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Abstract

In the authors’ previous analysis of the calling paradigms call-by-name and call-

by-value through Girard’s and Gödel’s embeddings into the S4 modal logic, an

asymmetry remains: the two paradigms are unified by the call-by-box paradigm

of the modal target, but only for call-by-name can one say that the paradigm

exists, up to isomorphism, inside the modal target. In this paper, we show

that, pushing further the modal analysis, a symmetric situation is revealed, in

that ordinary and Plotkin’s λ-calculi are shown to truly co-exist inside a simple

modal calculus.

Keywords: λ-calculus, call-by-name, call-by-value, S4 modal logic, Girard’s

embedding, Gödel’s embedding
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1. Introduction

There is a correspondence between logic and functional programming lan-

guages, known as the Curry-Howard isomorphism [1]. At the basis, the cor-

respondence links formulas, proofs and normalization in intuitionistic logic, on

the one hand, with respectively types, programs and reduction in the simply-

typed λ-calculus, on the other hand. Upon this basis, many other instances

of correspondences enrich the isomorphism. In our work, started in [2], we

are concerned with certain interpretations of intuitionistic logic into logics with

modalities [3] and their connection with the fundamental calling paradigms of

call-by-name and call-by-value in the λ-calculus [4].
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The first connection between modal embeddings and calling paradigms was

made in the context of linear logic [5, 6]. In our work, we seek the root and the

deep meaning of this connection, along these general lines: one can identify a

very simple modal calculus that serves as target of the modal embeddings and

show that this modal target obeys a new calling paradigm, named call-by-box,

that unifies call-by-name and call-by-value.

Specifically, in our previous work [2], we analyzed the computational inter-

pretation of the traditional mappings of intuitionistic logic into modal logic S4

named after Girard and Gödel [3]. These mappings were shown to embed the

ordinary (call-by-name, cbn) λ-calculus [7] and Plotkin’s call-by-value (cbv) λ-

calculus [4] into a very simple extension of the λ-calculus with an S4 modality.

Such embeddings were even seen as a unification of the calling paradigms cbn

and cbv by the new paradigm, call-by-box (cbb), found in the modal target.

In the context of linear logic [5, 6], one could already observe an asymmetry

between the Girard/cbn embedding and Gödel/cbv one: the latter is said to be

less interesting in [5], and has slightly weaker properties in [6]. In our work [2],

that asymmetry remained: For cbn, the treatment is as neat that we may say

Girard’s embedding just points out an isomorphic copy of the cbn λ-calculus as

a fragment of the modal target calculus. For cbv and Gödel’s embedding, the

results were not so satisfying.

In this paper, we investigate whether this asymmetry is inherent, or whether

the modal analysis of the calling paradigms can be pushed further and reveal

a hidden symmetry. We show that, by refining the modal target calculus and

accordingly recasting the embeddings, we do not lose the neat treatment of cbn,

but obtain similar results for cbv, that is: Gödel’s embedding becomes just the

indication of an isomorphic copy of Plotkin’s cbv λ-calculus as a fragment of the

modal target. In this sense, the ordinary and Plotkin’s λ-calculi truly co-exist

inside a simple modal calculus.

The slight refinement of the modal target consists in building into the un-

typed syntax a minimum of typing information—namely distinguishing between

terms that can and cannot have a modal type. This creates in the target sys-
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tem two co-existing modes, the “left-first” and the “right-first”, with which we

can qualify the application constructor and reduction. The distinction between

modes turns out to be connected to the distinction between calling paradigms.

We verify that Girard’s (resp. Gödel’s) embedding can be recast as a mapping

based on the idea of choosing the appropriate mode, translating application and

reduction to left-first (resp. right-first) application and reduction. This chain

of developments starts from a type distinction related to the modality of the

system. In this sense, this development is still deepening the modal analysis of

the calling paradigms.

Overview. Section 2 recalls basic concepts and the modal calculus λb we

introduced in our previous work. Section 3 motivates the need to improve

our previous treatment of the modal embeddings and starts that improvement

by refining the modal target to a new calculus λbb−. Section 4 introduces a

further refinement of the modal target, named λ><, geared towards an improved

treatment of the modal embeddings. Section 5 recasts the modal embeddings

as mappings with λ>< as the target. Section 6 concludes.

2. Background

We recall the call-by-name and call-by-value λ-calculi, the modal calculus

we introduced in our previous work, and Girard’s and Gödel’s embeddings.

2.1. Call-by-name and call-by-value λ-calculus

In this subsection, we briefly recall call-by-name (i.e. ordinary) λ-calculus

and Plotkin’s call-by-value λ-calculus [4] and fix some notation, terminology

and definitions used throughout the paper.

As usual, the set of λ-terms is given by

M,N,P,Q ::= x | λx.M |MN

and a value is a term of the form x or λx.M . Values are ranged over by V , W .

Two reduction rules are considered

(λx.M)N → [N/x]M (βn) (λx.M)V → [V/x]M (βv)
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Γ, x : A ` x : A

Γ, x : A1 `M : A2

Γ ` λx.M : A1 ⊃ A2

Γ `M : A1 ⊃ A2 Γ ` N : A1

Γ `MN : A2

Figure 1: (Shared) typing rules of source calculi λn and λv

where notation [N/x]M stands for the substitution of N for x in M . As usual,

→βn (resp. →βv) denotes the compatible closure of βn (resp. βv). Compatible

closure is the closure under the term formers for λ-abstraction and application,

i.e., closure under the rules:

M →M ′

MN →M ′N
(µ) N → N ′

MN →MN ′
(ν) M →M ′

λx.M → λx.M ′
(ξ)

When we equip the λ-terms with →βn , we obtain the ordinary λ-calculus, or

call-by-name (cbn) λ-calculus, here denoted λn; equipping the λ-terms with

→βv , we obtain Plotkin’s call-by-value (cbv) λ-calculus, here denoted λv.

As a small illustration of the differences between the two relations, consider

M := (λx.x)(yz); then, M →βn yz, but M is irreducible w.r.t. →βv , as yz is not

a value. (It is an immediate observation that →βv⊆→βn .)

We briefly mention the typed version of these calculi. Types are given by:

A,A′ ::= X | A ⊃ A′

Let Γ range over sets of type assignments x : A with all x distinct. The typing

system derives sequents of the form Γ ` M : A. The typing rules are given in

Fig. 1. Logically, this is a presentation of intuitionistic implicational logic.

We define sub-relations of →βn and →βv . To this end, we need the following

restriction of the ν-rule:
N → N ′

V N → V N ′
(νval)

Then we define: →w as βn closed under µ and ν; →n as βn closed under µ;

→v as βv closed under µ and νval. Furthermore, we define →∗w as the reflexive-

transitive closure of →w and similarly for →∗n and →∗v .

In →w, reduction under λ’s is forbidden, it is in this sense that →∗w is called

weak reduction, but reduction in an application can occur both in the function
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x⇒n x VAR
M ⇒n N

λx.M ⇒n λx.N
ABS

M ⇒n M
′ N ⇒n N

′

MN ⇒n M
′N ′

APP

M →∗n λx.M ′ [N/x]M ′ ⇒n P

MN ⇒n P
RDX

Figure 2: Standard reduction in λn

position or the argument position. For instance, taking again M := (λx.x)(yz),

we have that λy.M is irreducible w.r.t. →w, but M →w yz, and MN →2
w yzN

′,

if N →w N
′.

Relations →n and →v are two ways of restricting →w to get a deterministic

relation (a partial function). For instance, the term N := (λx.xy)((λz.z)w) has

two redexes w.r.t. →w, but only one under each of the two restrictions, namely:

N →n ((λz.z)w)y and N →v (λx.xy)w. But note that none of the two restricted

relations is contained in the other: for example, (λx.x)(yz) is irreducible w.r.t.

→v, but not w.r.t. →n, and x((λy.y)z) is irreducible w.r.t. →n, but not w.r.t.

→v.

We call →∗n and →∗v call-by-name evaluation and call-by-value evalu-

ation respectively. Weak reduction and cbn evaluation make sense in λn while

cbv evaluation makes sense in λv.

Both λn and λv have a standardization theorem stating the completeness of

a certain standard reduction relation, from which one can extract a notion of

standard reduction sequence [4]. In the spirit of [8], [2] shows (in Corollaries

15 and 20) that the relations that the standard reduction relations in λn and λv

(denoted by ⇒n and ⇒v resp.) can be axiomatized as in Figs. 2 and 3:

Theorem 1 (Standardization of λn and λv).

