised by a constructive interference peak in the
centre of each lattice cell, also visible from the calculated Bloch
state shown in the inset in Fig. 2b. By scanning the Fourier space
PL (collected in reflection geometry) image across a slit of a
spectrometer with a motorised mount, we reconstruct energy-
resolved “slices” (i.e., isoenergy planes) of momentum space PL at
three specific energies, shown in Fig. 2f-h. The applied energy
tomography reveals the full picture of complex band formation
(see Supplementary Movie 1). We also calculate the band structure
using two different modelling methods: Bloch’s theorem, and
Monte-Carlo sampling of the 2D dissipative polariton Schrodinger
equation (see Supplementary Notes 2 and 3). The Bloch analysis,
as shown in Fig. 2i, reveals a zoo of overlapping bands of distinct
shapes, yet the polaritons, being so interactive, are still easily able
to relax into a definitive Bloch state corresponding to the optimum
gain (marked with a red circle and plotted in Fig. 2b inset), in a
similar spirit to coupled laser systems. The numerical Monte-
Carlo sampling of the dominant Fourier components of the
scatterer lattice shown in Fig. 2j-1 gives good agreement with the
experiment. We note that the illuminated, clearly formed, bands in
Fig. 2¢, d show that polaritons in the repulsive scatterer Lieb lattice
indeed experience crystal scattering within their coherence time.
We also observed band-structure formation for the square
scatterer lattice of 5x5 polariton condensates with a similar
lattice constant (see Supplementary Note 1).

Lattice constant dependence. Next, we decrease the lattice con-
stant from D=20pum to D=103pm and characterise the
change in the polariton system behaviour. Corresponding images
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with experimentally measured real space polariton PL above
condensation threshold are depicted in Fig. 3a-e. As shown in
Fig. 3a, for D =20 um, most of the PL intensity comes from the
pumped areas with clear interference fringes in time-averaged
measurements as a consequence of the scattered polariton waves
leading to robust synchronisation between the condensates30-31.
Multiple weakly populated energy branches collapse into one
dominant mode as the pump power exceeds the threshold value,
as clearly seen in Fig. 3f. Decreasing the lattice constant to
D =16.9 um results in substantial growth of PL intensity inside
each lattice cell (i.e., where a Gaussian pump spot is absent) with
simultaneous decreased PL at the pumps positions (see Fig. 3b).
Driving the system above threshold leads to dual-mode con-
densation as confirmed by the measured spectrum power scan
shown in Fig. 3g. Decreasing the lattice constant to D =15.2 um
again dramatically modifies the polariton PL pattern. As shown in
Fig. 3c, polaritons are repelled even stronger outside the pumped
areas leading to complex PL distribution in real space. The
condensate is here fractured into multiple energy modes above
threshold (see Fig. 3h), with a similar gain. Finally, decreasing to
even smaller lattice constants of D=12.3 pm and D =10.3 um
results in the formation of trapped condensates?> as shown in
Fig. 3d, e, characterised by a dominant single energy mode above
threshold (see Fig. 3i, j). This regime is schematically depicted in
Fig. 1b, e.

