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Abstract

Over the last decades one could observe a drastic increase in the generation and
storage of data in both, industry and science. While the field of data analysis is
not new, it is now facing the challenge of coping with an increasing size, bandwidth
and complexity of data. This renders traditional analysis methods and algorithms
ineffective. This problem has been coined as the Big Data challenge. Concretely in
science the major data producers are large-scale monolithic experiments and the
outputs of domain simulations. Up until now, most of this data has not yet been
completely analyzed, but rather stored in data repositories for later consideration
due to the lack of efficient means of processing. As a consequence, there is a need
for large-scale data analysis frameworks and algorithm libraries allowing to study
these datasets. In context of scientific applications, potentially coupled with legacy
simulations, the designated target platform are heterogeneous high-performance
computing systems.

This thesis proposes a design and prototypical realization of such a framework
based on the experience collected from empirical applications. For this, selected
scientific use cases, with an emphasis on earth sciences, were studied. In particular,
these are object segmentation in point cloud data and biological imagery, outlier
detection in oceanographic time-series data as well as land cover type classification
in remote sensing images. In order to deal with the data amounts, two analy-
sis algorithms have been parallelized for shared- and distributed-memory systems.
Concretely, these are HPDBSCAN, a density-based clustering algorithm, as well
as Distributed Max-Trees, a filtering step for images. The presented paralleliza-
tion strategies have been abstracted into a generalized paradigm, enabling the
formulation of scalable algorithms for other similar analysis methods. Moreover, it
permits the definition of requirements for the design of a large-scale data analysis
framework and algorithm library for heterogeneous, distributed high-performance
computing systems. In line with that, the thesis presents a prototypical realiza-
tion called Juelich Machine Learning Library (JuML), providing essential low-level
components and readily usable analysis algorithm implementations.

Keywords—Data Analysis, Machine Learning, High-Performance Computing,
Framework Design, Earth Sciences, Use Case Study
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Agrip

A sidastlidnum aratug hefur ordid mikil aukning { framleidslu og geymslu gagna 1 id-
nadi sem og rannsoknum. Pratt fyrir ad gagnagreining sé ekki ny af nalinni, stendur
hin frammi fyrir peirri askorun ad rada vid siaukid magn, bandvidd og flackjustig
gagna. Petta gerir hefdbundnar adferdir oskilvirkar og hefur petta vandamal verid
nefnt gagnagnott (e. Big Data). I visindum koma ggn helst fra umfangsmiklum
tilraunum og hermunum. Hingad til hefur ekki verid fyllilega unnid tr gégnunum,
heldur hafa pau verid geymd { gagnageymslum fyrir greiningu sidar meir, vegna
skorts & skilvirkum drvinnsluadferdum. Af pessu méa draga pa alyktun ad til ad
greina pessi gogn purfi vidteeka umgjord fyrir gagnagreiningu og algrimasofn og
er tolvuumhverfid sem midad er vid, misleit kerfi sem eetlud eru fyrir storfellda
tolvuvinnslu (e. high-performance computing).

Pessi ritgerd leggur til honnun og frumgerdaratfaerslu 4 slikri umgjoérd sem byg-
gir 4 reynslu sem fengin er dr raunverulegum notkunardsemum, einkum jarovisin-
dum. Sérstaklega voru skodud deemi um merkingu ttlina hluta { punktaskysgdgnum
og liffreedilegu myndefni, utlagar (e. outliers) i haffraedilegum timaradagégnum
og flokkun & fjarkénnunarmyndefni. Til ad rada vid hid mikla magn gagna voru
tvé greiningaralgrim adlogud fyrir samhlida vinnslu i kerfum med samnota- og
dreift minni. Petta eru HPDBSCAN, sem er klosunaradferd byggd & péttifollum
og Distributed Mazx-Trees, siunaralgrim fyrir myndir. Badar aodferdir voru feerdar
yfir i almenna frumgerd sem einfaldar framsetningu skalanlegra algrima fyrir adrar
sambaerilegar greiningaradferdir. Par ad auki gerir petta kleift ad setja fram skil-
greiningu & pérfum fyrir honnun vidtaekra gagnagreiningaumgjardar og sofn algrima
fyrir misleit kerfi setlud til dreifdrar stortackrar tolvuvinnslu. Ad lokum er frumgerd
& utfeerslu slikrar umgjardar kynnt sem nefnd er Juelich Machine Learning Li-
brary (JuML), sem veitir adgang ad lagtecknieiningum og tilbtinum utferslum &
greiningaralgrimum.

Lykilord—Gagnagreining, Gagnagreiningaumgjord, Reiknigreind, Ofurtélvu-
reikningar, Jarovisindi, Raundsemi.
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Chapter 1

Introduction

1.1 Motivation

In the last decades business and industry have seen an influx of data-oriented
and data-intensive services [2]. Search engines [3], social networks, business intelli-
gence [4] and the Internet of Things are just some of the examples for this trend.
With an even earlier starting point, science has undergone a process very much
alike. Large-scale experiments—exemplified by the TOAR weather and climate re-
search database [5], PANGAEA, an environmental science data collection [6], or
the planned radio observatory Square Kilometer Array (SKA) [7]—collect an ex-
ponentially growing amount of data in need of analysis. To provide a convenient
term for these phenomena, the start of the Big Data era has been announced. This
term generally refers to data processing and analysis problems, which cannot be
adequately dealt with using conventional technology. Initially, the focus has been
put on the so-called three V’s [§], i.e. keywords starting with the letter V, attempt-
ing to deliver a concise description of the involved challenges. These are volume,
velocity and variety and correspond to the quantity, bandwidth as well as number
of different sources and types of data involved in an analysis problem. Later, addi-
tional V’s have been added to better reflect challenges previously unaccounted for,
starting at four [9], to seven [10], then ten [II] and ultimately a not quite genuine
42 [12]. They describe related issues, such as how to visualize the data, price them,
make data secure against theft or alteration and so forth.

In line with the inevitable expansion of Big Data challenges, technologies at-
tempting to overcome them have seen accelerated research and investment. Particu-
larly in the industry, the concepts of High Throughput Computing (HTC) and cloud
computing have established themselves as cost-efficient and scalable ways of pro-
cessing data, while also ensuring agreed-upon service levels in terms of availability,
redundancy of computation, etc. This infrastructure-centered pursuit has in turn
given rise to new technology stacks, such as the Hadoop Distributed File System
(HDFS) [13], parallel processing platforms like Hadoop [14] or Spark [I5], virtu-
alization solutions including CloudStack and Docker, and database management
systems like NoSQL or in-memory databases. Most of them, however, have strong



CHAPTER 1. INTRODUCTION

limitations. Computational processing power in HT'C is constrained by the com-
modity hardware it is run on, along with simple, commercial-grade interconnects
and as a result, limited communication bandwidth and basic topological structure.
While this is sufficient for industrial applications, mainly focused on simple corre-
lated pattern detection in user data, for example, this effectively limits the potential
of implementing highly complex, though analytically efficient and accurate models,
which are prevalent in scientific research.

Next to traditional simulations, computational data analysis becomes an in-
creasingly more frequent application scenario in science. It is used to perform sim-
ulation observation data assimilation, augmentation of experimental data and to
process results of measurements gathered by sensor systems. However, despite the
frequent similarity of high-level analysis tasks compared to the industry, scientific
technological implementation aspects differ heavily. Due to precision constraints,
such application scenarios require much more complex and computationally inten-
sive analysis models. This translates not only to immense computational require-
ments and space consumption, but also the need for expertise and efficiency in
employing the resources offered by the traditionally used High Performance Com-
puting (HPC) systems. These systems often employ expensive, however computa-
tionally powerful heterogeneous hardware components, which are tightly integrated
via high-bandwidth interconnects.

A large base of experience and knowledge in computationally aided natural sci-
ence research comes with decades worth of legacy systems that are costly to change.
This results in a certain rigidity against attempts at adapting the dynamically de-
veloping HTC technologies, from which the sciences would undoubtedly stand to
gain. The technology stacks employed in HPC are largely incompatible with new
technologies introduced to the HT'C area. Their disjunction starts at low levels with
the concrete distributed file systems and follows through data formats, schedulers,
programming languages and the possibility to exploit heterogeneous computational
hardware. As a result, attempts at merging them would entail substantial engineer-
ing efforts. Rather than striving to make them perform as interchangeable equiv-
alents, the arguably better approach is to identify the core aspects of the rising
HTC technologies and to apply and adept them to HPC scenarios.

Given the increased demand for powerful data analysis in science and the ex-
plained state of technology, there is an objective need for the design and imple-
mentation of parallel and scalable solutions. The common use of legacy HPC tools
and increasing need for innovation calls for attention from the computational en-
gineering community. To answer this call, this dissertation studies and analyzes a
number of different natural science application domains in order to identify novel
approaches that are tailored to HPC systems. From the requirements exposed in
the studies a generalized parallelization paradigm for HPC data analysis algorithms
is derived. It is further implemented in a cohesive prototypical data analysis frame-
work, enabling large-scale data analysis and algorithm development for modern,
heterogeneous HPC systems.
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1.2 Research Questions

This thesis examines the need for HPC-based data analysis in scientific research and
proposes a systematic manner of addressing it. Studies of use cases stemming from
a number of Earth sciences enable an in-depth investigation of specific requirements
imposed by particular research problems. They further result in the identification
of commonalities in the demand for powerful data analysis solutions present across
domains. Means of addressing the observed research gap are explored based on
scientific literature documenting designs and applications of data analysis algo-
rithms. Here, performance is of primary interest, both in terms of computational
efficiency, as well as the extent in which it succeeds to address the domain-specific
challenge. The goal is to identify readily available efficient HPC tools applicable
to the examined Earth science problems, or lack thereof. If absent, conventional
data analysis algorithms that are best suited for the scientific use cases are se-
lected and redesigned to maximize computational performance and optimize the
use of HPC resources. Their novel implementations are applied, validated and eval-
uated in terms of domain-specific insights and computational performance. With
the intention to shrink the mentioned gap, due to the scarce availability of HPC
data analysis tools, a framework of such ready-to-use algorithms is proposed. A
prototypical candidate, including the collection of pre-implemented algorithms, is
published open-source.

In this manner the author addresses the following set of research questions,
which interweave the conducted studies:

Research Question (RQ) 1: What is the state of the art in data analysis and
its technologies in the Earth sciences?

RQ 2: How and which parallel and scalable algorithms can support the analysis
of selected Earth science use cases?

RQ 3: Can the identified techniques be applied in a generalized fashion in scientific
domains outside of the Earth sciences?

RQ 4: Are there enough commonalities that would justify the design of a par-
allel and scalable data analysis framework and algorithm library for HPC
computing systems?
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Figure 1.1: BPMN 2.0 diagram depicting the methodological process of the thesis.
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Figure [I.T] depicts the method selected for answering these questions in form of
a Business Process Modelling Notation (BPMN) [16] diagram. It closely follows the
posed research questions and tries to answer them gradually. First, the literature
and the selected use cases are surveyed, including proposed analysis approached
in order to determine the state of the art. Then, the use cases are tackled in con-
junction with the experts of the particular application domain. The Earth sciences
have been selected as the field of choice due to availability, size and characteris-
tics of publicly available data sets. Depending on the chosen analysis approach,
the parallelization of the used algorithms may be necessary in order to be able
to handle the data volume and bandwidth present in the use case. The proposed
solution should be so generic that it can also be applied to data sets with simi-
lar analysis tasks and scalable enough to handle increased data quantities. This
is what Research Question three aims at—the ability to generalize the findings.
Given that there are enough commonalities, it is sensible to extract these and use
them as a requirements list and potentially paradigm for the design of a parallel
and scalable framework and data analysis library on HPC systems. This software
artifact should support two major user groups: the developers of data analysis al-
gorithms and the actual data analysts. The library should aid the former through
the abstraction from underlying hardware features, if possible, while also providing
recurring functionality for the implementation of parallel algorithms. In contrast
to that, the second group needs a set of reliable and efficient standard algorithms,
which require a high-level Application Programming Interface (API) working on
abstract entities such as entire data sets and thereby handling the parallelization
internally—instead of explicit low-level components such as passed messages.

1.3 Outline

This thesis is composed in a cumulative style. The major findings are therefore
presented in form of peer-reviewed conference and journal publications as well as
pending submissions, which are to be found in the appendix. Publications to which
the thesis author only contributed to a lesser extent are deliberately excluded. For a
complete list of all publications, however, please refer to the ‘[List of Publications]"

1.3.1 Covering Paper

The following chapters will provide a brief summary of the results as follows.

Chapter presents the motivation and research methodology

for answering the research questions posed in this thesis.

Chapter [2-Background] provides background on both, data analysis tasks,

methods and the involved process, as well as a background on HPC.

Chapter [3-Summary of the Publications| summarizes the appended papers
and puts them into context of the posed research questions.
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Chapter [d{An HPC Data Analysis Framework| proposes a data analysis
framework and algorithm library targeting heterogeneous, distributed high-
performance computing systems. For this, related work in the field is intro-
duced first, before this thesis’ design concept is presented. Along with this,
a generalized algorithm parallelization strategy paradigm, abstracted from
the publications in Chapter [3] is suggested. It adds to the definition of a
requirements list of essential components of the aforementioned framework.
Finally, this chapter is concluded with the introduction of JuML—this proto-
typical realization of a large-scale data analysis framework for HPC systems
proposed in line with this thesis.

Chapter concludes the thesis and presents perspectives for fu-

ture research opportunities.

1.3.2 Appended Papers

The following papers from the [List of Publications| can be found in the appendix.

Paper 1

M. Go6tz, M. Richerzhagen, C. Bodenstein, G. Cavallaro, P. Glock, M. Riedel,
Morris, J. A. Benediktsson, “On Scalable Data Mining Techniques for Earth Sci-
ence”, in Elsevier Procedia Computer Science, 2015, pp. 2188-2197.

Paper II

M. Gotz, C. Bodenstein, M. Riedel, “HPDBSCAN: Highly Parallel DBSCAN”,
in ACM Proceedings of the Workshop on Machine Learning in High-Performance
Computing Environments, The International Conference for High Performance
Computing, Networking, Storage and Analysis, Austin, USA, 2015, pp. 2:1-2:10.

Paper II1

C. Bodenstein, M G&tz, A. Jansen, H. Scholz, M. Riedel, “Automatic Object De-
tection Using DBSCAN for Counting Intoxicated Flies in the FLORIDA Assay”,
in Proceedings of 15th IEEE International Conference on Machine Learning and
Applications (ICMLA), Los Angeles, USA, 2016, pp. 746-751.

Paper IV

M. Gotz, M. Kononets, C. Bodenstein, M. Riedel, M. Book, O. P. Palsson, “Au-
tomatic Water Mixing Event Identification in the Koljo Fjord Observatory Data”,
submitted to International Journal of Data Science and Analytics.

Paper V

M. G&tz, G. Cavallaro, T. Géraud, M. Book, M. Riedel, “Parallel Computation of
Component Trees on Distributed Memory Machines”, submitted to Transactions
on Parallel and Distributed Systems.
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Paper VI

M Gotz, M. Book, C. Bodenstein, M. Riedel, “Supporting Software Engineering
Practices in the Development of Data-Intensive HPC Applications with the JuML
Framework”, in ACM Proceedings of the International Workshop on Software Engi-
neering for High Performance Computing in Computational and Data-Enabled Sci-
ence and Engineering, The International Conference for High Performance Com-
puting, Networking, Storage and Analysis, Denver, USA, 2017, pp. 1-8.

1.4 Contributions

The main contributions of this thesis are subdivided into three major categories.
First, the analysis of data-intensive, scientific use cases with an emphasis on Earth
sciences. The analysis has contributed to or established the state of the art for the
particular analysis problem, e.g.:

e unsupervised object segmentation in point clouds (Paper II),

e unsupervised depth-separated object segmentation (Paper III),

e semi-supervised classification of water mixing events (Paper IV) and

e supervised land cover type classification using attribute filters (Paper V).

Second, the parallelization of existing data analysis algorithms that are em-
ployed in the use cases, targeting distributed-memory environments and thereby
enabling scalability with respect to processing time and memory consumption. In
particular, these are:

e the formulation of a parallel DBSCAN (Paper II) and
e a parallel min- and max-tree algorithm (Paper V).

Both have outperformed the state of the art—even by orders of magnitudes
with respect to memory consumption.

Third, a generalized paradigm for the design of parallel and scalable data analy-
sis algorithms suitable for processing a large number of samples has been proposed.
Following well-established engineering practices, the algorithmic components have
been abstracted and bundled into a prototypical data analysis library, called JuML,
aimed for the use in heterogeneous distributed-memory HPC systems, which is pre-
sented in Paper VI. An overview of the relation between the contributions and
the publications can be found in Table [T}

Table 1.1: Relation matrix of publication contributions and research questions.

RQ Paper | paper 1 ‘ Paper II ‘ Paper III ‘ Paper IV ‘ Paper V ‘ Paper VI
RQ1 X

RQ 2 X X

RQ 3 X

RQ 4 X X X X X X
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In line with the thesis, a number of software artifacts have been created, along
with JuML, which has been open-sourced. Table shows how the software cre-
ation and utilization relates to the publications. These are already in productive
use. A non-exhaustive list includes the FLORIDA assay software, HPDBSCAN on
the Blacklight and DEEP-EST supercomputing systems and the distributed max-
tree algorithm at the Research Centre Jilich. JuML will serve as the conceptual
template for the planned Helmholtz Analytics Framework (HAF).

Table 1.2: Relation matrix of software contributions and publications.

RQ Paper Paper 1 ‘ Paper 11 ‘ Paper 111 ‘ Paper IV ‘ Paper V ‘ Paper VI
Software I - HPDBSCAN X X X X

Software IT - FLORIDA X

Software III - PANGAEA X

Software IV - DMT X

Software V - JuML X



Chapter 2

Background

2.1 Data Analysis

In this section the methods and processes for analyzing data is presented in de-
tail in order to empower the reader to better follow the use cases introduced in
Chapter [3] As a matter of fact, the field is so large that only a small portion of
it can be represented here. Therefore, the focus is put on data mining approaches,
in particular clustering, as well as machine learning approaches, which have di-
rectly or indirectly been used in the problems’ analysis. Machine learning enables
the purely data-driven construction of systems without explicit programming. This
means that the inner workings, or in abstract terms the system’s function, is purely
derived from patterns within explanatory data. The process of deriving this func-
tion is called training or learning. Generally, learners can be distinguished into a
number of categories based the way they learn and the data analysis task. The
following sections will introduce both concepts briefly.

2.1.1 Learning Approaches

Supervised learning occurs when the pattern, or in jargon ground truth, is known
and provided as additional training input. That is, the learner is trained based on
data samples containing both the attributes, i.e. a vector of descriptive values, and
the labels, i.e. the pattern. A graphic example from biology could be a system that
divides flowers into different species (the label) based on their color, petal sizes and
height (the attribute vector).

Unsupervised learning is performed without any ground truth solely on the at-
tributes of the data samples. This is usually employed for explorative data analysis
and machine learning and results in the grouping or clustering of the data. In order
to be able to tell whether a number of samples belong into one category, their re-
semblance is judged based on a similarity function, which is maximized during the
learning. Reusing the flower example mentioned above, each of the species would
ideally be part of a separate group after an unsupervised training.
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The last category is reinforcement learning. It also does not require any labels.
However, in contrast to unsupervised learning, the system would not consider sin-
gle instances, but the problem as a whole. A reinforcement learner would simply
propose a solution, initially often a random one, that would be assessed using a
punishment-and-reward-function. Based on the received feedback, the reinforce-
ment learner will memorize good behavior, i.e. the correct parts of the answer, and
forget incorrect labeling.

2.1.2 Learning Tasks

4,000
»
081 X X5 GE
3,000
0.6
0.6 fFx % AN B S
s

X %
2,000 AR X X x
e ﬁéﬁ BB X XX xx X% 04

X B

e e

1,000 04F 0 A sl KEAL .

oo ab0 . 'S iAAZ o Anp b X 0.2
N X e £
. Q. R A A

-20 20 40 60 1 2 3 4 0.2 0.4 0.6 0.8 1
(a) Regression (b) Classification (c) Clustering

Figure 2.1: Visualization of the major data analysis tasks.

The second major distinction between different machine learning systems can
be made based on the desired output. The most general form of a learning tasks
is the so-called regression and refers to learning an arbitrarily shaped function.
In line with that, the learning system shall be able to determine for any given
domain value = the respective codomain value Y. In practice this will usually be
an approximation, or prediction, and is denoted as Y. Typically regression is used
in forecasting problems, e.g. stock market or weather prediction. Common models
for performing regression are ordinary least squares [17], logistic regression [I8],
support vector regression [I9] and artificial Neural Network (NN) [20]. For time
series regression there are additional models such as Auto-Regressive Integrated
Movwing-Average (ARIMA) [2I] or recurrent neural networks [22].

Classification is a special form of regression problem, in which a function, often
piecewise, has to be found that separates classes of samples from each other, usually
based on the provided labels. The simplest form of classification is binary, where
only two classes exist—i.e. belongs to a given class or not. This basic classifier
can then be extended to perform multiclass classification [23]. There are different
approaches to do so, such as one-versus-one or one-versus-all for example. They
are founded in building binary classifiers that distinguish one particular against all
other available, but differ in the way the victor is selected. Common classification
models are decision trees [24], random forests [25] (decision tree ensembles), Support
Vector Machine (SVM) [26] and NN.

Outlier or anomaly detection is a specific form of classification, in which excep-
tional samples very different or distant from the remainder of the data are to be
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found. Such a problem can be solved using supervised classification as introduced
above, but can also be identified based on the outliers’ dissimilarities towards the
other samples. This leads to the third major algorithm group, clustering, which is
about identifying groups by maximizing the intra-group similarity and the inter-
group dissimilarity. Well-known clustering algorithms are hierarchical clustering,
k-means [27], DBSCAN [28] and Self-Organizing Map (SOM) [29]. Figure de-
picts all of the introduced learning approaches and tasks graphically.

2.1.3 Data Analysis Process

There are a number of standard processes for approaching data-driven analysis
problems. The three major ones are Knowledge Discovery in Databases (KDD) [30],
Sample-Explore-Modify-Model-Assess (SEMMA) [31] and CRoss Industry Standard
Process for Data Mining (CRISP-DM) [32]. Despite small differences, all of these
include the same conceptual steps shown below [33]. Based on these steps, one is
able to identify the opportunities assisting the analysis process through technical
means, from which requirements for the data analysis framework can be derived.

Selection is the process of understanding the domain problem, the data aspects
and formats involved in the data analysis challenge. Based on this a suitable
dataset needs to be obtained through collection or selection of already existing
samples.

Exploration is initially required to understand the properties of the data. For this
visualization of the data is necessary as well as the computation of descriptive
statistical values. Especially data quality problems need to be uncovered here,
such as noise or missing values. Based on that a first model hypothesis can
be defined.

Preprocessing is a technical step in which the data quality is improved to the
point it can be utilized for model construction. This involves, among others,
data interpolation, outlier removal and noise reduction, duplicate elimina-
tion, feature engineering, data augmentation and class imbalance correction
through synthetization. In practice, data preprocessing is an iterative ap-
proach that is revisited multiple times through the entire analysis.

Analysis is the step of the actual model construction. Due to the identified analy-
sis task an appropriate supervised or unsupervised data analysis algorithm is
selected and trained to approximate the problem as good as possible. Similar
to data preprocessing, this is an iterative step, fine-tuning and optimizing the
devised stochastic model.

Evaluation is the step of assessing the model’s performance based on some mea-
sure, like the prediction accuracy for example, compared to the desired anal-
ysis task. Based on that, new models or variants of it need to be considered.
An essential part of the evaluation is the fine-tuning of hyperparameters as
well as the estimation of its generalization.

11
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Deployment is the phase of setting up the selected model for productive use. This
is usually a technical process involving the installation of suitable execution
environments, development efforts to scale the analysis pipeline to production
data sizes and continuous administration and maintenance.

2.2 High-Performance Computing

In this section a background in the field of HPC is introduced. The main focus is
put on explaining the technical aspects of modern clusters and supercomputers to
explain why parallel and scalable data analysis algorithms have to fulfill certain
technical requirements to make them usable and efficient on these systems. There-
fore Subsection introduces hardware related topics, while Subsection [2.2.2] is
presenting programming models available for the implementation of algorithms on
top of the explained computer systems.

2.2.1 System Architectures

Modern HPC systems and supercomputers are a potpourri of different designs, ar-
chitectures and hardware platforms. However, some of these are more wide-spread
and dominant than others. In particular, these are usually inherently parallel, het-
erogeneous, modularised commodity cluster systems with multi-core processors and
optional accelerators. Figure depicts these common architectures or their parts
schematically.

The most basic component of a cluster is a so-called node. This is a singular
multi-core or -processor computer as can be seen in Figure Each node has a
number of processors, which in turn have several cores, representing the most basic
computation unit. Cores can exchange information with each other via an on-chip
network and a shared memory accessible via a hierarchy of intermediary, faster
to access caches E An arbitrary memory entry can potentially reside in multiple
caches of different cores at once. In order to prevent data races, it must be kept
consistent across all cores, realized by a so-called cache-coherence-protocol. Finally,
the shared memory is nowadays often divided into parts that can be either slower
or faster accessed by a given core or processor. Such an approach is called Non-
Uniform Memory Access (NUMA), opposed to the traditional Uniform Memory
Access (UMA). Processors in shared memory architectures usually work according
to the Multiple-Instructions-Multiple-Data (MIMD) principle [34]. This means that
each processor can execute a different program on different parts of the memory at
any given time, consequently allowing efficient execution of task-parallel workloads.

Also, there is a trend in the last decade to utilize special accelerator hard-
ware. Well-known examples are Field Programmable Gate Array (FPGA), Many-
Integrated-Cores (MIC) or General Purpose Graphics Processing Unit (GPGPU)
technologies. These are usually designed (especially the latter) to work in a Single-
Instruction-Multiple-Data (SIMD) [34] fashion. This means that each of the cores
on the accelerator execute the same operation at the same time, often in a lockstep

1Usually denoted by a capital L for the level and a number for the hierarchy distance to the
core.
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Figure 2.2: Common architectures of high-performance computing systems.
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mode. In line with that, independent and embarrassingly parallel vector operations,
such as for example stencils or tensor operators, are the preferred computational
problem to be solved using accelerators. Fitting for this use case, the number of pro-
cessing units or cores is usually very high, compared to the previously introduced
processor-based shared memory design, with core counts ranging from dozens to
hundreds or thousands (depicted as grid in Figure , though they are individ-
ually less versatile and fast. An accelerator is usually fed data from the shared
memory via the bus of the so-called host processor and has to be explicitly trans-
ferred between the two devices. This adds significant overhead due to bus and
memory bandwidth limitations, if repeatedly done, and should be avoided in fa-
vor of more computations on the accelerator. Distinct accelerator applications in
data-analysis include, among others, computation of sample statistics, preprocess-
ing and normalization of the datasets and matrix and tensor multiplications in
neural networks.

The scalability of shared memory designs or accelerators has inherent bound-
aries. This can be attributed, for instance, to overheads in synchronization, physical
heat development on the dies, signal conductor delays or, particularly for acceler-
ators, unfitting computational problems. Therefore, in order to further increase
computational processing performance and capabilities, one needs to scale out hor-
izontally. One can usually achieve this in most modern HPC and supercomputer
systems by connecting multiple nodes using an interconnect with one another into
a computer cluster system. Due to the separate memories this is also called a dis-
tributed memory system (a schematic depiction is displayed in Figure . In the
past the individual nodes used to be homogeneous, i.e., of the same kind. However,
nowadays systems tend to be heterogeneous, meaning nodes with different capabil-
ities are mixed within the system. For example, there could be nodes with more or
less local memory, different processor counts or additional built-in accelerators. The
storage system, or simply the hard disk, can be either node-local or, especially for
larger systems, a separate entity that is attached to the interconnect. This allows
the independent scaling of the I/O system and enables parallel data access.

2.2.2 Programming Models

The de-facto standard for programming distributed memory systems in the context
of HPC is the Message Passing Interface (MPI) [35]. It is an API with over 500
functions that define a set of communication primitives to pass binary data. They
can be roughly divided into two categories.

Firstly, there are point-to-point message passing operations between particular
nodes, such as send and receive. Both the sender and recipient are uniquely identi-
fied by a contiguously enumerated ID for a node, called rank, in the interval [0, size],
with size being the total number of nodes. This information is encapsulated into
handle for the nodes set that is called a communicator.

Secondly, there are collective operations. These are many-to-one or many-to-
many operations that can be implemented efficiently across larger node counts,
using communication trees for example, and are the major reason for MPI’s suc-
cess in HPC. Examples for collective operations are reduction operations, data
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broadcasts or gathering. The actual low-level networking library code needs to be
provided by the implenter of the particular MPI stack and needs to be tailored
to the used interconnect. Prominent interconnect representatives are for example
MyriNet [36], Infiniband [37] or Omni-Path [38].

Parallel programming models for shared memory architectures are slightly more
diverse, but have matured to a point that only a small number of major ones
exist. First and foremost, there is traditional thread-based parallelization. Being
an Operating System (OS) resource concept, each of them provide their own API
for creating and managing threads. Higher-level languages, such as Python, and as
of late also traditional languages such as C++, offer OS-independent abstractions.
The typical parallelization approach is to spawn a single thread per core and assign
it a part or sub-task of the problem, e.g. chunks of an input vector or tensor an
operation needs to be applied to.

Due to the fact that this pattern is so common, another, annotation-based pro-
gramming model called Open Multiprocessing (OpenMP) [39] has established itself.
It encapsulates these patterns usually in a few lines of code annotations, which are
in turn translated by the supporting compiler into parallel code, mostly based on
threads that are spawned from the main or master execution thread. Moreover,
OpenMP also assists with the synchronization by providing atomic variables, bar-
riers and so forth. A combination of the OpenMP and MPI programming models
in a single application is often referred to as a hybrid.

Lately, OpenMP has also adopted an extension that allows to program ac-
celerators. This adds to the large potpourri of programming models and lan-
guages designed for these specialized architectures. Alternatives for annotation-
based parallelization with OpenMP are Open Hybrid Multicore Parallel Program-
ming (OpenHMPP) [40] and Open Accelerators (OpenACC) [4I], following the
same API design principles. An programmatic alternative to that is Open Comput-
ing Language (OpenCL) [42], which allows the implementation of more fine granular
parallelization strategies. In principle it can be used for any kind of acceleration
hardware, given that a supporting compiler exists, and is in practice often used
for GPGPUs. This makes OpenCL the major alternative to Nvidia’s proprietary
Compute Unified Device Architecture (CUDA) GPGPU [43] programming model.
The latter is highly optimized for, but also restricted to the companies’ hardware.
It enjoys widespread use due to its early release, the widespread of Nvidia GPGPUs
in HPC and its lean API, compared to OpenCL, because of the narrower focus.
However, a number of vendors, e.g. Intel and Altera, have picked up OpenCL as a
standard programming model for their MICs [44] and FPGAs respectively, making
it highly versatile.
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It should have become clear that in order to efficiently exploit the capabilities of
modern HPC systems, the development of hybrid applications, employing multiple
programming models at once, is necessary. As a result the development time and
complexity increases, especially with respect to portability to new HPC systems
and technologies. Therefore, a number of wrapper technologies and libraries start
to appear. The two major ones being ArrayFire [45] and TensorFlow [46]. These
do not only encapsulate the complexity of the different programming models and
automatically select the right operation kernel depending on the selected execution
device, but are also more abstract in terms of the offered API. This means they
include already parallelized, high-level vector operations such as statistics, stencil
filters or arithmetical operators. They can be seen as more feature-complete basic
linear algebra libraries, which also offers a number of highly optimized routines
needed in data analysis. While they are a solid foundation to develop on single
heterogeneous nodes, one needs to also take into account that they cannot efficiently
exploit distributed computing resources and in line with that the capabilities of
modern HPC systems. Therefore, a truly large-scale data analysis framework in
the context of HPC needs to push the boundaries further and also utilize MPI to
allow stronger, horizontal scaling. As stated in RQ four, one major task is to design
and develop such a toolkit, if possible. Therefore, it follows that it also needs to
utilize the presented parallel programming models.
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Summary of the Publications

3.1 Paperl: On Scalable Data Mining Techniques for Earth
Science

M. Go6tz, M. Richerzhagen, C. Bodenstein, G. Cavallaro, P. Glock, M. Riedel,
Morris, J. A. Benediktsson, “On Scalable Data Mining Techniques for Earth Sci-
ence”, in the journal Elsevier Procedia Computer Science, 51(C), pp. 2188-2197,
2015.

This publication contributes to the first research question by surveying the cur-
rent state of the art in parallel libraries and tooling for data analysis with a focus
on FEarth Sciences.

This paper presents a technology survey of non-commercial, open-source tools
and libraries for two different data analysis algorithms: non-linear SVMs and DB-
SCAN. In line with that, their suitability to handle current and future Big Data
datasets have been evaluated (contribution to RQ 1). This includes, among other
things, the possibility to deploy the implementations on HPC systems. Hence, a
number of technical capabilities have been evaluated, such as the inclusion of par-
allel I/0, the degree of parallelization and the correctness of the computed results.

The first part of the publication is concerned with parallel SVMs [26]. Only
three out of the twelve evaluated candidate tools have parallel implementations to
begin with and were therefore investigated futher. The Apache Spark-based imple-
mentation in MLIib [47] is one of them. It is severely limited in analysis capability,
due to the fact that it only supports linear kernel functions. This means that clas-
sification problems with a non-linearly separable decision boundary, i.e. interlaced
instances of different classes, cannot be solved. As a result, MLIlib is unable to
construct effective classification models for typical real-world applications that are
especially predominant in science. The other two candidates are GPU LibSVM [48],
which only supports CUDA devices, and an MPI-based solution called 7SVM [49],
which is targeting CPUs. Both of them posses the possibility to construct non-linear
models through the implementation of advanced kernel functions.

