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Abstract

Motivated by the two-dimensional massive gravity description of TT defor-
mations, we propose a direct generalization in d dimensions. Our methodology
indicates that all terms up to order d are present in the deformation. In two
dimensions, TT is enhanced by a linear and a constant term, and exhibits an
interesting behaviour regarding the deformed spectrum and correlators. At cer-
tain limits, this deformation can reduce to TT or TT + Λ2 consistently. Using
the massive gravity method, we obtain the classically deformed action of a sigma
model of bosons and fermions interacting with an arbitrary potential, extend-
ing previous results. As a consequence, a proposal regarding the deformation
of higher-derivative theories is made. Moreover, a standard dimensional reduc-
tion procedure is presented, with the resulting operator matching the form of
prior findings under certain assumptions. In d ≥ 2, we provide the exact struc-
ture of the quadratic terms in agreement with previous approaches, as well as
the structure of the linear and constant terms. All higher order contributions
are not easily evaluated, yet we derive the complete answer for all cases up to
seven dimensions. Under certain conditions, these terms vanish, resulting in a
quadratic operator. The trace-flow equation for this family of deformations is
also derived. Finally, we investigate the class of root-TT operators in various
dimensions within the scope of this formalism.
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1 Introduction

The systematic study of irrelevant deformations in two dimensions was sparked by Zamolod-
chikov’s seminal discovery [1], and was established as an independent field of research over
a decade later due to crucial advancements [2, 3]. One of the main goals of this field is
to provide a better understanding of the space that quantum field theories live in. This is
closely connected to the flow equation

∂S

∂λ
= O , (1.1)

where S represents the action, O the deforming operator and λ the parameter of the defor-
mation. Usually, the deforming operator is taken to be the determinant of the stress-tensor
or TT , due to its special quantum mechanical properties [1].

Let us briefly motivate the equation above. The first thing we notice, is that (1.1) is
equivalent to the standard way deformations are introduced under certain conditions. In
more detail, if the deforming operator does not depend on λ it can be solved exactly yielding
S0 + λO where S0 represents some seed quantum field theory. Clearly, when the deforming
operator is a function of λ the solution is no longer trivial. The TT operator falls into this
category as it is constructed by the stress-tensor, which in turn is a function of the action S
which implicitly depends on λ. Since this flow equation holds in both cases, we understand
that it is more fundamental, in a sense that it is the governing equation for deformations.
Considering all of the above, it is interesting to note that the set of non-trivial solutions to
this equation is generated by operators that depend on the action in some way, with one
possible choice being the corresponding conserved currents of S.

Since the discovery of the flow equation, various branches have sprouted in different
research directions. Notably, TT can be understood as a random coordinate transforma-
tion [4]. Moreover, quite a few non-relativistic approaches exist [5–8]. Besides TT , the
deformations constructed by currents other than the stress-tensor have also been studied,
with the most common one being a U(1) symmetry current [9, 10], as well as deformations
involving square roots [11]. From a holographic point of view, a TT -deformed conformal
field theory on the boundary was found to be dual to AdS3 at finite radial cut-off [12, 13]
with various generalizations developed in [14–17]. Interestingly, the radial cut-off was found
to be proportional to the inverse square of the deformation parameter. Another intriguing
reformulation of TT was discovered in [18, 19], where the deformed theory was found to
be equivalent to flat space Jackiw-Teitelboim gravity coupled to the undeformed one. A
curved background generalization exists [20, 21], where the undeformed action couples to
massive gravity instead. Furthermore, TT deformations of correlators have been investi-
gated [16, 22, 23]. In higher dimensions, the structure of these stress-tensor deformations
is an open problem, yet there are certain proposals of quadratic order [24–26]. Finally, a
deformation in one dimension can be derived via dimensional reduction of TT [27].

In this work, we will mostly focus on the massive gravity1 approach [20, 21], extending
its formalism in d dimensions. We were motivated to adopt this method for the study of

1For further details on massive gravity we refer the interested reader to [28, 29].
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deformations, due to the fact that the seed theory does not need to be specified. We begin
by developing the general methodology in d dimensions. By introducing a background and
an auxiliary vielbein, we assume that the solution of (1.1) can be written as SG+S0, where
SG depends on both vielbeins and λ whereas S0 only on the auxiliary vielbein and other
fields. Once a deformation (which is a function of the stress-tensor) is specified, the flow
equation determines the exact expression for SG. When SG+S0 is evaluated on-shell for the
auxiliary vielbein, the resulting expression is the deformed action. In d = 2, we generalize
the massive gravity method [20, 21] by considering an operator quadratic in the stress-
tensor, that reduces correctly to TT as well as TT + Λ2 in certain limits. The spectrum
of this operator can be obtained, and an identification with a string theory spectrum is
evident. Moreover, the structure of the linear term allows for the calculation of certain
deformed correlators. A dimensional reduction of the deformation yields a one-dimensional
operator, which agrees with previous proposals [27] under certain assumptions. As another
application of this methodology, we provide an expression for the classically deformed sigma
model of bosons and fermions interacting with an arbitrary potential, extending previous
results. We find that the resulting expression allows for the deformation of certain higher-
derivative theories. Finally, root-TT is discussed from the massive gravity perspective. In
a complete analogy to the two-dimensional case, we extend this approach in d dimensions.
Specifying the deforming operator to be an order d polynomial in the stress-tensor, yields
a quadratic structure that precisely matches previous treatments [24, 25]. All higher order
terms were too cumbersome to determine for general d, yet we do provide the complete
expression of the deforming operator for all cases up to seven dimensions in appendix E.
Lastly, we investigate the properties of root-TT through the lens of massive gravity.

This paper is structured in the following way. In section 2, we develop the massive
gravity formalism in d dimensions. During section 3, we apply our methodology in d = 2

recovering and partially extending many known results. The deforming operators in three,
four and d dimensions are derived in section 4, followed by a small discussion on root-TT .
Finally, in section 5 we provide a detailed summary of our work, along with some argu-
ments on the potential constraints imposed on the stress-tensor, that result in an operator
of quadratic order in d dimensions. We conclude with some discussions and a possible gen-
eralization of our method.

Note added: During the preparation of this manuscript, [30] appeared on the arXiv, where
partial overlap is noted with section 2, as well as subsections 3.7, 4.1 and 4.2 of our paper.

2 Methodology in d dimensions

Let us now develop the algorithm that will be extensively used in the upcoming sections.
This approach shares some common ground with the ansatz method, which is developed in
appendix C for comparison reasons. Following the title of this section, we will temporarily
work in d dimensions. As in [20, 21] we will use two dimensionless vielbeins, the auxiliary
e a
µ and its corresponding metric gµν = e a

µ e b
ν η

ab, as well as the background vielbein f a
µ

together with γµν = f a
µ f b

ν ηab. It will also be convenient to define the quantities Yi and yi
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as

(Yi)
µ
ν := fµa1 e

a1
λ1

fλ1
a2 e

a2
λ2
· · · fλi−1

ai e
ai

ν , yi := (Yi)
µ
µ = tr(Yi) , (2.1)

that obey equations (C.8). Now consider an operator O that satisfies the standard flow
equation (1.1), and further assume that it is a function of the deformation parameter λ
and potentially other couplings gi, that it functionally depends on the stress-tensor and of
course the background f a

µ . In other words

O =

ˆ

ddx f F (λ, gi, T
µ
a ) , T µ

a :=
1

f

δS

δf a
µ

, (2.2)

where f := det f a
µ and F is a function that one specifies according to the desired deforma-

tion. Then, via defining Wi and wi in a similar manner

(Wi)
µ
ν := T µ

a1 f
a1

λ1
T λ1

a2 f
a2

λ2
· · ·T λi−1

ai f
ai

ν , wi := (Wi)
µ
µ = tr(Wi) , (2.3)

and using the Cayley-Hamilton theorem (B.7), F is restricted to F (λ, gi, w1, . . . , wd). Con-
sider now the following expression

S[e a
µ , f a

µ , λ, gi,Φ] =

ˆ

ddx f G(λ, gi, y1, . . . , yd) + S0[e
a

µ , gi,Φ] , (2.4)

which is the solution to the flow equation when evaluated on-shell for e a
µ , at least classically.

We will usually refer to the first term of the action above as the massive gravity action or
SG. The function G is any solution of the flow equation which takes the form of a first order
non-linear (d+1)-dimensional partial differential equation and S0 is the seed action,2 which
is usually (but not always) the part that survives the λ → 0 limit. Also notice that G is
restricted in the same way as F for the same reasons. Finally, it is evident that the nature
of the seed action comes into play only when the equations of motion for the auxiliary
vielbein are considered.

In order to better understand the origin of this solution consider a fixed F . Now, one
can follow with the variation of (2.4) with respect to f a

µ from which it is obvious that
only the function G will survive. It is important to take these variations before evaluating
everything on-shell for the auxiliary vielbein. A simple chain rule and we reach

W1 = G1d −
d∑

j=1

j
∂G

∂yj
Yj , (2.5)

where 1d is the d-dimensional identity matrix, and

wi = dGi +

i∑

k=1

(−1)kGi−k

(
i

k

) d∑

j1,...,jk=1




k∏

n=1

jn
∂G

∂yjn


yj1+···+jk , (2.6)

2This action is arbitrary, it may contain curvature terms. The variable Φ represents matter.
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where yj1+···+jk can be written as a function of (y1, . . . , yd), again from (B.7). Now assuming
that the on-shell condition for the auxiliary vielbein holds, the flow equation (1.1) simply
reads

∂λG(λ, gi, y1, . . . , yd) = F (λ, gi, w1, . . . , wd) , (2.7)

i.e. the first order non-linear (d + 1)-dimensional partial differential equation for G. It is
important to stress that a priori, one does not need to find the complete solution to (2.7),
any function that satisfies it is a potential candidate. The major restriction to the set of
possible solutions comes from the λ→ 0 limit as well as dimensional analysis. The current
understanding of the limit is simple, one recovers the seed action S0 on the f a

µ background.
In mathematical terms this translates to the following initial condition

e a
µ = f a

µ , G(0, gi, d, . . . , d) = 0 , (2.8)

where the first equation should drop out naturally from the equations of motion for the
auxiliary vielbein in that limit. During the next section we will see that one may relax the
initial condition above in a specific way. Moreover, since the vielbeins are assumed to be
dimensionless and G has mass units Md, the explicit dependence on λ and gi is fixed by
dimensional analysis.

Furthermore, the equations of motion of the auxiliary vielbein for (2.4) can be evaluated
yielding

S̄µaē
a

ν = − 1

det Ȳ1

d∑

j=1

j
∂Ḡ

∂ȳj

(
Ȳj
)µ

ν
, Sµa :=

1

e

δS0
δe a

µ

, (2.9)

where ē a
µ is the solution, e := det e a

µ , and the bar denotes all on-shell affected quantities.
Once more, we define Zi as

(Zi)
µ
ν := Sµa1e

a1
λ1
Sλ1

a2e
a2

λ2
· · ·Sλi−1

aie
ai

ν , zi := (Zi)
µ
µ = tr(Zi) , (2.10)

and together with (2.5) we reach

fW̄1 = fḠ1d + ēZ̄1 . (2.11)

The equation above essentially relates the deformed stress-tensor density with the unde-
formed one when the Einstein-Hilbert term is absent. As expected, when λ → 0 and (2.8)
holds the stress-tensors match trivially.

To summarise, taking into consideration all of the above, we naturally reach the follow-
ing, relatively simple algorithm: First, one begins by fixing F . Then the evaluation of wi

follows, using (2.4) and (2.6). This results in a first order non-linear (d + 1)-dimensional
partial differential equation for G i.e. (2.7), which in principle can be solved using e.g.
the method of characteristics or an ansatz. In order to obtain the full solution, the initial
condition (2.8) is used followed by the elimination of e a

µ via (2.9). This step is classical,
one may choose to perform the path integral over the auxiliary vielbein. Finally, one can
apply this method iteratively. In more detail, for each iteration the background vielbein
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becomes the new auxiliary vielbein and the action becomes the new seed action. A more
schematic explanation is presented in figure 1 bellow.

S
(0)
0 [e0

a
µ , gi,Φ]

O1,λ1

−−−−→
e1 a

µ

· · ·
On−1,λn−1

−−−−−−−→
en−1

a
µ

S
(n−1)
0 [e0

a
µ , . . . , en−1

a
µ , λ1, . . . , λn−1, gi,Φ]

On,λn

−−−−→
f a
µ

On,λn

−−−−→
f a
µ

S[e0
a

µ , . . . , en−1
a

µ , f a
µ , λ1, . . . , λn, gi,Φ]

Figure 1. Iteration of n, not necessarily identical deformations using the massive gravity method.

At each step one is free to integrate out all or part of the auxiliary vielbeins at will.

We will mostly work out the first four steps in various dimensions, leaving the rest for future
endeavours.

