
This is not the published version of the article / Þetta er ekki útgefna útgáfa greinarinnar

Author(s)/Höf.: Silvio Capobianco, Tarmo Uustalu

Title/Titill: Additive cellular automata graded-monadically

Year/Útgáfuár: 2023

Version/Útgáfa: post-print / ritrýnd grein

Please cite the original version:

Vinsamlega vísið til útgefnu greinarinnar:

S. Capobianco, T. Uustalu. Additive cellular automata graded-monadically.

In 25th International Symposium on Principles and Practice of Declarative Programming

(PPDP ’23), October 22–23, 2023, Lisbon, Portugal, art. 13, 9 pp. ACM, New York, 2023.

doi:10.1145/3610612.3610625.

Rights/Réttur: © The Author(s). Publication rights licensed to ACM 2023

https://doi.org/10.1145/3610612.3610625

Additive Cellular Automata Graded-Monadically
Silvio Capobianco

silvio@cs.ioc.ee
Tallinn University of Technology

Estonia

Tarmo Uustalu
tarmo@ru.is

Reykjavik University
Iceland

Tallinn University of Technology
Estonia

ABSTRACT
Cellular automata are an archetypical comonadic notion of compu-
tation in that computation happens in the coKleisli category of a
comonad. In this paper, we show that they can also be viewed as
graded comonadic—a perspective that turns out to be both more
informative and also more basic. We also discuss additive cellular
automata to show that they admit both a graded comonadic and a
graded monadic view. That these two perspectives are simultane-
ously available in this special case arises from a graded version of
an observation by Kleiner about adjoint comonad-monad pairs.

CCS CONCEPTS
• Theory of computation → Categorical semantics; Models
of computation; • Computer systems organization → Cellu-
lar architectures.

KEYWORDS
models of computation, cellular automata, additive cellular au-
tomata, comonads, adjoint comonad-monad pairs, graded comon-
ads, graded monads

1 INTRODUCTION
This paper is about cellular automata as a non-purely functional
notion of computation to showcase the potential of graded comon-
ads in mathematical semantics and also of adjoint ungraded and
graded comonad-monad pairs.

The standard approach to non-purely functional notions of com-
putation is to model their notion of function in some category other
than Set, often the Kleisli category of some (strong) monad on Set
or on some other relevant category, e.g., Cpo. Such notions of com-
putation can be usefully thought of as “effectful”—in addition to a
return value or values, a function produces an “effect”.

Notions of computation where a function is a Kleisli map of a
suitable (strong) monad are numerous; they are very well known
and understood.

Some notions of computation however cannot be modelled in
this way, but can be modelled in the coKleisli category of a (lax
monoidal) comonad. Intuitively, these notions are “context-
dependent”—in addition to the argument, the function consumes
some “context”. An elegant example of this situation is Lustre-style
causal dataflow computation where functions are causal stream

PPDP 2023, October 22–23, 2023, Lisboa, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in International
Symposium on Principles and Practice of Declarative Programming (PPDP 2023), October
22–23, 2023, Lisboa, Portugal, https://doi.org/10.1145/3610612.3610625.

functions or, equivalently, coKleisli maps of the nonempty list
comonad. A function’s return value “now” depends not only on the
argument’s value “now”, but also at some “past instants”.

Another neat example of a comonadic notion of computation
is that of cellular automata. Here the notion of function is of a
uniformly continuous transformation of configurations, the latter
being assignments of letters from some alphabet (values from some
set) to nodes in a homogeneous grid. A function’s return value
“here” depends not only on the argument’s value “here”, but also
at some “nearby nodes”. Such functions are coKleisli maps of the
cowriter comonad on the category Unif of uniform spaces, which
are a special case of topological spaces for which a good concept
of uniformly continuous function arises without introduction of a
metric.

In this paper, we revisit cellular automata (CA) in order to make
two new points. We show that, in addition to the modelling in
the coKleisli category of the cowriter comonad on Unif , worked
out in [5], they admit an explicitly “resource-aware” modelling in
the coKleisli locally graded category of a graded version of this
comonad on Set. Then we turn to additive cellular automata, whose
alphabets have the algebraic structure of commutative monoids and
the automaton has to preserve this structure. We show that they
can be modelled both in the coKleisli locally graded category of a
graded comonad as well as in the Kleisli locally graded category of a
graded monad, the graded monad being “pointwise” right adjoint to
the graded comonad. The relevant graded monad is that of formal
polynomials.

The organization of this paper is the following. First we recall the
comonadic approach to ordinary cellular automata, also recalling
comonads and the coKleisli and coEilenberg-Moore constructions.
Thenwe refine it into the graded comonadic approach. This requires
introduction of graded comonads and some locally graded category
theory. Finally we switch to additive CA.We prove a graded version
of Kleiner’s [15] observation about adjoint (ungraded) comonads
and monads and show that additive CA are both graded comonadic
and graded monadic.

2 CELLULAR AUTOMATA AS COMONADIC
2.1 Cellular automata
Cellular automata (CA) [6, 13] are amodel of computation operating
on a homogeneous grid of nodes. A configuration is a labelling of
these nodes with letters from some alphabet. When a CA is applied
to a configuration, values at all nodes are updated synchronously
and in a similar manner depending on some nodes nearby the
current node, resulting in a new configuration.

https://orcid.org/0000-0002-2936-0419
https://orcid.org/0000-0002-1297-0579
https://doi.org/10.1145/3610612.3610625

PPDP 2023, October 22–23, 2023, Lisboa, Portugal Silvio Capobianco and Tarmo Uustalu

We use a somewhat more liberal definition of cellular automaton
than is traditional in the area. We take a cellular automaton to be
parameterized by a monoid𝐺 = (𝐺, 1𝐺 , ·) (the grid, not necessarily
a group) and sets 𝑋 and 𝑌 (the input and output alphabets, not
necessarily finite, not necessarily the same). Further, the main data
of a cellular automaton is a local rule.

A local rule is a function 𝑘 : 𝑋𝐺 → 𝑌 determining the output
configuration letter 𝑘 𝑐 ∈ 𝑌 at node 1𝐺 for a given input configura-
tion 𝑐 ∈ 𝑋𝐺 . This function 𝑘 is required to be uniformly continuous:
there must exist a finite set 𝑀 ⊆ 𝐺 (called a neighborhood) such
that, for all 𝑐, 𝑐 ′ ∈ 𝑋𝐺 , we have 𝑘 𝑐 = 𝑘 𝑐 ′ as soon as 𝑐 and 𝑐 ′ agree
on 𝑀 , i.e., 𝑐𝑚 = 𝑐 ′𝑚 for all𝑚 ∈ 𝑀 .1 In other words, 𝑘 𝑐 must for
any 𝑐 be determined by the 𝑋𝑀 part of 𝑐 (written 𝑐 |𝑀), i.e., 𝑘 must
factor through 𝑋𝑀 . (Of course, if𝑀 is a neighborhood for a cellular
automaton, then so is also any finite𝑀 ′ ⊇ 𝑀 .)

Alternatively, instead of a local rule, a CA can be specified with
a global rule.

A global rule is a function 𝑓 : 𝑋𝐺 → 𝑌𝐺 , returning, for a given
input configuration 𝑐 ∈ 𝑋𝐺 , the whole output configuration 𝑓 𝑐 ∈
𝑌𝐺 . It must commute with translations in the sense that 𝑓 (𝑐▷𝑋 𝑛) =
𝑓 𝑐 ▷𝑌 𝑛 (for 𝑐 ∈ 𝑋𝐺 , 𝑛 ∈ 𝐺) where the family of functions ▷𝑋 :
𝑋𝐺 ×𝐺 → 𝑋𝐺 (translation) is defined by 𝑐▷𝑋 𝑛 = _𝑚 ∈ 𝐺. 𝑐 (𝑛 ·𝑚)
and be uniformly continuous in the sense of existence of a finite
𝑀 ⊆ 𝐺 such that, for any input configuration 𝑐 ∈ 𝑋𝐺 and node
𝑛 ∈ 𝐺 , the output configuration letter 𝑓 𝑐 𝑛 ∈ 𝑌 at 𝑛 is determined
by the 𝑋 {𝑛}·𝑀 part of 𝑐 .

The Curtis-Hedlund theorem [11] (cf. [6, Theorem 1.8.1]; the
version that is adequate for possibly infinite alphabets) states that
local rules and global rules as defined above are in bijection, one
can equivalently use either a local or a global rule to specify a
CA. The bijection is this: the global rule for a local rule 𝑘 is 𝑓 𝑐 =
_𝑛. 𝑘 (𝑐 ▷𝑋 𝑛); the local rule for a global rule 𝑓 is 𝑘 𝑐 = 𝑓 𝑐 1𝐺 .

As an example, let us consider Wolfram’s Rule 30 (=00011110).
It has (𝐺, 1𝐺 , ·) = (Z, 0, +) (the free group on one generator; this
group is commutative) as the grid, We use 𝑋 = Bool as both the
input as well as the output alphabet. The local rule is𝑘 𝑐 = 𝑐 (−1)xor
(𝑐 0∨𝑐 1). This uses the neighborhood𝑀 = {−1, 0, 1} (but any finite
superset works too). The global rule is 𝑓 𝑐 = _𝑛. 𝑐 (𝑛 − 1) xor (𝑐 𝑛 ∨
𝑐 (𝑛 + 1)).

Here is the result of iterating this CA on a particular configura-
tion (namely 𝑐 = _𝑛. (𝑛 = 0)):

. . . −4 −3 −2 −1 0 +1 +2 +3 +4 . . .

. . . 0 0 0 0 1 0 0 0 0 . . .

. . . 0 0 0 1 1 1 0 0 0 . . .

. . . 0 0 1 1 0 0 1 0 0 . . .

. . . 0 1 1 0 1 1 1 1 0 . . .

. . . 1 1 0 0 1 0 0 0 1 . . .

.

.

.

