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Abstract

Encoding data with magnetic states is currently used in various devices for data trans-
mission, storage, and processing. The operating principle in these devices is often
based on controlled switching, e.g., using a pulse of an external magnetic �eld, be-
tween stable magnetic states characterized by a certain direction of magnetization.
However, for each act of magnetization change, a certain amount of energy is used.
The challenge is to ensure that this operation is energy-e�cient. In this thesis, we
present the development and implementation of a theoretical framework for energy-
e�cient control of magnetization using an external magnetic �eld. The theory makes it
possible to identify optimal control paths (OCPs) � dynamical transition trajectories in
the con�guration space connecting the target states in the magnetic system and mini-
mizing the energy cost � from which all properties of optimal control pulses, including
spatial and temporal distribution are systematically obtained without the need for
an exhaustive scan over a range of amplitudes, frequencies or shapes. Therefore, the
theory provides fundamental knowledge about the optimal manipulation of magnetiza-
tion and solutions for low-power digital technologies based on magnetic materials. The
theory is applied to the problem of energy-e�cient control of magnetization switching
in uniaxial and biaxial nanoparticles, as well as nanowires. For these systems, we
show that following an OCP involves the rotation of magnetic moments in a manner
that minimizes the impact of external stimuli while e�ectively harnessing the system's
internal dynamics to facilitate the desired change in magnetization. Additionally, we
show that the derived optimal switching protocols are robust with respect to thermal
�uctuations in the technologically relevant regime and when the perturbation in the
material parameters is not too large. Finally, we develop a method for enhancing the
thermal stability of energy-e�cient magnetization switching by applying an additional
longitudinal magnetic �eld. The time-dependence of the stabilizing �eld can be ob-
tained in a de�nite way by demanding bound dynamics of local perturbations induced
by the thermal bath. The work presented in this thesis facilitates the development of
energy-e�cient information technology based on magnetic materials.
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Útdráttur

Skráning gagna með segulástöndum er nú notuð í ýmiskonar tækni fyrir gagna�ut-
ning, geymslu og úrvinnslu. Þessi tækni byggist á því að geta stjórnað breytingum á
seguástöndum, t.d. með púls af ytra segulsviði sem breytir stefnu seglunar. Hver seg-
ulbreyting krefst orku og það er mikilvægt að minnka þessa orkunotkun eins mikið og
mögulegt er. Þessi ritgerð lýsir þróun og innleiðingu á kennilegri umgjörð fyrir stjórn
segulástanda með segulsviði þar sem orkunotkunin er lágmörkuð. Með þessari aðferð
er hægt að �nna bestu stjórn ferla (BSF), þ.e. ferla fyrir breytingu í segulstefnu milli
ge�nna segulástanda þannig að lágmarksorku er kra�st, og leiða út bestu stjórnpúlsa,
bæði í tíma og rúmi, á ker�sbundinn hátt, án þess að skanna útslag, tíðni og lögun púl-
sanna. Þessi aðferðafræði veitir því grundvallarþekkingu fyrir bestu stjórn á seglun og
lausnum fyrir lág-orku stafræna tækni sem byggist á seglandi efnum. Aðferðafræðinni
er beitt á stjórn segulbreytinga í nanóögnum með einum og tveimur segulásum, sem
og nanóvírum. Fyrir þessi ker� er sýnt fram á að BSF fela í sér snúnig segulvigra á
þann hátt sem krefst lágmarksáhrifa af ytra sviðinu á meðan eiginleg tímaframvinda
kerfanna nýtist sem best til að fá fram breytingarnar úr einu segulástandi í annað. Þar
að auki er sýnt fram á að lausnirnar sem fást fyrir bestu aðferðirnar fyrir seglunar-
breytingar eru ekki næmar fyrir áhrifum hitastigs innan þeirra marka sem eru eðlileg
fyrir notkun í tækni eða fyrir frávikum í efnaeiginleikum svo lengi sem þau eru ekki
of stór. Að lokum, er þróuð aðferð til að auka enn frekar stöðulgeika bestu ferlanna
með því að bæta við segulsviði langsum. Tímaframvindu stöðgunarsviðsins er hægt að
ákvarða með því að stja mörk á staðbundnar tru�anir frá varmabaðinu. Aðferðafræðin
sem lýst er í ritgerðinni auðveldar þróun á upplýsingatækni byggða á segulástöndum
þar sem orkunotkunin er lágmörkuð.
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1 Introduction

1.1 Motivation and state-of-the-art

The ever-increasing �ow of data inherent in the processes of modern society establishes
a vast demand for the development of information and communication technologies.
The purpose of science is to make sure that these advancements are energy-e�cient and
sustainable. Encoding data with magnetic degrees of freedom has proved successful
and is currently used in various devices for data transmission, storage, and processing.
In particular, writing data is achieved by a controlled magnetization switching between
stable magnetic states, where for each act of magnetization reversal � a physical
implementation of a bit operation � a certain amount of energy is used. The challenge
is to minimize the energy cost.

One approach to solving the problem of minimizing the energy cost is to optimize
the characteristics of the magnetic information bits. Instead of single-phase grains,
heterostructures combining large magnetization of the soft magnetic layer and the high
coercitivity of the hard magnetic layer have been introduced [1]. These systems, also
known as exchange spring magnets, provide enhanced thermal stability and improved
writability.

Magnetic textures with topological charges hold great promise as a basis for future
technologies. In particular, information can be carried by topological magnetic tex-
tures such as domain walls [2] and skyrmions [3]. These objects are characterized by
properties making them ideal information bits: they can be very small in size, which
is bene�cial for the realization of high data density, and relatively stable due to non-
trivial topology, which is crucial for reliable information storage. Additionally, the
sensitivity of the topological spin textures to stimuli of various kinds, e.g., external
magnetic and electric �elds [5, 105] and electric current [6], opens up a wide range of
possibilities for manipulation, which is bene�cial for information processing.

Improvement of the performance of digital devices can be achieved not only by the
adjustment of the characteristics of the information carriers but also by optimization
of the switching stimuli involved in bit operations. The possibility to optimize was
demonstrated, e.g., in the experiments on the magnetic vortex core reversal [106].
A straightforward way to switch the magnetization of the core is to apply a large
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static magnetic �eld of the order of 0.5 Tesla opposite to the vortex core polariza-
tion. Alternatively, the core reversal can be achieved by applying short bursts of the
sinusoidal magnetic �eld needed to excite selected modes in the system. Interestingly,
the amplitude of the pulse turned out to be more than three hundred times smaller
than that of the stationary switching �eld. The more e�cient �eld protocol triggers a
highly nontrivial switching mechanism involving vortex-antivortex pair formation and
subsequent annihilation.

The possibility to achieve the same changes in the magnetic structure by di�erent
techniques, which are not equivalent in terms of energy cost, appears to be a gen-
eral property as it has been demonstrated, theoretically and experimentally, for var-
ious magnetization switching phenomena [8�18]. The multiplicity of transition paths
between stable magnetic states leads to an idea about an existence of an optimal
switching mechanism that is de�ned solely by the intrinsic parameters of the magnetic
system. The question arises as to whether it is possible to identify such an optimal
mechanism in a de�nite way and, based on this knowledge, predict the properties of
an optimal switching pulse, including shape, duration, and amplitude. A traditional
approach to solving this problem involves the excitation of the lowest-energy modes
of the system and the search for the dynamical instabilities, which are precursors of
the magnetic transition [19�21]. In practice, analysis based on this method requires
an assumption of some ansatz for the switching pulse, e.g., monochromatic wave, then
scanning over various parameters of the pulse, such as frequency and amplitude, and
�nally verifying the desired switching event a posteriori. Unfortunately, this approach
does not guarantee that the resulting mechanism is optimal in a certain sense due to
constraints initially imposed on the control stimulus. Moreover, if the shape of the
pulse is not optimized, additional, uncontrolled modes could be excited, slowing down
the transition, as has been demonstrated, e.g., in Ref. [22].

Optimal control theory (OCT) [23] represents a conceptually di�erent approach to
pulse optimization. In contrast to the traditional methods based on exhaustive scan-
ning over possible control protocols followed by inspection of the system's response, the
OCT provides a more systematic approach as it focuses on a de�nite identi�cation of
the optimal switching trajectory that makes the energy of the control pulse minimum.
This powerful approach �nds widespread application across various scienti�c disci-
plines due to its versatility in addressing complex systems and dynamic processes. Its
applications span diverse �elds, including engineering, economics, biology, and physics.
Interestingly, although OCT has gained prominence in various �elds, its application
in magnetism remains relatively unexplored. Based on optimization principles, this
theory is employed to determine the most e�ective control inputs that steer a system
toward a desired state while considering possible constraints and minimizing a de�ned
cost function. Barros et al. [24, 25] have applied OCT to the reversal of a single mag-
netic moment. Within the approach, the optimal switching pulse is found as a result
of a minimization of the switching cost functional under the constraint de�ned by a
system-speci�c magnetization dynamics. In this thesis, we revisited the OCT due to
Barros et al. [24, 25] and developed a more e�cient approach based on unconstrained
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minimization. In particular, we solve the equation of motion as an inverse problem
for the pulse of the external magnetic �eld thereby enabling us to express the pulse in
terms of the dynamical trajectory of the magnetic transition. This formalism has lead
to a notion of optimal control path (OCP) � a dynamical trajectory connecting the
target magnetic states and minimizing the energy cost. All properties of the optimal
protocols can be found from OCP in a straightforward way.
It is noteworthy that Vlasov et al. [26] has recently applied OCT to the problem
of energy-e�cient control of magnetization reversal of a perpendicular macrospin by
means of spin-orbit torque. Moreover, the principle of Ohmic loss minimization was
applied by Tretiakov et al. [27] to predict the optimal pulse of electric current for
e�cient control of the domain wall motion described by two collective coordinates.
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1.2 Signi�cance, scienti�c novelty, and general

outline of the thesis

This thesis bridges the domains of optimal control theory and magnetic dynamics,
introducing novelty through a robust and elegant formulation for achieving energy-
e�cient control of magnetic states using the pulse of the external magnetic �eld. This
formulation treats the control pulse as a dependent variable of the system's dynami-
cal trajectory, leading to a simple, unconstrained optimization problem. Additionally,
the thesis provides fundamental knowledge about the energy-e�cient manipulation of
magnetic states and the link between optimal control of magnetic states and material
fundamentals. The processes investigated in this thesis are physical realizations of bit
operations in digital devices. Therefore, the reported optimal mechanisms can facili-
tate the development of energy-e�cient information and communication technologies
based on magnetic states. The optimal switching stimuli derived in this thesis can
also motivate the development of experimental techniques for shaping pulses of ex-
ternal magnetic �eld. Although the external stimulus considered in this thesis is an
external magnetic �eld, the methodology employed here is quite general thereby, can
be extended to various techniques used to manipulate magnetic states. These meth-
ods include optical switching and the utilization of electric currents for magnetization
switching [26].

The scienti�c novelty of the thesis lies in utilizing the optimal control theory to the ma-
nipulation of magnetic states. The presented method relies on systematic determina-
tion of the optimal control paths (OCPs), i.e., dynamical transition trajectories in the
con�guration space connecting the target states in the magnetic system and minimiz-
ing the energy cost functional. All properties of the optimal switching pulses, including
spatial and temporal distribution, are systematically derived from the OCPs without
the need to exhaustively scan over a range of amplitudes, frequencies, or shapes, as has
been done in previous studies. We show that the derived optimal switching protocols
in a nanoparticle are robust with respect to thermal �uctuations in the technologically
relevant regime of low temperatures, as well as when the perturbation in the material
parameters is not too large.

Moreover, the thesis presents a method for enhancing the thermal stability of optimal
magnetization reversal in nanoparticles. We demonstrate that magnetization rever-
sal is mostly disturbed by unstable perturbations arising in a certain domain of the
con�guration space of a nanomagnet. These instabilities can be suppressed, and the
probability of magnetization switching enhanced by applying an additional stimulus,
such as a weak longitudinal magnetic �eld. The time dependence of the stabilizing
longitudinal �eld for magnetization switching in a uniaxial nanomagnet is derived from
the requirement of maintaining bounded dynamics of the perturbations.
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The thesis is organized as follows:

� In Chapter 2, a new theoretical framework for energy-e�cient control of magne-
tization by means of external magnetic �eld is presented: In Sec. 2.1 the OCT
for magnetic systems is developed, and a connection between the pulse of the ex-
ternal magnetic �eld and both the dynamical trajectory of the magnetic system
and its internal magnetic �eld is shown. In Sec. 2.2 the numerical method for
�nding OCPs and corresponding energy-e�cient control pulses via direct uncon-
strained minimization of the cost functional is presented. In Sec. 2.3 a method
for constrained optimization of the energy cost functional is developed.

� In Chapter 3, we propose a method for enhancing thermal stability of optimal
magnetization switching by means of additional longitudinal magnetic �eld. In
Sec. 3.1, an equation of the �rst-order perturbation term in the eigenvector
coordinates of the projected Hessian is derived, the e�ects of the longitudinal
�eld on the dynamics of the perturbation is shown. In Sec. 3.2, an equation for
the radial �eld that depends on time and the material properties is derived.

� In Chapter 4, the methods presented in chapters 2-3 are applied to various
systems including the energy-e�cient manipulation of magnetization in uniaxial
and bistable nanoparticles as well as biaxial nanowire.

1.3 Description of magnetic states

The study of magnetic phenomena in solids encompasses a wide range of intriguing
phenomena [28]. These phenomena can be e�ectively described across various energy
and length scales. Atomistic and micromagnetic models [28, 29] enable description of
magnetic materials at scales ranging from atomic lattices and beyond. While these
models are adept at capturing macroscopic behaviors, it is essential to acknowledge
the quantum nature of magnetic phenomena. However, the complexity of quantum-
mechanical models poses challenges when attempting to describe magnetic phases and
magnetization processes in realistic systems comprising billions of atoms, with typical
dimensions ranging from a few nanometers to a few micrometers. In navigating these
complexities, the atomistic Heisenberg model emerges as a valuable tool. Serving
as the classical limit of its quantum-mechanical counterpart, the Heisenberg model
assumes the localization of magnetic moments on a given lattice, treating them as
conventional classical vectors.

The aim of the following subsection is to introduce the atomistic model which is used
throughout this thesis for describing magnetic states.
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1.3.1 The classical atomistic Hamiltonian

Consider a magnetic system consisting of N localized atoms, where the ith atom
carries a net magnetic moment mi = Mi/µi with i = 1, ..., N . Here, mi is a unit
vector describing the orientation of the ith total magnetic moment Mi, while the
magnitude of the moment is denoted as µi = |Mi| in units of the Bohr magneton
µB . In principle, the total energy E of a magnetic system consists of di�erent terms
capturing the interactions between magnetic moments and external factors is de�ned
as

E = Eex + ESO + Edip + EZee, (1.1)

where Eex is the short-range exchange interactions, ESO signi�es the interactions
arising due to the spin-orbit coupling, Edip is the long-range magnetostatic interaction,
and EZee is the interaction between the magnetic moments with an external magnetic
�eld. Such interactions contribute to the overall magnetic behavior of the system, and
will be brie�y discussed in the following.

Short-range exchange interactions

The exchange interaction of N magnetic moments is given by,

Eex = −1

2

∑

<i,j>

Jijmi ·mj , (1.2)

where the summation is done over pairs of neighboring magnetic moments< i, j > with
i, j = 1, ..., N . The exchange constant Jij accounts for the strength of the interaction
between the ith magnetic moment mi and the jth magnetic moment mj . A positive
sign of Jij leads to a parallel alignment of mi with mj , while a negative sign favors
an antiparallel alignment.

Interactions arising due to spin-orbit coupling

The contribution from the spin-orbit coupling is de�ned as

ESO = −
∑

q

Kq

∑

i

(êq ·mi)
2 − 1

2

∑

<i,j>

Dij · (mi ×mj) , (1.3)

where the �rst term signi�es the magnetocrystalline anisotropy (MCA) with Kq being
the anisotropy constant along direction eq. Note that MCA describes the tendency
of a material to have di�erent magnetic properties along di�erent crystallographic
axes. Thus, the energy associated with the alignment of the magnetic moments varies
depending on their orientation relative to the crystal lattice. In particular, the energy
is lowest (highest) when the magnetic moments are aligned along easy axes (hard
axes), e.g., Iron has a bcc structure, where its easy and hard axes lie along [100] and
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[111] direction, respectively [30]. An easy axis (easy plane) can be realized in the
system if Kq > 0 (Kq < 0).

The second term in Eq. (1.3) signi�es the antisymmetric exchange Dzyaloshinskii-
Moriya interaction (DMI) [31, 32] with Dij being the DMI vector. The orientation of
Dij is dependent on the symmetries of the crystal lattice � note that Dij vanishes
if a center of inversion is present between the sites i and j. An important aspect of
the DMI is its ability to break degeneracy in the energy by favoring a speci�c chirality
within existing spin textures. One can easily notice that the energy contribution linked
to DMI is minimized when neighboring spins are perpendicular to each other, with
the sense of rotation determined by the orientation of Dij . This tendency leads to a
competition between the DMI and other interactions, resulting in diverse non-collinear
magnetic con�gurations [33�37].

Long-range classic dipole-dipole interaction

The energy of the dipole-dipole interaction has the form:

Edip =
µ0M

2
s

4π

∑

i 6=j

[
mi ·mj

r3i,j
− 3 (mi · ri,j) (mj · ri,j)

r5i,j

]
(1.4)

where ri,j connects sites i and j, and µ0 being the the vacuum magnetic permeability.

Zeeman interaction

The Zeeman energy arises due to the interaction between a magnetic system and an
external magnetic �eld can be expressed as follows:

EZee = −
N∑

i

µB ·mi. (1.5)

1.3.2 Macrospin model

The transition from bulk size to nanoparticle size in magnetic materials occurs when
the volume of the particle decreases below a critical value, typically in the range of
a few nanometers [38, 39]. Below this critical volume, magnetic moments within the
nanoparticle align uniformly, forming a single magnetic domain. Assuming a mon-
odomain particle with uniaxial crystalline anisotropy and subjected to an external
magnetic �eld, the nanomagnet experiences two competing alignment forces: one from
the anisotropy favoring a particular direction and the other from the external mag-
netic �eld. In this context, we assume that exchange interactions strongly couple all
magnetic moments parallel to each other, resulting in a uniform magnetization inside
the nanoparticle, with no signi�cant role in energy minimization.

7



1 Introduction

The magnetization behavior of such a monodomain particle under the in�uence of
an external magnetic �eld can be described using the Stoner and Wohlfarth (SW)
model [40]. It is worth noting that Wernsdorfer et al [41�43] conducted the �rst
experimental validation of the SW model in monodomain particles and nanowires at
low temperatures.

Let the uniaxial ansiotropy be along the z-axis, then orientation-dependent part of the
energy E of the nanoparticle is given by

E = −KV cos2 θ −MsVB ·m,

= −KV cos2 θ −MsV B cos (ψ − θ) , (1.6)

where K is the anisotropy constant, V is the volume of the particle, Ms is the satura-
tion magnetization, and θ is the angle between the anisotropy axis and the magnetic
moment vector. Here, B is making an angle ψ with the anisotropy axis. The �rst
term in the right-hand side of Eq. (1.6) signi�es the anisotropy energy, while the sec-
ond term in Eq. (1.6) is the interaction of the magnetic moment with the applied
external magnetic �eld B.

1.4 Landau-Lifshitz-Gilbert equation

An equation of motion describing the magnetization dynamics of a ferromagnet is
given by the Landau-Lifshitz-Gilbert (LLG) equation [44]

(
1 + α2

) dmi

dt
= −γmi ×Be�

i︸ ︷︷ ︸
precession

−αγmi ×
(
mi ×Be�

i

)
︸ ︷︷ ︸

damping

(1.7)

where γ is the gyromagnetic ratio, α is the damping parameter, andBe�
i = −µ−1 ∂E

∂mi
is

the e�ective magnetic �eld de�ned by the magnetic con�guration, with µ and E being
the magnetic moment length and the energy of the system, respectively [see Eq. 1.1].
The �rst term in Eq. (1.7) describes the precessional motion of the magnetization
around an e�ective magnetic �eld. The second term in Eq. (1.7) accounts for the
dissipation of the energy by pushing mi towards Be�

i . Note that in the overdamped
regime, the LLG equation predicts that the speed of the precessional motion of the
magnetic moment slows down as α increases, that is

∣∣∣∣
dmi

dt

∣∣∣∣ =
γ
∣∣mi ×Be�

i

∣∣
√
1 + α2

, (1.8)

where dmi/dt −→ 0 as α −→∞.

Figure (1.1) illustrates the damped precessional motion of a single magnetic moment
m under the e�ect of an e�ective magnetic �eld, Be�, where the damping motion is
perpendicular to the precessional one. The magnetic momentm eventually aligns with
Be� due to damping torque.
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1.4 Landau-Lifshitz-Gilbert equation

Figure 1.1: Dynamics of a magnetic moment m induced by e�ective magnetic �eld Be�.
The green line shows the calculated trajectory described by the Landau-Lifshitz-Gilbert
equation, see Eq. (1.7). The black arrows in the tangent space show the precessional torque
−m × Be� and the damping torque −m × (m×Be�). The orientation of the magnetic
moment is described by the polar angle θ and an azimuthal angle ϕ. The e�ective �eld
Be� is pointing along z direction.
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2 Optimal control theory for
magnetic systems

The optimal control theory (OCT) [23] is a powerful theoretical approach used to
determine control stimulus that will cause a dynamical system to satisfy physical
constraints such that an objective function is optimized. The methodology presented in
this chapter is based on the OCT and applied to the energy-e�cient control of magnetic
states. Here, the stimulus is considered to be a pulse of the external magnetic �eld, and
the objective function � de�ning the cost of the magnetization switching � is de�ned
as the amount of energy used to generate the control pulse that produces the desired
change in the magnetic structure of the system. This energy cost functional is directly
proportional to the amplitude squared of the pulse integrated over time and space [45�
47]. Therefore, the cost functional is minimized subject to boundary conditions de�ned
by the system at hand and a constraint imposed by the LLG equation of motion
(see Eq. 1.7). Since the boundary conditions are set on the dynamical trajectory
connecting the desired magnetic states, this poses a signi�cant challenge in optimizing
the cost functional [24, 25]. Here, we have develop the OCT using unconstrained
optimization by solving the dynamical equations inversely with respect to the applied
external magnetic �eld, given the total time of the switching and the Hamiltonian of
the system.

Consequently, the presented theory rests on the postulate that the energy cost of a
given magnetization change is a functional of the transition trajectory in the con-
�guration space. Thus, the optimal control paths (OCPs) � dynamical transition
trajectories in the con�guration space connecting the target states in the magnetic
system and minimizing the energy cost � can be found directly by minimizing the
cost functional. Such formulation is ideally suited for highly predictive calculations
that are free from subjective assumptions. After �nding the OCPs for a given transi-
tion, reconstruction of the desired optimal pulse becomes a straightforward task. In
particular, the reconstruction procedure is based on the requirement that the superpo-
sition of the sought-for pulse and internal magnetic �eld de�ned by the Hamiltonian of
the system makes the system advance precisely along the optimal switching path, and
this advancement also satis�es the equations of motion and terminates at a prede�ned
switching time.
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2 Optimal control theory for magnetic systems

2.1 Energy cost of magnetization transition

In an electrical circuit, the dissipation of power through Joule heating and radiation
can be described by the Poynting theorem [48]

u̇ = − 1

µ0
∇ · (E ×B)− j · E , (2.1)

where u is the energy density, µ0 is magnetic permeability of vacuum, E is the electric
�eld, B is the magnetic �eld, and j is the current density. In an integral form one can
write

P = IU +
1

µ0

∮

S

(E ×B) · dS, (2.2)

where P is the power loss, I is the total current �ow through the system�neglecting
changes in charge, U is the potential di�erence between in�ux and out�ow of current,
and S is an arbitrary surface encompassing the system.

In this thesis, we de�ne the cost of the magnetization switching as the amount of
energy used to generate the control pulse that produces the desired change in the
magnetic structure of the system. Consequently, the cost associated with magnetiza-
tion switching Φ is de�ned as

Φ =

∫ T

0

Pdt =

∫ T

0

(
IU +

1

µ0

∮

S

(E ×B) · dS
)
dt, (2.3)

where �rst term reduces to the Joule heating, i.e., I2R with R being the resistance
of the electric circuit, yielding a non-zero result. The second term, as indicated in
Eq. 2.3 (radiation), is heavily dependent on the system's geometry and the pulse of
the external magnetic �eld. Assuming the enclosing surface is in a vacuum, we can
derive, from Maxwell's equations, |E ×B| = cB2, with c being the phase speed of the
electromagnetic waves in vacuum. Notably, the radiation term is proportional to |B|2,
bearing a strong dependence on the speci�c construction of the system and the degree
of con�nement of the switching �eld. The connection between the switching pulse and
the cost functional in Eq. (2.3) is dependent on the particular experimental setup used
and the method for generating the pulse.

Assuming the control stimulus to be an external magnetic �eld generated by an electric
circuit, the energy cost is mainly de�ned by Joule heating due to the resistance of the
electric circuit. This is proportional to the square of the electric current integrated over
the switching time. Assuming a linear relationship between the current magnitude and
the strength of the generated �eld, the cost functional can be written as [24, 45, 46]

Φ =

∫ T

0

∫

V

|B(r, t)|2dtdr, (2.4)

where V is the volume of the magnetic sample. In the framework of the discrete
model, the spatial integration for a continuous system in Eq. (2.4) is replaced by
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2.1 Energy cost of magnetization transition

Figure 2.1: (a) Schematic representation of the current-carrying I wire part of an electric
circuit generating an external magnetic �eld B and the associated energy lost due to
the resistance of the electric circuit. The energy used is de�ned by Joule heating, while
radiation is neglected. The magnetic �eld is shown with the blue circular lines, while the
arrows on the lines signify the direction of B. (b) Magnetization reversal of a macrospin
pointing along the unit vector m, where the reversal is induced by the magnetic �eld B.
The reversal trajectory connecting the initial and the �nal stable states is shown with the
green line.

a summation over the sites where magnetic moments are localized, resulting in the
following equation for the cost functional:

Φ = C

∫ T

0

N∑

i=1

|Bi(t)|2dt, (2.5)

where the factor C is proportional to the volume of the unit cell. In the entire thesis, we
consider C = 1. It is noteworthy that Φ characterizes the energy spent by the external
�eld source and not the energy dissipated in the magnetic system, see Figure. (2.1).

The optimal control theory aims to identify the optimal pulse Bm
i (t) that brings the

system to the desired �nal state such that Φ is minimized. Whenever thermal �uc-
tuations are negligible, the dynamics of the system can be described by the Landau-
Lifshitz-Gilbert (LLG) equation. To make the following discussion clear, we recall the
LLG equation (see Eq. (1.7)):

(
1 + α2

) dmi

dt
= −γmi ×

(
be�i +Bi

)
− αγmi ×

[
mi ×

(
be�i +Bi

)]
, (2.6)

where Bi is the external magnetic �eld, and be�i is the internal magnetic �eld de�ned
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2 Optimal control theory for magnetic systems

by the magnetic con�guration through the following equation:

be�i = be�i (M) = − 1

µi

∂E

∂mi
, (2.7)

whereM := (m1, ...,mN ) is a 3N dimensional vector, µi is the ith magnetic moment
length, and E the internal energy of the system excluding the Zeeman term. It is
noteworthy that due to the structure of the LLG equation, only the perpendicular part
of the magnetic �eld (whether internal or applied) is a�ecting the zero-temperature
spin dynamics as bothBi and be�i enter the equation explicitly through a cross product
with the spin vector mi. Therefore, we can without losing generality disregard parallel
components of the applied and internal �elds, i.e.,

mi × (be�i +Bi) = mi × (b⊥,e�i +B⊥i ), (2.8)

with b⊥,e�i = be�i −mi

(
be�i ·mi

)
being the transverse component of the internal �eld,

and similarly for B⊥i .

Nevertheless, both Bi(t) and mi(t) can be treated as independent variables, and Φ
minimized subject to the constraint de�ned by Eq. (2.6) [24, 25]. Alternatively, the
optimal pulse Bm

i (t) can be calculated via unconstrained minimization of Φ. For this,
Eq. (2.6) is used to express the external magnetic �eld in terms of the dynamical
trajectory and the internal magnetic �eld [45, 46]:

Bi(mi, ṁi) =
α

γ
ṁi +

1

γ
[mi × ṁi]− b⊥,e�i , (2.9)

and the result substituted into Eq. (2.5). Subsequently, the energy cost Φ becomes a
functional of the switching trajectoryM:

Φ = Φ[M] =

∫ T

0

N∑

i=1

A(mi, ṁi)dt, (2.10)

where A(mi, ṁi) is given by

A(mi, ṁi) =
α2 + 1

γ2
|ṁi|2 −

2α

γ
ṁi · b⊥,e�i − 2

γ
(mi × ṁi) · b⊥,e�i + |b⊥,e�i |2. (2.11)

We �nd the optimal mechanism by minimizing Φ with respect to the path connecting
the initial and the �nal state in the con�guration space. The minimization process can
be done in two ways, either analytically or numerically, depending on the complexity
of the problem. Analytical minimization entails solving the Euler-Lagrange equations,
while numerical minimization involves utilizing gradient-based numerical techniques
to nullify the force, which is the �rst-order variation of Φ with respect to the spin
orientation. The dynamical reversal trajectory in the con�guration space minimizing
Φ is denoted as the optimal control path (OCP) to distinguish it from other switching
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2.1 Energy cost of magnetization transition

trajectories and highlight its physical meaning. The optimal switching pulse is found
upon substituting the OCP into Eq. (2.6), thereby derived from the system's intrinsic
magnetic properties, which are available via well-established techniques [49].

In the following, Sec. 2.2 will be devoted to the unconstrained minimization of the
energy cost functional Φ. This involves optimizing Φ while adhering to boundary con-
ditions speci�c to the magnetic system and incorporating the dynamics of magnetic
moments through the zero-temperature Landau-Lifshitz-Gilbert equation, with no re-
strictions on the pulse of the external magnetic �eld. Subsequently, Sec. 2.3 expands
upon this by introducing an additional constraint in the optimal control problem.
This constraint ensures that the pulse remains uniform and time-dependent, which
enhances the practicality of implementing the optimal pulse in experimental settings.
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2 Optimal control theory for magnetic systems

Figure 2.2: (a) Illustration of a trajectory, indicated by the green line, connecting the initial
and �nal stable states of a macrospin pointing along the unit vector m. The initial and
�nal stable states are marked with blue points. Along this trajectory, each discrete point,
represented by a red point, corresponds to a state of the system in the con�guration space
and is referred to as an image denoted by mp = m(tp). These red points signify movable
images that can be repositioned in the con�guration space during the optimization process.
(b) Illustration of the midpoint scheme used in the numerical method for �nding OCPs.
Two images mp and mp+1 are connected by a geodesic path in the con�guration space.
The position mp+ 1

2
and the velocity ṁp+ 1

2
at the midpoint of the path are de�ned by mp

and mp+1, and the angle δp between them.

2.2 Unconstrained optimization of the energy cost

functional

We �nd OCPs numerically via the direct minimization of the cost functional. For this,
we discretize Φ using the midpoint rule

Φ[M(t)] ≈ Φ[S(t)] =
Q∑

p=0

N∑

i=1

|Bp+ 1
2 ,i
|2 (tp+1 − tp) , (2.12)

where {tp} is a partition of the time interval [0, T ] such that 0 = t0 < t1 < . . . <
tQ+1 = T . Here, the partition has a regular spacing, i.e. tp+1 − tp = ∆t = T/(Q+ 1),
p = 0, . . . , Q. A switching trajectory M(t) is represented by a polygeodesic line
connecting Q + 2 points, referred to as `images': M(t) → {M0,M1, . . . ,MQ+1},
with Mp := {mp,1, . . . ,mp,N} and mp,i = mi(tp). The �rst image M0 and the
last image MQ+1 correspond to the initial and the �nal orientation of the magnetic
moments, respectively; They are �xed, but Q intermediate images can be moved,
see Figure. 2.2(a). The external �eld Bp+ 1

2 ,i
≡ B(mp+ 1

2 ,i
, ṁp+ 1

2 ,i
) is de�ned by the

position and the velocity of the magnetic moments at the midpoint of discretization
intervals via Eq. (2.9). On the other hand, both mp+ 1

2 ,i
and ṁp+ 1

2 ,i
can be expressed
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2.2 Unconstrained optimization of the energy cost functional

in terms of the position of the images:

mp+ 1
2 ,i

=
mp+1,i +mp,i

|mp+1,i +mp,i|
, (2.13)

ṁp+ 1
2 ,i

=
δp,i
∆t

mp+1,i −mp,i

|mp+1,i −mp,i|
, (2.14)

where δp,i is the angle between mp,i and mp+1,i, see Figure. 2.2(b). Note that the
magnitude of ṁp+ 1

2 ,i
is de�ned by the �nite-di�erence approximation for the angular

velocity, and its direction is along the unit vector (mp+1,i − mp,i)/|mp+1,i − mp,i|
ensuring orthogonality tomp+ 1

2 ,i
, see Appendix A for more details about the derivation

of the velocity. Upon substituting Eqs. (2.29), (2.30), and (2.9) into Eq. (2.12), the
functional Φ becomes a function of a 3QN−dimensional vector S de�ning the position
of the movable images, S = (M1, . . . ,MQ).

Possible OCPs of the magnetization switching can be identi�ed by locating minima
of Φ(S). This is done using the velocity projection optimization (VPO) method [50]
and/or the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm
[51, 52] equipped with the force acting on the movable images:

F = −∇⊥Φ[S], (2.15)

where ∇⊥ denotes the gradient projected on the tangent space of the con�guration
space, which is a curved manifold due to the constraint |mp,i| = 1, p = 1, . . . , Q and
i = 1, . . . , N . Explicitly:

∇⊥ =
(
~∇⊥1,1, ~∇⊥1,2, . . . , ~∇⊥1,N , ~∇⊥2,1, . . . , ~∇⊥Q,N

)
, (2.16)

where ~∇⊥p,i ≡ ∂/∂mp,i−mp,i (mp,i · ∂/∂mp,i), see Appendix A for more details about
the derivation of the force.

For a given number of images involved in the local minimization of Φ(S), the calculation
is considered converged when the magnitude of the force, |F|, has dropped below the set
tolerance. However, even convergence with a tight force tolerance may be insu�cient
for a satisfactory resolution of the OCP if Q is not large enough. On the other hand,
including too many images in the calculation would result in an unnecessarily high
computational e�ort. Therefore, the following strategy is applied: The OCP search is
started with a moderate number of images, and the switching path is �rst converged
only to a rather high tolerance to bring the images relatively close to the OCP with a
reduced computational e�ort; after that, images are progressively added to the path
and minimization of the energy cost is reiterated with a low force tolerance until Φ(S)
stops changing. In this thesis, up to Q = 1500 movable images were used depending
on the system at hand as well as the parameters of the system and the switching time,
with the lowest force tolerance corresponding to the drop of the force by ten orders of
magnitude with respect to the initial force calculated from the initial path.
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2 Optimal control theory for magnetic systems

Some initial arrangement of the images is needed to start an OCP calculation. On
one hand, this can be generated, for example, by placing the images uniformly along
the shortest-distance path between the initial stateM0 and the �nal stateMQ+1 of
the transition. In particular, generating an intermediate movable images Q along the
short geodesic path can be achieved by rotating the magnetic moments from M0 to
MQ+1 using Rodrigues' formula [50, 53] as follows:

mq,i = m0,i cos θq,i + (ki ×m0,i) sin θq,i, (2.17)

with q = (1, 2, . . . , Q). Here, m0,i is the ith magnetic unit vector in the zeroth image,
while mq,i is the ith magnetic unit vector in the qth image. θq,i = (q − 1)θi/Q is an
angle of rotation with θi being an angle between the vectorsm0,i andmQ+1,i belonging
to the initial and �nal �xed images, respectively. The unit vector ki describing an axis
of rotation is de�ned as

ki =
(m0,i ×mQ+1,i)

|(m0,i ×mQ+1,i)|
. (2.18)

On the other hand, the initial arrangement of the images can be generated using
some previously found OCP. It is also recommended to add small random noise to the
initial path to avoid convergence on maxima or saddle points of Φ(s) due to possible
symmetries in the system. A local minimization of Φ(s) will most likely converge to
the OCP closest to the initially generated path. If multiple OCPs are present between
the initial and the �nal state, several initial estimates need to be produced to enable
convergence on the various solutions. A brief description of an algorithm for the
minimization of the energy cost functional is described in the following.
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2.2 Unconstrained optimization of the energy cost functional

Algorithm

Let Mp := {mp,1, . . . ,mp,N} be a 3N dimensional vector with mp,i = mi(tp). The
steps of the algorithm go as follows

1. Set up values for the the switching time T , magnetic damping parameter α, the
total number of movable images Q, and the Hamiltonian parameters. Choose
the �xed initial and �nal stable statesM0 andMQ+1, respectively. Construct
an initial switching trajectoryM(t) → {M0,M1, . . . ,MQ+1}. Set the counter
l = 0 and value for the convergence tolerance ε (e.g., ε = 10−14 sT2).