3 Two dimensions

Shifting our attention to two dimensions, we will begin by deriving the deforming operator
and check that at certain limits, one gets the correct massive gravity action for the well-
studied TT operator [20, 21], as well as the TT + Λ2 operator [31]. Then, we will briefly
study its spectrum and observe that it can be identified with a more general string theory
spectrum. A small discussion about the deformed correlators of undeformed operators will
follow, as well as a dimensional reduction to d = 1. We will then derive the classically
deformed theories for a sigma model of bosons and fermions interacting with an arbitrary
potential in one and two dimensions and propose a way to extend the deformation to higher
derivative theories. Finally, we will close this section with a study of root-TT [11] via the
massive gravity method.

3.1 Quadratic deformations

We start from the generic solution (2.4), which now reads

S[e a
µ , f a

µ , λ, gi,Φ] =

ˆ

d2x f G(λ, gi, y1, y2) + S0[e
a

µ , gi,Φ] . (3.1)

Following the first step of the algorithm, we specify the deformation (which is irrelevant in
this case) to be of quadratic order i.e.

O =

ˆ

d2x f

{
b0T

µ
ν T

ν
µ + b1(T

µ
µ )

2 +
b2
λ
T µ

µ +
b3
λ2

}
, (3.2)

where the dependence3 on λ is such that b0, b1, b2, b3 are dimensionless arbitrary constants.
Then, (2.7) and (3.2) yield the corresponding flow equation, which we do not explicitly

3It is important to note that this choice is unique only when no other dimensionful couplings are present.

It is understood that there do exist infinite combinations of more than one couplings that carry the correct

units.
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state since it is quite lengthy and does not contribute to our understanding. Nevertheless,
we can still solve it through a quadratic ansatz for G

G(λ, gi, y1, y2) = c0(λ, gi) + c1(λ, gi)y1 + c2(λ, gi)y
2
1 + c3(λ, gi)y2 , (3.3)

which yields the following system of equations

b0(c3 + c2) = 0 , ∂λc3 = b0c
2
1 , ∂λc2 = b1c

2
1 , ∂λc1 =

c1(2λc0(b0 + 2b1) + b2)

λ
,

∂λc0 =
2λc0(λc0(b0 + 2b1) + b2) + b3

λ2
,

(3.4)

where the dependences have been dropped for notational economy. The system is overde-
termined but the last four equations can be easily solved i.e.

c0(λ, gi) =
b
(

2c0(gi)
λb+c0(gi)

− 1
)
− 2b2 − 1

4λ(b0 + 2b1)
, c1(λ, gi) =

√
λ
b−1

c1(gi)

λb + c0(gi)
,

c2(λ, gi) = c2(gi)−
b1c1(gi)

2

b
(
λb + c0(gi)

) , c3(λ, gi) = c3(gi)−
b0c1(gi)

2

b
(
λb + c0(gi)

) ,

b :=
√

(1 + b2)2 − 8b3(b0 + 2b1) ,

(3.5)

where c0, c1, c2, c3 are integration constants that depend exclusively on other couplings of
the undeformed theory. Now, revisiting the first equation of (3.4) we distinguish two inde-
pendent cases: b0 = 0 or c3 = −c2. In the first case, the solution is given by (3.5) in that
limit, but in the second, we get that

b1 = −b0 , c3 = −c2 . (3.6)

With this choice and looking back to (3.2), we notice that the first two terms of the de-
formation are analogous to the TT operator. During the next several subsections, we will
focus exclusively on this case.

Let us now analyse the result above further. As previously mentioned in section 2, the
function G has mass units M2 in two dimensions, which in turn translates to the units of
the coefficients ci since the zweibeins are unitless. Furthermore for (3.2), λ has mass units
M−2 therefore from (3.5) the units of ci are uniquely determined or

[
c0(gi)

]
=M−2b ,

[
c1(gi)

]
=M1−b ,

[
c2(gi)

]
=M2 ,

[
c3(gi)

]
=M2 , (3.7)

which means that these constants are actually constrained functions of the other couplings
of the seed theory.

3.1.1 Retrieving TT

Considering now (3.6), the standard massive gravity description of TT naturally drops out
when the coefficients ci do not depend on other couplings i.e. they are dimensionless. The
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combination of this fact and (3.7) uniquely leads to c0 = 0 = c2 and b = 1, which in turn
translates to the following constraint

b3 = −
b2(1 + b2)

2b0
. (3.8)

The last thing that needs to be fixed is the constant c1, which is determined simply via (2.8)
in accordance with (2.9). We find that b2 = 0 and c1 = −1/(2b0). In order to generalize
this result let us relax (2.8) by allowing b2 to be arbitrary. Then, the massive gravity action
reads

SG =

ˆ

d2x
f

λ′
{1 + b2 − y1 + detY1} =

ˆ

d2x
f

λ′
{1 + b2 − y1}+

ˆ

d2x
e

λ′
, (3.9)

where λ′ := 2λb0, and similarly (3.2) becomes

O =

ˆ

d2x f 2b0

{
− detT µ

ν +
b2
λ′
T µ

µ −
b2(1 + b2)

λ′2

}
. (3.10)

Now the λ→ 0 limit is not well-defined, in fact it diverges. We will attempt to provide an
explanation of this behaviour in the upcoming sections. Finally, turning off b2 and making
use of (A.2) we retrieve

S̃G =

ˆ

d2x
1

2λ′
ǫµνǫab(e

a
µ − f a

µ )(e b
ν − f b

ν ) , (3.11)

in agreement with [20]. Once again, it is important to stress that for quadratic operators
which depend on λ and no other couplings, the initial condition (2.8) seems to be consistent
only when b2 = 0.

3.1.2 Retrieving TT + Λ2

Starting on the same footing as before, we pick the solution that obeys (3.6) but now
b2 = 0. Considering this, we will prove that at least one of the coefficients ci carries units
necessarily by contradiction. Let us assume that all ci are unitless. Then, we once more
have that c0 = 0 = c2 and b = 1 but now the condition for b3 is b3 = −1/(8b0). For these
choices there does not exist any non-zero value4 of c1 such that G has the correct units.

From there, we understand that G will now be a function of other couplings as well,
which may or may not be irrelevant [15, 32]. In order for us to get TT + Λ2, we may now
proceed with the following identification

b0 ←→
1

2α
, b3 ←→ α

η − 1

4
,

c0(λ0)←→ −λ
√
η

0 , c1(λ0)←→ −α
√
η
√
λ0

√
η−1

, c2(λ0)←→ α

√
η − 1

4λ0
,

(3.12)

where α and η are arbitrary constants. This leads to the following massive gravity action

SG =

ˆ

d2x
α

2
ǫµνǫab

{
β−(λ, λ0)

f a
µ f b

ν

2λ
+ β3(λ, λ0)

f a
µ e b

ν√
λ0λ

− β+(λ, λ0)
e a
µ e b

ν

2λ0

}
, (3.13)

4If c1 = 0, the deforming parameter completely decouples from the auxiliary zweibein, which is not

compatible with our methodology.
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with

β±(λ, λ0) := 1±√η coth
(√

η

2
log

λ0
λ

)
, β3(λ, λ0) :=

√
η csch

(√
η

2
log

λ0
λ

)
, (3.14)

in agreement with [31]. For (3.2), the term that comes with b3 in front is the one that is
analogous to Λ2. Setting η = 1, α = 1/(2b0) and λ0 = 0 in that order, gives (3.11) as
expected.

3.2 Spectrum analysis

It is rather interesting to explore the energy spectrum of the operator (3.2) when it is
constrained only by (3.6) and placed on an Euclidean cylinder of circumference R [1]. The
details of this calculation are quite standard and are located in appendix D. In short, we
find that the energies are given by

E±
n (λ

′, R) = −R(1 + 2b2)

2λ′
±

√(Pn
R

)2

+

(
R(1 + 2b2)

2λ′

)2

+
2b0
(
b3R

2 + λ′En
)

λ′2
, (3.15)

where En are the undeformed energies that survive the λ → 0 limit and Pn = 2πpn, with
pn ∈ Z. One notices that as in the standard TT case, there are two branches for the energy
and usually the divergent one gets discarded. We choose to keep both, as there are cases
e.g. [33, 34] where both branches are necessary. Taking now the λ→ 0 limit, one retrieves
a non-divergent value only for b3 = 0 and b2 6= −1/2 i.e.

E±
n (R) =

2b0En
R(1 + 2b2)

, (3.16)

where b2 > −1/2 for the positive, and b2 < −1/2 for the negative branch respectively.
Keeping b3 at zero and defining R′ := R(1 + 2b2) and P ′

n := Pn(1 + 2b2) one gets back the
standard TT spectrum, but now the circumference of the cylinder and the momenta are
scaled. Considering now the second constraint (3.8), we uniquely reach b2 = 0 –which is
consistent with (3.11)– for the positive and b2 = −1 for the negative branch.

The spectrum assumes a simpler form when we consider (3.8), with the terms related
to the coefficient b2 cancelling exactly inside the square root, yielding

E±
n (λ

′, R) = −R(1 + 2b2)

2λ′
±

√(
2πpn
R

)2

+

(
R

2λ′

)2

+
2b0En
λ′

. (3.17)

This equation is tantalisingly reminiscent of the string spectrum in [35], which matches
with our result up to the following non-unique identifications5

λ′ ↔ α′π
w

, b2 ↔
B01 − 1

2
, pn ↔

NL −NR

w
, En ↔

π
(
NL +NR + k2⊥

)

wb0
, (3.18)

when p2⊥ = 2k2⊥/α
′. Moreover, the B-field in similar fashion with b2, cancels exactly inside

the square root and this is consistent with the identification above. The units also seem

5For a different interpretation see [36].
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to match, yet b2 is constant in contrast to B01 , which is a function of the worldsheet
coordinates, therefore this identification is limited to cases with a constant B-field. Finally,
turning off the B-field, which corresponds to b2 = −1/2, we trivially retrieve a more familiar
string theory spectrum [37].

It is important to note that we retrieve known string theory spectra for certain choices
of b2 that do not necessarily have a finite λ → 0 limit. This is due to the identification
above, essentially λ plays the role of α′ and consequently the string tension grows as the
deformation parameter approaches zero. When we finally get there, the tension becomes
infinite, followed by the energy and vice versa, in accordance with the derived spectrum.
Regarding the analysis at the level of the action, this is a strong indicator towards the
relaxation of the initial condition (2.8). Indeed, in subsection 3.5 we reach that conclusion.

3.3 Correlators of undeformed operators

Let us now shift our attention to correlators. For simplicity,6 consider the complete solution
(2.4), the massive gravity action (3.9) and consequently the deformed partition function i.e.

Zλ =

ˆ

DΦDe eiSG[e a
µ ,f a

µ ,λ]+iS0[e a
µ ,gi,Φ] =

ˆ

DΦ eiS[f
a

µ ,λ,gi,Φ] , (3.19)

where the deforming operator is given by (3.10) and assuming that the path integral over
the auxiliary zweibein can be performed. Staring at equation (3.9) for a bit leads to the
following equality

ˆ

DΦDe exp

(
i

ˆ

d2x
f

λ′
b2 + iS̃G + iS0

)
=

ˆ

DΦ exp

(
i

ˆ

d2x
f

λ′
b2 + iSTT

)
, (3.20)

where S̃G is given by (3.11), i.e. the standard TT massive gravity action and STT is now the
TT deformed action. The role of b2 now becomes apparent, it behaves like a source term for
the deformed theory. The only element missing is that b2 is constant and not an arbitrary
function of spacetime. We can actually promote b2 to a function if we are careful in doing
so. To make the argument clear, we briefly revisit equation (3.3) and (3.5), essentially the
generic massive gravity solution to the operator (3.2). Now we boldly perform the following
uplift

bi −→ bi(x) , i ∈ {0, 1, 2, 3} , (3.21)

and check if this affects any part of our algorithm. Retracing all the steps we took in the
beginning of this section, we notice that this uplift is always valid unless any of the bi(x) is
a function of e a

µ or/and f a
µ or/and λ. That is because we essentially perform three types

of variations throughout the process of finding the massive gravity solution: variations
with respect to f a

µ to calculate the deformed stress-tensor and consequently construct the
deforming operator, variations with respect to λ for the flow equation and finally, variations

6Technically, one should be able to begin this discussion from the general solution (3.5), potentially re-

trieving more properties regarding correlators. With our choice, we are essentially covering all deformations

that depend explicitly only on λ.
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with respect to e a
µ in order to eliminate the auxiliary zweibein. As we mentioned in section

2 this last step is classical, but it also constraints the fully quantum mechanical approach
in the same way. Following this, the source term can essentially be anything that does not
couple to the background and does not depend on the deformation parameter. In other
words, we are now able to calculate deformed correlators of undeformed operators.