The most intriguing physics lies in the intermediate regime
where multimodal condensation takes place between the regimes of
gain-guided ballistically coupled condensates (Fig. 3a) and trapped
condensates (Fig. 3d, e). In order to distinguish these regimes and
identify the transition between them we introduce a contrast
parameter S = (Ispots — Lirapped)/ (Ispots + Lirappea) ~ describing  the
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Fig. 3 Optical lattices of polariton condensates pumped with Lieb geometry for different lattice constants (D = 20.0, 16.9, 15.2, 12.3, 10.3 pm).
a—e Shows corresponding real space polariton PL above condensation threshold and f—j corresponding spectra as functions of pump power (energy is
scaled with respect to the bottom of lower polariton branch). Semi-transparent insets in a—c, e marked with white dashed squares show results of time-
averaged numerical simulations of the condensate dynamics using the generalised Gross—Pitaevskii equation. Inset in d is calculated using Bloch's
theorem. White circles and squares overlaid with real space PL below threshold for D = 20 pm in (k) denote spatial integration areas on top of and outside
the pump spots used to extract the contrast between gain guided (I5,0t5) and trapped (Jiappeqd) POlariton PL. This contrast is plotted as normalised heatmaps
S = Uspots — ltrapped)/ Uspots + ltrapped) in (I, M) as a function of lattice constant and pump power from experiment and simulations, respectively, revealing a
gradual transition between the two regimes. Scale bar in (a) applies also to (b—e, k). Yellow circles in | denote the lattice constants realised experimentally.
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normalised difference between the average polariton PL at the
pumping spots I, (white circles in Fig. 3k) and outside the spots
Iirappea (White squares in Fig. 3k). Here, “average” refers to area-
integrated PL divided by the integration area. The side length of the
white squares is chosen as L =0.54D (the precise value does not
affect the findings) whereas the diameter d = 3.6 um of the white
circles is fixed for all lattice constants.

In the case of well-separated pump spots (i.e., D> 17 um) we
observe values S>0 in Fig. 3l across all pump powers
corresponding to high-energy gain guided polaritons that
scatter across the lattice when emitted from their pump spots.
In the opposite case of small separation distances between the
pumps (i.e., D<12.5um) we observe S<0 corresponding to
polaritons becoming trapped in the lattice potential minima
with dominant PL intensity coming from the white squares in
Fig. 3k. Here, high energy scattering of polaritons across
multiple lattice cells is reduced, replaced with the evanescent
transfer of energy (i.e., tunnelling). Therefore, at some lattice
constant (where S=~0) the polariton system undergoes a none-
quilibrium phase transition between these different condensation
regimes. During this transition, competing lattice modes fight over
the gain which leads to a “frustrated” condensation pattern, like
shown in Fig. 3b, c. This transition is unique to polariton systems
since it is the excitonic part of polaritons which allows them to
interact with each other and the uncondensed exciton reservoir,
which facilitates energy relaxation!®. In contrast, purely photonic
systems would generally lase in their pumped gain region. The
gradual onset of trapped polaritons as the lattice constant reduces
and pump power increases (i.e., the background uncondensed
reservoir increases) can therefore be attributed to modes between
the pump spots moving into resonance with the lattice gain-
bandwidth due to enhanced energy relaxation of polaritons3®. We
point out that our all-optical experiment and extraction of S for
different lattice constants and pump powers is not possible to
replicate with lithographically written photonic periodic structures
where the pumped gain region would correspond to the lattice
potential minimal!3. In our experiment, the pump gain follows the
lattice potential maxima. We qualitatively reproduce our findings
through numerical mean-field simulations using the generalised
Gross—Pitaevskii equation’” including an energy relaxation
mechanism3® (see Supplementary Note 4 for details), shown in
the insets of Fig. 3a—c, e, m. The state in the inset in Fig. 3d was
calculated using Bloch’s theorem and did not appear in a stable
form in Gross—Pitaevskii simulations for our chosen (fixed) set of
simulation parameters. Some discrepancy can be observed between
simulation and experiment in Fig. 31, m at low powers and small
lattice constants where the simulation overestimates the gain guided
polaritons. This discrepancy could be reduced by applying a
stochastic treatment (e.g, Wiener noise) to the condensate
equations of motion which would smear out the simulated
condensate PL at low powers close to threshold, or by including
exciton diffusion in the model.