2. Set the initial step length η(0), e.g., η(0) = 1.

3. Calculate the initial magnitude of the projected forces Γ 1.

4. Do while Γ > ε:

a) Determine the step length η(l) using inexact line search method [54].

b) Calculate the search direction R(l)
p,i using VPO [50] or LBFGS [51, 52].

c) For a given image p, rotate the magnetic moments m
(l+1)
p,i = e−η

(l)R(l)
p,im

(l)
p,i

d) Update the search direction R(l+1)
p,i .

e) Calculate the maximummagnitude of the projected forces de�ned by Eq. 2.34,
that is Γ = max(|F(l+1)|).

5. Update the value of the index l and go to step 4.

mohammad badarneh

Note that one can employ the inexact line search method for determining a suitable
value for the step size η. The inexact line search typically involves satisfying two
conditions: (i) the su�cient decrease condition and (ii) the curvature condition. The
curvature condition is a supplementary criterion used with the su�cient decrease con-
dition to prevent choosing excessively small step sizes. These conditions ensure that
the step size guarantees a decrease in the value of the energy cost functional while
avoiding very small step sizes. In practice, the inexact line search often involves an
initial guess for η and then iteratively adjusts its value until the desired conditions
(i)-(ii) are satis�ed [54].

1Instead of setting an arbitrary value for the magnitude of the initial force, it is recommended to

calculate it from the initial path.
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2 Optimal control theory for magnetic systems

2.3 Constrained optimization of the energy cost

functional

The energy cost functional shown in Sec. 2.2 is minimized subject to boundary condi-
tions determined by the system at hand and a constraint imposed by the equation of
motion of magnetic moments, i.e., the zero-temperature Landau-Lifshitz-Gilbert equa-
tion, but without constraint on the magnetic �eld. As a result, when �nding an optimal
mechanism describing a non-uniform rotation of magnetization, e.g., excitation of a
spin wave, the corresponding optimal pulse of the external magnetic �eld inherently
manifests non-uniform spatial distributions. Achieving such a complex pulse pro�le in
experimental settings could present signi�cant challenges. This motivates us to extend
the optimal control problem by imposing a constraint that ensures the pulse remains
uniform and time-dependent, thereby enhancing the feasibility of realizing the optimal
pulse experimentally.

In this section, we brie�y present the mathematical formulation of the constrained
optimization problem and discuss possible techniques for solving such problems. Sub-
sequently, we apply these concepts to address the constrained optimization of the
energy cost functional.

De�nition of the constrained optimization

The primary aim of the constrained theory revolves around the maximization or min-
imization of an objective function while adhering to a speci�ed array of constraints.
The objective function represents the quantity to be optimized, which can be a mea-
sure of performance, cost, or any other relevant metric. The constraints, however,
signify the conditions that must be satis�ed.

Mathematically, constrained optimization problems can be formulated as follows: min-
imize the objective function f : RN −→ R where f is real-valued and twice continu-
ously di�erentiable on RN [54]:

minimize f(x), x ∈ RN , x = {x1, x2, ..., xN} (2.19)

subject to

hi(x) = 0,∀i ∈ I := {1, 2, ..., neq}
gj(x) ≥ 0,∀j ∈ J := {1, 2, ..., nineq} (2.20)

where hi(x) : RN −→ Rneq and gj(x) : RN −→ Rnineq are the equality and inequality
constraints, respectively, and neq, nineq are the number of constraints. Here, f(x),
hi(x), gj(x) are su�ciently smooth real-valued functions. Smoothness guarantees a
reasonably predictable behavior for both the objective function and the constraints,
enabling the gradient-based numerical methods to e�ectively select search directions.
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2.3 Constrained optimization of the energy cost functional

In a more compact form, the constrained optimization problem can be formulated as:

minimize
x∈Ω

f(x), (2.21)

such that the set of feasible solutions, where we con�ne the objective function f , is
de�ned as

Ω := {x ∈ RN | hi(x) = 0 (i ∈ I), gj(x) ≥ 0 (j ∈ J )}. (2.22)

Note that if we take f(x) ≡ 0, then the constrained optimization becomes root-�nding
on the function hi(x), while if we take hi(x) = gj(x) ≡ 0, then the problem becomes
unconstrained optimization on the objective function f .

One of the techniques for solving constrained optimization problems is the augmented
Lagrangian methods [55]. The basic idea behind these methods is to convert a con-
strained optimization problem into a series of unconstrained optimization subproblems
by adding penalty terms to the objective function that measures the violation of the
constraints. The penalty terms are weighted by Lagrange multipliers, which are up-
dated iteratively during the optimization process. Another method for solving the
constrained optimization problems is the quadratic penalty method [54]. We have
utilized the quadratic penalty method as discussed in the following.

Quadratic penalty method

The basic idea behind the quadratic penalty method is to modify the original objec-
tive function f by adding a penalty term for each constraint. The penalty term is
constructed as the squared norm of the constraint violation, weighted by a penalty
parameter λ. This penalty parameter controls the trade-o� between satisfying the con-
straints and optimizing the objective function. Note that by converting constrained
optimization problems into unconstrained ones, one can employ unconstrained opti-
mization techniques to resolve them e�ectively.

Mathematically, the objective function in the quadratic penalty method, consider only
equality constraints, is given by:

Q(x, λ) := f(x) + λ
∑

i∈I
h2i (x), (2.23)

where Q(x, λ) is the quadratic penalty function and λ > 0 is the penalty parameter.
Note that, during the optimization process, the constraints are enforced more strictly
as λ increases, enabling the gradient-based numerical methods to approach a feasible
solution. One has to be careful when working with such a method since very large λ can
lead to numerical instabilities or convergence issues. The quadratic penalty method
is typically solved iteratively. In each iteration, the penalty function is added to the
objective function, then gradient-based algorithms can be used to �nd a solution. The
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2 Optimal control theory for magnetic systems

penalty parameter λ is increased gradually in each iteration until the solution satis�es
the constraints to a desired degree.

In the following, we apply the concept of penalty method to the problem of optimizing
the energy cost functional under the constraint that the external magnetic �eld is
uniform.

Constrained optimization of the energy cost functional

To simplify the following discussion, we recall the energy cost functional Φ (see Eq. 2.5)

Φ =

∫ T

0

N∑

i=1

|Bi(t)|2dt, (2.24)

then, by employing the LLG equation, the external magnetic �eld Bi can be expressed
in terms of the dynamical trajectory and the internal magnetic �eld as follows:

Bi(mi, ṁi) =

(
α

γ
ṁi +

1

γ
[mi × ṁi]− b⊥,e�i

)
+ ci(t)mi, (2.25)

where the terms in the parenthesis represent the transverse component of the pulse,
while the term ci(t)mi signi�es the parallel component of the pulse with ci(t) being
a site-dependent parameter. Upon substituting Eq. (2.25) into Eq. (2.24), the energy
cost Φ becomes a functional of the switching trajectory M(t) := {m1(t), ...,mN (t)}.
The aim of the OCT is to identify an optimal pathMm(t) by minimizing Φ[M(t)] with
respect to path connecting the initial and the �nal stable state in the con�guration
space, and subject to the constraint that Bi(mi, ṁi) is uniform. Such constrained
optimization problem can be formulated as

minimize
M∈Ω

Φ[M(t)], (2.26)

where Ω := {M ∈ R3N |Bi(mi, ṁi) = B∗(t)} is a set of feasible solutions that satisfy
the equality constraints, i.e., Bi(mi, ṁi)−B∗(t)=0 with B∗(t) being a time-dependent
uniform �eld.

Nevertheless, solving constrained optimization problems directly can be computation-
ally challenging and may require specialized algorithms. To simplify the problem and
leverage existing optimization techniques, the constrained optimization problem, see
Eq. (2.26), is reformulated as unconstrained one by means of the quadratic penalty
function approach. In particular, we modify the original objective function Φ[M(t)]
by adding a penalty term for each constraint. Thus, the objective function in the
quadratic penalty method Φ∗[M(t)] is given by

Φ∗[M(t)] =

∫ T

0

(
|B∗(t)|2 + λ

N∑

i=1

[
B∗(t)−Bi(mi, ṁi)

]2
)
dt, (2.27)
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2.3 Constrained optimization of the energy cost functional

where the penalty term is de�ned as the sum of squares which penalizes the violation
of the equality constraints, and weighted by a penalty parameter λ > 0 controlling
the trade-o� between satisfying the constraints and optimizing the objective function.
The larger the value of λ, the more signi�cant the penalty for constraint violations.
Finding an optimal mechanism Mm(t) minimizing the cost functional Φ∗[M(t)] can
be achieved numerically as follows.

We start by discretizing Φ∗[M(t)] ≈ Φ∗[S] using the midpoint rule

Φ∗[S] =
Q∑

p=0

(
|B∗p+ 1

2
|2 + λ

N∑

i=1

[
B∗p+ 1

2
−Bp+ 1

2 ,i

]2
)
∆t,

(2.28)

where ∆t = tp+1− tp = T/(Q+1), p = 0, . . . , Q. Here, a regular spacing is considered
for the partition {tp} of the time interval [0, T ] such that 0 = t0 < t1 < . . . < tQ+1 =
T . A switching trajectory M(t) is represented by a polygeodesic line connecting
Q + 2 points, referred to as `images': M(t) → {M0,M1, . . . ,MQ+1}, with Mp :=
{mp,1, . . . ,mp,N} and mp,i = mi(tp). The �rst imageM0 and the last imageMQ+1

correspond to the initial and the �nal orientation of the magnetic moment, respectively;
They are �xed, but Q intermediate images can be moved. The external �eld Bp+ 1

2 ,i
≡

B(mp+ 1
2 ,i
, ṁp+ 1

2 ,i
) is de�ned by the position and the velocity of the magnetic moment

at the midpoint of discretization intervals via Eq. (2.25). On the other hand, both
mp+ 1

2 ,i
and ṁp+ 1

2 ,i
as well as B∗

p+ 1
2

and cp+ 1
2 ,i

can be expressed in terms of the

position of the images:

mp+ 1
2 ,i

=
mp+1,i +mp,i

|mp+1,i +mp,i|
, (2.29)

ṁp+ 1
2 ,i

=
δp,i
∆t

mp+1,i −mp,i

|mp+1,i −mp,i|
, (2.30)

B∗p+ 1
2
=

(B∗p+1 +B∗p)

2
, (2.31)

cp+ 1
2 ,i

=
(cp+1,i + cp,i)

2
, (2.32)

where δp,i is the angle between mp,i and mp+1,i, B
∗
p = B∗(tp), and cp,i = ci(tp). Note

that the magnitude of ṁp+ 1
2 ,i

is de�ned by the �nite-di�erence approximation for the

angular velocity, and its direction is along the unit vector (mp+1,i −mp,i)/|mp+1,i −
mp,i| ensuring orthogonality tomp+ 1

2 ,i
. Upon substituting Eqs. (2.29-2.32), and (2.25)

into Eq. (2.28), the functional Φ∗ becomes a function of a 3NQ−dimensional vector
S de�ning the position of the movable images, S = (M1, . . . ,MQ).

Possible OCPs of the magnetization switching can be identi�ed by locating minima
of Φ∗(S). Note that Φ∗(S) depends on fast and slow variables. The slow variables are
the direction of the magnetic moments mp,i, while the fast variables are denoted as
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2 Optimal control theory for magnetic systems

B∗p, and cp,i and found using self-consistency calculations for given directions of the
magnetic moments. Therefore, the minimization process of Φ∗ is done in two stages
as follows:
Stage I�For a given orientation of the slow degrees of freedom, the fast degrees of
freedom are adjusted according to the self-consistency equations

∂Φ∗

∂cp,i
= 0, and

∂Φ∗

∂B∗p
= 0, (2.33)

which are used to calculate the self-consistent values of B∗p and cp,i.
Stage II�After calculating the self-consistent values of B∗p and cp,i, the slow degrees of
freedom are updated by performing rotation of the magnetic moments using the veloc-
ity projection optimization (VPO) method [50] and/or the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) algorithm [51, 52] equipped with the force acting
on the movable images:

F = −∇⊥Φ∗[S], (2.34)

where ∇⊥ is de�ned by Eq. (2.16).

The variation of Φ∗ with respect to the independent variables B∗q , cq,j , and mq,j is
given by

∂Φ∗

∂B∗q
=





[
B∗1

2

+ λ
N∑
i=1

(
B∗1

2

−B 1
2 ,i

)]
∆t, q = 0

Q∑
p=0

[
B∗
p+ 1

2

+ λ
N∑
i=1

(
B∗
p+ 1

2

−Bp+ 1
2

)]
(δqp + δqp+1)∆t, 0 < q < Q

[
B∗
Q− 1

2

+ λ
N∑
i=1

(
B∗
Q− 1

2

−BQ− 1
2

)]
∆t, q = Q

(2.35)

∂Φ∗

∂cq,j
=





λ
[
c 1

2 ,j
−B∗1

2

·m 1
2 ,j

]
∆t, q = 0

λ
Q∑
p=0

[
cp+ 1

2 ,j
−B∗

p+ 1
2

·mp+ 1
2 ,j

]
(δqp + δqp+1)∆t, 0 < q < Q

λ
[
cQ− 1

2 ,j
−B∗

Q− 1
2

·mQ− 1
2 ,j

]
∆t, q = Q

(2.36)

∂Φ∗

∂mq,j
= −2λ

[
Q∑

p=0

N∑

i=1

(B∗p+ 1
2
−Bp+ 1

2 ,i
) · ∇q,j ⊗Bp+ 1

2 ,i

]
∆t (2.37)
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2.3 Constrained optimization of the energy cost functional

where

∇q,j ⊗Bp+ 1
2 ,i

=
α

γ

(
∇q,j ⊗ ṁp+ 1

2 ,i

)
+

1

γ
∇q,j ⊗

(
mp+ 1

2 ,i
× ṁp+ 1

2 ,i

)

−∇q,j ⊗ b⊥,e�
p+ 1

2 ,i
+ cp+ 1

2
∇q,j ⊗mp+ 1

2 ,i
.

The ⊗ notation represents the outer product, which can be de�ned by index notation
as follows: (U ⊗V)αβ = uαvβ with (α, β) ∈ {x, y, z}, where U and V are arbitrary

vectors. Thus, the matrices ∇q,j ⊗ mp+ 1
2 ,i
, ∇q,j ⊗ ṁp+ 1

2 ,i
, and ∇q,j ⊗ b⊥,e�

p+ 1
2 ,i

are

de�ned as follows:

∇q,j ⊗mp+ 1
2 ,i

=
∂mp+ 1

2 ,i,β

∂mq,j,α
,

∇q,j ⊗ ṁp+ 1
2 ,i

=
∂ṁp+ 1

2 ,i,β

∂mq,j,α
,

∇q,j ⊗ b⊥,e�
p+ 1

2 ,i
=

∂b⊥,e�
p+ 1

2 ,i,β

∂mq,j,α
. (2.38)
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3 Thermal e�ects

Identi�cation of energy-e�cient methods for controlling magnetization is both funda-
mentally interesting and technologically relevant, e.g., in the development of magnetic
memory devices. While magnetization switching in magnetic recording is conven-
tionally achieved by applying a static external magnetic �eld opposite to the initial
magnetization direction, previous studies have demonstrated that the energy cost of
this process can be reduced by applying time-varying stimuli, such as a microwave
magnetic �eld [56�60]. For a uniaxial monodomain particle, the optimal magnetiza-
tion reversal is achieved by a rotating magnetic �eld synchronized with the precessional
dynamics of the magnetic moment [24, 25, 45, 61].

The assessment of the stability of energy-e�cient switching protocols with respect to
ever-present thermal �uctuations is an important problem. The thermal �uctuations
perturb the phase locking between the magnetization and the external stimulus. As
a result, the magnetization switching can be compromised unless the energy barrier
between the initial and �nal states is much larger than the thermal energy, and the
switching time does not exceed a few periods of Larmor precession [45]. This poses
a challenge for the realization of energy-e�cient switching protocols at elevated tem-
peratures, such as a combination of a microwave and heat-assisted technique. Even at
low temperatures, the perturbations in the dynamics can accumulate in time poten-
tially leading to decoherence between the magnetization and the microwave pulse for
relatively slow switching which is required for the autoresonance-based protocols [62].
In general, the assessment and control of dynamical stability of magnetic systems is a
crucial problem [63, 64].

Energy-e�cient switching of nanoscale magnets requires application of time-varying
magnetic �eld characterized by microwave frequency [45]. At �nite temperatures, even
weak thermal �uctuations create perturbations in the magnetization that can accu-
mulate in time, break the phase locking between the magnetization and the applied
�eld, and eventually compromise magnetization switching. In this chapter, we present
a theory for stabilizing the magnetization switching in a nanoparticle with respect to
thermal �uctuations. We demonstrate that the magnetization reversal is mostly dis-
turbed by unstable perturbations arising in a certain domain of the con�guration space
of a nanomagnet. The instabilities can be suppressed and probability of magnetization
switching enhanced by applying an additional stimulus such as a weak longitudinal
magnetic �eld. The time dependence of the stabilizing longitudinal �eld for the magne-
tization switching in a uniaxial nanomagnet is derived from the requirement of having
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3 Thermal e�ects

Figure 3.1: Calculated dynamics of the magnetic moment for a uniaxial nanoparticle in-
duced by the optimal switching magnetic �eld. The black line shows the zero-temperature
trajectory of the magnetic moment which corresponds to the optimal control path m0(t)
for the magnetization switching. The green (red) line shows the trajectory for successful
(unsuccessful) switching at �nite temperature corresponding to the thermal stability factor
∆ = 20. The light red (blue) shaded area for π/4 ≤ θ ≤ 3π/4 (θ < π/4 and θ > 3π/4)
marks the domain where the perturbation dynamics is unstable (stable). The damping
factor α is 0.2, the switching time T is 5τ0

bound dynamics of the perturbations.
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3.1 Local dynamics of perturbation

3.1 Local dynamics of perturbation

The magnetization dynamics of the nanoparticle can be described by the Landau-
Lifshitz-Gilbert (LLG) equation (see Eq. 1.7)

ṁ = −γ†m×
(
Be� +B+ ξ

)
− αγ†m×

[
m×

(
Be� +B+ ξ

)]
, (3.1)

where m is the normalized magnetic moment vector, α is the damping factor, γ† =
γ/
(
1 + α2

)
with γ being the gyromagnetic ratio, B is the external magnetic �eld,

Beff = −µ−1∂E/∂m is the internal magnetic �eld de�ned by the magnetic con�g-
uration, with µ and E being the magnetic moment length and the internal energy
of the system, respectively, and the stochastic term ξ mimicking interaction of the
system with the heat bath [65]. Here, the transverse component of the external �eld
B induces the magnetization switching as shown in Fig. 3.1. The calculated reversal
trajectory at zero-temperature connecting the stable states is denoted as m0(t), see
the black line in Fig. 3.1.

The interaction of the nanoparticle with the heat bath results in the perturbed tra-
jectory:

m(t) = m0(t) + δm(t), (3.2)

where the condition δm(t) ·m0(t) = 0 must be satis�ed at all times due to the con-
straint on the length of the spin vector. If the perturbation becomes too large, the
coherence between the switching pulse and the magnetic moment will be lost resulting
in a failed switching attempt (see red trajectory in Fig. 3.1). Therefore, the dynami-
cal stability of the system can be investigated by analyzing the time evolution of the
perturbation δm(t). A basis for the representation of δm(t) in the tangent space to
m0(t) is given by the unit vectors v̂1 and v̂2:

δm(t) = ε1(t)v̂1 + ε2(t)v̂2, (3.3)

where ε1(t) and ε2(t) are coe�cients of δm(t) in the basis {v̂1, v̂2}. Therefore, the
dynamical stability of the system can be investigated by analyzing the time behavior of
the perturbation. An equation governing the evolution of the �rst-order perturbation
term can be obtained by substituting Eq. (3.3) into Eq. (3.1) and linearization with
respect to δm(t)

1 + α2

γ
δṁ(t) =

[
−α −1
1 −α

](
BrI2 +

1

µ
H
)
δm(t), (3.4)

where Br is the longitudinal component of the external pulse (parallel to the spin
vector m), I2 is a two-dimensional identity matrix, and H is the projected Hessian to
the tangent space obtained using a projection operator approach [66]. Interestingly,
local dynamics of the perturbations does not depend on the optimal switching pulse,
for which Br = 0. Since the tangent space coordinates, v̂1 and v̂2, can have an
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3 Thermal e�ects

arbitrary orientation, we can choose them to align with the eigenvectors of H. In
particular, Hv̂∗1 = w1v̂

∗
1 and Hv̂∗2 = w2v̂

∗
2 , where w1 and w2 are the eigenvalues of H

with the corresponding eigenvectors v̂∗1 and v̂∗2 , respectively. Hence, the equation of
the �rst-order perturbation term in the eigenvector coordinates of H becomes

1 + α2

γ
ε̇(t) =

[
−α −1
1 −α

]
·D · ε(t), (3.5)

where ε(t) = (ε1(t), ε2(t))
T and D is a matrix given by

D =

[
Br +

w1

µ 0

0 Br +
w2

µ

]
, (3.6)

where values of w1(t)/µ and w2(t)/µ can be derived from the reversal trajectory at
zero temperature, m0(t).
For zero damping, Eq. (3.5) predicts two types of dynamical trajectories for the per-
turbation depending on the sign of w1w2. The trajectories are elliptic, bound for
w1w2 > 0. For the optimal switching pulse with Br = 0, this regime is realized in
the vicinity of the energy minima for θ < π/4 and θ > 3π/4 (see the blue regions
in Fig. 3.1). However, the perturbation trajectories become hyperbolic, divergent for
π/4 ≤ θ ≤ 3π/4 where w1w2 ≤ 0 (see the red region in Fig. 3.1). It is important to
realize that for α = 0 the trajectories are equally stable regardless of whether both
w1 and w2 are positive or negative. Situation changes with non-zero damping: for
positive w1, w2, the perturbations tend to relax toward m0(t), while for negative w1,
w2, the relaxation ampli�es the perturbations. In principle, the latter case is unsta-
ble. However, this instability is expected not to signi�cantly a�ect the magnetization
switching if the switching time is short on the time scale of relaxation dynamics which
is de�ned by the damping parameter α. We conclude that the hyperbolic instabilities
in the perturbation dynamics are the primary reason for the decoherence between the
magnetization and the switching pulse. These instabilities ultimately de�ne thermal
stability of magnetization dynamics.

E�ects of the longitudinal magnetic �eld on the dynamics of the perturba-

tion

The stability of the dynamical system de�ned by Eq. (3.5) is controlled by the eigen-
values of the matrix D, which can be shown by investigating the possible solutions of
Eq. (3.5). For instance, the solution of Eq. (3.5) for the case Br = 0 and α = 0 results
in three types of trajectories in the tangent space depending on the sign of w1w2, see
Figures 3.2(a)-3.2(c). The trajectories are elliptic for w1w2 > 0, straight for w1w2 = 0,
and hyperbolic for w1w2 < 0. Note that the solution is stable only for w1w2 > 0, and
diverges to in�nity under small perturbation for w1w2 ≤ 0, where increasing the ratio
w1/w2 results in increasing the amplitude of the perturbation. On the other hand, for
nonzero α and Br = 0 the trajectories of the perturbation become more tilted towards
(away from) m0 for w1 + w2 > 0 (w1 + w2 ≤ 0), where for a �xed value of α the
amplitude of the perturbation increases depending on the ratio w1/w2.
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3.1 Local dynamics of perturbation

Figure 3.2: Velocity diagrams showing the dynamics of the perturbation in the tangent
space depending on the eigenvalues of the Hessian for α = 0 and Br = 0. (a) w1 = 1,
w2 = −1, (b) w1 = 1, w2 = 0, (c) w1 = 1, w2 = 1. The black arrows in (a)-(c) show
the distribution of the dynamics with the size of the arrows being proportional to the
magnitude of the perturbation, and the colors in the background indicate if the amplitude
of the perturbation is increasing (red), decreasing (blue), or constant (gray) in amplitude.

Figure 3.3: Velocity diagrams showing the dynamics of the perturbation in the tangent space
depending on the eigenvalues of the Hessian for α = 0 and Br = 1.0. a) w1 = 1, w2 = −1,
b) w1 = 1, w2 = 0, c) w1 = 1, w2 = 1. Notations and colors are the same as in Figure. (3.2)

Nevertheless, according to Eq. (3.5), the longitudinal �eld Br shifts both eigenvalues
w1/µ and w2/µ equally, hence, suggesting that Br can be utilized as a parameter to
control the dynamics of the perturbation from being divergent into con�ned ones. Fig-
ures. 3.3(a)-3.3(c) illustrate the e�ects of Br = 1.0 on the dynamics of the perturbation
in the tangent space for α = 0 and various values of the eigenvalues w1 and w2. By
comparing Fig. 3.2(a) and Fig. 3.3(a), we can see that by adding Br = 1.0 to Eq. (3.5)
the dynamics of the perturbation is changed from being hyperbolic into straight one
due to a shift in the eigenvalues, i.e., (w1/µ,w2/µ) −→ (Br +w1/µ,Br +w2/µ). Sim-
ilarly, the straight trajectory in Fig. 3.2(b) is changed into an elliptic one as shown in
Fig. 3.2(b).
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So far, we have shown that a constant Br can indeed change the dynamics of the
perturbation in the tangent space by shifting the eigenvalues calculated along the
zero-temperature reversal trajectory. However, some of these eigenvalues are stable,
and some of them are not, e.g., eigenvalues near the minima result in a stable trajec-
tory as shown in Figure. 3.1(A), while eigenvalues near the equator result in unstable
trajectories as shown in Figures. 3.1(B)-(C), suggesting that we only need to shift the
unstable eigenvalues towards the region in the (w1/µ,w2/µ) plane where the dynamics
are stable. In particular,

(w1/µ,w2/µ) =





(w∗1/µ,w
∗
2/µ), if the eigenvalues are unstable

(w1/µ,w2/µ), if the eigenvalues are stable
(3.7)

where (w∗1/µ,w
∗
2/µ) = (Br(t) + w1/µ,Br(t) + w2/µ) are the newly shifted eigenval-

ues. The motivation behind the formalism that appears in Eq. (3.7) is that we want
to enhance the stability against thermal �uctuations and simultaneously reduce the
magnetization switching cost. In particular, the cost functional Φ ∼ T |B(t)|2 where T
is the switching time and B(t) = B⊥(t)+Br(t)r̂. Thus, one needs to �nd the optimal
B⊥(t) that induces the magnetization switching and an e�cient Br(t) that enhances
the stability against thermal �uctuations. The time dependence of the longitudinal
�eld can be obtained from the requirement of having bound dynamics of the perturba-
tions. An equation for Br(t) that depends on the eigenvalues (w1/µ,w2/µ) is derived
in the following.
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3.2 Derivation of a time-dependent longitudinal

magnetic �eld

Dynamical stability is controlled by the determinant, det and the trace, tr, of the
matrix D (see Eq. (3.6)), where

detD = (µBr + w1) (µBr + w2) ,

trD = 2µBr + w1 + w2. (3.8)

To gain insight into the stability conditions, we refer to the stability diagram depicted
in Figure (3.4). This diagram categorizes perturbation trajectories as either stable or
unstable, based on the sign of w1/µ and w2/µ. For instance, consider the dynamics of
perturbations illustrated in Figure 3.4(A). These correspond to eigenvalues situated
in the Q1 quadrant of the (w1/µ,w2/µ)-plane (as shown in Figure 3.4) and exhibit
stability. Such eigenvalues satisfy the conditions detD > 0 and trD > 0. However,
the trajectories of perturbations associated with eigenvalues in the Q2 quadrant are
unstable (refer to Figure 3.4(B)). They meet the conditions detD < 0 and trD > 0 for
eigenvalues positioned above the dashed gray line, trD = 0 for eigenvalues along the
dashed gray line, and trD < 0 for eigenvalues below the dashed gray line.

Since Br equally shifts both eigenvalues w1/µ and w2/µ, see Eq. (3.6), this suggest that
Br can be employed to enhance stability by controlling the dynamics of the perturba-
tion and ensuring bounded behavior. Consequently, the location of the eigenvalues in
the (w1/µ,w2/µ) plane, as shown in Fig. (3.4), can be systematically controlled using
Br. In the following, we present two schemes for shifting the eigenvalues using a time-
dependent Br derived from the necessity for the bounded dynamics of perturbations
and de�ned in terms of the angle η shown in Fig. (3.4).

Scheme I.�Here, the eigenvalues of H are always shifted towards the (1, 1) direction
using Br, see the blue circles in Fig. (3.4). The connection of Br with η is described
as follows: Let a1 be a unit vector in the (1, 1) direction and a2 = (w1/µ,w2/µ) be a
vector de�ning the eigenvalues and making an angle η with a1. Smooth shifting of a2
towards the reference vector a1 can be done by reducing the value of the angle η to
zero, where the vectors a1 and a2 become aligned at zero η. The cosine of the angle

η is de�ned as cos η = (w1 + w2) /
(√

2
√
w2

1 + w2
2

)
. Thus, if cos η ≥ λ is ful�lled,

then it guarantees that both conditions w1w2 > 0 and w1 + w2 < 0 are ful�lled for
η > 3π/4 (λ < −1/

√
2), see Fig. (3.4). Therefore, for λ ∈ (−1,−1/

√
2] one should

substitute Br = 0 in Eq. (3.6), otherwise, Br will shift the eigenvalues towards the
quarter Q3, see Fig. (3.4), which is unstable with respect to relaxation. Nevertheless,
if cos η < λ is ful�lled then one needs to add Br to Eq. (3.6) to shift the eigenvalues
in the direction of a1. In particular, we can add B∗r to the vector a2 resulting in
a∗2 = (B∗r +w1/µ,B

∗
r +w2/µ). Hence, a formula for B

∗
r can be obtained by projecting
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3 Thermal e�ects

a∗2 onto a1, normalizing with respect to a∗2, and equating that to λ resulting in

B∗r (t) = −
w1(t) + w2(t)− λ|w1(t)−w2(t)|√

1−λ2

2µ
, (3.9)

where λ is a control parameter describing the strength of B∗r (t). Since we have two
conditions on cos η, i.e., (cos η ≥ λ and cos η < λ), then the �nal formula for Br(t) is
given by

Br(t) =





0, w1(t)+w2(t)√
2
√
(w2

1(t)+w
2
2(t))

≥ λ

B∗r (t), otherwise
(3.10)

Note that scheme I guarantees the ful�llment of the stability conditions for λ > 1/
√
2.

Scheme II.�Here, the eigenvalues are shifted either towards the (1, 1) or (−1,−1)
directions using Br(t) depending on their location in the (w1/µ,w2/µ) plane, see red
points in Fig. (3.4). In particular, shifting the eigenvalues towards the (1, 1) direction
can be achieved using Eq. (3.9), while shifting them towards the (−1,−1) direction
can be achieved using

B†r(t) = −
w1(t) + w2(t) +

λ|w1(t)−w2(t)|√
1−λ2

2µ
, (3.11)

where Eq. (3.11) is obtained by projecting a∗2 = (B†r(t) + w1(t)/µ,B
†
r(t) + w2(t)/µ)

towards the (−1,−1) direction, normalizing with respect to a∗2 and equating that to
λ. One can de�ne the �nal formula for Br(t) as follows

Br(t) =





0, λ ≤ | w1(t)+w2(t)√
2
√
(w2

1(t)+w
2
2(t))
|

B∗r (t), |B∗r (t)| ≤ |B†r(t)|

B†r(t), |B†r(t)| < |B∗r (t)|

(3.12)

where B∗r (t) and B†r(t) are given by Eq. (3.9) and Eq. (3.11), respectively, and an
absolute value in the condition λ ≤ | (w1(t) + w2(t)) /(

√
2
√
(w2

1(t) + w2
2(t)))| is intro-

duced to guarantee that both eigenvalues can get closer to either (1, 1) or (−1,−1)
directions. Notably, Eq. (3.12) picks the lowest amplitude of Br needed for shifting
the eigenvalues towards the gray regions in Fig. (3.4). For instance, if the eigenvalues
are close to the quarter Q1 (Q3) shown in Fig. (3.4), then Br reduces to B

∗
r (B†r) in

order to shift the eigenvalues towards (1, 1) or (−1,−1) direction, respectively. It is
noteworthy that B∗r = B†r is ful�lled for the eigenvalues located at the dashed gray
line in Fig. (3.4), signifying that it is energetically equivalent to shift them towards
either of the gray regions, see Fig. 3.4. Scheme II is unstable to relaxation, i.e., for
w1+w2 < 0 and high values of α the trajectories of the perturbation become unstable.
Thus, one would expect that scheme II will break down for large values of α.
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3.2 Derivation of a time-dependent longitudinal magnetic �eld

Figure 3.4: Stability diagram for classifying the trajectories of the perturbation as stable or
unstable depending on the sign of w1/µ and w2/µ. The condition w1+w2 > 0 (w1+w2 < 0)
is ful�lled in the area above (below) the dashed gray line. Green points signify selected
eigenvalues calculated along the zero temperature reversal trajectory, see the black line in
Fig. (3.1). The unstable eigenvalues are displaced using two schemes as described in the
legend. Blue circles and red points de�ne the newly shifted eigenvalues, while the angle η
de�nes their location in the plane. The letters (A-D) label the velocity diagrams showing
the dynamics of the perturbation in the tangent space. The black arrows in Figs. (A)-(D)
show the distribution of the dynamics with the size of the arrows being proportional to the
magnitude of the perturbation, and the colors in the background indicate if the amplitude
of the perturbation is increasing (blue), decreasing (red), or constant (gray). The notations
Q1-Q4 signify the quarter numbers.

Derivation of the projected Hessian matrix

For magnetic system consisting of N magnetic moments, the con�guration space is a
2N -dimensional Riemannian manifold, R, corresponding to the direct product of N
two-dimensional unit spheres i.e., R =

∏N
i=1 S

2
i , where S

2
i is a two-dimensional unit

sphere associated with the ith magnetic moment vector. De�ning the Hessian in such
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curved con�guration space can be achieved by applying a projection operator approach
[66]. This approach is based on calculating the constrained Hessian by introducing
the Lagrange multipliers and then projecting on the tangent space of the R

Ẽ(M) = E(M) +

N∑

i=1

Li (mα
i m

α
i − 1) , (3.13)

where Ẽ is the new magnetic Hamiltonian,M = {m1,m2, ...,mN}, α = {x, y, z}, and
Li are the Lagrange multipliers introduced due to the constraint on the length of the
magnetic moments, i.e., |mi| = 1. At the extremum, the derivative of Ẽ with respect
to mα

i vanishes. Thus,

∂Ẽ

∂mβ
j

=
∂E

∂mβ
j

+ 2Ljmβ
j = 0, (3.14)

by taking the dot product with respect to mβ
j , one obtain the following expression for

the Lagrange multiplier for the jth magnetic moment

Lj = −
1

2

(
∂E

∂mβ
j

·mβ
j

)
I, (3.15)

where I is a 3 × 3 identity matrix. The Hessian H in the Riemannian manifold can
be calculated by taking the second-order partial derivative of Eq. (3.13) with respect
to the Cartesian components of the magnetic moments

H ≡ ∂2Ẽ

∂mα
i ∂m

β
j

=
∂2E

∂mα
i ∂m

β
j

+ 2Liδαβ , (3.16)

The Lagrange multipliers of the whole system is a direct sum of Li

L =

N⊕

i=1

Li ≡




L1 0 ... 0
0 L2 ... 0
...