Returning to (3.19), we now set b2(x) = J(x)O(x) (to be more general, we assume that
b0(x) is also a function) and define the TT deformed correlators as follows

〈
O(x1) · · · O(xn)

〉
λ
:=

λ′(x1) · · · λ′(xn)
inf(x1) · · · f(xn)

1

Zλ[J ]

δZλ[J ]

δJ(x1) · · · δJ(xn)

∣∣∣∣∣
J=0

. (3.22)

Furthermore, we can actually relate the deformed and undeformed correlators using (3.20),
which takes the following neat form

Zλ[f
a

µ ]
〈
O(x1) · · · O(xn)

〉
λ
=

ˆ

De eiS̃G[e a
µ ,f a

µ ,λ]Z0[e
a

µ ]
〈
O(x1) · · · O(xn)

〉
0
, (3.23)

where Z0 is the undeformed partition function and the sources have been turned off. It is
quite interesting to observe that the equation above looks like an integral transformation
where the kernel is the exponential of iS̃G. At λ→ 0 the kernel essentially becomes a delta
functional with support only at e a

µ = f a
µ and consequently the equality holds trivially as

expected. Moreover, setting all operators to unity we recover the formula that relates the
TT -deformed partition function with the undeformed one [20]. A comparison between our
results and previous treatments [16, 22, 23] would be interesting.

3.4 Dimensional reduction, dilaton gravity theories and point particles

Another key aspect of TT is the well-known trace-flow equation, that relates the trace of
the deformed stress-tensor with its determinant classically. The combination of (2.6, 2.9)
and (3.9) leads to the following, more general, trace-flow equation

ē tr S̄

2
=
f tr T̄

2
− λ′f det T̄ µ

ν + fb2 tr T̄ −
fb2(1 + b2)

λ′
, (3.24)

which will be the main actor of this subsection. We will always assume that we are on-
shell for the auxiliary zweibein, thus we can safely drop the “bar” notation. In [27], the
authors begin from the standard TT description and the corresponding flow equation for a
seed conformal field theory, and dimensionally reduce via circular compactification of the
spacial dimension with circumference set to one, followed by the trivial elimination of the
anti-diagonal elements of the stress-tensor.

We will now repeat the same process, but for (3.10) and (3.24). The first step is to
eliminate the spacial component using the trace-flow equation, thus we begin by picking
our coordinates to be (t, θ). Then, solving the trace-flow equation for T θ

θ gives

T θ
θ =

2b2(1 + b2)− T t
t (1 + 2b2)λ

′ − 2T t
θ T

θ
t λ

′2

(1 + 2b2 − 2T t
t λ

′)λ′
, (3.25)
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therefore (3.10) becomes

O =

ˆ

d2x f 2b0
(T t

t)
2 + T t

θ T
θ
t − b2(1 + b2)/λ

′2

1 + 2b2 − 2T t
t λ

′ . (3.26)

We now proceed with the dimensional reduction by setting T t
θ = 0 = T θ

t and we Wick
rotate (τ = it) to match the notation of [27]. Combining everything, the flow equation (1.1)
takes the following form

∂SE

∂λ′
=

ˆ

dτ
√
γ
T 2 − b2(1 + b2)/λ

′2

1 + 2b2 − 2Tλ′
, (3.27)

where T := T τ
τ , assuming that the metric determinant has no spacial dependence. The

deformation above was derived using the Wheeler-DeWitt method [25, 27] and it is instruc-
tive to compare the two approaches. Briefly, one begins by considering the following dilaton
gravity theory

SE = − 1

2κ2

ˆ

M
d2x
√
g {ΦR+ 2U(Φ)} − 1

κ2

ˆ

∂M
dτ
√
gττ Φ{K − 1} , (3.28)

where gττ is the boundary metric and K measures the extrinsic curvature. Now, using the
methodology developed in [25], the authors of [27] derive the following flow equation

∂SEFT

∂λ
=

ˆ

dτ
√
γ
T 2 − (1− (rcΦr)

−1U(rcΦr))/(4λ)
2

1/2− 2λT
, (3.29)

where Φr := Φ/r and rc is the finite radial cut-off which is a function of λ.
Assuming now that this flow equation holds even when rc is independent of λ and

carefully comparing (3.27) with (3.29), we are lead to a yet another constraint, and an
interesting identification, i.e.

b2 =
1

2
(b0 − 1) , b0 ←→ ±

√
rcΦr

U(rcΦr)
. (3.30)

To be more precise, in order for the identification to be valid in general, one is obligated to
perform exactly the same uplift as in (3.21). Since U(x) is a potential term and because we
assumed that rc does not depend on the deformation parameter, the criteria for the uplift
are precisely satisfied. From there it follows that for the AdS2 potential, that is U(x) = x

(where the assumption for the radial cut-off is redundant), we trivially retrieve b0 = 1 and
b2 = 0 = b3 which reduces the operator (3.10) to TT as expected, as well as b0 = −1 = b2
and b3 = 0 which again reduces the operator to TT for seed conformal field theories using
(3.24). Finally, it is worthwhile to point out that there does exist a generalization of (3.29)
assuming additional matter to be present [27]. Our extension (3.27) cannot match the
extra matter terms that appear, meaning that, potentially, one needs to begin from the
more general solution (3.5) where b2 and b3 are independent. Then, all ci have to be fixed
by introducing the dimensionful couplings gi indicating the existence of new matter terms,
in agreement with the aforementioned generalization. For the next step, the new trace-flow
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equation must be found via (2.6) and (2.9) with the dimensional reduction following in
exactly the same way as before.7 Lastly, the two approaches are compared side by side,
yielding constraints and identifications similar to the ones above. It would be interesting
to investigate under which conditions for b0 and b2, this identification holds when rc is a
function of λ.

Let us now study the flow equation (3.27). The Lorentzian version of the deforming
operator reads

O =

ˆ

dt f 2b0
T 2 − b2(1 + b2)/λ

′2

1 + 2b2 − 2Tλ′
, (3.31)

where T := T t
t . Given this deformation, we can derive the corresponding massive gravity

action and deform a theory classically. Since we are now living in one dimension, both
einbeins are equal to their determinants. Similarly to (3.3), we now proceed with a slightly
different ansatz

G(λ′, gi, y1) =
c0(λ

′, gi)
y1

+ c1(λ
′, gi) + c2(λ

′, gi)y1 , (3.32)

therefore, from (2.7) and (3.31) we retrieve the following massive gravity solution

SG =

ˆ

dt
f

λ′

{
1

2
+ b2 −

c0(gi)

4y1
− y1

4c0(gi)
+ λ′y1c2(gi)

}
, (3.33)

where the units of ci are
[
c0(gi)

]
=M0 ,

[
c2(gi)

]
=M1 . (3.34)

The last ingredient that we will need is the seed function, which we choose to be a non-
linear sigma model of bosons and fermions interacting with an arbitrary potential V plus
topological terms which are denoted by T . The explicit action reads

S0 =

ˆ

dt e

{
1

2e2
Aij φ̇

iφ̇j ∓ i

2e
Bij

(
ψ̄iψ̇j − ˙̄ψiψj

)
− V +

T
e

}
, (3.35)

where i, j are the flavour indices. There are two points in the equation above that we need
to stress. First, it is clear that fermions behave exactly like the topological term in terms
of their interaction with the background, in other words they decouple completely. Second,
we understand that in reality we are not necessarily concerned about the exact structure of
the matter fields, but only about the way they couple to the background. To make things
more precise, consider the following definitions

Φ := Aij φ̇
iφ̇j , Ψ := ±iBij

(
ψ̄iψ̇j − ˙̄ψiψj

)
, (3.36)

which brings the seed action to a more convenient form

S0 =

ˆ

dt e

{
1

2e2
Φ− 1

2e
(Ψ− 2T )− V

}
. (3.37)

7Please do note that since more couplings are now present, the trace of the undeformed stress-tensor

may not be zero, which is exactly the source of new matter.
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This simple rewriting essentially allows one to deform not just bosons and fermions but
any matter action that couples to the background in the same way. This is one of the
key advantages of the massive gravity method and the main reason for which these type
of deformations are usually referred as purely “geometrical”. We now combine (3.33, 3.37)
and solve the equation of motion for e which gives

ē± = ±f

√
c0
(
c0 − 2λ′Φ/f2

)

1 + 4λ′c0(V − c2)
, (3.38)

with the deformed action following

S∓ =

ˆ

dt f





1 + 2b2 ∓
√[

1− 2λ′Φ/(c0f2)
][
1 + 4λ′c0(V − c2)

]

2λ′
− 1

2f
(Ψ− 2T )




. (3.39)

Now applying the initial condition (2.8) gives c0 = 1, c2 = 0 and b2 = 0, and for these
choices, the theory above matches exactly the one given in [27].

Finally, the action above can be brought in the form of a relativistic particle for the
static gauge choice when the fermions and the topological term are turned off. In order to
do this we define the proper time and a target space metric as

t :=

ˆ t

0
f(t̃) dt̃ , hµν := h00 ⊕ hij , (3.40)

and proceed with the following identification

m←→ 2λ′ , Ẋi ←→
√
2λ′φ̇i , hµν ←→

[
1 + 4λ′c0(V − c2)

][
−1⊕Aij/c0

]
, (3.41)

where m is the mass of the particle and the derivatives are now with respect to proper time.
This leads to the following action

S∓ = ∓
ˆ

dtm
√
−ẊµẊνhµν , Ẋ0 = 1 , (3.42)

for b2 = −1/2. We should note that the mass can be taken out of the integral only when
b0 is not a function of proper time. During the next subsection we will repeat the same
process but in two dimensions.

3.5 Sigma models

After the one-dimensional detour, we are back to two dimensions and we would like to apply
the massive gravity method to the same model as before, i.e. a non-linear sigma model of
bosons and fermions interacting with an arbitrary potential plus topological terms. This
has been done multiple times in the past using different approaches [3, 16, 38–41], but we
aim to provide a more transparent expression for the deformed action. Let us begin from
the seed action which reads

S0 =

ˆ

d2x e

{
−1

2
gµνΦµν −

1

2
eµaΨ

a
µ − V +

T
e

}
, (3.43)
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where Φµν and Ψa
µ have similar definitions as before i.e.

Φµν := Aij∂(µφ
i∂ν)φ

j , Ψa
µ := Bij ψ̄

iγa∇⃡µψ
j = Bij ψ̄

iγa∂⃡µψ
j . (3.44)

Once again, this rewriting allows one to deform any theory that couples in the same way to
the background. Proceeding now with the gravity action (3.9) and the seed action above,
we find the following solution for the auxiliary zweibein

(ē±)
a

µ =
λ′

2λ̃′


f̂

a
µ ±

f̂ a
µ + 2λ̃′Φµν f̂

ν
b η

ba

√
γ−1 det

(
γ̂µν + 2λ̃′Φµν

)


 , (3.45)

where

λ̃′ := λ′(1− V λ′) , f̂ a
µ := f a

µ +
λ′

2
Ψ a

µ , γ̂µν := f̂ a
µ ηab f̂

b
ν . (3.46)

For the case of a single scalar boson, without fermions, the solution above reduces to the
one found in [41]. Using (3.45) we obtain the following deformed action

S± =

ˆ

d2x f





1 + b2
λ′

− 1

2λ̃′f

(√
− det

(
γ̂µν

)
±
√
− det

(
γ̂µν + 2λ̃′Φµν

))
+
T
f



 .

(3.47)

There are certain comments that need to be made regarding the action above. First, the
expression agrees with (C.28), which was derived using the ansatz method with the fermions
turned off. Furthermore, for b2 = 0 the action agrees with the ones derived in [39, 40]
and consequently with [3, 16, 38, 41], hence its validity is secured. Moreover we observe
something interesting when the bosons and potential are absent. The solution (3.45) now
reads

(ē±)
a

µ = f a
µ +

λ′

2
Ψ a

µ , (3.48)

which is linear in λ′. This is important because in that limit, the deformed action is also
linear in λ′. Considering these facts, we naturally conclude that the source of this linear
dependence comes entirely from the way fermions couple to the background and not due
to their anti-commuting nature. This is consistent with the fact that Ψa

µ may represent
any matter field with this index structure. In other words, visiting (3.43), one notices that
Ψa

µ couples linearly to the background, therefore the deformed action will also be linear
but now in λ′. This answers a question posed by the authors of [40].