17



CHAPTER 3. SUMMARY OF THE PUBLICATIONS

Based on its dissemination, the latter has been selected for further optimiza-
tion. In particular, the memory access and communication pattern—and through
that workload balancing—were sub-optimal. In the publication an improved access
strategy is proposed, so that the number of computations is equal on each of the
processing nodes. A detailed explanation of this strategy and an implementation of
this concept is given in the bachelor thesis of Matthias Richerzhagen Richerzhagen
[50], supervised by the author.

(a) Raw data. (b) Objects segmented using DBSCAN.

Figure 3.1: Example point cloud from the old-town of Bremen.

The second set of surveyed implementation concerns the unsupervised clustering
algorithm DBSCAN (see also Section , motivated by an object segmentation
use case in multi-dimensional point clouds. Point clouds are point-wise recordings
of spatial locations in a given coordinate space, usually the euclidean. They are
often used to represent objects or surfaces like landmasses or areas. The recorded
values include the spatial three-dimensional vector components x, y and z, as well as
potentially additional values such as parts of the electro-magnetic spectrum, like
heat radiation, for example. Analysis of the data usually try to reconstruct and
segment objects present in reality [51]. Figure depicts a point cloud of the old
town of Bremen, Germany, captured using an aerial drone scan as well as the result
of a clustering-based object segmentation of the buildings. The survey shows that
only a limit set of data analysis libraries support a DBSCAN-based analysis to begin
with, and if so, are not well parallelized. In particular for HPC technology stacks,
there is only one implementation available called PDSDBSCAN [52], which has
fundamental flaws in the utilization of memory. This was the motivation to review
the parallelization strategy, resulting in HPDBSCAN presented in Section [3.2

The publication concludes that the current situation in availability and stability
of scalable data analysis tools needs improvement. Based on the two presented
algorithm examples, which are both in widespread use in applications, it is argued
that the ability to process large data sets is limited. Even though data analysis is,
in terms of resource utilization, still far behind traditional HPC applications, like
numerical simulations, one can expect an increasing demand. Therefore, scalable
and parallel algorithm implementation are required and engineering and research
efforts should be increased in this field.
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3.2 Paper II: HPDBSCAN—Highly Parallel DBSCAN

M. Géotz, C. Bodenstein, M. Riedel, “HPDBSCAN: Highly Parallel DBSCAN”,
in ACM Proceedings of the Workshop on Machine Learning in High-Performance
Computing Environments, The International Conference for High Performance
Computing, Networking, Storage and Analysis, Austin, USA, pp. 2:1-2:10, 2015.

This publication contributes to the second research questions as it explains a
scalable parallelization strategy for DBSCAN, which can be used, for example, for
point cloud analysis in the FEarth Sciences. Moreover, it contributes to the fourth
research question as it utilizes recurring components, which will be explained later
in Section [3.5 and Chapter [], that can be abstracted into a generalized analysis
framewortk.

The following section introduces the original DBSCAN clustering algorithm first.
Afterwards, Section [3.2.2] presents the parallelization strategy envisioned in the
context of this thesis in details.

3.2.1 DBSCAN

Figure 3.2: Example DBSCAN clustering with minPoints = 4.

In [1996| Ester et al. [28] introduced a novel density-based clustering algorithm
group by formulating DBSCAN. Its main principle is to recursively expand clus-
ters through the evaluation of a spatial density criteria. For this, it scans the entire
database of points and evaluates for each of them in a search radius € how many
neighboring points exist using a given distance function dist. If the density crite-
ria minPoints for the number of neighbors is satisfied, then the current point is
a core point of a cluster. This cluster may be an entirely new set or is absorbed
by the cluster of a neighboring core point within the search radius. If a point is
neither absorbed nor fulfills the core criteria itself, it is marked as noise. DBSCAN
has a number of advantageous properties compared to other clustering algorithms,
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such as k-means [27]. First, it has a lower number of intuitively selectable parame-
ters, which can often be easily determined for lower-dimensional problems. Second,
DBSCAN is able to identify a previously unknown number of arbitrarily shaped
clusters. This is a powerful analysis property as it reduces the number of potentially
hard-to-determine model parameters. Finally, the algorithm is robust towards noise
due to a built-in filtering mechanism, enabling the analysis of datasets with strong
outliers. Especially the last property is beneficial for actual real-world analysis as
the use cases in Section and are going to demonstrate. Figure depicts
an exemplary DBSCAN clustering.

3.2.2 Parallelization Strategy

Paper II presents a parallelization strategy for DBSCAN called HPDBSCAN (con-
tributing to RQ 2). Its core concept follows a divide-and-conquer-approach: the
entire dataset is initially equally divided among all available processing cores, then
a local partial DBSCAN result is computed, which can then successively merged
into a correct global clustering.

In skewed datasets, the spatial partition should not be carried out in regular
intervals, because the point density of the spatial chunks may be highly imbalanced
and result in an inferior workload-balance. Therefore, the publication proposes a
split heuristic based on the number of compute-intensive evaluations of the dist
function. For this, each point is uniquely associated with an e-sized spatial cell of
an overlayed, disjoint hypergrid index structure. Each cell receives a score—the sum
of the number of points within the cell and its direct neighbors, equal to the dist
invocations—which is instead evenly divided among the available processing cores.
This requires to sort and redistribute the dataset in order to maintain full spatial
information of a contiguous data chunk. Furthermore, a small overlap (halo) of a
single layer of e-cells is necessary to avoid communication with processing cores,
clustering the immediately adjacent chunks of the spatial decomposition. Figure|3.3
shows an example of the explained indexing and score-based decomposition step.

processor 1 processor 2 processor 1 processor 2
©) )
8|28 24 () 2 18 <% 24 6 2
O ol O © O O OO0 @)
oPo [ 7 5
16 O!)zoo 54 3Q 16 ogzoo 54 () 3 Q
(@] O
0o g _© 0 05 g o ©
36_|Oes | Oz 1 O 2 56/ 4Q6s | O 1 O 2
olg g Oig 9
S(COStyrocessor ) =368 3(COStprocessor 2)=8 13(COStprocessor ) =190 S(COStprucessor 2)=186
(a) Naive strategy. (b) Proposed strategy.

Figure 3.3: Spatial domain decomposition strategies for parallelizing DBSCAN.
The partition boundary between the processors is shown as a dashed line and the
overlapping halo cells in a hatched pattern.

After locally computing the DBSCAN clustering, the partial results need to be
merged. This is achieved by finding differences in the cluster labeling in the halos
of the domain decomposition. Through transitive cluster ID remapping rules and
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a local recoloring step on each processor, the distributed DBSCAN computation
results in an equal result compared to a single-threaded execution.

The proposed parallel algorithm is suitable for the execution on both shared-
and distributed memory systems and has been implemented as a OpenMP and
MPT hybrid in C++. The source code is publicly available and is referenced in the
[List of Publications] A thorough evaluation of strong and weak scaling properties
as well the memory consumption properties of HPDBSCAN has been carried out.
The parallelized algorithm outperforms the then state-of-the-art alternative PDS-
DBSCAN [52] in terms of computation time, strong and weak scaling and most

importantly memory consumption. Figure [3.4] depicts the obtained experimental
results.
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Figure 3.4: Experimental evaluation of HPDBSCAN'’s performance.
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3.3 Paper lll: Automatic Object Detection Using DBSCAN
for Counting Intoxicated Flies in the FLORIDA Assay.

C. Bodenstein, M G6tz, A. Jansen, H. Scholz, M. Riedel, “Automatic Object De-
tection Using DBSCAN for Counting Intoxicated Flies in the FLORIDA Assay”,
in Proceedings of 15th IEEE International Conference on Machine Learning and
Applications (ICMLA ), Los Angeles, USA, pp. 746-751, 2016.

This publication contributes to the third research question in that it demon-
strates the applicability of HPDBSCAN for problems outside the Farth Sciences.
Furthermore, the reoccurring usage of grid search hyper parameter optimization
demonstrates the need for an abstracted implementation in a data analysis library,
directly contributing to Research Question Four.

The FLORIDA assay is an experiment currently researched on by the Biological
Department at the University of Cologne. In order to be able to understand the
involved data analysis problem, the assay is introduced first, before the proposed
analysis pipeline is presented later in Section [3.3.2

3.3.1 The FLORIDA Assay

The FLORIDA assay is concerned with identifying the impact of genetic code and
brain structures responsible for alcohol tolerance and, by extension, abuse [54].
Due to similarities in behavior and genetic code compared to humans, the common
vinegar fly is used as experimental animal [55]. Genetically altered individuals are
exposed to vaporized alcohol before their loss of righting reflex, an indicator for
intoxication, is tested. For this, the flies’ experimentation container is shaken and
observed over time. Vinegar flies with an intoxication level below a certain threshold
will automatically fly up towards the lid. Individuals too heavily affected by the
alcohol instead are going to gather at the bottom of the container. Based on these
two behaviors, a correlation between gene alterations and alcohol tolerance can be
derived.

3.3.2 Depth-Separated Image Segmentation

Until recently, these experiments have been conducted manually by laboratory
assistants counting the sober and intoxicated flies. This is a error prone and expen-
sive process, which this publication tries to overcome. In this work, an automatic
hard- and software pipeline testing the righting reflex in addition to segmenting
and counting the intoxicated individuals is proposed. The experimentation appa-
ratus consists of a suspended, perforated plate for the vials, an SLR camera taking
images, an electric engine instigating the righting reflex, a backlight and finally a
computer connecting the individual parts. Figure depicts a schematic overview
of the proposed experimentation apparatus.

A software specifically designed for the experiment performs the actual analysis.
It can be summarized as an image recognition and segmentation problem with scale
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Figure 3.5: Schematic of the FLORIDA assay experiment’s hardware setup.

variance—i.e. distance to the focus and image depth separation matters. Traditional
techniques like Scale-Invariant Feature Transform (SIFT) [56] are not applicable,
as they would not be able to distinguish flies at the top from the ones at the
bottom of the container due to the scale invariant properties of the algorithm.
Fully supervised learning approaches, based on neural networks for example [57],
are possible but require a labor-intensive and tedious label creation process.

(a) Original data. (b) Threshold image. (c) Clustered results.

Figure 3.6: Processing stages of the FLORIDA assay depth-perception problem.

Therefore, Paper III proposes a semi-supervised approach, estimating fly count
within the experimentation vials using clustering approaches. For this, the vials
are first green-screened, then a binary threshold image is calculated and finally the
pixels clustered using HPDBSCAN (contribution to RQ 3). Only flies that are close
to the camera will appear as a distinct cluster due to their size (and therefore pixel
density) and result in a counted fly. In comparison to existing image segmentation
solutions based on clustering [58], this has the major advantage of being robust to
noise, not having to know the cluster count—i.e. the analysis task.

The parameters for the analysis model can in principle be set in the software’s
interface along other experimentation parameters, such as the vial shaking time
and so forth. However, they have been optimized through a MPI-parallelized hyper
parameter search (contribution to RQ 4), resulting in the experiments default set-
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tings. Thereby, the analysis has achieved a mean-squared-error of 1.745, i.e. it is on
average off by 1.745 flies in comparison to reality. Figure depicts the described
analysis stages, which are also visualized for the analysts in the software’s graphical
user interface. The collaboration partner, the Biological Department at the Uni-
versity of Cologne, has deployed the hardware and analysis script for production
in the FLORIDA assay and is using it on a daily basis for months now.
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3.4 Paper IV: Automatic Water Mixing Event Identification
in the Koljo Fjord Observatory Data

M. G6tz, M. Kononets, C. Bodenstein, M. Riedel, M. Book, O. P. Palsson, “Au-
tomatic Water Mixing Event Identification in the Koljo Fjord Observatory Data”,
submitted to International Journal of Data Science and Analytics.

This publication contributes to the second research questions as it shows the vi-
ability for an abstracted, parallel grid search optimizer for Earth Science models. In
addition to that, it shows that standard analysis algorithm, in this case DBSCAN,
should be bundled in a data analysis library.

The Koljo fjord observatory is an oceanographic experiment hosted by the Uni-
versity of Gothenburg, Sweden. Section will introduce its structure and ob-
servation task, before the proposed analysis solution envisioned in this paper is
presented in Section [3.4.2

3.4.1 Koljo Fjord Observatory

The Koljo fjord observatory [59] is located in the eponymous waterway in Sweden. It
has a threefold objective. First, testing prototypical measurement technology, sec-
ond, monitoring of the fjord’s health, and third, the study of oceanographic cycles
of water exchange between the ocean and rivers. Using anchored underwater sen-
sor equipment the observatory measures various properties of the contained water,
such as temperature, salinity, oxygenation and others, which allow the subsequent
analysis. One particular problem of interest are so-called water mixing events, i.e.
periods of time when water from the ocean or the connected rivers flow into the
fjord and change its water properties.

3G land station

Subsurface buoy

Seaguard 100V DC
String System main cable

(a) Location of the fjord. (b) Schematics of observatory.

Figure 3.7: The Koljo fjord observatory.
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Every half hour the sensors are being read out, resulting in a multi-variate
time series data set that has started collection in 2011. Figure depicts the loca-
tions and a schematic overview of the Kolj6 fjord observatory including the sensors
attached to the string system. This analysis is the first to consider open water mix-
ing event detection, a much more difficult analysis task due to the dynamic system
and amounts of noise, compared to that of the previously investigated closed water
systems [60), 61].

3.4.2 Water Mixing Event Detection

The analysis goal is basically an outlier detection problem in multi-variate time
series data. A supervised learning approach is not feasible, because there are no
exact per-sample labels. There is still no consensus among domain scientists about
how to define a water mixing event start and end. Instead, only the fuzzy center
points of the events are known and can be used for validation. This has resulted in
the utilization of an unsupervised learning models based on clustering.

After extensive preprocessing, in which the data gaps have been interpolated
and smoothed using median and moving-average filters [62], the model suggested in
Equation has been applied, with A¢ being the d-step discrete gradient [63], o
the standard deviations, ¢ a confidence interval factor and X the signals. It detects
strong peaks or drops in the signals via the discrete time gradient, marks them as
univariate outliers if outside a certain confidence interval and subsequently clusters
them using HPDBSCAN (contribution to RQ 2). Given that a cluster spans a
water mixing event’s center point, the event is considered detected.

Due to the high imbalance of false-negatives (regular days) compared to true-
positives (actual mixing events) the model’s performance needs to be measured
accordingly. For this, the Fl-measure [64] has been selected, as can be seen in
Equation , the harmonic mean of precision and recall [65]. The model’s hyper
parameters needed to be optimized, which has been done in a data-parallel fashion
using MPT (contribution to RQ 4) via the grid-search method. The results can be
seen in Figure[3.8] where the model’s hyper parameters are related to the resulting
performance measure, exposing a crest of optimal values.

Events = DBSCAN ({t|Vz; € X : |A%y| > ¢ 0(X)}, e, minPoints) (3.1)

Fl— 94 prec?s?on x recall
precision + recall
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(a) Training Data. (b) Test Data.

Figure 3.8: F1 measure surface for the experimental parameters € and minPoints.

Using the proposed analysis method, an F1-measure of 0.885—with a precision
of 0.931 and a recall of 0.843—on unseen test data could be achieved. This analysis
is so effective, that the University of Gothenburg, the observatory operator, has
begun to deploy the analysis in larger productive use.
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3.5 Paper V: Parallel Computation of Component Trees on
Distributed Memory Machines

M. Gotz, G. Cavallaro, T. Géraud, M. Book, M. Riedel, “Parallel Computation of
Component Trees on Distributed Memory Machines”, submitted to Transactions
on Parallel and Distributed Systems.

This publication contributes to the second research question as it shows how a
distributed-memory parallelized maz-tree algorithm improves the large-scale anal-
ysis of land-cover type classification tasks. Moreover, it contributes to the fourth
research questions by demonstrating the recurring patterns of data decomposition
and application of sorting routines previously presented in Section [3.3

The parallel computation of component trees in distributed memory environ-
ments is a necessary step in order to enable large-scale feature-engineering for land
cover type classification problems. The next two sections are going to introduce
the classification problem and, based on that, how features can be derived using
component trees, before Section [3.5.3| introduces the contributed parallelization
strategy.

3.5.1 Land Cover Type Classification
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(a) Raw data. (b) Land cover types labels.

Figure 3.9: Aerial image of the city of Rome and its land cover types.

Land cover type classification is the problem of assigning a land cover, e.g. road,
street, river, etc., to every pixel of a remotely sensed images. These image are
recorded by so-called scanning systems mounted to planes or satellites that record
the electro-magnetic reflections off of Earths’ surface in a push-broom fashion,
perpendicular to the flight direction. An example of an aerial image and the corre-
sponding land cover types is depicted in Figure|3.9
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The automated land cover type classification is, for example, used to generate
maps, to perform urban planning, catastrophe monitoring and management as
well as object identifications in search and rescue and the military. Nowadays,
land cover type classification problems are usually treated as supervised learning
problem. Probabilistic models based on machine learning, such as Markov random
fields [66], SVMs [67] and neural networks [68] [69] form the state of the art with
highest prediction accuracy. For the land cover type classification task depicted
in Figure a one-versus-one [23] multi-class soft-margin kernel SVM [26] of the
form shown in Equation has been used—with NV being the number of samples,
¢ a particular sample or instance, § the prediction, = the input data, w a weight
matrix to be learned and b the intercept bias and k£ a non-linear kernel function,
e.g. Radial Basis Function (RBF).

N
Q:Zwi*xi*k(:r,xi)er (3.3)

3.5.2 Feature Engineering and Component Trees

It has been shown that such a classification task can highly profit from feature
engineering [70]. This is a process by which the raw data—i.e. the spectral im-
age pixels—is enriched with artificially created additional bands that include for
example spatial context of neighboring pixels. One way to do so is utilizing the
mathematical morphology framework and attribute filters. This is a subbranch of
mathematics that is concerned with image processing and the extraction of struc-
tural and topological information. Component trees is a particular set of algorithm
families for dedicated use on gray-scale imagery. Their core idea is to represent
image flat zones—i.e. adjacent, connected pixels with the same color value—in a
tree, where each level corresponds to a particular gray level of the color depth. The
tree has strict mathematical properties that can be efficiently exploited through fil-
ter operators, transfering the tree, and with that the image, into a more desirable
representation. For example, tree nodes that do not exceed a certain cumulative
area can be considered noise and merged with the parent node in the tree.

Figure[3.10]depicts an exemplary gray-scale image for which a particular compo-
nent tree, called max-tree [71], has been computed. It is a threshold decomposition
of an image, starting at the brightest areas up to the darkest areas. This means
that for each gray level, starting at the highest, the 4-connected components—i.e.
the top, bottom, left and right neighboring pixels—are computed, allowing the
connected component operator to traverse higher-colored pixels. The resulting flat
zones are then connected in the same order into a tree structure, where each zone
points to the next higher-ranking. A formal definition of the max-tree is given in
Equation [72], where CC is equivalent to the connected component operator.
A min-tree is the inverse of a max-tree, where the tree representation is constructed
from the darkest to brightest areas. For practical computation of a min- or max-
tree, an algorithm has to effectively solve two graph theoretical problems: connected
component labeling [73] as well as graph canonization [74].
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gray-level

(a) Original gray-scale im- (b) The 4-connected iso- (¢) The corresponding
age. level regions. max-tree.

Figure 3.10: Example of max-tree representation based on an exemplary image and
its components C¢, with the subscript ¢ being the gray-level and the superscript ¢
the canonical point uniquely identifying the component.

Max-Tree = {CC([Image > A]), A € Pizels} (3.4)

3.5.3 Parallelization Strategy

In Paper V a parallelization strategy for the computation of min- and max-trees
in distributed memory environments is presented. Its core idea follows yet again a
divide-and-conquer-approach, very similar to the paralleliziation strategy applied
in HPDBSCAN presented in Section [3:2] The image is partitioned into equal-sized
chunks with a one pixel wide halo region. Each of the partitions is assigned to a
distinct processing core, which then computes the local max-tree of the partition.
The impartial result is subsequently merged through the resolution of differences
in max-tree of the bordering halo region.

16 1,020
—e— Moschini —e— Moschini
—=— Gotz (shared-memory) —=— Gotz (distributed)

g | —=— Gtz (distributed)

speed up
IS
memory usage in GB

128

1 2 4 8 16 32 1 2 4 8 16 32
number of cores number of cores

(a) Speed-up.
(b) Memory consumption.

Figure 3.11: Experimental evaluation of the distributed max-tree algorithm.
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For this, a novel tuple-based merging scheme is employed, expressing each of
the tree-connections as a directed as well as inverted link between the flat regions.
Iteratively these connections are sorted and merged, i.e. the connected component
established, similar as proposed by [Flick et al.| [(5]. Then it is searched for the
correct parent component or in other words the graph is canonized. Using this
approach the state-of-the-art algorithm has been outperformed in terms of com-
putation time and especially in memory consumption. It also allows for further
scaling due to the exploitation of distributed-memory systems. This is useful for
the analysis of high-resolution images in land cover type classification, but also for
other domains that disallow down-sampling, such as astronomy. Figure [3.11] depicts
the achieved results.
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3.6 Paper VI: Support Software Engineering Practices in
the Development of Data-Intensive HPC Applications
with the JuML Framework

M Gotz, M. Book, C. Bodenstein, M. Riedel, “Supporting Software Engineering
Practices in the Development of Data-Intensive HPC Applications with the JuML
Framework”, in ACM Proceedings of the International Workshop on Software Engi-
neering for High Performance Computing in Computational and Data-Enabled Sci-
ence and Engineering, The International Conference for High Performance Com-
puting, Networking, Storage and Analysis, Denver, USA, pp. 1-8, 2017.

This paper contributes to the fourth research question as it presents the require-
ments and structural components needed for a data analysis framework targeting
HPC systems. Its prototypical implementation is already applied in the field and
shows promising scalability results.

In Paper VI the Juelich Machine Learning Library is introduced—a data analy-
sis and machine learning library and programming framework designed for hetero-
geneous HPC systems (contribution to RQ 4). It is the result of the requirements
extracted from the practically analyzed use cases as well as an extensive literature
and framework study (see also Section . JuML’s main features include readily
implemented, scalable standard machine learning algorithms, such as k-means or
artificial neural networks, a distributed data load, and storage access abstraction
that employs lazy loading strategies. The latter is designed with parallel file sys-
tems in mind and therefore utilizes the Hierarchical Data Format 5 (HDF5) [76],
which is widely used in HPC, as I/O format of choice. Built-in routines allow to
chunk computational workloads, here the data items, and also enables the access
to halos—all selected by the processing algorithm.

Moreover, JuML has the capability to execute compute kernels on traditional
CPUs as well as accelerators such as GPGPUs or OpenCL-capable FPGAs. This is
achieved by employing ArrayFire as numerical and tensor computation library. Ar-
rayFire has vectorized, single-threaded, OpenMP-, OpenCL- and CUDA-parallelized
implementations of basic mathematical functions, such as matrix summations, mul-
tiplications, etc. Using this approach the development of more complex analysis for
heterogeneous computation backends is significantly simplified. However, there is
still a need for detailed attention by the developers to achieve highly effective code
on all of the available execution environments. Therefore, complex, however recur-
ring, low-level routines, such as distributed sorting or class label normalization for
datasets, are pre-implemented as part of JuML’s framework. This does not only
minimize development time for new data analysis algorithms, but also eases the
realization of scalable solutions.

JuML’s core is written in C++ in order to enable low-level code optimizations,
especially with respect to hardware aspects. Via the interface generator SWIG [77]
Python bindings are automatically generated. Being the language of choice in data
analysis, it exposes a familiar programming environment and a simplified API that
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is more suitable for rapid prototyping and a data exploration workflow. Using
SWIG, one could in principle also create interfaces to other languages, such as for
R [78] or Julia [79]. This, however, was not in the scope of this publication.

Instead, it is focused on another main contribution, which is the discussion of
software engineering aspects in the design of an HPC data analysis framework.
Therefore, a strong emphasis is put on unit testing in the context of parallel code,
which is executed on different hardware backends and in distributed environments.
The challenge is to keep all computations numerically stable and deterministic,
independent of the processing platform’s configuration. Therefore, the publication
introduces a self-developed testing toolkit used in line with JuML. It enables the
generation and execution of multiple unit test permutations, taking into account
accelerators, shared- and distributed-memory parallelization. For this the build
system CMake [80] and the testing framework Google Test [81] are employed and
customized for the application use case.

The paper concludes with a performance evaluation of analysis algorithms devel-
oped with JuML. In this case, the land cover type classification use case, introduced
in Section [3.5.1] has been revisited. Using JuML’s neural network implementation,
executed on multiple GPUs, the analysis achieved substantial speed-up while main-
taining the prediction accuracy and code-length. Due to its success, JuML has been
selected as benchmark framework for the data analysis module of the experimen-
tal exascale HPC prototype system DEEP-EST. At the same time, it is also the
conceptual template for the Helmholtz Analytics Framework, a Germany-wide ini-
tiative for the design and implementation of a large-scale data analysis framework,
satisfying the technical needs of the partaking research institutions and their do-
main use cases.

The following Chapter [ scrutinizes JuML and its core design concepts more
detailed. In particular, the data distribution and parallelization strategies are high-
lighted and put into context with a set of proposed general requirements for an HPC
data analysis framework.
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Chapter 4

An HPC Data Analysis
Framework

This chapter lays out the author’s vision of a data analysis framework and algorithm
library, targeting heterogeneous, distributed high-performance computing systems.
The presented design proposition is rooted in the author’s own experience based
on the case studies as well as an extensive literature study. Section reviews
the existing collections of computational solutions commonly in use across the
data analysis domain and the properties relevant to their intended application in
HPC as well as acceptance in the user communities. Commonalities recognized
in the literature, existing software products and own engineering undertakings in
applied studies presented in the publications, resulted in a generalized perspective
on the ways to approach two major types of challenges: (1) data analysis algorithm
parallelization and (2) requirements for a framework enabling applied Big Data
analysis studies.

Despite algorithmic dissimilarities between distinct data processing and analysis
methods, the same uniform internal parallelization strategy applies, given that scal-
ability across the data amount is the prime objective. This parallelization paradigm
is rationalized in Section which outlines the aspects one must consider when
parallelizing such algorithms, as well as ways of addressing them. Following this
paradigm supports further algorithm development not only by providing structure
to the process, but also by identifying recurring basic functions and building ele-
ments, taking away major amounts of otherwise necessary engineering workload.

The principles of reusability and abstraction, which lie at the foundation of
engineering progress, also need to be applied in the data analysis case studies. On
an abstract level, the sequence of intermediate steps is unchanging as given by the
data analysis process highlighted in the background Section Analogously,
the applied methods and concrete algorithms also stem from a set of standard
approaches, such as DBSCAN or SVMs, as exemplified in the publications of the
use case studies and related work in the field of applied data analysis.

Therefore, it is argued that the creation of a framework for, and a library of pre-
implemented parallel and scalable solutions, ready to be used for Big Data analyses
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on HPC systems, is the next logical step. In practice, this framework should allow
analysts to focus on the tasks relevant to their primary field of expertise, rather
than the technical aspects. Therefore, a list of feature requirements for a general-
purpose data analysis framework for heterogeneous HPC systems is presented in
Section [I.3] It points out the essential components, necessary for supporting an
analyst in each step of the data analysis process from start to end.

Finally, the chapter is concluded in Section [£:4] by presenting the Juelich Ma-
chine Learning Library, a prototypical design and implementation of said require-
ments list, translating it into a tangible and usable HPC data analysis framework.

4.1 Related Work

It is widely known that there are already a number of data analysis and machine
learning libraries available. Majority of them, however, are not designed for dealing
with large data amounts, let alone parallelization for accelerators or distributed-
memory systems. Nevertheless, due to their long existence these libraries are pop-
ular and in wide-spread use. A non-exhaustive list can be summarized as follows.

For C++, SHOGUN [82] offers powerful tools for both application scenarios:
general-purpose data analysis and machine learning. Through SHOGUNS’s inter-
face for Python it also supports a more explorative or rapid-prototyping workflow.
The benefits of this interface deserve a particular emphasis, as Python is favored
in the HPC community and specifically also in the field of data analysis. As a
result of broad support and stable interest, this programming language features
a large number of third-party analysis libraries. Among them are, for example,
scikit-learn [83], scipy, numpy [84], as well as pandas [85)].

For Java, the popular WEKA [86] machine learning suite offers a wide variety
of readily available algorithms. Moreover, a graphical user interface enables the
visualization of typical statistics for loaded data sets and can also generate plots.
On the other hand, WEKA suffers from a number of performance limitations in
terms of computation speed and memory consumption.

Finally, R, Matlab and Octave, while being in their essence programming lan-
guages, have comprehensive standard libraries including routines designed for statis-
tics, data analysis and machine learning. Especially in the fields of signal processing
and engineering, these languages are predominant. Similarly to the libraries named
above, the initially designed packages were not made with parallel execution en-
vironments in mind. However, parallel processing capabilities are being added at
the cost of substantial engineering efforts. R, for example, has been recently ex-
tended with MPI bindings, while Matlab has undergone a major update late in
2017, adding GPGPU-accelerated neural network implementations.

Generally, neural networks have seen a large influx of frameworks and libraries in
the last years due to the broadening research and industry interest in deep learning.
Due to the matrix-matrix-multiplication-heavy nature of neural networks, concrete
implementations utilize shared-memory-parallelized vector-operations and acceler-
ators like GPGPUs to speed-up the computation. In the machine learning area,
the three major matrix- and tensor-numerical frameworks, implementing highly
efficiently parallelized operations, are: Google’s TensorFlow [46], Theano [87] and
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Torch [88]. While these tensor frameworks are not strictly limited to neural net-
works, up until now this is the prevalent application domain.

On top of this, there are dedicated neural network and deep learning program-
ming libraries, either utilizing the above numerical frameworks of low-level, math-
ematical operations, or even implementing their own. Keras [89], for example, is
a Python-based project that wraps both, TensorFlow and Theano, as compute
backends, and provides an easy-to-use, high-level API and convenience functions.
A combination of both, a matrix compute engine and high-level neural network
API, can be found in the following frameworks: MXNet [90], Caffe 1 and 2 [91],
(py)Torch [92] and CNTK [93]. A number of these are supported or directly con-
tributed to by major players in the area of machine learning and artificial intel-
ligence, such as Baidu, Facebook, Microsoft and Yahoo, and have been released
mostly within the last two to three years. These frameworks are highly advanced
and even support multi-GPGPUs, and distributed model training and classifica-
tion. One can consider this area saturated with well-established and well-engineered
solutions.

Still, not all data analysis tasks can be tackled efficiently with neural-network-
based machine learning. They require different solutions, the major ones here being
data preprocessing, unsupervised clustering models, tree and ensemble methods,
feature engineering and data augmentation, as well as hyperparameter optimiza-
tion and model validation. Under the consideration of these aspects, including the
provision of pre-implemented parallel and scalable algorithm implementations, the
availability of solutions thins drastically. MLPack [94] is a C++ framework that
offers a variety of these features, but is only selectively shared-memory-parallelized.
Intel’s Data Analytics Acceleration Library (DAAL) is similar in that regard, but of-
fers even more features and additionally Python, R and Matlab bindings. Moreover,
it is able to exploit distributed computational resources when used in conjunction
with map-reduce. Therefore, it can be considered to be a software solution target-
ing HT'C systems not directly usable on HPC systems. The utilization of MPI is in
principle possible as well, but must be custom-developed by the respective DAAL
user.

A notable mention that is purely designed for HTC systems is the MLIlib [47].
It ships with the Apache Spark map-reduce stack. Similar to the previous frame-
works, it contains data analysis models and features outside neural network-based
learning, yet it is highly limited in the complexity of the algorithms due to the
framework’s communication design. This is, for instance, reflected in the fact that
it only supports linear kernel SVMs, or binned decision trees.

As a closing remark, a topic that has not been widely addressed in terms of
available software is hyperparameter optimization. It is expected to become in-
creasingly more relevant in the next years due to the sheer amount of different
model approaches and their flavors [95]. Grid search, the most basic and not very
resource-efficient method, can be easily implemented in an independent, parallel
fashion. However, with the growing number of parameters, it will be necessary
to find effective optimization schemes, based on evolutionary algorithms, particle
swarm optimization, etc. Hyperopt [96] is the prime example for such a distributed
solution based on the NoSQL database MongoDB.
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4.2 Data Analysis Algorithm Parallelization Paradigm

The similarities in the parallelization strategies employed in HPDBSCAN (Sec-
tion and in the distributed max-trees (Section indicate that there is a
more general paradigm in formulating highly scalable parallel data analysis al-
gorithms. Generally, both presented approaches follow a modified version of the
well-known concept of divide-and-conquer algorithms, in that they:

1. Split the problem, here the data set, into two or more sub-problems,

2. solve the subdivided problem using the standard non-parallelized data anal-
ysis kernel, and then

3. recursively merge the partial results, utilizing halos when necessary.

This statement makes two assumptions about the nature of the scalability of
the analysis task at hand. First, the analysis kernel is the time- and computation-
intensive bottleneck, for which the utilization of parallelization is beneficial to begin
with. Second, the data set can be easily decomposed into sensible sub-problems that
can be independently analyzed, and for which a meaningful partial result can be
obtained.

In data analysis and machine learning, the latter assumption, with a few excep-
tions, is often true. The analyzed data sets in question are usually matrices, time
series, images, volumes, batches of these and so forth. Therefore, a decomposition
can be naturally performed along the data’s major dimension, e.g. the matrix rows,
the time axis, or the individual instances in a batch. Consequently, it is possible
to generalize the data partitioning and distribution step in cases where the data is
to be analyzed in parallel using multiple processors or even nodes. Figure il-
lustrates this relationship schematically with an exemplary three-dimensional data
set, decomposed along the major axis, also called samples.

Putting it into the perspective of a general-purpose data analysis framework for
heterogeneous HPC systems, would make it possible to abstractly define, implement
and on-demand utilize a number of predefined data access distribution strategies.
The list of applicable strategies would be as follows: (1) a balanced strategy, where
each processor gets the same amount of data items for homogeneous systems, (2) a
weighted variant of this for heterogeneous compute platforms, where the processors
have different relative computational power, as well as (3) a flavor for each of these
two, additionally providing a halo, easing the ensuing implementation of merging
strategies.