Flatband polariton condensation. To further demonstrate the
versatility of our all-optical approach we move away from
the scatterer Lieb lattice and design now the conventional Lieb
lattice (see Fig. 1c, f) which has been studied vigorously in various
systems of electrons?>2%, photons33-40, cold atoms?”+*!, plasmon
polaritons*?, and exciton-polaritons*>-47. It hosts an excess of
phenomena including topological phases, dispersionless flat
bands, and Dirac points making it a popular testbed in solid-state
physics. In Fig. 4 we realise the conventional Lieb lattice by
arranging the Gaussian excitation spots in an inverse Lieb lattice
(Fig. 4a, e). Just as in Fig. 3d, e, here the polariton condensates are
designed to be trapped in the lattice potential minima, interacting

via tunnelling. Figure 4b, ¢ shows the real- and momentum space
polariton PL above threshold, respectively, in a D =13 um lattice
revealing condensation into the S-band ground state in the T
point at k = 0. By adjusting the lattice parameters, the condensate
can be forced to populate a different Bloch state. Figure 4e-g
shows the same measurements but for D = 16 um where we now
observe condensation into P-orbitals at sublattices A and C,
whereas at sublattice B destructive interference occurs. This state
belongs to a dispersionless P-flatband#3#4 and constitutes the first
evidence of polariton condensation into optically (non-Hermi-
tian) generated flatband states. Figure 4d, h shows corresponding
calculated lattice states using Bloch’s theorem. The state plotted in
Fig. 4h corresponds to the band denoted by the red circle in
Fig. 4i where we show the calculated P-bands along the reduced
Brillouin zone edge. We additionally calculate the dispersion of
the lattice from Monte-Carlo sampling of the dissipative Schro-
dinger equation and plot the results in Fig. 4j along k, = 27/D.
The results reveal bright bands where polaritons decay slowest
with the P-flatband clearly visible (marked with yellow k) and the
lowest energy P-band (marked with yellow k’) which only appears
flat along the I'-X direction.

Experimentally implemented energy tomography measure-
ments allow us to extract PL belonging to isoenergy planes in
reciprocal space which further verifies that the condensate is
populating the P-flatband. Figure 4k, 1 shows the calculated and
measured PL from the P-flatband isoenergy plane, respectively,
which is marked with the yellow-coloured letter k in Fig. 4;.
Indeed, the similarity between Fig. 41 and the energy-integrated
PL in Fig. 4g confirms that condensate is dominantly populating a
single energy state with a similar intensity pattern obtained from
calculation (see Supplementary Note 1 for more details). It should
be noted that the calculated PL (Fig. 4k) shows some finer details
in momentum space which would average out in time-integrated
measurements due to non-ideal effects such as noise, cavity
disorder, and pump fluctuations. However, the qualitative
structure is the same as in experiment with most of the PL
belonging to the M symmetry points. The fact that the PL is
strongest at the M points can be understood from the slight
curvature in the P-flatband around these points (see Fig. 4i)
which facilitates the relaxation of polaritons into the band
minima.

We now address the question on why condensation occurs into
the P-flatband as shown in Fig. 4f, g. As mentioned in the
previous paragraph, the P-flatband in our optical lattice is not
perfectly flat and is characterised by a small dispersion
(curvature) around the M point which is only =5 peV different
in energy from both the T or the X points (see Fig. 4i). This small
band curvature can trigger condensation into the band minima
and is attributed to the finite potential depth of the lattice sites
(taken here to be 2 meV in calculation) which leads to deviation
from the perfectly dispersionless bands predicted by the tight-
binding theorem?’. The band curvature can be reduced by
increasing the potential depth of the inverse Lieb lattice (see
Supplementary Note 5) which can be achieved by adjusting the
system properties (e.g., exciton-photon detuning or the exciton
dipole moment by appropriate choice of the semiconductor
material) such that stronger pumping (bigger blueshifting
reservoir) is required to achieve condensation. Another feature
of our inverse optical Lieb lattice is that it creates slightly elliptical
confinement at sublattices A and C which splits the energies and
linewidths of the P, orbitals. In other words, the overlap of P,
orbitals into the pump (gain) region is different. For sublattice A (C)
the P.(P,) orbital overlaps more with the pump which creates a
higher gain for the P-flatband state. This interpretation is supported
through a non-Hermitian tight-binding theory (see Supplementary
Note 6).
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Fig. 4 Optical inverse Lieb lattice of Gaussians with flatband condensation. a, e Spatial pumping profile of Gaussian spots arranged in the inverse Lieb
geometry with lattice constants D =13 and 16 pm, respectively. In a the cube-centred spots are 40% weaker in intensity compared to the rest of the pump
spots. In e all spots are equally intense. b, f Real and ¢, g momentum space polariton PL above condensation threshold corresponding to populated S-band
ground state and P-flatband state, respectively. White circles in b, f denote the pumps positions. d, h Corresponding calculated real space wavefunction
densities intensities from Bloch's theorem. Coloured circles in a, h denote the Lieb lattice unit cells. i Calculated P-bands from Bloch's theorem where the
red circle marks the flatbands. j Calculated dispersion cross-section at k, = 2z/D from Monte-Carlo Schrédinger numerics. Both i and j use the pump