Finally, we observe that the square root structures above for a flat background, can
be interpreted as Nambu-Goto densities up to certain identifications for the target space
coordinates and string tension [3], with γ̂µν and γ̂µν +2λ̃′Φµν being the world-sheet metrics
respectively. Turning off the potential and topological terms makes this identification more
precise in a way that it is now consistent with the spectrum analysis in subsection 3.2. In
more detail, the choice b2 = −1/2 once again kills the constant term in (3.47) as expected.
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3.6 Scalar boson of order k

Given our results, we would like to explore how higher-derivative theories are deformed. For
simplicity, consider the conformal scalar boson of order k as a seed theory, temporarily in d
dimensions. Our methodology is valid only for theories that couple to a curved background,
which in our case translates to

S0 =
1

2

ˆ

ddxφ✷kφ −→ 1

2

ˆ

ddx e
{
φ✷kφ+ curvature terms

}
, (3.49)

where the curvature terms can be fixed exactly for any k ∈ N
+ [42–45]. There are two

issues with this approach. First, curvature couplings are introduced, therefore the second
derivative of the auxiliary vielbein will appear, which in turn means that finding the vielbein
solution to the equations of motion for SG+S0 is improbable. The second and more serious
problem arises due to the dependence of the curvature terms on d. For example, at k = 2

there are curvature terms that carry coefficients which are proportional to (d − 2)n where
n is negative [46], hence one cannot simply set d = 2.

To avoid these issues entirely we will attack the problem from a different angle. Let us
return to two dimensions where we will introduce (k− 1) auxiliary scalar fields [47, 48] and
consider the following action

S0 =

ˆ

d2x e

{
−1

2
gµνAij∂(µφ

i∂ν)φ
j − 1

2
Bijφ

iφj − V(φk, gi)
}
, 1 ≤ i, j ≤ k , (3.50)

where the matrices A and B are given by

Aij =




0 · · · 0 1

... ..
.
..
.
0

0 ..
.
..
. ...

1 0 · · · 0



, Bij =




0 · · · 0 1 ω

... ..
.
..
.
..
.
0

0 ..
.
..
.
..
. ...

1 ..
.
..
.
..
. ...

ω 0 · · · · · · 0




, (3.51)

with ω being an arbitrary dimensionless constant. The equations of motion for this model
are [47, 48]

(✷− ω)φ1 = ∂V
∂φk

, (✷− ω)φi = φi−1 , 2 ≤ i ≤ k , (3.52)

thus, using these we can eliminate the first (k − 1) fields, leaving us with an action that
depends only on φk, which we will rename to φ for simplicity. Then, for ω = 0 we reach

S0 =

ˆ

d2x e

{
1

2
φ✷kφ− V(φ, gi)

}
. (3.53)

One notices that essentially, the role of the auxiliary fields is to maximally reduce the order
of the derivatives. In our case, the reduced action is a simple sigma model plus a potential,
which can be deformed easily using (3.47) and setting

V = −1

2
Bijφ

iφj − V , (3.54)
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where fermions and topological terms have been turned off. From there, one has two choices:
either attempt to integrate out the auxiliary scalar fields assuming that the two processes
commute, or work exclusively with (3.50) where the number of derivatives is under control.
We propose that the latter may be more productive, as any attempt to integrate out the
auxiliary fields, even in the simplest case, did not produce any useful outcome. We should
also note that the addition of topological terms might no longer be trivial since they may
depend on the scalar fields, which in turn will affect the equations of motion. Finally, this
approach may not be unique only to scalar fields and it would be interesting to study the
generalisation to fields with higher spin.

3.7 Root deformations

The final stop in this two-dimensional journey is the study of the root-TT deformation from
the massive gravity perspective. The marginal operator that generates this deformation is
given by [11]

R =

ˆ

d2x f
br√
2

√
T µ

ν T ν
µ −

1

2
(T µ

µ )2 , (3.55)

where br is a dimensionless constant. We will attach the letter µ to the deformation param-
eter for the operator above. Proceeding as usual, equation (2.7) for this choice becomes

∂µG = br

√
2y2 − y21(∂y1G+ 2y1∂y2G) , (3.56)

where br has absorbed a ± factor, that is equation (C.25) precisely. This is interesting. If
we consider the approach we followed in subsection C.3, the flow equation for the deformed
Lagrangian density was derived via a sigma model seed theory ansatz which is entirely
constructed via scalar fields. In contrast, the same flow equation is derived for G, which
is also a Lagrangian density, but now the building blocks are zweibeins and even more so,
we have not specified the seed theory. This poses as a strong indicator towards the fact
that root-TT deformations are universal and independent of background-matter couplings,
which in turn means that they cannot have a massive gravity description, at least not in
the same way as the deformations that admit one. We can actually provide a more concrete
argument about this fact, by solving the equation above. Let us temporarily forget that
the solutions can be brought in the form of (C.26, C.27) and solve (3.56) from scratch. We
find

G(µ, gi, y1, y2) = G

[
gi, y

2
1 − y2, µbr + arctanh

(
y−1
1

√
2y2 − y21

)]
, (3.57)

where G is any function. We immediately notice that the deformation parameter decouples
completely from y1 and y2 in the arguments of the solution. Moreover, applying the initial
condition (2.8) with µ→ 0 does not uniquely fix G, yet a choice that is consistent reads

G(µ, gi, y1, y2) = F (gi)

(
y21 − y2 + µbr + arctanh

(
y−1
1

√
2y2 − y21

)
− 2

)
, (3.58)
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where F is an arbitrary dimensionless function. Since any solution that satisfies (2.8) should
provide a massive gravity description and a counterexample exists, we conclude that (3.55)
cannot have a massive gravity description on its own. This behaviour is reminiscent of
gauge symmetry, in the way that it should work for any gauge choice. Nevertheless, the
alternative interpretation is that the initial condition suggests that a massive gravity density
is already present, possibly due to other deformations, and the effect of the root-TT is the
additional structure given by the solution above. Considering this, let us now write down
the more useful form of the solution [11] i.e. (C.26, C.27) or

G(µ, gi, y1, y2) = G
(
gi, y1,µ, y2,µ

)
, (3.59)

where

y1,µ = y1 cosh(brµ) +
√
2y2 − y21 sinh(brµ) ,

y2,µ = y2 cosh(2brµ) + y1

√
2y2 − y21 sinh(2brµ) ,

(3.60)

and the initial condition has been arbitrarily (but very conveniently) set at µ = 0, where
G
(
gi, y1,µ, y2,µ

)
|µ=0 reduces to the “seed” gravity action G(gi, y1, y2). Interestingly, the

second argument in (3.57) indicates that y2,µ − y21,µ = y2 − y21, which is verified by the set
of equations above.

Combining all of the above we understand that in order to deform exclusively with root-
TT we have to follow a very specific procedure. First, we need to turn on a deformation, say
with λ as a coupling, that admits a massive gravity solution. Then, using equations (3.59)
and (3.60), we introduce the root deformation as discussed and integrate out the auxiliary
zweibein in order to “push” both deformations on the seed theory. Finally, we need to turn
off λ to remove the effect of the extra deformation. Actually, since the root-TT structure is
unaffected by the “seed” massive gravity, the choice one makes originally for a deformation
does not matter. We can actually take things a step further by taking advantage of that
fact, and provide some more insight about root-TT .

Let us consider the solution (3.59) and a seed action as usual. Then their combination
gives the deformed theory (3.1)

S[e a
µ , f a

µ , λ, µ, gi,Φ] =

ˆ

d2x f G
(
λ, gi, y1,µ, y2,µ

)
+ S0[e

a
µ , gi,Φ] . (3.61)

We now define the zweibein ε a
µ such that

y⋆1 := f νb ε
b

ν = y1,µ , y⋆2 := f νb ε
b

λ f
λ
c ε

c
ν = y2,µ , (3.62)

where the µ dependence is now implicit. In order to rewrite everything in terms of this new
auxiliary zweibein, we combine (3.60) and (3.62) to get

ε a
ν = e a

ν cosh(brµ) +
2e b

ν f
λ
b e

a
λ − y1e a

ν√
2y2 − y21

sinh(brµ) . (3.63)

– 18 –



Also, one notices that inverting (3.60) leads to the exact same set of equations, but now
y1 ↔ y1,µ and y2 ↔ y2,µ. From there,

e a
ν = ε a

ν cosh(brµ) +
2ε b

ν f
λ
b ε

a
λ − y⋆1ε a

ν√
2y⋆2 − (y⋆1)

2
sinh(brµ) , (3.64)

where (3.62) was used to avoid inconsistencies. Using (3.64), (3.61) becomes

S[ε a
µ , f a

µ , λ, µ, gi,Φ] =

ˆ

d2x f G
(
λ, gi, y

⋆
1, y

⋆
2

)
+ S0[ε

a
µ , µ, gi,Φ] . (3.65)

A direct comparison between (3.61) and (3.65) shows that the root-TT deformation is
“pushed” to the seed theory, which now lives on the background given by (3.64). This
essentially means that, upon correct identification of the matter Lorentz scalars x1 and x2
in the seed theory (C.3), the uplift is (C.26) and (C.27) as expected. A simple example of
this behaviour is (C.28).

4 Higher dimensions

Motivated by the remarkable properties of the massive gravity method in two dimensions,
we will now try to apply our methodology in higher dimensions. During this section, a lot
of traces of powers of the stress-tensor will appear, hence we slightly switch our language
adopting a matrix notation, leaving the indices behind. To avoid any misunderstanding, we
will treat T µ

ν as a matrix with the first index representing rows and the second columns.
Furthermore, the coefficient b0 will appear extensively in our calculations, and at times, in
the denominator of expressions, therefore we will always assume that it does not approach
zero. This fact is verified a posteriori.

4.1 Deformations of order three in three dimensions

Looking back to (3.2) and (3.3), we found solutions for the most general quadratic operator
using a quadratic ansatz for G. In a direct analogy, we now consider the most general cubic
deformation i.e.

O =

ˆ

d3x f

{
λb0 trT

3 + λb1 trT
2 trT+λb2(tr T )

3+

+b3 trT
2+b4(tr T )

2 +
b5
λ

trT +
b6
λ2

}
,

(4.1)

where the dependence on λ is fixed such that all bi are arbitrary and dimensionless. The
mass units of λ are M−3. The second ingredient is the ansatz for G, which we pick to be
the most generic cubic polynomial in (y1, y2, y3) or

G(λ, gi, y1, y2, y3) = c0(λ, gi) + c1(λ, gi)y1 + c2(λ, gi)y
2
1 + c3(λ, gi)y2+

+c4(λ, gi)y
3
1 + c5(λ, gi)y1y2 + c6(λ, gi)y3 .

(4.2)
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From there, the massive gravity method yields the following solution

c0(λ, gi) = −
4b3
3b0λ

, c1(λ, gi) = c1(gi)λ
b , c2(λ, gi) = 0 = c3(λ, gi) ,

c4(λ, gi) = c4(gi)−
c1(gi)

3b0
4 + 6b

λ2+3b , c5(λ, gi) = −3c4(λ, gi) ,

c6(λ, gi) = 2c4(λ, gi) , b := 2b5 +
4b23
3b0

.

(4.3)

where b1, b2, b4 and b6 are now constrained,

b1 = −
3b0
4
, b2 =

b0
8
, b4 = −

b3
2
, b6 = 4

3b0b3 + 4b33 + 9b0b3b5
9b20

. (4.4)

Surprisingly, the ratio b4/b3 of the quadratic terms in the deformation, is equal to −1/(3−1)
in agreement with [24, 25]. We should also note that with this choice of b1 and b2, the cubic
order terms of the operator are not equal to the determinant of the stress-tensor. From a
dimensional standpoint, since G has mass units M3 the dimensions of c1 and c4 are uniquely
determined

[
c1(gi)

]
=M3+3b ,

[
c4(gi)

]
=M3 . (4.5)

In order to simplify things, let us consider the case where no other couplings are present,
which translates to the condition b = −1 and c4 = 0. This gives yet another constraint

b5 = −
1

2
− 2b23

3b0
, (4.6)

thus the massive gravity action assumes a familiar form (3.9)

SG =

ˆ

d3x
f

λ′

{
−4b3 + 3b0c1y1 + (3b0)

2c1
3 detY1

}
, (4.7)

where λ′ := 3λb0. Once again, this theory can be fully determined by applying the initial
condition (2.8), which fixes c1 exactly. Moreover, we observe that the last term in the
equation above, completely decouples from the background as in the two-dimensional case.
The full solution now reads

S[e a
µ , f a

µ , λ, gi,Φ] =

ˆ

d3x
f

λ′
{3b0c1y1 − 4b3}+ (3b0)

2c1
3

ˆ

d3x
e

λ′
+ S0[e

a
µ , gi,Φ] , (4.8)

where one notices that, essentially, all the dynamics of the gravity action reduce to just y1,
whereas the seed theory absorbs a constant term proportional to the inverse of λ′. We must
note that this is a simple rewriting of the terms and it does not change the flow equation or
the deforming operator. A first quick calculation regarding the operator (4.1) is to find its
trace-flow equation. For the massive gravity solution (4.7) and using (2.6, 2.9) we retrieve

ē tr S̄

3
=
f tr T̄

3
+ fλ

{
λb0 tr T̄

3 + λb1 tr T̄
2 tr T̄+λb2(tr T̄ )

3+

+b3 tr T̄
2+b4(tr T̄ )

2 +
b5
λ

tr T̄ +
b6
λ2

}
,

(4.9)
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therefore if the seed theory does not contain any dimensionful couplings, the combination
of (4.1) and (4.9) leads to the following flow equation

dS

dλ
= − 1

3λ

ˆ

d3x f tr T̄ =
1

∆λλ

ˆ

d3x f tr T̄ , (4.10)

when we are on-shell for the auxiliary dreibein, where ∆λ is the mass dimension of λ. This
is exactly what one would expect for a theory with only one dimensionful coupling.