1. In λn, M →∗βn N iff M ⇒n N .

2. In λv, M →∗βv N iff M ⇒v N .

Both cbn and cbv evaluations can be given alternative “big-step style” char-

acterizations. Since in the definition of the standard reduction relations, there

is no explicit closure rule for transitivity, it needs to be built into the other
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x⇒v x VAR
M ⇒v N

λx.M ⇒v λx.N
ABS

M ⇒v M
′ N ⇒v N

′

MN ⇒v M
′N ′

APP

M →∗v λx.M ′ N →∗v V [V/x]M ′ ⇒v P

MN ⇒v P
RDX

Figure 3: Standard reduction in λv

x�n x
var

λx.M �n λx.M
abs

M �n M
′

MN �n M
′N

mu

M �n λx.M
′ [N/x]M ′ �n P

MN �n P
rdx

Figure 4: Alternative characterization of cbn-evaluation in λn.

rules. The new relations are named �n and �v respectively and are defined in

Figs. 4 and 5.

Lemma 1 (Alternative characterizations).

1. In λn: M →∗n N iff M �n N .

2. In λv: M →∗v N iff M �v N .

Proof. The proof of each of the two items follows the same pattern. The “if”

direction is by induction on the assumption. For the “only if” direction, of λv

say, one does induction on M →∗v N and uses in the step case the lemma: if

M →v P �v N , then M �v N . The latter goes by induction on M →v P .

2.2. The box calculus λb

A simple modal λ-calculus λ2, whose terms are generated by the grammar

M,N ::= x | ε(M) | λx.M |MN | box(N)

was introduced in [2] as a first vehicle to study the modal embeddings of intu-

itionistic logic into intuitionistic modal logic due to Girard and Gödel [3].

Types are given by the grammar:

A ::= X | B ⊃ A | B B ::= 2A
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x�v x
var

λx.M �v λx.M
abs

M �v M
′

MN �v M
′N

mu
M �v V N �v N

′

MN �v V N
′ nu

M �v λx.M
′ N �v V [V/x]M ′ �v P

MN �v P
rdx

Figure 5: Alternative characterization of cbv evaluation in λv.

Γ, x : B `M : A

Γ ` λx.M : B ⊃ A
Γ `M : B ⊃ A Γ ` N : B

Γ `MN : A
Γ `M : A

Γ ` box(M) : 2A

Γ, x : B ` x : B
Γ `M : 2A
Γ ` ε(M) : A Γ, x : 2A ` ε(x) : A

Figure 6: Typing rules for the modal language λ2 and λb. The rules in the first line are

common to both calculi. In the second line, the first two rules belong to λ2 while the third

belongs to λb.

Note that in implications the antecedent must be a boxed type and accordingly

types in contexts must be boxed. So, contexts Γ are sets of declarations x : B

where each x is declared at most once. The typing system derives sequents

Γ ` M : A, and the typing rules are in Fig. 6. This system corresponds to a

fragment of intuitionistic modal logic S4.

In [2], the study was then refined by introducing a sublanguage of λ2, named

λb, obtaining improved properties for the two embeddings. In this subsection,

we will focus on various aspects of λb required by the present paper.

The grammar of terms of λb is:

M,N,P,Q, T ::= ε(x) | λx.M |MN | box(N)

Contrarily to λ2, where variables x and ε correspond to distinct productions

of the grammar, λb only allows these elements in the amalgamated form ε(x).

Values V are terms of the form ε(x) or λx.M . Boxes are terms of the form

box(N), ranged over by B. Types are as for λ2 and the typing rules of λb are

in Fig. 6.
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The unique reduction rule of λb is:

(λx.M)box(N)→ [N/ε(x)]M (βb)

where [N/ε(x)]M is defined by recursion on M and all clauses are homomorphic,

except for the critical clauses

[N/ε(x)]ε(x) = N [N/ε(x)]ε(y) = ε(y) (x 6= y)

As usual, →βb denotes the compatible closure of βb, i.e., the closure of βb under

all term formers of λb.

Rule βb only fires when the argument is a box. For this reason we speak of

call-by-box (abbreviated cbb) which constitutes a calling paradigm, in the

sense that there are companion notions of evaluation and standard reduction,

and a standardization theorem holds (see below).

Several sub-relations of→βb will be needed. To this end consider the closure

rules:

M →M ′

MN →M ′N
(µ) M →M ′

MB →M ′B
(µbox) N → N ′

MN →MN ′
(ν) N → N ′

V N → V N ′
(νval)

Then:

� →we is inductively defined by βb and µ and ν.

� →b> is inductively defined by βb and µbox and ν.

� →b< is inductively defined by βb, µ and νval.

Notice: in these inductive definitions, we always close the same β-rule (hence

a single calling paradigm is at stake). Relation →we is called weak—because

values do not reduce—and external—because boxes do not reduce. The re-

lation →∗we was called call-by-box evaluation in [2], but here we prefer to call

it weak-external reduction (abbreviated w-e reduction). The w-e reduction

of a given application MN consists of the interleaved w-e reduction of M and

N in any order until a βb-redex emerges at root position. The relation →we is

non-deterministic. We may turn it into a deterministic relation by imposing
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ε(x)⇒b ε(x)
VAR

M ⇒b N

λx.M ⇒b λx.N
ABS

M ⇒b M
′ N ⇒b N

′

MN ⇒b M
′N ′

APP
M ⇒b N

box(M)⇒b box(N)
BOX

M →∗we λx.M ′ N →∗we box(N ′) [N ′/ε(x)]M ′ ⇒b P

MN ⇒b P
RDX

Figure 7: Standard reduction in λb

either the left-first (<) or right-first (>) order of reduction in applications. In

this way, we obtain two notions of call-by-box evaluation, namely →∗b> and

→∗b<. Cbn (resp. cbv) evaluation in λb will be defined later as a restriction of

→∗b> (resp. →∗b<).

In [2], it was shown that the calculus λb enjoys good properties like subject

reduction, but for the purpose of this paper the important property to recall is

standardization. Fig. 7 gives an inductive definition of the relation “M reduces

in a standard way to N in λb”, denoted M ⇒b N .

Theorem 2 (Standardization of λb). In λb, M →∗βb
N iff M ⇒b N .

2.3. Modal embeddings

In this subsection, we recall how the two modal embeddings of intuitionistic

logic into modal logic S4 due to Girard and Gödel correspond to translations

from λn and λv into the modal language λb. We will see that these trans-

lations determine notions of call-by-name and call-by-value evaluation in λb.

Additionally, we will recall from [2] a collection of properties enjoyed by these

translations.

Girard’s translation from λn to λb is given in Fig. 8.

With respect to typing, Girard’s embeddings enjoys the following property:

– Γ `M : A in λn iff 2Γ◦ `M◦ : A◦ in λb.

(Here 2Γ◦ is defined as x1 : 2A◦1, . . . , xn : 2A◦n when Γ = x1 : A1, . . . , xn : An.)
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X◦ = X x◦ = ε(x)

(A1 ⊃ A2)◦ = 2A◦1 ⊃ A◦2 (λx.M)◦ = λx.M◦

(MN)◦ = M◦box(N◦)

Figure 8: Translation from λn to λb (“Girard’s translation”)

The image of the term translation is the subset of λb terms given by the

grammar

M,N ::= ε(x) | λx.M |Mbox(N) (1)

Let us call this subset Girard’s image. Due to the restricted form of arguments

in applications, in Girard’s image relations →we and →b> collapse to the same

relation, one which can alternatively be defined as βb closed under µ. This

property of Girard’s image we call its indifference property [2, 4]. The single

deterministic relation on Girard’s image is denoted →n. By call-by-name

evaluation in λb we mean →∗n .

We recall in the next theorem the properties of Girard’s translation estab-

lished in [2]: preservation and reflection of reduction, evaluation, and standard

reduction. These properties single out Girard’s image as an isomorphic copy of

λn inside λb.

Theorem 3 (Properties of Girard’s translation).

1. (Reduction) M →βn N in λn iff M◦ →βb N
◦ in λb.

2. (Evaluation) M →n N in λn iff M◦ →n N
◦ in λb.

3. (Standard reduction) M ⇒n N in λn iff M◦ ⇒b N
◦ in λb.

An immediate corollary of this theorem and the standardization theorem for λb

is the standardization theorem for λn.