Consider also𝐺 = ({𝑎, 𝑏}∗, [], ++) (words over the alphabet {𝑎, 𝑏},
the free monoid on two generators). A good visualization of this

1Uniform continuity is strictly stronger than continuity, which requires that, for any
𝑐 ∈ 𝑋𝐺 , there exists a finite set𝑀 ⊆ 𝐺 (generally depending on 𝑐) such that, for all
𝑐′ ∈ 𝑋𝐺 , one has 𝑘 𝑐 = 𝑘 𝑐′ when 𝑐 |𝑀 = 𝑐′ |𝑀′ .

monoid as a grid is provided by its Cayley graph. Use 𝑋 = Bool as
the input and output alphabet. An input or output configuration is
then a labelling of this Cayley graphwith Booleans. Let the local rule
be 𝑘 𝑐 = at least 3 of {𝑐 [], 𝑐 𝑎, 𝑐 (aa), 𝑐 (ab), 𝑐 𝑏} hold. This uses
the neighborhood {[], 𝑎, aa, ab, 𝑏}. The corresponding global rule is
𝑓 𝑐 = _𝑤. at least 3 of {𝑐 𝑤, 𝑐 (wa), 𝑐 (waa), 𝑐 (wab), 𝑐 (wb)} hold.

Traditionally, the input and output alphabet of a CA are required
to be the same. This allows the CA to be composed with itself (the
global rule to be self-composed as a function). In the formulation
that we use here, two CA can be composed if the output alphabet of
the first and the input alphabet of the second coincide. The global
rule of the composition is given by function composition of the two
given global rules. The definition that allows for different input and
output alphabets is more general; in this paper, we have no reason
to restrict it. Also, traditionally, the grid is required to be a group,
but we will have no use for the operation of inverse. Therefore we
only ask for a monoid.

2.2 Comonads
A comonad on a category C is a functor 𝐷 : C → C together with
natural transformations Y : 𝐷 → Id (the counit) and 𝛿 : 𝐷 → 𝐷 · 𝐷
(the comultiplication) such that

𝐷

𝛿

��

𝛿 // 𝐷 · 𝐷

Y ·𝐷
��

𝐷 · 𝐷 𝐷 ·Y // 𝐷

𝐷

𝛿

��

𝛿 // 𝐷 · 𝐷

𝛿 ·𝐷
��

𝐷 · 𝐷 𝐷 ·𝛿 // 𝐷 · 𝐷 · 𝐷
Equivalently but shorter, a comonad C is a comonoid in the strict
monoidal category [C, C] of endofunctors with composition as the
tensor.

The coKleisli category CoKl(𝐷) of a comonad 𝐷 = (𝐷, Y, 𝛿) on C
has as objects objects of C and as maps from 𝑋 to 𝑌 maps 𝐷𝑋 → 𝑌

of C. The identity on 𝑋 is Y𝑋 : 𝐷𝑋 → 𝑋 and the composition
of 𝑘 : 𝐷𝑋 → 𝑌 and ℓ : 𝐷𝑌 → 𝑍 is ℓ ◦ 𝑘† : 𝐷𝑋 → 𝑍 where
𝑘† = 𝐷𝑘 ◦ 𝛿𝑋 : 𝐷𝑋 → 𝐷𝑌 (the coKleisli extension of 𝑘).

A coalgebra of a comonad 𝐷 on C is an object 𝑋 of C together
with a map b : 𝑋 → 𝐷𝑋 of C such that

𝑋
b // 𝐷𝑋

Y𝑋

��
𝑋

𝑋

b

��

b // 𝐷𝑋

𝛿𝑋

��
𝐷𝑋

𝐷b // 𝐷𝐷𝑋

A map between coalgebras (𝑋, b) and (𝑌, 𝜒) is a map 𝑓 : 𝑋 → 𝑌

such that

𝑋

b

��

𝑓 // 𝑌

𝜒

��
𝐷𝑋

𝐷𝑓 // 𝐷𝑌
The coEilenberg-Moore category CoEM(𝐷) of 𝐷 has as objects coal-
gebras of 𝐷 and as maps coalgebra maps, with the identities and
composition inherited from C.

A resolution of a comonad 𝐷 on C is a category D with functors
𝑅 : C → D and 𝐿 : D → C such that 𝐿 is left adjoint to 𝑅,𝐷 = 𝐿 ·𝑅,
Y = e and 𝛿 = 𝐿 · h · 𝑅 where e and h are the counit and unit of the
adjunction. A resolution map between (D, 𝑅, 𝐿) and (D ′, 𝑅′, 𝐿′) is

Additive Cellular Automata Graded-Monadically PPDP 2023, October 22–23, 2023, Lisboa, Portugal

a functor 𝐹 : D → D ′ such that 𝑅 = 𝑅′ · 𝐹 and 𝐹 · 𝐿 = 𝐿′. The
resolutions of a comonad form a category.

The initial resolution is given by the coKleisli category CoKl(𝐷)
with functors 𝐽 , 𝐾 where 𝐽𝑋 = 𝑋 , 𝐽 𝑓 = 𝑓 ◦ Y, 𝐾𝑋 = 𝐷𝑋 , 𝐾𝑘 = 𝑘†.
The final resolution is provided by the coEilenberg-Moore cate-
gory CoEM(𝐷) with functors 𝐹 , 𝑈 where 𝐹𝑋 = (𝐷𝑋, 𝛿𝑋) (the
cofree coalgebra of 𝐷 on 𝑋), 𝐹 𝑓 = 𝐷𝑓 , 𝑈 (𝑋, b) = 𝑋 , 𝑈 𝑓 = 𝑓 .
The unique map between these two resolutions is the functor
𝐸 : CoKl(𝐷) → CoEM(𝐷) defined on objects by 𝐸𝑋 = (𝐷𝑋, 𝛿𝑋)
andmaps by 𝐸𝑘 = 𝑘†. This functor is fully-faithful. Hence,CoKl(𝐷)
is isomorphic to the full subcategory of CoEM(𝐷) corresponding
to cofree coalgebras.

2.3 CA as comonadic
The approach of Capobianco and Uustalu [5] (and also of Piponi
[23]) to CA as comonadic is in its basic form based on the set-
theoretic cowriter comonad for the monoid 𝐺 . This is the comonad
𝐷 = (𝐷, Y, 𝛿) on Set defined by

• 𝐷𝑋 = 𝑋𝐺 ,
𝐷 (𝑓 : 𝑋 → 𝑌) (𝑐 ∈ 𝑋𝐺) = 𝑓 ◦ 𝑐 ∈ 𝑌𝐺 ,

• Y𝑋 (𝑐 ∈ 𝑋𝐺) = 𝑐 1𝐺 ∈ 𝑋 ,
• 𝛿𝑋 (𝑐 ∈ 𝑋𝐺) = _𝑛 ∈ 𝐺. 𝑐 ▷𝑋 𝑛

= _𝑛 ∈ 𝐺. _𝑚 ∈ 𝐺. 𝑐 (𝑛 ·𝑚) ∈ (𝑋𝐺)𝐺 .
CoKleisli maps of this comonad 𝐷 are functions 𝑘 : 𝑋𝐺 → 𝑌 ,

i.e., precisely CA local rules, except for the uniform continuity
requirement. Maps between cofree coalgebras of 𝐷 are functions
𝑓 : 𝑋𝐺 → 𝑌𝐺 such that 𝑓 (𝑐 ▷𝑋 𝑛) = 𝑓 𝑐 ▷𝑌 𝑛, i.e., precisely CA
global rules, again except for the uniform continuity requirement.
Moreover, these two types of maps compose precisely as CA local
resp. global rules compose. We noted above that the coKleisli cate-
gory and the full subcategory of the coEilenberg-Moore category
given by the cofree coalgebras are isomorphic for any comonad
on any category. This means that, once we accept the categorical
perspective, the Curtis-Hedlund theorem is immediate from some
generalities.

This modelling of CA with a comonad on Set has the flaw that it
ignores the uniform continuity requirement on CA local and global
rules.

Capobianco and Uustalu [5] showed that this issue can be fixed
in a principled way by switching from Set as the base category
to the category Unif of uniform spaces, endowing 𝑋𝐺 (the 𝐺-fold
product of the underlying set of a given uniform space𝑋 with itself)
with the product uniformity induced by the uniformity of 𝑋 . This
move solves the problem readily. Classical CA local and global rules
amount precisely to coKleisli maps resp. cofree coalgebra maps for
𝑋 , 𝑌 discrete of the cowriter comonad for 𝐺 on Unif . But there is
nothing forbidding one to contemplate also CA with non-discrete
alphabets 𝑋 , 𝑌 .

3 CELLULAR AUTOMATA AS GRADED
COMONADIC

An alternative way to incorporate uniform continuity, which we
promote here in this paper, is to be constructive about “there being
an 𝑀 such that. . . ” in the definition of CA: to use a particular 𝑀
as a data rather than existence of some 𝑀 as a property in this
definition.

Thismove allows one to remain in Set at the expense of switching
from a comonad to a graded comonad. Here by graded comonads
we mean the concept dual to the graded monads of Smirnov [25],
Katsumata [14] and Melliès [18]. For the coKleisli and coEilenberg-
Moore constructions for graded comonads, we adopt the approach
of McDermott and Uustalu [17], for gradedmonads, based on locally
graded category theory.

3.1 Graded comonads
A preordered set M is a set |M| with a preorder, i.e., a reflexive
and transitive binary relation ≤, in other words a thin category
(between any two objects there is at most one map). A preordered
monoid is a preordered set whose underlying set carries a monoid
structure (1, ·) with · monotone wrt. ≤ in both arguments, in other
words a thin strictly monoidal category.