Following this analysis, we would like to explore if more choices exist for the bi which
are not predicted by the massive gravity method. In order to achieve this, we will consider
a simple Nambu-Goto boson in d-dimensions described by the following action

S =

ˆ

ddx
f

ξλ

{
ρ−

√
1 + ξλ∂µφ∂µφ

}
, (4.11)

where ξ and ρ are dimensionless constants, and check if it is a solution of the deforming
operator (4.1) for d = 3. Interestingly, we find that this model is indeed flowing with respect
to this deformation for the following choices of bi

b0 =
ξ2

6
, b1 = −

ξ2

4
, b2 =

ξ2

12
, b3 =

ρξ

4
,

b4 = −
ρξ

4
, b5 =

1

2
(ρ2 − 1) , b6 =

ρ− ρ3
2ξ

.

(4.12)

This solution is not consistent with the constraints (4.4) and (4.6) therefore we conclude
that more deformations of cubic order with the same structure as in (4.1) exist.

4.2 Deformations of order four in four dimensions

Let us now repeat the same process in four dimensions, with the hope of extracting the
general behaviour of the deformation in arbitrary dimensions. We begin from an ansatz of
order four for the deformation

O =

ˆ

d4x f

{
λ2b0 trT

4 + λ2b1 trT
3 trT + λ2b2(trT

2)2 + λ2b3 trT
2(trT )2+

+λ2b4(tr T )
4 + λb5 trT

3 + λb6 trT
2 tr T + λb7(trT )

3+

+b8 trT
2 + b9(trT )

2 +
b10
λ

trT +
b11
λ2

}
,

(4.13)

where all bi are unitless. The mass units of λ in this case are M−4 and M4 for G. Looking
for solutions of quartic form

G(λ, gi, y1, y2, y3, y4) = c0(λ, gi) + c1(λ, gi)y1 + c2(λ, gi)y
2
1 + c3(λ, gi)y2+

+c4(λ, gi)y
3
1 + c5(λ, gi)y1y2 + c6(λ, gi)y3 + c7(λ, gi)y

4
1+

+c8(λ, gi)y
2
1y2 + c9(λ, gi)y1y3 + c10(λ, gi)y

2
2 + c11(λ, gi)y4 ,

(4.14)
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we find

c0(λ, gi) = −
9b5
4λb0

, c1(λ, gi) = c1(gi)λ
b , cj(λ, gi) = 0 , j = {2, 3, 4, 5, 6} ,

c7(λ, gi) = c7(gi)−
c1(gi)

4b0
6(3 + 4b)

λ3+4b , c8(λ, gi) = −6c7(λ, gi) = c11(λ, gi) ,

c9(λ, gi) = 8c7(λ, gi) , c10(λ, gi) = 3c7(λ, gi) , b := 3b10 +
27b35
16b20

,

(4.15)

where many of the bi are constrained in the following way

b1 = −
8b0
9
, b2 = −

b0
2
, b3 =

5b0
9
, b4 = −

11b0
162

, b6 = −
b5
2
,

b7 =
b5
18
, b8 =

9b25
8b0

, b9 = −
3b25
8b0

, b11 = 9
27b45 + 16b20b5(1 + 4b10)

64b30
.

(4.16)

From the constraints above, we notice that the ratio b9/b8 is equal to −1/(4−1) confirming
once more [24, 25]. Moreover, the choice above does not imply that the quartic order terms
are proportional to the determinant. The units of c1 and c7 are given by

[
c1(gi)

]
=M4+4b ,

[
c7(gi)

]
=M4 . (4.17)

Furthermore, assuming that λ is the only dimensionful coupling, b = −1 and c7 = 0 just
like the three-dimensional case. The extra constraint now reads

b10 = −
1

3
− 9b35

16b20
, (4.18)

and the massive gravity action follows

SG =

ˆ

d4x
f

λ′

{
−9b5 + 4b0c1y1 + (4b0)

2c1
4 detY1

}
, (4.19)

where λ′ := 4λb0 and c1 is fixed by (2.8). The full solution becomes

S[e a
µ , f a

µ , λ, gi,Φ] =

ˆ

d4x
f

λ′
{4b0c1y1 − 9b5}+ (4b0)

2c1
4

ˆ

d4x
e

λ′
+ S0[e

a
µ , gi,Φ] , (4.20)

where the same behaviour as in three dimensions is noted. We proceed with the trace-flow
equation, which assumes the following familiar form

ē tr S̄

4
=
f tr T̄

4
+ fλ

{
λ2b0 tr T̄

4 + λ2b1 tr T̄
3 tr T̄ + λ2b2(tr T̄

2)2 + λ2b3 tr T̄
2(tr T̄ )2+

+λ2b4(tr T̄ )
4 + λb5 tr T̄

3 + λb6 tr T̄
2 tr T̄ + λb7(tr T̄ )

3+

+b8 tr T̄
2 + b9(tr T̄ )

2 +
b10
λ

tr T̄ +
b11
λ2

}
,

(4.21)
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therefore when the auxiliary vierbein is eliminated and λ is the only dimensionful coupling,
the four-dimensional flow equation is

dS

dλ
= − 1

4λ

ˆ

d4x f tr T̄ =
1

∆λλ

ˆ

d4x f tr T̄ , (4.22)

where yet again, ∆λ is the mass dimension of λ as expected.

Lastly, let us check which are the solutions that (4.11) predicts at d = 4 given the
operator (4.13). We find that b0, b1 and b2 are unconstrained, therefore we can freely set
them to zero. This choice conveniently leads to b3 = 0 = b4, which removes the quartic
order terms entirely from the operator. The surviving coefficients read

b5 =
ξ2

8
, b6 = −

ξ2

6
, b7 =

ξ2

24
, b8 =

7ρξ

24
,

b9 = −
ρξ

6
, b10 =

3

8
(ρ2 − 1) , b11 =

ρ− ρ3
2ξ

.

(4.23)

Once again, the coefficients above do not match with (4.16) and (4.18), which suggests the
existence of other operators with the same form besides (4.13).

The analysis of these two sections is quite tedious, but provides a crucial insight to the
structure of these deformations which is necessary for the uplift in d dimensions.

4.3 Five, six, seven and d dimensions

Contrary to the title of this section, we will begin the discussion directly in d dimensions,
and then confirm everything in dimension five, six and seven. Let us first fix the mass
units of λ to be M−d in accordance with every section that precedes this one and revisit
equations (4.5) and (4.17). We assume that in d dimensions there does exist a similar set
of two ci which we will refer to as c1 and c⋆ with dimensions

[
c1(gi)

]
=Md+db ,

[
c⋆(gi)

]
=Md . (4.24)

where b is a complicated function of bi and d. Looking at the dimensionality of c⋆, we
understand that there are only four ways it can be part of the massive gravity action. The
first possibility is the simplest one, it just enters only by coupling to yi. The other options
are: an appropriate function of (λ, c⋆) or (c1, c⋆) or (λ, c1, c⋆), all coupled to yi. A natural
assumption is that the deformation should be the same for any seed theory carrying the
couplings gi including theories where gi → 0. The only choice that is consistent with that
limit is the first one, and it also constrains the way it couples to yi. We deduce that c⋆

enters the d-dimensional massive gravity solution in the following way
ˆ

ddx f d!c⋆(gi) detY1 =

ˆ

ddx ed!c⋆(gi) , (4.25)

which agrees with our previous treatments in two, three and four dimensions. From there
it follows that c⋆ essentially represents the seed theory S0. To make this argument more
transparent, recall that all ci were introduced as integration constants with respect to λ
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which means that they can, in principle, depend on the local coordinates. We now under-
stand better the form of the generic solution (2.4), which is consistent with the argument
above. Since we are interested only in the massive gravity part of the solution we can safely
turn off c⋆ for the rest of this section.

The situation is not that simple for c1. Using the arguments above, c1 cannot appear on
its own, we expect some coupling to λ through a unit-appropriate function. Nevertheless,
we can however say more when the initial condition (2.8) is imposed. In that case c1 is a
dimensionless constant and b = −1. Revisiting (4.7) and (4.19), the last thing that we need
to fix is the appearance of the constant term. We find that in the d-dimensional case, if one
extends the deformation structure in precisely the same way, this constant is proportional
to bp(d) where p(d) is equal to the integer partitions of d, and is controlling the term trT d−1.
Combining all of the above, we propose the following solution in d-dimensions

SG =

ˆ

ddx
f

λ′

{
−(d− 1)2bp(d) + db0c1y1 + (db0)

2c1
d detY1

}
, d ≥ 3 , (4.26)

where λ′ := dλb0. Using this solution, the ratio r of the quadratic coefficients of the
deformation is fixed, as well as the linear and constant coefficients. In more detail, let βl
be the coefficient of trT and βc of the constant term of the deformation. Then, crucially,
r = −1/(d − 1) in agreement with [24, 25], and

βl =
1

1− d

(
1 +

[(d− 1)bp(d)]
d−1

[db0]d−2

)
, βc =

(1− d)2bp(d)
db0

βl , d ≥ 3 . (4.27)

The higher order coefficients of the deformation are unique functions of b0 and bp(d), and
can be evaluated by specifying the dimension, but a closed form expression is eluding us. It
is rather odd that the massive gravity solution can be derived easier than the deformation
itself, which is what we are interested in at the end of the day. Let us stop for a moment
to comment on the last two equations. The main observation is the condition d ≥ 3 which
is not obvious, since we are free to set d = 2. This choice provides only a very specific
solution in two dimensions and this is why we exclude it. In more detail setting d = 2 we
observe that interestingly, (4.27) yields (3.8) with βc ↔ b3 as expected, but it constraints b2
specifically at the value b2 = −1/2, which is the limit that removes the overall constant from
the spectrum (3.15). Looking only at (4.26) for c1 = −1/(2b0), and comparing with (3.9)
we get the same constraint. Considering these facts, we conclude that (4.26) does not cover
the entire span of solutions in two dimensions, hence the condition d ≥ 3. There is however
another interpretation in which the massive gravity solution (4.26) is more fundamental,
meaning that in two dimensions, b2 must be equal to −1/2. In that case, the solution is
valid for d ≥ 2.

In order to better understand the structure of the coefficients of the higher order terms
in the deformation, we leave d = 2 behind us and assume that d ≥ 3. Moreover, in order to
highlight the importance of the quadratic terms, and to avoid using the awkward coefficient
bp(d), we define β as

bp(d) =:
(2β)

1
d−2 (db0)

d−3
d−2

d− 1
, (4.28)
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with (4.26) assuming the following form

SG =

ˆ

ddx
f

λ′

{
−(2β)

1
d−2 (d− 1)(db0)

d−3
d−2 + db0c1y1 + (db0)

2c1
d detY1

}
, (4.29)

and the coefficients βl, βc given by (4.27), become

βl =
1 + (2β)

1
d−2 (db0)

d−3
d−2

1− d , βc = −(d− 1)βl
1 + (d− 1)βl

2β
. (4.30)

The first thing that we notice is that βc has a similar structure as in (3.8) with the only
difference being that βl is multiplied by (d− 1). Furthermore, the choice (4.28) brings the
deforming operator in the following form

O =

ˆ

ddx f

{
higher order terms + β

(
trT 2 − 1

d− 1
(trT )2

)
+
βl
λ
trT +

βc
λ2

}
, (4.31)

where the quadratic terms are in agreement with [24, 25]. As we mentioned earlier, the
higher order terms are uniquely specified by inserting the solution and the operator above in
the flow equation. For all practical purposes, and in order to verify that the massive gravity
action (4.29) is indeed valid, the deforming operators in five, six and seven dimensions as
well as their higher order coefficients are given in appendix E. Another property of the
operator above emerges if one compares (3.24, 4.9) and (4.21). It should not come as a
surprise that the trace-flow equation now reads

ē tr S̄

d
=
f tr T̄

d
+ fλ

{
higher order terms + β

(
tr T̄ 2 − 1

d− 1
(tr T̄ )2

)
+
βl
λ
tr T̄ +

βc
λ2

}
,

(4.32)

where the auxiliary vielbein is on-shell. A quick check in higher dimensions verifies that this
equation holds. Then, turning off all couplings except λ returns the following flow equation

dS

dλ
= − 1

dλ

ˆ

ddx f tr T̄ =
1

∆λλ

ˆ

ddx f tr T̄ , (4.33)

with ∆λ being the mass dimension of λ.
Let us attempt to investigate which are the potential necessary conditions for the stress-

tensor, such that all higher order terms vanish. In [24, 25], the constraint8 G0
i = 0 = κ2T 0

i

is extensively used therefore, this would be our starting point. This implies that T i
0 = 0

also,9 therefore the d-dimensional stress-tensor assumes the following block diagonal form

T(d) µ
ν = T

(d) 0
0 ⊕ T

(d−1) α
β . (4.34)

Then, we find that setting

T
(d) 0

0 =
1

d− 2
T(d−1) α

α , β(d) =
1

2
(d− 1)d−2d3−d b

(d)
0 , (4.35)

8Here we slightly abuse our notation since G is taken to be the massive gravity density.
9We notice that this procedure shares some common ground with the dimensional reduction followed in

subsection 3.4.
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the d-dimensional operator reduces to the (d− 1)-dimensional one, at least for all the cases
that we have studied, excluding d = 1. As an example, let us consider the linear term
of the deformation but now in d-dimensions. Using the condition above, the trace of the
stress-tensor and the coefficient βl satisfy

T(d) µ
µ =

d− 1

d− 2
T(d−1) α

α , β
(d)

l =
d− 2

d− 1
β

(d−1)
l , (4.36)

thus it is clear that their product preserves its form in one dimension less i.e.