Now we turn to Gödel’s translation. In fact, throughout this paper we will

consider a refinement of Gödel’s translation, introduced in [2], which enjoys

better properties. This refinement, which we still refer to as Gödel’s translation

10



A∗ = 2A• V ∗ = box(V •)

(MN)∗ = raise(N∗)M∗

X• = X x• = ε(x)

(A1 ⊃ A2)• = 2A•1 ⊃ 2A•2 (λx.M)• = λx.M∗

Figure 9: Translation from λv to λb (“Gödel’s translation”)

throughout this paper, is given in Fig. 9 and makes use of the abbreviation

raise(M) := λz.ε(z)M

The only difference compared to Gödel’s original translation is in the case of

application, which the latter translates by: (MN)∗ = ε(M∗)N∗.

With respect to typing, Gödel’s embeddings has the following properties:

– Γ `M : A in λv iff Γ∗ `M∗ : A∗ in λb.

– Γ ` V : A in λv iff Γ∗ ` V • : A• in λb.

(Here Γ∗ is defined as x1 : A∗1, . . . , xn : A∗n, when Γ = x1 : A1, . . . , xn : An.)

The image of the translation is contained in the subset of λb terms given by

the grammar

M ::= box(V ) | VM V ::= ε(x) | λx.M (2)

For the exact image, the V in VM should be constrained to the form raise(M ′).

But the subset (2) has the advantage of being closed under →βb
. Let us allow

ourselves the abuse of calling (2) Gödel’s image. Due to the restricted form of

the term in function position in applications, in Gödel’s image, the relations→we

and →b< collapse to the same relation, one which can alternatively be defined

as βb closed under ν. This property of Gödel’s image we call its indifference

property. The single deterministic relation on Gödel’s image is denoted →v.

By call-by-value evaluation of λb, we mean →∗v .

Now we recall from [2] the properties of Gödel’s translation. Whereas typing

is preserved and reflected, the situation with (standard) reduction is not as nice,

since reflection does not hold, as Example 17 of [2] shows.
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We recall in the next theorem the properties of Gödel’s translation estab-

lished in [2]: preservation of reduction, preservation and reflection of complete

evaluation (evaluation to a value), and preservation of standard reduction.

Theorem 4 (Properties of Gödel’s translation).

1. (Reduction) If M →βv N in λv, then M∗ →2
βb
N∗ in λb.

2. (Complete evaluation) M →∗v V in λv iff M∗ →∗v V ∗ in λb.

3. (Standard reduction) If M ⇒v N in λv, then M∗ ⇒b N
∗ in λb.

3. Refined target

3.1. Motivation

In Theorems 3 and 4, we proved properties of preservation/reflection of re-

duction and evaluation that can be seen as strong forms of the translation and

simulation properties, in the sense defined by Plotkin in his study of cps trans-

lations [4]. For instance, regarding Girard’s mapping, preservation/reflection of

reduction in Theorems 3 entails the translation property: M =βn N in λn iff

M◦ =βb N
◦ in λb; preservation/reflection of evaluation in Theorems 3 entails

the simulation property: Evaln(M) = Evalb(M
◦), where Evaln and Evalb are

the partial functions which, when defined, return the value calculated by cbn

evaluation in λn and λb respectively. In addition, we discussed above why the

image of Girard’s mapping enjoys a kind of indifference property, also aligned

with the sense given by Plotkin: cbn evaluation in the image of Girard’s map-

ping is indistinguishable from mere weak external reduction, where evaluation

of applications is subject to no constraint. Moreover, the translation, simula-

tion, and indifference properties cooperate to yield standardization of λn as a

corollary of standardization of λb.

For Gödel’s mapping, Theorem 4 gives weaker results: reflection of reduction

is missing and reflection of evaluation only holds for complete evaluation to a

value. The theorem is sufficient to extract again the simulation property, and a

kind of indifference property was also observed above and is independent of these

12



slight weaknesses of the theorem. But a full translation property is missing and

standardization for λv cannot be inferred. Moreover, Theorem 3 also achieves

something different in spirit: Girard’s image (1) is a fragment of λb that is

isomorphic to λn. Theorem 4 is far from achieving anything similar for λv and

Gödel’s mapping.

In [2], the properties of Gödel’s mapping were improved by identifying sub-

relations in λb allowing reflection of (standard) reduction. Specifically, a derived

β rule

raise(box(N))box(λx.P )→ [N/ε(x)]P (βb2)

were introduced (notice that→βb2⊆→2
β), and a sub-relation of⇒b, named⇒b2,

was inductively defined by the rules in Fig. 7, with the rule RDX replaced by

this one:

N →∗we box(N ′) M →∗we box(λx.M ′) [N ′/ε(x)]M ′ ⇒b2 Q

raise(N)M ⇒b2 Q
RDX2

A form of preservation and reflection for (standard) reduction can now be ob-

tained. The improved results are collected in the following theorem (we repeat

the item for evaluation as a convenience for the reader—see the discussion that

follows the theorem):

Theorem 5 (Improved properties of Gödel’s translation).

1. (Reduction) M →βv N in λv iff M∗ →βb2 N
∗ in λb.

2. (Complete evaluation) M →∗v V in λv iff M∗ →∗v V ∗ in λb.

3. (Standard reduction) M ⇒v N in λv iff M∗ ⇒b2 N
∗ in λb.

An immediate corollary of this theorem and the standardization theorem for λb

is the standardization theorem for λv.

The proof of the third item of the previous theorem requires an addendum to

the standardization theorem of λb concerning⇒b2 (see [2]). This addendum does

not change the notion of standard reduction sequence that is implicitly defined

by ⇒b (as argued in [2]), and for this reason, we may say the standardization

13



theorems for λn and λv are obtained from a single standardization theorem for

λb, and overall an unification of λn and λv is achieved in λb.

However, the reasons to be unsatisfied with Theorem 5 remain, in its treat-

ment of Gödel’s mapping, as compared to Theorem 3, in its treatment of Girard’s

mapping. Only the derived reduction rule βb2 improves the properties of Gödel’s

mapping and one may find this an ad hoc solution: is there a conceptual expla-

nation for this second rule? In addition, βb2 does not yet turn Gödel’s image

into an isomorphic copy of λv and the indifference property of Gödel’s image

(hence the relation →v defined there) is still based on βb, not βb2. Finally, one

may see the addendum to standardization of λb referred above as a separate

proof of standardization, lowering the elegance of the unification achieved in λb.

The question arises: Is this resisting asymmetry in the analysis of cbn and

cbv through the modal embeddings by Girard and Gödel something inherent?

Or is it that our analysis was not pushed far enough? We want to prove in

this paper that the latter is the case. Specifically, we show that, by digging

deeper into λb, all the remaining defects of the treatment of cbv and Gödel’s

embedding are removed and a perfect and pleasing symmetry with cbn and

Girard’s embedding is obtained.

This digging deeper starts by refining in Subsection 3.2 the target calculus

λb of the embeddings, through the distinction between terms that can have

a modal type from those that cannot have a modal type, which leads to the

calculus λbb−. A closer look in Subsection 4.2 at this refined target calculus

shows the coexistence of two modes of reduction, “left-first” and “right-first”,

based on which we construct yet another subsystem λ><. Later, in Section 5, we

confirm that the two modes of reduction are strongly connected to the calling

paradigms cbn and cbv. See Fig. 10 for a roadmap.

3.2. The system λbb−: to be or not to be boxed

We introduce a refinement of λb, named λbb−, based on three ideas. First, we

disallow nested boxed types, that is, types of the form 22A. Second, we build

into the untyped version of the system a bit of type information, namely whether
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λb

λbb−

| |6

λ><

⊂6

λn
(·)◦
∼=
- Girard’s image

⊂ -

Gödel’s image �
(·)∗
∼=

�
⊃

λv

Figure 10: Digging deeper into λb

a given term can be typed with a boxed type or not, in the form of a syntactic

distinction between “boxed” terms P and “unboxed” terms M . As we will see,

this entails that application MQ is ambiguous, in the sense that it can still

be boxed or unboxed (only if we knew the type of M could we disambiguate).

So we are forced to split the application constructor into a boxed form and

an unboxed form. A particular case of the boxed form of application will be

of major importance, so important that we make it into a separate, primitive

constructor—and this is the third idea.