Given a preordered monoid M = (|M|, ≤, 1, ·), an M-graded
comonad is given by

• a family of functors 𝐷𝑀 : C → C functorial in 𝑀 together
with

• a family of natural transformations 𝐷𝑀≤𝑀′ : 𝐷𝑀 → 𝐷𝑀′ ,
• a natural transformation Y : 𝐷1 → Id and
• a family of natural transformations 𝛿𝑁,𝑀 : 𝐷𝑁 ·𝑀→𝐷𝑁 ·𝐷𝑀

natural in 𝑁 ,𝑀
such that

𝐷𝑀

𝛿𝑀,1

��

𝛿1,𝑀 // 𝐷1 · 𝐷𝑀

Y ·𝐷𝑀

��
𝐷𝑀 · 𝐷1

𝐷𝑀 ·Y // 𝐷𝑀

𝐷𝑃 ·𝑁 ·𝑀

𝛿𝑃,𝑁 ·𝑀
��

𝛿𝑃 ·𝑁,𝑀 // 𝐷𝑃 ·𝑁 · 𝐷𝑀

𝛿𝑃,𝑁 ·𝐷𝑀

��
𝐷𝑃 · 𝐷𝑁 ·𝑀

𝐷𝑃 ·𝛿𝑁,𝑀// 𝐷𝑃 · 𝐷𝑁 · 𝐷𝑀

Functoriality of 𝐷𝑀 in𝑀 means that

𝐷𝑀≤𝑀 = id𝐷𝑀
𝐷𝑀′≤𝑀′′ ◦ 𝐷𝑀≤𝑀′ = 𝐷𝑀≤𝑀′′

and naturality of 𝛿𝑁,𝑀 in 𝑁 and𝑀 means that

𝐷𝑁 ·𝑀

𝛿𝑀,𝑁

��

𝐷𝑁 ·𝑀≤𝑁 ′·𝑀′ // 𝐷𝑁 ′ ·𝑀′

𝛿𝑁 ′,𝑀′

��
𝐷𝑁 · 𝐷𝑀

𝐷𝑁 ≤𝑁 ′ ·𝐷𝑀≤𝑀′ // 𝐷𝑁 ′ · 𝐷𝑀′

A more concise definition is that anM-graded comonad on a cat-
egory C is an oplax monoidal functor from M as a strict monoidal
category to the strict monoidal category [C, C]. Equivalently, one
can also say that it is a oplax monoidal action ofM on C.2

A comonad is a 1-graded comonad where 1 is the singleton
preordered monoid.

To talk about the coKleisli, coEilenberg-Moore constructions
and resolutions, we need locally graded categories. These were
introduced by Wood [28] under the name of wide categories (see
also Levy [16]).

Suppose given a preordered monoidM = (|M|, ≤, 1, ·). A locally
M-graded category is given by:

• a set |C| of objects;

2These definitions make perfect sense also if M is a general monoidal category. But
restricting to a preordered monoid simplifies the unpacking of the compact definitions
significantly and is general enough for our purposes here.

PPDP 2023, October 22–23, 2023, Lisboa, Portugal Silvio Capobianco and Tarmo Uustalu

• for any𝑀 ∈ |M| and 𝑋,𝑌 ∈ |C|, a set C𝑀 (𝑋,𝑌) of maps of
grade𝑀 (we write 𝑓 : 𝑋 →𝑀 𝑌 for 𝑓 ∈ C𝑀 (𝑋,𝑌));

• if 𝑀 ′ ≤ 𝑀 , then, for any map 𝑓 : 𝑋 →𝑀′ 𝑌 , a map
(𝑀 ′ ≤ 𝑀)∗ 𝑓 : 𝑋 →𝑀 𝑌 (the coercion);

• for any 𝑋 ∈ |C|, a map id𝑋 : 𝑋 →1 𝑋 (the identity);
• for any maps 𝑓 : 𝑋 →𝑀 𝑌 , 𝑔 : 𝑌 →𝑁 𝑍 , a map 𝑔 ◦ 𝑓 :
𝑋 →𝑀 ·𝑁 𝑍 (the composition)

such that
• (𝑀 ≤ 𝑀)∗ 𝑓 = 𝑓 ,
(𝑀 ′′ ≤ 𝑀)∗ 𝑓 = (𝑀 ′ ≤ 𝑀)∗ ((𝑀 ′′ ≤ 𝑀 ′)∗ 𝑓),

• 𝑓 ◦ id = 𝑓 = id ◦ 𝑓 ,
ℎ ◦ (𝑔 ◦ 𝑓) = (ℎ ◦ 𝑔) ◦ 𝑓 ,

• (𝑁 ′ ≤ 𝑁)∗𝑔 ◦ (𝑀 ′ ≤ 𝑀)∗ 𝑓 = (𝑀 ′ · 𝑁 ′ ≤ 𝑀 · 𝑁)∗ (𝑔 ◦ 𝑓).
A functor between two locally M-graded categories C and D is
a mapping 𝐹 : |C| → |D| with, for any 𝑀 ∈ |M|, 𝑋,𝑌 ∈ |C|, a
mapping 𝐹 : C𝑀 (𝑋,𝑌) → D𝑀 (𝐹𝑋, 𝐹𝑌) such that 𝐹 id𝑋 = id𝐹𝑋
and 𝐹 (𝑔 ◦ 𝑓) = 𝐹𝑔 ◦ 𝐹 𝑓 . A natural transformation between functors
𝐹 ,𝐺 between locallyM-graded categories C,D is, for any𝑋 ∈ |C|,
a map 𝜏𝑋 : 𝐹𝑋 →1 𝐺𝑋 of D such that, for any map 𝑓 : 𝑋 →𝑀 𝑌

of C, one has 𝐺𝑓 ◦ 𝜏𝑋 = 𝜏𝑌 ◦ 𝐹 𝑓 .
For a preordered monoid M = (|M|, ≤, 1, ·), we write Moprev

for the preordered monoid (|M|, ≥, 1, ·rev) where ≥ is the converse
of ≤ and𝑀 ·rev 𝑁 = 𝑁 ·𝑀 .

The coKleisli locally Moprev-graded category CoKl(𝐷) of an M-
graded comonad 𝐷 = (𝐷, Y, 𝛿) on C has as objects objects of C
and as maps of grade 𝑀 from 𝑋 to 𝑌 maps 𝐷𝑀𝑋 → 𝑌 of C. The
coercion 𝑋 →𝑀 𝑌 of 𝑘 : 𝑋 →𝑀′ 𝑌 along𝑀 ′ ≥ 𝑀 is 𝑘 ◦𝐷𝑀≤𝑀′,𝑋 :
𝐷𝑀𝑋 → 𝑌 (note that 𝑘 : 𝐷𝑀′𝑋 → 𝑌). The identity on 𝑋 is
Y𝑋 : 𝐷1𝑋 → 𝑋 and the composition 𝑋 →𝑀 ·rev𝑁 𝑍 of 𝑘 : 𝑋 →𝑀

𝑌 and ℓ : 𝑌 →𝑁 𝑍 is ℓ ◦ 𝑘†
𝑁

: 𝐷𝑁 ·𝑀𝑋 → 𝑍 where 𝑘†
𝑁

=

𝐷𝑁𝑘 ◦ 𝛿𝑁,𝑀,𝑋 : 𝐷𝑁 ·𝑀𝑋 → 𝐷𝑁𝑌 (the coKleisli extension of 𝑘)
(note that 𝑘 : 𝐷𝑀𝑋 → 𝑌 and ℓ : 𝐷𝑁𝑌 → 𝑍).

A coalgebra of 𝐷 is a functor 𝑋 from M to C together with a
family of maps b𝑁,𝑀 : 𝑋𝑁 ·𝑀 → 𝐷𝑁𝑋𝑀 of C natural in 𝑁,𝑀 such
that

𝑋𝑀
b1,𝑀 // 𝐷1𝑋𝑀

Y𝑋𝑀

��
𝑋𝑀

𝑋𝑃 ·𝑁 ·𝑀

b𝑃,𝑁 ·𝑀
��

b𝑃 ·𝑁,𝑀 // 𝐷𝑃 ·𝑁𝑋𝑀

𝛿𝑃,𝑁 ,𝑋𝑀

��
𝐷𝑃𝑋𝑁 ·𝑀

𝐷𝑃 b𝑁,𝑀// 𝐷𝑃𝐷𝑁𝑋𝑀

Amap of grade𝑀 between coalgebras (𝑋, b) and (𝑌, 𝜒) is a family
of maps 𝑓𝑁 : 𝑋𝑁 ·𝑀 → 𝑌𝑁 of C natural in 𝑁 such that

𝑋𝑃 ·𝑁 ·𝑀

b𝑃,𝑁 ·𝑀
��

𝑓𝑃 ·𝑁 // 𝑌𝑃 ·𝑁

𝜒𝑃,𝑁

��
𝐷𝑃𝑋𝑁 ·𝑀

𝐷𝑃 𝑓𝑁 // 𝐷𝑃𝑌𝑁

The coEilenberg-Moore locallyMoprev-graded category CoEM(𝐷) of
anM-graded comonad𝐷 on C has as objects coalgebras of𝐷 and as
maps of grade 𝑀 coalgebra maps of grade 𝑀 . The
𝑁 -component of the coercion (𝑋, b) →𝑀 (𝑌, 𝜒) of 𝑓 : (𝑋, b) →𝑀′

(𝑌, 𝜒) along𝑀 ′ ≥ 𝑀 is 𝑓𝑁 ◦𝑋𝑁 ·𝑀≤𝑁 ·𝑀′ : 𝑋𝑁 ·𝑀 → 𝑌𝑁 (note that
𝑓𝑁 : 𝑋𝑁 ·𝑀′ → 𝑌𝑁). The identity on (𝑋, b) is id𝑋 . The 𝑃-component
of the composition (𝑋, b) →𝑁 ·rev𝑀 (𝑍, Z) of 𝑓 : (𝑋, b) →𝑀 (𝑌, 𝜒)

and 𝑔 : (𝑌, 𝜒) →𝑁 (𝑍, Z) is 𝑔𝑃 ◦ 𝑓𝑃 ·𝑁 : 𝑋𝑃 ·𝑁 ·𝑀 → 𝑍𝑃 (note that
𝑓𝑃 ·𝑁 : 𝑋𝑃 ·𝑁 ·𝑀 → 𝑌𝑃 ·𝑁 and 𝑔𝑃 : 𝑌𝑃 ·𝑁 → 𝑍𝑃).

We omit the definition of the concept of resolution of a graded
comonad, but the coKleisli and coEilenberg-Moore locally graded
categories of 𝐷 form its initial and final resolutions. The unique
resolution map between them is the locally graded functor 𝐸 :
CoKl(𝐷) → CoEM(𝐷) defined on objects by 𝐸𝑋 = (𝐷−𝑋, 𝛿−,−,𝑋),
on maps of grade𝑀 by 𝐸 (𝑘 : 𝑋 →𝑀 𝑌) = 𝑘† : (𝐷−𝑋, 𝛿−,−,𝑋) →𝑀

(𝐷−𝑌, 𝛿−,−,𝑌) (note that 𝑘 : 𝐷𝑀𝑋 → 𝑌 , so 𝑘†
𝑁

: 𝐷𝑁 ·𝑀𝑋 → 𝐷𝑁𝑌).
We finish this minimal introduction to graded comonads and

locally graded category theory with three remarks.
First, locally graded categories are a special case of enriched

categories. IfM is small, then a locallyM-graded category is the
same thing as a category enriched in [M, Set], for a particular
monoidal structure on [M, Set] given by Day convolution.