β
(d)

l T(d) µ
µ = β

(d−1)
l T(d−1) α

α . (4.37)

This is precisely the behaviour we observe. Assuming now that (4.35) holds for every d ≥ 2,
all higher order terms vanish identically, leaving us only with the quadratic deformation.
We should also note that in the last iteration of this process we recover the two-dimensional
solution (3.10), with b2 = −1 − 4b0/3. Moreover, the recursive relation (4.36) for the
stress-tensor can be solved yielding

T(d) µ
µ = (d− 1) T(2) α

α , (4.38)

where the initial condition is located at d = 2 as we discussed. This equation suggests that
a hidden two-dimensional stress tensor is the source of the deformation. A more heuristic
argument for these choices will be presented during the discussion in section 5.

4.4 Root deformations

For this final subsection, we will consider the following root-TT operator

R =

ˆ

ddx f br

√
T µ

ν T ν
µ −

1

d
(T µ

µ )2 , (4.39)

in direct analogy with (3.55), and use the massive gravity method in order to understand
its behaviour. Our guiding principle is the ModMax theory in four dimensions [49], which
is part of the flow of the operator above at d = 4 [50, 51]. The Lagrangian density for this
model is given by

LModMax = LMax cosh(brµ) +
√
L2Max + L2p sinh(brµ) , (4.40)

where LMax := − trF 2/4 and Lp := − tr(F ⋆ F )/4, with Fµν being the usual electromag-
netic tensor and (⋆F )µν its Hodge-dual. We observe that only the two aforementioned vari-
ables are present, which indicates that out of the set of variables yi (2.1), with 1 ≤ i ≤ d,
for our massive gravity formalism, there must be choice such that only two survive. Taking
into account that Fµν is antisymmetric, we are naturally lead to an antisymmetric choice
for Y1 which in turn restricts the massive gravity variables to y2i with 1 ≤ i ≤ ⌊d/2⌋. The
two-variable choice and the floor function, restrict the number of dimensions to d = 4 or
d = 5. In both cases, the surviving variables are y2 and y4, yet their flow equations for

– 26 –



(4.39) are drastically different. Specifically at d = 5, we were not able to find any solutions.
Settling for four dimensions, the flow equation assumes the following familiar form

∂µG = br

√
4y4 − y22(∂y2G+ y2∂y4G) , (4.41)

where br has absorbed a ± factor just like in the two-dimensional case. The equation above
can be solved exactly

G(µ, gi, y2, y4) = G

[
gi, y

2
2 − 2y4, µbr + arctanh

(
y−1
2

√
4y4 − y22

)]
, (4.42)

for any function G, which is strikingly similar to (3.57). We again observe that the deforma-
tion parameter decouples from the massive gravity variables, therefore the same arguments
as in subsection 3.7 apply. This should also indicate the presence of “seed” massive gravity,
which in turn means that the uplift y2 → y2,µ and y4 → y4,µ should exist. Remarkably, all
these statements are true since the solution can be brought in the following form

G(µ, gi, y1, y2) = G
(
gi, y2,µ, y4,µ

)
, (4.43)

where

y2,µ = y2 cosh(brµ) +
√
4y4 − y22 sinh(brµ) ,

y4,µ = y4 cosh(2brµ) +
y2
2

√
4y4 − y22 sinh(2brµ) .

(4.44)

Moreover, the second argument in (4.42) indicates that 2y4,µ − y22,µ = 2y4 − y22, which is
verified easily using the equations above. The similarities do not stop there, we notice that
(4.44) remains invariant under y2 ↔ y2,µ and y4 ↔ y4,µ, therefore by defining the vierbein
ε a
µ such that

y⋆2 := f νb ε
b

λ f
λ
c ε

c
ν = y2,µ , y⋆4 := f νb ε

b
λ f

λ
c ε

c
ρ f

ρ
d ε

d
σ fσh ε

h
ν = y4,µ , (4.45)

one should be able to derive expressions that are equivalent to (3.63) and (3.64) in four
dimensions. We cannot help but notice that there does exist a set of equations given by

χn,µ = χn cosh(brµ) +
√
2nχm − χ2

n sinh(brµ) ,

χm,µ = χm cosh(2brµ) +
χn

n

√
2nχm − χ2

n sinh(2brµ) ,
(4.46)

such that nχm,µ − χ2
n,µ = nχm − χ2

n remains invariant under the change χn ↔ χn,µ and
χm ↔ χm,µ. It would be interesting to explore if this generalization can be useful.

Let us now close this section by making the connection to the matter seed theory
in four dimensions. If this type of deformation is universal, one would expect that upon
correct identification of the generic scalars x2 and x4 in the seed theory (C.3), the defor-
mation should be given by the set (4.44). Surprisingly, identifying x2 ↔ − trF 2/4 and
x4 ↔ trF 4/16 returns (4.40). It is then clear that the antisymmetry of Fµν implies the
antisymmetry of Y1 and vice versa.
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5 Summary and discussion

In this work, we extended the massive gravity method in arbitrary dimensions. We began
with a detailed explanation of the methodology for general d. Briefly, we introduced the
background and auxiliary vielbeins and a simple yet powerful reformulation of the deformed
action in a massive gravity part constructed by the two kinds of vielbeins and a seed theory
part, which depends exclusively on matter and the auxiliary vielbein. Once the deformation
and the massive gravity action are specified, the auxiliary vielbein is integrated out, either
classically or quantum mechanically. This approach comes in direct analogy to the well-
studied two-dimensional case [20, 21].

In terms of direct applications, setting our starting point in two dimensions, we derived
the most general quadratic massive gravity solution using the most general ansatz of the
same order as the deforming operator. We observed that the nature of the solution con-
strained the coefficients of the quadratic terms of the deforming operator to be exactly equal
to TT , with the coefficient in front of the linear term being unaffected by that choice, some-
thing which was also true for the constant term. Then, we showed that TT and TT + Λ2

naturally drop out at certain limits of this deformation, indicating its generality. The next
stop of this journey was the spectrum analysis of this generalized operator when no other
dimensionful couplings were present. In this limit the operator is given by (3.10). The
spectrum (3.15) was found to be compatible with a string theory spectrum enriched by a
B-field contribution under certain identifications. From there, the source of this extra term
was found to essentially be the linear and constant terms that are present in our operator
and can be turned off for the choice b2 = −1/2. Notably, for this choice the limit λ→ 0 is
no longer well-defined.

Another interesting property of (3.10) was unveiled in subsection 3.3. In short, we
found that the coefficient in front of the linear term, can be uplifted to a source term for
the deformed theory, allowing one to evaluate TT -deformed correlators of undeformed oper-
ators either directly from the deformed partition function (3.22) or via the undeformed one
(3.23). It would be instructive to compare our results with other approaches [16, 22, 23].
Motivated by the uplift of the linear coefficient, we dimensionally reduced the operator
using the generalized trace-flow equation (3.24) and matched it with the operator obtained
by the dimensional reduction of a dilaton gravity action with an arbitrary potential [27]
under certain non-trivial assumptions. The precise matching conditions are given by (3.30).
Following this, the one dimensional massive gravity action was evaluated using the afore-
mentioned methodology and a system of bosons and fermions was deformed yielding results
consistent with the literature [27]. Returning to two dimensions, a similar classical system
was deformed [3, 16, 38–41] yielding the more transparent expression (3.47). The first point
we would like to stress further is that, in the process of deforming this type of seed actions
we noticed that the intrinsic properties of matter do not enter the analysis, therefore one
should only consider the specific way fields couple to the background. Furthermore, we
showed that the deformation of the aforementioned model essentially allows for the defor-
mation of higher-derivative theories. Finally, we studied the class of root-TT deformations,
finding that its structure does not admit a specific massive gravity solution, but enhances
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the solutions of other deformations (3.61). After some manipulations, one can “push” this
deformation on to the seed theory (3.65), verifying that a massive gravity description is not
necessarily needed.

In higher dimensions, we began by deriving the operator in three and four dimensions,
and used the solutions as our guiding principle. Then, an exact massive gravity prescription
was found in d dimensions which reads

SG =

ˆ

ddx
f

λ′

{
−(2β)

1
d−2 (d− 1)(db0)

d−3
d−2 + db0c1y1 + (db0)

2c1
d detY1

}
, (5.1)

where Y1 is given by (2.1), followed by the corresponding operator

O =

ˆ

ddx f

{
higher order terms + β

(
trT 2 − 1

d− 1
(tr T )2

)
+
βl
λ

trT +
βc
λ2

}
. (5.2)

The higher order terms proved to be too cumbersome to determine for general d, yet its
quadratic structure precisely agrees with previous results [24, 25]. Moreover, for d = 2,
we recover the operator (3.10) with b2 = −1/2, which is a choice that we found to be
interesting. As a check, we derived the full solution up to seven dimensions. Following this,
the generalized trace-flow equation (4.32) is given, and a simple calculation (4.33) verifies
its validity. In an effort to reduce the order of the deformation, we found that the choice
T 0

i = 0 = T i
0 along with

T
(d) 0

0 =
1

d− 2
T(d−1) α

α , (5.3)

for the operator in d dimensions, results in exactly the same operator in (d− 1) dimensions.
Assuming that this is true for every d ≥ 3, all greater than quadratic order terms vanish
and the deformation matches (3.10). Then, the trace of the deformed stress-tensor in d

dimensions is related to the two-dimensional one as indicated by (4.38). In order to inter-
pret this behaviour, consider a theory living in two dimensions along with its stress-tensor,
which means that the equation above gives T

(3) 0
0 = T

(2) α
α . This essentially indicates that

the third dimension is defined by the evolution of the theory in a direction normal to the
two-dimensional manifold that it is living on. From the third-dimensional perspective, the
equivalent statement is that the manifold is constructed by two-dimensional slices. Yet,
(5.3) suggests that this is true for any d, which means that one has to iterate this process
(d−2) times in d dimensions. At each iteration, the energy content of the (d−1)-dimensional
theory is propagated in a direction normal to the manifold, effectively introducing the extra
dimension. This is equivalent with the (d− 1)-dimensional slicing of a d-dimensional mani-
fold. In addition, we notice that the coefficient in front of T

(d−1) α
α in (5.3) demonstrates

in which manner the two-dimensional energy content is distributed for general d. If the ar-
guments above hold, we conclude that the deformation in higher dimensions, is essentially
given by the usual two-dimensional one, where the extra dimensions are generated by evolv-
ing the two-dimensional theory in (d − 2) normal directions in the way that we described.
The last direction of research in this paper was the study of root-TT deformations from
the massive gravity perspective. We discovered that the only case that shares some key
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features with root-TT in two dimensions is located at d = 4 in agreement with previous
approaches [51].

Let us briefly stress once more the importance of equations (4.24). During the early
stages of this work, we assumed that the solution of the flow equation (1.1) assumes the
form SG + S0, where the λ → 0 limit returns only S0 evaluated on the background f a

µ .
Notice that these are two conditions, essentially given by (2.8), one of which exclusively for
SG. Since the massive gravity density satisfies the (d + 1)-dimensional partial differential
equation (2.7) and there is only one initial condition, one is restricted to the set of solutions
that are fully determined by it. This is precisely the content of (4.24), with the constant
c1 representing the initial condition for SG and c⋆ for S0.