...
. . .

...
0 0 ... LN


 , (3.17)

then,
H = H + 2L, (3.18)

where H is de�ned by

H ≡ Hβ,α
p,q =

∂2E

∂mp,β∂mq,α
, (3.19)

where the indices p and q are the pth and qth magnetic moments, and both α, β
signify the {x, y, z} components of the magnetic moment. One can notice that H
is a (3N × 3N) matrix whose basis are 3N Euclidean basis. Our next step is to
transform the 3N Euclidean basis into a 2N tangent space basis. This can be done by
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3.2 Derivation of a time-dependent longitudinal magnetic �eld

introducing a (3N ,2N) projecting matrix U = ⊕Ni=1Ui, whose columns are a pair of
arbitrary orthonormal vectors, ξi and ηi, representing the basis of the tangent of R for
the ith magnetic moment. One can obtain η by orthonormalization of a random vector
with respect to mi, i.e., ηi = [ηi −mi (ηi ·mi)] /|ηi| and then ξi can be generated as
ξi = [ηi ×mi]

U =

N⊕

i=1

Ui ≡




U1 0 ... 0
0 U2 ... 0
...

...
. . .

...
0 0 ... UN


 , (3.20)

where

Ui =



ξxi ηxi
ξyi ηyi
ξzi ηzi


 . (3.21)

Thus, the constrained Hessian in the 2N tangent space basis can be obtained by

H = UT (H + 2L)U. (3.22)

37





4 Applications

In this chapter, we apply the optimal control theory to the energy-e�cient manipula-
tion of magnetization in uniaxial and biaxial nanoparticles and nanowires. The iden-
ti�cation of optimal control for all switching processes considered in this chapter will
be carried out using a general approach consisting of the following steps: (i) Selection
of a magnetic Hamiltonian and identi�cation of target magnetic states. The magnetic
system will be characterized within an atomistic approach using classical Heisenberg-
type Hamiltonians or a macrospin models. Parameters of the Hamiltonians, such as
strengths of the magnetic exchange, Dzyaloshinskii-Moriya interaction, and magnetic
anisotropy, will be treated as phenomenological constants. Target magnetic states will
be de�ned by locating minima on the energy surface of the system as a function of the
orientation of the moments. (ii) Calculation of optimal control paths. For relatively
simple systems such as magnetic nanoparticles, the search for optimal control paths
will be pursued using analytical methods based on the calculus of variations. But for
nanowire systems, the trajectories will be calculated numerically using our in-house
FORTRAN code. (iii) Calculation of optimal control pulses. The recovery of the op-
timal control pulses will be carried out based on the calculated optimal control paths,
speci�c dynamical equations, and switching time. Landau-Lifshitz-Gilbert equation
of motion will be used for the identi�cation of the external magnetic �eld pulses.

4.1 Unconstrained optimization

In this section, we apply the unconstrained optimization to the problem of energy-
e�cient magnetization switching in a uniaxial nanoparticle, biaxial nanoparticle, as
well as a bistable nanowire.

4.1.1 Optimal control of magnetization reversal in a uniaxial
nanoparticle

Exact results concerning energy-e�cient manipulation of magnetic structure are highly
important for fundamental science and technological applications, as they could help
improve the performance of computing and memory devices based on magnetic ele-
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Figure 4.1: Calculated optimal control paths (OCPs) for the reversal of a macrospin pointing
along the unit vector m. The initial and the �nal states are at the north and the south
poles of the unit sphere, respectively. The damping factor α is 0.1. The switching time T
is 10τ0 and 100τ0 for the paths shown with thick and thin green lines, respectively. The
optimal external magnetic �eld Bm at t = T/4, t = T/2 and t = 3T/4 is shown for the
shorter path with the brown arrows. Figure adapted from Ref. [45].

ments. Optimization of magnetization switching in bistable nanomagnets by tuning
the external magnetic �eld has come under special focus. Here, we apply OCT to a
uniaxial nanoparticle whose magnetic moment is reversed from one stable orientation
to the other (see Figure (4.1)). The energy barrier between the stable states is assumed
to be much larger than the thermal energy. This model mimics, e.g., a bit operation in
a nanoscale magnetic memory element, where strong magnetic anisotropy ensures the
stability of the element against thermal �uctuations [67]. So far, theoretical studies
of optimal magnetization switching have been based on particular ansatzes for the
switching �eld or involved numerical simulations, but a general analytical solution
providing a transparent physical picture is still missing.

Here we present a complete analytical solution to the problem of energy-e�cient
switching of a nanomagnet with easy-axis anisotropy. In contrast to previous stud-
ies, our solution does not involve any assumptions about the shape of the optimal
switching pulse, therefore providing a true theoretical limit to the energy cost of the
switching as a function of the switching time and establishing a link between the op-
timal pulse and material properties. Our results reveal new fundamental properties
of the reversal, including two asymptotic regimes of the energy cost and the optimal
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switching time.

The internal energy E of the unaixail nanoparticle is de�ned by the anisotropy along
z axis,

E = −Km2
z, (4.1)

where K > 0 is the anisotropy constant. Such system has two distinct stable states at
θ = 0 and θ = π, see Figure (4.1). Finding an energy-e�cient protocols for the mag-
netization reversal for such system requires minimizing the magnetization switching
cost functional Φ. This will be discussed in the following.

Optimal protocols for magnetization reversal

Due to the inherent symmetry of the uniaxial nanoparticle, the functional Φ, see
Eq. (2.10), will be written in spherical coordinates as follows:

Φ =

∫ T

0

[
α2 + 1

γ2

(
∂θ

∂t

)2

+
(α2 + 1) sin2 θ

γ2

(
∂ϕ

∂t

)2

+
2Kα

µγ
sin 2θ

∂θ

∂t

−4K

µγ
cos θ sin2 θ

∂ϕ

∂t
+
K2

µ2
sin2 2θ

]
dt, (4.2)

for which we have well de�ned boundary condition

θ(0) = 0 (4.3)

θ(T ) = π, (4.4)

corresponding to the transition between the energy minima within the switching time
T . We also have a degree of freedom in ϕ, which is the result of the singularity of
spherical coordinate system. Note that due to rotational symmetry of the uniaxial
nanoparticle we do not lose generality by assuming

ϕ(0) = 0. (4.5)

Nevertheless, the optimal control paths minimizing Φ can be found by solving the
Euler-Lagrange (EL) equations. The EL equations can be derived by varying Φ with
respect to θ and ϕ (see Figure. (4.1) for the de�nition of θ and ϕ), which results in
the following equations

τ20 θ̈ =
α2

4(1 + α2)2
sin 4θ, τ0φ̇ =

cos θ

1 + α2
, (4.6)

where the period of Larmor precession τ0 = µ(2γK)−1 de�nes the timescale. Equa-
tion (4.6) for θ is the well known Sine-Gordon equation [68, 69], whose solutions are
expressed by Jacobi elliptic functions [70]. In particular, the solution is given by

θ(t) =
1

2
am (A|B) (4.7)
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where am(.|.) is the Jacobi amplitude and the parameters A and B are given by

A =

√
2
√
2µ2c1α4 + 4µ2c1α2 − α2γ2K2 + 2µ2c1(t+ c2)

µ
√
α4 + 2α2 + 1

,

B = − 2α2γ2K2

2µ2c1α4 + (4µ2c1 − γ2K2)α2 + 2µ2c1
, (4.8)

with c1 and c2 being the constants of integration and will be calculated by applying
the boundary conditions. The �rst boundary condition is θ(0) = 0 resulting in the
following equation

1

2
am (A|B) = 0 (4.9)

which is satis�ed when the �rst argument of the Jacobi amplitude is zero, i.e., A =
0 [70]. Thus, the constant of integration c2 = 0. In order to �nd the constant of
integration c1 we apply the second boundary condition, that is θ(T ) = π resulting in

am

(
T

τ0p (1 + α2)
| − α2P 2

)
= 2π (4.10)

where p =
√
2γK/

(√
2µ2c1α4 + 4µ2c1α2 − α2γ2K2 + 2µ2c1

)
, see Eq. (4.8). How-

ever, by using the fact that am (4K(x), x) = 4π, then according to Eq. (4.10) one can
connect the parameter p with the switching time T as follows

T = 4τ0p
(
1 + α2

)
K(−α2p2), (4.11)

with K(.) being the complete elliptic integral of the �rst kind [70]. Thus, the solutions
of the EL equations, see Eq. (4.6), de�ning OCP in spherical coordinates read

θ(t) =
1

2
am

(
t

pτ0(1 + α2)

∣∣∣∣− α2p2
)
, (4.12)

ϕ(t) =
1

τ0

∫ t

0

cos(θ(τ))

1 + α2
dτ + ϕ0, (4.13)

with ϕ0 is an arbitrary phase at t = 0 arises due to the axial symmetry of the system.
The OCP described by Eqs. (4.12)-(4.13) reveals the mechanism for the magnetic
moment reversal. The moment moves steadily from the initial state upward the energy
surface while precessing counter-clockwise around the anisotropy axis until it reaches
the top of the energy barrier at t = T/2. At this point, the precession reverses its
direction and the system slides down to the target state minimum, see Figure (4.1).
The exact analytical solution given by Eqs. (4.12)-(4.13) makes it possible to derive
general properties of the OCP. Speci�cally, the solution is symmetric with respect to
t = T/2, i.e., the top of the energy barrier at θ = π/2 is reached exactly at half of the
switching time, that is θ(T/2) = π/2, and the following equations hold:

θ(t+ T/2) = π/2 + θ(t), (4.14)

ϕ(T/2 + t) = ϕ(T/2− t), (4.15)
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Figure 4.2: The optimal control path represented by the polar angle θ (a) and the azimuthal
angle ϕ (b) as a function of time for T = 100τ0 and several values of the damping parameter
α. Figure adapted from Ref. [45]

The symmetries particularly imply that the following equations hold:

θ

(
T

4

)
=

π

4
, (4.16)

θ

(
T

2

)
=

π

2
, (4.17)

θ

(
3T

4

)
=

3π

4
, (4.18)
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Figure 4.3: Amplitude of the switching �eld as a function of time for T = 100τ0 and
several values of α (solid lines). Dashed lines show αb⊥i which is proportional to the polar
component of the torque generated by the internal �eld. Figure adapted from Ref. [45].

regardless of the value of the switching time T and damping parameter α, see Fig-
ure 4.2(a). It is noteworthy that the symmetries come from the symmetries of internal
�eld amplitude.

Optimal switching pulses of the external magnetic �eld

The optimal switching pulse of the external magnetic �eld Bm can be found upon
substituting OCP given by Eqs. (4.12)-(4.13) into Eq. (2.9), resulting in the following
equation

Bm =
Bm√
1 + α2

(αeθ + eφ), (4.19)

Bm =
K

µp
√
1 + α2

[
dn

(
t

pτ0(1 + α2)

∣∣∣∣− α2p2
)

+αp sn

(
t

pτ0(1 + α2)

∣∣∣∣− α2p2
)]

, (4.20)

where eθ, eφ are local orthogonal unit vectors in the directions of increasing θ, and
φ, respectively (see Fig. 4.1), while dn(.|.) and sn(.|.) are Jacobi elliptic functions
[70]. The orientation of Bm is such that its contribution to the precession around
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the anisotropy axis is exactly zero. In particular, we prove that the external torque
generated by Bm has exactly zero component in the ϕ direction, but with a component
in the θ direction, i.e., Γθ = γBm/(

√
1 + α2). Therefore, the external pulse contributes

only to the part of motion which is relevant for switching, i.e. progressive increase in
θ.

The calculated amplitude of the optimal pulse Bm(t) is illustrated in Figure. 4.3. In-
terestingly, when α = 0, the amplitude is time independent: Bm(t)|α=0 = π/(γT ). For
α > 0, Bm(t) has a more complex structure, but the symmetry Bm(0) = Bm(T/2) =
Bm(T ) holds. Moreover, damping gives rise to the internal torque � produced by
the anisotropy �eld � in the polar direction. This torque counteracts the switching
motion before crossing the energy barrier at θ = π/2, see Figure. 4.7(a). Thus, a
maximum in Bm(t) forms at t = T/4 so as to neutralize this unfavorable e�ect of
the torque (see Fig. 4.3). After crossing the equator at t = T/2, the internal torque
aids the switching, causing Bm(t) to reach a minimum at t = 3T/4. Also, Bm(t)
is reduced but still needed for timely reversal. However, for long enough switching
time, T � (α + 1/α)τ0, damping alone is su�cient to complete the switching, and
virtually no �eld needs to be applied after crossing the energy barrier (see black curve
in Fig. 4.3). Note that the position of the maximum and the minimum of Bm(t) align
with polar torque extrema.

Internal and external torques

The components of the internal torque produced by the internal �eld of the uniaxial
nanoparticle can be written as follows:

Γ intθ = −α sin2θ

2τ0 (1 + α2)
θ̂,

Γ intϕ =
sin2θ

2τ0 (1 + α2)
ϕ̂, (4.21)

where θ(t) is calculated along the OCP, see Eq. (4.12). As expected, for zero damping
the θ-projection of the internal torque Γ intθ is exactly zero thereby does not counteracts
the reversal motion.

The θ-projection of the internal torque as well as the external torque Γ extθ , generated
by the optimal pulse, as a function of the switching time for various value of damping
is illustrated in Figures 4.4-4.5. Note that positive (negative) Γ intθ signi�es the positive
(negative) contribution of the internal torque to the reversal. Thus, the position of
the maximum and the minimum of Γ extθ coincides with that of Γ intθ .
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Figure 4.4: The θ-projection of the internal and external torques along the optimal control
path for damping value α = 0.2 (a), α = 0.4 (b), and α = 0.8 (c). The magnitude of the
switching time is T = 10τ0.

Figure 4.5: The θ-projection of the internal and external torques along the optimal control
path for damping value α = 0.2 (a), α = 0.4 (b), and α = 0.8 (c). The magnitude of the
switching time is T = 100τ0.

Minimum energy cost of magnetization switching

After we have obtained a closed form for the optimal pulse, its substitution into
Eq. (4.2) leads to the following formula for the minimum energy cost Φm:

Φm =
2K

[
2E
(
−α2p2

)
−K

(
−α2p2

)]

γµp
, (4.22)

where E(.) is the complete elliptic integral of the second kind [70]. According to
(4.22), Φm is a monotonically decreasing (increasing) function of the switching time
T (damping parameter α), as illustrated in Fig. 4.6. The minimum energy cost of the
reversal scales inversely with the switching time for fast switching, follows exponential
asymptotics for slow switching, and reaches the lower limit proportional to the energy
barrier between the target states and to the damping parameter at in�nitely long
switching time. In particular, the lower limit of the energy cost Φ∞ ≡ 4αK/(γµ) is
reached at in�nitely long switching time, see dotted lines in Fig. 4.6.

For long switching time T � (α+ 1/α)τ0, the minimum switching cost Φm is reduced
to

Φm ≈ Φ∞
(
1 + 4 exp

[
− αT

2τ0(1 + α2)

])
, T � (α+ 1/α)τ0, (4.23)

which makes it possible to analyze to what extent the limit Φ∞ can be approached
within �nite T . In particular, termination of the reversal within time Tε = 2 ln (4/ε)[α+
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Figure 4.6: Minimum energy cost of magnetization switching as a function of the inverse of
the switching time. Dashed (dotted) lines show long (in�nite) switching time asymptotics.
Thin vertical lines indicate switching time Tε, for which the minimum energy cost is ε =
10% larger than the in�nite switching time limit Φ∞. Figure adapted from Ref. [45]

1/α]τ0 corresponds to the energy cost which is only by a fraction of ε < 1 larger than
Φ∞: Φm(Tε)/Φ∞ = 1 + ε. Therefore, Tε has a meaning of optimal switching time in
a sense that an increase in T beyond Tε does not lead to a signi�cant gain in energy
e�ciency (see Fig. 4.6). Nevertheless, analysis of Eq. (4.22) shows that for a given
switching time T , the energy cost is never smaller than that in a zero-potential case:
Φm(T ) ≥ Φ0(T ) ≡ π2(1+α2)/(γ2T ), where the equality is reached for α = 0. In other
words, the internal energy of the system can only obstruct the reversal in a system
with uniaxial anisotropy, and the purpose of the switching pulse optimization is just
to minimize the unfavorable e�ect caused by the magnetic potential in this case. This
limitation can be bypassed by adding a hard anisotropy axis anisotropy to the system
that activates the internal torque in the desired switching direction, as discussed in
the following subsection.

As a �nal note, we performed additional spin dynamics simulation to test the robust-
ness of the optimal switching protocol for the uniaxial monodomain particle against
thermal �uctuations and perturbations in the material parameters. The simulations
were carried out by integrating the stochastic Landau-Lifshitz-Gilbert (LLG) equation
equipped with the optimal switching pulse, see Appendix E, as an external �eld. We
have found that the optimal pulse is robust with respect to thermal �uctuations in
the technologically relevant regime, and even with an imperfect implementation of our
optimal pulse, it can bring the magnetic moment vector close to the �nal stable state
if the perturbation in the material parameters is not too large. Moreover, experimen-
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Figure 4.7: (a) Transverse Mercator projection [71] of the energy surface of a uniaxial
macrospin. The meridians and the parallels are shown with thin white lines. The blue
arrows show the distribution of the internal torque, with the size of the arrows being
proportional to the magnitude of the torque. The calculated OCPs between the energy
minima at +Z and −Z are shown with the green, pink, and orange lines for T = 2τ0,
T = 4τ0, and T = 14τ0, respectively. The arrows along each OCP show the velocity at
t = T/6, t = T/3, t = T/2, t = 2T/3, and t = 5T/6, where the arrow size codes the
magnitude of the velocity. The damping factor α is 0.1. (b) The calculated optimal pulse
as a function of the time for T = 4τ0 and α = 0.1.
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tal realization of optimal control pulses is challenging but still feasible within current
technology for pulse shaping [72�76].
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4.1.2 Optimal control of magnetization reversal in a biaxial
nanoparticle

In the previous subsection, we have presented an exact analytical solution to the
problem of optimal switching of a uniaxial nanoparticle via the coherent rotation mode
used in most modern magnetic memories. However, the easy-axis anisotropy alone can
only increase the energy cost of the switching compared to the free-nanoparticle case,
but this e�ect is minimized by following the optimal control path.

Nevertheless, to be able to use the internal energy landscape to aid the switching
process, additional terms in the magnetic potential are necessary. Note that the
phenomenon of internal torque assisting the magnetization switching was previously
recognized experimentally for several systems, e.g., for Co �lms [77] and Co nanoclus-
ters [78], but a complete physical picture describing this e�ect is still missing. Here,
we investigate utilizing the optimal control theory to what extent the energy cost of
magnetization switching can be minimized by pulse shaping and how this depends
on the parameters of the biaxial system and the switching time. We focus on nano-
magnets with biaxial anisotropy, which can arise due to the demagnetizing �eld [79].
This scenario is realized in �at elongated nanoelements; see Fig. 4.8. Such systems
are used, e.g., as single bits in in-plane memory [67], or as elements of arti�cial spin
ice arrays [80, 81].

The internal energy of the biaxial nanoparticle is given by the following equation

E = ξKm2
x −Km2

z, (4.24)

where the easy axis and the hard axis are along the z and x directions, respectively,
K > 0 is the anisotropy constant, and ξ is a dimensionless parameter de�ning the
relative strength of the hard-axis anisotropy. The energy surface of the system has
two minima at m = (0, 0, 1) and m = (0, 0,−1), and two saddle points at m = (0, 1, 0)
and m = (0,−1, 0) (see Fig. 4.8).

Optimal protocols for magnetization reversal

Finding optimal protocols for the magnetization reversal of biaxial nanoparticles re-
quires minimizing the magnetization switching cost functional Φ. However, for such
a system, the corresponding Euler-Lagrange (EL) equations cannot be solved fully
analytically, which is in contrast to the uniaxial case. To address this, we numerically
obtain the optimal control paths that minimize Φ, as explained in Sec.2.2. Addition-
ally, we derive analytical estimates of the energy cost reduction based on perturbation
theory [47].

A typical outcome of the OCP calculations is shown in Figures 4.9(a)-(c), illustrating
the calculated OCPs for the magnetization reversal at α = 0.1 and various switching
times and strengths of the hard-axis anisotropy. These OCPs are superimposed on
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Figure 4.8: Optimal switching of a �at elongated nanomagnet representing a biaxial
anisotropy system. The direction of the normalized magnetic moment m is shown with
the blue arrow. Orientations of m that correspond to the minima and the saddle points
on the energy surface are marked with the green and magenta crosses, respectively. The
calculated optimal control paths between the energy minima are shown with the solid and
the dashed green lines. The damping factor α is 0.1, the switching time T is 8τ0, and the
hard-axis anisotropy constant is twice as large as the easy-axis anisotropy constant. The
green arrows along the reversal paths show the velocity of the system at t = T/6, t = T/3,
t = T/2, t = 2T/3, and t = 5T/6, with the size of the arrowheads being proportional to
the magnitude of the velocity. The contours of constant azimuthal angle ϕ (meridians) and
polar angle θ (parallels) are shown with thin black lines. Figure adapted from Ref. [47].

the energy surface of the system. In the uniaxial case (ξ = 0), the OCPs exhibit
degeneracy due to the axial symmetry, as seen in the solid and dashed pink lines.
However, in the biaxial system (ξ 6= 0), the axial symmetry is broken due to the
addition of the hard axis, resulting in well-separated OCPs between energy minima.
In most cases, there are two equivalent mirror-symmetric OCPs with a π-angle rotation
around the easy axis. We have found that more co-existing OCPs can be present for
ξ & 4, where the paths di�er in the amount of precession around the initial and
�nal states. Interestingly, in the biaxial nanoparticle, OCPs can break the XY -plane
mirror symmetry. For certain parameter values, such asymmetric OCPs minimize the
functional Φ. Nevertheless, the OCPs never pass through saddle points (SPs) on the
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Figure 4.9: Transverse Mercator projection [71] of the energy surface of a macrospin with (a)
uniaxial anisotropy and biaxial anisotropy with (b) ξ = 1 and (c) ξ = 2. The meridians
and the parallels (see Fig. 4.8) are shown with thin white lines. The blue arrows show the
distribution of the internal torque, with the size of the arrows being proportional to the
magnitude of the torque. The calculated OCPs between the energy minima at +Z and
−Z are shown with the green, pink, and orange lines for T = 2τ0, T = 4τ0, and T = 14τ0,
respectively. The arrows along each OCP show the velocity at t = T/6, t = T/3, t = T/2,
t = 2T/3, and t = 5T/6, where the arrow size codes the magnitude of the velocity. The
damping factor α is 0.1. The solid and the dashed lines of the same color show equivalent
OCPs. They di�er by an arbitrary rotation around the easy axis for the uniaxial case;
For �nite ξ, the degeneracy is lifted and there are two OCPs, symmetrical with respect
to a π-angle rotation around the easy axis, for a given T . Note that the OCPs do not
pass through saddle points (SP) on the energy surface. The θ-projection of the internal
torque along the OCPs from (a)-(c) are shown in (d)-(f), respectively. Figure adapted from
Ref. [47].

energy surface, preventing the system from crossing the lowest energy barrier during
the switching process.

To understand the mechanism of energy-e�cient magnetization switching in biaxial
systems and explain the position and shape of calculated OCPs, we show the distri-
bution of the internal torque, see the blue arrows in Figs. 4.9(a)-(c). The component
of the internal torque in the direction of increasing θ, relevant for the reversal process,
Γθ is shown in Fig. 4.9(d)-(f). Positive (negative) Γθ signi�es the positive (negative)
contribution of the internal torque to the reversal. When ξ = 0, the torque only
generates precession around the easy axis, and in the case of nonzero damping, relax-
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Figure 4.10: Calculated optimal switching pulse of external magnetic �eld for a macrospin
with (a) uniaxial anisotropy and biaxial anisotropy with (b) ξ = 1 and (c) ξ = 2. The
switching time T is 14τ0 and the damping parameter α is 0.1. The pulses are derived from
the OCPs shown in Fig. 4.9(a)-(c). Figure adapted from Ref. [47].

ation to the energy minima. In this case, the internal torque does not assist switching
since it does not point in the direction of the �nal state anywhere in the region of the
initial state (mz > 0), see Fig. 4.9(d). The addition of hard-axis anisotropy (ξ > 0)
contributes to the internal torque in a speci�c region of the con�guration space, see
Fig.4.9(b)-(c). The location of the calculated OCPs within this region highlights the
energy-e�cient control principle, which lies in the e�ective use of the system's internal
dynamics. The OCPs avoid passing through SP, where internal torque is zero, which
becomes clear: ascending the energy surface is advantageous, enhancing the torque's
contribution and aiding the switching process. Particularly, Γθ reaches its maximum
at the equator (θ = π/2) for ϕ = π/4 and ϕ = 5π/4. We have discovered that an
optimal protocol strikes a balance between the e�ort to climb the energy surface and
the strength of the internal torque. Consequently, the OCPs cross the equator at
optimal points π/4 < ϕm < π/2 or 5π/4 < ϕm < 3π/2 (Fig. 4.9(b)-(c)). It is note-
worthy that increased damping makes the internal torque deviate stronger from the
energy contours toward the energy minima, leading to an increase in the energy cost
of switching.

Optimal switching pulses of the external magnetic �eld

In Fig. 4.10, we present the optimal pulses of the external magnetic �eld for T = 14τ0,
α = 0.1, and ξ = 0, 1, 2 . The pulses are derived from the OCPs presented in Fig.
4.9 using Eq. (2.9). We have found that stronger hard-axis anisotropy reduces �eld
amplitude, although its peak values can exceed the maximum �eld value in the ξ = 0
case. Pulse strength di�ers between reversal halves due to relaxation. Interestingly,
the broken axial symmetry in the biaxial system introduces amplitude oscillation,
persisting at zero damping, in contrast to the uniaxial case. It is noteworthy that the
switching �eld is always perpendicular to the magnetic moment; amplitude symmetry
holds for ξ > 0 (Bm(0) = Bm(T )). For ξ = 0, extra symmetry is observed (Bm(0) =
Bm(T/2) = Bm(T )) [45].
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Figure 4.11: The θ-projection of the internal, external, and the total torques along the optimal
control path for damping value α = 0 (a), α = 0.1 (b). The magnitude of the switching
time is T = 2τ0, while the dimensionless parameter ξ determining the strength of the hard
axis is 5.

Figure 4.12: The θ-projection of the internal, external, and the total torques along the
optimal control path for damping value α = 0 (a), α = 0.1 (b). The magnitude of the
switching time is T = 2τ0, while the dimensionless parameter ξ determining the strength
of the hard axis is 10.

Internal and external torques

The components of the internal torque produced by the internal �eld of the biaxial
nanoparticle can be written as follows:

Γ intθ = Γ0 sin θ
[
ξ sin(2ϕ)− 2α cos θ(1 + ξ cos2 ϕ)

]
θ̂,

Γ intϕ = Γ0 sin θ
[
αξ sin(2ϕ) + 2 cos θ(1 + ξ cos2 ϕ)

]
ϕ̂, (4.25)

where Γ0 = 2τ0
(
1 + α2

)
, θ(t) and ϕ(t) are calculated along the OCP. Here, we are

interested in the θ-projection of the internal torque relevant to the reversal process.
Note that for ξ = 0, Eq. 4.25 reduces to Eq. 4.21 as expected. The θ-projection
of the internal torque as well as the external torque Γ extθ , generated by the optimal
pulse, as a function of the switching time for various values of damping is illustrated
in Figures 4.11-4.12. Interestingly, for zero damping and ξ > 0, the θ-projection of the
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Figure 4.13: Minimum energy cost of magnetization reversal as a function of (a) inverse of
the switching time for α = 0.2, (b) damping parameter for T = 20τ0, for various ξ values.
Green dashed line corresponds to the solution of the reversal of a free macrospin, while the
black dashed line shows the in�nite switching time asymptotic Φ∞ ≡ 4αK/ (γµ). Figure
adapted from Ref. [47].

internal torque Γ intθ does not reduce to zero as in the uniaxial case, suggesting that
the addition of the hard-axis anisotropy has a favorable e�ect on the switching. In
particular, the positive Γ intθ signi�es the positive contribution of the internal torque
to the reversal, see the solid black line in Figures 4.11(a) and 4.12(a).

It is worth mentioning that the asymmetric shape of Γ intθ about T/2 shown in Fig-
ures 4.11(b) and 4.12(b) � the result of the damping contribution to the torque � does
not contradict to the mirror-symmetry of the OCPs. For symmetric OCPs, the total
torque stays symmetric, see the blue line in Figures 4.11-4.12.

Minimum energy cost of magnetization switching

The calculated optimal reversal protocols can now be used to calculate the minimum
energy cost of switching Φm. Figure 4.13(a) illustrates how Φm changes with the
inverse of switching time for di�erent hard-axis anisotropy strengths. Irrespective of
the ξ value, Φm decreases monotonically with T and approaches the universal lower
limit Φ∞ at in�nitely long switching time [25]. Larger ξ values lead to a faster approach
of Φm to the lower limit Φ∞. Overall, there is a decrease in Φm with ξ, as expected
from the distribution of the torque in biaxial systems, see Figures. 4.9(a)-(c). The
switching cost for a free macrospin Φf (T ) (see the green dashed line in Fig. 4.13(a))
provides a useful benchmark for evaluating the favorable e�ect of the torque produced
by the hard axis. Notably, the switching cost can be signi�cantly lower than Φf (T ) in a
certain range of T for �nite strengths of the hard-axis anisotropy. For example, Φm(T )
becomes almost an order of magnitude smaller than Φf (T ) for ξ = 10 and T ≈ 2τ0.
This is in contrast to the uniaxial-anisotropy case (ξ = 0), where Φm(T ) ≥ Φf (T ) (the
equality is reached for α = 0) for any given T .
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Figure 4.14: Minimum energy cost of magnetization reversal as a function of ξ for various T
values (solid lines). The dashed color lines show the switching cost for a free macrospin.
The magnitude of the damping factor α is 0.2. Black dashed line shows the in�nite switch-
ing time asymptotic. Figure adapted from Ref. [47].

The α-dependencies of the minimum switching cost for T = 20τ0 and several values of
ξ are shown in Fig. 4.13(b). Irrespective of the strength of the hard-axis anisotropy,
Φm is a monotonically increasing function of the damping parameter, approaching the
Φ∞ asymptote when α → ∞. It is noteworthy that the reduction in the switching
cost with ξ becomes more pronounced as α decreases.

It is noteworthy that reducing switching costs in biaxial magnets can be achieved
without sacri�cing their thermal stability. Thermal stability is determined by the
energy barrier ∆E separating the stable states, and within harmonic rate theories ∆E
is quanti�ed by the energy di�erence between a saddle point and the minimum energy
state [82, 83]. In biaxial magnets, this energy barrier remains constant (∆E = K)
regardless of the ξ value, see Eq. (4.24). However, Φm, particularly for short switching
times, is heavily in�uenced by ξ, which is particularly clear from Fig. 4.14 (note
that Φm converges to Φ∞ for ξ → ∞ irrespective of the switching time). Thus,
biaxial magnets o�er the unique advantage of independently optimizing writability and
thermal stability, making them e�cient memory elements and a solution to magnetic
recording challenges.
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Optimal switching time

We have found that the minimum energy cost for switching has two clear asymptotics:
Φm = π2(1+α2)/(γ2T )−4Kξ/(γµ) when T → 0, and Φm = Φ∞ when T →∞. Their
intersection point [47]

T ∗ =

(
1 + α2

)
π2

2 (α+ ξ)
τ0, (4.26)

can be interpreted as an optimal switching time in a sense that increase in T beyond
T ∗ does not lead to a signi�cant reduction in the energy cost. Therefore, T ∗ provides
a tradeo� between the switching speed and energy e�ciency [45, 84]. Note that T ∗

decreases with increasing strength of the hard-axis anisotropy.

Perturbation theory analysis

Both anisotropies in the biaxial system can be treated as independent perturbations
to the free macrospin. This results in two dimensionless perturbation parameters ε1 ≡
ξT/τ0 and ε2 ≡ T/τ0 de�ned by the hard- and the easy-axis anisotropy, respectively.
The perturbation series for the OCP can be obtained by solving the Euler-Lagrange
(EL) equation. The EL equation in spherical coordinates θ and ϕ reads

θ̈ = A0ϕ̇
2 +A1ϕ̇+A2,

ϕ̈ = C0θ̇ϕ̇+ C1θ̇ + C2.
(4.27)

for a biaxial system whose energy is de�ned by Eq. (4.24), the coe�cients become

A0 =
sin 2θ

2
, A1 =

(2 + ξ)(sin θ − 3 sin 3θ)

8(1 + α2)τ0
+

3ξ cos 2ϕ sin3 θ

2(1 + α2)τ0
,

C0 = −2 cot θ, C1 =
(2 + ξ)(3 cos 2θ + 1) csc θ

4(1 + α2)τ0
− 3ξ cos 2ϕ sin θ

2(1 + α2)τ0
.

(4.28)

A2 =
sin 4θ(2 + ξ cos 2ϕ+ ξ)2

16(1 + α2)τ20
+
ξ2 sin2 2ϕ sin 2θ

8(1 + α2)τ20
,

C2 =
−ξ(2 + ξ) sin 2ϕ cos2 θ

2(1 + α2)τ20
+
ξ2 sin 4ϕ sin2 θ

4(1 + α2)τ20
.

(4.29)

We seek for θm(t) and ϕm(t) � the solution of Eq. (4.27) � in a form of a series in the
two perturbation parameters ε1 and ε2 de�ned by the biaxial anisotropy. In particular,
the second-order expansion for θm(t) and ϕm(t) reads

θm(t) ≈ θf (t) +
2∑

i=1

εiθi(t) +

2∑

i,j=1

εiθij(t)εj ,

ϕm(t) ≈ ϕf (t) +
2∑

i=1

εiϕi(t) +

2∑

i,j=1

εiϕij(t)εj .

(4.30)
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Here, θf (t) ≡ πt/T and ϕf (t) ≡ π/4, 5π/4 describe the reversal of a free macrospin,
and the coe�cients θi(t), ϕi(t), θij(t), ϕij(t) are obtained upon substituting Eqs. (4.30)
into Eq. (4.27) and collecting terms with equal powers of ε1 and ε2, which gives the
following result

θ1 = 0, θ2 = 0, ϕ22 = 0, θ11 =
sin (2πt/T )

[
4 + 4α2 + α2 cos (2πt/T )

]

128π2 (α2)
2 ,

θ12 = θ21 = − α2 sin (4πt/T )

128π2 (α2 + 1)
2 , θ22 = 2θ12, ϕ1 =

(
α2 − 8

)

64 (α2 + 1)
+

sin (πt/T )

2π (α2 + 1)
,

ϕ2 = 2ϕ1, ϕ11 = ϕ12 = ϕ21 =

(
α2 + 4

)
cos (2πt/T )

32π2 (α2 + 1)
2 +

3
(
α2 − 8

)

2048 (α2 + 1)
+

100 + 73α2

480π2(α2 + 1)2
.

(4.31)

The approximation to the minimum energy cost is obtained by substituting the per-
turbation series for the OCP into Eq. (2.10). The result, up to the second-order terms,
reads

Φm ≈ Φf −
4K

γµ
ξ +

K2T

2(1 + α2)µ2

[
α2 + α2ξ +

1

4
(4 + 5α2)ξ2

]
, (4.32)

where the contributions from the hard-axis anisotropy are recognized by the ξ-factor.
The smallness of the perturbation parameters, ε1, ε2 � 1, can be translated into the
condition on T : T � τ0. Therefore, Eq. (4.32) can be interpreted as a short switching
time approximation for Φm.
Equation (4.32) clearly shows that the switching cost reduction in biaxial magnets
is captured within the linear response to the hard-axis anisotropy. Note that the
easy axis does not contribute to the �rst-order correction; It can be shown in fact
that all odd-order corrections vanish in the uniaxial case. The approximation for Φm
within zero-, �rst-, and second-order perturbation theory is shown in Fig. 4.15 for
α = 0.2. The numerically exact solution for Φm is also shown for comparison. The
short switching time approximation eventually breaks down as T increases, and Φm
converges on Φ∞.
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Figure 4.15: Approximation for the minimum energy cost of magnetization reversal for a
macrospin within the zero- (Φf ), �rst- (Φ

(1)), and second-order (Φ(2)) perturbation theory
[see Eq. (4.32)], as indicated in the legend, vs the inverse of the switching time. The
strength of the hard-axis anisotropy ξ is (a) 0 and (b) 1. Red solid line shows the nu-
merically exact solution. Black dashed line shows the in�nite switching time asymptotic.
The intersection of the short and the long switching time asymptotes provides the optimal
switching time T ∗ [see Eq. (4.26)]. The magnitude of α is 0.2. Figure adapted from
Ref. [47].