Depending on the data, it might be necessary, after loading the partial data, to
sort, redistribute and balance the data chunk assigned to each of the processors, in
order to avoid further communication and to balance the workload. This is typically
the case for data that is either sparse and highly skewed, or where one processor
does not have complete information within the assigned data chunk. HPDBSCAN
resorts to this approach for spatially dispersed point clouds.

Given that each processor now has a coherent data chunk, it is possible to
compute a partial analysis result of the decomposed data using the standard im-
plementation of the analysis algorithm. As a result, there is no necessity to invest
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Figure 4.1: One-dimensional data decomposition across the samples, including halo
zones in purple and duplicates with a hatched pattern.

engineering efforts into modifying the algorithm itself. The challenging part is to
merge the obtained partial results into a consistent global view across all nodes
(compare to the divide-and-conquer step three). This cannot be done in a gen-
eralized fashion and is inherently dependent on the analysis algorithm that is to
be parallelized. However, there are commonly reappearing sub-problems, such as
sorting, recoloring and so forth, which could be provided by a data analysis frame-
work to assist the implementation of a scalable algorithm. Merging the partial
results might involve a significant data exchange between the processing cores with
highly complex communication patterns. Therefore, the proposed parallelization
paradigm is particularly suitable for HPC systems with high-bandwidth intercon-
nects and flexible message passing capabilities, contrary to HTC approaches [97].

Algorithm I]depicts the pseudo-code of a proposed general scalable data analysis
parallelization paradigm based on the made observations. Following this paradigm
makes it arguably easier to formulate scalable data analysis algorithms, especially
when dedicated for distributed-memory environments. This is supported by the
fact that other well-scaling data analysis algorithms for distributed-memory envi-
ronments, even though not explicitly referring to this paradigm, function this way.
Prominent examples include CascadeSVMs [98], distributed watershed filters [99]
or distributed multi-GPGPU gradient-learning for neural networks [I00]. There-
fore, the presented data distribution strategies, as well as the mentioned low-level
support routines for merging partial results, are essential components for a scal-
able data analysis framework for heterogeneous HPC systems and can therefore be
found on the requirements list in Section
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Algorithm 1 Pseudo-code of the data analysis parallelization paradigm.

1: @parallel
2: procedure parallel — analysis(data_set)

25:

n < number of nodes
r + processor id in range [0, n|
t < number of threads

if Is-MASTER(t) then
partial — data < LoaD-PArTiAL-DATA(data_set, r,n)
halo _sizes <— DEcoMPOsSE-DoMAIN(partial _data,r,n)
halos < Loap-HaLo(data_set, halo _sizes,r,n)

end if

if INcoMPLETE(partial _data) then

\ partial _data, ordering <— SORT-AND-BALANCE(partial _data)
end if
partial _solution <— LocAL-ANALysis-KERNEL(partial _data, halos,t)

partial _rules < REsoLvE-HaLos(halos, partial _solution,r,n)
global rules <~ REDUCE(partial _solution, partial _rules,r,n)
global _solution <— AppLy(global rules,partial _data)

if Is-MasTER(t) then
global _solution <— REDISTRIBUTE(global _solution, order)
Store-REsuLTs(global _solution)

end if

26: end procedure

4.3 Requirements

Based on the data analysis process introduced in Section the properties of
modern HPC systems described in Section [2.2] and the generalized algorithmic
paradigm laid out in Section [I.2] one can derive the requirements for a scalable
data analysis framework for HPC systems as follows.

e The framework should provide an abstracted interface for handling distributed

data sets, which is able to load common HPC data formats, like HDF5 or
netCDF, automatically exploiting parallel I/O. At the same time this entity
must be capable of supporting various common data distribution strategies
based on the applied data analysis algorithm.

A library of standard data analysis and machine learning algorithms used
for studies in use cases is necessary. Among them should be pre-processing
algorithms such as statistics or image filters, unsupervised learning models,
like clustering algorithms, as well as supervised learners, e.g. SVMs, (deep)
neural networks or decision trees.

There should be the possibility to perform automatized hyperparameter opti-
mization of the models, based on grid search in the simplest case, or advanced
strategies, such as evolutionary models, for more complex analysis models.
This naturally includes the provision of appropriate model performance eval-
uation measures such as accuracy, F1 or ROC.
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e The inclusion of high-level, non-verbose language interfaces, such as Python
or R, that support the rapid prototyping workflow in the initial explorative
stages of the data analysis process is desired.

e Such a framework needs to support different common compute backends
present in modern HPC systems. This includes, at the bare minimum, CPUs
and GPGPUs, but additional support for FPGAs and MICs would be bene-
ficial.

e For the implementation of further data analysis algorithms, commonly reap-
pearing components should be pre-implemented in a highly efficient manner.
Examples include class label normalizers, efficient distributed sorting rou-
tines, histogram calculations and data workload balancing.

e Finally, recurring convenience functions outside the main analysis model con-
struction step, such as train- and test-data division, computation of statistics,
or the generation of sliding windows across the data set, would ease and en-
courage the development of analysis programs using the framework.

It should be clarified that in practical analysis applications the data analysts
mainly focus on the four steps: exploration, preprocessing, analysis and evaluation
of the data analysis process. The data collection and product deployment phase is
usually assumed by the collaborating domain scientists. Therefore, these aspects
have not been considered in the definition of the requirements, but might be neces-
sary in distinct real-world scenarios, adding to the requirements for custom cases.

4.4 Juelich Machine Learning Library

The Juelich Machine Learning Library is a prototypical implementation of a data
analysis framework for heterogeneous, distributed HPC systems. While it is not
entirely feature-complete, it addresses all of the devised requirements listed in Sec-
tion In line with them, JuML includes implementation for each of the essen-
tial components to perform full-fledged use case analyses. Section [3.6] has already
briefly summarized the major engineering aspects that have been incorporated in
the framework’s design, published in Paper VI. However, JuML’s general structure
and intended workflow, which shall be the subject of this section, has not yet been
portrayed.

The central entity a data analyst works with when using JuML is the Dataset
class (see UML class diagram in Figure. It enables to load, store and transform
data. Every preprocessing step and data analysis algorithm receives a Dataset
object as input and conversely generates one as output. This enables analysts to
actively think in terms of data flows, while at the same time presenting framework
developers with a standard data container abstraction. Generally, a Dataset can
be thought of as an abstract handle to the actual underlying data, which may very
well be distributed across multiple processing nodes.
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+fit (in data :Dataset, labels :Dataset) :void
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Artificial Neural
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+accuracy (in data :Dataset, in labels :Dataset) :double
Gaussian Naive MPI

—

Distance

Balanced
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Figure 4.2: UML class diagram [I

of JuML’s system structure.
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A Dataset object can be initialized either from a pointer local to the memory
of the processor, or from a data Setﬂ within an HDF5 file. The choice for HDF5 is
motivated by the more wide-spread use of this format in the examined application
use cases, compared to other formats like netCDF, as well as its support in other
data analysis frameworks, e.g. Keras. Generally, the latter data access strategy
using HDF5 is preferred over the raw data ingestion, because it allows to delay
the decision how the data needs to be distributed until a particular algorithm
is executed on it. Using this lazy loading approach, JuML only requires to store
the file and HDF5 data set path, up until an algorithm directly chooses a correct
domain decomposition strategy (see also Section, without having to potentially
redistribute the data like in the pointer-case. In the current implementation state
JuML applies the lazy loading feature, but only supports the simplest equi-chunked
distribution strategy without halos.

Internally, the data is then converted into tensor data structures offered by the
ArrayFire numerical library, enabling the computation on heterogeneous compute
backends. JuML implements the actual kernels of the data analysis algorithms us-
ing ArrayFire’s API and applies them to the data portion local to a machine. The
distributed data exchange during the merge-step of the partial results (compare
to Section is realized through MPI. By default, JuML is greedy for the dis-
tributed, inter-node parallelization, setting the MPI communicator to all available
resources—MPI_COMM_WORLD—while it is conservative for the local intra-node paral-
lelization, selecting the host CPUs as computation backend, ensuring the maximum
amount of parallelization while guaranteeing the execution. However, the allocation
of the workload may be customized by the user. For this, all analysis algorithms
offer to pass two additional parameters, besides the one parametrizing the anal-
ysis itself, to the object implementing it, which can carry a symbolic handle for
the computation backend as well as an MPI communicator. Listing [4.1] shows an
example for a k-means clustering.

1 import juml
from mpidpy import MPI

data = juml.Dataset(’example.h5’, ’my_data’) # path and data set name
6 clusterer = juml.KMeans (
7 k=3, # clusters to be identified
8 backend=juml.Backend.CUDA, # intra-node backend (CUDA)

9 comm=MPI.COMM_SELF # inter-node allocation
10 )

11 clusterer.fit(data)

12

13 print clusterer.centroids ()

Listing 4.1: Usage example of JuML’s Python API—instantiation of a k-means
clustering algorithm, executing the kernel on GPGPUs and a single node only.

LA data container specified in HDF5; not to be confused with the Dataset class.
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The full list of features already implemented in JuML is listed below:

e Distributed data sets

— Lazily loaded HDF5 1/0

— Raw data pointer
Support of heterogeneous compute backends

— CPUs with OpenMP-based parallelization
— CUDA-capable compute architectures
— OpenCL-capable devices

Preprocessing algorithms

— Class label normalization

— Dataset normalization (fixed intervals, standard deviation)
Artificial neural networks

— Directed, acyclic architectures
— Fully-connected, dense neurons

— Linear, sigmoid and hyperbolic tangent activation functions

Batched gradient descent back-propagation optimizer
Gaussian naive Bayes classifier
K-means clustering

— Random and preset centroid initialization
— Optimized k-means++ initialization [101]

— k-median [102] variant of centroid determination
Early portation of HPDBSCAN
Grid search hyperparameter optimization
Auxiliary low-level routines

— Euclidean and Manhattan distance metrics

— Distributed parallel sorting through regular sampling

As mentioned before, JuML is already in productive use in two major scientific
projects. First—the prototypical exascale research cluster DEEP-EST—utilizes the
framework to benchmark the data analysis sub-system, and second—the Helmholtz
Analytics Framework, a Germany-wide initiative to establish a common HPC data
analysis and machine learning library—uses JuML as conceptual template.
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Conclusions

The scientific community’s interest in large-scale data analysis has been contin-
uously increasing over the last decades, with innovations in data-driven model
construction and in-situ processing of simulation results attracting particularly in-
tensified demand. It is expected that this trend will not cease in the near future, but
rather persist. A review of the state of art in data analysis algorithm development in
computational science literature displays numerous examples of initial adaptations
to the challenges posed by Big Data. Nevertheless, the lack of and pressing need for
a systematically developed, scientifically scrutinized and openly available base of
analysis tools, on par with the available technology, is evident from the conducted
field survey. This, along with in-depth investigation of selected scientific use cases,
motivates the author’s proposal to develop a large-scale data analysis framework
for HPC systems. In course of doctoral studies, a first candidate implementation,
in form of a framework prototype called JuML, has been suggested, attempting to
bridge the apparent engineering gap.

Research problems tackled in this thesis were expressed in form of four major
research questions, providing guidelines for the analysis and discussion of the per-
formed case studies. This dissertation’s subject matter lies at the intersection of
distinct fields of science. Each of its case studies documents the use of practices from
the domain of computational engineering to speed-up the experimentation and data
analysis in a specific Earth science domain. While any particular one publication
provides insights into the successfully executed efforts at boosting parallelization
and scalability in a conventional data analysis algorithm, the findings extracted
across the collection of studies lead to more universal conclusions, pertaining to
key aspects of the computational data analysis domain development. Supported by
the following research questions, the thesis lays out the synergies of Earth sciences
and computational engineering in the age of HPC, and ways to advance them.

RQ 1: What is the state of the art in data analysis and its technologies in the
Earth sciences?

RQ 2: How and which parallel and scalable algorithms can support the analysis
of selected Earth science use cases?
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RQ 3: Can the identified techniques be applied in a generalized fashion in scientific
domains outside of the Earth sciences?

RQ 4: Are there enough commonalities that would justify the design of a par-
allel and scalable data analysis framework and algorithm library for HPC
computing systems?

Publications included in the thesis answer or contribute to answering these
questions. Paper I, a technical survey of parallelized implementations of non-linear
SVMs and the clustering algorithm DBSCAN, tackles the first research question.
While the investigative focus targets two specific analysis algorithms, with nu-
merous possible alternative methods at hand, at the basis the major training ap-
proaches in machine learning—supervised and unsupervised learning—have been
tackled. Moreover, both of the explored algorithms are in widespread use and are
essentially standard tools for analysis tasks. Given that even such currently sought-
after, yet long established, algorithms have no readily available scalable implemen-
tations, the state of the art is judged as arguably deficient, pointing to potential for
improvement. This position is further reinforced by the systematic data analysis
framework and library review given in Paper VI and in Section presented in
this thesis.

Papers III, IV, V and to some degree also VI investigate particular scientific
domain use cases using parallel and scalable analysis tools. Each on its own con-
stitutes a contribution to the respective analysis application fields and respond to
the posed RQ 2 and 3. The case studies represent a careful selection of distinct
scientific challenges, involving a variety of analysis tasks, data set characteristics
and spanning a diverse range of approaches. These include:

1. Unsupervised, semi-supervised and supervised analysis tasks using,
2. clustering, classification and outlier detection approaches in

3. simple and hyperspectral images, multi-dimensional point clouds and time
series data.

The expertise gained from these studies is used to guide the design of the pro-
posed framework allows for a generalization to other domains, and through that
contributes to addressing RQ 4. Conversely, three major data analysis aspects have
not been explored in this dissertation, while they would be a meaningful addition
to the list above. These are, (1) general regression problems, e.g. forecasting mea-
sured values, (2) cohort data and data set combinations, like time series of images
for example, and (3) reinforcement learning models. Due to time constraints, it
was unfeasible to investigate all of these problems. Notwithstanding such objective
limitations, in an already ongoing study, the author investigates a ozone concen-
tration forecasting problem using neural networks and reinforcement learning, to
overcome this shortcoming of the thesis.

Finally, the last major contribution of this thesis are parallelization strategies
for data analysis algorithms and, their concrete implementation, as open-source
software. HPDBSCAN and the distributed max-trees algorithm are general-purpose
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data analysis algorithms that have been applied in different domains, contributing
to RQ 2 and 3. Moreover, the commonalities in the parallelization strategies also
enabled the formulation of a more abstract parallelization paradigm, which is an
input to RQ 4. This is also one of the key design features for JuML, the HPC data
analysis framework presented in this thesis.

As laid out, the major steps in developing well-scaling data analysis algorithms
are essentially the same, following an abstract paradigm, with the merging step
of the parallel computation being the only part that has to be customized. Thus,
JuML has abstracted and encapsulated recurring components. This ranges from
low-level routines, like sorting, to data set distribution as well as complete algo-
rithm implementation. While the parallelization aspects in the JuML’s code are
not entirely hidden from the data analysts, they are, however, reduced to two sim-
ple handles to be used for the inter- and intra-node workload distribution. As a
result, applying highly computationally efficient algorithms that exploit the avail-
able hardware capabilities to a large extent, in line with its core purpose, becomes
transparent.

Due to the fact that JuML is still only a design prototype, it has shortcomings in
the number of pre-implemented data analysis algorithms it offers. Nevertheless, due
to the decision to adopt it as the benchmark framework for the data analysis module
of the prototypical HPC system DEEP-EST, and as the conceptual template for
the Helmholtz Analytics Framework, it is expected that the number of features is
going to steadily increase in the immediate future.

5.1 Future Work

A number of possible research directions, suggested by the distinct studies pre-
sented in this thesis, remain to be explored in the future. In the data analysis use
cases shown here, the investigative methods involved clustering used in a (semi-)
supervised fashion, with a degree of fuzziness in the data set labels or patterns to be
learned from. With the vigorous development trends of neural network techniques,
the emerging methods of deep and policy learning could be used to reapproach the
presented challenges [103]. The problem of object detection in point cloud might,
on the other hand, be suitable for unsupervised learning with SOMs [29]. Even
though such data analysis methods often display a certain robustness to imprecise
input, fuzziness tends to bias the evaluation of learning performance, making the
representativeness of its outcomes suffer. Mitigating such bias is of foremost impor-
tance, especially in comparative studies, and presents another challenge to be faced
in future work. The endeavor to overcome them is often difficult, albeit necessary,
to improve the quality of the data set labels, or providing explicit definitions of
analyzed patterns, e.g. using an appropriate fitness function. The former especially
applies to the fly segmentation problem [I04], while the latter could greatly facili-
tate the Koljo fjord observatory study [105] by reinforcing the data set labels with
descriptive or explicit definitions of water mixing event boundaries.

A potential roadmap for further research on parallelization strategies for DB-
SCAN is more straightforward. There are already groups working on enhancing the
HPDBSCAN’s proposed parallelization strategy presented here. The approaches

47



CHAPTER 5. CONCLUSIONS

range from simple code and communication primitive optimization to portations
to different hardware platforms [I06]. A more general and highly viable approach
could be to exchange the regular local DBSCAN clustering step with an enhanced
version called AnyDBC [I07]. This concept computes deterministically the same
results, but gains significant speed-up by building high-level cluster structures of
dense hotspots first and then combining these via the density connectivity. As a
result, one can expect a significantly shorter local clustering computation time for
HPDBSCAN. As of now, however, AnyDBC is not yet shared-memory parallelized,
presenting yet another research opportunity. Alternatively, one could try to paral-
lelize OPTICS [I08], an iterative DBSCAN sub-space clustering algorithm, which
would enable group identification in high-dimensional data sets.

Future work on the distributed max-tree should follow three main objectives.
Firstly, in line with the original motivations, it should be incorporated into the ex-
tended Self-Dual Attribute Profile (SDAP) pre-processing method, designed by Cav-
allaro et al. [70], and in conjunction with it, used for the analysis of gray-scale
images in land-cover type classification, brain region segmentation or astrological
star cluster detection. Secondly, in order to make practical use of the generated
max-tree, for instance in image manipulation, it would be beneficial to also allow
the distributed computation of attribute filters, i.e. operations that modify the
tree. Initial works in this direction are presented by Moschini et al. [I09], but only
consider simple area filters. Thirdly, the algorithm proposed in this thesis could be
extended to the Tree Of Shapes (TOS) [110]—a contrast-invariant component tree,
which computes the min- and max-tree alternatingly. This representation has more
powerful analysis capabilities and could therefore increase prediction accuracy in
challenging classification tasks [I11].

Finally, the future of JuML, the author’s most tangible domain contribution,
is being actively shaped. It has been chosen as the benchmark suite for the data
analysis module of the experimental DEEP-EST cluster system [I12], a three-year
EU project for testing exa-scale HPC systems. Proceeding with that aim, new data
analysis algorithms will be developed, consistently integrated, as well as extensively
benchmarked in terms of their weak and strong scaling. Moreover, the Helmholtz
Association—the largest union of scientific organizations in Germany—counting 18
members, has newly launched the HAF initiative [I13]. JuML has been selected as
the prototypical basis for the project. It will most likely undergo some changes,
such as exchanging ArrayFire [45] with TensorFlow [46] due to more widespread
adaption. However, most of the already existing code can be ported with little
effort, due to high-level operation abstraction in both frameworks. One of the major
expectations is a permanent installation and usage of JuML’s HAF successor in the
Helmholtz compute facilities.
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Abstract

One of the observations made in earth data science is the massive increase of data volume (e.g,
higher resolution measurements) and dimensionality (e.g. hyper-spectral bands). Traditional
data mining tools (Matlab, R, etc.) are becoming redundant in the analysis of these datasets,
as they are unable to process or even load the data. Parallel and scalable techniques, though,
bear the potential to overcome these limitations. In this contribution we therefore evaluate
said techniques in a High Performance Computing (HPC) environment on the basis of two
earth science case studies: (a) Density-based Spatial Clustering of Applications with Noise
(DBSCAN) for automated outlier detection and noise reduction in a 3D point cloud and (b)
land cover type classification using multi-class Support Vector Machines (SVMs) in multi-
spectral satellite images. The paper compares implementations of the algorithms in traditional
data mining tools with HPC realizations and ’big data’ technology stacks. Our analysis reveals
that a wide variety of them are not yet suited to deal with the coming challenges of data mining
tasks in earth sciences.

Keywords: Data Mining, Machine Learning, HPC, DBSCAN, SVM, MPI

1 Introduction

The enormous increase in variety, velocity, and volume of spatio-temporal earth science datasets
raises data management concerns for organizations storing and preserving the data. There are
a number of concrete examples in view of earth science data repositories. One of them is the
PANGAEA earth science data collection [7] that has reached, at the time of writing, approx-
imately nine billion data items within around 350,000 datasets. These consist of increasingly
large and complex data which often represent long lasting time series of measurement devices
from a multitude of different sensors. Another example are the large data collection of remote
sensing images [2], taken by airborne sensors or satellites observing, measuring, and recording
the radiation reflected or emitted by the Earth and its environment. The ’big data’ challenges
in this case concern the improvements of remote sensing capabilities and the availability of
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remotely sensed images with high geometrical resolution (e.g. WorldView-2 0.5m) or more de-
tailed spectral information in terms of precision, frequency, or complexity (e.g. AVIRIS 224
spectral channels).

Researchers, however, do not only face issues with the management of the data, but also
when attempting to analyze, interpret, or understand them. Due to their ’big data’ properties,
they are difficult to process, making it a problem worth investigating. One of the known quotes
in that context is: ’Big data is data that becomes large enough that it cannot be processed
using conventional methods [19]. While this definition seems vague, we would like to take the
viewpoint in this contribution that these conventional methods span the wide variety of serial
tools existing to analyze earth science datasets (e.g. R, Matlab, Weka, etc.). While trying to use
some of the already mentioned databases, we have been unable to fully analyze or even just load
them into these systems because of memory restriction or highly inefficient implementation.

Handling processing intensive, large datasets, though, is not an entirely new problem, es-
pecially when considering computation environments driven by High Performance Computing
(HPC). We would like to find out what benefits of these environments are applicable to the
analysis of large quantities of earth science datasets. In the foreseeable future, and in order
to better understand many of the climate issues we face today, we even require a systematic
approach of combining and studying earth science datasets derived both from observations and
model simulations often running in HPC environments. Therefore, this contribution aims to
provide a deeper understanding about two concrete case studies that are able to take advan-
tage of parallel and scalable data mining techniques of large quantities of earth science data.
Throughout the paper, and as part of these studies, we provide pieces of information about
strengths and weaknesses of various ’big data’ technologies and comparing approaches to HPC
environments and their strong capabilities that are also applicable to statistical earth science
data mining tasks.

The first case study covers the known territory of finding outliers in data using clustering
algorithms. While many different clustering algorithms are potentially applicable [16], we focus
here on the Density-based Spatial Clustering of Applications with Noise [8] known as DBSCAN.
One example of a relevant data source is a marine observatory (i.e. Koljoefjord observatory)
that delivers continuous measurements over a long period of time. We study the use of DBSCAN
in order to find out if we are able to detect events or outliers that can also support the data
quality management. A scalable and robust automated outlier detection system that is able
to cope with large volumes of data within PANGAEA is therefore required. During our study
we were unable to find a suitable implementation of the algorithm allowing us to perform the
described analysis. For this reason we had to develop our own scalable solution of a parallel
DBSCAN delaying the actual analysis of the PANGAEA Koljoefjord observations. We will
demonstrate the capabilities of the software on the basis of a simpler, but visually tangible,
earth science outlier use case, the denoising of a 3D point cloud.

Our second case study deals with land cover mass classification in remote sensing image
datasets. The classification problem aims to categorize all pixels in a digital image into mean-
ingful classes of land cover types in a particular scene. In order to obtain a satisfactory level
of detection accuracy, we perform a detailed physical analysis by exploiting the availability
of high spatial resolution images. Hence, we consider attribute filters, flexible operators that
can transform an image according to many different attributes (e.g. geometrical, textural, and
spectral) as further optimization technique [3]. One often used classification technique in the
field of remote sensing are Support Vector Machines (SVMs) [6] and their kernel methods (e.g.
radial basis function). The contribution of this paper in the context of classification is the
exploration of according SVM frameworks.
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This paper is structured as follows. After the introduction into the problem domain in
Section 1, key requirements for evaluating parallel and scalable tools for the analysis of scientific
and engineering problems are given in Section 2. Section 3 offers a thorough survey of related
work in the field of parallel and scalable data mining tools with a particular focus on parallel
DBSCAN and SVM implementations. Section 4 highlights selected technical details on two
parallel implementations we use to process the aforementioned earth science datasets. The
paper ends with some concluding remarks.

2 Requirements

Technical and algorithmic solutions for the aforementioned case studies need to satisfy a number
of key requirements listed in this section. Satisfying those requirements and overcoming scal-
ability constraints given by the available datasets thus represent one of our major motivation.
There is a wide variety of traditional tools available and an increasing number of more recent
’big data stacks’ that claim to support parallel and scalable data mining in one way or the
other. We picked the following (without considering commercial tools) for our deeper analysis:
(i) Weka, (ii) R, (iii) Matlab, (iv) Octave, (v) Apache Mahout, (vi) MLlib/Apache Spark, (vii)
scikit-learn, and individual implementations for the specific algorithm in question. Those tools
are analysed in terms of three different criteria ’(a) open and free availablility’, ’(b) technical
feasibility’, and ’(c¢) suitability of algorithms’ in the light of the motivating case studies. Despite
the fact that there is an ever increasing number of rather new ’big data stacks’, our work is
also motivated by exploring whether traditional HPC environments play a role in mining ’big
data’. Although the HPC environments are typically driven by demands of the ’simulation
sciences’; based on efficient numerical methods and known physical laws, some computational
science applications raise similar requirements to the processing environments as it is the case
for data mining tasks. In this contribution we therefore focus on comparing solutions based on
the following five key capabilities we consider important when analyzing technical solutions:

R1 Parallel file systems and large storage capacity

R2 Scalable standard data formats that take advantage of parallel I/O

R3 Standard communication protocols

R4 Fair scheduling tools and policies to enable the work on clusters for several users at a time

R5 Open source tools and open referencable data to enable reproducability of findings

3 Related Work

This section is structured along the key requirements and framework collection introduced in
section 2.

3.1 Survey of DBSCAN Clustering Tools

Clustering is an established data mining method that can be best explained by dividing data
into subgroups of similar items, whereby each member within such a found group is similar to
all the others and different from the members of other groups. The similarity is defined by a
problem-specific metric like for instance the euclidean distance between data items. Cluster
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analysis belongs to the so-called unsupervised learning methods since the input data items
X; =<x1,...,2q4 >€ R with s = 1... N are given, but no desired results or ground truth to
be learned from®.

In this survey we focus driven by our outlier use case on the DBSCAN clustering algorithm.
The literature offers several publications describing parallelization approaches, e.g. based on
the map-reduce paradigm [12], using distribute dR-Trees [5], or more traditional variants in the
context of databases [13]. However, except of one, none of these offer concrete implementations
or point to respective source code repositories. We could therefore only include PDSDBSCAN-
D [15] in our survey despite the list of frameworks introduced in the method section.

‘ Technology ‘ Platform Approach ‘ Supports DBSCAN ‘ Parallelization ‘ Stable ‘
Weka Java yes no yes
R R yes no yes
Matlab Matlab no no yes
Octave Octave no no yes
Apache Mahout Java, Hadoop no yes yes
MLIib/Apache Spark Java, Spark, Hadoop | no yes yes
scikit-learn Python yes no yes
PDSDBSCAN-D C++, MPI, OpenMP | yes yes no
HPDBSCAN C++, MPI, OpenMP | yes yes yes

Table 1: Overview of open and freely available DBSCAN clustering tools

Table 1 shows the results of our survey. The new ’big data’ technology stacks Apache
Mahout and Spark do not offer an implementation of DBSCAN to begin with. Interestingly
enough the same is true for the well-known data mining tools Matlab and Octave that do not
support this kind of analysis. In contrast to that Weka, R and scikit-learn have packages that
allow to cluster data using DBSCAN. However, all of them are not parallelized and therefore do
not have the ability to scale to modern HPC systems. Only the one remaining implementation
satisfies the ’(a) open and free availability’ criteria as well as the ’(¢) suitability of algorithms’
criteria — PDSDBSCAN-D. A deeper analysis of the C++ code based on MPI or OpenMP
reveals drawbacks in terms of ’(b) technical feasibility’ in terms of scalability and speedup
while performing tests with real world data [9]. In order to satisfy our demanding earth science
outlier case study we have implemented a more efficient parallel version of DBSCAN that we
named HPDBSCAN. Our approach differs from the PDSDBSCAN-D implementation in several
ways such as a smart preprocessing into spatial cells as well as density-based chunking to load
balance the local computation.

3.2 Survey of SVM Classification Tools

Classification is the problem of identifying the membership of data items into a set of subgroups
called classes. In contrast to clustering, the statistical model for this is learned from known
observations or samples of class memberships. Classification therefore belongs to the supervised
learning methods since input data items X; =< z1,...,24 >€ R? with i = 1... N are given
in combination ‘with supervising output’ data y;. In our survey we focus on the support vector
machine (SVM) classification algorithm, including its kernel methods allowing to classify non-
linearly seperable data.

1The variable d equals the number of dimensions or features and N the number of different samples
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‘ Technology ‘ Platform Approach ‘ Multiclass ‘ Supported Kernels ‘ Parallelization ‘ Stable ‘
Weka Java yes linear, rbf, polynomial, sigmoid | no yes
R (kernlab) R yes linear, rbf, polynomial, sigmoid no yes
Matlab Matlab yes linear, rbf, polynomial, sigmoid no yes
Octave Octave yes linear, rbf, polynomial, sigmoid no yes
Apache Mahout Java, Hadoop - - -

MLIib/Apache Spark Java, Spark, Hadoop no linear yes yes
scikit-learn Python yes linear, rbf, polynomial, sigmoid no yes
libSVM C, Java yes linear, rbf, polynomial, sigmoid no yes
Twister /ParallelSVM Java, Twister, Hadoop | no linear, rbf, polynomial, sigmoid yes no
pSVM C, MPI no linear, rbf, polynomial yes no
GPU LibSVM CUDA yes linear, rbf, polynomial, sigmoid | yes (rbf) yes
TSVM C, MPI yes linear, rbf, polynomial, sigmoid | yes yes

Table 2: Overview of open and freely available SVM classification tools

As shown in Table 2, there is a wide variety of candidate solutions tools available that vary in
terms of their platform approach. In terms of (¢) suitability of algorithms’, we have found only
four of the different implementations to be useful. The reasoning is as follows. Weka, R, Matlab,
Octave and scikit-learn, as high-level languages also attractive to non technically savy scientists,
wrap libSVM as a base implementation. Due to the lack of parallelization of the latter, however,
it is not suitable for our earth science data mining problem. MLIib of Apache Spark seemingly
overcomes this by reimplementing SVMs using the scalable and parallel Spark core, but a deeper
analysis show that it only supports linear SVMs. Again, this is not applicable for our earth
science data mining use case as we have non linearly separable classes. The remaining four
satisfy basically the ’(¢) suitability of algorithms’ requirement, but a deeper analysis reveals
further drawbacks in terms of (b) technical feasibility. The implementation of pSVM [20] as
well as Twister [18] are unstable beta releases that are not meant to be used in production
yet. While using Twister for example we found dependencies to messaging systems, scheduling
issues, and other problems related to the lack of features that have made an analysis of our
data challenging. Finally, there are only two parallel implementations left. The GPU LibSVM
bears lots of potential for future use, but due to its dependencies to the proprietary Compute
Unified Device Architecture [14] technology stack, we have concerns regarding our ’(a) openly
and free available’ criteria. For this reason, we have decided to test 7SVM 1.2 (and indirectly
the recent 7SVM1.3) with our data. Overall the performance has been acceptable, but some
scalability issues, have lead us to optimize it further, which we will present in section 4.2.

4 Parallel and Scalable Methods

This section gives insights about our parallel and scalable methods and their optimization
structured alongside the approaches raised from the two scientific case studies introduced in
Section 1. Beside technical details, we also discuss in this section the HPC environment benefits
that satisfy the majority of our key requirements defined in Section 2 (i.e. R1-R5).

4.1 Parallel and Scalable Clustering with HPDBSCAN

DBSCAN is a density-based clustering algorithm and its principal idea is to find cluster cores
in a data set and subsequently expand these recursively. Thereby, a cluster core is defined
as region that contains at least a parametric number minPoints of neighboring point within
a given search radius epsilon (¢) and with respect to a distance function dist. For each of
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these neighboring points the same criterion is reapplied in order to extend the found cluster.
Highly parallelizable DBSCAN (HPDBSCAN) is our parallel implementation of DBSCAN.
It overcomes the inherent sequential processing step of the recursive expansion through the
following three major techniques.

Spatial Indexing Structure Common techniques for indexing data points are dR- or kd-
trees [17] as they have been used in other parallel DBSCAN research work. These significantly
speeds up region queries, especially also for dynamic search radius. In DBSCAN, however,
we have a constant search radius equaling to epsilon. Based on this fact, we have chosen a
different spatial indexing approach for HPDBSCAN, which uses a sorted, regular n-dimensional
hypergrid indexed by hash tables that overlays the n-dimensional data space (cf. Figure 1).
Similarily to the ’big data’ array databases rasdaman or SciDB [1], we can answer queries based
on this approach faster, in armortized O(1) complexity and can cash and preload queries.

Quadratic Split Heuristic Instead of distributing the data items in equal-sized chunks
to all processor, like introduced in previous DBSCAN research works, we use a heuristic to
achieve better load balancing, especially for spatially skewed data. Since the computation time
of DBSCAN scales in a quadratic manner with respect to the point density, we calculate a
score value for each cell of the hypergrid, which take advantage of this scaling behavior. The
scores allows us to find exact splittings of the hypergrid, such that no communication is required
during the parallel computation step. At the same time, we able to balance the workload evenly
among processors.