Finally, we would like to make some concluding remarks about a potential generalization
of our method. For the entirety of this work, we worked with operators that depended
exclusively on conserved currents of translational symmetry i.e. the stress-tensor. This
choice indicates that the background and auxiliary vielbeins must be used in the formulation
of SG, since the stress tensor is generated by the variation of the action with respect to them.
If some other conserved current, say J , is used as part of the deformation, the auxiliary
gauge field that generates J should be introduced in SG, where G now stands for gauge
field. In two dimensions this is already true [20], even in the non-relativistic limit [8], and
there is no obvious reason why this approach would not work in higher dimensions.
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A Conventions

Most of our notation agrees with [52]. Everything in this section lives in d dimensions and
we will always use the (−,+, . . . ,+) signature for the metric. Let indices Mi be either
curved (Mi → µi) or flat (Mi → mi). The (anti)symmetrization of a tensor A carrying n
indices is defined as

A[M1···Mn]
:=

1

n!

∑

σ∈Sn

sgn(σ)AMσ(1)···Mσ(n)
, A(M1···Mn)

:=
1

n!

∑

σ∈Sn

AMσ(1)···Mσ(n)
, (A.1)

where Sn is the symmetric group of order n. The Levi-Civita symbol ǫM1···Md
(or ǫM1···Md)

is exclusively used with ǫ0···d−1 = ǫ0···d−1 = 1. We also make use of the following identity

ǫM1···MnN1···Nd−n
ǫM1···MnR1···Rd−n = n!(d− n)!δR1

[N1
· · · δRd−n

Nd−n]
. (A.2)

Please note that the symbol with the indices up is independent from the one with the indices
down. In order to relate the two one needs to define the Levi-Civita tensor as follows

ǭM1···Md
:=

√∣∣∣det
[
gMN

]∣∣∣ǫM1···Md
, ǭM1···Md :=

sgn(det
[
gMN

]
)√∣∣∣det

[
gMN

]∣∣∣
ǫM1···Md . (A.3)

The Clifford algebra is given by {γa, γb} = 2ηab1d, where 1d is the d-dimensional identity
matrix. The γa matrices also satisfy (γa)† = γ0γaγ0. Moreover γa1···an := γ[a1 · · · γan].
The Dirac adjoint is defined as ψ := ψ†iγ0 and the covariant derivatives on spinors as
∇⃗µψ := (∂⃗µ+

1
4ω

ab
µ γab)ψ and ψ∇⃖µ := ψ(∂⃖µ− 1

4ω
ab

µ γab), where ω ab
µ is the spin connection.

Finally, A∇⃡µB := A∇⃗µB −A∇⃖µB.

B Characteristic and elementary symmetric polynomial(s)

The characteristic polynomial for any d× d matrix A is given by

det(ρ1d −A) =
d∑

n=0

cnρ
d−n , cn = (−1)nen(ρ1, ρ2, . . . , ρd) , (B.1)

where 1d is the d-dimensional identity matrix, ρk is the kth eigenvalue of A and en(ρ1, ρ2, . . . , ρd)
is the nth elementary symmetric polynomial which is defined as

en(ρ1, ρ2, . . . , ρd) :=
∑

16j1<j2<···<jn6d

ρj1ρj2 · · · ρjn , n ≤ d , (B.2)

with e0(ρ1, ρ2, . . . , ρd) = 1 and en>d(ρ1, ρ2, . . . , ρd) = 0. While the expressions above pro-
vide a way to calculate a determinant of a d×d matrix as a finite sum containing d terms, it
is still a highly unpractical way to do so. In order to make life simpler consider the rank of
the matrix A and the subsequent rank-nullity theorem, which in our case simply states that
rank(A − ρ1d) + γA(ρ) = d, where γA(ρ) is the geometric multiplicity associated with the
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eigenvalue ρ. Another useful fact is that γA(ρ) ≤ µA(ρ) ≤ d where µA(ρ) is the algebraic
multiplicity of ρ. Combining these two, we get that for ρ = 0 the following is true

d− rankA ≤ µA(0) , (B.3)

which in simple words translates to: the matrix A has at least d− rankA zero eigenvalues.
Considering that

d =

k∑

i=1

µA(ρi) = µA(0) + µA(ρ 6= 0) , µA(ρ 6= 0) :=

k∑

i=1

µA(ρi)(1 − δρi,0) , (B.4)

where k ≤ d is counting the distinct eigenvalues of A, (B.3) becomes

µA(ρ 6= 0) ≤ rankA , (B.5)

which means that, generally speaking, the maximum number of non-zero eigenvalues of the
matrix A is equal to rankA. Now, we revisit (B.2) and we notice that for any n such that
rankA < n, we obtain en(ρ1, ρ2, . . . , ρd) = 0. This is because we would have a product of
n eigenvalues out of which only rankA are non-zero in the best case for each term of the
n sums over the eigenvalues. This allows us to rewrite (B.1) in a much more “convenient”
form

det(ρ1d −A) =
rankA∑

n=0

cnρ
d−n , cn = (−1)nen(ρ1, ρ2, . . . , ρd) , (B.6)

where the series truncates significantly for small rankA. Finally, the Cayley-Hamilton
theorem reads

rankA∑

n=0

cnA
d−n = 0 , (B.7)

which will be used extensively in this work.

C The ansatz method

In this appendix, we will briefly review and marginally extend the ansatz method in d

dimensions for comparison reasons. The standard flow equation at the action level reads

∂S

∂λ
= O , (C.1)

where λ is the deformation parameter and O represents any deformation. A common
starting ground includes Poincaré invariance, as well as minimally coupled to a non-singular
background gµν theories. This leads to the well-known definition for the stress-tensor

Tµν :=
−2√−g

δS

δgµν
= −2Σµν + gµνL , Σµν :=

∂L
∂gµν

. (C.2)
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A natural assumption regarding the deformed theory is that for λ→ 0 one should retrieve
some known seed Poincaré invariant density L0. A suitable general ansatz for the density
L is

L = L(x0, x1, . . . , xi, . . . , xD) , (C.3)

where D > d is a positive integer. The index i that is running from 0 to D is a non-negative
integer and is counting the number of inverse metrics that the corresponding (Lorentz scalar)
element xi contains. In other words

xi := all possible contractions of Xµ1ν1···µiνi with gα1β1 · · · gαiβi , (C.4)

and the element x0 is understood to contain terms that do not couple to the background.
The multi-indexed field Xµ1ν1···µiνi corresponds to matter and is conventionally assumed to
be independent of the metric. Based on the equation above, we will now categorise each
case based on a finite number of building blocks and their corresponding index structure.
For simplicity, we will always consider only one family of fields with a fixed number of
indices i.e. we shall pick an element from the following set

{
Xµ1µ2

, . . . ,Xµ1µ2µ3···
}
, (C.5)

and start building scalars with it. One reason for this choice is that any combination of fields
with a different (or not) number of indices can be a special case of a field whose number of
indices is equal to the sum of the number of indices of the independent fields that enter the
combination we just mentioned. Another reason is that a potential combination of fields
with a different number of indices, effectively increases the degrees of freedom of a theory
which will result in significantly more complicated equations.

Let us now consider only one family of fields that can be parametrised by Xµν , which
is usually the case [11, 38, 51, 53]. Under this assumption the definition (C.4) simplifies to
the following expression

xi = gµ1ν1gµ2ν2 · · · gµiνiX(µ1(ν2
Xµ2)(ν3

· · ·Xµi)ν1)
. (C.6)

Following a similar procedure as in [11, 54], we now define the matrix Xi and xi as

(Xi)
µ
ν := Xµ

λ1
Xλ1

λ2
· · ·Xλi−1

ν , xi := (Xi)
µ
µ = tr(Xi) , (C.7)

which leads to the following properties
(
Xi+j

)µ
ν
= (Xi)

µ
λ

(
Xj

)λ
ν
, (Xi)

µ
ν =

(
[X]i

)µ
ν
, i, j ∈ N

+ , (C.8)

and consequently we may rewrite (C.3) as

L = L
(
x0, tr[X], . . . , tr

[
Xd
])

, (C.9)

where D is now reduced to d as a direct consequence of (B.7). This was first noticed in [54]
for the special antisymmetric case of Xµν but for now, we choose to remain agnostic about
any symmetries. Let us also note that these properties are generally true and independent
of the nature of the deformation.
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C.1 Deformations with determinants

In this section, we consider the following family of deformations

O =

ˆ

ddx
√−g α[detT µ

ν ]
1/β , (C.10)

where T µ
ν is the energy stress-tensor of the deformed theory L and α, β are arbitrary

constants. We should note that if β > d the deformation is relevant, if β = d it is marginal
and finally, if β < d the deformation is irrelevant. From (C.2), we have

detT µ
ν = det(Lδµν − 2Σµ

ν) . (C.11)

The advantage of this “one index upstairs, one index downstairs” notation is that one does
not have to contract with the (inverse) metric in order to calculate traces. This enables us
to use formula (B.6)

detT µ
ν =

rankΣ∑

n=0

cnLd−n , cn = (−1)nen(ρ1, ρ2, . . . , ρd) , (C.12)

where it has become evident that the complexity of the expression is directly connected
to the rank of Σ. This was noticed for the first time in [38] for the rankΣ = 1 case and
explained in more detail in [51]. Furthermore, since calculating the eigenvalues of Σ is not
an easy task we can use the following formula

en(ρ1, ρ2, . . . , ρd) =
(−1)n
n!

Bn(−p1,−1!p2,−2!p3, . . . ,−(n − 1)!pn) , pn := tr(Σn) ,

(C.13)

where Bn is the nth complete exponential Bell polynomial, thus (C.12) can take the following
form

detT µ
ν =

rankΣ∑

n=0

cn

[
tr(Σ), tr

(
Σ2
)
, . . . , tr(Σn)

]
Ld−n , (C.14)

where we explicitly state the dependence of the coefficient cn on the traces of the first n
powers of Σ. Looking back to (C.1) we observe that slowly, a non-linear yet first order
partial differential equation is forming and the struggle to keep it under control comes not
only from the rank of Σ but also from its power trace structure. Up to this point L may
contain an arbitrary number of matter fields from (C.5). Proceeding with the two index
family, a quick calculation shows

Σµ
ν =

d∑

i=1

i

2

∂L
∂xi

(Xi +XT
i )

µ
ν , tr(Σ) =

d∑

i=1

i
∂L
∂xi

xi , (XT
k )

µ
ν := (Xk)

µ
ν , (C.15)

and the trace of the nth power of Σ is given by the following non-trivial expression

tr(Σn) =
d∑

i1,...,in=1

i1 · · · in
2n

∂L
∂xi1

· · · ∂L
∂xin

tr
(
[Xi1 +XT

i1 ] · · · [Xin +XT
in ]
)
, (C.16)
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which reduces to

tr(Σn) =
d∑

i1,...,in=1




n∏

k=1

ik
∂L
∂xik


xi1+···+in , tr(Σn) =

⌊ d
2
⌋∑

i1,...,in=1




n∏

k=1

2ik
∂L
∂x2ik


x2i1+···+2in ,

(C.17)

when Xµν is symmetric and antisymmetric respectively. In the case of mixed symmetry,
the expression is no longer a function of xi and ∂xi

L, hence this approach may not apply.

C.2 Maxwell’s theory

We now follow with a minimal working example. Setting d = 3 and picking Xµν to be
antisymmetric leads to L = L(x0, x2) and it follows that rankΣ = 2. Furthermore, we set
α = 1 and β = 2 in (C.10). Then the combination of (B.7, C.1, C.10) and (C.17) leads to

∂λL =
√
L
∣∣L− 2x2∂x2L

∣∣ , L0 = x2 , (C.18)

where the absolute value comes from the square root. Picking either the positive (+) or
negative (−) branch we reach the following solutions

Ld =
2
(
1±√x2λ+

√
1± 2

√
x2λ

)

λ2
, Lc =

2
(
1±√x2λ−

√
1± 2

√
x2λ

)

λ2
. (C.19)

The final step is to identify 4x2 with −Fµν F
µν . It is worth stressing that only the Lc

set of solutions has a well-defined λ → 0 limit whereas Ld diverges to +∞ respectively.
Furthermore, it is important to note that (C.19) is the deformed Lagrangian density of any
matter action that is constructed via the antisymmetric Xµν field with L0 = x2. In other
words, the identification Xµν ↔ Fµν is not necessary as far as the deformation is concerned.

C.3 Quadratic and root deformations of sigma models

For this section we set d = 2 and we consider the deformation given by (3.10) i.e.