4.1.3 Optimal control of magnetization reversal in a bistable
nanowire

Magnetic nanowires possess an elongated structure and nanoscale lateral size [85].
Their high length-to-width aspect ratio induces signi�cant magnetic anisotropy, typ-
ically resulting in two stable magnetization orientations along the wire axis. This
bistability renders magnetic nanowires highly promising as foundational elements for
innovative devices dedicated to data transmission, storage, and processing. These
devices can encode information within domains exhibiting opposite magnetization di-
rections [2]. Nevertheless, the advancement of such technology critically relies on un-
derstanding the mechanisms governing magnetization reversal in bistable nanowires.
Exploring how these reversal modes are in�uenced by factors like the applied switch-
ing stimulus, magnetic parameters, and geometry of the wire is intriguing from a
fundamental perspective. Earlier theoretical [86�89] and experimental [90�94] studies
have unveiled three principal mechanisms for switching magnetization in nanowires:
homogeneous rotation of magnetization, propagation of transverse domain walls, and
formation of vortex domain walls. The possibility of achieving magnetization switch-
ing through diverse transition mechanisms has prompted the idea of a unique, optimal
mechanism that minimizes termination time and energy cost. Identifying such optimal
reversal mechanisms is of particular importance for the development of energy-e�cient
information technologies founded on magnetic nanowires.
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Here we apply, the optimal control theory to the problem of energy-e�cient magneti-
zation reversal in a one-dimensional nanowire. The theory makes it possible to identify
mechanisms of energy-e�cient magnetization reversal in the nanowire. We consider
a nanowire consisting of N interacting magnetic moments and extended along the x
axis. The energy of the wire is given by a classical Heisenberg-type Hamiltonian:

E = −J
N−1∑

i=1

mi ·mi+1 −K
N∑

i=1

(mi · ex)2 , (4.33)

where mi is the unit vector de�ning the orientation of the magnetic moment at site
i. The �rst term in Eq. (4.34) accounts for the exchange interaction between nearest
neighbors with ferromagnetic coupling constant J > 0. The second term is due to
magnetic uniaxial anisotropy characterized by the easy axis ex along the wire and
e�ective parameter K > 0.

The system has two stable states due to anisotropy, aligned parallel or antiparallel to
the x-axis, as depicted in Fig. 4.16. Magnetization switching between these states is
achieved using an external magnetic �eld. Our goal is to identify an optimal pulse of
the external magnetic �eld for achieving switching within a speci�ed switching time
T while minimizing energy cost Φ, see Eq. (2.12). The identi�cation of the optimal
mechanisms minimizing Φ as well as optimal pulses is done numerically.

t=0

t=T

K

Figure 4.16: Stable orientations of the magnetization in a nanowire. The nanowire is rep-
resented by a chain of N = 30 magnetic moments. Arrows indicate orientation of the
moments. Direction of the anisotropy axis is shown with the double-headed arrow. Tran-
sition between the states is schematically shown with the black arrow. In the OCP, the
initial state is realized at t = 0, while the �nal state is realized at t = T . Figure adapted
from Ref. [46].

Magnetization switching in a nanowire

Although the initial and �nal stable states are collinear, the transition between them
can involve a non-uniform rotation of magnetization. In particular, the OCP calcula-
tions have revealed that the mechanisms of energy-e�cient magnetization reversal in
the nanowire might involve uniform rotation of magnetization [see Figure. 4.17(a)] and
the emergence of standing spin waves with variable wavelength [see Figures. 4.17(b,c)].
We also compared the calculated OCPs with other distinguished paths lying lower-
most on the energy surface, i.e., the minimum energy path (MEP). The MEP for the
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magnetization reversal in the nanowire considered here is calculated using the geodesic
nudged elastic band method [50]. Since the length of the considered nanowire exceeds
the domain wall width, the MEP corresponds to the domain wall movement, see the
saddle-point con�guration for the nanowire in Figure. 4.17(d). Interestingly, the MEP
is very di�erent from the calculated OCPs. In fact, the OCP calculations have never
converged on the path corresponding to the single domain wall propagation, even if
we start from an MEP with small random noise as an initial guess for the OCP cal-
culations. It is noteworthy that in the case of the coherent rotation mechanism, each
magnetic moment in the wire follows the same trajectory presented in Sec. 4.1.1.

(a) Uniform rotation

(b) Spin wave, 1.5 periods

(c) Spin wave, 1 period

(d) Saddle point

Figure 4.17: Magnetic con�gurations realized along OCPs (a)-(c) and MEP (d) for mag-
netization switching in the nanowire of length N = 30. For the OCPs, con�gurations
at t = T/2 are shown where T = 1 ns. For the MEP, the saddle point con�guration is
presented. OCP corresponds to a coherent rotation of magnetic moments for α = 0.1 (a)
and to spin wave assisted switching with 1.5 wave periods for α = 0.5 (b) and with 1
wave period for α = 0.6 (c). MEP corresponds to a transient domain wall nucleation and
propagation (d). Figure adapted from Ref. [46].
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Minimum energy cost of magnetization switching

Figure. 4.18(a) illustrates the minimum energy cost Φ of optimal switching as a func-
tion of the length N of the wire for the �xed values of the switching time and damping
factor with T = 1 ns and α = 0.4. Short nanowires reverse their magnetization via
uniform rotation. However, when the length of the wire exceeds a certain critical
length, the coherent rotation mechanism breaks down, and a crossover to spin-wave
assisted switching occurs. Note that the number of the spin-wave periods can assume
both half-integer and integer values [see Fig. 4.17(b,c)]. Interestingly, the energy-
e�cient magnetization switching mechanism varies with the damping parameter. In
Fig. 4.18(b), Φ is plotted against α for N = 50 and T = 1 ns. For α ≤ 0.4, opti-
mal switching involves uniform magnetization rotation, aligning with Ref. [45]. As
damping α increases, the switching mechanism changes to the spin-wave mode.
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Figure 4.18: Minimum energy cost of magnetization switching as a function of the nanowire
length N for α = 0.4 and T = 1 ns (a) and damping parameter α for N = 50 and T = 1
ns (b). Uniform rotation and spin wave solutions are shown with blue and red circles,
respectively. Red labels indicate the number of wavelengths in the spin-wave solutions.
Solution for the macrospin approximation is shown with a gray line. Figure adapted from
Ref. [46].
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Energy variation along OCP

The energy variations along the calculated minimum energy path MEP and OCPs are
compared in Figure. 4.19 for the nanowire with N = 50. Interestingly, the energy
barrier derived from the MEP is much smaller than the highest energy point along the
OCPs. This result suggests that optimal control of magnetization switching minimiz-
ing the energy cost does not necessarily translate into minimizing the energy barrier
between the target states.
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OCP, α=0.1
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Figure 4.19: Variation of the energy of the nanowire with N = 50 along the MEP (black line)
and the OCP for T = 1 ns, α = 0.1 (blue line) and α = 0.6 (red line). Reaction coordinate
is de�ned as a normalized displacement along the path. Figure adapted from Ref. [46].
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4.2 Constrained optimization

In this section, we apply the constrained optimal control theory proposed in sec-
tion 2.3 to the problem of energy-e�cient 2π domain wall movement using an opti-
mized uniform time-dependent magnetic �eld. Here, our goal is to identify a uniform
time-dependent pulse of the external magnetic �eld needed for achieving the required
magnetization transition within a speci�ed switching time T while minimizing energy
cost Φ (see Eq. 2.28). The identi�cation of the optimal mechanisms minimizing Φ as
well as optimal pulses is done numerically.

4.2.1 Domain wall movement using an optimized uniform
time-dependent magnetic �eld

Thin ferromagnetic stripes can unveil intriguing magnetization con�gurations, where
the magnetization undergoes a complete 2π turn within a localized region of the stripe,
while the remainder of the stripe maintains magnetization parallel to its edges. The
ability to reliably control these domain wall structures is paramount for the e�ective
design and implementation of magnetic nanodevices, underscoring the importance of
understanding and manipulating these intriguing magnetic con�gurations.
Here, we apply constrained optimal control theory to address the problem of energy-
e�cient 2π domain wall movement in a one-dimensional nanowire. The theory enables
identifying an optimal mechanism for the energy-e�cient domain wall movement from
which an optimal uniform time-dependent magnetic �eld is reconstructed.

We consider a nanowire composed of N interacting magnetic moments, extending
along the x axis. The energy of the wire is described by a classical Heisenberg-type
Hamiltonian:

E = −J
∑

<i,j>

mi ·mi+1 −
∑

<i,j>

Di,j · (mi ×mj)−K
N∑

i=1

(mi · ex)2 , (4.34)

where mi is the unit vector de�ning the orientation of the magnetic moment at lat-
tice site i. J > 0 and Di,j = Ddij are the Heisenberg exchange constant and the
Dzyaloshinskii-Moriya (DM) vector, respectively, dij is the unit vector between sites
i and j. The symbol < i, j > signi�es summation over unique nearest neighbor pairs.
The last term is due to magnetic uniaxial anisotropy characterized by the easy axis
ex along the wire and e�ective parameter K > 0. Here, the ratio between J and D
de�nes the equilibrium period of helical spin spirals, i.e., LD = 2πJa/D with a being
the lattice constant. In the following, we have chosen J = 1 meV and the length
of the nanowire Lx = 16LD. Thus, the DM constant D = 0.392699082 meV, while
K = 0.20047634 meV. For such system parameters, the nanowire has a stable 2π
domain wall with opposite charges, as depicted in Fig.4.20.
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Figure 4.20: Stable 2π domain wall in a nanowire. The nanowire is represented by a chain
of N = 32 magnetic moments. Arrows indicate orientation of the moments. Periodic
boundary conditions are applied along x direction.

Constrained optimal control path calculations

In the constrained OCP simulations, magnetization transition between two stable
states at t = 0 and t = T (see Figure. 4.21) is achieved using an external magnetic
�eld. For a given number of images involved in the local minimization of the energy
cost functional Φ, the calculation is considered converged when the magnitude of the
force as well as the penalty term have dropped below the set tolerance. Up to Q = 200
movable images was used, with the lowest force tolerance corresponding to the drop of
the force by ten orders of magnitude with respect to the initial force calculated from
the initial path. Here, the magnitude of the switching time T = 1 ns and the damping
parameter α = 0.1.

Figure 4.21: Stable 2π domain wall in a nanowire. The nanowire is represented by a chain of
N = 32 magnetic moments. Arrows indicate orientation of the moments. Direction of the
anisotropy axis is shown with the double-headed arrow. Transition between the states is
schematically shown with the black arrow. In the constrained OCP calculations, the initial
stable state is realized at t = 0, while the �nal stable state is realized at t = T .

After convergence, the penalty term, see Figure 4.22, has dropped below the set tol-
erance. Also, in Figure 2.31 we show the initial guess of the uniform time-dependent
magnetic �eld and the converged one. Note that the initial guess of B∗ is set to zero,
while the optimal B∗ overly has a component in the y direction.
In Figure 4.24 we show the converged space- time-dependent magnetic �eld B and the
corresponding fast variables, see Eq. 2.32. The optimal mechanism realized along the
OCP at t = T/2 is shown in Figure 4.25(b).

Additional spin dynamics simulations were performed in order to test that the uniform
time-dependent �eld B∗ induces the same net of magnetization change of the 2π
domain wall movement. The simulations were carried out by integrating the Landau-
Lifshitz-Gilbert (LLG) equation equipped with the optimal uniform time-dependent
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switching pulse as an external �eld shown in Figure 4.23. The LLG equation was
integrated numerically using the semi-implicit scheme B as described in Ref. [97]. The
average magnetization change during the magnetic transition is shown in Figure 4.26,
con�rming that our results are reproducible by direct LLG simulations.

Figure 4.22: Penalty term, see Eq. 2.28, as a function of time.

Figure 4.23: Initial guess of B∗ (a) and after convergence (b) as a function of time.
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Figure 4.24: space- time-dependent magnetic �eld B (a) and the site-dependent parameter
(b) as a function of time.
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Figure 4.25: (a) and (c) Stable 2π domain wall, while (b) magnetic con�gurations realized
along OCP at t = T/2. The switching time T = 1 ns and damping α = 0.1.

Figure 4.26: Average magnetization realized along OCP (solid line) and obtained by direct
LLG simulations (points) as a function of time. The switching time T = 1 ns and damping
α = 0.1.
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4.3 Enhancing thermal stability of optimal

magnetization switching in a uniaxial nanoparticle

Energy-e�cient switching of a uniaxial nanoparticle requires the application of a time-
varying magnetic �eld characterized by microwave frequency (see Subsection. 4.1.1).
However, at �nite temperatures, even weak thermal �uctuations create perturbations
in the magnetization that can accumulate in time, break the phase locking between the
magnetization and the applied �eld, and eventually compromise magnetization switch-
ing. In this section, we apply the theory developed in Chapter 3 to the problem of
enhancing thermal stability of optimal magnetization switching in a uniaxial nanopar-
ticle. The theory demonstrated that the magnetization reversal is mostly disturbed
by unstable perturbations arising in a certain domain of the con�guration space of a
nanomagnet. The instabilities can be suppressed by applying an additional stimulus,
such as a weak longitudinal magnetic �eld, guaranteeing bounded dynamics of per-
turbations. Application of the stabilizing longitudinal �eld to a uniaxial nanomagnet
makes it possible to reach a desired probability of magnetization switching even at
elevated temperatures. It is noteworthy that at zero temperature, the longitudinal
magnetic �eld does not a�ect the dynamics, but it plays a crucial role in stabilizing
magnetization switching at �nite temperatures, as demonstrated below.

Formalism and procedures

In this section, we will examine the e�ects of weak time-independent and time-dependent
longitudinal magnetic �elds, guaranteeing bounded dynamics of perturbations, on the
likelihood of successful magnetization switching in a uniaxial nanoparticle at elevated
temperatures. Concerning the external stimulus, we have selected two categories of
an external magnetic �eld pulse that ensures inducing magnetization switching at
absolute zero temperature:

� An optimal time-dependent pulse, akin to the one presented in our previous
study [45].

� A non-optimal time-dependent Gaussian pulse, which �nds common usage in ex-
perimental settings [95]. We label this pulse as 'non-optimal' because, upon our
observation, the energy required to generate the Gaussian pulse is approximately
60 times greater than that needed for our derived optimal pulse, considering a
speci�c switching time, damping level, and pulse characteristics [45].

The rationale behind employing these distinct switching pulse types is to con�rm that
the increase in the probability of magnetization switching is connected to the radial
magnetic �eld itself, rather than being in�uenced by the choice of the driving pulse.
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Figure 4.27: Calculated dynamics of the magnetic moment for a uniaxial nanoparticle in-
duced by the optimal switching magnetic �eld. The black line shows the zero-temperature
trajectory of the magnetic moment which corresponds to the optimal control path m0(t)
for the magnetization switching. The green (red) line shows the trajectory for successful
(unsuccessful) switching at �nite temperature corresponding to the thermal stability factor
∆ = 20. Labels A and B show positions of the magnetic moment for which the dynamics
of local perturbations in the magnetization is illustrated in the corresponding insets of
Fig. 4.28. The light red (blue) shaded area marks the domain for π/4 ≤ θ ≤ 3π/4 (θ < π/4
and θ > 3π/4) where the perturbation dynamics is unstable (stable). The damping factor
α is 0.2, and the switching time T is 5τ0.

Model and spin dynamics simulations

We consider energy-e�cient magnetization switching of a uniaxial monodomain nanopar-
ticle, see Figure. 4.27, characterized by normalized magnetic moment m and internal
energy E = −K(m ·mz)

2/2, with unit vector ez being the direction and K > 0 be-
ing the strength of the magnetic anisotropy. The switching is induced by an optimal
pulse of a rotating magnetic �eld B(t) that, for a given switching time, minimizes the
energy cost of switching [see Subsection. 4.1.1 for the exact time dependence of B(t)
as a function of parameters of the nanoparticle]. The switching dynamics is simu-
lated by the time integration of the the Landau-Lifshitz-Gilbert (LLG) equation [96]
equipped with the optimal switching pulse as an external �eld. The LLG equation was
integrated numerically using the semi-implicit scheme B [97] (see Appendix C). Each
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simulation had three stages [45, 47]: 1) Initial equilibration at zero applied magnetic
�eld to establish Boltzmann distribution; 2) Switching where the optimal magnetic
�eld is applied (note that thermal �uctuations were also included during the switching
stage); 3) Final equilibration at zero applied magnetic �eld.
At the end of the simulation, we inspected the value of mz (z-component of the
unit vector m in the direction of the magnetic moment). We considered the value
mz = −0.5 as the threshold for the successful switching. For each value of tempera-
ture and damping constant, we repeated simulations N = 10000 times to accumulate
the proper statistics. The switching success rate is de�ned as f = Ns/N where Ns
is the number of successful reversals. Fig. 4.27 illustrates an example of a successful
(green trajectory) and unsuccessful (red trajectory) reversal. Hereafter, the period
of Larmor precession τ0 = µ/(γK) de�nes the timescale, while the thermal stability
factor ∆ = 20 is de�ned as the ratio between the energy barrier separating the stable
states and the thermal energy [98].
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4.3.1 E�ects of time-independent longitudinal magnetic �eld on
the magnetization switching probability

The diagram in Fig. 4.28 shows evolution of w1 and w2 during magnetization switching.
The eigenvalues w1, w2 are given by the following equations

w1 = Br +
K

µ
cos (2θ) , (4.35)

w2 = Br +
K

µ
cos2 θ, (4.36)

where θ is the polar angle ofm0 and Br is the component of the external magnetic �eld
parallel to m0. For zero Br, a signi�cant part of the switching trajectory lies in the
region of unstable perturbations corresponding to the second quadrant of the diagram
where the eigenvalues w1 and w2 have di�erent signs. However, the values of w1 and
w2 can be controlled by application of the longitudinal �eld Br. In particular, the
hyperbolic instabilities can be removed by shifting w1 and w2 either to the �rst (Br >
K/µ) or to the third (Br < −K/µ) quadrant of the diagram in Fig. 4.28. Therefore,
the longitudinal external magnetic �eld can be used as a control parameter to improve
thermal stability of magnetization switching. This conclusion is con�rmed in the
following by direct simulations of magnetization dynamics at elevated temperature
(∆ = 20), here the switching is induced by a modi�ed pulse B(t):

B(t) = B(t) +Brm0(t). (4.37)

Figure 4.29 shows calculated success rate of switching as a function of Br for various
values of the switching time and damping parameter. As predicted, the switching
success rate reaches unity for Br > K/µ regardless of the damping factor α and
switching time T . Longer switching times require stronger longitudinal �eld to reach
a certain value of the success rate, as expected, but the threshold value of Br is
not very sensitive to the damping parameter. Interestingly, the success rate as a
function of the longitudinal �eld exhibits a minimum at Br ≈ 0.5 that becomes more
pronounced for longer switching times. At Br = 0.5, the ratio between the eigenvalues
becomes w1/w2 = −1 at the top of the energy barrier. This corresponds to particularly
unstable perturbations in the magnetization dynamics, therefore explaining the drop
in the success rate of switching. The longer the switching time, the more time the
system spends in the vicinity of the energy barrier [45]. This increases the chances
of decoherence between the magnetization and the switching pulse, and lowers the
switching probability. Application of the longitudinal �eld opposite to m0 (Br < 0)
renders both of the eigenvalues w1, w2 negative near the energy barrier, thus altering
the hyperbolic character of the perturbation dynamics. As a result, the success rate of
switching initially increases with rising Br. However, further increases in Br lead to
the success rate reaching a maximum value before eventually declining (see Fig. 4.28).
The drop in the success rate is a consequence of divergent dynamics due to relaxation,
which becomes more prominent for larger damping parameters and longer switching
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Figure 4.28: Diagram classifying dynamics of perturbations in the magnetization. The green,
blue, and red lines show how the Hessian's eigenvalues w1 and w2 change along the zero
temperature reversal trajectory (see the black line in Fig. 4.27) for three values of the
longitudinal magnetic �eld as indicated in the legend. The right end of the lines correspond
to the initial and the �nal states at the energy minima, while the left end of the lines
corresponds to the top of the energy barrier. The gray shaded area marks the domain
of possible w1, w2. Labels A-D indicate pairs of the eigenvalues for which the velocity
diagrams illustrating the perturbation dynamics are shown in the insets. The background
color in the insets signify whether the amplitude of the perturbation is increasing (blue),
decreasing (red), or constant (gray). The damping factor α is 0.2.

times, as expected. The switching dynamics is further illustrated by Fig. 4.30 showing
the calculated distribution of the copies of the system in the statistical ensemble at
t = T/2 for α = 0.1, T = 10τ0, and various values of Br. For the unperturbed OCP,
the system is at the top of the energy barrier. Thermal �uctuations make the system
deviate from the OCP. For zero longitudinal �eld, the system copies spread quite far,
with those corresponding to unsuccessful switching trajectories grouped closer to the
initial state.
For Br = 0.5K/µ, the distribution of the copies becomes more elongated � the result of
the hyperbolic of the perturbation dynamics at the energy barrier � and the number of
the unsuccessful trajectories increases. As Br increases beyond K/µ, a progressively
tighter grouping of the copies around the OCP is observed due to the convergent
dynamics of the perturbations, resulting in the switching probability approaching unity
(see Fig. 4.29). For negative Br, the copies of the system are grouped in an ellipse
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Figure 4.29: Calculated success rate of magnetization reversal as a function of the longitu-
dinal magnetic �eld Br for various values of the switching time T (a) and the damping
parameter α (b). In (a), α = 0.1; In (b), T = 10τ0. The thermal stability factor ∆ = 20.
The shaded areas around the curves indicate the statistical error.

Figure 4.30: Calculated distribution of the copies of the system in the statistical ensemble at
t = T/2 and various values of the longitudinal magnetic �eld, superimposed on the Lambert
azimuthal projection [99] of the energy surface of the system. The green dots correspond
to the copies that will eventually reach the �nal state at −Z (successful switching), while
the red dots mark the copies that will end up at the initial state at +Z (unsuccessful
switching). The black line shows the calculated OCP for the reversal. The damping factor
α is 0.1, the thermal stability factor ∆ is 20, and the switching time T is 10τ0.

around the OCP even for Br = −0.5K/µ. For stronger anti-parallel �elds, the spread
of the distribution increases due to relaxation, resulting in a decrease in the success rate
of switching. Figure 4.31 shows the calculated dependencies of the success rate on the
damping constant α and switching time T forBr = 0 andBr = ±K/µ. Both cases with
�nite longitudinal �eld ensure w1w2 ≥ 0 for the whole switching trajectory. Positive
(negative) Br correspond to convergent (divergent) relaxation of the perturbation
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Figure 4.31: (a) Calculated success rate of magnetization reversal as a function of damping
parameter α for switching time T = 10τ0. (b)-(c) Calculated success rate as a function of
T for α = 0.1 and α = 0.2. The red, blue, and black lines correspond to the three values of
the longitudinal magnetic �eld Br as indicated in the legend. The thermal stability factor
∆ = 20. The shaded areas around the curves indicate the statistical error.

dynamics, which explains monotonic increase (decrease) of the switching probability
with increasing α. However, for low damping and short switching times, applying the
longitudinal �eld opposite to the magnetic moment (Br < 0) is more e�cient than
applying the longitudinal �eld along the magnetic moment (Br > 0), as it requires
lower �elds to achieve high success rates (see also Fig. 4.29). Longer switching times
result in lower success rate in all considered cases, as expected. The decrease in the
success rate with T becomes more (less) pronounced for negative (positive) Br as
damping increases, which is a result of destabilizing (stabilizing) e�ect of relaxation.
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Figure 4.32: (a) Velocity diagram showing the dynamics of the perturbation in the tangent
space obtained for w1 > 0 and w2 > 0 and zero Br. Values of w1 and w2 are taken from (b)
at which the dashed vertical green line intersects the solid and dashed black lines. Figure
(b) shows the calculated eigenvalues of the projected Hessian along the zero-temperature
reversal trajectory, see the black line in Figure. 4.27, as a function of the switching time. (c)
The calculated radial �eld obtained using the scheme I de�ned in Chapter 3, see Eq. 3.10,
as a function of the switching time. The green point shows the value of Br used for
shifting the eigenvalues. (d) Velocity diagram showing the e�ect of Br on the dynamics of
the perturbation in the tangent space after shifting the eigenvalues, compared to (a). The
magnitude of the switching time T is 5τ0, while the damping factor α = 0.2 and λ = 0.5.
The black arrows in Figures (a) and (d) show the distribution of the dynamics with the
size of the arrows being proportional to the magnitude of the perturbation, and the colors
in the background indicate that the amplitude of the perturbation is decreasing (red), or
constant (gray).

4.3.2 E�ects of time-dependent longitudinal magnetic �eld on the
magnetization switching probability

Before investigating the in�uence of the longitudinal �eld Br(t) on magnetization
switching probabilities, several essential preliminary steps are required. These steps
involve examining its e�ects on perturbation dynamics within the tangent space, as
well as its e�ects on the distribution of the ensemble copies.

E�ect of longitudinal �eld on perturbation trajectories

Here we present a series of Figures (Figures 4.32-4.34) that depict the velocity dia-
gram dynamics, speci�cally detailing perturbation behavior within the tangent space.
This investigation encompasses scenarios with both zero and non-zero values of Br(t).
Additionally, we incorporate the eigenvalues of the projected Hessian matrix, denoted
as w1 and w2, and track the temporal evolution of Br(t) relative to the switching
time. Here, we only show the e�ect of Br(t) whose derivation follows scheme I, see
chapter 3, for switching time T = 5τ0, alongside α = 0.2 and λ = 0.5. The tra-
jectories shown in Figures 4.32(a)-4.34(a) for a zero value of Br(t) exhibit varying
shapes such as elliptical, straight, or hyperbolic, depending on the sign of w1 and w2.
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However, by introducing an in�uence of Br(t) through adjusting the eigenvalues, the
trajectories transform into elliptical patterns, as depicted in Figure 4.32(d)-4.34(d),
resulting in stable dynamics. It is worth noting that whenever the system's stability is
ensured�when both w1 and w2 are positive�the value of Br(t) diminishes to zero. In
contrast, the presence of non-zero Br(t) corresponds to an unstable system dynamics,
see Figures 4.32(c)-4.34(c).
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Figure 4.33: Similar to Figure 4.32, but for w1 > 0 and w2 < 0 and di�erent value of Br as
shown in (c). The black arrows in Figures (a) and (d) show the distribution of the dynamics
with the size of the arrows being proportional to the magnitude of the perturbation, and
the colors in the background indicate if the amplitude of the perturbation is increasing
(blue), decreasing (red), or constant (gray).
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Figure 4.34: Similar to Figure 4.32, but for w1 = 0 and w2 < 0 and di�erent value of Br as
shown in (c). The black arrows in Figures (a) and (d) show the distribution of the dynamics
with the size of the arrows being proportional to the magnitude of the perturbation, and
the colors in the background indicate if the amplitude of the perturbation is increasing
(blue), decreasing (red), or constant (gray).
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Figure 4.35: Calculated distribution of the copies of the system in the statistical ensemble
at t = T/2 and various values of the longitudinal magnetic �eld, superimposed on the
Lambert azimuthal projection [99] of the energy surface of the system. White points
signify the energy minima at ±Z. The black line shows the calculated reversal trajectory
at zero temperature. The arrows along the black line demonstrate the velocity at di�erent
partitions of T , while the size of the arrows code the magnitude of the velocity. The copies
of the ensemble that will eventually succeed and not succeed in the magnetization switching
are marked with green and red points, respectively, and shown at t = T/2 without applying
Br (a) and with Br for λ = 1/

√
2 (b), λ = 0.85 (c), and λ = 0.95 (d). The damping factor

α is 0.2, the thermal stability factor ∆ is 20, while the switching time T is 10τ0.

E�ect of the longitudinal �eld on the distribution of the copies of the system

in the statistical ensemble

To gain insight into how Br a�ects the distribution of ensemble copies, we present in
Figures (4.35)(a)-(d) the distributions of successful and unsuccessful copies at t = T/2
for α = 0.2, T = 10τ0, and ∆ = 20. These copies are superimposed on the Lambert
projection of the energy surface of the macrospin, and their distributions are obtained
both with and without applying Br. In Fig.(4.35)(a), the results are obtained for
Br = 0, clearly showing that the copies are scattered around m0(T/2). Overall, the
cloud of successful and unsuccessful copies is separated, with the latter lagging behind
m0(T/2) and remaining close to the initial stable state. Interestingly, the addition of
Br for λ = 1/

√
2 and λ = 0.85, as shown in Figs.(4.35)(b)-(c), results in fewer scattered

copies compared to the case with zero Br. In contrast, for λ = 0.95, as depicted in
Fig. (4.35)(d), the cloud of copies clusters around m0(T/2). This occurs because, for
such a high value of λ, the trajectories of the perturbations become elliptical with a
high amplitude.
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Figure 4.36: (a) Magnetization reversal success rate as a function of λ for damping α = 0.2
and di�erent values of the switching time T , as depicted in the legend. The solid and dashed
lines are obtained with the corresponding Br de�ned in scheme I and II, respectively. The
gray shading area signi�es the range of λ values at which Br is zero for scheme I, while
Br = 0 for λ ∈ (−1, 0] in scheme II. The vertical gray dashed lines mark the critical values
of λ at λ = 0 and λ = ±1/

√
2. (b) Success rate as a function of damping α for T = 10τ0,

where the black solid line shows the results for zero Br, and the blue solid (dashed) line
is obtained by applying Br de�ned in scheme I (II) for λ = 0.8. (c) Success rate as a
function of T for α = 0.2 where the black, solid and dashed blue lines are the same as in
(b). The thermal stability factor ∆ is 20.

E�ects of time-dependent radial pulse on the magnetization switching suc-

cess rate

Here, the magnetization switching is induced by means of an optimal pulse. Then,
we have considered a time-dependent radial �eld Br based on scheme I and scheme
II as detailed in Chapter 3. Figure 4.36 illustrates the outcome of applying a time-
dependent radial �eld.

Figure (4.36)(a) shows the success rate as a function of λ for various values of the
switching time T , while damping α is 0.2 and thermal stability factor ∆ is 20. For
the considered parameters, the success rate obtained using scheme I remains �xed for
λ ∈ [−1/

√
2,−1), as Br = 0 within this range of λ values, see Eq. (3.12). However,

Br reduces to B
∗
r for λ ∈ (−1/

√
2, 0], resulting in a reduction of the success rate as

B∗r shifts the unstable eigenvalues towards the middle of the unstable region located
in the quarter Q2 shown in Fig. (3.4), where the trajectories of the perturbation are
hyperbolic. As λ increases from 0 to 1/

√
2, B∗r transforms the saddle trajectories into

straight ones, resulting in an increase in the success rate values. Further increasing
the λ value beyond the critical one at 1/

√
2 results in an increased success rate very

close to 100%. In contrast, the results obtained using scheme II are qualitatively
di�erent than those for scheme I. In particular, Br is always zero for λ ∈ (−1, 0],
see Eq. (3.12), thereby resulting in a �xed success rate. Also, the success rate can
be enhanced for certain positive values of λ close to 1/

√
2. Indeed, the success rate

decreases signi�cantly below its value at zero Br as λ→ 1 since we have considered a
large value of α. It is noteworthy that for relatively short switching time T and low
values of damping α, scheme II can guarantee a success rate ≈ 100% for high values
of λ.
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How the success rate depends on damping α for T = 10τ0 and ∆ = 20 is illustrated in
Fig. (4.36)(b). Here the success rate is calculated for zero and nonzero Br obtained
using scheme I and II, where the value of λ is 0.8. For zero Br, the reduction in
the success rate becomes more pronounced as α increases. This is because for high
α values, the amplitude of the perturbation increases thereby resulting in instability
against thermal �uctuations. However, the success rate can be signi�cantly enhanced
by applying Br equipped with the proper value of λ, see the solid and dashed blue
lines. The success rate shown with the blue solid line is slightly changed as α increases.
This is because Br shifts the eigenvalues equally and arranges them along a straight
line de�ned by the angle η, hence, all shifted eigenvalues will have the same trajectory
of the perturbation in the tangent space but with di�erent perturbation amplitude
depending on the value of both w1/w2 and α. In contrast, the success rate shown with
the blue dashed line decreases as α increases since scheme II is unstable with respect
to relaxation, as expected.

Fig. (4.36)(c) illustrates the success rate as a function of the switching time T for
α = 0.2 and ∆ = 20, calculated with and without Br similar to Fig. (4.30)(b). The
success rate is a monotonically decreasing function of T because for longer T values
the thermal �uctuations can accumulate arbitrarily high thus giving rise to instability
and reduction in the success rate.
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Distribution of the successful and unsuccessful copies

The sudden decrease in the success rate shown in the main text, see Figure (4.36)(a),
can be explained by the distribution of the copies of the ensemble during the magne-
tization switching. Figure (4.37) shows how the successful and unsuccessful copies of
the ensemble evolve in time. Interestingly, the copies are precessing counter-clockwise
about the black solid line due to the e�ect of the radial pulse Br.

Figure 4.37: Lambert azimuthal equal-area projection of the energy surface of a macrospin
with uniaxial anisotropy. The energy minima at ±Z are marked with the white points.
Black line shows the calculated zero temperature reversal trajectory. The arrows along
the black line show the velocity at t = T/6, t = T/3, t = T/2, t = 2T/3, and t = 5T/6,
where the arrow size codes the magnitude of the velocity. The green cloud and red points
show the distribution of the copies of the ensemble realized at a partition of the switching
time T along OCP. The green cloud and red points signify the successful and unsuccessful
copies, respectively. The radial component of the pulse Br is included in the calculations
with λ = 0.88. The damping factor α is 0.2, the thermal stability factor ∆ is 20, while the
switching time T is 13τ0.
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Figure 4.38: Magnetization reversal success rate as a function of λ for damping factor α = 0.2
and di�erent values of the switching time T , as depicted in the legend. The vertical gray
dashed lines mark the critical values of λ at λ = 0 and λ = ±1/

√
2. The gray shading area

signi�es the range of λ values at which Br is zero. The thermal stability factor ∆ is 20.

Gaussian pulse of the external magnetic �eld

To con�rm that the improvement in the success rate is associated with Br rather
than the choice of the external stimulus, we examine a non-optimal temporal pulse of
the external magnetic �eld for inducing magnetization switching. The pulse can be
described using a Gaussian function as follows:

B(t) = B0exp(−
(t− tp)2

2σ2
)ê, (4.38)

where B0 is the amplitude of the pulse, tp is the position of the maximum of the
pulse, and σ is the Gaussian pulse width. The pulse is applied into a direction ê =
(sin θ cosϕ, sin θ sinϕ, cos θ) inclined by a polar angle θ with respect to the z direction
and an azimuthal angle ϕ with respect to the x axis. Here, the results are obtained
for B0 ≈ 7.1[K/µ], tp = 1.5τ0, σ = 0.7τ0, θ = π/2 and ϕ = 0.027π, where for such
parameters and for T = 10τ0 and α = 0.2 the ratio between the energy expended for
generating the Gaussian pulse and the minimum switching cost Φm, see Eq. (12) in
the main text, is ≈ 57.8. Figure (4.38) shows that the success rate can be enhanced
by applying Br for λ > 1/

√
2 even though the driving pulse is non-optimal.
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Figure 4.39: (a) Energy cost of magnetization switching as a function of the inverse of the
switching time T for various values of the thermal stability factor ∆, as depicted in the
legend. The gray solid line shows the minimum switching cost Φm [Eq. (4.22)], while
the black dashed line is the in�nite switching time asymptotic, Φ∞ ≡ 2αK/(γµ). The
solid points deviating from Φm at speci�c T show the switching cost Φ at �xed success
rate, 99.2%, as shown in (b). For instance, Φ |∆=50 coincides with (deviates from) Φm
for T � (α+ 1/α) τ0 (T � (α+ 1/α) τ0) located to the right (left) of the black dotted
line, where the success rate in this timescale is larger than 99.2% (�xed at 99.2%) without
(with) applying Br. The magnitude of the damping factor α is 0.2

Energy cost of magnetization switching We de�ne the cost of the magnetization
switching as follows (see Chapter 2):

Φ =

∫ T

0

|B(t)|2dt, (4.39)

where T is the prescribed switching time and B(t) = B⊥(t) + Br(t)êr is the external
magnetic �eld at time t. Here B⊥(t) and the corresponding minimum energy cost Φm
are given by Eqs. 4.20 and Eq. 4.22, respectively, in the Supplemental material. The
radial �eld Br(t) is de�ned through scheme I and II. In order to investigate how Φ
depends on the inverse of the switching time T for a �xed success rate, we set a success
rate goal P below which Br equipped with a proper amplitude is needed for �xing the
success rate at P. Hereafter, we set P = 99.2%.