Differential Merging Scheme HPDBSCAN is able to combine the sub-results of the par-
allel clustering into one common view. Therefore, it exchanges the direct bordering region
halos of the hypergrid splits, finds deviating cluster labels, and rewrites them accordingly. In
the merging step, we store conflicting labels in dictionaries, so that we can apply relabeling of
points in parallel afterwards. In contrast, to other parallel DBSCAN implementations such as
PDSDBSCAN-D [15] there is no additional communication or clustering needed during the
re-labeling, which increases the computational performance tremendously.

We have realized HPDBSCAN as a MPI and OpenMP hybrid in C++ that is usable as a
standalone command line interface (CLI) tool as well as a shared library that can be wrapped
or linked to bigger applications if needed. In case of the CLI program, data points are provided
in form of Hierarchical Data Format (HDF5) files [11], in which the clustering results are also
written back. These clustering results per point are either the identity of a specific cluster or
an outlier mark that in particular is useful for our earth science case study.

In order to demonstrate its scalability and its outlier detection potential with large volumes
of data, we are filtering a 3D point cloud of the old town of Bremen for outliers, such as
false readings or points which capture the inside of a building. The points cloud contains
over 81 million individual points [10], clustering these sequentially would require days. Using
HPDBSCANand the supercomputer JUDGE at the research center Jlich, we can cut this
time down to minutes. Figure 2 shows an example of the point cloud in a version that has
been clustered using HPDBSCANwith the noise points still in, but colored in red. These can
be automatically removed, allowing us to start our next analysis steps. Our implementation
takes advantage of (R1) parallel file systems and large storage capacity existing in many HPC
environments. We a are able to fully exploit (R2) scalable standard data formats that take
advantage of parallel/IO due to the adoption of HDF5. The code is us sing (R3) standard

2193



On Scalable Data Mining Techniques for Earth Science Gotz et. al.

l;l
512 1 —o—Hybrid b
€ 9 10 11 12 256 { —~— Hybrid ¢
O O 128 + —— MPI b
& 64 Linear
5 6 7@ 8 T %
P = 16
oo @ © :
1. Q: |@;s 4 ‘2‘
) 1
2 8 32 128 512

number of cores

Figure 1: Left: Schematic illustration of the HPDBSCAN overlayed hypergrid in a two di-
mensional problem. The points are indexed by hash table pointing to each grid cell that has a
side length of €; Right: Speed-up and scaling of HPDBSCAN.

Figure 2: Left: Result ts of HPDBSCAN including noise reduction; Right: Identified clusters
that are illustrated using different colors.

communication protocols and enables the use of (R4) fair and stable scheduling tools and policies
to enable the work on clusters for several users at the same time. Given that HPDBSCAN
is open source [9] it belongs to the (R5) open source tools and open referencable data in
PANGAEA [7] and Bremen [10], respectively, enables reproducibility of findings.

4.2 Parallel and Scalable Classification with tSVM

In this section we present our earth science classification use case in remote sensing preceded
by some technical details of the used SVM software stack. As introduced in section 3.2 we
have based our parallel SVM implementation on 7SVM version 1.2. As of late 2014 version 1.2
is outdated, though, as its successor version 1.3 has been released. For time reasons we were
unable to port our changes to the new version, but our outlined performance advancements are
still valid, due to the fact that #SVM 1.3 does not optimized the parallel code sections.

As shown in Figure 3, our optimized 7SVM implementation scales better in constant sized
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Figure 3: Comparison between the original #SVM version and its optimized version (including
memory access fault). Left: Execution time as a function of doubling processing cores count.
Right: Speedup values of constant-sized problem.
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Figure 4: Parallel memory access patterns in a triangular matrix using four processing cores.
From left to right: initially implemented in #SVM, naive equal chunking, implemented in our
optimized 7SVM tool, theoretically ideal pattern.

problems compared to the original 7{SVM implementation. While we still work on achieving
better scalability (e.g. consideration of a hybrid implementation using OpenMP), the code has
proven to work with our earth science classification case study. One of the major performance
gains has been achieved through the usage of more suitable MPI collective operations. For
example, in some source code sections a simple for loop was used to perform an MPI_Bcast ()
numerous times to inform other processors about training updates. Instead we replaced them
with singular MPI_Allgather () calls reducing it from linear to constant time and memory com-
plexity. A couple of other optimization strategies have been implemented. One of them is an
improved matrix distribution pattern during the SVM training stage to balance the computa-
tional load, schematically illustrated in figure 4. The unoptimized 7SVM code distributes them
as depicted in the left picture, leaving processing cores idle. We have improved this distribu-
tion pattern step-wise from a naive equal-sized chunking, to an skip-row approach and finally
to a theoretically ideal on the right. In tests, however, we have found that the skip-row ap-
proach outperforms all other patterns, due its simple implementation using one MPT collective
operation, in contrast to the complex pattern required for the theoretically best.

We have used our parallel and scalable 7SVM implementation in different classification
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studies in the field of remote sensing, e.g. on remote sensing image classification of the city
Rome that we published at a remote sensing domain-specific conference IGARSS 2014 [4]. Since
then we have shown of the scalability of the code by investigating more complex problems,
such asthe Indian Pines dataset with over 50 classes. The dataset is openly available through
EUDATSs B2SHARE services [4] which enables reproducibility of the papers findings.

Our optimized 7SVM implementation takes advantage of (R1) parallel file systems and large
storage capacity existing in many HPC environments and is based on MPI thus using (R3)
standard communication protocols. The code can be used with typical HPC batch schedulers
enabling the use of (R4) fair and stable scheduling tools and policies to enable the work on
clusters for several users at the same time. Given that 7SVM is open source as well as our
optimized version the (R5) open source tools and open referencable data enables reproducibility
of findings. Potential for future work is to enable the use of parallel I/O that is currently not
supported (cf. R2).

5 Conclusion

One of the major findings of this paper is the need for parallel and scalable data mining tools
in earth sciences, as has been demonstrated by the means of the two case studies. While we
face these challenges in machine learning already now, the expected increase of ’big data’ in
science in the coming years, will amplify this need even more. With our two parallel data mining
tools, HPDBSCAN and 7SVM, we start to tackle this problem, as both of them show significant
improvements compared to their serial counterparts. However, they still only utilize a moderate
number (several dozens to hundreds) of cores and do not yet fully exploit the capabilities of a
large HPC supercomputer.

Given the page restriction, our study also did not describe all potential parallel optimization
points entirely in detail. One straightforward example is the use of cross-validation for model
selection as it is implemented in 7SVM. Another example is the so-called grid search technique,
which is a highly computational intensive, and that typically aims to explore the right combina-
tion of machine learning algorithm parameters (i.e. here for the SVM and its rbf kernel). Hence,
easy to implement parallelizations of this processes should enable additional massive speedups
compared to serial implementations making thus the use of parallel and scalable methods even
more feasible.

Future work beyond using the ever increasing amounts of datasets faced in earth sciences,
is the exploration of in situ analytics towards exascale computing. In other words the exascale
simulation (e.g. of a climate model) is running while another part of the machine (e.g. using
GPGPUs or accelerators) is performing analytics in situ in order to validate the simulation
with real measurement data and to perform statistics on the fly on the created simulated data.
This bears the potential to abort costly computation runs early based on the statistical data
mining that will take place concurrently to the particular numerical simulation.
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ABSTRACT

Clustering algorithms in the field of data-mining are used
to aggregate similar objects into common groups. One of
the best-known of these algorithms is called DBSCAN. Its
distinct design enables the search for an apriori unknown
number of arbitrarily shaped clusters, and at the same time
allows to filter out noise. Due to its sequential formula-
tion, the parallelization of DBSCAN renders a challenge. In
this paper we present a new parallel approach which we call
HPDBSCAN. 1t employs three major techniques in order
to break the sequentiality, empower workload-balancing as
well as speed up neighborhood searches in distributed paral-
lel processing environments i) a computation split heuristic
for domain decomposition, i) a data index preprocessing
step and iii) a rule-based cluster merging scheme.

As a proof-of-concept we implemented HPDBSCAN as an
OpenMP/MPI hybrid application. Using real-world data
sets, such as a point cloud from the old town of Bremen,
Germany, we demonstrate that our implementation is able
to achieve a significant speed-up and scale-up in common
HPC setups. Moreover, we compare our approach with pre-
vious attempts to parallelize DBSCAN showing an order of
magnitude improvement in terms of computation time and
memory consumption.

Categories and Subject Descriptors

A.29 [General and reference]: Cross-computing tools
and techniques—Performance; F.5.8 [Theory of compu-
tation]: Design and analysis of algorithms—Parallel algo-
rithms ; H.3.8 [Information systems]: Information sys-
tems applications—Data mining ;1.2.1 [Computing method-
ologies]: Parallel computing methodologies—Parallel algo-
rithms
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1. INTRODUCTION

Cluster analysis is a data-mining technique that divides a
set of objects into disjoint subgroups, each containing sim-
ilar items. The resulting partition is called a clustering. A
clustering algorithm discovers these groups in the data by
maximizing a similarity measure within one group of items—
or cluster—and by minimizing it between individual clus-
ters. In contrast to supervised learning approaches, such
as classification or regression, clustering is an unsupervised
learning method. This means that, it tries to find the men-
tioned structures without any apriori knowledge about the
actual ground-truth. Typical fields of application for cluster
analysis include sequence analysis in bio-informatics, tissue
analysis in neuro-biology, or satellite image segmentation.

Clustering algorithms can be divided into four classes:
partitioning-based, hierarchy-based, density-based and grid-
based [17]. In this paper we will discuss aspects of the
two latter classes. Specifically, we are going to talk about
the density-based clustering algorithm DBSCAN —density-
based spatial clustering of applications with noise [9]—and
how to efficiently parallelize it using computationally ef-
ficient techniques of grid-based clustering algorithms. Its
principal idea is to find dense areas, the cluster cores, and
to expand these recursively in order to form clusters. The
algorithm’s formulation has an inherent sequential control
flow dependency at the point of the recursive expansion,
making it challenging to parallelize.

In our approach we break the interdependency by adopt-
ing core ideas of grid-based clustering algorithms. We over-
lay the input data with a regular hypergrid, which we use
to perform the actual DBSCAN clustering. The overlayed
grid has two main advantages. Firstly, we can use the grid
as a spatial index structure to reduce the search space for
neighborhood queries; and secondly, we can separate the en-
tire clustering space along the cell borders and distribute it
among all compute nodes. Due to the fact that the cells
are constructed in a regular fashion, we can redistribute the
data points, by facilitating halo areas, so that there is no in-
termediate communication required during the parallel com-
putation step.

In spatially skewed datasets regular cell space splits would
lead to an imbalanced computational workload, since most of
the points would reside in dense cell subspaces assigned to a
small number of compute nodes. To mitigate this we propose



a cost heuristic that allows us to identify data-dependent
split points on the fly. Finally, the local computation results
are merged through a rule-based cluster merging scheme,
with linear complexity.

The remainder of this paper is organized as follows. The
next section surveys related work. Section 3 describes de-
tails of the original DBSCAN algorithm. Subsequently, Sec-
tion 4 discusses our parallelized version of DBSCAN by the
name of HPDBSCAN and shows its algorithmic equivalence.
Section 5 presents details of our hybrid OpenMP/MPI im-
plementation. Evaluations are shown in Section 6, where we
also present our benchmark method, datasets and the layout
of the test environment. We conclude the paper in Section 7
and give an overview of possible future work.

2. RELATED WORK

There are a number of previous research studies dealing
with the parallelization of DBSCAN. To the best of our
knowledge, the first attempt was made by Xiaowei Xu in
collaboration with Kriegel et al. [27]. In their approach,
single neighborhood search queries are parallelized facilitat-
ing a distributed version of the R-Tree—DBSCAN ’s initial
spatial index data structure. They adopt a master-slave
model, where the index is built on the master node and
the whole data set is split among the slaves according to
the bounding rectangles of the index. Subsequently, they
merge the local cluster results by reclustering the bordering
regions of the splits. Zhou et al. [28] and Arlia et al. [3]
present similar approaches, where they accelerate the neigh-
borhood queries by replicating the entire index on each of
the slave nodes, assuming the index fits entirely into the
main memory. Brecheisen et al. [5] have published a paral-
lel version of DBSCAN that approximates the cluster using
another clustering algorithm called OPTICS. Each of the
cluster candidates found in this manner is sent to a slave
node in order to filter out the actual from the guessed clus-
ter points. The local results are then merged by the master
into one coherent view. This approach, however, fails to
scale for big databases, since the pre-filtering has to be done
on the master, in main memory. Chen et al. [7] propose an-
other distributed DBSCAN algorithm, called P-DBSCAN
that is based on a priority R-Tree. Unfortunately, the paper
does not state how the data is distributed or how the clus-
ters are formed. An in-depth speed and scale-up evaluation
is also not performed. A paper by Fu et al. [13] demon-
strates the first Map-Reduce implementation of DBSCAN.
The core idea of this approach is the same as the first par-
allelization attempt of Xu, that is, to parallelize singular
neighborhood queries—this time in form of Map-Tasks. He
et al. [19] present another implementation of a parallel DB-
SCAN based on the Map-Reduce paradigm. They are the
first to introduce the notion of a cell-based preprocessing
step in order to perform a fully distributed clustering with-
out the need to replicate the entire dataset or to communi-
cate inbetween. Finally, Patwary et al. [25] have published
research work that shows a parallel DBSCAN that scales
up to hundreds of cores. Their main contribution is a quick
merging algorithm based on a disjoint-set data structure.
However, they either need to fit the entire dataset into main
memory or need a manual preprocessing step that splits the
data within a distributed computing environment.

3. THE DBSCAN ALGORITHM

Figure 1: DBSCAN clustering with minP oints= 4

DBSCAN is a density-based clustering algorithm that was
published 1996 by Ester et al. [9]. Its principal idea is to
find dense areas and to expand these recursively in order to
find clusters. A dense region is thereby formed by a point
that has within a given search radius ¢ at least minP oints
neighboring points. This dense area is also called the core
of a cluster. For each of the found neighbor points the den-
sity criteria is reapplied and the cluster is consequently ex-
panded. All points that do not form a cluster core and that
are not “absorbed” through expansion are regarded as noise.

A formal definition of the algorithm s as follows. Let X
be the entire dataset of points to be clustered and p, g € X
two arbitrary points of this set. Then the following defi-
nitions describe DBSCAN with respect to its parameters &
and minP oints. Figure 1 illustrates these notions.

Definition 1. Epsilon neighborhood (N._)—The epsilon neigh-
borhood N of p denotes all points ¢ of the dataset X,
which have a distance dis#(p, ¢) that is less or equal to &,
or formally: Ng.(p) = {ql|dist(p,q) < ¢}. In practice, the
euclidean distance is often used for dist making the epsilon-
neighborhood of p equal to the geometrically surrounding
hypersphere with radius e.

Definition 2. Core point —p is considered a core point if
the epsilon-neighborhood of p contains at least minP oints
number of points including itself: Core(p) = |Nz(p)| =
minP oints.

Definition 3. Directly density-reachable (DDR)—A point
q is directly density-reachable from a point p, if p lies within
q’s epsilon-neighborhood and p is a core point, i.e., DDR(p, q) =
q € N:(p) N Core(p).

Definition 4. Density-reachable (DR)—A pair of points

po = p and p,, = q are called density reachable, if there
exists a chain of directly density-reachable points—{p;|0 <

iANi<n ADDR(p;, pi+1)}—linking them with one another.

Definition 5. Border point —Border points are special clus-
ter points that are usually located at the outer edges of a
cluster. They do not fulfill the core point criteria but are
still included in it due to direct density-reachability. For-
mally, this can be expressed as Border(p)= |N:(p)| <
minP oints A 3q : DDR(q, p).



Definition 6. Density-connected (DC )—Two points p and

q are called density connected, if there is a third point 7,
such that » can density-reach p and ¢: DC(p, q) = 3r €

X : DR(r,p) AN DR(r, q). Note that density-connectivity is
a weaker condition than density-reachability. Two border
points can be density-connected, even though they are not
density-reachable by definition due to not fulfilling the core
point criteria.

Definition 7. Cluster —A cluster is a subset of the whole
dataset, where each of the points is density-connected to all
the other and that contains at least one dense region, or in
other words a core point. This can be denotedas @ ¢ C € X
with Vp,q € C : DC (p, q) and 3p € C : Core(p).

Definition 8. Noise —Noise are special points that do not
belong to any epsilon-neighborhood, such that N oise(p) =
=3¢ : DDR(q, p).

Listing 1 sketches pseudo code for a classic DBSCAN im-
plementation. Some of the type and function definitions are
left out, as their meaning can easily be inferred.

DBSCAN ’s main properties that distinguish it from more
traditional clustering algorithms, such as k-means [17] for
instance, are: i) it can detect arbitrarily shaped clusters
that can even protrude into, or surround one another; ii) the
cluster count does not have to be known apriori, and, iii) it
has a notion of noise inside the data.

Finding actual values for ¢ and minP oints is dependent
on the clustering problem and its application domain. Ester
et al. [9] propose a simple algorithm for estimating ¢. The
core idea is to determine the “thinnest” cluster area through
either visualization or a sorted 4-dist graph, and then choose
¢ to be equal to that width.

def DBSCAN(X, eps, minPoints):

1
2 clusters = list()

3 for p in X:

4 if visited(p):

5 continue

6 markAsVisited(p)

7 Np = query(p, X, eps)

8 if length(Np) < minPoints:

9 markAsNoise (p)

10 else:

11 C = Cluster ()

12 add(clusters, C)

13 expand(p, Np, X, C, eps, minPoints)
14 return clusters

16 def expand(p, Np, X, C, eps, minPoints):
add(p, C)
for o in Np:
if notVisited(o):
markAsVisited (o)
No = query(o, X, eps)
if length(No) >= minPoints:
Np = join(Np, No)
if hasNoCluster (o):
add(o, C)

£ 00 =30 »
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Listing 1: Classic DBSCAN pseudocode

4. HPDBSCAN

In this section we present Highly Parallel DBSCAN, or in
short HPDBSCAN. Our approach to parallelize DBSCAN
consists of four major stages. In the first step the entire
dataset is loaded in equal-sized chunks by all processors in

parallel. Then, the data is preprocessed. This entails as-
signing each of the d-dimensional points in the dataset to
a virtual, unique spatial cell corresponding to their location
within the data space, with respect to the given distance
function. This allows us to sort the data points according
to their proximity, and to redistribute them to distinct com-
putation units of the parallel computing system. In order
to balance the computational load for each of the process-
ing units, we estimate the load using a simple cost heuristic
accommodating the grid overlay.

After this division phase, we perform the clustering of the
redistributed points in the second step locally on each of the
processing units, i.e., we assign a temporary cluster label to
each of the data points.

Subsequently, these have to be merged into one global
result view in step three. Whenever the temporary label
assigned by a processing unit disagrees with the ones in the
halo areas of the neighboring processors, we generate cluster
relabeling rules.

In the fourth step, the rules are broadcasted and applied
locally. Figure 2 shows a schematic overview of the pro-
cess using the fundamental modeling concepts (FMC) nota-
tion [21]. The next sections scrutinizes each of the substeps
theoretically.

HPDBSCAN
® ———————e e
minpoines | (—— "} — i
1 1 . 1
| ! |
HA | overtar |} Estimate Merge |1
I hypergrid [T ™ splits halos I
1 I
n % '
I
—h e e s
= B
|
|
| Sort and Local
| distribute ™ pBSCAN
1
=
|
I
‘o
p
I
4
[}
e e |

Figure 2: Schematic overview of H/PDBSCAN

4.1 Grid-based data preprocessing and index

The original DBSCAN paper proposes the use of R-trees [4]
in order to reduce the neighborhood search complexity from
O(n?) to O(log(n)). The construction of the basic R-tree
cannot be performed in parallel as it requires the entire
dataset to be known. Therefore, other researchers [4, 27]
propose to either just replicate the entire dataset, and per-
form linear neighborhood scans in parallel for each data
item, or to use distributed versions of the R- or k-d-trees.
However, He et al. [19] point out that these approaches do
not scale in terms of memory consumption or communica-
tion cost with respect to large datasets and number of par-
allel processors.

Therefore, we have selected a far more scalable approach
for HPDBSCAN that is based on grid-based clustering algo-
rithms like, e.g., STING [17], and common spatial problem
in HPC, like for example HACC in particle physics [16]. Its
core idea is that the d-dimensional bounding box of the en-
tire dataset, with respect to dist, is overlayed by a regular,
non-overlapping hypergrid structure, which is then decom-
posed into subspaces by splitting the grid along the grid cell



boundaries. Each of the resulting subspaces is then exclu-
sively assigned to a parallel processor that is responsible for
computing the local clustering. In order to be able to do
so in a scalable fashion, all the data points within a par-
ticular subspace should be in the local memory of the re-
spective parallel processor, so that communication overhead
is avoided. However, in most cases the data points will be
distributed in arbitrary order within the dataset. Therefore,
the data has to be indexed first and then redistributed to
the parallel processor responsible for clustering the respec-
tive subspace.

In HPDBSCAN the indexing is performed by employing
a hashmap with offset and pointers into the data mem-
ory. For this, all parallel processors read an arbitrary, non-
overlapping, equally-sized chunk of the complete dataset
first. Then each data item of a chunk is uniquely associated
with the cell of the overlayed grid that it spatially occupies,
and vice versa—every grid cell contains all the data items
that its bounding box covers. This in turn enables us to or-
der all of the local data items with respect to their grid cell
so that they are consecutively placed in memory. Finally,
an indexing hashmap can be constructed with the grid cells
being the key, and the tuple of pointer into the memory and
number of items in this cell the value. An indexing approach
like this has an additional memory overhead of O(log(n))
similar to other approaches like R- or k-d-trees. Figure 3
shows the indexing approach examplified by the dataset, in-
troduced in Section 3, for the data chunk of a processing
unit called processor 1.

processor 1

processor 1

processor 2

Figure 3: Sorted data chunks locally indexed by each
processor using hashmaps pointing into the memory

Using that index the data redistribution can be performed
in a straightforward fashion. The local data points of a par-
allel processor that do not lie within its assigned subspace
are simply transferred to the respective parallel processor
“owning” them. Afterwards all parallel processors have to
rebuild their local data indices in order to encompass the
received data. An efficient way of doing this is to send the
section of the data index structure along with the data to
the recipients. Due to the fact that the received and the
local data are pre-sorted, the sent data index section and
its memory pointers can be used to quickly merge them us-
ing, e.g., the merge-step of mergesort. The downside of the
data redistribution approach is that it requires an additional
memory overhead of O( 2), per parallel processor, with p be-
ing the number of parallel processors, to be able to restore
the initial data arrangement after the clustering. However,
since the additional overhead has linear complexity, it is
maintainable even for large scale problems.

Using the described index structure, cell-neighborhood
queries execute in amortized computation time of O(1). The
cell-neighborhood N, thereby consists of all cells that are

directly bordering the searched cell, its diagonals, as well
as the cell itself with respect to all dimensions. For the
cell labeled 6 in Figure 3 the cell-neighborhood is the set
{1,2,3,5,6,7,9,10, 11}. A formal definition follows.

Definition 9. Cell neighborhood —The cell neighborhood
Nceu(c) of a given cell ¢ denotes all cells d from the space
of all available grid cells C that have a Chebychev distance
distchebychev [6] of zero or one to ¢, i.e., Neeu(c) = {d|d €
CA diSt(:},eb_,,chev(C, d) < 1}.

The actual epsilon neighborhood is then constructed from
all points within the direct cell-neighborhood, filtered using
the distance function disz. Sidlauskas et al. [26] show that
a spatial grid index like this, is superior to R-trees and k-d-
trees on index creation and queries, in terms of computation
time, under the assumption that the cell granularity is op-
timal with respect to future neighborhood searches. Due
to the fact that DBSCAN’s search radius is constant, the
cells can trivially be determined to be hypercubes with the
side length of &. From a technical perspective it has the
additional advantage that each of the d parts of the entire
cell-neighborhood vector are consecutive in memory. This
in turn enables data pre-fetching and the reuse of cell neigh-
borhoods, thus reducing the number of cache misses.

In order to be able to answer all range queries within its
assigned subspace, a parallel processor needs an additional
one-cell-thick-layer of redundant data items, surrounding
the grid splits that allow them to compute the cell neighbor-
hood even at the edges of said splits. In parallel codes this
is commonly referred to as halos or ghost cells. An efficient
way of providing these halo cells is to transfer them along
with the actual data during the data redistribution phase.
This way the parallel processor will also index them along
with the other data. Halo cells do not change the actual
split boundaries in which a parallel processor operates and
can be removed after the local clustering.

4.2 Cost heuristic

In the previous section we introduced the notion of sub-
dividing the data space in order to efficiently parallelize
HPDBSCAN and its spatial indexing especially also in dis-
tributed computing environments. However, we have not in-
troduced a way to determine the boundaries of these splits.
One of the most naive approaches is to subdivide the space in
equally-sized chunks in all dimensions, so that the resulting
number of chunks equals to the number of available cores.
While the latter part of the assumption is sensible as it min-
imizes the communication overhead, the former is not. Con-
sider a spatially skewed dataset like shown in figure 4. The
sketched dotted boundary, chunking the data space equally
for two parallel processors, results in a highly unbalanced
computational load, where one core needs to cluster almost
all the data points and the other idles most of the time. Due
to the fact that computing the dist function, while filtering
the cell neighborhood, is for many distance functions the
most processing intensive part of DBSCAN, this distribu-
tion pattern is particularly undesirable. It should also be
clear that this is not only an issue of the presented example,
but other spatially skewed datasets and larger processing
core counts as well.

Therefore, we employ a cost heuristic to determine a more
balanced data space subdivision. For this, we exploit the
computation complexity properties of the cell neighborhood
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Figure 4: Impact of naive and heuristic-based hy-

pergrid decompositions on compute load balancing.
Halo cells are marked with a hatched pattern.

query. For each data item we have to perform »n computa-
tions of the distance function dist, where n is the number
of data items in the cell neighborhood. Since we have to
do that for all m data items within a cell, the total num-
ber of comparisons for one cell is n x m. The sum of all
comparisons, i.e. the cost scores, for all cells gives us the
total “difficulty” of the whole clustering problem, at least in
terms of the dist function evaluations. Then, we can assign
to each parallel processor a consecutive chunk of cells, the
cost of which is about a p-th part of the total score with p
being the number of available parallel processing cores. The
formal definitions are as follows.

Definition 10. Cell cost—The cell cost Costcen(c) of a
cell ¢ is the product of the number of items in it multiplied
with the number of data points in the cell neighborhood —
CostCen(c) = IC‘ * ‘NCQII(C)l.

Definition ﬂ Total cost —The total cost Costr o is equal
to the sum — .y Costcen(c) — of all individual cells.

Since the data items are already pre-sorted due to the spa-
tial preprocessing step, the hypergrid subdivision can be per-
formed by iteratively accumulating cell cost scores until the
per-core threshold is reached or exceeded. Moreover, the the
cell itself can be subdivided to gain more fine-grained con-
trol. For this, the cost score of the cell is not added entirely
but in n-steps for each data item in the cell, where n is the
number of items in the cell neighborhood. Figure 4 shows an
example of a dataset, its overlayed hypergrid, the annotated
cell cost values and the resulting subdivision. These subdi-
vision can easily be computed in parallel by computing the
cell score locally, reducing them to a global histogram and fi-
nally determining the boundaries according to the explained
accumulative algorithm.

4.3 Local DBSCAN

Having redistributed the chunks among the compute nodes
in a balanced fashion, the local DBSCAN execution follows.
To break the need for sequential computation, implied by the
recursive cluster expansion, this stage is converted to a par-
allelizable version with a single loop iterating over all data

points. This enables the further, fine-grained paralleliza-
tion of the algorithms using shared-memory parallelization
approaches such as threads for example. The performance-
focused algorithm redesign is twofold at this stage. Besides
the parallelization of the iterations, the amount of compu-
tation per iteration is also minimized. Due to the cell-wise
sorting and indexing of data points within the local data
chunk, all points occupying one cell are stored consecutively
in memory. This ensures that each cell-neighborhood must
be computed at most once per thread, as each of them can
be cached until all queries from within the same cell are vis-
ited.  Listing 2 presents the pseudocode of the converted,
iterative local DBSCAN.

def localDBSCAN (X, eps, minPts):

1

2 rules = Rules ()

3 @parallel

1 for p in X:

s Cp, Np = query(p, X, eps)
6 if length(Np) >= minPts:
7 markAsCore (p)

8 add(Cp, p)

9 for g in Np:
10 Cqg = getCluster(q)
11 if isCore(q):

12 markAsSame (rules, Cp, Cq)
13 add(Cp, q)

14 elif notVisited(p):

15 markAsNoise (p)

16 return rules

Listing 2: Local DBSCAN pseudocode

For each of the points the epsilon neighborhood query is
performed independently, i.e., not as an recursive expansion.
When a query for a point p returns more than minP oints
data points, from which none is yet labeled, p is marked as
a core of a cluster. The newly created cluster is then labeled
using p’s data point index, which is globally unique for the
entire sorted dataset. If the epsilon neighborhood, number-
ing at least minP oints, contains a point g that is already
assigned to a cluster, the point p is added to that cluster and
inherits the cluster label from g. In case of multiple cluster
labels present in the neighborhood, the core p inherits any
one of the cluster labels and notes information indicating
that each of the encountered subclusters actually are one,
as they are inherently density connected. That information
is vital to formulate merger rules for the subsequent merging
of local cluster fragments and unification of cluster labels in
the global scope (see section 4.4).

In all of the above cases, the remainder of non-core points
in the epsilon neighborhood, which may also include halo
area points, is added to the cluster of p. If p has less than
minP oints data points in its neighborhood, it is marked as
visited and labeled as noise. The below proof shows that
replacing the iterative cluster relabeling is equivalent to the
original recursive expansion.

Theorem 1. Given points p € C, gnd g € Cy: (Core(p) V
Core(q)) NDDR(p,q) = 3C:C, C;, CSCApgeC

Proof. If neither p nor ¢ is core, or they are mutually
not DDR, the assumption is false and the implication triv-
ially true. If p, ¢ or both are cores, and they are DDR then
by definition, they are also DR and therefore DC, with the
linking point » being either p or g. Given the density connec-
tion DC between p and g, they belong to the same cluster C.
By extension, any point belonging to C, or C, also belongs
toC. O



The result of local DBSCAN is a list of subclusters along
with the points and cores they contain, a list of noise points,
and a set of rules describing which cluster labels are equiva-
lent. This information is necessary and sufficient for the next
step of merging the overlapping clusters with contradictory
labels within the nodes’ halos.

4.4 Rule-based cluster merging

The relabeling rules created by distinctive nodes are insuf-
ficient for merging cluster fragments from separate dataset
chunks. The label-mapping rules across different nodes are
created based on the labels of halo points. Upon the com-
pletion of the local DBSCAN, each halo zone is passed to
the node that owns the actual neighboring data chunk. Sub-
sequently, the comparison of local and halo point labels fol-
lows, resulting analogously in a set of relabeling rules for
neighboring chunks, which may create transitive cluster la-
bel chains. These rules are then serialized and broadcast to
all other nodes. Only then is the minimization of all local
and inter-chunk label-mapping rules possible, and all tran-
sitive labels can be removed. Thus each compute node is
equipped with a list of direct mappings from each existing
subcluster label to a single global cluster label.

Each compute node then proceeds to relabel the owned
clusters using the merger rules. At that stage each data
point, now having assigned a cluster label, is sent back to
the compute node that originally loaded it from the dataset.
Recreation of the order of all data points is enabled by the
initial ordering information created during the data redis-
tribution phase. The distributed HPDBSCAN execution is
complete and the result is a list of cluster ids or noise mark-
ers per data item.

5. IMPLEMENTATION

In this section we present our prototypical realization of
HPDBSCAN and specifics of distinct technical details. The
C++ source code can be obtained freely from our source
code repository [23]. It depends on the parallel programing
APIs Open Multiprocessing (OpenMP) [8] in version 4.0+
and Message Passing Interface (MPI) [15] in version 1.1-+.
Additionally, the command-line version requires the I/0 li-
brary Hierarchical Data Format 5 (HDF5) [18] in order to
pass the data and store computational results.

5.1 Data distribution and gathering

As explained in section 4.1, the data items of the datasets
are redistributed in the preprocessing step, in order to achieve
data locality. Implementing this behavior in shared-memory
architectures is trivially not required, due to the fact that
all processors can access the same memory. For distributed
environments, however, this step is needed and can be quite
challenging to realize—especially in a scalable fashion.

Since HPDBSCAN sorts the data points during the in-
dexing phase and lays them out consecutively in memory,
we are able to exploit collective communication operations
of the MPI. We first send the local histograms of data points
from each compute node to the one that owns the respec-
tive bounds during the local DBSCAN execution. This can
be implemented either by an MPI_Reduce or, alternatively,
by an MPI_Alltoall and a subsequent summation of the
array. After that, each of the compute nodes allocates lo-
cal memory, and the actual data points are exchanged using
an MPI_Alltoallv call. Using the received histograms, the

compute nodes are also able to memorize the initial ordering
of the data points, in a flat array, for example.

Vice versa, the gather step can be implemented analo-
gously. Instead of sorting the local data items by their as-
signed grid cell, they are now re-organized by their initial
global position in the dataset. After that, they can be ex-
changed again, using the MPI collectives, and stored. Note
that in this step the computed cluster labels are transferred
along with the data points in order to avoid multiple com-
munication.

5.2 Lock-free cluster labeling

To ensure that the cluster labels are unique within a chunk
as well as globally, each cluster label ¢ is determined by the
lowest index of a core point inside a cluster—
¢ = MiNyec|Core) index(p). The index(p) function returns
the position of a data point p, within the globally sorted
dataset, redistributed to the compute nodes. Additionally to
ensuring global uniqueness, this mechanism also maximizes
the size of consistently labeled cluster fragments within the
same compute node, as each consecutive iteration over the
points increments the current point’s index. Whenever a
core is found in the epsilon neighborhood, the current point
inherits its cluster label, even if it is a core itself.

A data race may occur, when the current epsilon neighbor-
hoods of multiple parallel threads overlap. In that case each
thread may attempt to assign a label to a point within their
neighborhood intersection. The naive approach of locking
the data structures storing the cluster label and core infor-
mation is not scalable.