Second, the fact that the coKleisli and coEilenberg-Moore con-
structions for graded comonads need locally graded category theory
is motivated by the fact that graded comonads are a special case
of relative comonads in the sense of locally graded category the-
ory. For details, worked out for graded monads rather than graded
comonads, see McDermott and Uustalu [17].

Third, the oprev’s are a bit of annoyance. They would go away if
we took anM-graded comonad to be an oplax monoidal functor
from Moprev (instead of M) to [C, C]; this would change the type
of 𝐷𝑀≤𝑀′ to 𝐷𝑀′ → 𝐷𝑀 and that of 𝛿𝑁,𝑀 to 𝐷𝑀 ·𝑁 → 𝐷𝑁 · 𝐷𝑀 .
The coKleisli and coEilenberg-Moore categories of anM-graded
comonad 𝐷 would then be locally M-graded and 𝐷 itself would be
a relative comonad in the locally M-graded categorical sense. But
the existing works [4, 18, 21] on graded comonads (calling them
positive actions, indexed comonads or parameterized comonads)
have made the other choice. (One could also change the types of
coercion and composition in the definition of locally M-graded
category. We are using the definition from [17], which is local
Mop-gradedness according to [16, 28].)

3.2 CA as graded comonadic
We use a graded version of the cowriter comonad for 𝐺 .

From the monoid𝐺 = (𝐺, 1𝐺 , ·), we build a preordered monoid
M = (|M|, ≤, 1, ·) by taking |M| = Pf (𝐺), ≤ = ⊇, 1 = {1𝐺 },
𝑁 ·𝑀 = {𝑛 ·𝑚 | 𝑛 ∈ 𝑁,𝑚 ∈ 𝑀}.

Then we define anM-graded comonad 𝐷 = (𝐷, Y, 𝛿) on Set by

• 𝐷𝑀𝑋 = 𝑋𝑀 ,
𝐷𝑀 (𝑓 : 𝑋 → 𝑌) (𝑐 ∈ 𝑋𝑀) = 𝑓 ◦ 𝑐 ∈ 𝑌𝑀 ,

• Y𝑋 (𝑐 ∈ 𝑋 1) = 𝑐 1𝐺 ∈ 𝑋 ,
• 𝛿𝑁,𝑀,𝑋 (𝑐 ∈ 𝑋𝑁 ·𝑀) = _𝑛 ∈ 𝑁 . 𝑐 ▷𝑁,𝑀,𝑋 𝑛

= _𝑛 ∈ 𝑁 . _𝑚 ∈ 𝑀. 𝑐 (𝑛 ·𝑚) ∈ (𝑋𝑀)𝑁 ,
• 𝐷𝑀≤𝑀′,𝑋 (𝑐 ∈ 𝑋𝑀) = 𝑐 |𝑀′

= _𝑚 ∈ 𝑀 ′. 𝑐 𝑚 ∈ 𝑋𝑀′
(note that𝑀 ′ ⊆ 𝑀).

Here ▷𝑁,𝑀,𝑋 : 𝑋𝑁 ·𝑀 × 𝑁 → 𝑋𝑀 is defined by 𝑐 ▷𝑁,𝑀,𝑋 𝑛 =

_𝑚 ∈ 𝑀. 𝑐 (𝑛 ·𝑚); this is a resource-aware version of translation.
The configuration 𝐷𝑀≤𝑀′,𝑋 𝑐 is defined as the restriction of 𝑐 .

Differently from the ungraded cowriter comonad case, coKleisli
and cofree coalgebra maps of the graded cowriter comonad are not
exactly the same as CA local and global rules like we defined them
above. Yet they are still very close.

Additive Cellular Automata Graded-Monadically PPDP 2023, October 22–23, 2023, Lisboa, Portugal

CoKleisli maps of grade 𝑀 are functions 𝑘 : 𝑋𝑀 → 𝑌 . These
have 𝑋𝑀 instead of 𝑋𝐺 as the domain: this is for the relevant part
of an input configuration instead of all of it. Local rules are often
defined in this equivalent format.

Cofree coalgebra maps of grade 𝑀 are families of functions
𝑓𝑁 : 𝑋𝑁 ·𝑀 → 𝑌𝑁 that are natural in 𝑁 (which says just that, if
𝑁 ′ ⊆ 𝑁 , then (𝑓𝑁 𝑐) |𝑁 ′ = 𝑓𝑁 ′ (𝑐 |𝑁 ′ ·𝑀) ∈ 𝑌𝑁 ′

for 𝑐 ∈ 𝑋𝑁 ·𝑀) and
satisfy the coalgebra homomorphism equation

𝑓𝑁 (𝑐 ▷𝑃,𝑁 ·𝑀,𝑋 𝑝) = 𝑓𝑃 ·𝑁 𝑐 ▷𝑃,𝑁 ,𝑌 𝑝 ∈ 𝑌𝑁

for 𝑐 ∈ 𝑋𝑃 ·𝑁 ·𝑀 , 𝑝 ∈ 𝑃 . These are an equivalent version of global
rules. Such families of functions allow one to find (at once) any
finite part of the output configuration using a large enough part of
a given input configuration.

4 ADDITIVE CELLULAR AUTOMATA
4.1 Additive CA—comonadic and graded

comonadic
Additive cellular automata [7] are an example of variations of the
concept of cellular automaton where the alphabets (and by point-
wise extension, also configurations) are equipped with some alge-
braic structure and this structure is to be preserved by the local and
global rules.

An additive cellular automaton has commutative monoids in-
stead of just sets as input and output alphabets. We will use additive
notation for these commutative monoids.

For any commutative monoid 𝑋 = (𝑋, 0𝑋 , +𝑋), the set 𝑋𝐺 (the
𝐺-fold product of the underlying set of 𝑋 with itself) also carries
an obvious pointwise commutative monoid structure: 0𝑋𝐺𝑔 = 0𝑋
and (𝑐 +𝑋𝐺 𝑑) 𝑛 = 𝑐 𝑛 +𝑋 𝑑 𝑛.

An additive CA local rule is a CA local rule 𝑘 : 𝑋𝐺 → 𝑌 for the
underlying sets of 𝑋 and 𝑌 that is additive (a commutative monoid
homomorphism), i.e., 𝑘 0𝑋𝐺 = 0𝑌 and 𝑘 (𝑐 +𝑋𝐺 𝑑) = 𝑘 𝑐 +𝑌 𝑘 𝑑 .
Ditto for additive CA global rules: they are CA global rules for the
underlying sets that are additive.

For an example, consider (𝐺, 1𝐺 , ·) = (Z, 0, +) as the grid and
let us use (𝑋, 0𝑋 , +𝑋) = (Q, 0, +) as both the input and output
alphabet. Choose the local rule to be 𝑘 𝑐 = 1

3 ∗ 𝑐 (−1) + 2
3 ∗ 𝑐 0,

then we can take𝑀 = {−1, 0} and 𝑘 is additive. The global rule is
𝑓 𝑐 = _𝑛. 13 ∗ 𝑐 (𝑛 − 1) + 2

3 ∗ 𝑐 𝑛.
Here is the result of iterating this CA on a particular configura-

tion:

. . . −2 −1 0 +1 +2 +3 +4 . . .

. . . 0 0 1 0 0 0 0 . . .

. . . 0 0 2
3

1
3 0 0 0 . . .

. . . 0 0 4
9

4
9

1
9 0 0 . . .

. . . 0 0 8
27

12
27

6
27

1
27 0 . . .

. . . 0 0 16
81

32
81

24
81

8
81

1
81 . . .

.

.

.

It is immediate that additive CA local and global rules are pre-
cisely coKleisli maps and cofree coalgebra maps of the cowriter

comonad for 𝐺 on UnifCommMon (the category of uniform com-
mutative monoids) and, in the version with the explicit modulus
𝑀 , the same as coKleisli maps and cofree coalgebra maps of the
M-graded cowriter comonad for 𝐺 on CommMon.

But additive CA also admit a different account, their local rules
are also Kleisli maps of a gradedmonad. This is because of the extra
structure of the additive setting and a general fact about adjoint
graded comonads and monads.

4.2 Adjoint (graded) comonads and monads
We need to introduce adjoint (also called conjugate) natural trans-
formations [8], also called mates.

Given categories C and D. Recall that functors 𝐿 : C → D
and 𝑅 : D → C are called adjoint (notation 𝐿 ⊣ 𝑅) if they are
equipped with a bijection (−)≻ : D(𝐿𝑋,𝑌) → C(𝑋, 𝑅𝑌) natural
in 𝑋 ∈ |C| and 𝑌 ∈ |D|; the bijection is called the right transpose.
Its inverse (−)≺ is called the left transpose. Alternatively, one can
ask for natural transformations h : Id → 𝑅 · 𝐿 and e : 𝐿 · 𝑅 → Id,
called the unit and counit, subject to what are known as the triangle
equations, or work with one the two hybrid formats, e.g., with (−)≻
and e as the primitive data.

Now, given functors 𝐿, 𝐿′ : C → D and 𝑅, 𝑅′ : D → C such
that 𝐿 ⊣ 𝑅 and 𝐿′ ⊣ 𝑅′. Natural transformations 𝜏 : 𝐿′ → 𝐿 and
\ : 𝑅 → 𝑅′ are called adjoint (notation 𝜏 ⊣ \) if, for any 𝑓 : 𝐿𝑋 → 𝑌 ,
it is the case that (𝑓 ◦ 𝜏𝑋)≻

′
= \𝑌 ◦ 𝑓 ≻ : 𝑋 → 𝑅′𝑌 . Left and right

adjoints in this sense always exist. A right adjoint of 𝜏 is defined
by \𝑋 = (id𝑅𝑋 ≺ ◦ 𝜏𝑅𝑋)≻

′
or \ = 𝑅′ · e ◦ 𝑅′ · 𝜏 · 𝑅 ◦ h′ · 𝑅; a left

adjoint of \ is symmetrically defined by 𝜏𝑋 = (\𝐿𝑋 ◦ id𝐿𝑋 ≻)≺′
or

𝜏 = e′ · 𝐿 ◦𝐿′ · 𝜏 · 𝐿 ◦𝐿′ · h. These right and left adjoints are also the
only ones, hence adjoint natural transformations are in bijection.

The following observations were published by Kleiner [15] (but
were likely known earlier).