O =

ˆ

d2x
√−g 2b0

{
− detT µ

ν +
b2
λ′
T µ

µ −
b2(1 + b2)

λ′2

}
, (C.20)

where λ′ := 2λb0. Notice that for b0 = 1/2 and b2 = 0 the operator reduces to TT . Another
interesting albeit marginal operator is [11]

R =

ˆ

d2x
√−g br√

2

√
T µ

ν T ν
µ −

1

2
(T µ

µ )2 , (C.21)

which is usually referred as the root-TT deformation. As in the previous case, br is arbitrary
and dimensionless. We will now proceed with the deformation of sigma models considering
the two operators above. The non-linear σ-model is given by the following density

L0 = −
1

2
gµνΦµν − V +

T√−g , Φµν := Aij∂(µφ
i∂ν)φ

j , (C.22)
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where V is an arbitrary potential and T corresponds to any topological term. From there
we can identify Φµν ↔ Xµν where Xµν is now symmetric and consequently x1 ↔ gµνΦµν .
This leads to the following ansatz

L = L(Ω, x0, x1, x2) , Ω :=
√−g . (C.23)

Then, the combination of (B.7, C.1, C.17) and (C.20) leads to the following, highly non-
trivial partial differential equation

∂λ′L = (2x2 − x21)(∂x1L+ 2x1∂x2L)2 −
(
dL − b2

λ′

)2

− b2

λ′2
, (C.24)

where d := 1− x1∂x1 − 2x2∂x2 +Ω∂Ω. Similarly, for (C.21) we get

∂µL = br

√
2x2 − x21(∂x1L+ 2x1∂x2L) , (C.25)

where br has absorbed a factor of ± coming from the square root and µ is the dimensionless
deformation parameter for the root-TT operator. An interesting fact about the equation
above is that all

√−g related terms cancel exactly, something that is clearly not true in
(C.24). Equation (C.25) can be solved exactly [11] i.e.

L = L0

(
Ω, x0, x1,µ, x2,µ

)
, (C.26)

where

x1,µ = x1 cosh(brµ) +
√

2x2 − x21 sinh(brµ) ,

x2,µ = x2 cosh(2brµ) + x1

√
2x2 − x21 sinh(2brµ) ,

(C.27)

with x2,µ − x21,µ = x2 − x21 and L0 being any function. On the other hand, equation (C.24)
together with (C.22) gives

L± =
1 + b2
λ′

− 1

2λ̃′

(
1±

√
1 + 2λ̃′x1,µ + 2λ̃′

2(
x21 − x2

))
+
T√−g , (C.28)

where λ̃′ := λ′(1 − V λ′) and x1 is promoted to x1,µ in accordance with (C.26) and (C.27).
One can easily check that (C.28) satisfies (C.24) and (C.25) simultaneously. Moreover, the
limit µ → 0 is always regular, but the limit λ → 0 diverges to ±∞ with the exception of
b2 = 0 and L+, or b2 = −1 and L−. In the first case we recover (C.22) with x1 → x1,µ
and in the second x1,µ/2+T /

√−g. Finally, the two flows commute since (C.24) retains its
form after the change of coordinates: x1 → x1,µ and x2 → x2,µ.

D Deformed energy spectrum

In this final appendix, we will derive the energy spectrum of the operator (3.2) taking into
account only the first constraint (3.6). The operator now becomes

O =

ˆ

d2x
√−g

{
−2b0 detT µ

ν +
b2
λ
T µ

µ +
b3
λ2

}
. (D.1)
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As in [1], we place our theory on a Euclidean cylinder of circumference R with coordinates
(τ, x) ∼ (τ, x+R) and τ = it. After Wick rotating, (C.1) can be written as

∂λ logZE = −〈OE〉 , (D.2)

where the subscript E denotes the Euclidean version of the corresponding quantity. Please
do keep in mind that (D.2) is generally true, and is independent of the operator (D.1) or
the cylinder. In our case it follows

∂λEn(λ,R) = 2b0R 〈n|detT µ
Eν |n〉 −

b2R

λ
〈n|T µ

Eµ|n〉 −
b3R

λ2
, (D.3)

and since10

〈n|Tττ |n〉 = −
En(λ,R)

R
, 〈n|Tτx |n〉 = −

iPn(λ,R)

R
, 〈n|Txx |n〉 = −

∂En(λ,R)

∂R
, (D.4)

we reach the following equation

∂λEn = 2b0

(
En

∂En

∂R
+
P 2
n

R

)
+
b2
λ

(
En +R

∂En

∂R

)
− b3R

λ2
, (D.5)

where the λ,R dependence is suppressed. It is rather interesting that (D.5) does not seem
to have the form of the inviscid Burgers’ equation. Nevertheless, it can still be solved via
the following dimensionless quantities [56, 57]

An(u) := REn(λ,R) , Pn := RPn(λ,R) , u :=
λ

R2
, (D.6)

where Pn is a constant. This choices reduces (D.5) to an ordinary differential equation

(1 + 2b2 + 4b0uAn)A
′
n − 2b0(P2

n −A2
n) +

b3
u2

= 0 , A′
n :=

dAn

du
. (D.7)

The solutions read

E±
n (λ

′, R) = −R(1 + 2b2)

2λ′
±

√(Pn
R

)2

+

(
R(1 + 2b2)

2λ′

)2

+
2b0
(
b3R

2 + λ′En
)

λ′2
, (D.8)

where En is determined via an appropriate initial condition and Pn = 2πpn, with pn ∈ Z

on the cylinder.

E Some deformations and their coefficients

In this appendix, we will provide the deforming operators in five, six and seven dimensions
along with a table that includes their higher order coefficients. In short, the deformation

10For a detailed derivation of the pressure term one may refer to [55].
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in five dimensions is given by

O =

ˆ

d5x f

{
λ3b0 trT

5 + λ3b1 trT
4 trT + λ3b2 trT

3 trT 2 + λ3b3 trT
3(trT )2+

+λ3b4(tr T
2)2 trT + λ3b5 trT

2(tr T )3 + λ3b6(tr T )
5 + λ2b7 trT

4+

+λ2b8 trT
3 trT + λ2b9(trT

2)2 + λ2b10 trT
2(trT )2+

+λ2b11(tr T )
4 + λb12 trT

3 + λb13 trT
2 trT + λb14(trT )

3+

+β

(
trT 2 − 1

4
(trT )2

)
+
βl
λ
trT +

βc
λ2

}
,

(E.1)

in six dimensions by

O =

ˆ

d6x f

{
λ4b0 trT

6 + λ4b1 trT
5 trT + λ4b2 trT

4 trT 2 + λ4b3 trT
4(tr T )2+

+λ4b4(tr T
3)2 + λ4b5 trT

3 trT 2 trT + λ4b6 trT
3(trT )3 + λ4b7(tr T

2)3+

+λ4b8(tr T
2)2(trT )2 + λ4b9 trT

2(tr T )4 + λ4b10(trT )
6 + λ3b11 trT

5+

+λ3b12 tr T
4 trT + λ3b13 trT

3 trT 2 + λ3b14 tr T
3(trT )2 + λ3b15(tr T

2)2 trT+

+λ3b16 trT
2(trT )3 + λ3b17(trT )

5 + λ2b18 tr T
4 + λ2b19 trT

3 trT+

+λ2b20(trT
2)2 + λ2b21 trT

2(trT )2 + λ2b22(tr T )
4 + λb23 trT

3+

+λb24 trT
2 trT + λb25(tr T )

3 + β

(
trT 2 − 1

5
(tr T )2

)
+
βl
λ

trT +
βc
λ2

}
,

(E.2)

and finally in seven dimensions the deformation reads

O =

ˆ

d7x f

{
λ5b0 trT

7 + λ5b1 trT
6 trT + λ5b2 trT

5 trT 2 + λ5b3 trT
5(tr T )2+

+λ5b4 trT
4 trT 3 + λ5b5 trT

4 trT 2 trT + λ5b6 trT
4(trT )3 + λ5b7(tr T

3)2 trT+

+λ5b8 trT
3(tr T 2)2 + λ5b9 trT

3 tr T 2(trT )2 + λ5b10 trT
3(tr T )4+

+λ5b11(tr T
2)3 trT + λ5b12(trT

2)2(tr T )3 + λ5b13 trT
2(tr T )5 + λ5b14(tr T )

7+

+λ4b15 tr T
6 + λ4b16 trT

5 trT + λ4b17 trT
4 tr T 2 + λ4b18 trT

4(tr T )2+

+λ4b19(tr T
3)2 + λ4b20 trT

3 trT 2 trT + λ4b21 tr T
3(trT )3 + λ4b22(tr T

2)3+

+λ4b23(tr T
2)2(trT )2 + λ4b24 trT

2(tr T )4 + λ4b25(trT )
6 + λ3b26 trT

5+

+λ3b27 tr T
4 trT + λ3b28 trT

3 trT 2 + λ3b29 tr T
3(trT )2 + λ3b30(tr T

2)2 trT+

+λ3b31 trT
2(trT )3 + λ3b32(trT )

5 + λ2b33 tr T
4 + λ2b34 trT

3 trT+

+λ2b35(trT
2)2 + λ2b36 trT

2(trT )2 + λ2b37(tr T )
4 + λb38 trT

3+

+λb39 trT
2 trT + λb40(tr T )

3 + β

(
trT 2 − 1

6
(tr T )2

)
+
βl
λ

trT +
βc
λ2

}
.

(E.3)
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The coefficients bi are given in the table 1 below, whereas βl and βc are given by (4.30).

bi d = 5 d = 6 d = 7

b1 −15
16a

3 −24
25a

4 −35
36a

5

b2 −5
6a

3 −3
4a

4 − 7
10a

5

b3
25
48a

3 51
100a

4 91
180a

5

b4
15
32a

3 −1
3a

4 − 7
12a

5

b5 − 85
384a

3 4
5a

4 35
48a

5

b6
53

3072a
3 − 74

375a
4 −161

864a
5

b7
5
4a

2z 1
8a

4 35
108a

5

b8 −5
6a

2z − 51
200a

4 7
24a

5

b9 −5
8a

2z 329
5000a

4 − 91
216a

5

b10
15
32a

2z − 1349
375000a

4 217
3888a

5

b11 − 35
768a

2z 6
5a

3z − 35
288a

5

b12
5
3az

2 − 9
10a

3z 161
1728a

5

b13 −5
8az

2 −a3z − 1183
77760a

5

b14
5
96az

2 11
25a

3z 859
1399680a

5

bi d = 6 d = 7

b15
9
20a

3z 7
6a

4z

b16 − 41
250a

3z −14
15a

4z

b17
131

12500a
3z −7

8a
4z

b18
3
2a

2z2 7
16a

4z

b19 −4
5a

2z2 − 7
18a

4z

b20 −3
4a

2z2 7
9a

4z

b21
21
50a

2z2 − 49
324a

4z

b22 − 17
500a

2z2 7
48a

4z

b23 2az3 − 7
32a

4z

b24 −3
5az

3 119
2592a

4z

b25
1
25az

3 − 497
233280a

4z

bi d = 7

b26
7
5a

3z2

b27 −7
8a

3z2

b28 −7
6a

3z2

b29
7
18a

3z2

b30
7
16a

3z2

b31 − 7
54a

3z2

b32
91

12960a
3z2

bi d = 7

b33
7
4a

2z3

b34 −7
9a

2z3

b35 −7
8a

2z3

b36
7
18a

2z3

b37 − 35
1296a

2z3

b38
7
3az

4

b39 − 7
12az

4

b40
7

216az
4

Table 1. All higher order coefficients are listed. We have defined b0 =: ad−2 and β =: dzd−2/2 for

notational transparency.

Let us briefly provide some insight about the table above. First, one notices that b1 is equal
to −d(d−2)/(d−1)2 , and this gives the correct answer in all the cases that we have studied.
Moreover, the number of variables bi is given by

d∑

i=0

p(i)− 5 , (E.4)

where p(i) is equal to the number of integer partitions of i. Finally, their evaluation in d

dimensions is accompanied by a discouraging fact. When the d-dimensional deformation is
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considered, the leading order term, which is proportional to trT d, introduces the “highest
order” variable yd2 , in other words any yi with i > d2 does not enter the analysis. Due
to the Cayley-Hamilton theorem (B.7), the independent variables are yi with 1 ≤ i ≤ d

which means that in our case one needs to re-express the d(d− 1) variables in terms of the
independent ones. This approach is quite tedious and is not very productive for large d.
Surprisingly, the solution (4.29) eliminates this problem completely. To fully understand
this fact, let us once more consider the source of the term yd2 but now from the massive
gravity point of view. Taking a closer look to the solution, we observe that the term
proportional to detY1 contains all variables from y1 up to and including yd. In the process
of evaluating the stress-tensor, we vary this term with respect to the background vielbein
and the contribution from yd is something proportional to Yd. Then, evaluating trT d leads
to the term yd2 . It is now obvious that the extra d(d − 1) variables are coming entirely
from detY1. But we mentioned multiple times that this term decouples completely from the
background and becomes a λ-dependent part of the seed theory, therefore by pushing detY1
out of the massive gravity action and evaluating the stress-tensor, the d(d − 1) variables
identically vanish from the d-dimensional deforming operator. Their effect is essentially
reduced to the addition of the term −db0c1d detY1/λ2 on the left-hand side of equation (2.7).
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