Fig. (4.39)(a) shows the switching cost Φ as a function of the inverse of the switching
time T for α = 0.2 and various values of the thermal stability factor ∆. The gray
solid line signi�es Φm obtained for zero Br, and approaching the in�nite switching
time asymptotic Φ∞ for T � (α+ 1/α) τ0. Indeed, for short switching time T �
(α+ 1/α) τ0, the switching cost Φ for the considered ∆ values is equal to Φm thereby
signifying that the optimal pulse B⊥(t) is robust against thermal �uctuations and
achieves success rate values higher than P, as shown in Fig. (4.39)(b). However, as T
increases beyond the short timescale, then Br equipped with the proper amplitude is
needed to guarantee a �xed success rate at P. Thus, explaining the sudden deviation
of Φ from Φm, i.e., Φ > Φm for Br 6= 0. Note that for high values of ∆, the condition
Φ > Φm is ful�lled for longer T , as expected.
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5 Conclusions and outlook

This thesis presents the development of a theory aimed at energy-e�cient manipu-
lation of magnetic states using an external magnetic �eld. The foundation of this
theory rests upon the postulate that the energy cost of a given magnetization change
is a functional of the transition trajectory in the con�guration space. Once the opti-
mal trajectory for a given transition is determined, the desired control pulse can be
systematically reconstructed. This reconstruction procedure is based on the require-
ment that the superposition of the sought-after pulse and the internal magnetic �eld
de�ned by the system's Hamiltonian leads the system to advance precisely along the
optimal switching path. This advancement also satis�es the equations of motion and
terminates at a prede�ned switching time. Our approach consists of the following
steps: �rst, selecting a magnetic Hamiltonian and identifying target magnetic states.
We de�ne the target magnetic states by locating minima on the energy surface of the
system as a function of the orientation of the moments. Then, the optimal control
paths minimizing the energy cost functional are calculated, followed by calculating the
optimal control pulses.

An alternative approach worth considering involves utilizing a spin-polarized electric
current J as an external stimulus [26] rather than relying on an external magnetic �eld
B. Identifying an optimal mechanism to minimize |J|2 rather than |B|2 will closely
parallel the one outlined in this thesis. However, it will necessitate the utilization
of equations such as the Landau-Lifshitz-Gilbert-Slonchevsky equation and equations
accounting for spin-orbit torque e�ects to compute electric current pulses. Moreover,
the principle of Ohmic loss minimization can be applied to predict the optimal pulse
of electric current for e�cient control of the domain wall motion described by two
collective coordinates in the spirit of the Thiele's equation [27]. To achieve a deeper
understanding of the thermal reservoir's role in optimal control, temperature should
be incorporated into the theory at a more fundamental level by modeling thermal
e�ects by introducing stochastic forces into the equations of motion. Consequently,
the position of the magnetic system within a speci�c region of con�guration space will
become a stochastic variable described by a particular probability distribution. As
a result, the framework of optimal control can be applied to the probability density,
and the objective will be to predict an external stimulus that guides the system to
the desired target state with an acceptable probability and minimal energy expendi-
ture. Reconstructing the control stimuli can be done such that the probability density
evolves according to the Fokker-Planck equation.
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5 Conclusions and outlook

Although the primary focus of this thesis is on the application of optimal control the-
ory (OCT) to magnetic systems described by classical Hamiltonians, it is essential
to highlight the potential extension of these concepts into the domain of quantum
mechanics. This extension entails the utilization of the Schrödinger equation for de-
scribing quantum dynamics. For example, considering the laser electric �eld as the
external stimulus for manipulating the isolated quantum system, the objective be-
comes to compute the optimal laser pulse. Here, optimality can be de�ned by the
minimization of the �uence of the laser �eld required to excite a quantum system
from its initial state to a predetermined quantum state within a speci�ed target time
frame. Thus, we can de�ne a cost function to be proportional to the amplitude of the
laser pulse squared, similar to the one de�ned in Chapter 2, where its minimization
should be subject to a constraint imposed by the equation of motion de�ned by the
Schrödinger equation. Such constrained optimization problem can be formulated as
an unconstrained optimization through the introduction of a Lagrange multiplier or
by means of the quadratic penalty function approach presented in Chapter 2. It is
noteworthy that the OCT has been applied to quantum systems [100], especially in
the �eld of Chemistry. An illustrative example of this is determining the optimal laser
pulse necessary to selectively break a particular bond in a molecule [101]. Extending
the OCT to open quantum systems presents signi�cant challenges, primarily due to
the necessity of incorporating the dynamics dictated by the stochastic Schrödinger
equation for system evolution, and the need to treat the heat bath's in�uence in a
quantum-mechanical framework. This requires careful consideration of the system's
interaction with its environment using quantum bath approximations, e.g., Markovian
or non-Markovian master equations.

As a �nal note, the OCT developed in Chapter 2 o�ers a versatile approach for energy-
e�cient control of magnetic states using pulses of an external magnetic �eld. This the-
ory is applicable across various dimensions, including one-, two-, and three-dimensional
magnetic systems. Examples could include 2D magnetic sheets [102], van der Waals in-
terfaces [102], and magnetic twisted layers [103]. It is important to mention, however,
that the complexity of computations increases signi�cantly with the increase in system
size and the number of images used in simulations. Thus, e�ective implementation and
parallelization of the code are essential for broader applications of this theory. These
applications could include exploring (i) switching processes in magnetic nanostrips
and nanowires, both with and without impurities. Magnetic nanowires and nanostrips
serve as convenient subjects for investigating the energy-e�cient manipulation of do-
main walls. Their nanoscale dimensions introduce a interplay between short-range
interactions, such as magnetic exchange, and long-range magnetostatic forces, result-
ing in a complex internal structure of the domain walls. The methodology developed
in Chapter 2 provides a robust framework for exploring optimal mechanisms governing
domain wall nucleation and propagation. This approach allows for an in-depth analysis
of how these mechanisms and associated energy costs depend on the material param-
eters of the system. Furthermore, it enables the examination of the extent to which
the velocity of the domain wall can be maximized for a given energy cost. An intrigu-
ing question is whether it is possible to surpass Walker's limit on the velocity [104]
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by proper shaping of the pulse of the external magnetic �eld.; (ii) energy-e�cient
nucleation, annihilation, and displacement of spin textures. For example, optimal
trajectories for skyrmion�localized, noncollinear spin textures arising in magnets of
a certain class [105]�nucleation and annihilation and corresponding energy-e�cient
controls can be investigated as a function of magnetic interactions including exchange,
Dzyaloshinskii-Moriya interaction and magnetic anisotropy. Moreover, for a given
skyrmion speed, the control pulse of magnetic �eld can be optimized with respect to
the expended energy. One known problem with the skyrmion motion by means of
electric current is associated with gyrotropic force which deviates the skyrmion from
the current direction. It will be interesting to see whether this e�ect can be bypassed
by proper control pulse shaping; (iii) vortex core reversal in magnetic nanodots. A typ-
ical vortex displays four distinct stable states, characterized by its core polarity and
vorticity. While previous studies have explored vortex core reversal processes [106],
identifying the optimal mechanisms for transitioning between these states remains a
compelling challenge. The methodology developed in Chapter 2 provides a tool to
investigate how these transitions are in�uenced by factors such as switching time,
damping, and the magnetic properties of the system; and (iv) switching mechanisms
in magnetic heterostructures, among others.
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Appendix A: Velocity and force
calculations

I. Velocity calculations

The con�guration space of a magnetic system consisting of N interacting magnetic
moments is a 2N -dimensional Riemannian manifold, R. Such manifold is de�ned as
a direct product of N two-dimensional unit spheres S2

i , i.e,

R =

N∏

i=1

S2
i , (6.1)

where S2
i signi�es a two dimensional spherical surface associated with the ith magnetic

moment vector mi. Calculating the velocity on such curved manifold requires taking
into account its curvature. Therefore, the geodesic distance between mp+1 − mp

images has been taken into account, see Eq. (2.30) in the main text. In particular, the
velocity ṁp+1/2,i is approached via the �nite di�erence approximation of the angular
velocity, which is de�ned as the angle between mp+1 −mp (arc length), as shown in
Figure. 2.2(b) in the main text, divided by ∆t = tp+1 − tp. In particular,

ṁp+ 1
2 ,i

=
δp
∆t

mp+1,i −mp,i −mp+ 1
2 ,i

[
(mp+1,i −mp,i) ·mp+ 1

2 ,i

]

∣∣∣mp+1,i −mp,i −mp+ 1
2 ,i

[
(mp+1,i −mp,i) ·mp+ 1

2 ,i

]∣∣∣
, (6.2)

where the midpoint mp+ 1
2 ,i

as well as the angle δp between mp and mp+1 are de�ned
as

mp+ 1
2 ,i

=
mp+1,i +mp,i

|mp+1,i +mp,i|
(6.3)

δp = arccos (mp,i ·mp+1,i) . (6.4)
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However, one can simplify Eq. (6.2) as follows:

(mp+1,i −mp,i) ·mp+ 1
2

= (mp+1,i −mp,i) ·
mp+1,i +mp,i

|mp+1,i +mp,i|
(6.5)

(mp+1,i −mp,i) ·
mp+1,i +mp,i

|mp+1,i +mp,i|
=

m2
p+1,i −m2

p,i

|mp+1,i +mp,i|
(6.6)

m2
p+1,i −m2

p,i

|mp+1,i +mp,i|
= 0 (6.7)

Therefore, the velocity at the midpoint de�ned by Eq. (6.2) reduces to

ṁp+ 1
2 ,i

=
δp
∆t

mp+1,i −mp,i

|mp+1,i −mp,i|
(6.8)

which is similar to Eq. (2.30) in the main text. It is noteworthy that if the angle
between spins in two adjacent images approaches zero, then the denominator in Eq.
(6.8) approaches zero as well which, in turn, results in singularity in the velocity calcu-
lations. Hence, a special treatment should be considered based on Taylor expansion.

It is worth mentioning that one could calculate the velocity using the Euclidean dis-
tance between images, however, we observe that our Eq. 6.8 requires fewer images
to reach convergence in the optimal control path calculations because it takes into
account the curvature of the con�guration space of the system.
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II. Force calculations

The sought-for the optimal control path minimizing the energy cost functional Φ is
achieved by zeroing the force acting on the movable images. The force is de�ned as
follows

Fq,j = −∂Φ[M]

∂mq,j

= − ∂

∂mq,j

(
Q∑

p=1

N∑

i=1

|Bp+ 1
2 ,i
|2∆t

)
(6.9)

where ∆t = tp+1− tp, and Bi is given by Eq. (2.9) in the main text. The negative sign
is introduced in order to follow the negative of the gradient of the functional during
the optimization process. Note that the force here is not projected on the tangent of
the con�guration space. According to Eq. (2.9), |Bp+ 1

2 ,i
|2 is de�ned as

|Bp+ 1
2 ,i
|2 =

α2 + 1

γ2
|ṁp+ 1

2 ,i
|2 − 2α

γ

(
ṁp+ 1

2 ,i
· b⊥,eff

p+ 1
2 ,i

)

− 2

γ

(
mp+ 1

2 ,i
× ṁp+ 1

2 ,i

)
· b⊥,eff

p+ 1
2 ,i

+ |b⊥,eff
p+ 1

2 ,i
|2, (6.10)

however, since b⊥,eff
p+ 1

2 ,i
= beff

p+ 1
2 ,i
−mp+ 1

2 ,i

(
beff
p+ 1

2 ,i
·mp+ 1

2 ,i

)
, the following equations

hold

ṁp+ 1
2 ,i
· b⊥,eff

p+ 1
2 ,i

= ṁp+ 1
2 ,i
· beff

p+ 1
2 ,i(

mp+ 1
2 ,i
× ṁp+ 1

2 ,i

)
· b⊥,eff

p+ 1
2 ,i

=
(
mp+ 1

2 ,i
× ṁp+ 1

2 ,i

)
· beff

p+ 1
2 ,i

|b⊥,eff
p+ 1

2 ,i
|2 = |beff

p+ 1
2 ,i
|2 −

(
beff
p+ 1

2 ,i
·mp+ 1

2 ,i

)2
. (6.11)

Thus, Eq. (6.10) can can be written as follows

|Bp+ 1
2 ,i
|2 =

α2 + 1

γ2
|ṁp+ 1

2 ,i
|2 − 2α

γ

(
ṁp+ 1

2 ,i
· beff

p+ 1
2 ,i

)

− 2

γ

(
mp+ 1

2 ,i
× ṁp+ 1

2 ,i

)
· beff

p+ 1
2 ,i

+|beff
p+ 1

2 ,i
|2 −

(
beff
p+ 1

2 ,i
·mp+ 1

2 ,i

)2
. (6.12)

Now, our task is to calculate the variation of Φ with respect to the spin orientation,
however, to make the derivation easier to read, we will divide the force into �ve parts
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as follows

F
(1)
q,j = −α

2 + 1

γ2
∂

∂mq,j

Q∑

p=1

N∑

i=1

|ṁp+ 1
2 ,i
|2∆t,

F
(2)
q,j =

2α

γ

∂

∂mq,j

Q∑

p=1

N∑

i=1

(
ṁp+ 1

2 ,i
· beff

p+ 1
2 ,i

)
∆t,

F
(3)
q,j =

2

γ

∂

∂mq,j

Q∑

p=1

N∑

i=1

(
mp+ 1

2 ,i
× ṁp+ 1

2 ,i

)
· beff

p+ 1
2 ,i
∆t,

F
(4)
q,j = − ∂

∂mq,j

Q∑

p=1

N∑

i=1

|beff
p+ 1

2 ,i
|2∆t,

F
(5)
q,j =

∂

∂mq,j

Q∑

p=1

N∑

i=1

(
beff
p+ 1

2 ,i
·mp+ 1

2 ,i

)2
∆t. (6.13)

where Fq,j = F
(1)
q,j +F

(2)
q,j +F

(3)
q,j +F

(4)
q,j +F

(5)
q,j , and the upper scripts (1) . . . (5) signify

the term number.

Derivation of the �rst term: F
(1)
q,j

The �rst term of the total force Fq,j is given by

F
(1)
q,j = −α

2 + 1

γ2
∂

∂mq,j

Q∑

p=1

N∑

i=1

|ṁp+ 1
2 ,i
|2∆t, (6.14)

where

|ṁp+ 1
2 ,i
|2 =

arccos2 (mp,i ·mp+1,i)

∆t2

(
mp+1,i −mp,i

|mp+1,i −mp,i|

)2

, (6.15)

however, one can easily show that

(
mp+1,i −mp,i

|mp+1,i −mp,i|

)2

= 1. (6.16)

Therefore, Eq. (6.14) simpli�es to

F
(1)
q,j,η = −α

2 + 1

γ2
∂

∂mq,j,η

Q∑

p=1

N∑

i=1

[
arccos2 (mp,i,ξmp+1,i,ξ)

∆t

]
, (6.17)

where the Einstein summation convention over repeated indices is used, and the sym-
bols η, ξ = (x, y, z). After performing the derivative with respect to spin orientation,
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one obtains the following formula for F
(1)
q,j,η:

F
(1)
q,j,η =

α2 + 1

γ2

Q∑

p=1

N∑

i=1

(
2 arccos(mp,i,λmp+1,i,λ)

∆t

mp,i,ξδqp+1δijδηξ +mp+1,i,ξδqpδijδηξ√
1− (mp,i,λmp+1,i,λ)2

)

(6.18)

Derivation of the second term: F
(2)
q,j

The second term of the total force Fq,j is given by

F
(2)
q,j =

2α

γ

∂

∂mq,j

Q∑

p=1

N∑

i=1

(
ṁp+ 1

2 ,i
· beff

p+ 1
2 ,i

)
∆t, (6.19)

F
(2)
q,j,η =

2α

γ

∂

∂mq,j,η

Q∑

p=1

N∑

i=1

(
ṁp+ 1

2 ,i,β
beff
p+ 1

2 ,i,β

)
∆t,

=
2α

γ

Q∑

p=1

N∑

i=1



∂ṁp+ 1

2 ,i,β

∂mq,j,η
beff
p+ 1

2 ,i,β︸ ︷︷ ︸
(F

(2)
q,j,η)1st

+ ṁp+ 1
2 ,i,β

∂beff
p+ 1

2 ,i,β

∂mq,j,η︸ ︷︷ ︸
(F

(2)
q,j,η)2nd



∆t (6.20)

where β = (x, y, z). To simplify the following derivation, we will proceed by separately
deriving both terms appearing in Eq. (6.20).

(F
(2)
q,j,η)1st =

∂ṁp+ 1
2 ,i,β

∂mq,j,η
beff
p+ 1

2 ,i,β
, (6.21)

then, after deriving the velocity we obtain

(F
(2)
q,j,η)1st = A

[
mp+1,i,β −mp,i,β√

(mp+1,i,ψ −mp,i,ψ)(mp+1,i,ψ −mp,i,ψ)

−(δqp+1δijmp,i,η + δqpδijmp+1,i,η)√
1− (mp+1,i,ξmp,i,ξ)2

+arccos(mp+1,i,ξmp,i,ξ)

(
δqp+1δijδηβ − δqpδijδηβ√

(mp+1,i,ψ −mp,iψ)(mp+1,i,ψ −mp,i,ψ)

− (mp+1,i,β −mp,i,β)(mp+1,i,η −mp,i,η)(δqp+1δij − δqpδij)(√
(mp+1,i,ψ −mp,i,ψ)(mp+1,i,ψ −mp,i,ψ)

)3





 (6.22)
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where ψ = (x, y, z), and A = beff
p+ 1

2 ,i,β
/∆t. The second part of Eq. (6.20) is given by

(F
(2)
q,j,η)2nd = ṁp+ 1

2 ,i,β

∂beff
p+ 1

2 ,i,β

∂mq,j,η

= ṁp+ 1
2 ,i,β



∂beff
p+ 1

2 ,i,β

∂mp+ 1
2 ,r,ξ

mp+ 1
2 ,r,ξ

∂mq,j,η


 (6.23)

where
∂beff
p+1

2
,i,β

∂m
p+1

2
,r,ξ

is the negative Hessian, i.e., the second derivative of the energy with

respect to the spin orientation. Here, the matrix
∂m

p+1
2
,r,ξ

∂mq,j,η
is given by

∂mp+ 1
2 ,r,ξ

∂mq,j,η
=

δqp+1δjrδηξ + δqpδjrδηξ√
(mp+1,r,ξ +mp,r,ξ)(mp+1,r,ξ +mp,r,ξ)

− (mp+1,r,ξ +mp,r,ξ)(mp+1,r,η +mp,r,η)(δqp+1δjr + δqpδjr)

(
√

(mp+1,r,ξ +mp,r,ξ)(mp+1,r,ξ +mp,r,ξ))3

(6.24)

Derivation of the third term: F
(3)
q,j

The third term of the total force Fq,j is given by

F
(3)
q,j =

2

γ

∂

∂mq,j

Q∑

p=1

N∑

i=1

(
mp+ 1

2 ,i
× ṁp+ 1

2 ,i

)
· beff

p+ 1
2 ,i
∆t (6.25)

the derivation of the above term can result in a large and complicated terms, therefore,
in order to keep the terms in a more compact form a matrix notation will be used, as
follows

F
(3)
q,j =

2

γ

Q∑

p=1

N∑

i=1

([
∇mq,j

⊗
(
mp+ 1

2 ,i
× ṁp+ 1

2 ,i

)]
· beff

p+ 1
2 ,i

+
(
mp+ 1

2 ,i
× ṁp+ 1

2 ,i

)
· ∇mq,j

⊗ beff
p+ 1

2 ,i

)
∆t (6.26)

where the dot notation appears in Eq. (6.26) represents a dot product over {x, y, z}
components, whereas the ⊗ notation represents the outer product. The outer product
can be de�ned by index notation as follows: (U⊗V)αβ = uαvβ , where U and V are
arbitrary vectors. Thus,

∇mq,j =

[
∂

∂mq,j,x
,

∂

∂mq,j,y
,

∂

∂mq,j,z

]
,

∇mq,j
⊗
(
mp+ 1

2 ,i
× ṁp+ 1

2 ,i

)
=

(
∇mq,j

⊗mp+ 1
2 ,i

)
× ṁp+ 1

2 ,i
+mp+ 1

2 ,i
×
(
∇mq,j

⊗ ṁp+ 1
2 ,i

)
,

(6.27)
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∇mq,j
⊗mp+ 1

2 ,i
=




∂m
p+1

2
,i,x

∂mq,j,x

∂m
p+1

2
,i,y

∂mq,j,x

∂m
p+1

2
,i,x

∂mq,j,x

∂m
p+1

2
,i,x

∂mq,j,y

∂m
p+1

2
,i,y

∂mq,j,y

∂m
p+1

2
,i,z

∂mq,j,y

∂m
p+1

2
,i,x

∂mq,j,z

∂m
p+1

2
,i,y

∂mq,j,z

∂m
p+1

2
,i,z

∂mq,j,z



,

(6.28)

∇mq,j
⊗ ṁp+ 1

2 ,i
=




∂ṁ
p+1

2
,i,x

∂mq,j,x

∂ṁ
p+1

2
,i,y

∂mq,j,x

∂ṁ
p+1

2
,i,x

∂mq,j,x

∂ṁ
p+1

2
,i,x

∂mq,j,y

∂ṁ
p+1

2
,i,y

∂mq,j,y

∂ṁ
p+1

2
,i,z

∂mq,j,y

∂ṁ
p+1

2
,i,x

∂mq,j,z

∂ṁ
p+1

2
,i,y

∂mq,j,z

∂ṁ
p+1

2
,i,z

∂mq,j,z



. (6.29)

Derivation of the fourth term: F
(4)
q,j

The fourth term of the total force Fq,j is given by

F
(4)
q,j = − ∂

∂mq,j

Q∑

p=1

N∑

i=1

|beff
p+ 1

2 ,i
|2∆t,

= −2
Q∑

p=1

N∑

i=1

beff
p+ 1

2 ,i
· ∇mq,j

⊗ beff
p+ 1

2 ,i
∆t (6.30)

where

∇mq,j
⊗ beff

p+ 1
2 ,i

=
∂beff
p+ 1

2 ,i,β

∂mp+ 1
2 ,r,ξ

mp+ 1
2 ,r,ξ

∂mq,j,η
(6.31)

and the spin variation
m
p+1

2
,r,ξ

∂mq,j,η
is given by Eq. (6.24).

Derivation of the �fth term: F
(5)
q,j

The �fth term of the total force Fq,j is given by

F
(5)
q,j =

∂

∂mq,j

Q∑

p=1

N∑

i=1

(
beff
p+ 1

2 ,i
·mp+ 1

2 ,i

)2
∆t

= 2

Q∑

p=1

N∑

i=1

(
beff
p+ 1

2 ,i
·mp+ 1

2 ,i

)
∇mq,j

⊗
(
beff
p+ 1

2 ,i
·mp+ 1

2 ,i

)
∆t, (6.32)
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where

∇mq,j
⊗
(
beff
p+ 1

2 ,i
·mp+ 1

2 ,i

)
=

(
∇mq,j

⊗ beff
p+ 1

2 ,i

)
·mp+ 1

2 ,i
+ beff

p+ 1
2 ,i
·
(
∇mq,j

⊗mp+ 1
2 ,i

)
.

(6.33)
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Appendix B: Testing FORTRAN

implementation and the

reproducibility of the calculated OCPs

by directly solving LLG equation

I. Testing FORTRAN implementation

The numerical method described in Chapter 2 is illustrated with calculations of the
OCP for the reversal of a single magnetic moment whose internal energy is de�ned
by the anisotropy along z axis, see Sec. 4.1.1. The OCP between the energy minima
at mz = ±1 for such a magnetic system is obtained analytically in terms of elliptic
functions, as shown in see Sec. 4.1.1, providing a benchmark for numerical calculations.

Analytical vs numerical forces

Finding the minimum of the cost functional Φ requires zeroing the force acting on
the movable images, see Appendix A. However, to check if the implementation of the
analytical forces de�ned in see Appendix A is correct, we compare their values with
the numerical forces de�ned via the equation:

∇Φ(S) = Φ(S− 2ε)− 8Φ(S− ε) + 8Φ(S+ ε)− Φ(S+ 2ε)

12ε
, (6.34)

where ε > 0 signi�es a small change in S. Note that choosing ε to be too small can
cause problems. In particular, Eq. (6.34) is composed of two errors: the �rst is the
theoretical error due to the discretization scheme, and the second is caused by the
roundo� error connected with �oating point numbers. Thus, one has to be careful
when choosing the value of ε.

We have found that the absolute error between the analytical and numerical forces for
a 3D magnetic system consisting of N interacting magnetic moments, whose energy
is given by Eq. 1.1, with complete random orientations is within the order of 10−12.
Thus, guaranteeing that my implementation is correct.

Once we have ensured the accurate implementation of the analytical forces, evaluating
the minimizer's implementation becomes a matter of straightforwardly contrasting the
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analytical and numerical OCPs for the uniaxial nanoparticle. This is discussed in the
following.

Analytical vs numerical OCPs and optimal �eld pulses

The numerical OCP calculations were considered converged when the magnitude of the
gradient of Φ had dropped by twelve orders of magnitude. We compare the analytical
and numerical OCPs and optimal pulses for the cases (i) α = 0, T � τ0 and T � τ0;
(ii) α 6= 0, T � τ0 and T � τ0, as shown in Figures 6.1-6.4. Agreement between the
analytical and numerical results is better for larger number of images, as expected.

Order of accuracy

The order of accuracy is a measure of how quickly the error between the numerical
and the exact (analytical) values of the minimum energy cost functional Φm decreases
as the step size is reduced. Since we have used the midpoint discretization scheme
in Chapter 2, the order of accuracy is expected to be quadratic. To con�rm this, we
calculate the error in Φm for the uniaxial nanoparticle case. In particular, we calculate
the absolute value of the error ΦAnlm − ΦNumm as a function of the step size ∆t = T/Q
with T and Q being the switching time and number of movable images, respectively.
The results are plotted on a log-log scale, where the slope of the line �tting the data
de�nes the order of accuracy. Such results are shown in Figure 6.5.

II. Testing reproducibility of the calculated OCPs

In this thesis, the dynamical equations de�ned by the LLG are solved inversely with
respect to the external magnetic �eld, given the total time of the switching and the
Hamiltonian of the magnetic system. Thus, the problem of determining the optimal
path for magnetization reversal becomes an Euler-Lagrange problem with constraints.
After obtaining the optimal trajectory, one can directly obtain the optimal pulse.

Nevertheless, we show that the derived optimal pulses can indeed induce the same net
of magnetization change by directly solving the LLG equation. In other words, the
LLG equations equipped with the optimal pulse will be solved numerically, and the
resultant trajectory will be compared with the OCPs. An illustrative example of such
a test is presented in Figures 6.6-6.8 describing the OCPs and optimal pulse for the
magnetization reversal of a biaxial nanoparticle.
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Figure 6.1: Evolution of the magnetic moment m along the OCP for switching time T = 10τ0
and damping parameter α = 0, and the corresponding optimal pulse B derived from the
calculated OCP. Analytical solution is given by solid lines, position of images included in
the numerical calculations is shown with points. Q = 50 number of movable images were
used in the numerical OCP calculations.

Figure 6.2: Similar to Figure 6.1 but for switching time T = 100τ0 and Q = 500 movable
images.

Figure 6.3: Similar to Figure 6.1 but for switching time T = 10τ0, damping parameter α = 2.0
and Q = 50 movable images.
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Figure 6.4: Similar to Figure 6.1 but for switching time T = 100τ0, damping parameter
α = 2.0 and Q = 100 movable images.

Figure 6.5: Log-log plot of the error as a function of the step size ∆t. The magnitude of the
damping parameter α = 0 (a) α = 0.2 (b). The switching time T is 10τ0. The gray line
on the graph represents a �tted line with a slope as shown in the legend.

Figure 6.6: Evolution of the magnetic moment m along the OCP (trajectory obtained by
directly solving LLG) is shown with data points (solid lines). The optimal pulse B is
derived from the calculated OCP. The switching time T = 10τ0 and damping parameter
α = 0.0. The dimensionless parameter ξ determining the magnitude of the hard axis
anisotropy is 30.
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Figure 6.7: Similar to Figure 6.6 but for damping α = 0.01 and ξ = 10.

Figure 6.8: Similar to Figure 6.6 but for damping α = 0.1 and ξ = 10.
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Appendix C: The stochastic
Landau-Lifshitz-Gilbert equation

Thermal �uctuation can be taken into account by adding a random �eld to the deter-
ministic e�ective �eld in the zero-temperature LLG equation, see Eq. (1.7). This leads
to the stochastic LLG (sLLG) equation for the magnetic moments motion [65, 96, 107]

(
1 + α2

) dmi

dt
= −γmi ×

(
Be�

i +Brd
i

)
− αγmi ×

[
mi ×

(
Be�

i +Brd
i

)]
, (6.35)

which can be classi�ed as a Langevin equation because of the stochastic �eld. The
�uctuating �elds Brd

i appearing in Eq. (6.35) couples multiplicatively to the time-
dependent magnetization. Moreover, the �uctuating �elds can be described using the
Gaussian distribution thanks to the central limit theorem. We assume that the �uctu-
ating �elds have the following properties: (i) Brd

i are rotationally invariant and do not
favor any direction, i.e., the mean value of the distribution must vanish; (ii) the Carte-
sian components of Brd

i are δ correlated in space and time. This can mathematically
be formulated as follows:

< Brd
i (t) > = 0,

< Brd
ξ,i(t)B

rd
ψ,j(t+ τ) > = 2Dδ(τ)δijδξψ, (6.36)

with < . > being the ensemble averages, i, j are the magnetic moment indices, and
ξ, ψ = x, y, z. The �uctuating �eld Brd

ξ,i(t) and Brd
ψ,j(t+ τ) are correlated only for time

interval τ shorter than the time required for an appreciable change in the magnetic
moment. The strength of the �uctuationD calculated using the �uctuation-dissipation
theorem is proportional to the system temperature T , and depends on the gyromag-
netic ratio and damping parameter α [96]:

D =
α

(1 + α2)

kBT
γ

, (6.37)

with kB being the Boltzman factor.

Note that the �uctuating �eldBrd
i is called white-noise since �eld has a power spectrum

completely independent of frequency. In particular, the power spectrum S(w) of the
random process with w being the frequency, can be calculated by means of the Fourier
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Figure 6.9: Dynamics of a magnetic moment m induced by an e�ective magnetic �eld Be�

under the e�ects of thermal �uctuations. The green line shows the calculated trajectory
described by the stochastic Landau-Lifshitz-Gilbert equation, see Eq. (6.35). The black
arrows in the tangent space show the precessional torque −m×Be� and the damping torque
−m×

(
m×Be�

)
. The orientation of the magnetic moment is described by the polar angle

θ and an azimuthal angle ϕ. The e�ective �eld Be� is pointing along z direction.

transform of the autocorrelation function f(t′) =< Brd
ξ,i(t)B

rd
ψ,j(t+ τ) >:

S(w) =

∫ ∞

−∞
f(t′) exp(iwt′)dt′ = 2D. (6.38)

Figure. (6.9) shows the e�ect of thermal �uctuation on the damped precessional mo-
tion of a single-domain particle. The particle is exerted to deterministic precessional
and damping torques as well as stochastic one causing the non-sooth behavior of the
reversal trajectory compared to that in Fig. (1.1).

The dimensionless form of stochastic Landau-Lifshitz-Gilbert equation

The terms on the left- and right-hand side of the sLLG equation, see Eq. (6.35), are in
units of joules per Tesla � when using the SI system. However, it is more convenient to
work with dimensionless sLLG equation. This can be done, for example, by introducing
a magnetic reference �eld strength B0 to de�ne the dimensionless magnetic �elds Bi

and bi through Bi = Be�
i /B0 and bi = Brd

i /B0. Note that the magnitude of the
reference magnetic �eld B0 is arbitrary. Also, a dimensionless time t

′ = γB0t/
(
1 + α2

)

needs to be introduced. In the following, we drop the prime on t′ so that t denotes
dimensionless time, and by dividing the dimensional sLLG equation by γB0 we obtain
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a dimensionless sLLG equation [97]

dmi

dt
= −mi × (Bi(M) + b)− αmi × [mi × (Bi(M) + bi)] , i = 1, ..., N (6.39)

where N is the number of magnetic moments, mi = (mx
i ,m

y
i ,m

z
i )
T are unitary three-

dimensional vectors, and M = (mT
1 , ...,m

T
N )T are 3N-dimensional column vector

formed by the mi, also Bi = (Bxi , B
y
i , B

z
i )
T and bi = (bxi , b

y
i , b

z
i ) are the e�ective

and stochastic magnetic �elds.

Since our motivation is to formulate the integrator for the sLLG equation, it is conve-
nient to rewrite Eq. (6.39) in its di�erential form [108]

dmi = −mi × (Bi(M) + b) dt− αmi × [mi × (Bi(M) + bi)] dt, (6.40)

which can be written in a more compact form as follows

dmi = mi × ai(M)dt+mi × σ(mi) ◦ dWi(t), (6.41)

where dWi = bidt is the di�erential of the Wiener process, the symbol "◦" sig-
ni�es that the corresponding stochastic integral is interpreted in the Stratonovich
sense [108], and ai(M), M ∈ R3N signi�es the drift deterministic three-dimensional
column-vectors and de�ned by

ai(M) = −Bi(M)− αmi ×Bi(M), (6.42)

and σ(mi), mi ∈ R3 is a 3× 3 di�usion matrix such that

σ(mi)ξ = −
√
2D′ξ − α

√
2D′mi × ξ, (6.43)

where ξ ∈ R3 are Gaussian random numbers with zero mean and unity variance, and
D′ is the dimensionless form the strength of the stochastic �eld D, see Eq. (6.37),
which can be de�ned by [97]

D′ =
α

(1 + α2)

kBT
B0

(6.44)

Numerical integration of the sLLG

Here, the stochastic LLG equation in its dimensionless form, see Eq. (6.39), is inte-
grated using the semi-implicit scheme B (SIB) proposed by Mentink [97]. The approxi-
mate solution to the sLLG equation at discrete partition tp of the simulated time inter-
val [0, T ] such that 0 = t0 < t1 < ... < tQ = T is denoted asmi

p withmi
p = mi(tp). For

simplicity, the partition has a regular spacing, i.e., tp+1− tp = ∆t = T/Q, p = 1, ..., Q,
with Q being number of steps.
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The SIB method uses a predictor-corrector scheme. The predictor step X ip with X ip =
X i(tp) employs the implicit midpoint scheme to preserve the magnetic moments length,
which is de�ned as

X ip = mi
p +∆t

mi
p + X ip
2

× ai(Mp) +
√
∆t

mi
p + X ip
2

× σ(mi
p)ξ

i,j
p+1, (6.45)

where ξi,jp+1 are independent identically random variables with i = 1, ..., N , j = 1, 2, 3.