Suppose given two endofunctors 𝐷 and 𝑇 on a category C such
that 𝐷 ⊣ 𝑇 . If 𝐷 carries a comonad structure (Y, 𝛿), then 𝑇 carries a
monad structure ([, `) that is right adjoint to it in the sense that
Y ⊣ [and 𝛿 ⊣ `. (These adjunctions are wrt. the adjunction Id ⊣ Id
and the adjunction 𝐷 · 𝐷 ⊣ 𝑇 ·𝑇 canonically induced by the given
adjunction 𝐷 ⊣ 𝑇 .) And the other way round, if 𝑇 carries a monad
structure ([, `), then 𝐷 carries a left adjoint comonad structure
(Y, 𝛿). Because of uniqueness of adjoint natural transformations,
the two constructions give a bijection between adjoint comonad
structures on 𝐷 and monad structures on 𝑇 .

For corresponding comonad and monad structures on 𝐷 resp.
𝑇 , the categories CoKl(𝐷) and Kl(𝑇) are isomorphic. The isomor-
phism is identity on objects. On maps, it is the bijection between
maps 𝐷𝑋 → 𝑌 and 𝑋 → 𝑇𝑌 provided by the transpose operations
of the adjunction.

A similar relationship occurring between monad structures on
𝑇 and comonad structures on 𝐷 when 𝑇 ⊣ 𝐷 is better known and
was first observed by Eilenberg and Moore [8] (see also [24]). In
this situation, which is actually not relevant for our application, if
either𝑇 carries a monad structure or𝐷 carries a comonad structure,
then the other carries a right adjoint comonad or a left adjoint
monad structure and EM(𝑇) and CoEM(𝐷) are isomorphic; the
isomorphism is then identity on carriers and maps.

PPDP 2023, October 22–23, 2023, Lisboa, Portugal Silvio Capobianco and Tarmo Uustalu

That the comonad equations entail the monad equations and the
other way around in both of these situations follows from unique-
ness of adjoints and from how vertical and horizontal composition
preserve adjointness:

• for 𝐿, 𝐿′, 𝐿′′ : C → D, 𝑅, 𝑅′, 𝑅′′ : D → C such that 𝐿 ⊣ 𝑅,
𝐿′ ⊣ 𝑅′, 𝐿′′ ⊣ 𝑅′′ and for 𝜏 : 𝐿′ → 𝐿, 𝜏 ′ : 𝐿′′ → 𝐿′,
\ : 𝑅 → 𝑅′, \ ′ : 𝑅′ → 𝑅′′, if 𝜏 ⊣ \ and 𝜏 ′ ⊣ \ ′, then
𝜏 ◦ 𝜏 ′ ⊣ \ ′ ◦ \ ;

• for 𝐿, 𝐿′ : C → D, 𝑅, 𝑅′ : D → C, 𝐹, 𝐹 ′ : D → E,
𝐺,𝐺 ′ : E → D such that 𝐿 ⊣ 𝑅, 𝐿′ ⊣ 𝑅′, 𝐹 ⊣ 𝐺 , 𝐹 ′ ⊣ 𝐺 ′ and
for 𝜏 : 𝐿′ → 𝐿, \ : 𝑅 → 𝑅′, 𝜙 : 𝐹 ′ → 𝐹 ,𝜓 : 𝐺 → 𝐺 ′, if 𝜏 ⊣ \
and 𝜙 ⊣ 𝜓 , then 𝜙 · 𝜏 ⊣ \ ·𝜓 .

Because of this behavior of adjoint natural transformations wrt.
compositions, the above facts about adjoint comonads and monads
scale to graded comonads and monads.

Proposition Given two assignments 𝐷,𝑇 : |M| → |[C, C]| of
endofunctors on C to elements of |M| such that 𝐷𝑀 ⊣ 𝑇𝑀 .

(1) If 𝐷 carries anM-graded comonad structure (𝐷, Y, 𝛿), then
𝑇 carries anMoprev-graded monad structure (𝑇, [, `) right
adjoint to it in the sense that 𝐷𝑀≤𝑀′ ⊣ 𝑇𝑀′≥𝑀 (notice that
𝐷𝑀≤𝑀′ : 𝐷𝑀 → 𝐷𝑀′ and 𝑇𝑀′≥𝑀 : 𝑇𝑀′ → 𝑇𝑀), Y ⊣ [and
𝛿𝑁,𝑀 ⊣ `𝑀,𝑁 . (The latter adjunctions are wrt. the adjunction
Id ⊣ Id and the adjunctions 𝐷𝑁 · 𝐷𝑀 ⊣ 𝑇𝑀 ·𝑇𝑁 canonically
induced by the adjunctions 𝐷𝑀 ⊣ 𝑇𝑀 and 𝐷𝑁 ⊣ 𝑇𝑁 .)
And conversely, if 𝑇 carries an Moprev-graded monad struc-
ture (𝑇, [, `), then𝐷 carries a left adjointM-graded comonad
structure (𝐷, Y, 𝛿).

(2) The two constructions form a bijection.
(3) For corresponding structures on𝐷 and𝑇 , the locallyMoprev-

graded categories CoKl(𝐷) and Kl(𝑇) are isomorphic.

Proof sketch

(1) Given an M-graded comonad structure (𝐷, Y, 𝛿), the data
𝑇𝑀′≥𝑀 , [, `𝑀,𝑁 can be produced from the data 𝐷𝑀≤𝑀′ , Y,
𝛿𝑁,𝑀 using the explicit right adjoint formula.
That these data satisfy the equations of anMoprev-graded
monad is proved using that compositions are preserved by
adjointness.
E.g., by construction, we have 𝐷𝑀≤𝑀′ ⊣ 𝑇𝑀′≥𝑀 , 𝐷𝑀′≤𝑀′′ ⊣
𝑇𝑀′′≥𝑀′ and 𝐷𝑀≤𝑀′′ ⊣ 𝑇𝑀′′≥𝑀 . Thus, 𝐷𝑀′≤𝑀′′ ◦ 𝐷𝑀≤𝑀′ ⊣
𝑇𝑀′≥𝑀 ◦𝑇𝑀′′≥𝑀′ . Because 𝐷𝑀 is functorial in 𝑀 , we have
𝐷𝑀′≤𝑀′′ ◦𝐷𝑀≤𝑀′ = 𝐷𝑀≤𝑀′′ , hence also𝑇𝑀′≥𝑀 ◦𝑇𝑀′′≥𝑀′ =

𝑇𝑀′′≥𝑀 since one natural transformation cannot have two
different right adjoints.
Likewise, by construction, we have Y ⊣ [and 𝛿1,𝑀 ⊣ `𝑀,1.
This gives Y · 𝐷𝑀 ⊣ 𝑇𝑀 · [and further Y · 𝐷𝑀 ◦ 𝛿1,𝑀 ⊣
`𝑀,1 ◦𝑇𝑀 · [. We also have id𝐷 ⊣ id𝑇 . The left counitality
equation of𝐷 assures that Y ·𝐷𝑀 ◦𝛿1,𝑀 = id𝐷 . By uniqueness
of right adjointness, this forces `𝑀,1 ◦𝑇𝑀 · [= id𝑇 , i.e., the
right unitality equation of 𝑇 .
The converse direction is symmetric.

(2) This is immediate from adjoint natural transformations being
in bijection.

(3) The locally Moprev-graded categories CoKl(𝐷) and Kl(𝑇)
have the same objects.

The homsets CoKl(𝐷)𝑀 (𝑋,𝑌) and Kl(𝑇)𝑀 (𝑋,𝑌) consist of
maps 𝐷𝑀𝑋 → 𝑌 and 𝑋 → 𝑇𝑀𝑌 of C respectively and these
are in bijection via the right transpose of the adjunction
𝐷𝑀 ⊣ 𝑇𝑀 .
Given a map 𝑘 : 𝑋 →𝑀′ 𝑌 of CoKl(𝐷) (i.e., a map 𝑘 :
𝐷𝑀′𝑋 → 𝑌 of C), its coercion along𝑀 ′ ≥ 𝑀 is𝑘◦𝐷𝑀≤𝑀′,𝑋 :
𝐷𝑀𝑋 → 𝑌 . Since 𝐷𝑀≤𝑀′ ⊣ 𝑇𝑀′≥𝑀 , its right transpose is
(𝑘 ◦ 𝐷𝑀≤𝑀′,𝑋)≻ = 𝑇𝑀′≥𝑀 ◦ 𝑘≻ : 𝑋 → 𝑇𝑀𝑌 , which is the
coercion along𝑀 ′ ≥ 𝑀 of the map 𝑘≻ : 𝑋 →𝑀′ 𝑌 of Kl(𝑇)
(i.e., the map 𝑘≻ : 𝑋 → 𝑇𝑀′𝑌 of C).
The identity on 𝑋 of CoKl(𝐷) is Y𝑋 : 𝐷1𝑋 → 𝑋 . Since Y ⊣ [,
its right transpose is Y𝑋 ≻ = (id𝑋 ◦ Y𝑋)≻ = [𝑋 ◦ id𝑋 = [𝑋 :
𝑋 → 𝑇1𝑋 , which is the identity on 𝑋 of Kl(𝑇).
Given maps 𝑘 : 𝑋 →𝑀 𝑌 and ℓ : 𝑌 →𝑁 𝑍 of CoKl(𝐷)
(i.e., maps 𝑘 : 𝐷𝑀𝑋 → 𝑌 and ℓ : 𝐷𝑁𝑌 → 𝑍 of C), their
composition 𝑋 →𝑀 ·rev𝑁 𝑍 is the map ℓ ◦ 𝐷𝑁𝑘 ◦ 𝛿𝑁,𝑀,𝑋 :
𝐷𝑁 ·𝑀𝑋 → 𝑍 . Since 𝛿𝑁,𝑀 ⊣ `𝑀,𝑁 , its right transpose is
(ℓ ◦ 𝐷𝑁𝑘 ◦ 𝛿𝑁,𝑀,𝑋)≻ = `𝑀,𝑁,𝑍 ◦ (ℓ ◦ 𝐷𝑁𝑘)≻≻ = `𝑀,𝑁,𝑍 ◦
(ℓ≻ ◦𝑘)≻ = `𝑀,𝑁,𝑍 ◦𝑇𝑀 ℓ≻ ◦𝑘≻ : 𝑋 → 𝑇𝑁 ·𝑀𝑍 . As required,
this is the composition 𝑋 →𝑀 ·rev𝑁 𝑍 of 𝑘≻ : 𝑋 →𝑀 𝑌

and ℓ≻ : 𝑌 →𝑁 𝑍 of Kl(𝑇) (i.e., 𝑘≻ : 𝑋 → 𝑇𝑀𝑌 and
ℓ≻ : 𝑌 → 𝑇𝑁𝑍 of C). □

A similar relationship holds between Moprev-graded monad
structures on 𝑇 and M-graded comonad structures on 𝑇, 𝐷 :
|M| → |[C, C]| when 𝑇𝑀 ⊣ 𝐷𝑀 . In this case, for correspond-
ing structures on 𝑇 and 𝐷 , the locally Moprev-graded categories
EM(𝑇) and CoEM(𝐷) are isomorphic.