profile shown in (e). k, I Calculated and measured PL from the isoenergy plane in momentum space corresponding to the P-flatband marked with the yellow
letter k in (§). The band marked with the yellow letter k' is the lowest energy P-band which only appears flat between the I'-X points in the Brillouin zone.

Discussion

The demonstrated optically arranged system of exciton-polaritons
presents a flexible platform to study fundamental proposals on
non-Hermitian phenomena in artificial lattices including non-
linear reshaping of the crystal bands when above condensation
threshold. In Fig. 2 we have demonstrated the condensation of
polaritons into excited Bloch states belonging to a lattice of
scatterers (narrow waist repulsive potentials) shaped into a Lieb
pattern. The observed crystal bands and agreement with theore-
tical models opens up a path to explore more intriguing effects of
scattered matter-waves such as slow polaritons®, guided
polaritons*®, and solitonic modes®’. In Fig. 3 we have revealed a
gradual nonequilibrium phase transition from the scatterer Lieb
lattice, characterised by strongly gain guided and energetic
polariton condensates, to a square lattice of optically trapped
condensates as a function of two easily tunable parameters in the
experiment, the lattice constant and pump power. The transition
regime is accompanied by multimode polariton lasing, which is a
unique feature of polariton systems due to their strong interac-
tions, that lead to unexpected condensation patterns in real space.
Such multimodal behaviour of the condensate implies close gain

competition between gain-guided and trapped polaritons. Our
observations, therefore, highlight the intriguing duality of polar-
itons as “lasers” (gain guiding) and “Bose—Einstein condensates”
(thermalisation) with interesting perspectives as strongly non-
linear objects in non-Hermitian optical lattices. As an example,
the optical malleability of our matter-wave platform allows one to
study in detail the gradual departure from a system of quantised
energies to that of smoothly connected quasimomentum states by
building the lattice up cell-by-cell.

Another possible perspective is to optically engineer the lattice
to probe exotic band properties for polariton condensation. In
Fig. 4 we have demonstrated a conventional (i.e., tightly bound
waves) Lieb lattice, by packing pump spots into its inverse shape,
with subsequent condensation into flat band states. Given the
nonlinear nature of exciton-polaritons, condensation into adjus-
table flat band states could open a window to investigate strongly
correlated states of matter and the effects of disorder against
interactions®!. The implemented energy tomography methods
provide complete access to the polariton states in Fourier space
and can be used to study the reshaping of the spectrum under
arbitrary lattice deformation and nonlinear effects. We point out
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that the current study is performed in the scalar polariton regime,
but can be easily extended to include its spin degree of freedom
by changing the pump polarisation. Furthermore, bands induced
by our optically engineered landscape can be populated using
resonant excitation permitting the study of the evolution of
polariton matter waves in non-Hermitian optical lattices with any
chosen crystal momentum and frequency. We believe that our
work carries significant weight in the future design and investi-
gation of polaritonic non-Hermitian (gain and loss) lattice physics
in e.g., topological lasers®?>3, phase transitions in many body
systems>#>>, non-reciprocal transport®%, and access to a multitude
of gain-induced anomalies reported for diffractive metasurfaces®’.

Data availability
Data supporting this study are openly available from the University of Southampton
repository at https://doi.org/10.5258/SOTON/D1947.
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