Note that SIB can diverge for the case that ξi,jp+1 ∼ N (0, 1) is used as a random
variable [97], where N (0, 1) signi�es a Gaussian random variable with zero mean and
unit variance. A possible way to solve this issue is to cut o� the tail of the Gaussian
distributed random variable by letting ξi,jp+1 be distributed as an auxiliary variable ξh
de�ned by

ξh =





η, |η| ≤ Ah

Ah, η > Ah

−Ah, η < −Ah

(6.46)

where Ah =
√

2|ln∆t| and η ∼ N (0, 1) [97, 109].

One can notice that X ip in Eq. (6.45) appears on both sides of the equation. A possible
way to solve such an implicit equation is as follows:

X ip = mi
p +

(
mi
p + X ip

)
× Gp(Mp), (6.47)

where

G(Mp) =
∆t

2
ai(Mp) +

√
∆t

2
× σ(mi

p)ξ
i,j
p+1, (6.48)

by taking dot product and cross product of both sides of Eq. (6.47) with respect to
G(Mp) results in

X ip · G(Mp) = mi
p · G(Mp),

G(Mp)×X ip = G(Mp)×mi
p +mi

p [G(Mp) · G(Mp)]

−2G(Mp)
[
G(Mp) ·mi

p

]
+ X ip [G(Mp) · G(Mp)] . (6.49)

Thus, upon substituting Eq. (6.49) into Eq. (6.47), one can easily obtain the explicit
formula for X ip

X ip =
mi
p [1− G(Mp) · G(Mp)] + 2mi

p × G(Mp) + 2G(Mp)
[
G(Mp) ·mi

p

]

1 + [G(Mp) · G(Mp)]
. (6.50)

The corrector step in the SIB solver is de�ned as

mi
p+1 = mi

p+∆t
mi
p +mi

p+1

2
× ai(

Mp + X p
2

)+
√
∆t

mi
p +mi

p+1

2
× σ(m

i
p + X ip
2

)ξi,jp+1,

(6.51)
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where X p = {X 1
p , ...,XNp }. It is noteworthy that the predictor X ip has to be calculated

�rst for all magnetic moments before the corrected step mi
p+1 is computed. Moreover,

the magnetic e�ective �eld should be simultaneously updated after calculating X ip
before calculating mi

p+1.

For completeness, one can easily prove that the SIB method preserves the length
of individual magnetic moments irrespective of the ∆t when evolving the magnetic
system over time tp −→ tp+1. This property can be proven simply by showing that
the di�erence mi

p+1 −mi
p is always perpendicular to mi

p+1 + mi
p (for simplicity, we

will consider the zero-temperature case): from Eq. (6.51) it follows that

mi
p+1 −mi

p =
∆t

2

[(
mi
p +mi

p+1

)
× ai(

Mp + X p
2

)

]
, (6.52)

by multiplying both sides of the above equation with mi
p+1 + mi

p and cycling the
factors in the scalar triple product, one obtains

|mi
p+1|2 − |mi

p|2 =
∆t

2
ai(
Mp + X p

2
) ·
[(
mi
p +mi

p+1

)
×
(
mi
p+1 +mi

p

)]
= 0, (6.53)

which shows that |mi
p+1|2 = |mi

p|2 when evolving the system over time tp −→ tp+1.
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Appendix D: Magnetization
dynamics under constant magnetic
�eld vs time-dependent magnetic
�eld

Here we show that the magnetization dynamics at zero temperature and non-zero
damping α under the e�ects of time-dependent external magnetic �eld is qualitatively
di�erent from that in a constant �eld. Let w(m,Bext) be the magnetic energy density
function, then the energy change rate dw(m,Bext)/dt can be calculated as follows

dw

dt
=

∂w

∂m
· dm
dt

+
∂w

∂Bext
· dBext

dt
,

= −µ0B
eff · dm

dt
− µ0m ·

dBext

dt
, (6.54)

where ∂w
∂m = −µ0B

eff and ∂w
∂Bext

= −µ0m. Taking into account that dm
dt is de�ned by

the LLG equation, see Eq. (1.7), resulting in

Beff · dm
dt

= − αγ

1 + α2

[(
m ·Beff

)2 − |Beff |2
]
. (6.55)

Upon substituting Eq. (6.55) into Eq. (6.54) and using the relationship (A×B)
2
=

|A|2|B|2−(A ·B)
2
, one can obtain the following expression for the energy change rate

dw

dt
= −µ0

(
αγ

1 + α2

(
m×Beff

)2
+m · dBext

dt

)
, (6.56)

where for the case of constant applied external magnetic �eld and the fact that

γ
(
m×Beff

)2
/(1 + α2) = 1

γ |dm/dt|2, the energy change rate simpli�es to [110, 111]

dw

dt
= −αµ0

γ

∣∣∣∣
dm

dt

∣∣∣∣
2

< 0, (6.57)
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which signi�es that in the case of the constant magnetic �eld the LLG equation has the
Lyapunov structure [112], i.e., the internal energy of the system is a decreasing function
of time along the trajectories of the LLG equation. This property is fundamental as it
guarantees that under the e�ects of constant magnetic �eld, the system tends toward
stable minima. Moreover, Eq. (6.57) demonstrates the nature of the Gilbert damping,
i.e., the dissipation is given by a quadratic form of the vector �eld dm/dt which is due
to the fact that Gilbert damping term can be introduced via a Rayleigh dissipation
function [113]. It is noteworthy that the constant magnetic �eld is not an energy
source [111].

Nevertheless, a time-dependent magnetic �eld can be an energy sink or source de-
pending on the relative direction of m and Bext, which can be immediately seen from
Eq. (6.56). In particular, the second term on the right-hand-side (rhs) of Eq. (6.56)
can be either positive or negative thereby resulting in the following cases: (i) if the
second term on the rhs is negative and larger than the �rst term then dw

dt > 0, thus

Bext is an energy source; (ii) if the second term on the rhs is positive then dw
dt < 0,

thus Bext is an energy sink.
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Appendix E: Testing robustness of the

derived optimal protocols against

thermal �uctuations and material

parameters perturbation

The optimal pulses derived in this thesis demonstrate dependence on the material pa-
rameters, and this result provides valuable insight into the physics of optimal control.
Identifying the link between optimal control protocol and material properties is one
of the merits of this thesis. However, it is fundamentally and technologically impor-
tant to test the robustness of the optimal pulses with respect to perturbations in the
magnitude of material parameters and thermal �uctuations.

Here, the robustness of the optimal switching protocol for the uniaxial and biaxial
nanoparticle [see Sec. 4.1.1 and Sec. 4.1.2] against thermal �uctuations and perturba-
tions in the material parameters was tested by carrying out additional spin dynamics
simulations. The simulations involved time integration of the Landau-Lifshitz-Gilbert
(LLG) equation equipped with the optimal switching pulse as an external �eld. The
LLG equation was integrated numerically using the semi-implicit scheme B [97]. The
procedures for studying e�ects of temperature and material parameter perturbations
are described in what follows.

(1) E�ect of thermal �uctuations. Interaction of the magnetic systems with the
heat bath was simulated by including a stochastic term in the LLG equation, see
Appendix C. Each simulation had three stages: (i) Initial equilibration at zero applied
magnetic �eld to establish Boltzmann distribution; (ii) Switching where the optimal
magnetic �eld is applied (note that thermal �uctuations were also included during the
switching stage); (iii) Final equilibration at zero applied magnetic �eld. At the end
of the third stage, we inspected the value of sz; we have taken the value sz = −0.5
as the threshold for successful switching. For each value of temperature and damping
constant, we repeated simulations L = 1000 times to accumulate the proper statistics.
The switching success rate is de�ned as f = Ls/L where Ls is the number of successful
reversals.

(2) E�ect of perturbations in the material parameter values. Parameters determining
the magnetization dynamics of the monodomain particle include the damping factor
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Figure 6.10: Average energy of a uniaxial nanoparticle, see Eq. 4.1, as a function of the
equilibration time for damping α = 0.01 (a) α = 0.2 (b) for di�erent timesteps dt as
depicted in the legend. The magnitude of the thermal stability factor ∆ = K/(kBT ) is 40.
Dashed green line shows the thermal energy level due to the equipartition theorem.

α, anisotropy parameter K, magnetic moment µ, and in the case of biaxial nanopar-
ticle the relative strength of the hard-axis anisotropy ξ. We applied an optimal �eld
pulse derived for certain values of parameters to a particle characterized by perturbed
parameter values.

Uniaxial nanoparticle case

Before assessing the robustness of the optimal pulses against thermal �uctuations, it is
necessary to adequately stabilize the system at zero external magnetic �elds through
proper equilibration. As demonstrated in Figure. (6.10), the average energy is pre-
sented as a function of equilibration time for a thermal stability factor denoted as
∆ = K/(kBT ) = 40. The �gure demonstrates the requirement for an equilibration
time exceeding 300τ0 in the case of α = 0.01 to achieve thermal stability. As antici-
pated, a system with higher damping values for α reaches equilibrium at a faster rate.
It is also noteworthy from the �gure that the average energy remains una�ected by
the value of α.
A typical outcome of the �nite-temperature spin dynamics simulations is shown in
Figure. 6.11. Table. 6.1 summarizes the results of the �nite-temperature spin dynam-
ics simulations for switching time T = 10τ0 and damping α = 0.1. As expected, the
reversal success rate decreases as ∆ becomes smaller. However, when ∆ > 70, which
is a standard requirement to ensure su�cient stability of the magnetic element with
respect to thermal �uctuations to prevent data loss in magnetic memories [114, 115],
the success rate is close to unity. This result demonstrates that the optimal switching
protocol is robust with respect to thermal �uctuations in the technologically relevant
regime.

Parameters determining the magnetization dynamics of the uniaxial nanoparticle in-
clude the damping factor α as well as the parameter τ0 = µ/(2γK) with γ being the
gyromagnetic ratio. Here, we consider perturbations in α and τ0 only. In particular,
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Figure 6.11: E�ect of thermal �uctuations on the magnetization reversal induced by the
optimal switching pulse. Dashed lines mark the beginning and the end of the applied pulse.
Blue (red) line shows evolution of the z-component of the normalized magnetic moment
during successful (unsuccessful) reversal at �nite temperature. Black line corresponds to
the zero-temperature reversal. The magnitude of the damping factor is

Table 6.1: Magnetization reversal success rate, f , for several values of the damping factor α,
and the ratio ∆E/Θ, with ∆E being the energy barrier between the stable states and Θ
being thermal energy.

∆E/Θ α f (%)
80 0.01 99.0
80 0.1 97.0
70 0.01 98.0
70 0.1 97.0
10 0.01 81.0
10 0.1 77.0

we applied an optimal �eld pulse derived for a certain value of the intrinsic preces-
sion time τ0 and damping factor α to a particle characterized by perturbed parameter
values, τ0 + ∆τ0, α + ∆α. The switching time was chosen to be 10τ0. Figure. 6.12
illustrates the results of these calculations. For a particular value of the damping
factor, α = 0.1, the switching pulse brings the system over the energy barrier if the
strength of the parameter perturbations is not too large.
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Figure 6.12: E�ect of perturbations in the material parameters τ0 (a) and α (b) on the mag-
netization reversal induced by the optimal switching pulse. Magnitude of the perturbations
∆τ0 and ∆α is shown in the legend. Blue (red) lines show evolution of the z-component
of the normalized magnetic moment during successful (unsuccessful) reversal. Black line
corresponds to the reversal in a particle characterized by unperturbed material parameters.
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Figure 6.13: E�ect of perturbations in the material parameters α (a), τ0 (b), and ξ (c)
on the magnetization reversal induced by the optimal switching pulse. Magnitude of the
perturbations ∆τ0, ∆α, and ∆ξ is shown in the legend. Blue (red) lines show evolution
of the z-component of the normalized magnetic moment during successful (unsuccessful)
reversal. Black line corresponds to the reversal in a particle characterized by unperturbed
material parameters: α = 0.1, ξ = 5. The switching time T = 2τ0.

Biaxial nanoparticle case

Similar to the uniaxial nanoparticle, the optimal pulses derived for the biaxial nanopar-
ticle are also robust against thermal �uctuations as well as the perturbation in the
material parameters values as shown in Table. 6.2 and Figure. 6.13.
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Table 6.2: Magnetization reversal success rate, f , for several values of the damping factor
α, and the ratio ∆E/Θ, with ∆E being the energy barrier between the stable states, see
Eq. 4.24, and Θ being thermal energy. The switching time T = 2τ0

∆E/Θ α f (%)
80 0.01 99.9
80 0.1 99.8
70 0.01 99.6
70 0.1 99.6
50 0.01 98.4
50 0.1 98.9
30 0.01 95.3
30 0.1 96.8
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A complete analytical solution to the optimal reversal of a macrospin with easy-axis anisotropy is
presented. An optimal control path minimizing the energy cost of the reversal is identified and used to
derive the time-dependent direction and amplitude of the optimal switching field. The minimum energy
cost of the reversal scales inversely with the switching time for fast switching, follows exponential
asymptotics for slow switching, and reaches the lower limit proportional to the energy barrier between the
target states and to the damping parameter at infinitely long switching time. For a given switching time, the
energy cost is never smaller than that for a free macrospin. This limitation can be bypassed by adding a hard
anisotropy axis that activates the internal torque in the desired switching direction, thereby significantly
reducing the energy cost. A comparison between the calculated optimal control path and minimum energy
path reveals that optimal control does not translate to the minimization of the energy barrier but signifies
effective use of the system’s internal dynamics to aid the desired magnetic transition.

DOI: 10.1103/PhysRevLett.126.177206

Exact results concerning energy-efficient manipulation
of magnetic structure are highly important for fundamental
science and also for technological applications, as they
could help improve the performance of computing and
memory devices based on magnetic elements. Optimization
of magnetization switching in bistable nanomagnets by
tuning the external magnetic field has come under special
focus. It has been shown that a switching field can be
significantly reduced by application of a weak radio
frequency field pulse [1–11]. Magnetization reversal can
be achieved exclusively by a microwave field [2], whose
amplitude can be reduced provided that the frequency is
properly modulated [12–16]. Sun andWang [17] obtained a
theoretical limit of the minimal switching field and derived
an optimal constant-amplitude pulse yielding the shortest
switching time. Assuming a fixed magnitude but variable
direction of the switching field, Wang et al. [18] derived the
Euler-Lagrange equations for the fastest reversal of an
arbitrary Stoner particle. Barros et al. [19] developed a
general theoretical framework for the design of control field
pulses that minimize the energy cost of switching, calcu-
lated numerically the optimal switching field for a macro-
spin with easy-axis anisotropy, and derived analytically the
asymptotic properties of the reversal for infinitely long
switching time [20]. So far, theoretical studies of optimal
magnetization switching have imposed constraints on the
switching field or involved numerical simulations, but a
general analytical solution providing a transparent physical
picture is still missing.

Here we present a complete analytical solution to the
problem of energy-efficient switching of a nanomagnet
with easy-axis anisotropy. In contrast to previous studies,
our solution does not involve any assumptions about the
shape of the optimal switching pulse, therefore providing
a true theoretical limit to the energy cost of the switching
as a function of the switching time and establishing a link
between the optimal pulse and material properties. Our
results reveal new fundamental properties of the reversal,
including two asymptotic regimes of the energy cost
and the optimal switching time. The easy-axis anisotropy
cannot reduce the energy cost of switching compared
with the free-macrospin case, but this limitation can
be lifted by introducing a hard anisotropy axis in the
system. Energy-efficient magnetization switching in the
system with the hard axis illustrates the concept of
using the system’s internal dynamics to aid the desired
change in the magnetic structure, thereby offering a
new perspective on the design of magnetic memory
elements.
The efficiency of the magnetization reversal is enhanced

by minimizing the energy losses associated with the
generation of the switching field. Assuming an electric
circuit to be the source of the field and neglecting the
losses on radiation, the energy cost is defined by Joule
heating due to the resistance of the circuit. This is propor-
tional to the electric current square integrated over the
switching time. Taking into account the linear relationship
between the current magnitude and the strength of the
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generated field, we arrive at the cost functional proposed by
Barros et al. [19]:

Φ ¼
Z

T

0

jb⃗j2dt; ð1Þ

where T is the switching time and b⃗ is the generated time-
dependent magnetic field. The functional Φ needs to be
minimized subject to boundary conditions and a constraint
imposed by the equation of motion for the magnetic
moment, chosen here to be the zero-temperature Landau-
Lifshitz-Gilbert equation [21]

ð1þ α2Þ_s⃗ ¼ −γs⃗ × ðb⃗i þ b⃗Þ − αγs⃗ × ½s⃗ × ðb⃗i þ b⃗Þ�; ð2Þ

where α is the Gilbert damping, γ is the gyromagnetic ratio,
and s⃗ is the unit vector along the magnetic moment μ⃗. The
internal field is defined as b⃗i ¼ −μ−1∂E=∂s⃗; with E being
the energy of the system excluding the Zeeman term.
The constrained minimization of Φ can be formulated as

an unconstrained optimization by expressing b⃗ in terms of
the dynamical trajectory of the system as well as the
internal magnetic field,

b⃗ ¼ α

γ
_s⃗þ 1

γ
½s⃗ × _s⃗� − b⃗⊥i : ð3Þ

Here b⃗⊥i ≡ b⃗i − ðs⃗ · b⃗iÞs⃗, which is the transverse compo-
nent of b⃗i (the longitudinal component is not included, as
it does not affect the dynamics). On substituting (3) into
(1), the energy cost of the reversal becomes a functional of
the switching trajectory. By solving the Euler-Lagrange
equation, the trajectory minimizing the cost functional Φ
can be found. We denote this trajectory as the optimal
control path (OCP) so as to distinguish it from other
switching trajectories and to highlight its physical mean-
ing. The optimal switching pulse can be obtained from the
OCP using Eq. (3), thereby derived from the system’s
intrinsic magnetic properties, which are available via well-
established techniques [22]. A similar paradigm was used
to optimize electric current driving domain walls in
nanowires [23].
We apply the concept outlined above to a uniaxial single-

domain particle whose magnetic moment is reversed from
one stable orientation to the other (see Fig. 1). The energy
barrier between the stable states is assumed to be much
larger than the thermal energy. This model mimics, e.g., a
bit operation in a nanoscale magnetic memory element,
where strong magnetic anisotropy ensures stability of the
element against thermal fluctuations [24]. The internal
energy E of the system is defined by the anisotropy along
the z axis,

E ¼ −Ks2z ; ð4Þ

where K > 0 is the anisotropy constant. Euler-Lagrange
equations in spherical coordinates θ and ϕ (Fig. 1) read

τ20θ̈ ¼ α2

4ð1þ α2Þ2 sin 4θ; τ0 _ϕ ¼ cos θ
1þ α2

; ð5Þ

where the period of Larmor precession τ0 ¼ μð2γKÞ−1
defines the timescale. The boundary conditions θð0Þ ¼ 0,
θðTÞ ¼ π correspond to the transition between the energy
minima within the switching time T. Equation (5) for
θ is the well-known Sine-Gordon equation [25,26], whose
solutions are expressed by Jacobi elliptic functions [27,31].
The OCP described by Eq. (5) reveals the mechanism for
the reversal: The moment moves steadily from the initial
state upward the energy surface while precessing counter-
clockwise around the anisotropy axis until it reaches the
top of the energy barrier at t ¼ T=2. At this point, the
precession reverses its direction and the system slides down
to the target state minimum. This scenario was obtained
numerically by Barros et al. [19,20], but the exact ana-
lytical solution makes it possible to derive general proper-
ties of the OCP [27].
Substitution of the solution for θ and ϕ into Eq. (3)

results in the following expressions for the optimal switch-
ing field:

b⃗m ¼ bmffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p ðαe⃗θ þ e⃗ϕÞ; ð6Þ

FIG. 1. Calculated optimal control paths (OCPs) for the reversal
of a macrospin pointing along the unit vector s⃗. The initial and the
final states are at the north and the south poles of the unit sphere,
respectively. The damping factor α is 0.1. The switching time T is
10τ0 and 100τ0 for the paths shown with thick and thin green
lines, respectively. The external magnetic field b⃗m at t ¼ T=4,
t ¼ T=2, and t ¼ 3T=4 is shown for the shorter path with the
brown arrows.
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bm ¼ K

μp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
�
dn

�
t

pτ0ð1þ α2Þ
���� − α2p2

�

þαp sn

�
t

pτ0ð1þ α2Þ
���� − α2p2

��
; ð7Þ

where e⃗θ, e⃗ϕ are local time-dependent orthonormal vectors
in the directions of increasing θ, and ϕ, respectively (see
Fig. 1), while dnð:j:Þ and snð:j:Þ are Jacobi elliptic functions
[27,31] and p is a parameter implicitly defined through the
following equation: T ¼ 4τ0ð1þ α2ÞpKð−α2p2Þ, with
Kð:Þ being the complete elliptic integral of the first kind
[27,31]. Equation (6) signifies that the switching field
points in a specific fixed direction in the time-varying frame
of reference associated with the magnetic moment [17]
evolving according to Eq. (5). The orientation of the field is
such that its contribution to the precession around the
anisotropy axis is exactly zero, and the external pulse
contributes only to the part of motion that is relevant for
switching, i.e., progressive increase in θ. The optimal
orientation of the switching field can be obtained regardless
of optimization of the pulse amplitude; e.g., Eq. (6) still
holds for the constant field amplitude [17].
Equation (7) describes the optimal switching field

amplitude bm (see Fig. 2). When α ¼ 0, the amplitude is
time independent: bmjα¼0 ¼ π=ðγTÞ. Note that for zero α
there is no energy consumption by the magnetic moment
itself, but energy is still expended on the creation of the
switching field. We emphasize that the functional Φ
characterizes the energy spent by the external field source
and not the energy dissipated in the magnetic system.
For α > 0, bmðtÞ has a more complex structure, but the

symmetry bmð0Þ¼bmðT=2Þ¼bmðTÞ holds. Damping gives
rise to the internal torque in the polar direction. This
torque—produced by the anisotropy field—counteracts
the switching motion before crossing the equator, and a

maximum in the switching field forms at t ¼ T=4 so as to
neutralize this effect (see Fig. 2). After the trajectory has
crossed the equator at t ¼ T=2 [27], the internal torque aids
the switching, and bm reaches a minimum at t ¼ 3T=4. The
position of the maximum and the minimum of bmðtÞ
coincides with that of the extrema of the polar component
of the internal torque (see Fig. 2). Note that the external
field, although reduced compared to that before barrier
crossing, is still nonzero in general: Some field needs to be
applied in order to terminate the reversal on time. However,
for long enough switching time, T ≫ ðαþ 1=αÞτ0, damp-
ing alone is sufficient to complete the switching, and
virtually no field needs to be applied after crossing the
energy barrier (see black curve in Fig. 2). Although the
magnitude of neither maximum bmax nor minimum bmin of
the switching field amplitude can be described in terms of
elementary functions in a general case, the difference
between them is always

Δb ¼ bmax − bmin ¼
2αK

μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p : ð8Þ

Moreover, the average amplitude bav can be computed
analytically, leading to an exact relation

bav ¼
1

T

Z
T

0

bmðtÞdt ¼
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

γT
; ð9Þ

which demonstrates that overall larger fields are required to
terminate the reversal in a shorter time, as expected.
Interestingly, bav does not depend on the magnetic poten-
tial. From Eqs. (8) and (9) it follows that Δb=bav → 0 for
T → 0; i.e., a decrease in the switching time progressively
makes bmðtÞ resemble a time-independent function [27].
Equation (7) recovers the result of Barros et al. for

T → ∞—see Eq. (13) in Ref. [20]—as well as that of Sun
and Wang for α ¼ 0—see Eqs. (7) and (9) in Ref. [17].
Additionally, for T ≪ ðαþ 1=αÞτ0 the pulse amplitude
simplifies to bm ≈ bav þ Δb sin ð2πt=TÞ=2.
Substitution of Eq. (7) into Eq. (1) leads to the following

formula for the minimum energy cost:

Φm ¼ 2K½2Eð−α2p2Þ −Kð−α2p2Þ�
γμp

; ð10Þ

where Eð:Þ is the complete elliptic integral of the second
kind [27,31]. According to (10), Φm is a monotonically
decreasing (increasing) function of the switching time T
(damping parameter α), as illustrated in Fig. 3. Energy cost
as a function of the switching time has two asymptotic
regimes corresponding to fast and slow switching. For the
short switching time, the magnetic potential becomes
irrelevant, and ΦmðTÞ is described by a power law:

FIG. 2. Amplitude of the switching field as a function of time
for T ¼ 100τ0 and several values of α (solid lines). Dashed lines
show αb⊥i , which is proportional to the polar component of the
torque generated by the internal field.
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Φm ≈
π2ð1þ α2Þ

γ2T
þOðTÞ; T ≪ ðαþ 1=αÞτ0; ð11Þ

The leading term in Eq. (11) specifically recovers the
potential-free case. The power-law regime changes to an
exponential dependence on T for the long switching time:

Φm ≈Φ∞

�
1þ 4exp

�
−

αT
2τ0ð1þα2Þ

��
; T ≫ ðαþ 1=αÞτ0;

ð12Þ

which particularly demonstrates that, for a given anisotropy
constant and damping parameter, the lower limit of the
energy cost is Φ∞ ≡ 4αK=ðγμÞ−1, as predicted in [20].
Strictly speaking, this limit is reached at infinitely long
switching time, but Eq. (12) makes it possible to analyze to
what extent the limit can be approached within finite T.
In particular, termination of the reversal within time
Tε ¼ 2 ln ð4=εÞ½αþ 1=α�τ0 corresponds to the energy cost
that is only by a fraction of ε < 1 larger than Φ∞:
ΦmðTεÞ=Φ∞ ¼ 1þ ε. Therefore, Tε has a meaning of
optimal switching time in a sense that increase in T beyond
Tε does not lead to a significant gain in energy efficiency
(see Fig. 3).
Analysis of Eq. (10) shows that for a given switching

time T, the energy cost is never smaller than that in a
zero-potential case: ΦmðTÞ ≥ Φ0ðTÞ≡ π2ð1þ α2Þ=ðγ2TÞ,
where the equality is reached for α ¼ 0. In other words, the
internal energy obstructs the reversal in a system with easy-
axis anisotropy, and the purpose of the pulse optimization
in this case is to minimize the unfavorable effect caused by
the magnetic potential. To be able to use the internal energy

landscape to aid the switching process, additional terms in
the magnetic potential are necessary. We have found that
the energy cost can be reduced by adding a hard-axis
anisotropy to the system. The internal energy Ẽ of such a
biaxial anisotropy system can be written as

Ẽ ¼ −Ks2y þ Khs2z ; ð13Þ

where the easy axis and the hard axis are along the y and z
directions, respectively. The hard-axis anisotropy constant
Kh is taken to be 10 times larger than K. This Kh ≫ K
regime can be realized thanks to the large demagnetizing
field [32] in thin flat elongated nanoelements. Such
structures are used, e.g., as single bits in in-plane memory
designs [24], or as elements of artificial spin ice systems
[33,34]. The OCP between the energy minima at sy ¼ �1

was obtained by a direct numerical minimization of the
energy cost functional for the switching time T ¼ 0.32τ0
and damping α ¼ 0. Surprisingly, the corresponding
energy cost Φ̃m turned out to be an order of magnitude
smaller than that for the reversal with the same switching
time and damping in the system with zero magnetic
potential: Φ̃m=Φ0 ≈ 0.088. This phenomenon can be
explained by the distribution of the internal torque; see
Fig. 4. Because of the hard axis, there is a region in the
configuration space where the system’s internal torque
systematically points in the desired switching direction.
By placing the switching path into this region, the optimal
control efficiently exploits the internal torque to assist the
switching. The external pulse has a minimal influence; its
purpose is only to trigger the switching by directing the
system toward the particular sector in the configuration
space where the internal dynamics picks the system up and
drags it to the desired target state. This effect was also
noticed earlier for in-plane magnetized Co films [35] and
Co nanoclusters characterized by complex magnetic
anisotropy [36].
Finally, we compare our OCP with another distinguished

path in the configuration space—the minimum energy path
(MEP). AnMEP connecting two stable states is a path lying
lowermost on the energy surface, and the point of highest
energy along the MEP defines the energy barrier within
harmonic rate theories [37–39]. The MEP for the magneti-
zation reversal in the biaxial system is the shortest path
connecting the energy minima through the saddle point at
θ ¼ π=2, ϕ ¼ π (see Fig. 4). This path is very different
from the calculated OCP, which demonstrates a more
complex structure. To emphazise the difference between
MEP and OCP, we note that the OCP is a dynamical
trajectory defined by the parameters of the equation of
motion, whereas the MEP is determined entirely by the
energy surface of the system. Since the OCP does not even
pass through the saddle point, the energy maximum along
the OCP is higher than the energy barrier derived from the
MEP (see the inset in Fig. 4). This result means that optimal

FIG. 3. Minimum energy cost of magnetization switching as a
function of the inverse of the switching time. Dashed (dotted)
lines show long (infinite) switching time asymptotics. Thin
vertical lines indicate switching time Tε, for which the minimum
energy cost is ε ¼ 10% larger than the infinite switching time
limit Φ∞.
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control of a magnetic transition does not necessarily lead to
a path that minimizes the energy barrier between the target
states. Following an OCP involves rotation of magnetic
moments in such a way that the influence of the external
stimulus is minimized, but the system’s internal dynamics
is effectively used to aid the magnetic transition.
Experimental realization of optimal control pulses, such

as the one given by Eqs. (6) and (7), is challenging but
still feasible within current technology for pulse shaping
[40–45]. Note also that the optimal switching protocol
derived here is quite stable with respect to thermal
fluctuations and material parameter perturbations, as
confirmed by our spin dynamics simulations [27].
In conclusion, we have presented an exact analytical

solution to the problem of optimal switching of a nano-
magnet via the coherent magnetization rotation mode used
in most modern magnetic memories. The easy-axis
anisotropy alone can only increase the energy cost of
the switching compared to the free-macrospin case, but this
effect is minimized by following the OCP. The system’s
internal torque can be used to aid the switching by
introducing a hard anisotropy axis. Our results deepen
the understanding of the optimal control of magnetization
switching in nanoparticles and provide guiding principles
for the design of energy-efficient digital devices based on
magnetic elements.
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Supplementary Note 1. Elliptic integrals and functions

Elliptic integral of the first kind is defined as

F(ρ|k) =

∫ ρ

0

dr√
1− k2 sin2(r)

, (S1)

where k is called the elliptic modulus. Complete elliptic integral of the first kind is given by

K(k) = F
(π

2

∣∣∣k
)
. (S2)

Complete elliptic integral of the second kind is defined as

E(k) =

∫ π
2

0

√
1− k2 sin2(r) dr. (S3)

Jacobi amplitude am is defined as an inverse of the elliptic integral of the first kind:

u = F(ρ|k), (S4)

ρ = am(u|k). (S5)

Jacobi sn function is defined as

sn(u|k) = sin(am(u|k)). (S6)

Jacobi dn function is defined as

dn(u|k) =
√

1− k2sn2(u|k). (S7)

See Ref. [S1] for further information about elliptic functions and integrals.

Supplementary Note 2. Properties of the optimal control path

The symmetries of the optimal control path described by Eqs. (5) of the main text are

listed in the Supplementary Table 1. The symmetries particularly imply that the following
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Supplementary Table 1. Symmetries of the optimal control path which is described by
Eqs. (5) of the main text and represented by spherical coordinates θ(t) and φ(t).

symmetry point θ(t) φ(t)

t =
T

4
θ

(
T

4
+ t

)
− π

4
=
π

4
− θ

(
T

4
− t
)

-

t =
T

2
θ

(
T

2
+ t

)
− π

2
=
π

2
− θ

(
T

2
− t
)

φ

(
T

2
+ t

)
= φ

(
T

2
− t
)

t =
3T

4
θ

(
3T

4
+ t

)
− 3π

4
=

3π

4
− θ

(
3T

4
− t
)

-

equations hold:

θ

(
T

4

)
=
π

4
, (S8)

θ

(
T

2

)
=
π

2
, (S9)

θ

(
3T

4

)
=

3π

4
, (S10)

regardless of the value of the switching time T and damping parameter α.

θ(t) and φ(t) described by Eqs. (5) of the main text have two asymptotic regimes cor-

responding to fast and slow switching. For fast switching, T � (α + 1/α)τ0, the solution

becomes

θ(t) ≈ πt

T
− α2T 2

4α2T 2 + 64(1 + α2)2π2τ 20
sin

(
4πt

T

)
, (S11)

φ(t) ≈ T

πτ0(1 + α2)

{
sin

(
πt

T

)

+
α2T 2

8α2T 2 + 128(1 + α2)2π2τ 20

[
1

3
sin

(
3πt

T

)
− 1

5
sin

(
5πt

T

)]}
,

(S12)

S6



which for α = 0 simplifies to

θ(t) =
πt

T
, (S13)

φ(t) =
T

πτ0
sin

(
πt

T

)
. (S14)

For slow switching, T � (α + 1/α)τ0, the solution reduces to

θ(t) ≈ arctan
(
e

α
τ0(1+α

2)
(t−T/4))

+ arctan
(
e

α
τ0(1+α

2)
(t−3T/4)

)
, (S15)

φ(t) ≈ 1

α

{
arcsinh

(
e

αT
4τ0(1+α

2)

)
− arcsinh

(
e

α
τ0(1+α

2)
(T/4−t))

+ arcsinh
(
e
− 3αT

4τ0(1+α
2)

)
− arcsinh

(
e
− α
τ0(1+α

2)
(3T/4−t))

}
.

(S16)

Supplementary Note 3. Spin dynamics simulations

Additional spin dynamics simulations were performed in order to test robustness of the

optimal switching protocol for the uniaxial monodomain particle [whose internal energy

is given by Eq. (4) in the main text] against thermal fluctuations and perturbations in

the material parameters. The simulations were carried out by integrating the Landau-

Lifshitz-Gilbert (LLG) equation equipped with the optimal switching pulse [see Eqs. (6)-

(7) in the main text] as an external field. The LLG equation was integrated numerically

using the semi-implicit scheme B as described in Ref. [S2]. Particular settings for studying

effects of temperature and material parameter perturbations are described in the following

subsections.

1. Effect of thermal fluctuations

Interaction of the magnetic systems with the heat bath was simulated by including a

stochastic term in the LLG equation. Each simulation had three stages: 1) Initial equilibra-

tion at zero applied magnetic field to establish Boltzmann distribution; 2) Switching where

the optimal magnetic field is applied (note that thermal fluctuations were also included dur-

ing the switching stage); 3) Final equilibration at zero applied magnetic field. The duration

of the switching stage, i.e. the switching time, was chosen to be 10τ0, with τ0 being the

S7



period of Larmor precession, see the main text. At the end of the third stage, we inspected

the value of mz (z-component of the unit vector ~m in the direction of the magnetic moment);

we have taken the value mz = −0.5 as the threshold for the successful switching. A typical

outcome of the spin dynamics simulations is illustrated in Supplementary Fig. 4.

equilibration switching equilibration

Supplementary Figure 4. Effect of thermal fluctuations on the magnetization reversal
induced by the optimal switching pulse. Dashed lines mark the beginning and the end of
the applied pulse. Blue (red) line shows evolution of the z-component of the normalized
magnetic moment during successful (unsuccessful) reversal at finite temperature. Black
line corresponds to the zero-temperature reversal. The magnitude of the damping factor is
α = 0.1.

For each value of temperature and damping constant, we repeated simulations N = 1000

times in order to accumulate the proper statistics. The switching success rate is defined as

f = Ns/N, (S17)

where Ns is the number of successful reversals.

Supplementary Table 2 summarizes results of the finite-temperature spin dynamics sim-

ulations. As expected, the reversal success rate decreases as the ratio ∆E/Θ, with ∆E = K

[see Eq. (4) in the main text] being the energy barrier between the stable states and Θ

being thermal energy, becomes smaller. However, when ∆E/Θ & 70, which is a standard

requirement to ensure sufficient stability of the magnetic element with respect to thermal

fluctuations so as to prevent data loss in magnetic memories [S3, S4], the success rate is
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close to unity. This result demonstrates that the optimal switching protocol is robust with

respect to thermal fluctuations in the technologically relevant regime.

Supplementary Table 2. Magnetization reversal success rate, f , for several values of
the damping factor α, and the ratio ∆E/Θ, with ∆E being the energy barrier between the
stable states and Θ being thermal energy.