4.3 Additive CA as graded monadic
A straightforward fact relevant for additive CA with uniform conti-
nuity modulus𝑀 ⊆ 𝐺 is that an additive function 𝑘 : 𝑋𝑀 → 𝑌 is
fully determined by what it does on relevant point configurations,
i.e., partial configurations [𝑚 ↦→ 𝑥]𝑀 ∈ 𝑋𝑀 defined by

[𝑚 ↦→ 𝑥]𝑀 = _𝑚′ ∈ 𝑀. if 𝑚′ =𝑚 then 𝑥 else 0𝑋

for𝑚 ∈ 𝑀 , 𝑥 ∈ 𝑋 . Indeed, if 𝑘 : 𝑋𝑀 → 𝑌 is additive, then, for any
𝑐 ∈ 𝑋𝑀 , one has

𝑘 𝑐 = 𝑘 (
⊕
𝑚∈𝑀

[𝑚 ↦→ 𝑐𝑚]) =
⊕
𝑚∈𝑀

𝑘 [𝑚 ↦→ 𝑐𝑚]

Notice that, since 𝑀 is finite and addition is commutative, these
sums are well-defined.

It follows that additive functions 𝑘 : 𝑋𝑀 → 𝑌 are in bijection
with additive functions 𝜙 : 𝑋 → 𝑌𝑀 via

𝑘≻ 𝑥 = _𝑚 ∈ 𝑀.𝑘 [𝑚 ↦→ 𝑥]𝑀

𝜙≺ 𝑐 =
⊕
𝑚∈𝑀

𝜙 (𝑐𝑚)𝑚

Indeed, it is straightforward to verify that, if 𝜙 is additive, then
𝜙≺ is additive and, vice versa, if 𝑘 is additive, then so is 𝑘≻ .

Additive Cellular Automata Graded-Monadically PPDP 2023, October 22–23, 2023, Lisboa, Portugal

Moreover, given an additive function 𝜙 , we have

𝜙≺≻ 𝑥 = _𝑚 ∈ 𝑀.𝜙≺ [𝑚 ↦→ 𝑥]
= _𝑚 ∈ 𝑀.

⊕
𝑚′∈𝑀

𝜙 ([𝑚 ↦→ 𝑥]𝑀𝑚′)𝑚′

= _𝑚 ∈ 𝑀.
⊕
𝑚′∈𝑀

𝜙 (if 𝑚′ =𝑚 then 𝑥 else 0𝑋)𝑚′

= _𝑚 ∈ 𝑀.
⊕
𝑚′∈𝑀

if 𝑚′ =𝑚 then 𝜙 𝑥𝑚′ else 𝜙 0𝑋 𝑚′

= _𝑚 ∈ 𝑀.
⊕
𝑚′∈𝑀

if 𝑚′ =𝑚 then 𝜙 𝑥𝑚′ else 0𝑌

= _𝑚 ∈ 𝑀.𝜙 𝑥 𝑚

and, given an additive function 𝑘 , we have

𝑘≻≺ 𝑐 =
⊕
𝑚∈𝑀

𝑘≻ (𝑐𝑚)𝑚

=
⊕
𝑚∈𝑀

𝑘 [𝑚 ↦→ 𝑐𝑚]𝑀

= 𝑘 (
⊕
𝑚∈𝑀

[𝑚 ↦→ 𝑐𝑚]𝑀)

= 𝑘 𝑐

Recall that a function 𝑘 (a local rule) determines the letter at
node 1𝐺 of the output configuration from a given partial input
configuration 𝑐 ∈ 𝑋𝑀 . The corresponding function 𝜙 specifies the
same CA in a different way: it describes the contribution that a
given letter 𝑥 makes to the output letter at node 1𝐺 if placed at a
node𝑚 ∈ 𝑀 in an input configuration.3

In the case of our example from above, where the local rule
𝑘 : 𝑋𝑀 → 𝑌 is 𝑘 𝑐 = 1

3 ∗𝑐 (−1) +
2
3 ∗𝑐 0, the corresponding function

𝜙 : 𝑋 → 𝑌𝑀 is 𝜙 𝑥 = _{−1. 13 ∗ 𝑥 ; 0. 23 ∗ 𝑥}.
The above reasoning, together with the observation that (−)≻ :

CommMon(𝑋𝑀 , 𝑌) → CommMon(𝑋,𝑌𝑀) is natural in 𝑋 and 𝑌 ,
witnesses an adjunction𝐷𝑀 ⊣ 𝑇𝑀 between𝐷𝑀 ,𝑇𝑀 : CommMon →
CommMon where

• 𝑇𝑀𝑋 = 𝑋𝑀 ,
𝑇𝑀 (𝑓 : 𝑋 → 𝑌) (𝑠 ∈ 𝑋𝑀) = 𝑓 ◦ 𝑠 ∈ 𝑌𝑀

so 𝑇𝑀 is the same functor as 𝐷𝑀 .
We know that 𝐷 is equipped with the structure of an M-graded

comonad on CommMon. By the proposition about adjoint graded
comonads and monads, 𝑇 consequently carries a right adjoint
Moprev-graded monad structure and the locally Moprev-graded
categories CoKl(𝐷) and Kl(𝑇) are isomorphic.

The functorial action of 𝑇 is explicitly defined by

• 𝑇𝑀′≥𝑀,𝑋 (𝑠 ∈ 𝑋𝑀′) = 𝑠 |𝑀
= _𝑚 ∈ 𝑀. if 𝑚 ∈ 𝑀 ′ then 𝑠 𝑚 else 0𝑋 ∈ 𝑋𝑀

(note that𝑀 ′ ⊆ 𝑀), so 𝑇𝑀′≥𝑀,𝑋 𝑠 is obtained by “padding out” 𝑠 .
The equations of functoriality hold because 𝑀 \ 𝑀 = ∅ and

(𝑀 \𝑀 ′) ∪ (𝑀 ′ \𝑀 ′′) = 𝑀 \𝑀 ′′ when𝑀 ′ ⊆ 𝑀 and𝑀 ′′ ⊆ 𝑀 ′.

3If𝐺 is a group, this is equivalent to saying that 𝜙 describes the contribution that an
input letter 𝑥 ∈ 𝑋 at node 1𝐺 makes to the output letter at node𝑚−1 for any𝑚 ∈ 𝑀 ;
the influence of the input letter at node 1𝐺 is limited to the 𝑌𝑀−1

part of the output
configuration. The formulation we have given above is more robust. For it to work, it
suffices that𝐺 is a monoid.

In order for 𝐷𝑀≤𝑀′ and 𝑇𝑀′≥𝑀 to be adjoint whenever well-
defined (i.e., when𝑀 ′ ⊆ 𝑀), it must be that, for any 𝑘 : 𝑋𝑀′ → 𝑌 ,

(𝑘 ◦ 𝐷𝑀≤𝑀′,𝑋)≻ = 𝑇𝑀′≥𝑀,𝑌 ◦ 𝑘≻ : 𝑋 → 𝑌𝑀

We verify

(𝑘 ◦ 𝐷𝑀≤𝑀′,𝑋)≻ 𝑥
= _𝑚 ∈ 𝑀.𝑘 (𝐷𝑀≤𝑀′,𝑋 [𝑚 ↦→ 𝑥]𝑀)
= _𝑚 ∈ 𝑀.𝑘 (_𝑚′ : 𝑀 ′. [𝑚 ↦→ 𝑥]𝑀𝑚′)
= _𝑚 ∈ 𝑀. if 𝑚 ∈ 𝑀 ′ then 𝑘 (_𝑚′ : 𝑀 ′. [𝑚 ↦→ 𝑥]𝑀𝑚′)

else 𝑘 (_𝑚′ : 𝑀 ′. [𝑚 ↦→ 𝑥]𝑀𝑚′)
= _𝑚 ∈ 𝑀. if 𝑚 ∈ 𝑀 ′ then 𝑘 [𝑚 ↦→ 𝑥]𝑀′ else 𝑘 0𝑋𝑀′

= _𝑚 ∈ 𝑀. if 𝑚 ∈ 𝑀 ′ then 𝑘 [𝑚 ↦→ 𝑥]𝑀′ else 0𝑌
= 𝑇𝑀′≥𝑀,𝑌 (_𝑚 ∈ 𝑀 ′. 𝑘 [𝑚 ↦→ 𝑥]𝑀′)
= 𝑇𝑀′≥𝑀,𝑌 (𝑘≻ 𝑥)

Note that adjointness is automatic (does not need proof) if one
has calculated the definition of𝑇𝑀′≥𝑀 from the definition of𝐷𝑀≤𝑀′

and the general formula for the right adjoint natural transformation.
The equations of functoriality 𝑇 are automatic from the equations
of functoriality of 𝐷 once adjointness has been established.