The system is now defined with comments. Types of λbb− are as follows:

(Types) A ::= B |C

(Boxed types) B ::= 2C

(Unboxed types) C ::= X |B ⊃ A

Terms of λbb− are defined by:

(Terms) T ::= M |P

(Unboxed terms) M,N ::= V |M@b−Q

(Boxed terms) P,Q ::= B |M@bQ |QP

(Values) V ::= ε(x) |λx.T

(Boxes) B ::= box(M)
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Γ, x : 2C ` ε(x) : C

Γ, x : B ` T : A

Γ ` λx.T : B ⊃ A
Γ `M : B ⊃ C Γ ` Q : B

Γ `M@b−Q : C

Γ `M : C
Γ ` box(M) : 2C

Γ `M : B′ ⊃ B Γ ` Q : B′

Γ `M@bQ : B

Γ ` Q : B′ Γ ` P : 2(B′ ⊃ B)

Γ ` QP : B

Figure 11: Typing rules of λbb−.

The typing rules of λbb−, displayed in Fig. 11, derive sequents of the forms

Γ ` T : A Γ `M : C Γ ` P : B

where Γ is a set of declarations x : B. So unboxed (resp. boxed) terms are

assigned unboxed (resp. boxed) types. Notice that it is coherent to consider

ε(x) as unboxed, because there are no nested boxed types. The term in the

function (resp. argument) position of an application is a unboxed (resp. boxed)

term M (resp. Q). But, if M = λx.T , the application of M to Q should live in

the syntactical class of T . Therefore the syntactical class of the application of

M to Q is not determined by the syntactic classes of the M and Q, and thus

we cannot tell whether the application should be unboxed or boxed. Hence we

adopt the two forms M@b−Q and M@bQ. At the typing level, M@b−Q requires

M of type B ⊃ C and receives the unboxed type C, while M@bQ requires M

of type B′ ⊃ B and receives the boxed type B.

Substitution operations [N/ε(x)]M and [N/ε(x)]P are defined by simulta-

neous recursion on M and P , producing respectively an unboxed and a boxed

term. Hence, substitution respects syntactic categories, in the sense that T and

[N/ε(x)]T are both unboxed terms, or both boxed terms. Again, the critical

clause reads: [N/ε(x)]ε(x) = N .

The β-rule of λbb− is:

(λx.T )@box(N)→ [N/ε(x)]T (βbb−)

where the tag of @ (not shown) agrees with the syntactic category of T : if T

is a unboxed (resp. boxed) term, then the tag is b− (resp. b), and we may call
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this half of βbb− βb− (resp. βb). Since the syntactic category of T agrees with the

syntactic category of the contractum, the rule βbb− respects syntactic categories.

How about QP? This construction is a particular case of M@bQ which is

made primitive; and the derived typing and reduction rules relative to such

particular case are also made primitive. Specifically, QP can be understood as

raise(Q)@bP , where raise(Q) abbreviates λz.ε(z)@bQ, with fresh z.

Notice the typing derivation in λbb−

Γ, z : 2(B′ ⊃ B) ` ε(z) : B′ ⊃ B
Γ ` Q : B′

Γ, z : 2(B′ ⊃ B) ` Q : B′
W

Γ, z : 2(B′ ⊃ B) ` ε(z)@bQ : B

Γ ` λz.ε(z)@bQ : (2(B′ ⊃ B)) ⊃ B Γ ` P : 2(B′ ⊃ B)

Γ ` (λz.ε(z)@bQ)@bP︸ ︷︷ ︸
QP

: B

which makes use of admissibility in λbb− of the weakening rule W (proved by a

simple induction over the derivation of the premiss). Accordingly, we add to

λbb− the typing rule for QP shown in Fig. 11.

Observe how, in the typing rule for QP , P should be understood as the

function, and Q as the argument, since the type of Q is the antecedent of the

implication B′ ⊃ B seen in the type of P . Yet, when we expand QP , we obtain

an application of the form (· · ·Q · · · )@bP , and for this reason we are writing Q

to the left of P .

Notice also that raise(Q)@bbox(M)→βbb− M@bQ. Again, since QP is primi-

tive, an auxiliary reduction rule for boxed functions is added:

Qbox(M)→M@bQ (O)

We call this rule the opening rule since it opens box(M).

LetR = βbb−∪O and let→bb− denote the compatible closure ofR. The relation

→∗bb− is the full (i.e., unconstrained) reduction of λbb−. Note that, as syntactic

categories are preserved by the base rules βbb− and O, syntactic categories are

also preserved by →bb−.

All this syntax maps trivially back to λb: there is a forgetful mapping | |

that erases the distinctions between boxed and unboxed terms, merges M@b−Q
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and M@bQ as MQ, and expands QP . Formally:

|ε(x)| = ε(x) |λx.T | = λx.|T | |box(M)| = box(|M |)

|M@bQ| = |M ||Q| |M@b−Q| = |M ||Q| |QP | = (λz.ε(z)|Q|)|P |

Consider the closure rules

M →M ′

M@Q→M ′@Q
(µ)

Q→ Q′

M@Q→M@Q′
(ν)

Q→ Q′

(λx.T )@Q→ (λx.T )@Q′
(νλ)

P → P ′

QP → QP ′
(µ′)

Q→ Q′

QP → Q′P
(ν′)

Q→ Q′

Qbox(M)→ Q′box(M)
(ν′box)

In the rules µ, ν and νλ, one has to choose either b− or b to tag both occurrences

of @ in the conclusion.

We define for λbb−:

– →we is the closure of R under µ, ν, µ′ and ν′.

– →b is the closure of R under µ, νλ, µ′ and ν′box.

The relation →∗we is called weak-external (we) reduction and the relation →∗b is

called call-by-box (cbb) evaluation.

The relation →we is the closure of R under all closure rules but the two

that allow reduction under λ-abstraction or box(·). Because reduction under

λ-abstraction (resp. box(·)) is forbidden, we use the adjective weak (resp. exter-

nal). In →we, reduction can happen freely in the components of applications

M@Q and QP . The relation →b constrains the closure rules ν and ν′, that is,

constrains when reduction in the argument Q is allowed.

The relation →we is not deterministic: for instance, in applications M@Q,

we can freely opt for reducing M or Q if both reductions are possible. Hence, in

weak-external reduction of applicationsM@Q, we can freely interleave reduction

of M and Q.

The relation →b is a sub-relation of →we, again a non-deterministic one

(Qbox(M) can reduce in two ways when Q →b Q
′). Nonetheless, we will see

in Lemma 3 that both weak-external reduction and call-by-box evaluation are

deterministic when reducing to a value or a box.
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Before that, we introduce in Fig. 12 an alternative, “big-step” characteriza-

tion of cbb evaluation, denoted T �b T
′. An alternative characterization of w-e

reduction, denoted T �we T
′ is defined exactly in the same way, except that the

rules mu and nu (resp. mu ′ and nu ′) are replaced by app (resp. app′) where

M �we M
′ Q�we Q

′

M@Q�we M
′@Q′

app
Q�we Q

′ P �we P
′

QP �we Q
′P ′

app′

Lemma 2 (Alternative characterization). In λbb−:

1. T →∗we T ′ iff T �we T
′.

2. T →∗b T ′ iff T �b T
′.

Proof. The proof of each of the two items follows the same pattern. The “if”

direction goes by induction on the assumption. For the “only if” direction, of

the first item say, one does induction on T →∗we T ′ and uses in the step case the

lemma: if T →we T
′′ �we T

′, then T �we T
′. The latter goes by induction on

T →we T
′′. (More details in the appendix.)

Lemma 3 (Determinism). In λbb−:

1. There is at most one T ′ such that T →∗we T ′ and T ′ is a value or a box.

2. There is at most one T ′ such that T →∗b T ′ and T ′ is a value or a box.

Proof. The proofs of the two items are analogous. We profit from the al-

ternative characterization of →∗we (resp. →∗b) offered by Lemma 2 and prove

instead: T �we T
′ (resp. T �b T

′) and T ′ is a value or a box, then T ′ is unique.

This follows by induction on T �we T
′ (resp. T �b T

′). (More details in the

appendix.)

Standard reduction of λbb− is defined in Fig. 13.

Theorem 6 (Standardization). In λbb−: T →∗bb− T ′ iff T ⇒bb− T
′.