∆E/Θ α f
80 0.01 0.99
80 0.1 0.97
70 0.01 0.98
70 0.1 0.97
10 0.01 0.81
10 0.1 0.77

2. Effect of perturbations in the material parameter values

Parameters determining the magnetization dynamics of the monodomain particle include

the damping factor α, anisotropy parameterK and magnetic moment µ. Since the latter two

enter the equation of motion solely through the parameter τ0 = µ(2γK)−1, with γ being the

gyromagnetic ratio, we consider perturbations in α and τ0 only. In particular, we applied an

optimal field pulse derived for a certain value of the intrinsic precession time τ0 and damping

factor α to a particle characterized by perturbed parameter values, τ0 + ∆τ0, α + ∆α. The

switching time was chosen to be 10τ0. Figure 5 illustrates the results of these calculations.
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(a) (b)

Supplementary Figure 5. Effect of perturbations in the material parameters τ0 (a) and
α (b) on the magnetization reversal induced by the optimal switching pulse. Magnitude of
the perturbations ∆τ0 and ∆α is shown in the legend. Blue (red) lines show evolution of the
z-component of the normalized magnetic moment during successful (unsuccessful) reversal.
Black line corresponds to the reversal in a particle characterized by unperturbed material
parameters.

For a particular value of the damping factor, α = 0.1, the switching pulse brings the

system over the energy barrier if −0.2τ0 < ∆τ0 < 0.2τ0 and −0.5α < ∆α < 0.5α.
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A solution to energy-efficient magnetization switching in a nanoparticle with biaxial anisotropy is presented.
Optimal control paths minimizing the energy cost of magnetization reversal are calculated numerically as
functions of the switching time and materials properties, and used to derive energy-efficient switching pulses of
external magnetic field. Hard-axis anisotropy reduces the minimum energy cost of magnetization switching due
to the internal torque in the desired switching direction. Analytical estimates quantifying this effect are obtained
based on the perturbation theory. The optimal switching time providing a tradeoff between fast switching and
energy efficiency is obtained. The energy cost of switching and the energy barrier between the stable states
can be controlled independently in a biaxial nanomagnet. This provides a solution to the dilemma between
energy-efficient writability and good thermal stability of magnetic memory elements.

DOI: 10.1103/PhysRevB.107.214448

I. INTRODUCTION

Identification of energy limits for the control of magne-
tization is an important fundamental problem of condensed
matter physics. It is also a prerequisite for the development
of energy-efficient technologies based on magnetic materials.
An important application is magnetic memory where writ-
ing of data is realized via selective magnetization reversals
in nanoelements. Magnetization reversal can be achieved by
various means, including optical pulses [1–3], spin-polarized
electric current [4,5], external magnetic [6–9], and electric
field [10], microwave-assisted reversal switching [11–13],
stress [14], temperature gradient [15,16], etc. The challenge is
to minimize the energy cost of the control stimulus generation.

In conventional bit recording, magnetization reversal in a
memory element is achieved by applying a static external
magnetic field in an opposite direction to the initial mag-
netization. This results in a relatively slow reversal process
governed by damping as long as the magnitude of the external
field exceeds the coercive field [17,18]. The coercive field
and, thereby, the energy cost of switching can be reduced
by decreasing the magnetic anisotropy, but this may lead to
unwanted reversals induced by thermal fluctuations due to
decrease in the energy barrier separating the stable states.
One solution to this dilemma between good thermal stabil-
ity and energy-efficient writability of magnetic elements for
memory applications is use of exchange spring magnets [19],
where the energy barrier and the coercive field can be tuned
independently.

Decrease in the switching time and/or the switching field
can also be achieved via realization of special reversal pro-
tocols such as precessional magnetization switching [20].

*Corresponding author: mha5@hi.is

Precessional switching is typically induced by applying a
magnetic field pulse transverse to the initial magnetiza-
tion, but the pulse duration must be chosen accurately so
as to avoid back switching [21]. Additionally, precessional
switching is prone to instabilities due to the magnetization
ringing effect [22] unless the switching pulse is properly
shaped [22–24]. In microwave-assisted reversals, the switch-
ing field can also be reduced thanks to resonant energy
pumping [11–13,25].

Clearly, the possibility to achieve the reversal by several
different methods implies the existence of an optimal proto-
col, but its definite identification is a challenging problem.
Barros et al. employed the optimal control theory (OCT) [26]
to establish a formal approach to the magnetization switch-
ing optimization [27,28]. Within the approach, the optimal
switching pulse is found as a result of a direct minimization
of the switching cost functional under the constraint defined
by a system-specific magnetization dynamics. In our previ-
ous article, we revisited the OCT due to Barros et al. using
unconstrained minimization, which helped us find a complete
analytical solution to the energy-efficient reversal of a nano-
magnet with uniaxial anisotropy [29].

We also reported decrease in the switching cost for systems
with biaxial anisotropy, the result of the internal torque pro-
duced by the hard axis [29]. That the internal torque can assist
magnetization reversal was recognized earlier for several sys-
tems, for example for Co films [30] and Co nanoclusters [31].
The aim of the present study is to explore this effect quan-
titatively. We focus on nanomagnets with biaxial anisotropy,
which can arise due to the demagnetizing field [32]. This
scenario is realized in flat elongated nanoelements; see Fig. 1.
Such systems are used, e.g., as single bits in in-plane mem-
ory [33], or as elements of artificial spin ice arrays [34,35].

We investigate by means of the OCT to what extent the
energy cost of magnetization switching can be minimized by

2469-9950/2023/107(21)/214448(12) 214448-1 ©2023 American Physical Society
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FIG. 1. Optimal switching of a flat elongated nanomagnet repre-
senting a biaxial anisotropy system. The direction of the normalized
magnetic moment �s is shown with the blue arrow. Orientations of �s
that correspond to the minima and the saddle points on the energy
surface are marked with the green and magenta crosses, respectively.
The calculated optimal control paths between the energy minima are
shown with the solid and the dashed green lines. The damping factor
α is 0.1, the switching time T is 8τ0, and the hard-axis anisotropy
constant is twice as large as the easy-axis anisotropy constant. The
green arrows along the reversal paths show the velocity of the system
at t = T/6, t = T/3, t = T/2, t = 2T/3, and t = 5T/6, with the
size of the arrowheads being proportional to the magnitude of the
velocity. The contours of constant azimuthal angle ϕ (meridians) and
polar angle θ (parallels) are shown with thin black lines.

pulse shaping and how this depends on the parameters of the
biaxial system and the switching time. Thanks to the internal
torque generated by the hard-axis anisotropy, the energy cost
can be reduced below the free-macrospin level. Based on the
perturbation theory, we show some analytical estimates of
the energy cost reduction. We show that in a biaxial system
the energy barrier separating the stable states and energy cost
of switching between them can be tuned independently, which
provides a solution to the magnetic recording dilemma.

The article is organized as follows. Section II provides a
theoretical framework for energy-efficient control of magne-
tization by means of external magnetic field: In Sec. II A, the
OCT for magnetic systems is presented and the corresponding
Euler-Lagrange equation for the optimal control path (OCP),
a dynamical trajectory minimizing the energy cost of mag-
netization switching, is derived. In Sec. II B, the numerical
method for finding OCPs and corresponding energy-efficient
control pulses via direct minimization of the cost functional is
presented. In Sec. II C, a method for finding an approximate
solution for the minimum energy cost is worked out based on
the perturbation theory. The application of the methodology

to a biaxial anisotropy system is presented in Sec. III. Conclu-
sions and discussion are presented in Sec. IV.

II. METHODOLOGY

A. Optimal control theory

We define the cost of the magnetization switching as the
amount of energy used to generate the control pulse that
produces the desired change in the magnetic structure of the
system. Assuming the control to be an external magnetic field
generated by an electric circuit, the energy cost is mostly
defined by Joule heating due to the resistance of the circuit.
This is proportional to the square of the electric current inte-
grated over the switching time. Taking into account the linear
relationship between the current magnitude and the strength
of the generated field, the cost functional can be written
as [27,29,36]

� =
∫ T

0
| �B(t )|2dt, (1)

where T is the switching time and �B(t ) is the generated exter-
nal magnetic field at time t . The aim of the OCT is to identify
the optimal pulse �Bm(t ) that brings the system to the desired
final state such that � is minimized. Whenever thermal fluc-
tuations are negligible, the system dynamics can be described
by the Landau-Lifshitz-Gilbert (LLG) equation [37],

(1 + α2)�̇s = −γ �s × (�b + �B) − αγ �s × [�s × (�b + �B)], (2)

where �s is the normalized magnetic moment vector, γ is the
gyromagnetic ratio, α is the damping factor, and �b is the
internal magnetic field defined by the magnetic configuration
through the following equation:

�b = �b(�s) = − 1

μ

∂E

∂�s (3)

with μ being the magnetic moment length and E the internal
energy of the system.

Both �B(t ) and �s(t ) can be treated as independent vari-
ables, and � minimized subject to the constraint defined by
Eq. (2) [27,28]. Alternatively, the optimal pulse �Bm(t ) can
be calculated via unconstrained minimization of �. For this,
Eq. (2) is used to express the external magnetic field in
terms of the dynamical trajectory and the internal magnetic
field [29],

�B(�s, �̇s) = α

γ
�̇s + 1

γ
[�s × �̇s] − �b⊥, (4)

with �b⊥ = �b − �s(�b · �s) being the transverse component of the
internal field, and the result substituted into Eq. (1). Sub-
sequently, the energy cost � becomes a functional of the
switching trajectory �s(t ),

� = �[�s(t )] =
∫ T

0
A(�s, �̇s)dt, (5)

where A(�s, �̇s) is given by

A(�s, �̇s) = α2 + 1

γ 2
|�̇s|2 − 2α

γ
�̇s · �b⊥ − 2

γ
(�s × �̇s) · �b⊥ + |�b⊥|2.

(6)
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The optimal reversal mechanism can be found by minimizing
� with respect to path connecting the initial and the final state
in the configuration space. Corresponding OCP �sm(t ) can be
identified by solving the Euler-Lagrange equation,

[
(�s · �b)Î − 1

μ
Ĥ

][
1

γ
�s × �̇s − �b⊥

]

+ 1

μ

[
�s · Ĥ

(
1

γ
�s × �̇s − �b⊥

)]
�s

− 1 + α2

γ 2
[�̈s − (�s · �̈s)�s] + 1

μγ
�s × Ĥ �̇s = 0 (7)

supplemented by the boundary conditions defined by the ini-
tial and the final orientation of the magnetic moment. Here,
Î is a 3 × 3 identity matrix and Ĥ is the matrix of second
derivatives of the energy E with respect to components of the
magnetic moment sx, sy, sz. Note that Eq. (7) is derived under
the constraint |�s| = 1. The optimal switching pulse is found
upon substituting the OCP into Eq. (4).

It is not possible to find a general analytical solution to
the Euler-Lagrange equation except for special cases where
the symmetries of the system make it possible to simplify the
problem. For example, for a free magnetic moment (E = 0)
Eq. (7) simplifies to

�̈s − (�s · �̈s)�s = 0, (8)

and the solution is a constant-speed rotation over the shortest
distance between the initial and final states. The correspond-
ing energy cost � f for reversing of a free macrospin reads

� f = π2(1 + α2)/(γ 2T ). (9)

Another case with a fully analytical solution is the reversal
of a macrospin with uniaxial anisotropy [29]. Because of the
rotational symmetry of the problem, the separation of vari-
ables in the spherical coordinate system is possible if the z
direction is chosen to be along the anisotropy axis. This leads
to a well-known sine-Gordon equation for the polar angle θ

of the magnetic moment and makes the azimuthal angle ϕ

completely defined by θ (see Fig. 1 for the definition of θ and
ϕ),

τ 2
0 θ̈ = α2

4(1 + α2)2
sin 4θ, τ0ϕ̇ = cos θ

1 + α2
, (10)

where τ0 = μ/(2γ K ) defines the timescale, and K is the
anisotropy constant. Solution of Eq. (10) is explicitly ex-
pressed in terms of the Jacobi amplitude [29]; it describes a
superposition of the steady rotation of the moment between
the energy minima and its precession around the anisotropy
axis, where the precession direction reverses when the system
reaches the top of the energy barrier. The corresponding op-
timal switching field rotates synchronously with the magnetic
moment in such a way that it generates the torque only in the
direction of increasing θ [29]. The amplitude of the optimal
switching field remains constant over time when α = 0, but
it exhibits a maximum (minimum) before (after) crossing the
energy barrier for α > 0 [29]. The optimal switching field is
always perpendicular to the magnetic moment, see Eq. (4).

FIG. 2. Illustration of the midpoint scheme used in the numerical
method for finding OCPs. Two images �sp and �sp+1 are connected by
a geodesic path in the configuration space. The position �sp+ 1

2
and the

velocity �̇sp+ 1
2

at the midpoint of the path are defined by �sp and �sp+1,
and the angle δp between them.

Nevertheless, most cases are impossible to solve analyti-
cally, and numerical methods for finding OCPs are required.
One such method is presented in the following.

B. Numerical calculation of optimal control paths

We find OCPs numerically via the direct minimization
of the cost functional. For this, we discretize � using the
midpoint rule [36],

�[�s(t )] ≈ �[s] =
Q∑

p=0

∣∣ �Bp+ 1
2

∣∣2
(tp+1 − tp), (11)

where {tp} is a partition of the time interval [0, T ] such that
0 = t0 < t1 < · · · < tQ+1 = T . Here, the partition has a regu-
lar spacing, i.e., tp+1 − tp = �t = T/(Q + 1), p = 0, . . . , Q.
A switching trajectory �s(t ) is represented by a polygeodesic
line connecting Q + 2 points, referred to as “images”: �s(t ) →
{�s0, �s1, c, . . . , �sQ+1}, with �sp = �s(tp). The first image �s0 and
the last image �sQ+1 correspond to the initial and the final
orientation of the magnetic moment, respectively; They are
fixed, but Q intermediate images can be moved. The external
field �Bp+ 1

2
≡ �B(�sp+ 1

2
, �̇sp+ 1

2
) is defined by the position and the

velocity of the magnetic moment at the midpoint of discretiza-
tion intervals, see Fig. 2, via Eq. (4). On the other hand, both
�sp+ 1

2
and �̇sp+ 1

2
can be expressed in terms of the position of the

images,

�sp+ 1
2

= �sp+1 + �sp

|�sp+1 + �sp| , (12)

�̇sp+ 1
2

= δp

�t
�sp+1 − �sp

|�sp+1 − �sp| , (13)

where δp is the angle between �sp and �sp+1 (see Fig. 2). Note
that the magnitude of �̇sp+ 1

2
is defined by the finite-difference

approximation for the angular velocity, and its direction is
along the unit vector (�sp+1 − �sp)/|�sp+1 − �sp| ensuring orthog-
onality to �sp+ 1

2
. Upon substituting Eqs. (12), (13), and (4)

into Eq. (11), the functional � becomes a function of a
3Q − dimensional vector s defining the position of the mov-
able images, s = (�s1, . . . , �sQ).
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Possible OCPs of the magnetization switching can
be identified by locating minima of �(s). This is
done using the velocity projection optimization (VPO)
method [38] and/or the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) algorithm [39,40] equipped with
the force acting on the movable images,

F = −∇⊥�, (14)

where ∇⊥ denotes the gradient projected on the tangent space
of the configuration space, which is a curved manifold due to
the constraint |�sp| = 1, p = 1, . . . , Q. Explicitly,

∇⊥ = ( �∇1 − �s1(�s1 · �∇1), . . . , �∇Q − �sQ(�sQ · �∇Q)), (15)

where �∇p ≡ ∂/∂�sp. For a given number of images involved in
the local minimization of �(s), the calculation is considered
converged when the magnitude of the force |F| has dropped
below the set tolerance. However, even convergence with a
tight force tolerance may be insufficient for a satisfactory res-
olution of the OCP if Q is not large enough. On the other hand,
including too many images in the calculation would result
in an unnecessarily high computational effort. Therefore, the
following strategy is applied: The OCP search is started with
a moderate number of images and the switching path is first
converged only to a rather high tolerance so as to bring the
images relatively close to the OCP with a reduced computa-
tional effort; after that, images are progressively added to the
path and minimization of the energy cost is reiterated with a
low force tolerance until �(s) stops changing. In this paper,
up to Q = 1500 movable images was used depending on the
parameters of the system and the switching time, with the
lowest force tolerance corresponding to the drop of the force
by ten orders of magnitude.

Some initial arrangement of the images is needed to start
an OCP calculation. This can be generated, for example, by
placing the images uniformly along the shortest-distance path
between the initial and the final state of the transition, or by
using some previously found OCP. It is also recommended
to add small random noise to the initial path so as to avoid
convergence on maxima or saddle points of �(s) due to pos-
sible symmetries in the system. A local minimization of �(s)
will most likely converge to the OCP closest to the initially
generated path. If multiple OCPs are present between the
initial and the final state, several initial estimates need to be
produced so as to enable convergence on the various solutions.

C. Perturbation theory

Although it is not possible to obtain a general analyti-
cal solution to the Euler-Lagrange equation [see Eq. (7)],
some analytical estimates for the energy-efficient switching
can still be derived using perturbation theory. For this, we
expand Eq. (7) around the free-macrospin solution and obtain
the OCP in terms of perturbation series with respect to the
parameters defined by the Hamiltonian of the system (see Ap-
pendix A for details). The minimum energy cost of switching
can be estimated based on the approximate solution for the

OCP. The second-order expansion for �m is used in particular,

�m ≈ � f +
N∑

i=1

εi�i +
N∑

i, j=1

εi�i jε j, (16)

where N is the number of independent perturbations, εi is the
ith dimensionless perturbation parameter, and �i, �i j are the
expansion coefficients describing the first- and the second-
order corrections, respectively. The explicit expressions for
εi, �i, and �i j for the biaxial system are presented in the
following.

III. RESULTS

Here, we apply the methodology presented earlier to the
magnetization reversal in a biaxial anisotropy system, e.g.,
to a flat elongated nanomagnet shown in Fig. 1. The internal
energy of the system is given by the following equation:

E = ξKs2
x − Ks2

z , (17)

where the easy axis and the hard axis are along the z and x
directions, respectively, K > 0 is the anisotropy constant, and
ξ is a dimensionless parameter defining the relative strength
of the hard-axis anisotropy. The energy surface of the system
has two minima at �s = (0, 0, 1) and �s = (0, 0,−1), and two
saddle points at �s = (0, 1, 0) and �s = (0,−1, 0) (see Fig. 1).
This model is commonly used to describe in-plane memory
bits [33] and elements of artificial spin ice systems [34,35].
Energy-efficient switching between the energy minima in time
T is analysed in the following.

A. Optimal protocols for magnetization reversal

Figures 3(a)–3(c) show the calculated OCPs of the mag-
netization reversal for α = 0.1 and various switching times
and strengths of the hard-axis anisotropy, superimposed on the
energy surface of the system. For short switching time, i.e.,
when T ∼ τ0, the OCPs deviate weakly from geodesic paths
between the energy minima. With increasing T , the OCPs
acquire precessional motion around the easy axis, where the
sense of precession changes upon reaching the top of the
energy barrier at sz = 0.

The ξ = 0 case describes a uniaxial-anisotropy system, for
which OCPs can be found analytically [29]. Due to the axial
symmetry, the OCPs for a fixed switching time are degenerate
with respect to overall rotation around the easy axis. For ex-
ample, the two OCPs shown by the solid and dashed pink lines
in Fig. 3(a) are equivalent. In contrast, the axial symmetry
is broken when ξ 	= 0, which results in the well-separated
OCPs between the energy minima. In most cases, there are
two equivalent, mirror-symmetric (with respect to the XY
plane) OCPs in the biaxial system [28] for a given switching
time, and the OCPs differ by a π -angle rotation around the
easy axis, see Figs. 3(b) and 3(c) and also Fig. 1. However,
more coexisting OCPs can be present for ξ � 4, where the
paths are different by the amount of precession around the
initial and the final states (see Fig. 4). Note that the OCPs can
break the XY -plane mirror symmetry. For certain parameter
values, such asymmetric OCPs deliver the global minimum to
the functional �, which is the case shown in Fig. 4, or even
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FIG. 3. Transverse Mercator projection [41] of the energy surface of a macrospin with (a) uniaxial anisotropy and biaxial anisotropy with
(b) ξ = 1 and (c) ξ = 2. The meridians and the parallels (see Fig. 1) are shown with thin white lines. The blue arrows show the distribution
of the internal torque, with the size of the arrows being proportional to the magnitude of the torque. The calculated OCPs between the energy
minima at +Z and −Z are shown with the green, pink, and orange lines for T = 2τ0, T = 4τ0, and T = 14τ0, respectively. The arrows along
each OCP show the velocity at t = T/6, t = T/3, t = T/2, t = 2T/3, and t = 5T/6, where the arrow size codes the magnitude of the velocity.
The damping factor α is 0.1. The solid and the dashed lines of the same color show equivalent OCPs. They differ by an arbitrary rotation around
the easy axis for the uniaxial case; For finite ξ , the degeneracy is lifted and there are two OCPs, symmetrical with respect to a π -angle rotation
around the easy axis, for a given T . Note that the OCPs do not pass through saddle points (SP) on the energy surface. The θ projection of the
internal torque along the OCPs from (a)–(c) are shown in (d)–(f), respectively.

represent the only type of solution. Nevertheless, the OCPs
never pass through saddle points (SPs) on the energy surface,
therefore the system does not cross the lowest possible energy
barrier within the energy efficient switching protocol.

The distribution of the internal torque �� [see the blue
arrows in Figs. 3(a)–3(c)] provides an insight into the mech-
anism of energy-efficient magnetization switching in biaxial
systems and explains the position and shape of calculated
OCPs. When ξ = 0, the torque only generates precession
around the easy axis and, in case of nonzero damping, relax-
ation to the energy minima. In this case, the internal torque
does not assist switching since it does not point in the di-
rection of the final state anywhere in the region of the initial
state (sz > 0). This behavior is described quantitatively by the
component of �� in the direction of increasing θ , relevant for
the reversal process,

�θ = �0 sin θ [ξ sin(2ϕ) − 2α cos θ (1 + ξ cos2 ϕ)], (18)

where �0 ≡ [2τ0(1 + α2)]−1. �θ along the calculated OCPs
is shown in Figs. 3(d)–3(f). Positive (negative) �θ signi-
fies positive (negative) contribution of the internal torque
to the reversal. For ξ = 0, Eq. (18) reduces to �θ |ξ=0 =

−α�0 sin 2θ . Clearly, �θ |ξ=0 < 0 for θ < π/2 and nonzero
α [see Fig. 3(d)].

Adding a hard-axis anisotropy to the system for (ξ > 0)
gives the contribution to the internal torque in the switching
direction in a certain sector of the configuration space, see
Figs. 3(b) and 3(c). The location of the calculated OCPs in this
sector demonstrates the principle of energy-efficient control,
which lies in the effective use of the system’s internal dynam-
ics. It is now clear why the OCPs do not pass through the SP,
where the internal torque vanishes: It is beneficial to climb
up the energy surface where the internal torque picks up and
assists the switching process. In particular, �θ is maximized
at the equator (θ = π/2) when ϕ = π/4 and ϕ = 5π/4 [see
Eq. (18)]. In an optimal protocol, a balance is reached between
the effort in climbing up the energy surface and the strength
of the internal torque. As a result, the OCPs cross the equator
at an optimal point π/4 < ϕm < π/2 or 5π/4 < ϕm < 3π/2,
see Figs. 3(b) and 3(c).

The favorable effect of the torque produced by the hard
axis is also evident from the �θ (t ) dependencies calculated
along the OCPs, see Figs. 3(e) and 3(f). Although there are
regions where �θ < 0, the θ component of the torque is
mostly positive, especially for shorter switching times, and
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FIG. 4. Calculated OCPs for ξ = 4, α = 0.2, and T = 5.314τ0.
The notations are the same as in Figs. 3(a)–3(c). The OCP shown
with the green line exhibits a mirror symmetry with respect to the
XY plane, but the symmetry is broken for the OCPs shown with
pink and orange lines. The asymmetric OCPs correspond to the
global minimum of � for the given parameter values. Note that the
asymmetric OCPs can be obtained from one another via reflection
in the XY plane. More OCPs can be obtained by a π -angle rotation
of the shown OCPs around the easy axis. There are in total six OCPs
in the present case.

the magnitude of the torque increases with ξ . It is noteworthy
that the asymmetric shape of �θ about T/2—the result of the
damping contribution to the torque—does not contradict to the
mirror symmetry of the OCPs. For symmetric OCPs, the total
torque stays symmetric.

Figure 5 shows the calculated OCPs for ξ = 1 and α = 0.4.
The OCPs look similar to those calculated for weaker damp-
ing, but demonstrate less precession, which is particularly
seen for longer switching time. Overall, increased damping
makes the internal torque deviate stronger from the energy
contours toward the energy minima, cf. Fig. 3(b), leading to
an increase in the energy cost of switching. This effect is
analysed quantitatively in the following section.

The optimal switching pulses of external magnetic field for
T = 14τ0, α = 0.1, and ξ = 0, 1, 2 are presented in Fig. 6.
Note that the pulses are derived from the OCPs presented
in Fig. 3 using Eq. (4). As expected, increasing strength of
the hard-axis anisotropy leads to overall decrease in the field
amplitude, although its peak values can exceed the maximum
field value in the ξ = 0 case.

The experimental realization of optimal control pulses
is a challenging task but still feasible within current pulse
shaping technology [23,42–46]. It is worth noting that the
optimal switching protocols remain quite stable with respect
to thermal fluctuations and material parameter perturbations,
as confirmed by our spin dynamics simulations (see Ap-
pendix B).

FIG. 5. Calculated OCPs for ξ = 1, α = 0.4, and several values
of the switching time, as indicated in the legend. The notations are
the same as in Figs. 3(a)–3(c).

Similarly to the uniaxial case, the pulse is stronger in
the first half of the reversal where relaxation works against
the switching process, and weaker in the second half where
relaxation pushes the system to the desired energy minimum.
However, there is a distinct oscillation in the field amplitude
associated with the broken axial symmetry of the system. This
amplitude oscillation is present even at zero damping, which
is in contrast to the uniaxial case where the field amplitude
is time independent for α = 0 [29]. The amplitude peaks
when the magnetic moment deviates most from the easy plane
where the energy gradient and, thereby, the internal torque
are the largest. Furthermore, the external pulse amplitude is
the lowest close to t = T/2, where the internal torque brings
the system over the barrier. Irrespective of the ξ value, the
switching field is always perpendicular to the magnetic mo-
ment [see Eq. (4)] and its amplitude Bm demonstrates the
symmetry: Bm(0) = Bm(T ). Note that Bm(0) = Bm(T/2) =
Bm(T ) in the ξ = 0 case [29].

B. Minimum energy cost of switching

The revealed optimal reversal protocols can now be used
to calculate the minimum energy cost of switching �m using
Eq. (11) (see also Ref. [29] for the analytical solution for the
ξ = 0 case). In the following, we always pick the lowest value
of the energy cost whenever multiple OCPs are present for a
given set of parameters. Figure 7(a) shows �m as a function
of the inverse of the switching time for α = 0.2 and various
strengths of the hard-axis anisotropy. For any ξ value, �m

decreases monotonically with T and approaches the universal
lower limit

�∞ ≡ 4αK/(γμ) (19)
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FIG. 6. Calculated optimal switching pulse of external magnetic field for a macrospin with (a) uniaxial anisotropy and biaxial anisotropy
with (b) ξ = 1 and (c) ξ = 2. The switching time T is 14τ0 and the damping parameter α is 0.1. The pulses are derived from the OCPs shown
in Figs. 3(a)–3(c).

at infinitely long switching time [28]. Note that �m reaches
the limit faster for larger values of ξ . Overall, there is a
decrease in �m with ξ , as expected from the distribution of
the torque in biaxial systems.

The switching cost for a free macrospin � f (T ) [see the
green dashed line in Fig. 7(a)] provides a useful bench-
mark for evaluating the favorable effect of the torque
produced by the hard axis. Notably, the switching cost
can be significantly lower than � f (T ) in a certain range
of T for finite strengths of the hard-axis anisotropy. For
example, �m(T ) becomes almost an order of magnitude
smaller than � f (T ) for ξ = 10 and T ≈ 2τ0. This is
in contrast to the uniaxial-anisotropy case (ξ = 0), where
�m(T ) � � f (T ) (the equality is reached for α = 0) for any
given T .

The α dependencies of the minimum switching cost for
T = 20τ0 and several values of ξ are shown in Fig. 7(b).
Irrespective of the strength of the hard-axis anisotropy, �m is a
monotonically increasing function of the damping parameter,
approaching the �∞ asymptote when α → ∞. It is notewor-
thy that the reduction in the switching cost with ξ becomes
more pronounced as α decreases.

C. Perturbation theory analysis

Both anisotropies in the biaxial system can be treated as
independent perturbations to the free macrospin. This results
in two dimensionless perturbation parameters ε1 ≡ ξT/τ0 and
ε2 ≡ T/τ0 defined by the hard- and the easy-axis anisotropy,
respectively. The approximation to the minimum energy cost
is obtained by substituting the perturbation series for the OCP
(see Appendix A) into Eq. (5). The result, up to the second-
order terms, reads

�m ≈ � f − 4K

γμ
ξ + K2T

2(1 + α2)μ2

×
[
α2 + α2ξ + 1

4
(4 + 5α2)ξ 2

]
, (20)

where the contributions from the hard-axis anisotropy are
recognized by the ξ factor. The smallness of the perturbation
parameters, ε1, ε2 � 1, can be translated into the condition on
T : T � τ0. Therefore, Eq. (20) can be interpreted as a short
switching time approximation for �m.

In Eq. (20), the first and the second terms represent the free
macrospin solution and the first-order correction, respectively;

FIG. 7. Minimum energy cost of magnetization reversal as a function of (a) inverse of the switching time for α = 0.2, (b) damping
parameter for T = 20τ0, for various ξ values. Green dashed line corresponds to the solution of the reversal of a free macrospin, while the black
dashed line shows the infinite switching time asymptotic.
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FIG. 8. Approximation for the minimum energy cost of magnetization reversal for a macrospin within the zero- (� f ), first- (�(1)), and
second-order (�(2)) perturbation theory [see Eq. (20)], as indicated in the legend, vs the inverse of the switching time. The strength of the
hard-axis anisotropy ξ is (a) 0 and (b) 1. Red solid line shows the numerically exact solution. Black dashed line shows the infinite switching
time asymptotic. The intersection of the short and the long switching time asymptotes provides the optimal switching time T ∗ [see Eq. (21)].
The magnitude of α is 0.2.

the rest of the equation describes the second-order correction
that includes the terms due to the easy- and the hard-axis
anisotropies, as well as the cross term.

Equation (20) clearly shows that the switching cost reduc-
tion in biaxial magnets is captured within the linear response
to the hard-axis anisotropy. Note that the easy axis does not
contribute to the first-order correction; It can be shown in fact
that all odd-order corrections vanish in the uniaxial case. The
approximation for �m within zero-, first-, and second-order
perturbation theory is shown in Fig. 8 for α = 0.2. The numer-
ically exact solution for �m is also shown for comparison. The
short switching time approximation eventually breaks down as
T increases, and �m converges on �∞.

The minimum energy cost for switching has two clear
asymptotics: �m = � f − 4Kξ/(γμ) when T → 0, and
�m = �∞ when T → ∞. Their intersection point

T ∗ = (1 + α2)π2

2(α + ξ )
τ0, (21)

can be interpreted as an optimal switching time in a sense
that increase in T beyond T ∗ does not lead to a significant
reduction in the energy cost. Therefore, T ∗ provides a tradeoff
between the switching speed and energy efficiency [29,47].
Note that T ∗ decreases with increasing strength of the hard-
axis anisotropy.

IV. CONCLUSIONS AND DISCUSSION

In conclusion, we explored by means of the optimal control
theory energy-efficient protocols for magnetization reversal
in biaxial nanomagnets. We calculated OCPs of the reversal
and used them to derive optimal switching pulses of external

magnetic field. We studied the energy cost of switching as
a function of the system parameters and the switching time.
The internal torque produced by the hard-axis anisotropy can
significantly reduce the switching cost: For a given switching
time, it can drop below what is needed to reverse a free
macrospin, which is impossible in uniaxial-anisotropy sys-
tems. However, the energy cost can never be smaller than a
universal lower limit defined by the energy barrier and damp-
ing [28].

We obtained some analytical estimates regarding the reduc-
tion of the energy cost using perturbation theory. In particular,
we identified the optimal switching time providing a trade-
off between the switching speed and energy efficiency. The
optimal switching time decreases with the strength of the
hard-axis anisotropy.

It is important to realize that the decrease in the switching
cost can be achieved in biaxial magnets without sacrificing
their thermal stability. Indeed, the thermal stability is char-
acterized by the energy barrier separating the stable states.
Within harmonic rate theories, this is defined by the energy
difference between the saddle point and the initial state mini-
mum [48,49]. In a biaxial system, the energy barrier amounts
to K irrespective of the ξ value, see Eq. (17) and the text
around it. In contrast, �m depends strongly on ξ , especially for
short switching times, which is particularly clear from Fig. 9
(note that �m converges to �∞ for ξ → ∞ irrespective of
the switching time). The possibility to independently maxi-
mize both writability and thermal stability of biaxial magnets
makes these systems efficient memory elements that provide
a solution to the magnetic recording dilemma.

A macrospin approximation is used in the present study,
but this is expected to break down with increasing system
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FIG. 9. Minimum energy cost of magnetization reversal as a
function of ξ for various T values (solid lines). The dashed color
lines show the switching cost for a free macrospin. The magnitude
of the damping factor α is 0.2. Black dashed line shows the infinite
switching time asymptotic.

size. Even if the initial and the final states are collinear, the
transition between them may involve nonuniform rotation of

magnetization such as nucleation and propagation of domain
walls [50–54] or excitation of spin waves [36,55–57]. It re-
mains to be seen under what conditions these and possibly
other, yet unknown switching mechanisms become optimal in
terms of energy efficiency. This is a subject of future study.
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APPENDIX A: APPROXIMATE SOLUTION FOR OPTIMAL
CONTROL PATH

The Euler-Lagrange equation [see Eq. (7)] in spherical
coordinates θ and ϕ reads

θ̈ = A0ϕ̇
2 + A1ϕ̇ + A2,

ϕ̈ = C0θ̇ ϕ̇ + C1θ̇ + C2. (A1)

For a biaxial system whose energy is defined by Eq. (17), the
coefficients become

A0 = sin 2θ

2
, A1 = (2 + ξ )(sin θ − 3 sin 3θ )

8(1 + α2)τ0
+ 3ξ cos 2ϕ sin3 θ

2(1 + α2)τ0
, A2 = sin 4θ (2 + ξ cos 2ϕ + ξ )2

16(1 + α2)τ 2
0

+ ξ 2 sin2 2ϕ sin 2θ

8(1 + α2)τ 2
0

,

C0 = −2 cot θ, C1 = (2 + ξ )(3 cos 2θ + 1) csc θ

4(1 + α2)τ0
− 3ξ cos 2ϕ sin θ

2(1 + α2)τ0
, C2 = −ξ (2 + ξ ) sin 2ϕ cos2 θ

2(1 + α2)τ 2
0

+ ξ 2 sin 4ϕ sin2 θ

4(1 + α2)τ 2
0

.

(A2)

We seek for θm(t ) and ϕm(t )—the solution of Eq. (A1)—in a form of a series in the two perturbation parameters ε1 and ε2 defined
by the biaxial anisotropy (see Sec. III C). In particular, the second-order expansion for θm(t ) and ϕm(t ) reads

θm(t ) ≈ θ f (t ) +
2∑

i=1

εiθi(t ) +
2∑

i, j=1

εiθi j (t )ε j,

ϕm(t ) ≈ ϕ f (t ) +
2∑

i=1

εiϕi(t ) +
2∑

i, j=1

εiϕi j (t )ε j . (A3)

Here, θ f (t ) ≡ πt/T and ϕ f (t ) ≡ π/4, 5π/4 describe the reversal of a free macrospin, and the coefficients θi(t ), ϕi(t ), θi j (t ),
ϕi j (t ) are obtained upon substituting Eqs. (A3) into Eq. (A1) and collecting terms with equal powers of ε1 and ε2, which gives
the following result:

θ1 = 0, θ2 = 0, ϕ22 = 0, θ11 = sin(2πt/T )[4 + 4α2 + α2 cos(2πt/T )]

128π2(1 + α2)2
,

θ12 = θ21 = − α2 sin(4πt/T )

128π2(1 + α2)2
, θ22 = 2θ12, ϕ1 = − (8 − α2)

64(1 + α2)
+ sin(πt/T )

2π (1 + α2)
,

ϕ2 = 2ϕ1, ϕ11 = ϕ12 = ϕ21 = (4 + α2) cos(2πt/T )

32π2(1 + α2)2
− 3(8 − α2)

2048(1 + α2)
+ 100 + 73α2

480π2(1 + α2)2
. (A4)
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TABLE I. Magnetization reversal success rate f for several val-
ues of the damping factor α, and the ratio �E/�, with �E being the
energy barrier between the stable states and � being thermal energy.