The remaining data of the graded monad are explicitly defined
by

• [𝑋 (𝑥 ∈ 𝑋) = __ ∈ 1. 𝑥 ∈ 𝑋 1,
• `𝑁,𝑀,𝑋 (𝑠 ∈ (𝑋𝑀)𝑁)

= _𝑜 ∈ 𝑀 · 𝑁 .
⊕

𝑚∈𝑀,𝑛∈𝑁,𝑜=𝑚 ·𝑛 𝑠 𝑛𝑚 ∈ 𝑋𝑁 ·rev𝑀 .
Kleisli maps of grade 𝑀 of 𝑇 correspond to coKleisli maps of

grade𝑀 of 𝐷 : they are maps 𝜙 : 𝑋 → 𝑌𝑀 in bijection with maps
𝑘 : 𝑋𝑀 → 𝑌 as detailed above. Free algebra maps of grade𝑀 of 𝑇
however are families of maps ℎ𝑁 : 𝑋𝑁 → 𝑌𝑀 ·𝑁 that are natural in
𝑁 (meaning that, if 𝑁 ′ ⊆ 𝑁 , then (ℎ𝑁 ′𝑠) |𝑀 ·𝑁 = ℎ𝑁 (𝑠 |𝑁) ∈ 𝑌𝑀 ·𝑁

for 𝑠 ∈ 𝑋𝑁 ′
) and satisfy the algebra homomorphism equation

ℎ𝑁 ·𝑃 (_𝑞 ∈ 𝑁 · 𝑃 .
⊕

𝑛∈𝑁,𝑝∈𝑃,𝑞=𝑛 ·𝑝𝑠 𝑝 𝑛)

= _𝑟 ∈ 𝑀 · 𝑁 · 𝑃 .
⊕

𝑜∈𝑀 ·𝑁,𝑝∈𝑃,𝑟=𝑜 ·𝑝ℎ𝑁 (𝑠 𝑝) 𝑜 ∈ 𝑌𝑀 ·𝑁 ·𝑃

for 𝑠 ∈ (𝑋𝑁)𝑃 .
Explicitly, the bijection between Kleisli maps and free algebra

maps is the following: given𝜙 : 𝑋 → 𝑌𝑀 , defineℎ𝑁 = `𝑁,𝑀,𝑌 ◦𝜙𝑁 ;
given ℎ𝑁 : 𝑋𝑁 → 𝑌𝑀 ·𝑁 , define 𝜙 = ℎ1 ◦ [𝑋 .

Formal polynomials. It does not make much sense to think of
elements 𝑠 of 𝑇𝑀𝑋 = 𝑋𝑀 as partial configurations. But they can
be viewed as formal polynomials with exponents from𝑀 ⊆ 𝐺 and
coefficients from 𝑋 (or shorter, formal polynomials over 𝑋 of degree
𝑀). That is, a function 𝑠 ∈ 𝑋𝑀 is identified with the one-variable
polynomial _y.

∑
𝑚∈𝑀 𝑠 𝑚 × y𝑚 where the variable, exponentia-

tion, multiplication and summation are purely formal. The monoid
(𝐺, 1𝐺 , ·) is best thought of as additive rather than multiplicative
here, the archetypical example being (N, 0, +). A polynomial of
degree 𝑛 is a polynomial of degree {0..𝑛} ⊆ N.

The data of the graded monad 𝑇 represent important operations
on polynomials. The unit [sends an element of 𝑋 to the corre-
sponding constant polynomial:

[𝑋 𝑥 = _y. 𝑥 × y1𝐺 = _y. 𝑥

PPDP 2023, October 22–23, 2023, Lisboa, Portugal Silvio Capobianco and Tarmo Uustalu

The multiplication ` sends a polynomial whose coefficients are
polynomials with coefficients from 𝑋 to a polynomial with coef-
ficients from 𝑋 by evaluating the inner polynomials at the outer
variable:

`𝑁,𝑀,𝑋 (_y.
∑
𝑛∈𝑁

(_y𝑛 .
∑
𝑚∈𝑀

𝑠 𝑛𝑚 × y𝑚𝑛) × y𝑛)

= _y.
∑
𝑛∈𝑁

(
∑
𝑚∈𝑀

𝑠 𝑛𝑚 × y𝑚) × y𝑛

= _y.
∑
𝑛∈𝑁

∑
𝑚∈𝑀

𝑠 𝑛𝑚 × y𝑚 ·𝑛

= _y.
∑

𝑜∈𝑀 ·𝑁
(
⊕

𝑚∈𝑀,𝑛∈𝑁,𝑜=𝑚 ·𝑛𝑠 𝑛𝑚) × y𝑜

(Remember it is best to think of 𝐺 as additive rather than multi-
plicative here, so 1𝐺 is zero and · is addition.)

5 ADDITIVE CA AS (UNGRADED) MONADIC?
Could we also view additive CA as (ungraded) monadic? Only with
reservations.

If we ignore the uniform continuity requirement, then we can
restrict the alphabets to be complete monoids—where any family of
elements can be summed—and define a formal series monad on the
category CmplMon of complete monoids by

• 𝑇𝑋 = 𝑋𝐺 ,
• [𝑋 (𝑥 ∈ 𝑋) = __ ∈ 𝐺. 𝑥 ∈ 𝑋𝐺 ,
• `𝑋 (𝑠 ∈ (𝑋𝐺)𝐺) = _𝑜 ∈ 𝐺.

⊕
𝑚,𝑛∈𝐺,𝑜=𝑚 ·𝑛 𝑠 𝑛𝑚 ∈ 𝑋𝐺 .

The sum in the definition of ` is then well-defined although it is
generally infinite.

Alternatively, if 𝐺 has the property that any element 𝑜 ∈ 𝐺 only
admits finitely many decompositions 𝑜 =𝑚 · 𝑛 (this is true, e.g., for
free monoids), then we get a monad already on CommMon since
the sum in the definition of ` is then necessarily finite.

If we insist on the uniform continuity requirement, we may
aim to work in UnifCommMon. But uniform continuity of a map
𝑘 : 𝑋𝐺 → 𝑌 is generally not the same as uniform continuity of the
corresponding map 𝜙 : 𝑋 → 𝑌𝐺 unless 𝑋 is finite. We can restrict
to the full subcategory of the Kleisli category of 𝑇 given by finite
uniform spaces.

6 RELATEDWORK
To model impure notions of computation of the “effectful” flavor
in Kleisli categories of (strong) monads is standard since Moggi
[19]. From the beginning, this tradition includes a programming
language design for this model, the _c-calculus.

The use of coKleisli categories of (lax monoidal) comonads to
model a different flavor of impure notions of computation—“context-
dependent” notions of computation— goes back to at least Brookes,
Geva and Van Stone [2, 3]; a more systematic study, together with
a programming language, was provided by Uustalu and Vene [27].
Uustalu and Vene [26] studied causal (à la Lustre) and non-causal
(à la Lucid) dataflow computation; Capobianco and Uustalu [5]
treated cellular automata.

Graded monads were invented by Smirnov [25], but also by
Borceux, Janelidze and Kelly [1], who studied lax actions of a
monoidal category on a category, which are the same thing, but did
not view them as a generalization of monads.

Katsumata [14] and Melliès [18] introduced graded monads to
programming semantics and demonstrated that they can be used
for a finer analysis of effectful notions of computation where one
can talk about degrees of effectfulness of functions.

Graded comonads were first employed in programming seman-
tics by Petricek et al. [21] and Brunel et al. [4], for finer analysis of
context-dependent or resource-consuming notions of computation.
For this, one typically wants graded comonads on a symmetric
monoidal category, with grades from a preordered semiring.

Fujii, Katsumata and Melliès [10] were the first to introduce
analogues of the Kleisli and Eilenberg-Moore constructions for
graded monads. In their work, the Kleisli and Eilenberg-Moore
adjunctions are adjunctions of ordinary category theory. Their con-
structions suffer from certain deficiencies. McDermott and Uustalu
[17] showed that those can be avoided by moving to locally graded
category theory. The intuitive reason why this is the right thing
to do is that a graded monad is precisely a relative monad on a
particular canonical functor, in the sense of locally graded category
theory.

Adjoint comonad-monad pairs and adjoint monad-comonad
pairs are rare in computation structures. The main adjoint comonad-
monad pair example is given by the coreader comonad and the
reader monad while the main adjoint monad-comonad pair exam-
ple is given by the writer monad and the cowriter comonad. Hinze
[12] and Orchard [20] have discussed such examples.

Category theory is not a commonly used tool among cellular
automata theorists, but Salo and Törmä [22] studied what monos,
epis, split monos, split epis, regular monos, regular epis amount to
in categories of various classes of subshifts and block maps; sub-
shifts are subsets of 𝑋Z closed under translation and block maps
are maps between two subshifts commuting with translations. Also,
Fernandez, Maignan and Spicher [9] showed that the global rule
of a CA arises as the left Kan extension of the local rule in the
2-category of posets, monotone functions and comparison of mono-
tone functions, under a particular view of the global and local rule
as monotone functions. In our opinion, their categorical analysis of
cellular automata is less illuminating than ours. Its shortcoming is
that, while it explains the relationship of local and global rules in
categorical terms, it gives no such explanation for local or global
rules themselves: those are just special cases of monotone functions
between special cases of posets. Trancón y Widemann and Hauhs
[29] attempted to adapt Turi and Plotkin’s bialgebraic take on struc-
tural operational semantics to CA. They modelled configurations
of a CA as syntax, with terms for a signature containing constants
for letters of the alphabet, and a form of configuration-labelled non-
wellfounded trees (from where infinite sequences of configurations
could be extracted) as behaviors. The semantic function, assigning
such trees to configurations, modelled infinite iteration of the CA
rule from a given initial configuration.

7 CONCLUSIONS AND FUTUREWORK
We have shown that, while CA are a nice example of comonadic
notions of computation, they exemplify more in fact. In particular,
it is natural to consider grading in this example and this makes the
analysis more informative in that it is explicitly resource-aware. It

Additive Cellular Automata Graded-Monadically PPDP 2023, October 22–23, 2023, Lisboa, Portugal

also makes it more elementary in one aspect: instead of an involved
category like Unif , we can work in Set.

The CA example of graded comonadic notions of computation
is instructive in that it helps with intuitions for the sophistication
involved in the locally graded coKleisli and coEilenberg-Moore
constructions as compared to their ordinary counterparts.

Additive CA are among the rare examples of notions of compu-
tation that are both (graded) comonadic and monadic: in fact, they
make a very elegant such an example. They also demonstrate the
real necessity of the graded approach in some situations. In our
example, the issue is in potentially infinite sums. The possibility
to restrict to finite sums that the graded approach offers makes it
more broadly applicable.

ACKNOWLEDGMENTS
We got to know about Kleiner’s paper thanks to James McKinna
who had learned about it from Marcelo Fiore. We are grateful to
Dylan McDermott for useful feedback.

This work was supported by the Estonian Research Council
team grant no. PRG1210 and by the Icelandic Research Fund project
228684-051.