Proof. The “if” direction is a very simple induction on T ⇒bb− T
′ and just uses

the facts that →∗bb− is reflexive, transitive and compatible, and that →∗b⊆→∗bb−.
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ε(x) �b ε(x)
var

λx.T �b λx.T
abs

box(M) �b box(M)
box

M �b M
′

M@Q�b M
′@Q

mu
P �b P

′

QP �b QP
′ mu ′

M �b λx.T Q�b Q
′

M@Q�b (λx.T )@Q′
nu

Q�b Q
′ P �b box(M)

QP �b Q
′box(M)

nu ′

M �b λx.T Q�b box(N) [N/ε(x)]T �b T
′

M@Q�b T
′ rdx

Q�b Q
′ P �b box(M) M �b M

′

QP �b M
′@bQ

′ rdx ′1

Q�b box(N) P �b box(M) M �b λx.P
′ [N/ε(x)]P ′ �b P

′′

QP �b P
′′ rdx ′2

Figure 12: Alternative characterization of cbb evaluation in λbb−. Proviso for rules mu and

nu: the two applications in the conclusion have the same tag and, in the case of the rule nu,

the tag agrees with the syntactic class of T (if T is an unboxed (resp. boxed) term, then the

tag is b− (resp. b)). Proviso for rule rdx : the tag of the application in the conclusion agrees

with the syntactic class of T and T ′ (if T and T ′ are unboxed (resp. boxed) terms, then the

tag is b− (resp. b)).

The “only if” direction is proved by establishing the admissibility of the rules

(1) to (8) in Fig. 14. Once this is done, the proof of the “only if” implication is

by induction on T →∗bb− T ′ and follows immediately from rules (1) and (8).

The following preliminary remarks are useful:

(i) If M ⇒bb− λx.T , then there is T0 such that M →∗b λx.T0 and T0 ⇒bb− T .

(ii) If P ⇒bb− box(M), then there is M0 such that P →∗b box(M0) and M0 ⇒bb−

M .

The proof of (1) is an easy induction on M . Then (2) follows from RDX

and (1), and (2’) follows from RDX ′ and (1). The proof of (3) is by induction

on T ⇒bb− T ′. The case RDX requires the substitution lemma for λbb−’s sub-

stitution, plus the following property of →b: if T →b T
′, then [N/ε(x)]T →b

[N/ε(x)]T ′. The rule (5) follows easily from (4), and the latter is proved by

induction on T →b T ′. The rule (6) follows from preliminary remarks (i)
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ε(x)⇒bb− ε(x)
VAR

T ⇒bb− T
′

λx.T ⇒bb− λx.T
′ ABS

M ⇒bb− M
′

box(M)⇒bb− box(M ′)
BOX

M ⇒bb− M
′ Q⇒bb− Q

′

M@Q⇒bb− M
′@Q′

APP
Q⇒bb− Q

′ P ⇒bb− P
′

QP ⇒bb− Q
′P ′

APP ′

M →∗b λx.T Q→∗b box(N) [N/ε(x)]T ⇒bb− T
′

M@Q⇒bb− T
′ RDX

Q→∗b Q′ P →∗b box(M) M@bQ
′ ⇒bb− P

′

QP ⇒bb− P
′ RDX ′

Figure 13: Standard reduction of λbb−. Proviso for rule APP : the two applications in the

conclusion have the same tag. Proviso for rule RDX : the tag of the application in the

conclusion agrees with the syntactic class of T and T ′ (if T and T ′ are unboxed (resp. boxed)

terms, then the tag is b− (resp. b)).

and (ii), together with (3) and (5). The rule (6’) follows from preliminary

remark (ii), together with (5). Then, (7) follows easily from (6) by induction

on T ⇒bb− (λx.T ′)box(N); and (7’) follows easily from (6’) by induction on

P ⇒bb− Qbox(M). Finally, (8) is proved by induction on T ⇒bb− T ′, and uses

(7) and (7’).

From the proof of the “if” implication of this theorem, one extracts a notion

of standard reduction sequence: it starts with cbb evaluation (correspond-

ing to applications of rules RDX and RDX ′) of the given application M@N or

QP , until one decides to freeze the outer construct and do reduction inside the

subexpressions (corresponding to the use of the other rules in Fig. 13).

4. Even more refined target

4.1. Motivation

In λbb−, we added the redundant primitive QP that can be eliminated by the

reduction rule O. But we are not interested in the normal forms w.r.t. that rule,

we do not want to eliminate QP .
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M ⇒bb− M
(1)

(λx.T )@box(N)⇒bb− [N/ε(x)]T
(2)

Qbox(M)⇒bb− M@bQ
(2′)

T ⇒bb− T
′ N ⇒bb− N

′

[N/ε(x)]T ⇒bb− [N ′/ε(x)]T ′
(3)

M →b N ⇒bb− P

M ⇒bb− P
(4)

M →∗b N ⇒bb− P

M ⇒bb− P
(5)

M ⇒bb− λx.T Q⇒bb− box(N)

M@Q⇒bb− [N/ε(x)]T
(6)

Q⇒bb− Q
′ P ⇒bb− box(M)

QP ⇒bb− M@bQ
′ (6′)

T ⇒bb− (λx.T ′)@box(N)

T ⇒bb− [N/ε(x)]T ′
(7)

P ⇒bb− Qbox(M)

P ⇒bb− M@bQ
(7′)

T ⇒bb− T
′ →bb− T

′′

T ⇒bb− T
′′ (8)

Figure 14: Admissible rules of λbb−

Indeed, in some sense QP is not eliminable, because of its role in the def-

inition of weak-external reduction and call-by-box evaluation in λbb−. Recall

that the forgetful mapping | | : λbb− → λb translates reduction in the source as

reduction in the target. But what is qualified as weak-external reduction or call-

by-box evaluation λbb− is not necessarily mapped to weak-external reduction or

call-by-box evaluation in the target, due to a detail. The closure rule ν′ allows

reduction of Q in w-e reduction of QP . But, if we map QP into λb, we obtain

(λz.ε(z)|Q|)|P |—hence the reduction of |Q| is happening inside a λ-abstraction.

Similarly for the closure rule ν′box and the cbb evaluation of Qbox(M). So the

construction QP allows to hide in λbb− what, after translation to λb, is seen as

a very particular use of reduction under λ.

In fact, in what follows, what we want is to keep the redundantQP and forbid

the construction M@bQ. Such a move is: (1) sensible since the construction

M@bQ will not be needed in the image of the embeddings, as soon as we recast

them as mappings into the refined target; and (2) possible since the rule O

shows us that every M@bQ can be expanded as QP .
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4.2. The system λ><: to be left-first or to be right-first

We thus introduce a system, denoted λ><, which is, roughly speaking, the

@b-free fragment of λbb−. Compared to λbb−: the grammar of types is unchanged;

the grammar of terms is unchanged, except that M@bQ is removed from the

grammar of boxed terms; the typing rules stay unchanged, except that the typ-

ing rule for M@bQ is dropped. We refrain from repeating all these definitions.

In λbb− or λ><, an application M@b−Q is a unboxed term, like the term M in

function position, so it necessarily unfolds as

V@b−Q1 · · ·@b−Qm (∗)

for some m ≥ 1, with Q = Qm. In (∗), brackets should be restored left-first, as

is suggested by the numbering of the successive arguments.

On the other hand, in λbb−, an application M@bQ is a boxed term, like the

term Q in argument position, so it necessarily unfolds as

Mm@b · · ·M1@bP0 (∗∗)

for some m ≥ 1, with M = Mm, and P0 not another @b. In (∗∗), brackets

should be restored right-first. Application QP should also be “right-first” since

it corresponds to a particular case of @b.

Similarly, in λ><, the application QP unfolds as

Qm · · ·Q1B

with brackets restored right-first, necessarily leading to a box, since a boxed

term P0 in λ>< is either a box or an application Q′P ′ and nothing else.

In λ><, we write MQ instead of M@b−Q.1 MQ is called left-first application

and QP is called right-first application, and, let us insist, they unfold as

V Q1 · · ·Qm Qm · · ·Q1B

1This cannot cause confusion, since in λ>< there is no M@bQ, and the other application

QP , although also written with juxtaposition, composes two boxed terms, contrary to MQ.
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These are also the general forms in λ>< of unboxed and boxed terms respectively.

The β-rule of λbb− can be simplified in λ>< as

(λx.M)box(N)→ [N/ε(x)]M (β<)

where the redex is a left-first application. Right-first application QP also comes

with its own β-rule in λ><

box(N)(box(λx.P ))→ [N/ε(x)]P (β>)

which can be understood in λbb− as the sequence of two reduction steps

box(N)(box(λx.P ))→ (λx.P )@bbox(N)→ [N/ε(x)]P (3)

In β>, the argument is passed to the function located to the right.