The better alternative of using atomic operations, here
atomic min, requires encoding the values to operate on, with
a single native data type. For this, we use signed long inte-
ger type values, and compress all flags and labels described
by DBSCAN ’s original definition, i.e., “visited”, “core” and
“noise” flags, and a “cluster label”, to that data type. As the
iterations are performed for each data point exactly once,
the “visited” flag, is made redundant and abandoned. The
cluster label value is stored using the absolute value of the
lowest core point index it contains. The sign bit is used
to encode the “core” flag, such that each core of cluster ¢
is marked by value -c, and each non-core point—by value
c. As cluster labels are created using point indexes, their
value never exceeds |X]|. The noise label can then be en-
coded using any value from outside the range [—|X], |X]].
For this, we have selected the upper bound of the value

range—the maximal positive signed long integer. As long
as range(signed long int) >= |§(| =+ 1, signed long integers
are sufficient to encode the cluster labels as well as the core
and noise flags. In that way, minimizing the cluster label
is possible via simple atomic min implementation to set the
cluster label and core flag at once. Some processor architec-
tures, e.g., Intel x86, do not provide an atomic min instruc-
tion. Instead, a spinlock realization using basic atomic read
and compare-and-swap instruction, as shown in Listing 3, is
used.

1 def atomicMin (address, val):
2 prev = atomicRead(address)

3 while(prev > val):

4 swapped = CAS(address, prev, val)
5 if swapped: break

6 prev = atomicRead (address)

Listing 3: Spinlock atomic min



5.3 Parallelization of the local DBSCAN loop

The iterative conversion of DBSCAN allows us to divide
the computation of the loop iterations among all threads of
a compute node. Because the density of data points within
a chunk can be highly skewed, a naive chunking approach is
suboptimal (see Section 4.2), and can lead to a highly unbal-
anced work load. To mitigate this, a work stealing approach
is advisable. Our HPDBSCAN implements threading using
OpenMP’s parallel for pragma. The closest representa-
tive of work stealing in OpenMP is the schedule(dynamic)
clause, added to the parallel for pragma. Optimal perfor-
mance is achieved, when the dynamically pulled workload is
small enough—so that the workload imbalances are split and
fairly divided, and at the same time large enough—so that
not too many atomic min operations (whether supported
by hardware or not) are performed simultaneously on the
same memory location. This number is highly dependent
on environment details, such as the clustered problem and
the execution hardware. Through empirical tests, however,
we determined a reasonable dynamic chunk size of 40.

6. EXPERIMENTAL EVALUATION

In this section we will describe the methodology and find-
ings of the experiments conducted to evaluate the parallel
DBSCAN approach described above. The main focus of
the investigation is the performance evaluation of the imple-
mentation with respect to computation time, memory con-
sumption and the parallel programming metrics: speed- and
scale-up [12].

6.1 Hardware setup

To verify the computation time and speed up of our im-
plementation, we have performed tests on the Juelich Dedi-
cated Graphic Environment (JUDGE) [10]. It consists of 206
IBM System x iDataPlex dx360 M3 compute nodes, where
each node has 12 compute cores combined through two Intel
Xeon X5650 (Westmere) hex-core processors clocked at 2.66
GHz. A compute node has 96 GB of DDR-2 main memory.
JUDGE is connected to a parallel, network-attached GPFS-
storage system, called Juelich Storage Cluster (JUST) [11].
Even though the system has a total core count of 2.472,
we were only able to acquire a maximum of 64 nodes (768
cores) for our benchmark, as JUDGE is used as a production
cluster for other scientific applications. Our hardware allo-
cation, though, was solely dedicated for us, which ensured
that no other computations interfered with our tests. The
plugged-in Westmere processors allow to use 24 virtual pro-
cessors, when hyperthreading is enabled. For the test runs,
however, we disabled this feature as it can falsify or destabi-
lize measurement correctness, as Leng et al. [22] have shown.
In a multithreading scenario we facilitate for this reason a
maximum of 12 threads per node.

6.2 Software setup

The operation system running on JUDGE is a SUSE Linux
SLES 11 with the kernel version 2.6.32.59-0.7. All appli-
cations in the test have been compiled with gcc 4.9.2 us-
ing the optimization level O3. The MPI distribution on
JUDGE is MPICH2 in version 1.2.1pl. For the compila-
tion of HPDBSCAN, a working HDF5 development library
including headers and C++ bindings is required. For our
benchmarks we used the HDF group’s reference implemen-

Dataset Points Dims. Size (MB) & minPts
Tweets [7] 16,602,137 2 253.34 | 0.01 40
Twitter small [zs] 3,704,351 2 56.52 | 0.01 40
Bremen [b] 81,398,810 3 1863.68 | 100 10000
Bremen small [bs] 2,543,712 3 48.51 100 312

Table 1: HPDBSCAN benchmark datasets properties

tation, version 1.8.14, pre-installed on JUDGE. Later in
this section we present a comparison of HPDBSCAN with
PDSDBSCAN-D created by Patwari et al [25]. The lat-
ter needs the parallel netCDF I/0 library. We have ob-
tained and compiled pnetCDF from the project’s web page
at Northwestern University with version 1.5.0 [24].

6.3 Datasets

Despite DBSCAN ’s popularity its parallelization attempts
were mainly evaluated using synthetic datasets. To their
advantage, they can provide an arbitrarily large number of
data points and dimensionality. The downside, however, is
that they are not representative for actual real world applica-
tions. They might have inherent regular patterns from, e.g.,
pseudo random number generators that will silently bias the
implementation’s performance. For this reason, we decided
to resort to actual real-world data and its potential skew.
An overview of the chosen examples is depicted in Table 1.
We acknowledge that an evaluation of higher-dimensional
datasets is of great interest for some clustering application,
such as, for instance, genomics in bio-informatics, but could
not be obtained at the time of writing.

6.3.1 Geo-tagged collection of tweets

This set was collected and made available to us by Junjun
Yin form the National Center for Supercomputing Applica-
tion (NCSA). The dataset was obtained using the free twit-
ter streaming APl and contains exactly one percent of all
geo-tagged tweets from the United Kingdom in June 2014.
It was initially created to investigate the possibility of min-
ing people’s trajectories and to identify hotspots and points
of interest (clusters of people) through monitoring tweet den-
sity. The full collection spans roughly 16.6 million tweets. A
smaller subset of this was generated by filtering the entire set
for the first week of June only. Both datasets are available at
the scientific storage and sharing platform B2SHARE [14].

6.3.2 Point cloud of Bremen's old town

This data was collected and made available by Dorit Bor-
rmann and Andreas Niichter from the Institute of Computer
Science at the Jacobs University Bremen, Germany. It is a
3D-point cloud of the old town of Bremen. A point cloud is
a set of points and its representing coordinate system that
often model the surface of objects. This particular point
cloud of Bremen was recorded using a laser scanner sys-
tem mounted onto an autonomous robotic vehicle. It has
stopped at 11 different locations, performing each time a
full 360° scan of the surrounding area. Given the GPS tri-
angulated position and perspective of the camera, the sub-
point clouds were combined to one monolith. The raw data
is available from Borrmann and Niichter’s webpage [20]. An
already combined version in HDF5 format, created by us,
can be obtained from B2SHARE [14]. DBSCAN can be
applied here in order to clean the dataset from noise or out-
liers, such as falsy scans or unwanted reflections of moving



objects. Moreover, DBSCAN can also be used to find dis-
tinct objects, represented as clusters, in the point cloud like
houses, roads or people. The whole point cloud contains
roughly 81.3 million data points. A smaller variant was gen-
erated by randomly sampling :L of the points that is also

32
available on B2SHARE [14].

6.4 Speed up evaluation of HPDBSCAN

We benchmark our HPDBSCAN application’s speed up
using both, the full Twitter (#) and the full Bremen (b)
dataset. Our principal methodological approach is thereby
as follows. Each benchmark is ran five times, measuring
the application’s walltime at the beginning and end of the
main() function of the process with the MPI rank 0 and the
OpenMP thread number 0. After these five runs we double
the number of nodes and cores, starting from one node and
12 cores, up to the maximum of 768 cores. In addition to
that we have run a base measurement with exactly one core
on one node. For each “five-pack” benchmark run we report
the minimum, maximum, mean u, standard deviation ¢ and
coefficient of variation (C V'), defined as v = ff [1]. The
speed up coefficient is calculated in comparison to the sin-
gle core run, based on the mean values of the measurements
for each processor count configuration. Both datasets are
processed using the OpenMP/MPI hybrid features of our
application. That means that we spawn an MPI process for
each node available and parallelize locally on the nodes using
OpenMP. For the Bremen point cloud we have additionally
parallelized the computation with MPI alone, i.e., we use
one MPI process per core, enabling direct comparison of the
hybrid and fully distributed versions.

Nodes [ 1 1 2 32 64
Cores | T 12 24 384 763
OpenMP+MPI hybrid b
Mean x| 79372.29 8037.71 _ 4271.64 327.07 172.53
Z Sthev o | 17.6011 71.2829 16.2092 25971 1.3801
9 CV v | 0.00022 0.00886  0.00379 0.0079  0.0079
£ Min 79342.08 793748 425345 32271 170.77
Max 7938557  8129.85  4293.86 32965 17447
Speed-Up 1 9.9 18.6 2427 460.0
MPI b
Mean x| 79372.29  8028.67  4403.96 51521 354.99
Z SiDev o | 17.6012 9.5769 7.1526 947806 42.0006
2 CV v | 0.00022 0.00119  0.00162 0.18396  0.11832
£ Min 7934208 8019.10  4395.78 47110 30227
Max 7938557  8040.83 4415.45 684.74  420.01
Speed-Up 1 9.9 18.0 154.1 232.7
OpenMP+MPI hybrid ¢
Mean x4 | 207926 212.77 115.66 10.04 7.88
2 Sthev o | 1.06455 056826 0.35893 042128 1.03302
2 CV o | 0.00051 0.00267 __ 0.00310 0.04194_ 0.13106
£ Min 2078.16 212.05 115.34 9.76 7.14
Max 2080.47 213.43 116.17 10.78 9.70
Speed-Up 1 9.8 18.0 207.0 263.8
Table 2: Measured and calculated values of the

HPDBSCAN speed-up evaluation

The results in Table 2 and Figure 5 show that we are
able to gain substantial speed up for both data sets. It
peaks for Bremen at 460.0 using 768 cores, and in the Twit-
ter analysis case at slightly more than half of this value at
263.8. For the MPI-only clustering of the Bremen dataset
the speed up value falls short of the hybrid implementation,
being only roughly half of it with 232.7 using 768 cores.
There are two noteworthy facts that can be observed in the

measurement data. The first and obvious one is that the hy-
brid implementation outperforms the fully distributed MPI
runs by a factor of two. The access to a shared cell in-
dex and the reduced number of nodes to communicate it to,
significantly reduces communication overhead and enables
faster processing time. Secondly, one can observe a steady
decrease in the efficiency of additional cores used for the
clustering. This seems to be especially true for the tweet
collections compares to the Bremen dataset. This observa-
tion can be explained best through Amdahl’s law [2]. In
the benchmark we use a constant problem size, disallowing
infinite speed up performance gains. Instead, we approach
the asymptote of the single threaded program parts. Due
to the fact that tweet collection is smaller in size, we ap-
proach this boundary earlier than with the Bremen data for
instance. Additional network communication overhead with
larger processor counts, atomicMin() clashes as well as load
imbalances are good examples of simultaneously growing se-
rial program parts. Moreover, the growing CV value is a
good indicator for the increasing influence of external fac-
tors onto the measurements, like varying operating system
scheduling.

512 1 o Hybrid b
256 1 —a— Hybrid ¢ =
—
128 + —=— MPI b >l
1 Linear 4
) 64 ) //
- 324
3
2 16 +
g
4,,
2,,
1 + - - - -
2 8 32 128 512

number of cores

Figure 5: Speed up curves of the /PDBSCAN appli-
cation analyzing the Bremen and Twitter datasets

6.5 Scale up evaluation of HPDBSCAN

In this section we investigate HPDBSCAN ’s scalability
properties. Our principal measuring methodology remains
unchanged. Instead of the speed up coefficient, we report

the efficiency value e, = ij for each benchmark run, which

is the fraction of the execution time with a single core and
the execution time with p processing cores. Perfect scalabil-
ity is achieved, when the efficiency equals one or is almost
one. Yet, it requires doubling the dataset size, whenever we
double the processor count.

As a base for this we use the small Bremen dataset bs.
In particular, for each run, we copy the entire data p times,
where p is equal to the number of used processors. Then,
each copy is shifted along the first axis of the dataset by the
copy’s index, times the axis range, and concatenated with
the others. This way, we get multiple (p) Bremen old towns
next to one another. We chose this approach to get a better
grasp of the overhead of our implementation by presenting
the same problem to each available MPI process. In contrast
to that, a random sampling of the whole Bremen dataset,
for instance, would have altered the problem difficulty.

The results of our test can be seen in Table 3 and Fig-
ure 6. In all of the three scenarios a near constant efficiency



Cores [ 1 2 4 B 16 32

tributed environments and is implemented using MPI. In

OpenMP order to distinguish between these two, the suffixes -S or -D
Mean [ 99.5044  102.644 107.462  121.35 - - are added respectively.
Z Sthev o | 0.091 0.0439 0.1515 56788
ey 5 10.00099 0.00042  0.00141  0.04679 In order to compare both parallel DBSCAN approaches,
5 Min 99.41 102.58 1072 11781 we have performed another speed up benchmark according
Ma 9. 102.69 107.59 1314 . -
= 99.66 026 o7.3 > to the introduced methodology on the small Twitter dataset.
MPI Due to their technical similarities our two “contestants” are
Mean [ 99.50 101.86  103.74 10548 107.12 109.19 HPDBSCAN using MPI processes only and PDSDBSCAN-
Z Sthev o | 0.091 0.0884 0.1131 01881 05399 0.6653
2 CV v | 000099  0.00086 000109 _ 0.00178 _ 0.00504 _ 0.00609 D. Thereby, we scale the process count from one to a max-
5 Min 99.41 101.79 103.65 1053 10656  108.52 imum of 32, each being executed on a separate compute
Ma 99.66 102 103.91 10576 107.7 110.15
= ’ ! 771 node. Even though we have executed five runs for each level
Cores [ 12 24 13 9 192 384 of used processors, we report here only the mean value for
OpenMP/MPI hybrid execution time, memory consumption and speed up, because
Mean x| 10.46 133 14.02 14786 1631  19.76 of space considerations.
Z Sthev o | 00974 0.1425 0.2420 02548 0.58307  3.15081
gcv v | 000931 001071 024207 025481 003578 0.15943 Nodes | 1 2 7 3 16 32
£ Min 10.38 3.2 13.76 1457 1567 17.909
Max 10.63 13.45 1428 15.16 1712 25.26 HPDBSCAN MPI
time (s) 11439 5899  30.14 15.71 837 6.07
Table 3: Measured and calculated values of the Speed-Up 1.00 1.94 3.80 7.28 13.67 18.85
HPDBSCAN scale-up evaluation of the Bremen data Memory (MB) | 251064 345276 433340 678248 1101000 2111000
PDSDBSCAN-D
25 time (s) 28835 16247 10594  89.87 8537 88.42
—e— OpenMP bs Speed-Up 1 1.77 2.72 321 3.38 3.36
% MPI bs Memory (MB) | 500512 725104 1370000 4954000 19724000 59685000
L5 _a  Hybrid bs
> Table 4: Comparison of HPDBSCAN and
Q
5 14 PDSDBSCAN — D using the Twitter dataset
8 —_—
&
Table 4 and Figure 7 present the obtained results. HPDB-
057 SCAN shows a constant, near linear speed-up curve, whereas
PDSDBSCAN-D starts similarly, but soon flattens, stabiliz-
0 : ‘ : : ing at a speed-up of around 3.5. The curve for the memory
2 4 8 16 2 consumption is inverse. HPDBSCAN shows a linear increase

number of cores (nodes for Hybrid)

Figure 6: Scale up curves of H/PDBSCAN analyzing
the Bremen and Twitter datasets

value can be achieved, indicating good scalability. While the
MPI-only and OpenMP/MPI hybrid benchmark runs only
have a slightly increasing execution time curve, we can ob-
serve a clear peek for the OpenMP benchmark with four and
more cores. Through a separate test, we can attribute this
increase to more contentions in the spinlock of our atom-
icMin() implementation, introduced in Section 5.

6.6 Comparison of HPDBSCAN and PDSDBSCAN

As discussed in related work there are a number of other
parallel versions of DBSCAN. Most of them report different
value permutations for the computation time, memory con-
sumption, speed up and scalability of their implementations.
Almost all of them do not to provide either their used bench-
mark datasets or the source code of their implementations.
This in turn, disallows us to verify their results or to perform
a direct comparison of our approaches. To the best of our
knowledge the only exception are Patwary et al. [25]. Their
datasets can also not be recreated, but they made the C++
implementation of their parallel disjoint-set data structure
DBSCAN —PDSDBSCAN —open-source. This allows us to
compare our approach with theirs at least using our bench-
mark datasets. Patwary et al. offer two versions of PDSDB-
SCAN. One targets shared-memory architectures only and
is based on OpenMP. The other can also be used in dis-

again, seemingly being dependent on the number of used
processing cores, which can be explained by the larger num-
ber of replicated points in the halo areas. PDSDBSCAN-D,
however, presents an exponential memory consumption. An
investigation of the source code reveals that each MPI pro-
cess always loads the entire datafile into main memory, effec-
tively limiting its capabilities to scale with larger datasets.
This is also the reason why we have used the small Twit-
ter dataset #s for this experiment, as larger datasets have
caused out-of-memory exceptions. As a consequence, we
have not been able to reproduce the performance capabili-
ties of PDSDBSCAN-D.
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Figure 7: Speed up and memory usage of
HPDBSCAN compared to PDSDBSCAN —D

7. CONCLUSION
In this paper, we have presented HPDBSCAN —a scal-
able version of the density-based clustering algorithm DB-



SCAN. We have overcome the algorithm’s inherent sequen-
tial control flow dependencies through a divide-and-conquer
approach, using techniques from cell-based clustering algo-
rithms. Specifically, we employ a regular hypergrid as the
spatial index in order to minimize the neighborhood-search
spaces and to partition the entire cluster analysis into local
subtasks, without requiring further communication. Using
a rule-based merging scheme, we combine the found local
cluster-labels into a global view. In addition to that, we
also proposes a cost heuristic that allows to balance the
computation workload, facilitated by the previously men-
tioned cells, divided among the compute nodes according
to their computation complexity. =~ We have implemented
HPDBSCAN as an open-source OpenMP/MPI hybrid appli-
cation in C++, which can be deployed in shared-memory as
well as distributed-memory computing environments. Our
experimental evaluation of the application has proven the al-
gorithm’s scalability in terms of memory consumption and
computation time, outperforming PDSDBSCAN, the first
parallel HPC implementation. The presented cell-based spa-
tial index can easily be transferred to other clustering and
neighborhood-search problems with constant search range.
In future work we plan to demonstrate this on the basis of
parallelizing other clustering algorithms, such as OPTICS
and SUBCLU.
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Abstract—In this paper, we propose an instrumentation and
comp vision pipeline that allows automatic object detection
on images taken from multiple experimental set ups. We demon-
strate the approach by autonomously counting intoxicated flies
in the FLORIDA assay. The assay measures the effect of ethanol
exposure onto the ability of a vinegar fly Drosophila melanogaster
to right itself. The analysis consists of a three-step approach.
First, obtaining an image of a large set of individual experiments,
second, identify areas containing a single experiment, and third,
discover the searched objects within the experiment. For the
analysis we facilitate well-known computer vision and machine
learning algorith ly color segmentation, threshold imag-
ing and DBSCAN. The automation of the experiment enables an
unprecedented reproducibility and consistency, while significantly
decreasing the manual labor.

Index Terms—Image Analysis, Computer Vision, Machine
Learning, FLORIDA Assay, DBSCAN, Biology, Flies, Genetics

I. INTRODUCTION

Object detection is one of the fundamental problems in
computer vision. It is concerned with identifying objects in an
image or video irrespective of variations to it, like for example
different viewpoints, scaling, rotation, translation or partial
obstruction. The literature proposes a multitude of approaches
to tackle the problem, such as feature matching, template
matching or machine learning. In this paper we propose a
method that is based on the latter, namely, the unsupervised
clustering algorithm DBSCAN and threshold imaging.

We demonstrate the approach by counting intoxicated vine-
gar flies Drosophila melanogaster. The data is generated with
the FLORIDA assay, which measures the effect on ethanol
onto the ability to right itself again after intoxication. This is
used to identify genes and neuronal mechanisms underlying
the intoxication effect. While we focus on the automation
of the FLORIDA assay, the pipeline could be generalized to
similar detection problems e.g. bacterial culture observation
on well plates.

The remainder of this paper is structured as follows.
Section II reviews related work, and Section III presents
background information on the FLORIDA assay and the used
algorithms. In sections IV and V the analysis process is pre-
sented in detail along with its implementation. An evaluation
of the approach based on experimentation data is discussed in
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section VI and, finally, the paper is concluded in section VII
followed bv an outlook on improvements in section VIIIL.

II. RELATED WORK

Clustering is an established method for detecting and seg-
menting objects in images and videos. Some of the earlier
attempts date back to the 1970’s and 1980’s. Coleman et al. [7]
for instance propose an image segmentation method based on
K-Means [13], one of the fundamental clustering algorithms,
that is able to split a complete image into segments in the
respective color space. Similar research has been conducted
by Haralick et al. [14] in 1981 which is based upon hierar-
chical clustering and its different linkage types [13]. A good
summary of these earlier attempts is given by Kettaf et. al [16].

In biology and bio-medicine K-Means, and its adaptive and
fuzzy variants, are in widespread use, because of its robustness
to low image resolution and noise in the images. Examples
include tumor detection [18], volumetric reconstruction of the
left ventricle chamber [6] or automatic identification of brain
regions on MRT images [21]. More recently, density-based
approaches have become popular. Unlike K-Means based
approaches, they are able to directly detect non-circular objects
in images, without having to piece them together from a set of
sub-clusters, while at the same not requiring an exact number k
of clusters to be identified. Celebi et al. [5] for instance apply
DBSCAN [10] to segment an arbitrary amount of irregular
skin lesions in dermatological imagery. For our problem at
hand both of the above properties are desirable as we, first, do
not know the number of individual objects, second, observe
objects of arbitrary shapes. A more generalized method for
density-based object segmentation in images is given by Ye et
al [24] upon which we have based our approach.

III. BACKGROUND
This section provides an overview of the experimental set
up for data generation and used algorithms.
A. FLORIDA Assay

The “Full Loss Of Righting Reflex InDuced by Alcohol”
- FLORIDA assay is used to identify genes and neuronal net-
works underlying the ethanol induced loss of righting reflex,
a measure for the degree of intoxication. The experimental



animal is the common vinegar fly Drosophila melanogaster,
that is a useful genetic tool to study the mechanistic basis of
behaviors associated with alcoholism [22]. The vinegar flies
not only share common genes but also behavioral similarities
when intoxicated, and are therefore a useful genetic model
system to understand ethanol induced behaviors in humans.
Through alteration of genes in the specimen and subsequent
observation of mutants, it is possible to analyze changes of
behaviors that are associated with alcohol abuse disorders [22].
Concretely, the experiment is focused on the investigation of
the flies’ tolerance to the intoxication effect of ethanol. In
line with that, a population of flies is exposed to vaporizing
ethanol in experimentation vials. The individuals’ intoxication
level is recorded over time, by counting sedated flies. The
sedation is defined as flies that fail to right themselves after a
mechanic stimulation. This measure is also known as loss of
righting reflex. The experimentation procedure is summarized
as follows:

1) Multiple individuals, currently a group of 20, are placed
into an experimentation vial. 2) The vial is closed by an
ethanol soaked tissue which vaporizes over time. 3) In a
specified interval—currently 60 seconds—the vials are shaken
to startle the flies and identify the sedated flies that fail to
right themselves. 4) The number of intoxicated objects needs
to be determined in an image. 5) The experiments is terminated
when all flies are sedated. 6) The data analysis has to be
obtained for multiple vials containing groups of flies that are
treated in parallel.

B. DBSCAN

Clustering algorithms in the field of machine learning
are used to aggregate similar objects into common groups.
DBSCAN is a particular, density-based clustering algorithm
that was published 1996 by Ester et al. [10]. Its principal idea
is to find dense areas and to expand these recursively in order
to find clusters. A dense region is thereby formed by a point
that has within a given search radius e at least § neighboring
points, whereas 6 is called density threshold, or in literature
often referred as minPoints.
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Fig. 1. DBSCAN clustering with minPoints § = 4 and search radius e.

This dense area is also called the core of a cluster. For each
of the found neighbor points the density criteria is reapplied
and the cluster is consequently expanded. All points that do
not form a cluster core and that are not “absorbed” through
expansion are regarded as noise. A more formal definition can
be found in [10]. Two of the major advantages of DBSCAN
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Fig. 2. The automated experimentation setup. It is consisting of (1) an
electric engine, shaking the vials via a rotary crank, (2) a digital SLR, (3) a
spring suspension allowing horizontal motion, (4) a top lightning plate, (5)
the experimentation vials containing the fruit flies and (6) a notebook with
the analysis software, connected via USB to other devices.

compared to other traditional clustering algorithms, like K-
Means [13] for example, is that it can detect arbitrarily shaped
clusters without having to know the number of clusters apriori.

IV. ANALYSIS PROCESS

Counting the number of intoxicated flies is achieved in a
three-step sequential analysis process. First, a high resolution
image is retrieved from the FLORIDA laboratory setup’s
single-lens reflex (SLR) camera. Then, the vials are segmented
to enable individual fly counting for each vial. Finally, after
thresholding the image, the DBSCAN algorithm is used to
cluster the darker image areas. The result is then used to count
the number of flies in the image. Details of these steps are
described in the sections below.

A. The FLORIDA laboratory setup

The FLORIDA laboratory setup, illustrated in Figure 2, has
been built in order to enable the fully automatic counting of
sedated flies and consists of several sub-parts. The main part is
the holder plate for the experimentation vials, attached to the
outer framework through metal springs which allow horizontal
motion. The holder plate exhibits a grid of four by five vial
slots, permitting a analysis of 20 vials in parallel with each
vial equally holding 20 drosophila melanogaster.

The bottom of the holder plate is plastered with green
foil, enabling accurate segmentation of the vial slots. A SLR
camera is placed below the holder plate, with the lens faced
to the bottom of the vials. Sedates flies gathering at the vials’
bottoms can easily be captured by the camera, while flies in
upper regions fade out due to the opaque vial material. To
achieve a high contrast between flies and vial surface, a LED
light plate is placed above the holder plate to screen the vials.
As shown in Figure 2, an electronic engine is connected to
the holder plate, to shake the vials before the photo is taken
as to test the righting reflex. The SLR camera, the shaker
engine and the light plate are connected via USB to a PC and
can be controlled with our FLORIDA software. This includes
capturing and streaming images from the camera directly to
the program.



Fig. 3. The image processing steps from left to right—left: vial segmentatio;,
center: threshold image; right: resulting clusters.

B. Vial Segmentation

Before the actual flies can be detected, the vials have to be
found. Our first attempt was to use the Hough Transform [8]
for finding circles. While this method was able to find the vials
quickly, it does not provide the desired precision. Perspective
distortions of the camera let the vials shapes appear more
elliptical than circular. This is a problem that is difficult, while
not impossible to manage with this algorithm.

To provide fast and accurate vial segmentation a green
foil was glued on the underneath of the holder plate. This
enables the usage of simple color segmentation techniques
based on green screening (similar to what is done in movies).
For this, the image has to be converted from RGB (Red
Green Blue) to HSV (Hue Saturation Value) [11] color space,
since it separates the color information from intensity and
illumination. The hue value describes the color which should
be in range h = [40,80] for green, the saturation, or color
intensity, should be at least in range s = [150,255] and the
value, or illumination is between v = [10, 255], to avoid the
segmentation of complete dark regions. After a mask is created
that selects all pixels within these ranges, contours are detected
using the Teh-Chin chain approximation algorithm [23]. All
contours that contain an area of around a = 7)2, where 1 is
the predefined vial radius, are considered as vials.

The resulting vials mask is post-processed with an erosion
algorithm to smooth the edges. Furthermore, the contour points
are moved few pixels towards the image center where outer
points are stronger affected than inner points. This rubber band
effect has the purpose to correct the different perspective view
angles on the vials. The results are stored as polygons which
can be used to create an image mask for the associated vial.

C. Threshold Clustering

After the vial segmentation step, each vial can now be
analyzed separately. For this, the RGB image is converted first
into a gray scale image and then the vial mask is used to
whiten everything but the considered vial. Then, a threshold 7
is defined. Given the image width X and image height Y, all
pixels p; , in the resulting image P are binarized using the
following function:

255
Py = 0

if po., <
P Pry =T yr e 1, X]vy € [1,Y]

1
if ppy > 7T M
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Fig. 4. The graphical user interface of the FLORIDA software with the to
be analyzed image on the left and parameter settings on the right

This means, all pixels below the threshold are considered to
belong to a fly and are mapped to white, while all other pixels
are mapped to black. The coordinates of the white pixels W
are then extracted:

W= {(e,y)lVe € [LXIVy € [1LY] i poy >0} )
These are then fed to DBSCAN:
C, N = DBSCAN(e, 0, W) 3)

Whereby C are the resulting cluster labels and N the pixels
considered to be noise.

D. Fly Counting

Finally, the found clusters C' have to be counted. The naive
approach is to consider each cluster to represent a single fly.
However, due to being close to one another, a single cluster
may contain multiple flies, as seen in Figure 3, this will result
in miscounts. Therefore, the fly count fis predicted as such:

2

With p being an additional pixels per fly parameter, defining
the amount of cluster pixels (|C;|) that will count as single
fly. While more complex algorithms have been considered to
overcome the problem, this solution is fast and yields sufficient
performance. The threshold clustering and fly counting steps
are repeated for each found vial in the image.

IC|

-3

i

“

V. IMPLEMENTATION

The entire analysis process is implemented as part of a
standalone GUI application that is operated by the laboratory
assistants of the FLORIDA experiment. Figure 4 depicts an
example of the interface, while the next section describe
details.



A. Controls

The interface of the FLORIDA software is divided into five
major parts. On top of the window is a menu bar that allows to
load and store experimentation settings, if the defaults saved
on the last exit are undesired. Below that, is another menu bar
that is focused on controlling the external devices. It allows
to automatically detect and set up the external devices and
take a fresh picture with the camera. Moreover, the currently
displayed picture analysis mode—that is raw, threshold or
clustering—can be selected here as well as vial detection
rendering toggled. The actual image is displayed in the center
of the GUI window.

On the right side of the window is a pane with the
experimentation settings. Here, the FLORIDA laboratory as-
sistants can configure analysis parameters, like ¢, 6, p, device
properties, like the shake time and its lead, as well as result
options, like e.g. the path, where the results are stored in a
comma-separated value format. On the bottom of the main
application window a system log is displayed. It informs the
user about the software’s status, which includes among other
things which devices are connected and which not. The logger
can be closed at anytime in order to enlarge the image and can
be re-opened via the top menu.

B. Software

The source code of the software can be obtained from the
authors’ public Github repository [3] and is licensed under
BSD-style restrictions, meaning it can be used and modified
free of charge. It is written in C++ with the help of the
Qt programming framework [1] and the interface has been
designed using its built-in creator suite.

In order to communicate with the external devices and to
analyze the images the FLORIDA software requires other
software dependencies, all of them being open-source as
well. For obtaining images from the SLR libgphoto2 [15]
is utilized. This library enables camera control automation
including image streaming to computers. Supporting a large
set of models from common vendors allows a transparent
exchange of the actual SLR. The shaker, or electric engine, is
remote controlled via an USB relay that is programmed using
libusb [9], implementing only the required packages to turn it
on or off. Due to the use of a standardized communication
protocol for the relay, an exchange of the USB relay is
possible.

Internally, the FLORIDA software employs two software
packages to process the images. On the one hand, we have
OpenCV [4] providing convenience functions for image edit-
ing, like color space conversion, cropping, threshold and so
forth. On the other hand, a stripped down OpenMP-version of
HPDBSCAN [12]—a parallel processing variant of the regular
DBSCAN—is used, to fully utilize the computer’s processing
capabilities. An installation script for the FLORIDA software
can be found in the Github repository, effectively obtaining
the newest version, compiling it and installing it, including
setting correct access rights for the devices.
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(a) Samples from data set Dp

—Q

(b) Samples from data set D

Fig. 5. Samples from two different FLORIDA experiments. While Dp
was contains high quality images, the data from Dy differs in terms of
illumination and resolution.

C. Hardware

In the current FLORIDA experimentation setup a dual-core
laptop with 2.0 GHz and 2 GB of RAM is controlling the other
devices. On it is the Fedora 21 operating system installed. The
pictures are taken by a Canon EOS 5D Mark I SLR camera,
which has a native resolution of 4368 x 2912 pixels and
full frame image sensor format. The high resolution provides
enough image quality to record 20 vials concurrently. The vials
are shaken by a electric engine that is switched on and off by
a “single channel 5V USB Control switch”.

VI. EVALUATION

An important aspect of each machine learning pipeline is
to measure its performance. For the FLORIDA experiment,
dedicated validation data sets have been collected and the
model parameter were compared to each other by a well
defined loss function. The results of these steps can be found
in this section.

A. Datasets

To make an evaluation possible, two datasets have been
recorded. The first data set D is obtained from an accelerated
FLORIDA experiment. Instead of capturing one image each
60 seconds, the interval has been decreased to 15 seconds to
increase the number of resulting images. At the point when all
flies were sedated and after the removal of poor quality images
a total number of 1381 vials image were gathered. This dataset
still includes low quality pictures in terms of illumination and
noise that should not occur in an actual analysis environment.
However, we decided to keep this images in the dataset to give
machine learning algorithms the chance to be more sensitive
to these outliers. The second data set Dy was recorded in the
regular one minute interval over 44 minutes total, resulting
in a collection of 880 vials. While Dy will be considered
as a benchmark dataset to build more robust models, Dp is



TABLE I
GRID SEARCH RANGES—GRAND TOTAL OF 39,900 COMBINATIONS

|| Min | Max | Step
Threshold (1) 90 120 5
Epsilon (¢) 2 11 1
MinPts (6) 1 19 1
PixelsPerFly (p) 100 390 10

considered as real experimental data set. All recorded vials
have been counted manually and are available on the research
repository B2SHARE [2].