�E/� α f (%)

80 0.01 99.9
80 0.1 99.8
70 0.01 99.6
70 0.1 99.6
50 0.01 98.4
50 0.1 98.9
30 0.01 95.3
30 0.1 96.8

The approximation for the minimum energy cost of switch-
ing, Eq. (20), is obtained upon substituting Eq. (A3) into
Eq. (5).

APPENDIX B: SPIN DYNAMICS SIMULATIONS

The robustness of the optimal switching protocol for the
biaxial monodomain particle [see Eq. (17)] against thermal
fluctuations and perturbations in the material parameters was
tested by carrying out additional spin dynamics simulations.
The simulations involved time integration of the Landau-
Lifshitz-Gilbert (LLG) equation equipped with the optimal
switching pulse as an external field. The LLG equation was
integrated numerically using the semi-implicit scheme B as
described in Ref. [58]. Particular settings for studying effects
of temperature and material parameter perturbations are de-
scribed in what follows.

Effect of thermal fluctuations. Interaction of the magnetic
systems with the heat bath was simulated by including a
stochastic term in the LLG equation. Each simulation had
three stages: (1) Initial equilibration at zero applied mag-

netic field to establish Boltzmann distribution; (2) switching
where the optimal magnetic field is applied (note that thermal
fluctuations were also included during the switching stage);
(3) final equilibration at zero applied magnetic field. The
duration of the switching stage, i.e., the switching time, was
chosen to be T = 2τ0, while the dimensionless parameter
defining the relative strength of the hard-axis anisotropy was
ξ = 5. At the end of the third stage, we inspected the value of
sz; we have taken the value sz = −0.5 as the threshold for the
successful switching.

For each value of temperature and damping constant, we
repeated simulations L = 1000 times in order to accumulate
the proper statistics. The switching success rate is defined
as f = Ls/L where Ls is the number of successful reversals.
We find that when the ratio �E/� > 30, with �E = K [see
Eq. (17)] being the energy barrier between the stable states
and � being thermal energy, the success rate is over 90%, see
Table I. For �E/� � 60, which is a standard requirement to
ensure sufficient stability of the magnetic element with respect
to thermal fluctuations so as to prevent data loss in magnetic
memories [59,60], the success rate is close to unity. This result
demonstrates that the optimal switching protocol is robust
with respect to thermal fluctuations in the technologically
relevant regime.

Effect of perturbations in the material parameter val-
ues. Parameters determining the magnetization dynamics of
the monodomain particle include the damping factor α,
anisotropy parameter K , the relative strength of the hard-axis
anisotropy ξ , and magnetic moment μ. Since K and ξ enter
the equation of motion through the parameter τ0, we only
consider perturbations in α, ξ , and τ0. In particular, we applied
an optimal field pulse derived for a certain value of τ0, ξ ,
and α to a particle characterized by perturbed parameter val-
ues τ0 + �τ0, α + �α, and ξ + �ξ . The switching time and
unperturbed material parameters were chosen to be T = 2τ0,
α = 0.1, ξ = 5. Figure 10 shows the results of these calcula-
tions. The switching pulse brings the system over the energy
barrier if the strength of the parameter perturbations is not too
large.

FIG. 10. Effect of perturbations in the material parameters α (a), τ0 (b), and ξ (c) on the magnetization reversal induced by the optimal
switching pulse. Magnitude of the perturbations �τ0, �α, and �ξ is shown in the legend. Blue (red) lines show evolution of the z component
of the normalized magnetic moment during successful (unsuccessful) reversal. Black line corresponds to the reversal in a particle characterized
by unperturbed material parameters: α = 0.1, ξ = 5.
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Energy-efficient switching of nanoscale magnets requires the application of a time-varying mag-
netic field characterized by microwave frequency. At finite temperatures, even weak thermal fluc-
tuations create perturbations in the magnetization that can accumulate in time, break the phase
locking between the magnetization and the applied field, and eventually compromise magnetization
switching. It is demonstrated here that the magnetization reversal is mostly disturbed by unstable
perturbations arising in a certain domain of the configuration space of a nanomagnet. The insta-
bilities can be suppressed and the probability of magnetization switching enhanced by applying an
additional stimulus such as a weak longitudinal magnetic field that ensures bounded dynamics of
the perturbations. Application of the stabilizing longitudinal field to a uniaxial nanomagnet makes
it possible to reach a desired probability of magnetization switching even at elevated temperatures.
The principle of suppressing instabilities provides a general approach to enhancing thermal stability
of magnetization dynamics.

Introduction — Identification of energy-efficient meth-
ods for controlling magnetization is both fundamentally
interesting and technologically relevant, e.g., in the de-
velopment of magnetic memory devices. While magne-
tization switching in magnetic recording is convention-
ally achieved by applying a static external magnetic field
opposite to the initial magnetization direction, previous
studies have demonstrated that the energy cost of this
process can be reduced by applying time-varying stimuli,
such as a microwave magnetic field [1–5]. For a uniaxial
monodomain particle, the optimal magnetization reversal
is achieved by a rotating magnetic field synchronized with
the precessional dynamics of the magnetic moment [6–9].

The assessment of the stability of energy-efficient
switching protocols with respect to ever-present thermal
fluctuations is an important problem. The thermal fluc-
tuations perturb the phase locking between the magneti-
zation and the external stimulus. As a result, the magne-
tization switching can be compromised unless the energy
barrier between the initial and final states is much larger
than the thermal energy, and the switching time does
not exceed a few periods of Larmor precession [9]. This
poses a challenge for the realization of energy-efficient
switching protocols at elevated temperatures, such as a
combination of a microwave and heat-assisted technique.
Even at low temperatures, the perturbations in the dy-
namics can accumulate in time potentially leading to de-
coherence between the magnetization and the microwave
pulse for relatively slow switching which is required for
the autoresonance-based protocols [10]. In general, the
assessment and control of dynamical stability of magnetic
systems is a crucial problem [11, 12].

In this work, we demonstrate that thermal stability of
magnetization switching in nanoparticles is mostly de-
fined by unstable perturbations arising in a certain do-
main of the configuration space of the system. The in-
stabilities can be suppressed by application of a longi-

tudinal magnetic field, which provides a mechanism for
enhancing the thermal stability of optimal magnetization
switching induced by rotating magnetic field. We show
that the success rate of the switching for a given temper-
ature and switching time can be tuned by adjusting the
strength of the stabilizing field. Our results provide a
perspective on the control of dynamical stability of mag-
netic systems subject to thermal fluctuations.

Model and spin dynamics simulations — We con-
sider energy-efficient magnetization switching of a uni-
axial monodomain nanoparticle characterized by nor-
malized magnetic moment s⃗ and internal energy E =
−K(s⃗ · e⃗z)2/2, with unit vector e⃗z being the direction
and K > 0 being the strength of the magnetic anisotropy.
The switching is induced by an optimal pulse of a rotat-
ing magnetic field B⃗0(t) that, for a given switching time,
minimizes the energy cost of switching [see Ref. [9] for
the exact time dependence of B⃗0(t) as a function of pa-
rameters of the nanoparticle]. The switching dynamics
is simulated by the time integration of the the Landau-
Lifshitz-Gilbert (LLG) equation:

(1 + α2) ˙⃗s = −γs⃗× B⃗eff − αγs⃗×
(
s⃗× B⃗eff

)
, (1)

where the dot denotes the time derivative, α is the
Gilbert damping factor, γ is the gyromagnetic ratio, and
B⃗eff ≡ B⃗0 + b⃗ + ξ⃗ is the effective field that, in addi-
tion to the switching pulse, includes the internal field
b⃗ = −µ−1∂E/∂s⃗ = µ−1K(s⃗ · e⃗z)e⃗z, with µ being the
magnitude of the magnetic moment, and the stochastic
term ξ⃗ mimicking interaction of the system with the heat
bath [13]. Each simulation involves three stages [9, 14]: i)
Initialization of the magnetic moment close to the energy
minimum at sz = 1 and equilibration of the system at
zero applied magnetic field to establish local Boltzmann
distribution at the initial state; ii) Switching where the
optimal magnetic field is applied; iii) Final equilibration
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Figure 1. Calculated dynamics of the magnetic moment
for a uniaxial nanoparticle induced by the optimal switching
magnetic field. The black line shows the zero-temperature
trajectory of the magnetic moment which corresponds to the
optimal control path s⃗0(t) for the magnetization switching.
The green (red) line shows the trajectory for successful (un-
successful) switching at finite temperature corresponding to
the thermal stability factor ∆ = 20. Labels A and B show
positions of the magnetic moment for which the dynamics of
local perturbations in the magnetization is illustrated in the
corresponding insets of Fig. 2. The light red (blue) shaded
area marks the domain where the perturbation dynamics is
unstable (stable). The damping factor α is 0.2, the switching
time T is 5τ0.

at zero applied magnetic field. The switching is consid-
ered successful if the system is close to the reversed state
at sz = −1 at the end of the simulation. Proper statistics
of switching is obtained by repeating simulations multi-
ple times.

At zero temperature, the switching trajectory corre-
sponds to optimal control path (OCP) s⃗0(t) between
the energy mimima of the system (see the black line in
Fig. 1): magnetic moment rotates steadily from the ini-
tial state at sz = 1 to the final state at sz = −1 and si-
multaneously precesses around the anisotropy axis, where
the sense of precession changes at the top of the energy
barrier. Magnetization dynamics is synchronized with
the switching field so that s⃗0 is always perpendicular to
B⃗0.

At nonzero temperature, thermal fluctuations perturb
the magnetization dynamics making the switching trajec-
tory deviate from the OCP (see the green line in Fig. 1).
The deviation can become so large that the phase locking
between the switching pulse and the magnetic moment
is lost which may eventually prevent the magnetization

reversal (see the red line in Fig. 1).
The success rate of switching depends strongly on the

switching time T and the strength of thermal fluctua-
tions, which can be quantitatively described by the ther-
mal stability factor ∆ – the ratio between the energy bar-
rier separating the stable states and the thermal energy.
For ∆ ≳ 70, which is a standard case for magnetic mem-
ory elements [15, 16], and relatively fast switching with
T ≲ 10τ0, the switching success rate is close to unity [9].
However, the success rate becomes 0.85 for ∆ = 20 and
T = 10τ0, and further decreases with decreasing ∆. Fur-
thermore, an increase in the switching time leads to a
higher chance for perturbations in the magnetization dy-
namics to accumulate, thereby increasing the likelihood
of unsuccessful switching even for large thermal stabil-
ity factors. For example, the switching success rate is
0.7 for ∆ = 70 and T = 30τ0. These effects make it
problematic to realize energy-efficient protocols involv-
ing multiple precessions around the anisotropy axis, es-
pecially at elevated temperature [9]. In the following,
we analyze the local dynamics of perturbations to gain
insight into the mechanism of decoherence between the
switching pulse and the magnetic moment. This anal-
ysis ultimately reveals a method to control the thermal
stability of magnetization switching.

Local dynamics of perturbations — The interaction of
the nanoparticle with the heat bath results in the per-
turbed trajectory: s⃗(t) = s⃗0(t) + δs⃗(t). If the perturba-
tion becomes too large, the coherence between the switch-
ing pulse and the magnetic moment will be lost resulting
in a failed switching attempt (see red trajectory in Fig.
1). Therefore, the dynamical stability of the system can
be investigated by analyzing the time evolution of the
perturbation δs⃗(t). Linearization of Eq. (1) leads to the
following equation of motion for the perturbation:

1 + α2

γ
˙⃗ϵ(t) =

[
−α −1
1 −α

]
·
[
w1 0
0 w2

]
· ϵ⃗(t). (2)

Here, ϵ⃗(t) = (ϵ1, ϵ2)
T is the two-dimensional vector whose

components are the coordinates of δs⃗ in the tangent space
of s⃗0(t) defined by the eigenvectors of the Hessian of the
energy of the system [17], and w1, w2 are the Hessian’s
eigenvalues given by the following equations:

w1 = Br +
K

µ
cos (2θ) , (3)

w2 = Br +
K

µ
cos2 θ, (4)

where θ is the polar angle of s⃗0 and Br is the component
of the external magnetic field parallel to s⃗0. Interestingly,
local dynamics of the perturbations does not depend ex-
plicitly on the optimal switching pulse, for which Br = 0.

For zero damping, Eq. (2) predicts two types of dy-
namical trajectories for the perturbation depending on



3

Figure 2. Diagram classifying dynamics of perturbations in
the magnetization. The green, blue, and red lines show how
the Hessian’s eigenvalues w1 and w2 change along the zero
temperature reversal trajectory (see the black line in Fig. (1)
for three values of the longitudinal magnetic field as indicated
in the legend. The right end of the lines correspond to the
initial and the final states at the energy minima, while the
left end of the lines corresponds to the top of the energy bar-
rier. The gray shaded area marks the domain of possible w1,
w2. Lables A-D indicate pairs of the eigenvalues for which
the velocity diagrams illustrating the perturbation dynamics
are shown in the insets. The background color in the insets
signify whether the amplitude of the perturbation is increas-
ing (blue), decreasing (red), or constant (gray). The damping
factor α is 0.2.

the sign of w1w2. The trajectories are elliptic, bound for
w1w2 > 0. For the optimal switching pulse with Br = 0,
this regime is realized in the vicinity of the energy min-
ima for θ < π/4 and θ > 3π/4 (see the blue regions
in Fig. 1). However, the perturbation trajectories be-
come hyperbolic, divergent for π/4 ≤ θ ≤ 3π/4 where
w1w2 ≤ 0 (see the red region in Fig. 1). It is important
to realize that for α = 0 the trajectories are equally stable
regardless of whether both w1 and w2 are positive or neg-
ative. Situation changes with non-zero damping: for pos-
itive w1, w2, the perturbations tend to relax toward s⃗0(t),
while for negative w1, w2, the relaxation amplifies the
perturbations. In principle, the latter case is unstable.
However, this instability is expected not to significantly
affect the magnetization switching if the switching time
is short on the time scale of relaxation dynamics which is
defined by the damping parameter α. We conclude that
the hyperbolic instabilities in the perturbation dynamics
are the primary reason for the decoherence between the
magnetization and the switching pulse. These instabili-
ties ultimately define thermal stability of magnetization
dynamics.

The diagram in Fig. 2 shows evolution of w1 and w2

during magnetization switching. For zero Br, a signif-
icant part of the switching trajectory lies in the region
of unstable perturbations corresponding to the second
quadrant of the diagram where the eigenvalues w1 and
w2 have different signs. However, the values of w1 and
w2 can be controlled by application of the longitudinal
field Br. In particular, the hyperbolic instabilities can
be removed by shifting w1 and w2 either to the first
(Br > K/µ) or to the third (Br < −K/µ) quadrant
of the diagram in Fig. 2. Therefore, the longitudinal ex-
ternal magnetic field can be used as a control parameter
to improve thermal stability of magnetization switching.
This conclusion is confirmed in the following by direct
simulations of magnetization dynamics at elevated tem-
perature (∆ = 20), where the switching is induced by a
modified pulse B⃗(t):

B⃗(t) = B⃗0(t) +Br s⃗0(t). (5)

Effect of longitudinal magnetic field on the success rate
of magnetization switching — Figure 3 shows calculated
success rate of switching as a function of Br for vari-
ous values of the switching time and damping param-
eter. As predicted, the switching success rate reaches
unity for Br > K/µ regardless of the damping factor α
and switching time T . Longer switching times require
stronger longitudinal field to reach a certain value of the
success rate, as expected, but the threshold value of Br
is not very sensitive to the damping parameter. Interest-
ingly, the success rate as a function of the longitudinal
field exhibits a minimum at Br ≈ 0.5 that becomes more
pronounced for longer switching times. At Br = 0.5,
the ratio between the eigenvalues becomes w1/w2 = −1
at the top of the energy barrier. This corresponds to
particularly unstable perturbations in the magnetization
dynamics, therefore explaining the drop in the success
rate of switching. The longer the switching time, the
more time the system spends in the vicinity of the en-
ergy barrier [9]. This increases the chances of decoher-
ence between the magnetization and the switching pulse,
and lowers the switching probability.

Application of the longitudinal field opposite to s⃗0
(Br < 0) renders both of the eigenvalues w1, w2 nega-
tive near the energy barrier, thus altering the hyperbolic
character of the perturbation dynamics. As a result, the
success rate of switching initially increases with rising Br.
However, further increases in Br lead to the success rate
reaching a maximum value before eventually declining
(see Fig. 3). The drop in the success rate is a conse-
quence of divergent dynamics due to relaxation, which
becomes more prominent for larger damping parameters
and longer switching times, as expected.

The switching dynamics is further illustrated by Fig. 4
showing the calculated distribution of the copies of the
system in the statistical ensemble at t = T/2 for α = 0.1,
T = 10τ0, and various values of Br. For the unper-
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Figure 3. Calculated success rate of magnetization reversal as a function of the longitudinal magnetic field Br for various
values of the switching time T (a) and the damping parameter α (b). In (a), α = 0.1; In (b), T = 10τ0. The thermal stability
factor ∆ = 20. The shaded areas around the curves indicate the statistical error.

Figure 4. Calculated distribution of the copies of the system in the statistical ensemble at t = T/2 and various values of the
longitudinal magnetic field, superimposed on the Lambert azimuthal projection [18] of the energy surface of the system. The
green dots correspond to the copies that will eventually reach the final state at −Z (successful switching), while the red dots
mark the copies that will end up at the initial state at +Z (unsuccessful switching). The black line shows the calculated OCP
for the reversal. The damping factor α is 0.1, the thermal stability factor ∆ is 20, and the switching time T is 10τ0.

turbed OCP, the system is at the top of the energy bar-
rier. Thermal fluctuations make the system deviate from
the OCP. For zero longitudinal field, the system copies
spread quite far, with those corresponding to unsuccess-
ful switching trajectories grouped closer to the initial
state. For Br = 0.5K/µ, the distribution of the copies
becomes more elongated – the result of the hyperbolic
character of the perturbation dynamics at the energy
barrier – and the number of the unsuccessful trajecto-
ries increases. As Br increases beyond K/µ, a progres-
sively tighter grouping of the copies around the OCP is

observed due to the convergent dynamics of the perturba-
tions, resulting in the switching probability approaching
unity (see Fig. 3).

For negative Br, the copies of the system are grouped
in an ellipse around the OCP even for Br = −0.5K/µ.
For stronger anti-parallel fields, the spread of the distri-
bution increases due to relaxation, resulting in a decrease
in the success rate of switching.

Figure 5 shows the calculated dependencies of the suc-
cess rate on the damping constant α and switching time
T for Br = 0 and Br = ±K/µ. Both cases with finite lon-
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Figure 5. (a) Calculated success rate of magnetization reversal as a function of damping parameter α for switching time
T = 10τ0. (b)-(c) Calculated success rate as a function of T for α = 0.1 and α = 0.2. The red, blue, and black lines correspond
to the three values of the longitudinal magnetic field Br as indicated in the legend. The thermal stability factor ∆ = 20. The
shaded areas around the curves indicate the statistical error.

gitudinal field ensure w1w2 ≥ 0 for the whole switching
trajectory. Positive (negative) Br correspond to conver-
gent (divergent) relaxation of the perturbation dynam-
ics, which explains monotonic increase (decrease) of the
switching probability with increasing α. However, for low
damping and short switching times, applying the longitu-
dinal field opposite to the magnetic moment (Br < 0) is
more efficient than applying the longitudinal field along
the magnetic moment (Br > 0), as it requires lower fields
to achieve high success rates (see also Fig. 3). Longer
switching times result in lower success rate in all con-
sidered cases, as expected. The decrease in the success
rate with T becomes more (less) pronounced for negative
(positive) Br as damping increases, which is a result of
destabilizing (stabilizing) effect of relaxation.

Conclusions — In this work, we uncovered that the
instability of energy-efficient protocols for magnetization
reversal in nanoparticles with respect to thermal fluctu-
ations originates from the divergent magnetization dy-
namics arising around the top of the energy barrier of
the system. We demonstrated that these instabilities can
be eliminated by applying an additional magnetic field
either aligned or opposed to the magnetic moment’s di-
rection, consequently enhancing the thermal stability of
magnetization switching. We examined the success rate
of switching at elevated temperatures as a function of
various control parameters, such as the switching time,
Gilbert damping, and the magnitude of the longitudi-
nal field. The application of a longitudinal field along
the magnetic moment consistently increases the success
rate of switching, provided that the field magnitude sur-
passes the characteristic anisotropy field. However, for
shorter switching times and weaker damping, employing
a smaller field opposed to the magnetic moment can also
augment the success rate. Our results warrant a general
principle for improved control of magnetization dynamics

by suppressing divergent perturbations.
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Theoretical calculations of optimal control paths minimizing the energy cost of the magnetization reversal in 1D magnetic nanowires are presented.
The energy-efficient reversal mechanism is studied as a function of the nanowire length and Gilbert damping parameter. For short nanowires, the
optimal reversal mechanism corresponds to a uniform rotation of magnetization. If the length of the wire exceeds a certain critical length defined
by the material parameters, switching time and damping, a standing spin wave emerges during magnetization switching. Comparison between the
calculated optimal control paths and minimum energy paths reveals that realization of high energy efficiency of switching does not necessarily
translate to the minimization of the energy barrier between the target magnetic states.
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1. Introduction

Magnetic nanowires are characterized by an extended length and a nanoscale lateral size [1]. The high length-
to-width aspect ratio gives rise to large magnetic anisotropy, which usually results in two stable orientations of mag-
netization along the wire’s axis. Bistability makes magnetic nanowires particularly promising as a basis of novel
devices for data transmission, storage and processing where information can be encoded by domains with opposite
magnetization [2]. Development of this technology depends critically on the knowledge about mechanisms of the
magnetization reversal – a physical implementation of a bit operation. How reversal modes depend on the switching
stimulus, magnetic parameters and geometry of the wire is also interesting from a fundamental point of view. Previous
theoretical [3–9] and experimental [10–14] studies revealed three main mechanisms of magnetization switching in
nanowires, including homogeneous rotation of magnetization and propagation of transverse and vortex domain walls.
The possibility to achieve magnetization switching by following different transition mechanisms leads to a notion
about the existence of a special mechanism that is optimal in terms of the termination time and energy cost. Definite
identification of such optimal reversal mechanisms is particularly important for the development of energy-efficient
information technologies based on magnetic nanowires.

In this article, we describe the application of the optimal control theory [15,16] to the problem of energy-efficient
magnetization reversal in a 1D magnetic nanowire. The theory makes it possible to identify optimal control paths
(OCPs), i.e. reversal trajectories minimizing the energy cost of magnetization switching. We present numerical
calculations of OCPs for various values of the nanowire length and Gilbert damping parameter. We report a crossover
between the coherent rotation of magnetization and spin wave assisted switching. Finally, we compare calculated
OCPs with the other distinguished paths in the configuration space – the minimum energy paths (MEPs).

The article is organized as follows. In Section 2, theoretical background and details of numerical calculations
are described. Results of applications of the optimal control method are given in Section 3. A single macrospin test
system is considered first. Then, the application to the magnetization reversal in a nanowire is described. Comparison
between calculated OCPs and MEPs is also given. Summary and outlook are presented in Section 4.
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2. Methods

Magnetic nanowire is modeled as a 1D chain of N magnetic moments extending along the x axis, where each
moment has the same magnitude µ. The energy of the wire is given by a classical Heisenberg-type Hamiltonian:

E = −J
N−1∑

i=1

~si · ~si+1 −K
N∑

i=1

(~si · ~e x)
2
, (1)

where ~si is the unit vector defining the orientation of the magnetic moment at site i. The first term in Eq. (1) describes
the exchange interaction between nearest neighbours with ferromagnetic coupling constant J > 0. The second term is
due to magnetic uniaxial anisotropy characterized by the easy axis ~e x along the wire and effective parameter K > 0.
Due to the anisotropy, there are two stable states in the system with moments aligned parallel or antiparallel to the x
axis, as illustrated in Fig. 1. The following values of the material parameters are used:

J = 562 meV, (2)
K = 37 meV, (3)
µ = 4076µB , (4)

where µB is Bohr magneton.

t=0

t=T

K

FIG. 1. Stable orientations of the magnetization in a nanowire. The nanowire is represented by
a chain of N = 30 magnetic moments. Arrows indicate orientation of the moments. Direction
of the anisotropy axis is shown with the double-headed arrow. Transition between the states is
schematically shown with the black arrow. In the OCP, the initial state is realized at t = 0, while the
final state is realized at t = T

We consider energy-efficient switching of magnetization in the wire from one stable orientation to the other. The
switching process is induced by application of external magnetic field. The aim is to find the optimal field that realizes
switching in a given time T while minimizing the energy cost. Following Refs. [15, 16], we define the energy cost to
be proportional to the amplitude of the applied magnetic field squared:

Φ =

T∫

0

N∑

j=1

| ~Bj(t)|2dt, (5)

where ~Bj(t) is the applied magnetic field at site j and time t. Summation over the sites where magnetic moments are
localized is equivalent to spatial integration for a continuous system. The functional Φ needs to be minimized subject
to the boundary conditions

sxj (t = 0) = 1, j = 1, . . . , N, (6)

sxj (t = T ) = −1, j = 1, . . . , N, (7)

and an equation of motion which is taken to be the Landau-Lifshitz-Gilbert equation:

(1 + α2)~̇sj = −γ~sj ×
(
~Bint,j + ~Bj

)
− αγ~sj ×

[
~sj ×

(
~Bint,j + ~Bj

)]
, (8)

where α is the Gilbert damping factor, γ is the gyromagnetic ratio, dot means time derivative and ~Bint,j is the internal
magnetic field defined through the following equation:

~Bint,j = − 1

µ

∂E

∂~sj
, (9)

with internal energyE given by Eq. (1). Equation (8) can be used to express ~Bj(t) in terms of the dynamical trajectory
of the system as well as the magnetic field [16]:

~Bj(t) =
α

γ
~̇sj(t) +

1

γ

[
~sj(t)× ~̇sj(t)

]
− ~B⊥int,j(t). (10)
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Here, ~B⊥int,j(t) is a transverse component of ~Bint,j :

~B⊥int,j = ~Bint,j − ( ~Bint,j · ~sj)~sj . (11)

Upon substituting Eqs.(10)-(11) into Eq. (5), the energy cost Φ becomes a functional of ~s1(t), ~s2(t), . . . , ~sN (t). Before
applying the variational principle to the functional Φ, we discretize the time integral in Eq. (5) using the midpoint rule:

Φ[~s1(t), . . . , ~sN (t)] ≈ Φ(s) =

Q∑

p=0

N∑

j=1

B2
p+ 1

2 ,j
(tp+1 − tp), (12)

where {tp} is a partition of the time interval [0, T ] such that 0 = t0 < t1 < . . . < tQ < tQ+1 = T . In
the current implementation, all time subintervals are the same, tp+1 − tp = ∆t = T/(Q + 1), p = 0, . . . , Q.
Trajectory of each magnetic moment, ~sj(t), is then represented by a polygeodesic line connecting Q + 2 images,
~sj(t) : {~s0,j , . . . , ~sQ+1,j}, with ~sp,j = ~sj(tp), where the end points are fixed according to the boundary conditions
[see Eqs. (6)-(7)], but Q intermediate images need to be adjusted to an optimal configuration representing the min-
imum of Φ. The functional Φ is turned into a 3QN -dimensional function of image positions, Φ = Φ(s), with
s = {~s1,1, ~s1,2, . . . , ~s1,N , ~s2,1, . . . , ~sQ,N}. The sought-for optimal control path (OCP) minimizing the energy cost
of switching is found by choosing some initial guess for the position of the images and then bringing that to a local
minimum of Φ(s) by means of the (limited-memory) Broyden-Fletcher-Goldfarb-Shanno algorithm [17] adapted to
magnetic degrees of freedom [18,19]. The final, relaxed configuration of the images gives a discrete representation of
the OCP. The optimal external field pulse is then obtained from the OCP using Eq. (10).

3. Results and discussion

3.1. Test problem

The numerical method described earlier is first illustrated with calculations of the OCP for the reversal of a single
magnetic moment whose internal energy is defined by the anisotropy along z axis,

E1 = −K (~s · ~e z)2 . (13)

The value of the anisotropy constant K is defined in Eq. (3). The OCP between the energy minima at sz = ±1
for this system can be obtained analytically in terms of elliptic functions [16], providing a benchmark for numerical
calculations. Discrete representations of the OCP were obtained numerically by relaxing Q movable images to a local
minimum of the energy cost Φ. The calculations were considered converged when the magnitude of the gradient of Φ
had dropped by twelve orders of magnitude.

FIG. 2. Evolution of the magnetic moment along the OCP for switching time T = 1 ns and damping
parameter α = 0.1. Analytical solution is given by solid lines, position of images included in the
numerical calculations is shown with crosses. Q = 50 (a) and Q = 200 (b) movable images were
used in the numerical OCP calculations

Figure 2 shows comparison between the analytical solution and numerical results obtained for Q = 50 and
Q = 200 images. Both analytical and numerical calculations were performed for α = 0.1 and T = 1 ns. Agreement
between the analytical and numerical results is better for larger number of images, as expected. We have found that
using Q ≈ 200 movable images in the OCP calculations was sufficient to ensure relative error to be below 1%.
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FIG. 3. Optimal switching field derived from the OCP shown in Fig. 2. Switching time T = 1 ns
and damping parameter α = 0.1. Analytical solution is given by solid lines, crosses correspond
to position of images included in the numerical OCP calculations. Q = 50 (a) and Q = 200 (b)
movable images were used in the OCP calculations

The calculated OCP describes a steady motion of the magnetic moment from the initial state at sz = 1 to the final
state at sz = −1. The monotonic decrease in sz is accompanied by a precessional motion around the anisotropy axis.
Note that the precession reverses its direction upon reaching the top of the energy barrier at t = T/2. Fig. 3 shows
how the optimal switching field derived from the OCP depends on time. Direction of the calculated optimal field is
synchronized with the motion of the magnetic moment so that it is orthogonal to ~s at any time. Moreover, ~B(t) is
modulated in amplitude. The internal torque arising due to damping counteracts the switching motion before crossing
the energy barrier. Therefore, overall larger field needs to be applied in the first half of the reversal process compared
to that in the second half, where the damping torque aids switching. A careful analysis demonstrates that B(t) reaches
a maximum at t = T/4 and a minimum at t = 3T/4, which coincides with the position of the extrema of the polar
component of the internal torque.

3.2. Magnetization switching in a nanowire

Fig. 4 illustrates mechanisms of energy efficient magnetization reversal in the nanowire revealed by the OCP
calculations. Possible mechanisms include uniform rotation of magnetization [see Fig. 4(a)] and emergence of a
standing spin wave with variable wavelength [see Fig. 4(b,c)]. In the case of the coherent rotation mechanism, each
magnetic moment in the wire follows the same trajectory presented in the previous subsection.

FIG. 4. Magnetic configurations realized along OCPs (a)-(c) and MEP (d) for magnetization switch-
ing in the nanowire of length N = 30. For the OCPs, configurations at t = T/2 are shown where
T = 1 ns. For the MEP, the saddle point configuration is presented. OCP corresponds to a coherent
rotation of magnetic moments for α = 0.1 (a) and to spin wave assisted switching with 1.5 wave
periods for α = 0.5 (b) and with 1 wave period for α = 0.6 (c). MEP corresponds to a transient
domain wall nucleation and propagation (d)

How the result of the OCP calculations depend on the parameters of the nanowire is illustrated in Fig. 5. Specifi-
cally, Fig. 5(a) shows the calculated energy cost Φ of optimal switching as a function of the lengthN of the wire for the
fixed values of the switching time and damping factor with T = 1 ns and α = 0.4. For relatively short nanowires, Φ
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scales linearly with the wire length which is a consequence of the uniform rotation of the magnetization. At N ≈ 60,
a salient point is evident in the Φ(N) dependence as a result of the crossover to spin-wave assisted switching. As the
number of magnetic moments in the wire increases, progressively more periods of the spin wave is observed. Note
that the number of the spin-wave periods can assume both half-integer and integer values [see Fig. 4(b,c)].

FIG. 5. Minimum energy cost of magnetization switching as a function of the nanowire lengthN for
α = 0.4 and T = 1 ns (a) and damping parameter α forN = 50 and T = 1 ns (b). Uniform rotation
and spin wave solutions are shown with blue and red circles, respectively. Red labels indicate the
number of wavelengths in the spin-wave solutions. Solution for the macrospin approximation is
shown with a gray line

Interestingly, the mechanism of the energy-efficient magnetization switching depends on the damping parameter,
as illustrated in Fig. 5(b) showing Φ as a function of α for N = 50 and T = 1 ns. When α ≤ 0.4, the optimal switch-
ing mechanism corresponds to the uniform rotation of magnetization and Φ(α) follows the dependence predicted in
Ref. [16]. As the damping factor increases, the switching mechanism changes to the spin-wave, first with 2 periods
and then with 1.5 periods. Each crossover event is accompanied by a sharp change in the slope of the Φ(α) function.

FIG. 6. Variation of the energy of the nanowire with N = 50 along the MEP (black line) and the
OCP for T = 1 ns, α = 0.1 (blue line) and α = 0.6 (red line). Reaction coordinate is defined as a
normalized displacement along the path

It is informative to compare the calculated OCPs with the other distinguished paths in the configuration space –
minimum energy paths (MEPs). An MEP connecting two stable states is a path lying lowermost on the energy surface,
and the point of the highest energy along the MEP – a saddle point on the energy surface – defines the energy barrier
between the states, the primary quantity determining their thermal stability within harmonic rate theories [20–22].
The MEPs for the magnetization reversal in the nanowires considered here were calculated using the geodesic nudged
elastic band method [23]. The MEP changes from the uniform rotation to the nucleation and propagation of a transient
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domain wall when the length of the wire exceeds the domain wall width. The saddle-point configuration for the
nanowire with N = 30 is shown in Fig. 4(d) as an example. These paths are very different from the calculated OCPs.
In fact, the OCP calculations have never converged on the path corresponding to the single domain wall propagation,
even if the initial guess was set to be the MEP. Note that an MEP is completely defined by the energy surface of the
system, and, therefore, is independent of dynamical properties such as the switching time or damping parameter. In
contrast, an OCP is a valid dynamical trajectory, which in particular results in that the mechanism of energy-efficient
magnetization reversal depends on α, as demonstrated above.

Finally, the energy variations along the calculated MEP and OCPs are compared in Fig. 6 for the nanowire with
N = 50. The energy profile along the MEP is flat, which is a typical feature for the domain wall propagation costing
almost no energy. The energy barrier derived from the MEP is much smaller than the highest energy point along the
OCPs. This result suggests a conclusion that optimal control of magnetization switching which minimizes the energy
cost does not necessarily translates into the minimization of the energy barrier between the target states. Following an
OCP involves rotation of magnetic moments in such a way that the influence of the external stimulus is minimized,
but the system’s internal dynamics is effectively used to aid magnetization switching.

4. Conclusion

In conclusion, we have studied energy-efficient magnetization reversal in bistable magnetic nanowires by means
of OCP calculations. The calculations demonstrate that short nanowires reverse their magnetization via coherent
rotation that combines a steady advancement toward the target state and precession around the anisotropy axis. If the
length of the wire exceeds a certain critical length, a standing spin wave emerges during magnetization switching. In
contrast to MEPs, OCPs demonstrate dependence on dynamical parameters such as switching time and damping. Our
results deepen the understanding of the optimal control of magnetization switching in nanowires.
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