REFERENCES
[1] Francis Borceux, George Janelidze, and G. Max Kelly. 2005. Internal Object

Actions. Comment. Math. Univ. Carolin. 46, 2 (2005), 235–255. http://eudml.org/
doc/249553

[2] Stephen Brookes and Shai Geva. 1992. Computational Comonads and Intensional
Semantics. In Applications of Categories in Computer Science, Michael P. Fourman,
Peter T. Johnstone, and Andrew M. Pitts (Eds.). London Math. Soc. Lect. Notes
Series, Vol. 177. Cambridge Univ. Press, Cambridge, 1–44.

[3] Stephen Brookes and Kathryn Van Stone. 1993. Monads and Comonads in In-
tensional Semantics. Technical Report CMU-CS-93-140. School of Comput. Sci.,
Carnegie Mellon Univ.

[4] Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. 2014. A
Core Quantitative Coeffect Calculus. In Programming Languages and Systems:
23rd Europ. Symp. on Programming, ESOP 2014, Proc. (Lect. Notes in Comput.
Sci., Vol. 8410), Zhong Shao (Ed.). Springer, Berlin, Heidelberg, 351–370. https:
//doi.org/10.1007/978-3-642-54833-8_19

[5] Silvio Capobianco and Tarmo Uustalu. 2010. A Categorical Outlook on Cellular
Automata. In Journées Automates Cellulaires 2010, Jarkko Kari (Ed.). TUCS Lecture
Note Series, Vol. 13. University of Turku, Turku, 88–99. https://hal.science/hal-
00542015/

[6] Tullio Ceccherini-Silberstein and Michal Coornaert. 2010. Cellular Automata and
Groups. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14034-1

[7] Alberto Dennunzio, Enrico Formenti, Darij Grinberg, and Luciano Margara. 2020.
From Linear to Additive Cellular Automata. In 47th Int. Coll. on Automata,
Languages, and Programming (ICALP 2020), Artur Czumaj, Anuj Dawar, and
EmanuelaMerelli (Eds.). Dagstuhl Publishing, Saarbrücken/Wadern, 125:1–125:13.
https://doi.org/10.4230/lipics.icalp.2020.125

[8] Samuel Eilenberg and John C. Moore. 1965. Adjoint Functors and Triples. Illinois
J. Math. 9, 3 (1965), 381–398. https://doi.org/10.1215/ijm/1256068141

[9] Alexandre Fernandez, Luidnel Maignan, and Antoine Spicher. to appear. Cellular
Automata and Kan Extensions. Nat. Comput. (to appear), 15 pages. https:
//doi.org/10.1007/s11047-022-09931-0

[10] Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès. 2016. Towards a
Formal Theory of Graded Monads. In Foundations of Software Science and Com-
putation Structures, 19th Int. Conf., FoSSaCS 2016, Proc., Bart Jacobs and Christoph
Löding (Eds.). Lect. Notes in Comput. Sci., Vol. 9634. Springer, Cham, 513–530.
https://doi.org/10.1007/978-3-662-49630-5_30

[11] Gustav A. Hedlund. 1969. Endomorphisms and Automorphisms of the Shift
Dynamical System. Math. Syst. Theor. 3, 4 (1969), 320–375. https://doi.org/10.
1007/bf01691062

[12] Ralf Hinze. 2011. Monads from Comonads, Comonads from Monads. Notes for
an IFIP WG 2.8 Meeting. http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/28/slides/
Comonad.pdf

[13] Jarkko Kari. 2005. Theory of Cellular Automata: A Survey. Theor. Comput. Sci.
334 (2005), 3–33. https://doi.org/10.1016/j.tcs.2004.11.021

[14] Shin-ya Katsumata. 2014. Parametric Effect Monads and Semantics of Effect
Systems. In Proc. of 41st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’14. ACM Press, New York, 633–645. https:
//doi.org/10.1145/2535838.2535846

[15] Mark Kleiner. 1990. Adjoint Monads and an Isomorphism of the Kleisli Category.
J. Algebra 133, 1 (1990), 79–82. https://doi.org/10.1016/0021-8693(90)90069-Z

[16] Paul B. Levy. 2019. Locally Graded Categories. Slides for talk at Univ. of Cam-
bridge. https://www.cs.bham.ac.uk/~pbl/papers/locgrade.pdf

[17] Dylan McDermott and Tarmo Uustalu. 2022. Flexibly Graded Monads and Graded
Algebras. In Mathematics of Program Construction, 14th Int. Conf., MPC 2022,
Proc., Ekaterina Komendantskaya (Ed.). Lect. Notes in Comput. Sci., Vol. 13544.
Springer, Cham, 102–128. https://doi.org/10.1007/978-3-031-16912-0_4

[18] Paul-André Melliès. 2012. Parametric Monads and Enriched Adjunctions. Man-
uscript. https://www.irif.fr/mellies/tensorial-logic/8-parametric-monads-and-
enriched-adjunctions.pdf

[19] Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads. In Proc. of
4th Ann. IEEE Symp. on Logic in Computer Science, LICS ’89. IEEE Comput. Soc.,
Los Alamitos, CA, 14–23. https://doi.org/10.1109/lics.1989.39155

[20] Dominic Orchard. 2011. Should I Use a Monad or a Comonad?
Draft. https://www.cs.kent.ac.uk/people/staff/dao7/drafts/monad-or-comonad-
orchard11-draft.pdf

[21] Tomas Petricek, Dominic Orchard, and Alan Mycroft. 2013. Coeffects: Unified
Static Analysis of Context-Dependence. In Automata, Languages, and Program-
ming: 40th Int. Coll., ICALP 2013, Proc., Part II (Lect. Notes in Comput. Sci., Vol. 7966),
Fedor V. Fomin, Rūsinš Freivalds, Marta Kwiatkowska, and David Peleg (Eds.).
Springer, Berlin, Heidelberg, 385–397. https://doi.org/10.1007/978-3-642-39212-
2_35

[22] Ville Salo and Ilkka Törmä. 2015. Category Theory of Symbolic Dynamics. Theor.
Comput. Sci. 567 (2015), 21–45. https://doi.org/10.1016/j.tcs.2014.10.023

[23] Dan (sigfpe) Piponi. 2006. Evaluating Cellular Automata is Comonadic. Blog
post. http://blog.sigfpe.com/2006/12/evaluating-cellular-automata-is.html

[24] Zoran Škoda. 2011. Adjoint Monads. ncatlab entry. https://ncatlab.org/nlab/
show/adjoint+monad

[25] A. Smirnov. 2008. Graded Monads and Rings of Polynomials. J. Math. Sci. 151, 3
(2008), 3032–3051. https://doi.org/10.1007/s10958-008-9013-7

[26] Tarmo Uustalu and Varmo Vene. 2006. The Essence of Dataflow Programming.
In Central European Functional Programming School, 1st Summer School, CEFP
2005, Revised Selected Lectures, Zoltán Horváth (Ed.). Lect. Notes in Comput.
Sci., Vol. 4164. Springer, Berlin, Heidelberg, 135–167. https://doi.org/10.1007/
11894100_5

[27] Tarmo Uustalu and Varmo Vene. 2008. Comonadic Notions of Computation.
Electron. Notes Theor. Comput. Sci. 203, 5 (2008), 263–284. https://doi.org/10.1016/
j.entcs.2008.05.029

[28] Richard J. Wood. 1976. Indicial Methods for Relative Categories. Ph. D. Dissertation.
Dalhousie University. http://hdl.handle.net/10222/55465

[29] Baltasar Trancón y Widemann and Michael Hauhs. 2011. Distributive-Law Se-
mantics for Cellular Automata and Agent-BasedModels. InAlgebra and Coalgebra
in Computer Science: 4th Int. Conf., CALCO 2011, Proc. (Lect. Notes in Comput. Sci.,
Vol. 6851), Andrea Corradini, Bartek Klin, and Corina Cîrstea (Eds.). Springer,
Berlin, Heidelberg, 344–358. https://doi.org/10.1007/978-3-642-22944-2_24

http://eudml.org/doc/249553
http://eudml.org/doc/249553
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1007/978-3-642-54833-8_19
https://hal.science/hal-00542015/
https://hal.science/hal-00542015/
https://doi.org/10.1007/978-3-642-14034-1
https://doi.org/10.4230/lipics.icalp.2020.125
https://doi.org/10.1215/ijm/1256068141
https://doi.org/10.1007/s11047-022-09931-0
https://doi.org/10.1007/s11047-022-09931-0
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1007/bf01691062
https://doi.org/10.1007/bf01691062
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/28/slides/Comonad.pdf
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/28/slides/Comonad.pdf
https://doi.org/10.1016/j.tcs.2004.11.021
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1016/0021-8693(90)90069-Z
https://www.cs.bham.ac.uk/~pbl/papers/locgrade.pdf
https://doi.org/10.1007/978-3-031-16912-0_4
https://www.irif.fr/ mellies/tensorial-logic/8-parametric-monads-and-enriched-adjunctions.pdf
https://www.irif.fr/ mellies/tensorial-logic/8-parametric-monads-and-enriched-adjunctions.pdf
https://doi.org/10.1109/lics.1989.39155
https://www.cs.kent.ac.uk/people/staff/dao7/drafts/monad-or-comonad-orchard11-draft.pdf
https://www.cs.kent.ac.uk/people/staff/dao7/drafts/monad-or-comonad-orchard11-draft.pdf
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1016/j.tcs.2014.10.023
http://blog.sigfpe.com/2006/12/evaluating-cellular-automata-is.html
https://ncatlab.org/nlab/show/adjoint+monad
https://ncatlab.org/nlab/show/adjoint+monad
https://doi.org/10.1007/s10958-008-9013-7
https://doi.org/10.1007/11894100_5
https://doi.org/10.1007/11894100_5
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2008.05.029
http://hdl.handle.net/10222/55465
https://doi.org/10.1007/978-3-642-22944-2_24

	Abstract
	1 Introduction
	2 Cellular automata as comonadic
	2.1 Cellular automata
	2.2 Comonads
	2.3 CA as comonadic

	3 Cellular automata as graded comonadic
	3.1 Graded comonads
	3.2 CA as graded comonadic

	4 Additive cellular automata
	4.1 Additive CA—comonadic and graded comonadic
	4.2 Adjoint (graded) comonads and monads
	4.3 Additive CA as graded monadic

	5 Additive CA as (ungraded) monadic?
	6 Related work
	7 Conclusions and future work
	Acknowledgments
	References