B. Parameter search

As a next step, the parameters for the algorithms needed
to be found. While the vial size ¢ can be easily determined
by measuring it on the images, the parameters 7 (threshold),
€ (DBSCAN search radius), § (DBSCAN density threshold)
and p (pixels per fly) are more difficult to estimate and are
highly dependent on each other.

First, we introduce a user experience parameter set (UEPS)
which is simply a set of parameters that have been defined by
laboratory assistants, while experimenting with the FLORIDA
software and that provide sufficient enough counting accuracy.
These parameters are:

T 100
€ 5

UEPS = ol = | 15 )
p 200

While the UEPS represents just the manual users subjective
perception, an automated grid search about a certain range
of parameter sets has been performed. With help of the
JURECA [17] supercomputer, the grid search over 39,900
total parameter sets could be computed in parallel. In Table I
one can find the parameter ranges that have been searched.

The grid search sorts the parameter sets ascending by the
mean squared error (MSE) value on Dp. We also provide the
R? value, which is another efficient metric to compare the sum
of squared errors to the variance of the data.

i f)?

>ilfi— £)?

Where f; is the actual number of flies ﬁ the predicted
number of flies and f the mean number of flies. This value
tends to one, if the model perfectly predicts the desired
outcome and is zero, if the prediction is equals to the mean.
Additionally, the MSE and R? values were computed for Dy .
The top five parameter sets with respect to their MSE on Dp
can be found in Table II.

 SSE;

R? =
Vi

1

6)

C. Interpretation

The gird search shows that small values for € and 6 are
favorable and that a threshold 7 around 90 yields the best
results. Moreover, p tends to be smaller than initially guessed
in the UEPS. Given that the values of € and 6 are set below to

750

MSE
]163.63

52.58

15

Iog(MSE)
1

16.90

0.5

2 5.43

4
6

Epsilon

10
MinPts

10

Fig. 6. Three-dimensional projection of the grid search. The DBSCAN
parameters € and 6 are compared to the resulting MSE. The dark blue regions
contain the lowest MSE values.

a certain range the error increases drastically, as one can see
in Figure 6.

As expected, the MSE and R? values are significantly higher
for the Dy data set. A possible explanation is the different
illumination in the data, where extreme dark regions could be
perceived as large fly clusters, or flies with low contrast would
not be recognized as such. In order to handle this problem, one
would require a dynamical threshold to binarize the image,
depending on its light properties. Interestingly enough, the top
five parameter sets with the highest pixels per fly value p
result in the lowest MSE on D . This underlines the statement
from above, that large p values will result in a lower MSE for
accidentally misclassified fly clusters.

The MSE of 1.745 on Dp is equal to a standard deviation
of 1.32 miscounted flies on all images. The results in Table II
and the flat grid search surface in Figure 6 indicate that the
most optimal parameter sets are similar to one another and
robust enough for experimentation conditions. Therefore, we
suggest to use the best found parameter set, further referred
as grid search parameter set (GSPS) which is:

T 90

asps= |¢| = | 3 10
0 9
P 160

Furthermore, in case of deviating experiment environments,
new parameters can be found by using the GSPS as a basis.

TABLE 1T
GRIDSEARCH TOP FIVE RESULTS

#] 7 || 6| p ||MSEpg | R}, | MSEpy | R},
T|[90 [3] 9 [160|[ 1.745 | 0946 | 12433 | 0.727
2190 [3]9 |150| 1750 |0946| 12912 | 0.717
30195 [3 15160 | 1757 |0946 | 19.233 | 0.578
4190 |3]9|200]| 1768 |0.946 | 11.355 | 0.751
51/ 90 |3]10]160| 1770 |0.946 | 12559 | 0.724
UEPS || 100 | 5| 15| 200 || 3.325 |0.899 | 26732 | 0414
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Fig. 7. Absolute miscounting errors made by our model, using the grid search
parameter set (GSPS).

The MSE performance increase of the GSPS over the initial
UEPS is 190% for D and 215% for D,. While this is an
significant improvement, the MSE may not provide enough
information to validate how accurate the model counts flies.
By listing the occurrences of miscounted flies in Figure 7, the
reader should get an impression of the model’s performance.
In the Dp data set, nearly half of the vials has been counted
correctly, while another 45% of the vials were miscounted by
one to two flies. Only five percent show up higher error rates
with up to seven miscounts. The performance in Dy shows
that the number of correctly counted flies is lower, but the main
drop in performance comes from a low number of extremely
high errors. As mentioned before, this could be attributed to
dark regions that are misclassified as flies.

In summary the performance of the model exceeds our
expectations. Nevertheless, for dark and noisy images a more
robust model is required. For well prepared, equally illumi-
nated experiment environments the accuracy of the model is
sufficient.

VII. CONCLUSION

In this paper we presented an automatic image analysis
pipeline that allows the counting of intoxicated fruit flies in the
FLORIDA assay. We have proposed both, a experimentation
setup for devices as well as the analyzing algorithms. The
latter was implemented in a GUI application that is currently
in productive use at the University of Cologne. In an empirical
evaluation of the software we were able to obtain an MSE of
1.745. An adaptation of the method to similar segmentation
and counting problems in lab environments is possible through
the adjustment of a few model parameters.

VIII. FUTURE WORK

More robust models lead to generalization for more scien-
tific domains. One idea is to use the generated fly masks from
our model, to train a segmentation convolution neural network
as proposed in [19]. With the help of data augmentation, i.e.
modifying illumination and rotation, a robust model could be
trained, without the need for an explicit threshold parameter
tuning. Another approach is to train a convolution neural
network through reinforcement learning similar to what Mnih
et al. [20] described, in order to dynamically adapt the models

parameters to the image. Finally, image classification could be
used on the found clusters, to discover multiple flies in one
cluster. This step would need the creation of an additional
data set, providing images of found clusters and labeled with
the number of visible flies. This paper will be followed by
biological experiments at the University of Cologne.
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Abstract This study addresses the task of automati-
cally identifying water mixing events in the multivariate
time series of salinity, temperature and dissolved oxy-
gen provided by the Koljo fjord observatory. The ob-
servatory is used to test new underwater sensory tech-
nology and to monitor water quality with respect to
hypoxia and oxygenation in the fjord, and has been col-
lecting data since April 2011. The fjord water properties
change, manifesting as peaks or drops of dissolved oxy-
gen, salinity and temperature, when affected by inflows
of new water originating from the open sea or by rivers
connected to the fjord system. An acute state of oxygen
depletion can harm wildlife and the ecosystem perma-
nently. The major challenge for the analysis is that the
water property changes are marked by highly varying
peak strength and correlation between the signals.
The proposed data-driven analysis method extends
existing univariate outlier detection approaches, based
on clustering techniques, to identify the water mixing
events. It incorporates three major steps: 1. smoothing
of the input data, to counter noise, 2. individual out-
lier detection within the separate variables, 3. clustering
of the results using the DBSCAN clustering algorithm
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to determine the anomalous events. The proposed ap-
proach is able to detect the water mixing events with
a FI-measure of 0.885, a precision of 0.931—that is
93.1% of all events have been correctly detected—and
a recall of 0.843—that is 84.3% of events that should
have been found actually also have been. Using the pro-
posed method the oceanographers can be informed au-
tomatically about the status of the fjord without man-
ual interaction or physical presence at the experiment
site.
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1 Introduction

Many important events can be observed using underwa-
ter sensor systems. Algal blooms, various water mixing
and renewal events appear on the background of sea-
sonal changes. Salinity and temperature are essential
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parameters as they determine seawater density and thus
circulation. Chemical variables, like oxygen or chloro-
phyll, can serve as indicators of ongoing biogeochemical
processes as well as chemical markers of different wa-
ter masses and the ’health’ of the waterway. Current
sensors directly measure water transport. One needs
to observe many parameters at the same time to be
able to correctly detect and interpret changes as on-
going events, and one needs to have experience in the
observations as well as take into account hydrography.
Often several processes occur at the same time, and
different parameters also change with relation to other
signals like sunlight intensity, wind and so forth. This
complex event detection task can be delegated to an
automated system. One goal of this work is to develop
a data analysis system that can be integrated into ex-
isting monitoring infrastructures to provide automated
event detection and warning system functionality. Po-
tential applications can be numerous—real-time detec-
tion of various natural and anthropogenic events, e.g.,
algal blooms, water mixing events, or leakages from un-
derwater oil pipelines based on analyses of multivariate
sensor data.

Outlier detection, sometimes also called anomaly or
novelty detection, is the process of finding observations
within data that are significantly different from the re-
mainder of the data set. It can be considered as a special
form of classification problems, where one categorizes
data items as “anomalous” or “normal” based on their
values. There are various application fields for outlier
detection, from flow control monitoring in oil pipelines
to credit card fraud detection. In this work we have ap-
plied this method to multivariate oceanographic time
series data recorded in Koljo fjord.

The specific research question is given by periods
in time when new water from the ocean or the con-
nected fjords comes into Koljo fjord and changes its
water properties. A water mixing event is characterized
by a sufficient change in sea water temperature, salin-
ity and oxygen, which occurs simultaneously and for
the same time period. The changes in the water proper-
ties may not be evenly distributed among the different
variables. For this reasons, simple rule-based or peak
identification approaches are not sufficient.

The major analysis goal is to determine whether
the influent waters are potentially harmful to flora and
fauna or heavily change the water chemistry, damag-
ing the natural reserve of the fjord. This also gives
the oceanographers and the local government of Borhus
county the possibility to coming to well-grounded de-
cisions whether environmental engineering efforts need
to be taken. These could for example include restric-
tions on fishing or ecological policies, like the reduction

of fertilizer use around the fjord. For the application
domain scientists it is going to save labor and cost as
they do not have to manually monitor the data as it
is recorded. In the bigger picture, this will also help to
better understand the hydrologic cycles on our planet
and their impact on Earth’s climate.

The scientific literature proposes a number of
techniques for the (semi-) automatic identification of
outliers that are harder to identify. These include,
among others, supervised machine learning, such as
support vector machines [8], autoregressive-moving-
average (ARMA) [39] model construction and sub-
sequent deviation identification, statistical hypothesis
testing based on the assumed underlying data distribu-
tion, clustering methods and others. In this work we
extend existing univariate data analysis approaches of
the latter category, by utilizing the DBSCAN cluster-
ing algorithm to determine the water mixing events in a
multivariate time series. Our main reason for selecting
this methodology was the lack of precise labels per sam-
ple, preventing the use of potentially more robust su-
pervised methods. One of the aims of the Kolj6 fjord ob-
servatory is to perform monitoring with high temporal
resolution, that helps to resolve event dynamics. How-
ever, from the data analysis point of view, this makes
it more difficult to identify the starting and end point
of each event precisely. This is why we have decided
to use the DBSCAN clustering algorithm together with
a simplified representation of each water mixing event
by its central point. This approach is explained in Sec-
tion 6.1, where the validation of the analysis results is
discussed.

The remaining sections are organized as follows.
Sections 2 and 3 introduce the background for this work
and survey related studies. The Koljo fjord observa-
tory data and its properties are explained in Section 4.
Subsequently, Section 5 details the proposed analysis
approach. An evaluation of its effectiveness is given in
Section 6, before the paper is concluded in Section 7.

2 Background
2.1 The Koljo Fjord Observatory

The Koljo fjord observatory [23]| is situated on the
Swedish western coast. Its primary purpose is real-
time monitoring of water mixing with regard to semi-
permanent and seasonal hypoxia, specific to many
fjord systems, using the Koljo fjord as an example.
At the same time new measurement hardware is of-
ten tested, as Koljo fjord provides a very wide range of
conditions—from semi-permanent anoxia in deep wa-
ter to very well oxygenated and extremely productive
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Fig. 1: The Kolj6 fjord observatory.

surface waters. Koljo fjord is very well protected with
regard to wind and waves and is easily accessible by re-
search vessels from Kristineberg field station run by the
University of Gothenburg. A practical side-effect of the
observatory work is that the residents around the fjord
have a possibility to inform themselves about the gen-
eral water quality and effects such as seasonal hypoxia
and algal blooms.

The Koljo fjord is a part of the Orust fjord system
around the islands of Orust and Tjérn on the Swedish
west coast. It is connected to the Skagerrak through
the narrow and shallow Malo Stréommar straight (9m
deep) at its south-west end and to the Havstenfjord
through the Notesund sill (12 m deep) at the north-east
side [17]. Above the sill depth the Kolj6 fjord is char-
acterized by free water exchange. Surface water prop-
erties resemble the conditions found in Kattegat and
change rapidly [4]. Below the sill depth, the residence
time of the basin water is long—about three to four
years—as water renewal is restricted to rare occasions
of exceptional weather conditions, e.g. persistent east-
erly winds. As a result, the basin water is anoxic most of
the time [33]. The Koljo fjord is an example of the par-
ticularities of many Scandinavian fjords and an inter-
esting research site in terms of biogeochemical activity.
Due to its well-protected location, highly variable and
dynamic conditions, and strong seasonality, the fjord
is well suited for field testing of new technologies, with
regard to sensor measurements as well as data interpre-
tation and analysis.

A cabled observatory was installed in the Koljo fjord
in April 2011 at 58°22/82.5” N, 11°5740.0”E in 42m
depth, and has been operational since then. Figure la
shows its position on the map. The observatory consists

of a land station, an underwater hub and experimental
nodes. A main cable connects the land station with the
hub, powering it and transferring data, allowing for at-
tachment of up to four experimental nodes. The exper-
imental node currently in use has a Doppler Current
Profiler (DCP), model Recording DCP-600 (from 2011
to 2014) [1] or Seaguard IT DCP (since 2015) [2]| in-
stalled about 1 m above ground, and a Seaguard String
System [3]. The DCPs measure currents with a reso-
lution of 1m through the water column and are also
equipped with sensors to measure temperature, salinity,
pressure, and oxygen above the bottom. The Seaguard
String System collects additional oxygen, conductivity
and temperature readings from around 30 sensors at
several depths between 27 m and 8 m below the surface.

Dissolved oxygen and temperature measurements
have been made using oxygen optodes model 4835.
The optodes are stable, with a field precision of about
0.2pM and an absolute accuracy of about 2% [6]. Con-
ductivity, salinity and temperature measurements have
been collected using the sensors model 4319 with an ab-
solute accuracy of 0.05 %: for conductivity and 0.05°C
for temperature. Figure 1b shows a schematic view of
the observatory experimental setup that represents a
real world data source used in the analysis.

2.2 DBSCAN Algorithm

Clustering algorithms in the field of data-mining or ma-
chine learning are used to aggregate similar objects into
common groups. The Density-Based Spatial Clustering
for Applications with Noise algorithm (DBSCAN) is a
particular, density-based clustering algorithm that was
published by Ester et al [10]. Its principal idea is to
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find dense areas and to expand these recursively in or-
der to find clusters. A dense region is thereby formed
by a point that has at least minPoints neighboring
points within a given search radius . This point with
the surrounding dense area is also called the core of
a cluster. All other neighboring points are considered
border points of the cluster. For each of them the den-
sity criterion is recursively reapplied. Given that it is
fulfilled, the cluster is consequently expanded, turn-
ing the currently checked point into a core point and
its € neighborhood into border points. Points of the
same cluster that are less than ¢ distance units apart
from each other, are called directly-density-reachable
(DDR). All others that are further away, but are tran-
sitively directly-density-reachable are called density-
reachable (DR). The latter relationship is not sym-
metric, because a border point must not be DR by a
core point, however, the opposite holds true. Therefore,
all points within a cluster are called density-connected
(DC) if either one of them is DR by the respective
other.

Fig. 2: Exemplary DBSCAN clustering with
minPoints = 4. Cluster core points are dark gray,
border points light gray and noise white.

All points that do not form a cluster core and that
are not “absorbed” through recursive expansion of any
cluster are regarded as noise that form their own spe-
cial cluster set. A formal definition of the algorithm
can be found in the publication of Ester et al [10]. The
major advantage of DBSCAN, compared to other tra-
ditional clustering algorithms such as K-Means [28] or
hierarchical clustering [16], is that it is able to detect
arbitrarily shaped clusters without having to know the
number of clusters a priori. In addition to that, it is able
to efficiently detect outliers through its notion of noise.
Figure 2 shows an example of a DBSCAN clustering.

3 Related Work

Clustering algorithms have been successfully used in the
recent decade to analyze time series data. Liao [27], for
example, provides an in-depth survey of methods, algo-
rithms and use cases for time series data clustering with
a strong emphasis on explaining how time series data
can be preprocessed, and how features can be extracted
in order to make it susceptible to standard clustering
algorithms. Similar to that, Hodge and Austin [19] pro-
pose approaches to detect outliers in time series data
using various techniques, clustering being a major one.

Less recent application examples are presented by
Goutte et al [14] and Himberg et al [18]. Both use
cases come from the field of neuro-sciences, in which
they analyze fMRI and MEG image time series data
to detect voxel activations or independent brain areas
respectively. Bagnall and Janacek [7] explain in their
publication how to improve computation time in a sim-
ilar application through time series subdivision. All of
the mentioned publications share two common points.
First, they try to analyze data that has no or only weak
labels, prohibiting traditional classification algorithms,
such as the data we are dealing here with and second,
they all utilize the K-Means [28] clustering algorithm,
or variants of it such as K-Medoids [16].

Jiang et al [20] argue that K-Means is a suitable
algorithm for outlier detection, given that the num-
ber of clusters is known or can be easily inferred. In
their gene expression time series outlier detection use
case, similar to the water mixing events, this is not
the case. Therefore, they propose to use a modified
version of the density-based clustering algorithm DB-
SCAN, which does not require the cluster count a priori.
Their main idea is to perform iterative density-based
clusterings that are subsequently ordered in a hierar-
chical tree based on their inclusion or intersection. Ev-
erything below or respectively above a certain density
threshold is considered to be data outliers and can ei-
ther be discarded or further investigated. Jiang et al [20]
use the laid out algorithm to identify unusual patterns
in univariate serum stimulation time series.

It is worth noting that even the baseline DBSCAN
algorithm can be used to detect anomalies in time se-
ries data. Pavlidis et al [34] have demonstrated this
by predicting drops and peaks in the German mark to
US dollar exchange rate using DBSCAN input series
clustering. For this, they cluster the univariate time
series and based on the resulting clusters, subdivide
the data into normal (cluster) and abnormal episodes
(noise) as local predictor labels for a subsequent arti-
ficial neural network training. Another example is the
air space monitoring use case of Gariel et al [12], in
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which they automatically detect deviations from the
univariate, day-normal airplane trajectories time series
in order to report unusual flight paths. Finally, Kut and
Birant [26] have proposed their own DBSCAN modifi-
cations for the analysis of spatio-temporal data. They
cluster the temporal and spatial variables of a dataset
independently of one another in order to identify unusu-
ally strong waves, similar to what is proposed in our
work, except that they do not correlate the indepen-
dent clusters directly but rather through an elaborate
tree search.

In the literature one can also find some existing work
on water mixing event detection, or in other words,
anomaly detection of water properties. However, these
mainly revolve around the automatic analysis of drink-
ing water sources and their potential contamination
with pathogens, chemicals and so forth, to ensure pota-
bility. Even though their water systems are different
from a natural fjord system, in the sense of a much
more closed and stable system, the base analysis prob-
lem is similar to the one in our work. Zhao et al [40]
for instance present a review of various event detec-
tion mechanisms. These include among others artificial-
neural-network-based detection as presented by Perel-
man et al [35] or k-nearest-neighbor classification as
used in the CANARY system of the United States En-
vironmental Protection Agency [32]. They have the ad-
vantage of having very precise ground-truth data for the
particular events, which is not available for the Koljo
fjord observatory data. In such cases the analysis can
be performed using unsupervised clustering methods,
as presented by Klise and McKenna [22] and their K-
Means analysis. As stated before, DBSCAN is a much
better fit for an unknown number of events. This is why
this work’s method is based on the latter algorithm. To
the best of our knowledge our analysis is the first to
study water mixing events in non-controlled, therefore
much more dynamic, natural environments. With this
it has effectively introduced data-driven water mixing
event detection models in oceanography.

4 The Observatory Data

Water conditions in Koljo fjord can be schematically
divided into three groups. The surface layer—down to
a depth of about 10 m—has the lowest salinity, as it re-
ceives fresh water from rivers. In summer, surface wa-
ters are well illuminated by the sun, and as a result,
algae and animals can settle and grow on any available
surface, including the sensors. This process is called
biofouling. Sensor measurements in the surface layer
require serious antifouling protection, otherwise sensor
readings become affected by biofouling during spring,

summer and fall. The onset of biofouling is hard to rec-
ognize in practice, before a week or more has passed
from its start due to its slow, gradual development. Oth-
erwise, surface waters are usually very well mixed by
wind, and conditions with regard to oxygen and salin-
ity are stable.

In contrast to that, deep waters (deeper than about
20m) have the highest salinity and are stagnant most
of the time. Due to the fjord system’s hydrography and
good protection from wind, deep waters cannot practi-
cally be affected by wind mixing. Water mixing occurs
seldom in the deep waters (once every 3-5 years). They
normally contain no oxygen for large stretches of time,
so measurement data shows very few characteristics.

The intermediate layer (between 10m and 20m) is
quite dynamic. This layer can be affected by wind mix-
ing directly and indirectly, including wind-induced wa-
ter movements in and out of the fjord through the Néote-
sund strait. Strong changes in all water parameters can
occur on the time scale of days and hours. In the inter-
mediate depths the sensors are very seldom affected by
biofouling processes due to scarce sunlight for algae and
low oxygen for animals. For this reason, the tempera-
ture, salinity and oxygen data measured at 15m depth
have been selected.

Specifically, the optode s/n 29 and the conductiv-
ity sensor s/n 242 deployed at 15m water depth are
considered. The data has been collected in the time pe-
riod from April 19", 2011 16:42:01 UTC to July 15",
2015 09:09:12 UTC and includes a grand total of 71, 350
data points, excluding missing values, that have been
sampled every 30min. The full observatory dataset con-
tains numerous water parameters measured at different
depths as well as additional information about the sta-
tus of the observatory sensor system, such as for ex-
ample their three-dimensional orientation, power sup-
ply and so forth. The additional data is of utmost im-
portance. It is used for quality checking of raw sensor
readings and understanding which changes must be in-
terpreted as water mixing events. However, after one
has marked the events, the additional data is no longer
important for the further analysis, explaining the lim-
itation to the actually used variables time, tempera-
ture, salinity, and oxygen saturation. The raw data for
the investigation can be found on the observatory web-
page [23] as well as on the open earth science data
repository PANGAEA [9, 24]. Figure 3 depicts the data
curves before any preprocessing has taken place, but
with gaps linearly connected (e.g. in May 2012).

Due to sensor maintenance, calibrations and outages
the data set contains gaps—i.e. samples with a time dif-
ference larger then 30 min. Table 1 lists them in detail.
Note, that occurrences of oxygen supersaturation—e.g.
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Fig. 3: Raw data signals as obtained by the Koljo fjord
observatory sensors.

in the spring months—are normal, i.e., not erroneous
readings and can be explained by algal bloom and their
photosynthesis.

As part of the data preprocessing, these gaps are
filled by linearly interpolating between the last value
before and the first value after the gap, sampling ev-
ery 30min from the beginning. This may result in an
extra data point at the end of each interpolation inter-
val, which has a smaller time difference than 30 min,
to the subsequent point, but which should not affect
the analysis. After the interpolation the dataset has a
grand total of 74299 samples. It can be obtained from
the scientific data repository B2SHARE [25].

5 Analysis Process
5.1 Moving-Average Smoothing
As can be seen in Section 4, the data signals are clearly

noisy, with strong point-to-point variations. For the
analysis goals, one only requires knowledge about the

Table 1: Gaps due to missing samples in the raw data

of the observatory.

Start End Missing Samples
2011-09-29 12:12:01 | 2011-09-29 20:41:54 16
2012-04-18 12:41:54 | 2012-06-04 19:13:01 2269
2012-06-27 15:43:01 | 2012-06-27 20:09:57 8
2012-08-29 13:39:57 | 2012-08-29 18:09:57 9
2012-10-25 10:09:57 | 2012-10-25 11:09:57 2
2012-10-25 13:09:57 | 2012-10-25 17:50:13 9
2013-04-24 09:50:13 | 2013-04-25 15:30:40 59
2013-06-03 11:30:40 | 2013-06-05 16:11:38 105
2013-08-15 12:11:38 | 2013-08-23 16:18:40 392
2013-12-12 10:18:40 | 2013-12-12 17:35:08 14
2014-03-05 10:35:08 | 2014-03-05 14:13:20 7
2014-06-04 08:13:20 | 2014-06-04 16:00:45 15
2014-09-01 11:00:45 | 2014-09-01 17:17:44 12
2015-02-11 09:47:44 | 2015-02-11 17:56:05 16
2015-04-07 09:56:05 | 2015-04-07 18:09:12 16

general outline of the curve—i.e. major peaks or drops.
In fact, singular strong outlying data points can hinder
the automated water mixing detection by presenting
the analysis process with a lot of short, but strong con-
secutive peaks disguising themselves as short lived wa-
ter mixing events. This naturally means that the anal-
ysis must first suppress the noisy episodes.

A typical approach in signal processing to tackle this
problem is to smooth the time series data by applying a
windowed filter to each point in the datasets. Since the
whole analysis pipeline shall be later used to predict
water mixing events in real-time, one cannot utilize fil-
tering methods that require any data points beyond the
current value—or in other words “future” values. At the
same time, there is no argument in favor of any particu-
lar weighting scheme, such as triangular or exponential
windows, as the water mixing events vary heavily in
their characteristic shape.

Therefore, a standard median filter [5] with a win-
dow size of three is employed first, to correct singular
runaway values. These are caused by misreads or exter-
nal objects, interference with sensors, and can be seen
in the salinity curve of Figure 3 in July 2013 for exam-
ple. A larger filter window size than three is undesired
as it introduces a systematic lag in the smoothed data
due to the medians statistic robustness’.

Afterwards a simple moving average (SMA) [21]
provides the actual smoothing with sensitivity to slope
changes. Having removed the strong noise, the distri-
bution is statistically stable enough to justify using the
mean, which in turn is more sensitive to fluctuations in
the signal (characteristic for the mixing events) com-
pared to a larger-windowed-median filter. Equations (1)
and (2) formalize this procedure with x; being a sample

1 Median-smoothed curves reflect slope changes with a delay
of half the filter window size.
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from the dataset, w, the SMA window size, and x;_,,
a sample n steps back in time (as defined by Madsen
[29] for example).

TMED,: = median(xi_1, Te, Te41) (1)

w—1
" TMED,t-i
TSMA,L = Lizo IMEDLi " 2 (2)

Figure 4 shows the smoothed time series for all sig-
nals. Due to space considerations, only small plots of
the curves are presented here, but magnifiable versions
can be found on the publicly available, scientific data
repository B2SHARE [15]. For the first w — 1 data
points of each signal, a smoothed value cannot be com-
puted, as the number of previous values is insufficient.
The analysis simply omits these values, as they consti-
tute a maximum of just two and a half days.
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Fig. 4: Smoothed time series with a median and simple

moving average filter using the exemplary window size
w = 96, omitting the first two days.

5.2 Univariate Outliers

For the second analysis step, one needs to solve the
problem of detecting outliers, i.e., peaks within a single
data signal, so that these can later be used to find the
global water mixing events across multiple variables.
As previously explained, outliers—i.e. the water mix-
ing events—are characterized by strong peaks or drops
of the signal. To reveal these variances, the time step
difference, or the gradient, is computed. An outlier can
then be found by defining a threshold, beyond which
the gradient is too strong to be a regular data point. A
statistically sound value for the threshold is a multiple
of the standard deviations, as one can expect the re-
maining data signal to be more or less steady. Figure 5
shows the one-step time difference of the curves, and
the one, two and three standard deviations levels. For-
mally, an outlier within a single signal can be defined as
follows, with X being the respective signal, ¢, the mul-
tiple of the standard deviation o, and d the time-step
difference (d =1 for a simple gradient).

Ay, — Ty — XTi_q ford<t 3)
0 else

Outliersx = {t | Vz; € X : abs(A%) > cxo(X)}  (4)

5.3 Water Mixing Event Detection Using DBSCAN

In order to find the water mixing events, the individ-
ual outliers of each of the signals have to be correlated.
Defining a threshold per signal for certain time peri-
ods and subsequent voting on whether it is a mixing
event or not is not sufficient, because not all of the sig-
nals will spike equally strong. Instead, the density of
outliers of all signals combined must exceed a certain
threshold, independent of the share of the individual
variables. An established technique to tackle this prob-
lem is clustering—i.e. unsupervised detection of groups
in data. For this application, a clustering algorithm is
required that is able to detect an arbitrary number
of clusters based on sample density. As explained in
Section 2.2, DBSCAN fits these requirements perfectly.
Each of the resulting groups of the clustering represent
a singular water mixing event.

The Equations (5) and (6) formalize the explained
process with Signals being the set {Temperature,
Salinity, Ozygen}. Figure 6 presents the result of such
a DBSCAN clustering. It displays the outliers of the in-
dividual scales horizontally for each signal respectively
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Fig. 5: One step difference of the signals, including one,
two and three standard deviation levels as dashed lines.

and in red the found clusters for the exemplary param-
eters, evaluated through system grid search (see Sec-
tion 6.2) with a standard deviation level ¢=1 and a
sample density minPoints=48 within the search radius
€=22 % 30 min. One can also see that not all individual
signals need to have outliers at a given period in time
in order to form a cluster, as for example in September
2012, for oxygenation, or in March 2013, for salinity.

Outliers = U

XeSignals

Outliersx (5)

FEvents, Noise = DBSCAN(Outliers, minPoints,e) (6)

6 Evaluation

In order to evaluate the performance of the proposed
algorithm, it is necessary to verify it based on real world
data. For this, the data, introduced in Section 4, is
utilized as well as the ground truth presented in this

]
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time

Fig. 6: Outlier detection results for each data signal
with outliers as dots and found multi-variate clusters
as red bars. The exemplary parameters for this analysis
are w =96, c =1, d =1, ¢ = 22 and minPoints = 42
found via grid search.

section. First, one needs to find a suitable parameter
set that can explain the data well, based on a per-
formance measure, and subsequently test it on unseen
data. The traditional classifier construction involves a
training, validation and test set. The former is not ap-
plicable, though, since there are no intrinsic parame-
ters, say weight matrices, in this method that have to
be learned. Therefore, the models will be directly val-
idated on the validation data and verified on the test
data. The validation set consists of the first two-thirds
of the entire data based on the time scale, and the test
data is the last third.

6.1 Ground truth

The data has been manually annotated by domain ex-
perts with the points in time at which water mix-
ing events took place. This has proven to be a time-
intensive process, requiring to establish a common un-
derstanding of terms and definitions, as well as a sub-
stantial learning effort on the data analysis experts’ side
in understanding the application domain better. Espe-
cially the identification of particular events could es-
sentially only be done by the domain experts due to
the complex nature of the oceanic system. The final
69 identified events, which is less than 1% of the total
samples, each constitute a single date and time of day
representing the approximate center point of a water
mixing event. The nature of these labels add to the dif-
ficulty of the analysis problem. They are fuzzy at best,
with a varying confidence even among the domain sci-
entists whether a certain part of the time series actually
marks a water mixing event or not. Therefore, we have
only included the ones the domain scientists have all
agreed upon. In addition to that, they are also low in
count, effectively making pattern detection generaliza-
tion hard. At the same time, the lack or precise per-
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sample labels prevents the out-of-the-box utilization of
traditional classification methods.

Moreover, nine out of these events have to be taken
with reservations as they look like water mixing events
but are not in reality. They can be attributed to erro-
neous reads of the sensors due to biofouling processes
from December 2013 to February 2014 (seven events)
and sensor re-deployments in September 2014. For the
sake of evaluation simplicity, they are included as reg-
ular events. A list of the water mixing events and an
additional binary flag indicating whether it was faulty
or not can be found on the open scientific data reposi-
tory B2SHARE [25]. Figure 7 shows the events on top
of the smoothed data curves.
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Fig. 7: Water mixing events ground truth projected on
top of the temperature signal. Each event is presented
as a single, vertical, dashed line in gray.

The interpretation of the selected dataset’s events
belonging to the ground truth was mainly based on
the readings in the fjord and has been verified us-
ing data measured outside of it. For salinity, temper-
ature and oxygen measurements, the monthly sampled,
nation-wide run monitoring data of the Sveriges me-
teorologiska och hydrologiska intitut [37] (SMHI, engl:
Swedish meteorological and hydrological institute) have
been used. Their measuring site is located a few hun-
dred meters away from the observatory position. As for
verifying the currents, temperature and oxygenation,
an indirect approach has been selected. Wind and sun-
light data assimilated from a weather station run by
the University of Gothenburg at the Kristineberg field
station [38] has been correlated with the water’s move-
ment data of the observatory and to assisted in its ver-
ification. The weather station is situated about eight
kilometers away from the observatory.

6.2 Grid Search

In order to optimize the water mixing event detection
rate, a systematic grid search of the five model param-
eters has been performed—the smoothing filter size w,

time step difference d, standard deviation level ¢, DB-
SCAN search radius € and point density minPoints.
The boundary-inclusive search space is displayed in Ta-
ble 2 and spans a total of 313,200 model variants.

Table 2: Search parameter grid, bounds are inclusive.

Parameter ‘ Lower bound ‘ Upper bound ‘ Step
Filter size w 24 120 12
Step difference d 1 3 1
Standard deviations ¢ 0.25 2 0.25
Search radius 12 60 2
Point density minPoints 6 120 2

As a performance measure for the models the, F;-
score [36] is used—i.e. the harmonic mean of the pre-
cision and recall of the detected mixing events, com-
pared to the ground truth presented in the above Sec-
tion 6.1. This essentially balances the detected true pos-
itives with the false-positives and false-negatives.