In both β-rules, the argument must be a box, box(N). Following the call-

by-box paradigm, this box is opened when calling the function, as happens with

βbb− of λbb−, and with βb of λb in the first place. In β>, also the function λx.P is

inside a box. This box is implicitly opened by the opening rule, as seen in (3).

Let β>< := β> ∪ β<. As usual, →β><
denotes the compatible closure of β><.

Similarly for →β<
and →β>

.

If, following what we did in λbb−, we defined →we in λ>< as the closure of β><

under the µ and ν closure rules relative to left-first and right-first applications,

we would obtain too weak a notion of weak-external reduction. In λbb−, the w-e

reduction of a term of the form Qbox(M) may open the box and reduce M in

the hope to obtain some λ-abstraction. But in λ><, since there is no rule to open

box(M), we are tempted to complement such weak notion of w-e reduction with

the possibility of reduction inside box(M). We prefer to never see such kind of

reduction and fortunately, by resorting to the “big-step” style of definition, we

have means to satisfy that preference.

Call-by-box (cbb) evaluation of λ>< (notation: T �b T
′) is defined in Fig. 15.

Weak-external reduction of λ>< (notation: T �we T
′) is defined like in Fig. 15,

except that: the rules mu< and nu< (resp. mu> and nu>) are replaced by the
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ε(x) �b ε(x)
var

λx.T �b λx.T
abs

box(M) �b box(M)
box

M �b M
′

MQ�b M
′Q

mu<
P �b P

′

QP �b QP
′ mu>

M �b λx.T Q�b Q
′

MQ�b (λx.T )Q′
nu<

Q�b Q
′ P �b box(M)

QP �b Q
′box(M)

nu>

M �b λx.M
′ Q�b box(N) [N/ε(x)]M ′ �b P

MQ�b P
rdx<

Q�b box(N) P �b box(M) M �b λx.P
′ [N/ε(x)]P ′ �b P

′′

QP �b P
′′ rdx>

Figure 15: Cbb evaluation in λ><.

ε(x)⇒>< ε(x)
VAR

T ⇒>< T ′

λx.T ⇒>< λx.T ′
ABS

M ⇒>< M ′

box(M)⇒>< box(M ′)
BOX

M ⇒>< M ′ Q⇒>< Q′

MQ⇒>< M ′Q′
APP<

Q⇒>< Q′ P ⇒>< P ′

QP ⇒>< Q′P ′
APP>

M �b λx.M
′ Q�b box(N) [N/ε(x)]M ′ ⇒>< P

MQ⇒>< P
RDX<

Q�b box(N) P �b box(M) M �b λx.P
′ [N/ε(x)]P ′ ⇒>< P ′′

QP ⇒>< P ′′
RDX>

Figure 16: Standard reduction in λ><.

following rule app< (resp. app>):

M �we M
′ Q�we Q

′

MQ�we M
′Q′

app<
Q�we Q

′ P �we P
′

QP �we Q
′P ′

app>

From the definition it follows at once that weak-external reduction can hap-

pen freely inside applications MQ and QP , and never inside a λ-abstraction or

box(·). Moreover, �b⊆�we because �we is reflexive.

Standard reduction of λ>< is defined in Fig. 16.

According to the following result, every weak-external reduction, in the sense

of λbb−, that happens between two λ><-terms also holds as a weak-external reduc-

tion in the sense of λ><; and a similar conservativity holds for cbb evaluation,
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full and standard reduction.

Lemma 4 (Conservativity). For all T, T ′ ∈ λ><:

1. (Reduction) T →∗β><
T ′ in λ>< iff T →∗bb− T ′ in λbb−.

2. (W-e reduction) T �we T
′ in λ>< iff T →∗we T ′ in λbb−.

3. (Cbb evaluation ) T �b T
′ in λ>< iff T →∗b T ′ in λbb−.

4. (Standard reduction) T ⇒>< T ′ in λ>< iff T ⇒bb− T
′ in λbb−.

Proof. Proof of 1. For the “only if” half, first one proves the result for a single

step by induction on→β><
, and then the result follows immediately by induction

on T →∗β><
T ′. For the “if” half, we prove: (a) for T1, T2 in λbb−, T1 →∗bb− T2

in λbb− implies T><1 →∗β><
T><2 in λ>< where (.)>< is the mapping into λ>< defined

homomorphically, except for (M@bQ)>< = Q><box(M><); (b) the result follows

once we observe that (.)>< is invariant for terms of λ><. (a) follows immediately

by induction, after proving: T1 →bb− T2 in λbb− implies T><1 = T><2 or T><1 →β><
T><2

in λ><. The latter follows by induction on T1 →bb− T2.

Proof of 2. “Only if”. Again, we profit from the alternative characterization

of →∗we in λbb− (Lemma 2) and prove instead: T �we T
′ in λ>< implies T �we T

′

in λ><. This is by routine induction on T �we T
′ in λ>< (note that each rule for

�we in λ>< matches exactly one rule for �we in λbb−).

“If”. Again, we crucially profit from the alternative characterization of →∗we
in Lemma 2. Then the result follows immediately from the following lemma:

if T �we T
′ in λbb− and T ∈ λ><, then: (a) if T ′ ∈ λ><, then T �we T

′ in λ><;

and (b) if T ′ is a box or a λ-abstraction, then T ′ ∈ λ><. This lemma follows by

induction on T �we T
′ in λbb−. (More details in the appendix.)

Proof of 3. Repeats the structure of the proof of 2, including an analogous

lemma for the “if” half, namely: for T ∈ λ><, T ′ ∈ λbb−, if T �b T
′ in λbb− and

T ′ is a box or a λ-abstraction, then T ′ ∈ λ><.

Proof of 4. Both the “only if” and “if” parts follow smoothly by induction

on the premise, with the help of 3. Some cases of the “if” proof also make use

of the lemma just mentioned in the proof of 3.
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It follows that w-e reduction and cbb evaluation in λ>< are deterministic

relations in the sense (and as a consequence) of Lemma 3.

Theorem 7 (Standardization). In λ><: T →∗β><
T ′ iff T ⇒>< T ′.

Proof. Immediate consequence of conservativity of λbb− over λ>< (specifically,

parts 1 and 4 of Lemma 4) and standardization of λbb− (Thm. 6): T →∗β><
T ′ iff

T →∗bb− T ′ iff T ⇒bb− T
′ iff T ⇒>< T ′.

5. Refined embeddings

The concepts of cbb evaluation and standard reduction in λ>< (Figs. 15 and

16), together with λ><’s standardization theorem, are the tools to complete the

modal analysis of λn and λv (the upper layer λbb− provided the modal foundation

of these tools, establishing the link with λb, being the source of the standard-

ization theorem, and justifying the weak-external terminology). We head to the

completion of the diagram in Fig. 10

5.1. Recasting the modal embeddings and their images

We recast the refined modal embeddings, previously seen as having images

in λb, as mappings having images in λ><. Girard’s mapping of Fig. 8, whose

target is λb, can equally be seen as landing in λ><, with λ-terms mapped to

unboxed terms, in particular application mapped to left-first application. The

typing property of Girard’s mapping, previously stated with λb, holds in the

same way, if stated with λ><.

The image of Girard’s mapping (1), which we recall here

M,N ::= ε(x) | λx.M |Mbox(N)

is the subset of the unboxed terms of λ>< determined by a chain of restrictions:

QP is eliminated (because not used in the target), so boxed terms are reduced

to boxes, which are inlined in the single place where they are used (in the

application MQ), which allows the elimination of boxed terms altogether, and
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the identification of terms T with unboxed terms. This subset is, so to speak,

the left-first half of λ>< and we call it again Girard’s image.

Gödel’s mapping of Fig. 9 can be seen as landing in λ><, with values of the

λ-calculus mapped to values, and λ-terms mapped to boxed terms, provided

(MN)∗ is defined as the right-first application N∗M∗. The typing properties

of Gödel’s mapping, stated before with λb, hold in the same way when stated

with λ><.

The image of this version of Gödel’s mapping is:

P,Q ::= box(V ) | QP V ::= ε(x) | λx.P (4)

Contrarily to (2), this is the exact image of the mapping. It defines a subset of

boxed terms, the set determined by a chain of restrictions: MQ is eliminated

(because not used in the target), so unboxed terms are identified with values

and terms T are identified with boxed terms. This subset is, so to speak, the

right-first half of λ>< and we call it Gödel’s image.