2 x precision * recall

F1 (7)

precision + recall

Defining the terms true positives and false negatives
is not straight-forward as the computed clusters are sets
of points, whereas the ground truth data is punctual.
According to our definition, an event is considered as
detected or a true-positive if the event center point lies
within a cluster’s time limits plus/minus a tolerance of
two days?. In every other case the predicted event is a
false-positive.

Figure 8 presents the resulting F-score surface plots
for the best models with the same £ and minPoints
values, but varying ¢, w and d parameters in the vali-
dation phase. It shows a certain range of well perform-
ing € and minPoints values as “crests” on the score
surface. Table 3 shows the top ten candidates from
the validation phase model construction, with the best-
performing marked in bold. A number of observations
can be made about the results.

First, the moving average filter size w is equal to
either 96 or 120 for all but one of the top models and
dozens following not displayed here. This makes sense
when one considering the natural phenomena and be-
haviors of the domain problem. The tidal cycle lasts
12.4h, or in other words 24 to 25 sample points. Since
the tidal cycle introduces harmonic oscillations, the fil-
ter window size must be proportional to the tide cycle
length. This way, the smoothing algorithms will be able
to compensate for the periodical variations in the most
efficient way. Moreover, smoothing out 96, respectively
120, samples indicates that one wants to observe strong

2 Estimated minimum duration of a typical water mixing event.
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Table 3: Top ten models on the validation data Table 4: Top models on the test data and placement of
the best model of the validation phase in bold.
Rank € m w d c F1 precision | recall
1 22 | 42 | 96 | 1 | 1.00 | 0.8070 | 0.7666 | 0.8518 Rank | ¢ | m | w | dl e F1 | precision | recall
2 16 | 32 | 120 | 2 | 1.25 | 0.7967 | 0.7538 | 0.8448 T T T a5 o6 TT 075 o965 | 09687 | 09657
3 14 | 28 | 120 | 3 | 1.50 | 0.7964 | 0.7758 | 0.8181 N 22l as los | 1107 | 09577 | o0o944a | 09714
4 12 | 24 | 120 | 2 | 1.50 | 0.7936 | 0.7575 | 0.8333 3 21 |42 | 96 | 3| 100 | 09411 | 09411 | 09411
5 | 16 132 84 131 100 107933 ) 0.7500 | 0.8421 4 |12 12|96 | 2| 200 | 09411 | 09090 | 0.9756
6 16 | 32 | 120 | 1 | 1.25 | 0.7931 | 0.7666 | 0.8214 5 12112196 |11 200 09411 | 09090 | 09756
7 14 | 28 | 96 | 2 | 1.50 | 0.7920 | 0.8163 | 0.7692 6 30 | 48 | 96 | 2 | 100 | 0.9393 | 09393 | 09393
8 14 | 26 | 120 | 1 | 1.50 | 0.7906 | 0.7500 | 0.8360 7 16112196 |1 200! 00382 | 09047 | 09743
9 22 | 40 | 96 | 1| 1.00 | 0.7903 | 0.7101 | 0.8909 s 14112 96|11 200 | 09382 | 09047 | 09743
10 | 22|42 9 | 2] 1.00 | 0789 | 07230 | 0.8703
694 | 22 | 42 | 96 | 1 | 1.00 | 0.8852 | 0.9310 | 0.8437

21005 14

Fig. 8: Validation phase F;-score surface plot.

variations in the data over the time scale of days, in
order to consider it a water mixing event. This corre-
sponds to the fact that water mixing events usually last
a number of days. Therefore, a filter size of 96, respec-
tively 120 samples or two to two and a half days seems
to be the best trade-off between appropriate noise sup-
pression and information loss.

Second, the standard deviation level c is around 1.0
to 1.5 throughout all the best performing models, sug-
gesting that already small variations in the water prop-
erties are indicative of water mixing events, and not
only singular strong ones.

Finally, the outlier search radius ¢ lies within the in-
terval of 12 to 24 samples for the best-performing mod-
els. This is identical to a search diameter of more or
less 24 to 48 samples or simply half a day to a full one.
At the same time, the minPoints parameter is mostly
within the range of 26 to 42 samples. If one were to
take the center points of the intervals as boundaries,
this means that % ~ 94.4% of the measurement time
points have to have an anomaly within one signal, or
if evenly distributed among all of the three signals at
hand, M'TM ~ 31.5% of all data points have to be uni-
variate outliers, in order to detect a water mixing event
cluster core.

For the test phase, not only the top-performing
model from the validation phase has been tested, but
all of them, in order to be able to judge the general-
ization of the approach. Figure 9 shows the resulting
F; surface. One can clearly see the similar shape and
optimal parameter ranges compared to the validation
data models. Interestingly, the resulting F; scores are
slightly better on the test data alone, as can be seen in
Table 4. This can be attributed to the more apparent
regularity of the water mixing events in the signals.
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Fig. 9: Test phase Fi-score surface plot.

The chosen model from the validation phase is
ranked 694" out of the total 313 200 model candidates.
With an 0.06 lower F'; score, compared to the top placed
test model, there is a slight gap. However, it general-
izes well enough, being placed in the top 0.22% of all
the tested models and is a robust model for production
use in the online analysis of new observatory data. Fig-
ure 10 shows the final predictions of the top-performing
model from the validation phase on both the validation
and test data.

The proposed analysis pipeline is able to detect wa-
ter mixing events in the Kolj6é fjord with high preci-
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Fig. 10: Predictions of the top-performing model with
the parameters w = 96, ¢ = 1, d = 1, ¢ = 22 and
minPoints = 42. Ground-truth water mixing events
are shown as dashed lines, true-positives as green on
top and false-positives as red dots on the bottom.

sion. The false-positive rate is low and constitutes only
a fraction of the actual water mixing events. This makes
it suitable for productive use as an automatic warning
system for water mixing events for the domain scien-
tists at the University of Gothenburg, and an effective
monitoring tool for the health of the flora and fauna of
the fjord.

6.3 Implementation

The analysis pipeline as well as the grid search are
implemented in form of a Python script. It is avail-
able on the authors’ source code repository [30] for re-
producibility. It requires a number of software depen-
dencies that do not come pre-installed with a stan-
dard CPython distribution. Following is the list of
packages and their respective versions: mpidpy 1.3.1,

bokeh 0.11.1, numpy 1.11.0, pandas 0.18.1, scipy
0.17.1 [31]. In addition to that, the analysis em-
ploys the C++ OpenMP implementation of HPDB-
SCAN [13], a parallelized version of DBSCAN, built
from its respective source code repository and bound
using Python’s ctypes. The grid search itself has been
parallelized with the mpidpy package, testing disjoint
parameter combination sets. The underlying Message
Passing Interface (MPI) implementation is an OpenMPI
1.8.7 [11]|. The script has been executed on a com-
puter with a Fedora 22 operating system running the
Linux kernel 4.10-200-fc22 and a four-core 64-bit Intel
2.4 GHz i7-4700MQ processor.

7 Conclusions

This work has studied the Koljo fjord observatory
dataset collected over a timespan of a little over four
years. The analysis goal has been to determine whether
water mixing events, i.e., points in time where new wa-
ter from the open sea or connected rivers flows into the
fjord, can be automatically detected using a generic,
data-driven analysis approach. A water mixing event is
characterized by correlated peaks or drops of the con-
sidered time series variables water temperature, salinity
and oxygen saturation.

From a data analysis point of view, the water mixing
event detection is a binary outlier detection problem in
a multivariate time series. This work extends univari-
ate approaches based on clustering into a three-step
multivariate approach, consisting of: 1. data smoothing
to suppress noise, 2. outlier detection of the individ-
ual variables, and 3. a subsequent clustering of the re-
sults across all scales in order to identify the water mix-
ing events. The effectiveness of the approach has been
demonstrated using the Koljo fjord observatory data
and ground truth data provided by the domain experts.
An extensive grid search has yielded a production-ready
model, that is able to identify water mixing events on
test data with an F; measure of 0.8852, a precision of
0.931, and a recall of 0.8437. The found model param-
eters have sound values explainable by domain charac-
teristics, as for example the smoothing filter size being
an integral multiple of the tidal cycle.

One of the major advantages for the domain scien-
tists is that water mixing events can now be tracked in
an automated fashion without having to actively mon-
itor the health of the fjord as new data comes in. This
reduces operational costs, manual labor and allows a
better time allocation in the project for domain-specific
research. Moreover, the analysis pipeline could also be
used as an automatic anti-fouling respectively repara-
tion run reporting system. If the prediction of water
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mixing events from multiple sensors in close proxim-
ity strongly differ, especially given there is only one or
a small number of contrary results, this might be an
indicator that these particular sensors need to cleaned
or exchanged. As a result, costly ship rents for sensor
reparation routines can be replaced by an on-demand
schedule.

Due to the openness of the data and the analysis
script, the experiment cannot only be reproduced, but
also obtained and re-applied to similar problems. The
data analysis algorithm for example is general enough,
to be tailored to other water mixing event detection
problems outside of the Koljo fjord observatory experi-
ment, for example contamination monitoring in public
water supply. For this, the analysis process and script
can be directly used without essential changes other
than the domain-specific data and ground-truth labels.
Due to the chosen algorithms with low time and space
complexity, the analysis pipeline can also scale to large
amounts of data items.

One of the lessons learned of this study is that
the simplified representation of each event as a central
point only is challenging in practice due to the events’
fuzzy nature, as defined by the domain experts. Future
research should consider the automatic water mixing
event detection as a traditional classification problem
instead. For this, one would need precise labels for each
of the data points, stating whether they mark the pres-
ence or absence of an event. Given that these labels
exist, it would be possible to train classification mod-
els, such as support vector machines or neural networks,
to predict for each individual pointer whether it is part
of a water mixing event or not. A comparison of the ob-
tained results with the method proposed in this study
is the next logical step.
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Parallel Computation of Component Trees
on Distributed Memory Machines

Markus Gotz, Gabriele Cavallaro, Member, IEEE, Thierry Géraud, Member, IEEE, Matthias Book,
and Morris Riedel, Member, IEEE

Abstract—Component trees are region-based representations that encode the inclusion relationship of the threshold sets of an image.
These representations are one of the most promising strategies for the analysis and the interpretation of spatial information of complex
scenes, since they allow efficient implementations of connected filters in a simple way. According to the sensor resolution and the
application, images can represent vast and complex scenes by using large range of potential light intensity values. Existing sequential
and parallel algorithms can not cope to this variety of data and present scalability limits in terms of memory and time. This work
presents a novel distributed memory parallel algorithm for computing component trees.

Index Terms—Component Trees, Threshold Decomposition, Connected Component Labeling, High Performance Computing, MPI,

Distributed-Shared-Memory-Hybrid.

1 INTRODUCTION

INCE the 1960s, mathematical morphology [1], [2] has

become increasingly popular in the image processing
community mainly due to its proven utility and rigorous
mathematical description. The mathematical morphology
framework provides a set of powerful operators for ana-
lyzing the spatial domain of images at the region-level—
i.e., connected components—based on tree representations,
called thresholds decompositions [3], [4]. These are based
on tree representations of images which can be divided
into two main groups [5]: hierarchies of segmentation—i.e.,
hierarchy of image partitions such as minimum spanning
trees [6], alpha-trees [7], binary partition trees [8]—and
threshold decompositions—i.e., hierarchy of regions such as
component trees [4], [9], tree of shapes (ToS) [10] and
multivariate tree of shapes [11]). Generally, tree structures
are often considered richer in descriptive ability since they
can be exploited for breaking down images into their funda-
mental elements which are easier to interpret with regards
to the pixels. Component trees [4], [9], are thresholds de-
compositions that represent connected components [12] at
every threshold level of an image in a hierarchical fashion,
through parent relationships between nodes. The connected
components organized in such trees can be filtered with

e M. Gétz is with the Jiilich Supercomputing Center, Wilhelm-Johnen-
Strafle 52428 Jiilich, Germany, and the University of Iceland, 107
Reykjavik, Iceland.

E-mail: m.goetz@fz-juelich.de

e G. Cavallaro is with the Jiilich Supercomputing Center, Wilhelm-
Johnen-StrafSe 52428 Jiilich, Germany.

E-mail: g.cavallaro@fz-juelich.de

e T Géraud is with the EPITA Research and Development Laboratory
(LRDE), Le kremlin-Bicétre, France.

E-mail: theo@lrde.epita.fr

e M. Book is with the University of Iceland, 107 Reykjavik, Iceland.
E-mail: book@hi.is

e M. Riedel is with the Jiilich Supercomputing Center, Wilhelm-Johnen-
Strafle 52428 Jiilich, Germany, and the University of Iceland, 107
Reykjavik, Iceland.

E-mail: m.riedel @fz-juelich.de

different strategies [3], [4] and can model various types of
connectivity [13].

Component trees have been popularized by connected
operators, such as attribute filters [2], [3], which have been
extensively used for the modeling of spatial information in
images from remote sensing [14], [15], astronomy [16], [17]
and medical scanning [18], [19]. Attribute filters are edge-
preserving and flexible operators due to the preservation
of contours in the processed objects and rely on multiple
spatial measures or attributes. The possibility to perform
a multi-attribute analysis, like attribute filters built by em-
ploying different attributes, enriches the extraction of spa-
tial arrangement and improves the discrimination between
different structures. In the presence of scenes with high
complexity and heterogeneity, e.g., densely populated urban
area, a complete modeling of the spatial information can
be achieved through a multi-level analysis. It implies the
decomposition of the original gray-level image obtained by
applying a sequence of attribute filters according to a set of
filter thresholds [20]. The result of this operation are the
so-called attribute profiles [14]. They have been exploited
mainly in remote sensing, e.g., classification [21], [22], data
fusion [23] and change detection [24], as well as in medical
imaging processing for the segmentation of computed tomo-
graphic images [25].

Nowadays, image processing applications can rely very
high resolution data due to the continuing technological
improvements of the sensor instruments. For example earth
observation platforms have led to the increasing volume,
acquisition speed and variety of sensed images, e.g., the
World-View-3 satellite sensor (spatial resolution of 0.31m),
or the AISA Dual airborne sensor (500 bands with spectral
resolution of 2.9nm). The performances of traditional serial
and parallel algorithms for computing the component trees
are strictly correlated to the size and the quantization of the
data. The size of remote sensed images is usually in the order
of several gigabytes due to the depiction of vast and complex
scenes. Consequently, they can not be stored or processed
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(a) Original gray-scale image.

(b) The iso-level, 4-connected regions.

(c) The corresponding max-tree.

Fig. 1: Example of max-tree representation based on exemplary image and its components C, with the subscript ¢ being the
gray-level and the superscript ¢ the canonical point uniquely identifying the component.

by algorithms designed for a single shared-memory machine.
Furthermore, due to the high sensitivity of the new sensors,
e.g., radiometric resolution, these images are characterized
by an ample domain of integers or floating point values,
which directly affect the processing time.

In this paper presents a shared- and distributed-memory
hybrid algorithm for efficiently computing exact max-trees of
integral gray-scale images as well as floating-point images.
For this, the problem, i.e., the image is subdivided into equal-
sized chunks that get assigned to all available distributing
computing nodes. Then, each of the nodes computes a local,
partial max-tree of the assigned chunk. A modified version
of the shared-memory parallelized, depth-first, flooding max-
tree algorithm proposed by Ouzounis et al. [26] is employed.
Finally, the partial max-trees need to be merged into a
correct, monolithic global representation. This is achieved by
obtaining the iso-level edges of the boundary max-trees of the
image chunks and iteratively resolving these per-gray-level,
marking the major algorithmic challenge. In the proposed
approach, the level connections are expressed as tuples—a
data structural design that has been used by Flick el al. [27]
for the distributed resolution of genomic graphs. This is a
novelty in the mathematical morphology framework and the
distributed computation of max trees.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief introduction to component trees. The
subsequent Section 3 presents an overview over existing al-
gorithms proposed in the literature. In Section 4 the proposed
distributed, parallel max-tree algorithm is laid out. Complex-
ity considerations and implementation details are explained
in Section 5. A study of the algorithms strong and weak
scaling as well as comparative study to the current state-of-
the-art algorithm is presented in the experimental evaluation
in Section 6. Finally, Section 7 concludes the paper, discussing
the findings of this work and presents opportunities for future
work.

2 COMPONENT TREES

Component trees were introduced by Jones [9], [28] as
efficient image representations that enable the computation
of advanced morphological filters in a simple way. These trees

are actually hierarchical structures that encode the threshold
sets and their inclusion relationship; in addition they allow
efficient implementations of connected filters.

More formally, let f : 2 — FE be a discrete two-
dimensional grayscale image, defined on a spatial domain
Q C 72 and taking values on a set of scalar values £ C Z.
For any A € Z, a lower £(f) and upper U( f) threshold set is
defined by:

[’(f) = {I € Q’f(x) < )‘}7 (€D)
U(f) ={z € Q,f(z) > A} 2

Let P(2) be the power set of all the possible subsets
of Q. Given X € (2, the set of connected components of
X is denoted as C(X) € P(2). If < is a total relation,
any two connected components X,Y € C(L(f)) are either
disjointed or nested. The min-tree and max-tree structures
represent the components in £(f) and U(f) respectively with
their inclusion relations. For example, Fig. 1c¢ shows the max-
tree structure of the image in Fig. 1a. The arrows denote the
parent relation between the nested connected components
that are identified in Fig. 1b. This is a simplified case that
it is used for clarification purposes. In synthetic images that
include more complex shapes (see the example in Section 4)
or real scenaries the max-tree structure is less intuitive since
its hierarchy is not driven by the inclusion relationship of
connected components as it appears in Fig. 1.

3 RELATED WORK

The selection of the most appropriate algorithm for com-
puting the component trees shall be made according to the
properties of the input image (i.e., size and pixel value
quantization) and the processing resources available such as
memory capacity and number of computing cores. Carlinet et
al. [38] presented a comparative review of the state-of-the-
art algorithms and provided detailed guidelines for selecting
the most suitable algorithm. The algorithms are grouped
into three main classes: immersion, flooding and merge-
based. The algorithms that belong to the class immersion and
flooding are also referred as leaf-to-root merging and root-to-
leaf flooding methods, respectively [36]. Since this section is
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(a) Immersion
(leaf-to-root merging)

(b) Flooding
(root-to-leaf flooding)

(c) Merge-based

Fig. 2: The main three classes of algorithms and their chronology.

not intended to repeat the review, Fig. 2 shows a timeline for
each class of the algorithms that have been developed in the
past and recent years.

Algorithm 1 Non-recursive algorithm [38].

1: procedure PROCESSSTACK(r, q)
2| A< flg)
3 Pop(levroot)
4: while [evroot not empty and A< f(Top(levroot)) do
5: INSERT FRONT(S, r)
6: r < parent(r) <-Pop(levroot)
7 if levroot empty or f(Topr(levroot)) # A then
8 ‘ PusH(levroot, q)
9: parent(r) < Tor(levroot)
10: | INSERT FRONT(S, )

11: function MAX-TREE(f)
12: | for all p do parents(p) < —1

13: start _pizel < any point in 2
14: PUsH(pqueue, start _pixel)
15: PusH(levroot, start _pixel)
16: | parent(start pixel) + INQUEUE
17: loop
18: flood:
19: p < Top(pqueue); r « ToP(levroot)
20: for all n € N (p) such that parent(p) = —1 do
21: PusH(pqueue, n)
22: parent(n) < INQUEUE
23: if f(p) < f(n) then
24: PusH(levroot, n)
25: goto flood
> p is done
26: Por(pqueue)
27: parent(p) < r
28: if p # r then INSERT FRONT(S, p)
29: while pqueue not empty do
30: > all points at current level done?
31: q < Topr(pqueue)
32: > Attach r to its parent
33: if f(q) # f(r) then PROCESSSTACK(r, q)

34: root < Popr(levroot)
35: INSERT _FRONT(S, root)

3.1

As mentioned in Section 1, since the proposed shared- and
distributed-memory hybrid algorithm is based on flooding

Flooding Algorithms

and merge-based strategies, the reader should refer to Tar-
jan [29], Najman et al. [30], Berger et al. [16] and Carlinet
et al. [38] for a detailed explanation of the immersion algo-
rithms.

The first flooding algorithm was proposed by Salembier et
al. [4]. It is an efficient algorithm which retrieves the pixel at
the lowest gray-level, i.e., root, through a scanning step and
then it performs a propagation by flooding the neighbor at
the highest level, i.e., a depth-first traversal of the connected
components at higher intensities. Pixels in the propagation
front are stored in a hierarchical queue composed by as many
First In First Out (FIFO) queues as the number of gray-levels.
It allows to directly access any pixel in the FIFO queue at
a given level. Salembier’s et al. [4] algorithm was rewritten
in a non-recursive implementation by Hesselink et al. [31],
later also by Nister et al. [32] and Wilkinson et al [33].
The algorithm presented by Wilkinson aims at solving the
limitation of Salembier, the linear scaling with the number of
gray-levels. Wilkinson has proposed to use a priority queue
and a stack, a combination of the algorithms of Salembier et
al. and Hesselink et al., instead of using only a hierarchical
queue for handling the pixel values during the flooding.

Carlinet et al. [38] have proposed a non recursive flood-
ing algorithm variant of Salembier et al., which has strong
similarities with Wilkinson et al. and Nister et al. Due to the
fact that the algorithm proposed in this work is based on it,
the pseudocode is shown in Algorithm 3.1. The algorithm is
divided into three stages: initialization, flooding and root fix-
ing. In the initialization phase, a random point start pizel is
chosen as the flooding point. This pixel is now considered as
a canonical element, i.e. the representative of the connected
component, and it is pushed on the stack levroot. The main
purpose of the flooding phase is to compare the gray-level of
each pixel p with its neighboring pixels n and enqueue those
that have not yet been seen. The first processed pixels are p
and the canonical element r of its component. These have the
highest priority in the queue, i.e., the highest gray-level, and
are on top of levroot (p is not removed from the queue).
The neighboring pixels n are pushed on the stack only if
f(n) > f(p), which immediately triggers the recursive call
of flood. At a certain point, all the neighboring pixels of p will
be either in the queue or already processed, meaning that the
analysis of p has terminated. Following this, p is removed
from the queue, parent(p) is set to r, i.e., the canonical
element. In order to ensure that the canonical element will
be the last one inserted, p is added to S when r = p. After p is
removed from the queue, the canonical element r is attached
to its parent only when the level component has been fully



processed. The ProcessStack procedure is called when ¢ has
a different level than p. It pops the stack, it sets the parent
relationship between the canonical elements and it inserts
them in S until the top component has a level no greater than
f(q). When the stack gets empty or the top level is lower than
f(g), then g is pushed on the stack as the canonical element
of a new component. The algorithm ends when all points in
queue have been processed, then .S only misses the root of the
tree which is the single element that remains on the stack.

3.2 Merge-based algorithms

The natural way to implement a parallel algorithm is to
divide the original image domain and compute the max-
tree on each sub-image using any algorithm by Wilkinson
et al. [34], Ouzounis et al. [26] or Matas et al. [39] from
Fig. 2. In order to compute this partition, the image should
be split in Np connected disjoint regions, which is the union
that forms the entire image domain. During this step, the
image is split into a reasonable number of chunks, which
reflects the underlining processing architecture, e.g., number
of threads available. For instance, when the number of image
chunks is lower than the number of threads the domain is not
decomposed enough and the distribution of the computations
is not yet optimal (load imbalance). Some threads will idle
while having to wait for other threads to finish. Once all
subtrees are generated, they can be merged into a single
global tree. This is a non-trivial phase as it requires that
the gray-levels of the connected components are merged and
their parent relationships updated. An efficient algorithm
to merge the max-trees resulting from any arbitrary image
sections can be found in Wilkinson et al [34].

3.3 Connected Component Labeling

The main problem of generating the max-tree can be split
into two parts: find the connected components and estab-
lish their hierarchy. The task of grouping connected pixels
within an image can be seen as the well-known Connected
Component Labeling problem [40]. This is an important
step for a large number of applications and it relies firstly
on finding which parts of an object, e.g., binary images,
gray-levels images, data with higher dimensionality, etc.,
that are physically connected, based on a connectivity rule,
and secondly, to label them. Iverson et al. [41] provide an
evaluation of connected-component labeling algorithms in
the context of distributed computing, when data that need
to be processed in a given application usually require large
processing power and distributed-memory machines. They
conclude that there is an unavoidable compromise to find
between memory and processing time. Most of the available
parallel algorithms are problematic especially in terms of
memory requirements. For instance, the merging step could
end up on a single node resulting in an unbalanced scenario.
However, algorithms that try to solve this problem provide
poor scaling results in terms of processing time. At the same
time Flick el al. [27] proposed a scalable distributed-memory
algorithm to overcome this problems raised by Iverson. They
have aimed to solve issues such as excessive memory usage,
extra computation and communication of the processors, and
load balancing. The main idea of the algorithm is similar to
the Shiloach-Vishkin algorithm [42] in that it transforms the
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problem into finding weakly connected components within
the Bruijn directed graph [43]. It will be shown in Section 4
that the proposed algorithm uses the notion of tuples and in-
verse doubling in order to connect the overlap zones between
the split regions and resolves the connected components and
their corresponding parenthood.

4 DISTRIBUTED MAX-TREE ALGORITHM

4.1 Definitions and Notation

A two-dimensional gray-scale image f can be seen as an
undirected graph G = (V, E). V represents a set of vertices—
the pixels of the image—and n = |V the total number of
pixels. Then E, a number of edges or non-ordered pairs of
vertices (v;, v;), with 4, j € [0, n[, which model the neighbor-
hood relationship of the pixels. Classically, images are either
four- or eight-connected [44], meaning the top, left, right
and bottom neighbors, respectively including the diagonals,
are considered connected neighbors. The entire graph G is
said to be connected if, for any p,q € V, there exists a path
from p to g, which is a sequence of s > 1 vertices—i.e.,
p = p1,...,ps = gq—such that every p; € V, and any two
successive pixels of the sequence are adjacent e, , ., € E.
Given this definition a connected component CC is a subgraph
of G if Vee C Vg A Eee C Eg, Vi € Vee - f(l) = c
and CC is not connected to any other subgraph of G. A con-
nected component can be either weak or strong connected,
depending on the path length s. Weak connected graphs can
have an arbitrary path length, while for strong connected
graphs s = 2 holds. Furthermore, if not stated otherwise,
the following symbols are defined for the remainder of the
document: h and w is the height and the width of the image
f,respectively. The entire image has a gray-level depth d, i.e.,
the number of different grayvalues c. Concerning paralleliza-
tion, the number of available distributed compute nodes is p,
while the local number of shared-memory threads is labeled
with ¢. For the explanation of the distributed resolution, it is
also necessary to introduce what is coined a tuples. These
are essentially quartuples, mathematical tuples with four
components, of the form (¢;, i, ¢, pi) with ¢; and ¢; being
two gray-values and py, and p; two vertices. They are used to
explicitly express edges e € E of the image f of a canonical
point with a certain gray-value to a different canonical point
of a given other gray-value.

4.2 Concept

The general nature of the distributed max-tree algorithm
can be described as divide-and-conquer. This means, that the
entire problem, i.e., the image, is divided into sub-images
for which the respective max-tree is computed and that are
then successively merged along the division boundaries. The
major algorithmic challenge lies in the latter stage. It re-
quires to solve two demanding graph theory sub-problems—
connected component labeling and graph canonicalization—
in distributed memory environments. This work proposes
an iterative, parallel merging algorithm based on explicit
expression of the max-tree edges as directed tuples. For this,
each sub-image overlaps the respective next by a one-pixel
high halo zone for which all of the tuples of the boundary



max-trees are generated. Conflicts within the tuples are re-
solved by searching for the most optimal tuple candidates,
i.e., the smallest canonical point for the connected labeling
or the next closest root for the graph canonicalization, and
remapping the remaining tuples accordingly. After the tuples
are resolved, they are send back to the respective sub-images
of origin, locally applied and thus create the globally create
max-tree. Algorithm 2 sketches the proposed strategy.

Algorithm 2 Pseudocode of the proposed distributed max-
tree algorithm.

1: @parallel

2: function DISTRIBUTED-MAX-TREE(f)
3: p < number of nodes

4: | r <« processor id in range [0, p|

5: t < number of threads

6: f' < LOAD-PARTIAL-IMAGE(f, T, p)

7:

8: parents’ < LOCAL-MAX-TREE(f’, )

9:
10: | area_tuples + CONNECT-HALOS(f’, parents’)
11: root_tuples <— HALO-ROOTS(f’, parents’)
12: | tuples < RESOLVE(area_tuples,root_tuples)
13:
14: | tuples’ < REDISTRIBUTE(tuples)
15: | parents < APPLY(tuples’, parents’)
16:
17: return parents

4.3 Local Max-Tree Algorithm

For the local computation one can in principle employ any
correct max-tree algorithm. The proposed solution specifi-
cally utilizes a modified version of Salembier’s depth-first,
flooding algorithm. The major algorithm structure is refor-
mulated to be non-recursive, as suggested by Carlinet et
al. [38] for example, but additionally enhanced to always
use the minimal pixel index as canonical point for an iso-level
and to yield better computational performance. Algorithm 3
presents the corresponding pseudocode.

The first change can best be seen in line 26. In contrast to
the original non-recursive variant, the canonical area point
is not chosen at the beginning of an iso-level processing—
as it may not yet be the canonical minimum—but rather
constantly maintained throughout the process. This is done
by keeping the current area minimum at a specific place, e.g.,
the front of the pixel vector, and compared to on insertion
of new elements. Only after all pixels of the entire iso-level
is found, the canonical point is assigned in the parent image,
see also line 31, and thus minimality of the index guaranteed.

Moreover, when one considers the computational per-
formance of the algorithm, the proposed modifications also
allows for faster computation. Before, each gray-level had
its one hierarchical queue in Salembier’s original algorithm
formulation or a singular in Carlinet’s non-recursive refor-
mulation. This approach scales logarithmically with both, the
number of gray-levels as well as the number of pixels per
channel. In the proposed variant the gray-levels are keys to
a map, called stacks, that has vectors for the corresponding
pixels as keys. Then, insertions only scale logarithmically with

Algorithm 3 Pseudocode of the modified version of Salem-
bier’s depth-first, flooding-based max-tree algorithm.

1: function MAX-TREE(f)
2: stacks « {} > Initialization
3: | pizels + {}
4: children « []
5: forallp € f do
6: parents(p) < —1
7: deja_vu(p) < false
8:
9: start _pizel < any point in > Seed pixel
10: start _grayv « f(start_pizel)
11: deja_vu(start pizel) + true
12: PusH(stacks(start _grayv), start _pizel)
13: PUsH(pizels(start _grayv), start_pizel)
14:
15: while not EMPTY(stacks) do > Depth-first
16: flood:
17: grayv < MAX-KEY(stacks)
18: pixel < PoOP(stacks(grayv))
19: for all n € N(p) do
20: if deja_vu(n) then continue
21: deja_vu(n) + true
22: PusH(stacks(f(n),n))
23: PusH(pizels(f(n),n))
24: if Top(stacks) > BACK(stack) then
25: ‘ > Ensure canonical point is in front
26: SwAP(Top(stacks), BACK(stacks))
27: if grayv < f(neighbor) then
28: ‘ PusH(stacks(grayv), pizel)
29: goto flood
30:
3L if EMPTY(stacks(grayv)) then > Iso-level done
32: ¢ « pizels(grayv)
33: for all p € pizels(grayv) do parents(p) < ¢
34: ERASE(pizels(grayv))
35: ERASE(stacks(grayv))
36:
37: if EMPTY(stacks) then > Attach children
38: | merge « MAX-KEY(stacks)
39: else
40: | merge < grayv
41: while not EMPTY(children) and
< BAck(children).grayv > merge do
42: child < Pop(children)
43: parents(p) < child.pizel
44: PusH(children, (merge, c))
45:
46: | if not EMPTY(children) then 1> Attach root children
47: root < BACK(children).grayv
48: for all ¢ € children do parents(c) < root
49:
50: return parents
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Fig. 3: Toy example demonstrating the tuple resolution of the distributed max-tree algorithm.



the number of gray-levels, for locating the respective vector
in the map, but the actual push operation happens in constant
time. Especially in images with a large amount of pixels, this
can drastically reduce computation time.

For the shared-memory parallelization the strategy ex-
plained by Ouzounis et al. [26] has been chosen. The lo-
cal image partition of the node distribution step, is again
horizontally, virtually partitioned in ¢ equally sized chunks,
without overlap, and assigned to one of the ¢ threads. For
each of the partitions the partial max-tree is computed using
the introduced algorithm. The virtual images boundaries are
realized by excluding respective pixels in the neighborhood
searches. Finally, the partial max-trees are merged using
the connect function, equally presented by Ouzounis [26].
Minor changes have been made to ensure that the canonical
points of each iso-level is guaranteed to be minimal. This can
be achieved by performing a look-ahead on the upcoming
elements of the merge stacks and potentially swap them if
required. After the local computation, one would obtain the
partial max-trees depicted in Fig. 3d and Fig. 3f.

4.4 Tuple Generation

The tuple generation of the partial images is subdivided into
two major steps. First, there is the generation of area tuples—
i.e., tuple that connect the divided iso-level—and, second, the
root tuples are created that express the max-tree branches in
the halo areas.

The former is achieved by performing two prefix sums
across the canonical points in the halo zones of the partial
images. In the first run, the canonical points are broad-
cast downwards across the partial images, while the sec-
ond, reverse, prefix-sum back-propagates potential merges
of areas. For the example in Fig. 3 this means that pg
broadcasts the canonical-halo-vector (21,0, 16,0,0,12,0) to
p1, which are almost exclusively more optimal choices—i.e.,
smaller—for the canonical points of the iso-levels. The only
exception to that is the iso-level with the gray-value 4. p;
links the independent segments of p, with the canonical
points 12 and 16. Therefore, p; needs to back-propagate
the vector (21,0, 12,0,0,12,0). Ultimately, this allows both
nodes to generate the following non-redundant, area tuples:
po : (4,16,4,12) and p, : (0,22,0,0), (4,23, 4,12) including
each inverse, which is required for faster tuple resolution and
will be explained in Section 4.5. In scenarios with more pro-
cessing nodes this non-commutative operation is reapplied to
the merged partial image. This means for the given example
that the canonized top halo of p, and the canonized bottom
halo of p; are passed on. The entire prefix-sum operation can
be efficiently implemented using a logarithmic merge tree
across all available nodes.