5.2. An improved and symmetric unification

It is evident that the modal embeddings put the λ-terms in 1-1 correspon-

dence with the unboxed terms in Girard’s image and the boxed terms in Gödel’s

image (in the latter case, do not forget that QP is right-associative). Such bi-

jections commute with substitution:

– [N◦/ε(x)]M◦ = ([N/x]M)◦.

– [V •/ε(x)]M∗ = ([V/x]M)∗ and [V •/ε(x)]W • = ([V/x]W )•.

Let us call these bijections modal glasses. They are the main tool in what

follows: we will restrict full reduction, w-e reduction and cbb evaluation in λ><

to both Girard’s and Gödel’s images and we will put on the glasses to see the

consequences for λn and λv.

Let us see a first example. Take rule β><. In Girard’s image, the right-first

half β> does not exist because there are no right-first applications in Girard’s
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image. The left-first half β< restricted to Girard’s image reads

(λx.M◦)box(N◦)→ [N◦/ε(x)]M◦

where M,N are λ-terms. This is the same as

((λx.M)N)◦ → ([N/x]M)◦

With the modal glasses we see that β< in Girard’s image is the same as rule βn

in λn. In Gödel’s image, the left-first half β< does not exist because there are

no left-first applications in Gödel’s image. The right-first half β> restricted to

Gödel’s image reads

box(V •)(box(λx.P ∗))→ [V •/ε(x)]P ∗

where P, V are λ-terms. This is the same as

(λx.P )∗V ∗ → ([V/x]P )∗

With the modal glasses we see that β> in Gödel’s image is the same as rule βv

in λv.

By closing β< in Girard’s image under the closure rules that make sense in

that fragment, we obtain a reduction relation that, viewed through the modal

glasses, looks the same as →βn in λn, that is: M◦ →β<
N◦ iff M →βn N . By

closing β> in Gödel’s image under the closure rules that make sense in that

fragment, we obtain a reduction relation that, seen through the modal glasses,

looks the same as →βv in λv, that is: M∗ →β>
N∗ iff M →βv N .

Next we move to cbb evaluation in Fig. 15. Let us first restrict this relation

to Girard’s image. The rules box , mu>, nu> and rdx> have no effect in this

fragment. Every argument Q is a box and, since a box can reduce to itself only,

the rule nu< becomes a particular case of the rule mu< and the second premiss

of the rule rdx< can be omitted, provided Q = box(N). As a result, we obtain

a set of rules that, seen through the modal glasses, looks the same as the set

of rules in Fig. 4. This is an informal argument for: M◦ �b N
◦ iff M �n N ,

for M,N λ-terms. Hence, cbb evaluation in Girard’s image is the same as cbn
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evaluation (of λn-terms). We call this the indifference property of Girard’s

image.

If, instead, we restrict the rules in Fig. 15 to Gödel’s image, the rules mu<,

nu< and rdx< have no effect in the fragment. Every box has the form box(V );

hence, the second and third premisses of the rule rdx> can be merged since

M = λx.P ′. As a result, we obtain a set of rules that, up to the modal glasses,

is the same as the set of rules in Fig. 5. This is an informal argument for:

M∗ �b N∗ iff M �v N , for M , N λ-terms. Therefore, cbb evaluation in

Gödel’s image is the same as cbv evaluation (of λv-terms). We call this the

indifference property of Gödel’s image.

Similarly, if we restrict the standard reduction relation of Fig. 16 to Girard’s

(resp. Gödel’s) image we obtain a set of rules that, up to the modal glasses, is

the same as the set of rules in Fig. 2 (resp. Fig. 3), giving an informal argument

for M◦ ⇒>< N◦ iff M ⇒n N (resp. M∗ ⇒>< N∗ iff M ⇒v N), for M , N λ-terms.

Let us collect the properties of Girard’s mapping.

Theorem 8 (Properties of Girard’s translation from λn to λ><).

1. M →βn N in λn iff M◦ →β<
N◦ in λ><.

2. M →∗n N in λn iff M◦ �b N
◦ in λ><.

3. M ⇒n N in λn iff M◦ ⇒>< N◦ in λ><.

As in Theorem 3, we have the same properties of preservation and reflection, at

the levels of reduction, evaluation and standard reduction.

A perfectly symmetric treatment is now obtained for Gödel’s mapping.

Theorem 9 (Properties Gödel’s of translation from λv to λ><).

1. M →βv N in λv iff M∗ →β> N∗ in λ><.

2. M →∗v N in λv iff M∗ �b N
∗ in λ><.

3. M ⇒v N in λv iff M∗ ⇒>< N∗ in λb.

Theorems 8 and 9 show that, at the levels of reduction, evaluation and

standard reduction, the respective concepts in λn and λv are unified by the cor-
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responding concept in λ><; and the theorems allow, as in [2], to extract standard-

ization for λn and λv as an immediate consequence, this time, of standardization

in λ>< (and indirectly in λbb−).

Theorem 9 should be compared with Theorem 5. A deeper analysis of the

modal target and embeddings replaced the trick of using the separate rule βb2

with a more conceptual solution that comprehends both cbn and cbv. Indeed,

the split of two β-rules happens in λbb− for purely logical reasons: the separation

of terms that can and cannot have a modal type.

A final remark. How about w-e reduction? Recall that this relation is

defined by going to Fig. 15 and replacing the mu and nu rules by the app rules.

It turns out that, in Girard’s target, w-e reduction and cbb evaluation coincide

because the rule app< is cut down to the rule mu<. But in Gödel’s target,

w-e reduction is larger than cbb evaluation, as the rule app> survives entirely.

So, at the last minute, we discover a new reduction relation in Plotkin’s λv-

calculus, whose significance remains to be understood. Is this a last sign of

the asymmetry between cbn and cbv? It is certainly a difference between the

calling paradigms, revealed by a single modal treatment of the paradigms, not

a difference between two modal treatments of the paradigms.

6. Final remarks

In this paper, we reworked the call-by-box paradigm of [2], presenting a cal-

culus with full reduction and a notion of evaluation linked by a standardization

theorem [4]; recast the modal embeddings with that target; improved the prop-

erties of Gödel’s embedding; and obtained again a unification of call-by-name

and call-by-value through call-by-box, but in a somewhat clearer way: call-by-

name and call-by-value coexist inside call-by-box, each of the former is just a

partial view of the latter, and the modal embeddings of Girard and Gödel are

reduced to “modal glasses”—isomorphisms that allow us to recognize λn and λv

inside λ><.

The progression from λb to λ>< through λbb− brings a progression of concep-

31



tual distinctions. In [2], which was based on λb, we stressed the distinction

between values and boxes. System λbb− rests on the distinction between terms

that can have a boxed type from those that cannot—a distinction generalizing

the distinction between boxes and values, which is still of purely logical char-

acter. System λ>< achieves an alignment of the distinction between boxed and

unboxed terms with the “mode” distinction between right-first and left-first,

which in turn is intimately related to the alternative between call-by-value and

call-by-name.

Our starting point was the two modal embeddings into S4, as given in [3],

one due to Gödel and the other inspired by Girard’s best known embedding of

intuitionistic logic into linear logic [5]. Of course in the background we have the

connection between the calling paradigms and the embeddings into linear logic

[6] (see [2] for more references). Another calculus subsuming call-by-name and

call-by-value λ-calculi is call-by-push-value [9], whose origin is in denotational

semantics and whose basis is the conceptual distinction between values and

computations. The reworking of call-by-push-value from denotational models

of linear logic in [10] is the source of the bang calculus [11, 12], which is another

subsuming system and a small fragment of the language proposed in [10]. In

its simplest form, the bang calculus simply adds to the λ-calculus a pair of con-

structors (“box” and ”dereliction”) inspired by the introduction and elimination

constructors of the !-modality of linear logic (in this, it compares with the very

simple modal language λ2 with which we started our inquiry in [2]). The result

is intended as an intermediate formalism between the subsumed calculi and lin-

ear logic proof-nets, through which the translations of intuitionistic logic into

linear logic can be factorized. But, for us, the connection with linear logic is

only one among several possible “instantiations” of our results; see below. In

particular, our plan is to explain the calling paradigms in the simplest modal

setting, showing that already a modal operator, without the need for linearity,

achieves a full explanation [2].

Initially [11], the bang calculus singled out a class of “values”, with properties

of discardability and duplicability—hence boxes were considered values. Later
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[12, 13], such a class was no longer singled out. For us, the separate disjoint

classes of values and boxes are crucial, and a symptom of the final distinction

between left-first and right-first modes. Since bang calculus compares with

the very simple modal language λ2, its study does not compare well with our

treatment, which starts properly with the refined modal target λb. In fact, it is

specific to our work that we are preoccupied with: the design of the modal target,

guided by the goal of expressing in the best way what the modal embeddings

have to say; the conceptual distinctions which the successive versions of the

target introduce; and the characterization of the unifying paradigm embodied in

the target, in the style of [4]. On the other hand, the study of the bang calculus

includes dimensions that we did not develop, like denotational semantics [11, 12],

non-idempotent intersection types [13], or applications of the unification of the

calling paradigms in the form of unified development of meta-theory [14].

As said, another component of our modal treatment of the calling paradigms

initiated in [2] is the idea of an instantiation of the modality of the modal target,

that is, an interpretation of the modal target into another λ-calculus that can

be post-composed with the modal embeddings, achieving a decomposition of a

known interpretation of the λ-calculus. For instance, the mappings of the λ-

calculus into the linear λ-calculus [6] are decomposed into the modal embeddings

and a linear instantiation. A similar project can be tried with the mappings

into call-by-push-value. This instantiation received a brief account in [2] and

we hope to have the opportunity to address it fully in the future.
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Appendix A. Some proofs

Lemma 2 (Alternative characterization). In λbb−:

1. T →∗we T ′ iff T �we T
′.

2. T →∗b T ′ iff T �b T
′.

Proof. The proof of each of the two items follows the same pattern. Let us

illustrate the proof of the second item.

The “if” direction goes by induction on the assumption T �b T ′. The

cases where the assumption is obtained by rule rdx ′1 or rdx ′2 both make use

of the opening rule. Let us inspect the case relative to rdx ′2, which requires

cooperation of rule βbb−. So, consider T = QP , Q �b box(N), P �b box(M),

M �b λx.P
′ and [N/ε(x)]P ′ �b T

′ (for some Q,P,N,M,P ′). By I.H., Q →∗b
box(N), P →∗b box(M), M →∗b λx.P ′ and [N/ε(x)]P ′ →∗b T ′. Three auxiliary

facts are needed: (i) P0 →∗b P1 implies Q0P0 →∗b Q0P1; (ii) Q0 →∗b Q1 implies

Q0box(M0) →∗b Q1box(M0); (iii) M0 →∗b M1 implies M0@bQ0 →∗b M1@bQ0

(each of them proved by induction on the assumption, using in the step case

the closure rules µ′, ν′box and µ, respectively). Then,

QP →∗b Qbox(M)→∗b box(N)box(M)

→b M@bbox(N)→∗b λx.P ′@bbox(N)→b [N/ε(x)]P ′ →∗b T ′,

which makes use of the opening rule in the third step, and of βbb− in the penul-

timate step. So, by transitivity of →∗b , T = QP →∗b T ′. The cases relative to

rules var , abs, box are immediate by reflexivity of →∗b and the cases relative to

the remaining rules are analogous to the case rdx ′2, but simpler.

For the “only if” direction, one does induction on T →∗b T ′. The base case

follows by reflexivity of �b, an easy induction on terms, for which only the

axioms and rules mu, mu ′ are needed. The step case follows by the lemma: if

T →b T
′′ �b T

′, then T �b T
′. This lemma goes by induction on T →b T

′′.

The base case βbb− follows by rdx and reflexivity of �b.

The base case O makes use of the two rdx ′ rules. Let us see the details. So,

T = Qbox(M), T ′′ = M@bQ (for some Q,M). Subcase T ′′ �b T
′ by rule rdx :
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M �b λx.T0, Q �b box(N) and [N/ε(x)]T0 �b T
′ (for some x, T0, N); this

and reflexivity of �b allows to apply rdx ′2 to conclude T = Qbox(M) �b T
′.

Subcase T ′′ �b T
′ by rule nu: T ′ = (λx.T0)@bQ

′, M �b λx.T0 and Q �b Q
′

(for some x, T0, Q
′); this and reflexivity of �b allows to apply rdx ′1 to conclude

T = Qbox(M) �b (λx.T0)@bQ
′ = T ′. The subcase T ′′ �b T

′ by rule mu is

similar to the case before (also using rdx ′1 and reflexivity of �b).

Let us now inspect the inductive case ν′box. So, T = Qbox(M), T ′′ =

Q′box(M) and Q →b Q
′ (for some Q,M,Q′). Subcase T ′′ �b T

′ by rule rdx ′1:

T ′ = M ′@bQ
′′, Q′ �b Q

′′ and M �b M
′ (for some Q′′,M ′); by I.H. Q�b Q

′′,

and we can reapply rdx ′1 to conclude T ′ = Qbox(M) �b M
′@bQ

′′ = T ′. The

subcases where T ′′ �b T
′ is obtained by rule rdx ′2 or rule nu ′ are analogous to

the previous subcase (a combination of the I.H. and reapplication of the respec-

tive rule). Subcase T ′′ �b T
′ by rule mu ′: T ′′ = T ′ and, since �b is reflexive,

the I.H. gives Q�b Q
′; this and reflexivity of �b allow to apply nu ′ to conclude

T = Qbox(M) �b Q
′box(M) = T ′.

Lemma 3 (Determinism). In λbb−:

1. There is at most one T ′ such that T →∗we T ′ and T ′ is a value or a box.

2. There is at most one T ′ such that T →∗b T ′ and T ′ is a value or a box.

Proof. The proofs of the two items are analogous. We give some details for

the first item.

We profit from the alternative characterization of →∗we offered in Lemma 2,

and prove instead: if T �we T
′ and T ′ is either a value or a box, then T ′ is

unique. This fact follows by induction on T �we T
′. Let us illustrate the case

where the last step is rdx ′2, hence T = QP , Q �we box(N), P �we box(M),

M �we λx.P
′ and [N/ε(x)]P ′ �we T

′ (for some Q,P,N,M,P ′). Let us argue

that for any value or box T ′′ such that T �we T
′′, T ′ = T ′′. Picking any such T ′′,

since it is a value or box, it must be the case that also T �we T
′′ was obtained

by a rdx ′2-step, with premises Q �we box(N ′), P �we box(M ′), M ′ �we λx.P
′′

and [N ′/ε(x)]P ′′ �we T
′′ , say. Immediately, by I.H., N = N ′ and M = M ′.
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From the latter and I.H. also P ′ = P ′′, hence [N/ε(x)]P ′ = [N ′/ε(x)]P ′′. Thus,

by I.H., T ′ = T ′′.

Lemma 4 (Conservativity - Part 2). For all T, T ′ ∈ λ><: T �we T
′ in λ><

iff T →∗we T ′ in λbb−.

Proof. Recall the lemma needed to complete the proof of the “if” direction:

if T �we T
′ in λbb− and T ∈ λ><, then: a) if T ′ ∈ λ><, then T �we T

′ in λ><;

and b) if T ′ is a box or a λ-abstraction, then T ′ ∈ λ><. This lemma follows by

induction on T �we T
′ in λbb−. Note that the last step of this derivation cannot

be rdx ′1 when T ′ ∈ λ>< or T ′ is a box or a λ-abstraction. Let us inspect the

case where the last step to derive T �we T
′ is rdx ′2, hence T = QP for some

Q,P ∈ λ><, and the premises are: (i) Q �we box(N), (ii) P �we box(M), (iii)

M �we λx.P
′ and (iv) [N/ε(x)]P ′ �we T

′ (for some N,M,P ′ ∈ λbb−). The

I.H. relative to (i) gives box(N) ∈ λ>< and, subsequently, Q�we box(N) in λ><.

Likewise, the I.H. relative to (ii) gives box(M) ∈ λ>< and P �we box(M) in λ><.

So, in particular, M ∈ λbb−, and the I.H. relative to (iii) gives λx.P ′ ∈ λ>< and

M �we λx.P
′ in λ><. Since P ′, N ∈ λ><, also [N/ε(x)]P ′ ∈ λ><, and so we can

use the I.H. relative to (iv) to conclude: a) T �we T
′ in λ>< when T ′ ∈ λ><; and

b) T ′ ∈ λ>< when T ′ is a box or a λ-abstraction.
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