The second set of tuples are generated by traversing
the boundary max-trees, i.e., the ones in the halo zones,
recursively upwards to the root. For each edge of the tree a
corresponding tuple is generated with the canonical point of
a child iso-level pointing to the canonical point of its parent.
In the partial image of processor pg, depicted in Fig. 3a, for
example, the tuple (2,21,0,0) is generated for the bound-
ary pixel with the index 21. All resulting tuples are shown
in Fig. 3 in the Halo roots-step. In order to optimize the
performance of the tuple generation already visited branches
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can be skipped, which will also avoid redundant tuples. The
entire step can be computed fully local and does not require
any data exchange with other cores.

4.5 Distributed Tuple Resolution

The resolution of the tuples happens essentially in the same
mode as the generation of tuples. First, the area tuples
are resolved, which requires the iterative resolution of the
weakly connected area components into strong ones, and
then, second, the resolution of the roots for the normalized
areas. The respective high-level pseudocode is displayed in
Algorithm 4.

Algorithm 4 Pseudocode of a single iterations of the dis-
tributed area tuple resolution.

1: @parallel

2: function RESOLVE(area, roots)
3: tuples <+ ||
4
5: loop
6: all _done < ALLREDUCE(EMPTY(roots), And)
7 if all _done then break
8
9: grayv < ALLREDUCE(MAX-KEY(roots), Max)
10: unresolved « true
11: while unresolved do
12: GLOBAL-SORT(area)
13: rules <— RESOLVE-AREA(area(grayv))
14: unresolved <— REMAP(area(grayv), rules)
15: ALLREDUCE(unresolved, Or)
16:
17: resolved < RESOLVE-ROOTS(grayv, area, roots)
18: tuples < CONCAT(tuples, resolved)
19:
20: return tuples

In general, the area tuple resolution is inspired by the dis-
tributed connected component labeling algorithm presented
by Flick et al [27]. The goal is to turn a weakly connected
graph, here the areas, into a strongly connected one, meaning
directly pointing to the correct canonical point of an area
without intermediate, transitive connections. This is achieved
by following the graph edges until the most optimal, i.e.,
smallest pixel point is found. However, in distributed memory
environments it might no be able to follow all paths directly
as they might be residing on a different machine. To over-
come this, the longest partial graph paths are computed and
iteratively shortened until the strong graph is found. For this,
all tuples are globally sorted, i.e., across all nodes, and locally
linearly scanned for the most optimal candidate, remapped
and saved. This process is repeated until convergence is
achieved, which is equal to having no tuples remapped in
the current iteration. Technically, there are two challenges
involved in this.

First, there is the problem of globally sorting the tuples.
This means that all tuples need to be partially ordered, so that
the smallest element is on node with the smallest rank and
the maximal tuple on the node with the highest rank. For this,
the distributed max-tree algorithm uses an enhanced version



of the parallel sorting by regular sampling algorithm. In the
variant that is proposed here, the number of tuples are in
addition automatically balanced, in order to have keep the
workload on each node equal.

Second, if the tuples are balanced, then the partial graphs
of a component, i.e., all the tuples with the same origin, must
not necessarily reside in the memory of the same node or
might even span multiple nodes. A good example can be
seen in Figure 3 of RESOLVE-AREA step of gray-channel Cs.
Therefore, the distribute max-tree algorithm must connect
these partial graphs in each iteration. This can be achieved
by exchanging the ends of the sorted tuple chain including
the found canonical point with the direct neighbors. Given
that the neighboring node proposes a better canonical point,
it is adopted instead of the one found locally. Transitivity is
achieved by logarithmically merging these chains across all
available machines using a prefix sum, first from left to right
across the ranks, and then in reverse to propagate better
options back.

Furthermore, each tuple exists, twice. Once in the “correct
direction” pointing from the larger pixel index to the lower
index and its inverse, pointing from low to high. Whenever
a tuple is remapped, the tuple is flipped, i.e., the direction is
changed in order to back propagate this change to its inverse.
The reason behind this is, that the inverse tuple might have
found an even more optimal canonical point coming from the
other side of the chain, due to say half circular structures on
the image. Both tuples are then updated and the transitive
chain shortened much quicker. As an effect of this, the
number of iterations heavily reduces, as introduced by Flick
et al [27]. The pseudocode of the area tuple resolution can
be found in Algorithm 5.

Algorithm 5 Pseudocode of the area remapping algorithm.

: function RESOLVE-AREA (area)
: rules < {}

1

2

3

4: for all tuple € area do

5: from < tuple.from

6 to < tuples.to

7 if to > from then Swap(to, from)

8 canonical < CANONIZE(rules, from)
9 min < MIN(canonical, to)

10: mazx < MAX(canonical, to)

11: rules[from] = min

12: rulesmaz] = min

13:

14: ends <+ [FRONT(area), BACK(area))
15: PREFIX-SUM(ends, rules, Min, Left)

16: PREFIX-SUM(REVERSE(ends), rules, Min, Right)
17:
18: return rules

After the canonicalization of the weak connected compo-
nents into strong connected components, the roots for each of
the canonical points must be found. This is done by merging
the area tuples and root tuples, global sorting and linearly
scanning for the most optimal root. Then, the tuples are
scanned again and compared to the found most optimal root.
There are four possible options how a tuple can relate to it,
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which are also shown in the pseudo code in Algorithm 6.
First, the tuple origin gray-value is small, i.e., further up in
the tree, than the root, then a tuple needs to be created that
connects both of them transitively from the root to the tuple
(see case 2). Second, the gray-value of the tuple and the root
match, but the root has a smaller canonical point (see case 3)
In this case, the root and its connected component as well as
the one of the neighbor are iso-level connected via the area
of the current tuple. This means according area remapping
tuples need to be created, including their inverse and added
to the area tuples. Third, the current tuple already points
correctly to the root (see case 4), then the tuple is inverted,
essentially pointing the “wrong” way around from the root to
the lower area and pushed into the root’s gray-valued tuple
bucket. The reason behind this is, that the canonical point of
the root might still be changed during the area resolution
phase of its gray-value. Therefore, it may not be marked
as finished yet, but kept until the respective gray-level of
the roots has been resolved. Finally, the fourth condition
(see case 1) is meant for inverted root tuples. After their
normalization, they are flipped yet again into the “correct”
order, i.e., pointing from high gray-values to low gray-values
and send back to its respective tuple bucket.

4.6 Obtaining the Global Parent Image

After the tuples have been resolved the global parent image
can be obtained by redistributing the tuples back to their
original sub-image. For this, the each tuple is send back
to the node, that contains the pixel with the index of the
second tuple component, independent whether it is a area
or root tuple. Each of the area tuples is then stored in an
associative container, mapping from the original points to the
canonical point. Subsequently, while iterating over the image,
each of the pixels is normalized to its correct canonical points
using said data structure. The root tuples are handled slightly
differently. Each tuples is visited once and the pixel index at
the from part of the tuples is simply set to the destination of
the tuple. After this step, each node posses the correct partial
parent image representing the global max-tree.

5 IMPLEMENTATION

The proposed parallel algorithm has been implemented in
C++ and is available on the open-source, scientific code
reproducibility platform CodeOcean [45]. The coarse-grained
parallelization across multiple nodes has been realized using
the Message Passing Interface (MPI) [46]. For the shared-
memory implementation C++11 native threads have been
used. The algorithm accepts data loaded from files in the
Hierarchical Data Format 5 (HDF5) format [47], which it will
also store the resulting parent image to.

5.1

In this section the time and space complexity for the algo-
rithm steps of the distributed max-tree computation are laid
out. A summary can be found in Table 1. The used symbols
are explained in Section 4.1. All formulas are given for the
worst-case scenario.

The time and space complexity for loading the sub images
can be straight-forward inferred and amount to the number

Complexity



Algorithm 6 Pseudocode of the distributed resolution of the
root tuples.

1: function RESOLVE-ROOTS(grayv, area, roots)
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direct neighbors, which can be done in logarithmic fashion as
explained in Section 4.3, along the virtual split boundaries,
i.e., the width of the image.

2: combined + CONCAT(area(grayv), roots(grayv)) The next two steps involve the generation of the tuples.
3 GLOBAL-SORT(combined) In the worst case, for each of the boundary pixels—again the
4: width of the image—a tuple needs to created, resulting in
5. best_roots < FIND-BEST-ROOTS(combined) according space and time complexity. Although, in practice
6: NORMALIZE(combined) the number will most of the times be much lower, because
7 ends < [FRONT(combined), BACK(combined)] the boundary zones mostly consists of connected flat zones
3: PREFIX-SUM(ends, Area-And-Root, Left) with shared parents nodes, resulting in early outs. In fact,
9: PREFIX-SUM (ends, Area-And-Root, Right) the average complexity should therefore be closer to O(w x
10: GLOBAL-SORT(combined) log(g)), but is for obvious reasons dependent on the analyzed
11: data.
12: for all tuple € combined do Contrary to root tuples, which can be generated entirely
13: root < best _root[tuple. from] local, area tuples needs to be stitched together across all
14: if tuple.grayv > tuple.n grayv then > Case1 Pprocessing nodes, resulting in the additional factor for the
15: ‘ PUSH(roots(tuple.grayv), INVERT(tuple)) time complexity. The main resolution consists of k iterations
16: else if tuple.grayv < root.grayv then > Case 2 of sorting, linearly scanning and remapping the tuples for
17: PUSH(roots(root.grayv), <r00t.grayv, each of the available gray-levels of the gray depth d. It is
< root. from, tuple.n_grayv, tuple.to) assumed here that the number of tuples per gray-level is more
18: else if tuple.n_grayv = root.grayv and or less evenly distributed, resulting in the purposefully chosen
< root.pizel < tuple.to then > Case 3 term 7 (it would actually cancel out with d). The sorting adds
19: t_to < CANONIZE(tuple.to) both logarithmic components, over the number of tuples and
20 7_to < CANONIZE(root.to) nodes, as it requires reordering them across all machines.
21: n_c < tuple.n_grayv One of the major uncertainty factors is the iteration constant
22: min_to + MIN(t_to,r_to) k, which is dependent on the data. In the worst case, k is
23: mazx_to < MAX(t_to,r_to) equal to the number of processing nodes p, given a single
24: PusH(area[n_c], (n_c,tuple.to,n_c,min_to)) tuple needs to visit each single machine due to transitivity.
25: PusH(area[n_c|,(n_c,min_to,n_c,tuple.to)) However, in practice, the iteration count will remain low,
26: PusH(area[n_c], (n_c,max_to,n_c,min_to)) typically only one or two, even for a high number of nodes,
27: PusH(arealn_c,(n_c,min_to,n_c,mazx_to)) due to the area stitching step and tuple inversions, effectively
minimizing the canonicalizations. Finally, the resolved tuples
28: else > Case 4 need to be send back to the partial image of origin and
29: PUsH(roots(root.grayv), (root.grayv, locally applied. The later step requires iterating over the
< root. from, tuple.grayv, tuple. from) whole image and normalizing each of the pixels using an
30: associative data structure with logarithmic look up time. This
: is the reasons for the second summand in the time complexity
31: return tuples

TABLE 1: Overview of the worst-case time and space com-
plexity of the distributed max-tree algorithm steps.

Time Space
Image chunking O(%) O(%)
Local max-tree O(57 x log(d) +w x log(t)) O(; +txw)
Area tuple generation ~ O(w X log(p)) O(w)
Root tuple generation ~ O(w x d) O(w x d)
Tuple resolution O(k x d x § xlog(w x d)) x log(p) O(w x d)
Redistribution O(w x d) O(w x d)
Application O(w x d+ ;—f X log(w x d))) O(w x d)

of total pixels divided by the amount of available processing
nodes, as each of the receives an equally size chunk of the
entire problem. For the local max-tree computation each of
the ¢ thread needs to allocated the part of parent image,
that is equal in size to the processed raw image, plus and
additional area remapping that is solely dependent on the
image width, explaing the space complexity. The computa-
tional complexity consists of the linear image-scan for each
thread and sub-image, which in turn need to do look-ups into
the associative container for the stacks, resulting in the first
summand. However, each thread needs to be merged with its

equation. The first can be explained by the changing roots by
directly assigning them while iterating through the tuples.
Generally, the algorithm has complexity classes that are
either linear or linear-logarithmic, supporting good scalabil-
ity overall. The only bottleneck seems to be the iterative
constant & that could potentially degrade into the number
of used compute nodes p. However, this is rarely the case in
practical use, but is a good subject for further research.

5.2

For the algorithm implementation the Message Passing Inter-
face (MPI) [48] programming framework has been used. It
provides low-level network communication primitives to ex-
change one-to-one and many-to-many messages between the
participating compute nodes. Efficient algorithms usually rely
on the later category of operations, the so-called collectives,
due to possibility of achieving a logarithmic scaling over the
number of cores. For this reason, the distributed max-tree
algorithm employs collective MPI_Scan calls to generate the
area-connecting tuples of the halo zones.

At first, a right oriented scan, that is from the first to the
last image chunk, broadcasts the minimal canonical points to
subsequent image partitions, while, in a second, left oriented

Implementation Details



scan, potentially merged areas are reported back. Due to the
fact, that the top and bottom halo of a image chunk may
have entirely disjoint connected components per pixel, the
worst case memory complexity of the exchanged buffer is
O(p * w * 2). This is highly undesirable, as it scales both,
with the number of processing nodes as well as the width
of the image. One can realize this operation more efficient,
if only the outer boundaries of the already merged images
are communicated and the intermediary remapping rules are
memorized in a data structure, e.g., a map, across the two
MPI_Scan calls. Then, the memory complexity of the sent
buffer simply becomes O(w * 2).

The MPI framework allows the registration of custom
functions for collective calls, such as MPI_Scan. These must
be associative and optionally commutative and the above
operation satisfies both criteria. However, the reduction op-
eration must also be statically linked, meaning a singleton,
and does not allow to pass any context or state, say an
object pointer or the aforementioned map. For this reason,
a straight forward realization is not possible. One way of
working around this limitation is to simply also have only
a singular static remapping data-structure in the scope, say a
global variable or static class member.

Algorithm 7 Pseudocode of a thread-safe, stateful MPI reduc-
tion operation and subsequent usage by a prefix-scan.

1: mutex <— CREATE_MUTEX();

2: rules <= CREATE_MAP();
3:
4: procedure REDUCTIONOPERATION (in, out)
5: LOCK(mutex);
6: local _rules <—FIND(rules, thread id);
7 UNLOCK(mutex);
8 MERGE(in, out, local _rules); > actual work
9:
10: procedure CAPTURESTATE(local rules)
11: LOCK(mutex);
12: PUT(rules, local,ules);
13: UNLOCK(mutex);
14:

15: local rules <—CREATE_RULES();

16: op <—MPI_OP_CREATE(REDUCTIONOPERATION);
17: CAPTURESTATE(local rules);

18: MPI_ScAN(..., op);

In this case, though, the whole distributed max-tree im-
plementation effectively also becomes a singleton and may
not be used in multi-threaded environments, which is sub-
optimal for a number of analysis uses cases. Therefore, it
has been chosen an approach as sketched in Algorithm 7.
A set of potential remapping data-structures from different
threads is stored in a global associative container, here rules,
guarded by a mutex. Before calling an MPTI_Scan the remap-
ping data-structure must be stored and during the custom
reduction operation retrieved. In order to be able to correctly
retrieve the remapping data-structure a unique, shared key
must be chosen, for example the current thread identifier.

One enhancement for future MPI standard versions could
be, to directly allow the possibility of passing context pointers
to every MPI API call, which utilizes reduction operations.
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This pointer is simply forwarded to the custom reduction
operation on each invocation and can simply be set to unde-
fined, respectively null, if not needed. As a result, this would
remove the locking overhead and the code becomes cleaner
and more understandable.

6 EXPERIMENTAL EVALUATION
6.1 Environment

The experiments have been performed on the JURECA sys-
tem [49] at the Juelich Supercomputing Centre. The sys-
tem consists of 1884 compute nodes with each having two
Intel® Xeon® E5-2680 v3 Haswell CPUs with 12 cores at
2,5 GHz and Hyperthreading. 1604 compute nodes have 128
GiB, 128 nodes 256 GiB, 74 node 512 GiB and two nodes
1024 GiB DDR5 RAM. For our experimental evaluation the
following software libraries have been used—HDF5 1.8.18
parallel and ParaStation MPI 5.1.9. Source code
has been compiled with g++ 5.4.0 optimization level 03.
The available benchmark for the experiments relies on a
maximum of 32 nodes and 24 threads.

6.2 Datasets

As for the used data, the tests have been performed on two
real-world images depicted in Figure 4. The first dataset is a
Pléiades Ortho Product ! and it includes four Pan-sharpened
images. The spatial and radiometric resolution is 0.5m and
8 bpp, respectively. The data was acquired over the Naples
metropolitan area (Italy) in 2013. The second dataset is an
image that was taken at the ESO Paranal Observatory in
Chile by the VISTA infra-red wide-field survey telescope. It
portraits more than 84 million stars in the central regions
of the Milky Way [50]. The Figure 4a and Figure 4b show
the true-color image of both datasets. For the Naples dataset,
experiments are performed only using the first channel. For
the ESO, the RGB image is simplified to a singular lumi-
nance channel, similarly how it was done by Moschini et
al. [36], through weighing and summing the channels, so
that L = 0.2126R + 0.7152G + 0.0722B. However, in order
to show that the algorithm scales regardless of the domain
size of the gray-levels, three different quantization levels
are derived from the luminance channel: 8-uint bpp, 16-uint
bpp and 32-float bpp. Contrary to [36], the original size of
the image is preserved (=~9Gpx), since the JURECA system
provides node with large memory.

6.3 Experimental Setup

As discussed in Section 3 there are a number of other serial
and parallel versions of the algorithm. Most of them report
different value permutations for the computation time, mem-
ory consumption, speed-up and scalability of their implemen-
tations. Carlinet et al. [38] provide their used benchmarks,
datasets and the source codes in C++ for many different
serial and parallel algorithms?. In order to compare results
achievable by using serial and parallel computing, the Berger
et al. [16] algorithm has been selected. Moschini et al. [36]
proved that Berger is the fastest sequential algorithm for

1. http://www.intelligence-airbusds.com/en/23-sample-imagery
2. https://www.lrde.epita.fr/wiki/Publications/carlinet.14.itip



images with high quantization values and even floating. How-
ever the algorithms depend on the MILENA image processing
library [51] (i.e., provide fundamental image types and I/O
functionality) which was not designed to handle very large
images and floating values. For these reasons it was necessary
to re-write a new C++ implementation of the algorithm
which is library independent. For the parallel processing case,
the hybrid shared-memory parallel max-tree algorithm devel-
oped by Moschini et al. [36] was considered. The algorithm
has been implemented in C using POSIX threads and the
source code is available publicly®. Contrary to the MILENA
library, this algorithm has been proposed with the purpose
of dealing with large-scale and high-dynamic range images,
and was therefore ready to be used out-of-the-box. It may
be argued that the comparison is not entirely fair due to
the different nature of the algorithms—i.e., shared-memory
and distributed-memory—but can very well be investigated
for the same number of utilized cores. The expectation natu-
rally is that distributed memory implementation, as the one
proposed here, are naturally going to have more overhead
compared to shared-memory versions. To the best of our
knowledge the only distributed max-tree algorithm has been
proposed recently by Kazemier et al. [37], but the source
code was not obtainable at the time of writing as it is not yet
released.

The performance assessment of the algorithms proposed
by Berger and Moschini against the algorithm proposed in
this paper is conducted with two kinds of benchmarks. The
first type is focused on the computation time and speed-
up, while the second measures memory consumption. Each
benchmark configuration, meaning a particular node and
core count, is executed five times and the following statis-
tics are reported: mean p, standard deviation o, minimum,
maximum, and coefficient of variation (C'V), defined as
v = % [52]. The use of the multithreading/MPI hybrid
features of the algorithm allows to span the MPI process
on each node available and to parallelize it locally using
multithreading. For this reason, both types of benchmarks
are performed on each number of cores, as shown in Table 2.
The strategy is to evaluate first the performance on one core
of one node. Afterwards the number of threads are doubled
alternating with doubling the number of nodes, until the
maximum of 256 cores across nodes and threads is reached.

TABLE 2: Hybrid: multithreading+MPI.

Nodes 1 1 2 2 4 4 8 8 16
Threads 1 2 2 4 4 8 8 16 16
4

Cores 1 2 8 16 32 64 128 256

6.4 Speed-up and Memory Consumption

The Figure 5 depicts the experimental results related to the
processing time. For each dataset, the plot of the mean
execution time and the plot of the speed-up for increasing
number of cores is reported. In order to make a fair compari-
son with the state-of-the-art results (i.e., the shared-memory
algorithm [36]), the proposed algorithm is first run on a

3. http://www.cs.rug.nl/ michael/ParMaxTree/

11

single node. The algorithm’s execution time measures the
beginning and end of the main () function of the process
with the MPI rank O and the thread number 0. The speed-
up coefficient is computed as t, = t1/t.. the fraction of the
execution time with a single core and the execution time with
multiple processing cores. Generally it can be said that the
proposed algorithm is able to gain a substantial speed-up for
both data sets and the different gray-levels quantizations.

For the 8bpp case, the algorithm shows a constant, near
linear speed-up curve. In both datasets, the speed-up shows
an increasing behavior for up to 256 cores with no reason
to doubt its consistency for a higher number of cores, with
an execution time of 9.38 and 62.35 seconds for Naples
and ESO, respectively. However, for ESO 16bpp and 32bpp
the speed-up flattens sooner, stabilizing at 64 and 16 cores,
respectively. With a high gray-level depth, the number of
tuples is increasing sharply, resulting in larger merge time.
The effect observable here is the Amdahl speed-up boundary
for a constant workload.

When these results are compared with the Moschini
algorithm, the proposed algorithm always provides faster
execution times. Unfortunately, for the dataset ESO 32bpp it
was not possible to derive any conclusions since the Moschini
algorithm did not terminate. A more detailed analysis of the
execution time for the different phases of the algorithm (see
the Algorihtm 2) is depicted in Figure 6. The results are
related only to a single dataset case (ESO 16bpp) because
of space considerations. Each set of rows depicts a a specific
number of nodes (i.e., 1 node, 2 nodes, 4 nodes and 8 nodes).
The time distribution for increasing number of threads is
shown in each row. For the single node case, the computation
of the local max tree is the most time-consuming phase. This
is a shared-memory scenario where the three phases concern-
ing the management of the tuples do not take place. When the
number of threads increases, the second most costly phase is
the local apply. The local merge needs to be considered only
beyond four threads. The same conclusions can be derived
for the remaining nodes configuration. However, since it is a
distributed memory environment, the phases connected with
tuple handling are also present.

In the two-node case the tuple generation phase and
the global apply are mostly present, the weight of the
tuple resolution becomes more pronounced with a higher
number of nodes. This behavior can best be explained by
the algorithm complexity, explained in Table 1, showing a
logarithmic scaling with the number of processing cores. As
has been shown here, the parallel implementation allows to
achieve a significant processing time gain when compared
with serial processing. In Table 3 the processing times for
the different datasets are presented. When considering ESO
32bpp, which is the more challenging dataset used in this
work, the proposed algorithm computes the max-tree in ~27
minutes (with 24 cores) while Berger converges only after
~3 hours.

Last but not least, comments should be made regarding
the memory consumption of the proposed algorithm. Con-
sidering the usual trade-off between memory consumption
and computational time, the experiments show the proposed
algorithm is more memory efficient and takes shorter compu-
tational time than Berger and Moschini. Table 4 and Table 5
scrutinize the memory consumption (in GB) for the different



algorithms with Naples and ESO 16bpp images, respectively,
when computing on a single node. For each given number of
threads, it can be noticed that the average and the maximum
memory usage of all the tasks in the job are always lower for
the proposed algorithm. This means that the algorithm is able
to scale in terms of memory consumption and communication
cost with respect to large datasets and the number of parallel
cores. This is an important factor, considering most of the
time the main constraint lies in the memory size.

TABLE 3: Processing times (mean values in minutes and
statistics) of the sequential Berger algorithm.

Images Mean p StDeve CV Min Max

Naples 13.54 0.484 0.001  13.53 13.55
ESO 8bpp 113.76 6.011 0.001 113.62 11391
ESO 16bpp  184.56 9.877 0.001 184.35 184.73
ESO 32bpp  185.67  19.457 0.002 185.34 186.21

TABLE 4: Memory consumption (mean values in Gb and
statistics) for the different algorithms with Naples image
when using a single node. For each threads setup, the average
and the maximum resident set size of all the tasks in the job
are reported, respectively.

Algorithm Threads Mean p  StDev o cv Min Max
59.65 0327 0.005 5935 60.19  Average
Berger et al. [16] 1 66.89 6429  0.096 6329 7813  Maximum
1 9199  1.955 0021 89.64 9352  Average
116.83  0.000 0000 116.83 116.83 Maximum
2 89.03 0590 0.007 8810 89.64  Average
116.83  0.000 0000 116.83 116.83 Maximum
82.82  1.988 0024 8119 8609  Average
Moschini et al. [36] 116.83  0.000 0000 116.83 116.83 Maximum
: 79.33  3.161 0040 73.99 81.80  Average
116.84  0.000 0.000 116.84 116.84 Maximum
16 7423 5571 0075 6496  79.14  Average
116.84  0.000  0.000 116.84 116.84 Maximum
2 6245 4593 0074 5883  70.03  Average
116.84  0.000 0000 116.84 116.84 Maximum
1 1893 0340  0.018 1843 1932  Average
2236 0106  0.005 2222 2245 Maximum
2 1840  0.657 0.036 17.81  19.12  Average
2313 0106 0005 2294 2318 Maximum
4 1818  0.107 0.006 18.06 1833  Average
Proposed 2292 0178  0.008 2268 2317 Maximum
s 1623 1159 0071 1479 1719  Average
23.07 0544 0024 2244 23.64 Maximum
16 1428 2082 0.146 1066 1563  Average
2424 0.686 0028 2324 2515 Maximum
2 2311 1.872 0081 2042 2500  Average
2235  0.099 0004 2218 2241 Maximum

7 CONCLUSION

In this work a new parallel and distributed algorithm for the
computation of the max-tree of an image has been presented.
The parallelization strategy consists of splitting the entire
problem, i.e., the image, into equal-sized sub images, for
which the partial max-trees are computed that are subse-
quently merged at the split boundaries. Using this algorithm,
substantial speed-ups and scalability could be achieved in
computing the max-tree on large real-world images, out-
performing the state-of-the-art shared memory implemen-
tation. In particular, faster execution time and significantly
less memory consumption can be achieved. The proposed
algorithm allows to process gray-scale image of arbitrary
gray-level depth including floating point values. This makes it
suitable for the usage in large-scale image classification task,
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TABLE 5: Memory consumption (mean values in Gb and
statistic) for the different algorithms with ESO 16bpp image
when using a single node. For each threads setup, the average
and the maximum resident set size of all the tasks in the job
are reported.

Algorithm Threads Mean i StDev o cv Min Max
Berger et dl. [16] 1 292.30 0.217 0.001 29193 292.48 Average
B 296.70 0.001 0.000 296.70 296.70 Maximum
1 457.71 0.777 0.002  456.98 458.61 Average
525.21 0.001 0.000 525.21 525.21 Maximum
2 472.53 0.898 0.002 471.54 473.76 Average
525.21 0.001 0.000 525.21 525.21 Maximum
436.67 1.761 0.004 434.06 437.89 Average
Moschini et al. [36] 525.21 0.001 0.000 525.21 525.22 Maximum
) 409.87 3.323 0.008 406.41 414.84 Average
525.21 0.001 0.000 525.21 525.22 Maximum
16 383.99 2.466 0.006 381.68 387.10 Average
525.22 0.001 0.000 525.22 525.22 Maximum
24 380.92 5.482 0.014 376.22 388.25 Average
525.22 0.001 0.000 525.22 525.22 Maximum
1 102.39 0.091 0.001 102.32 102.54 Average
114.13 0.052 0.000 114.08 114.20 Maximum
2 103.04 0.307 0.003 102.61 103.43 Average
113.84 0.028 0.000 113.81 113.88 Maximum
4 102.34 0.528 0.005 101.65 103.05 Average
Proposed 117.99 0.036 0.000 117.95 118.03 Maximum
8 100.80 0.458 0.005 100.25 101.46 Average
121.55 0.068 0.001 121.48 121.62 Maximum
16 94.86 1.264 0.013 93.58 96.30 Average
124.43 0.185 0.001 12427 124.72 Maximum
24 94.27 1.714 0.018  92.95 96.19 Average
124.82 0.241 0.002 124.46 125.05 Maximum

such as land cover type prediction, which is one of the major
practical application domains.

In future work, the equivalent min-tree algorithm includ-
ing distributed attribute filter are going to be implemented.
This will set a solid foundation for the next research goal, the
massive parallelization of the tree of shapes [53]—a contrast
independent component tree representation of images.
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(a) Pan-sharpened, true-color image of Naples, Italy. (b) Center region of the Milky Way, ESO, Chile.

Fig. 4: Benchmark images used in the experimental evaluation of the algorithm.
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ABSTRACT

The development of high performance computing applications is
considerably different from traditional software development. This
distinction is due to the complex hardware systems, inherent par-
allelism, different software lifecycle and workflow, as well as (es-
pecially for scientific computing applications) partially unknown
requirements at design time. This makes the use of software engi-
neering practices challenging, so only a small subset of them are
actually applied. In this paper, we discuss the potential for applying
software engineering techniques to an emerging field in high per-
formance computing, namely large-scale data analysis and machine
learning. We argue for the employment of software engineering
techniques in the development of such applications from the start,
and the design of generic, reusable components. Using the example
of the Juelich Machine Learning Library (JuML), we demonstrate
how such a framework can not only simplify the design of new
parallel algorithms, but also increase the productivity of the actual
data analysis workflow. We place particular focus on the abstraction
from heterogeneous hardware, the architectural design as well as
aspects of parallel and distributed unit testing.
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1 INTRODUCTION

High performance computing (HPC) is concerned with the coupling
of computational resources to enable the solution of large-scale
problems in science and engineering. Specific application fields
include e.g. simulating the climate in order to forecast the weather,
optimizing the flow dynamics of car chassis, or protein folding.
While the user domains heavily vary in their methods, in the end
they all require the use of some form of software, often developed
by the end-users of the application themselves. The development
processes and applied engineering approaches for those systems
are very different from traditional commercial software. A num-
ber of investigations have been performed regarding the reasons.
One of the most accurate summaries is given by Basili et al. [4]
that is additionally supported by research of Segal and Morris [32]
and Schmidberger and Brigge [31].

Their findings can be condensed as follows. First and foremost,
the main users of HPC systems are domain scientists. These are
experts in physics, chemistry, biology and so forth. This means
they often do not have a background in computer science or soft-
ware engineering, and therefore lack knowledge about engineering
approaches and their usefulness. More importantly, their main ob-
jective lies in the domain science and not in engineering code. As a
result, technical process optimization and development methods
take a back seat compared to the actual scientific question. This also
makes requirements analysis challenging, as most of the features
are often unknown at design time, and are changing heavily in the
process [32]. This has led to an implicit adoption of an agile devel-
opment process, albeit without following any formal methodology.

Second, the technological challenges in HPC are enormous. The
systems themselves are highly parallel, and designing algorithms
for them is a time-consuming activity. Most of the legacy code is
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therefore written in low-level programming languages like Fortran
and C, which continue to be used to this day, as they allow various
optimizations and access to accelerator hardware like coprocessors.
Changing this infrastructure seems unlikely as it would require
rewriting highly complex software with decades worth of fine-
tuning. In lieu of that, new technologies can only be slowly adapted
and integrated. The latest developments include for example the
broader use of C++ and its object-oriented programming model as
well as the use of scripting languages (mainly Python) as interface
wrappers to simply application coding [31].

Finally, the ranking of engineering goals in HPC differs from the
engineering of information systems. Carver et al. [7] point out that
first and foremost the correctness of the code matters, followed
by performance/scalability, portability and maintainability, in that
order. The correctness of code in HPC has traditionally been en-
sured through formal correctness proofs, like partial correction
assertions. Given the increasing complexity of applications, this
has become generally infeasible. Structured software testing has
therefore become frequently used in HPC recently, but is still only
used to a limited degree. Testing distributed and parallel systems is
not well studied, much less supported by tools. Performance gains
are usually invested in increasing the resolution and number of
parameters of a simulation, rather than shortening the time to ob-
tain a solution. Portability aspects have to be considered due to the
quickly changing nature of the execution hardware. The lifetime of
an HPC system is often in the three to five year range, while low-
level libraries are around for decades. The low importance assigned
to maintainability is often reflected in poor code quality, little to no
documentation, heavy code duplication and other practices often
frowned upon in other application domains. The low maintain-
ability can also be attributed to the workflow of HPC application
development. While major base libraries are well maintained, a lot
of the application code is developed in a trial-and-error fashion to
test models, and is more intended to be a throw-away prototype.
Working code, though, is often not refactored or redesigned from
scratch, but directly taken as a foundation for further development.

Currently, the HPC community sees the rise of a new sub-field—
data analysis and machine learning. While these techniques have
always played a role in the experimentation since beginning of
HPC, large-scale data intensive experimentation, such as the Large
Hadron Collider [19] or the planned Square Kilometer Array [12]
have recently led to a steep increase in interest and requirements.
Typical analysis goals are the identification of patterns in data, the
classification of observations into groups or the detection of anoma-
lous readings. While these goals do not differ from the small-scale
data analysis world, the sheer amount of data and its bandwidth
require the use of HPC resources. Current engineering research
focuses on the parallelization of algorithms, their scalability with
respect to the number of data items, and the precision of predictions.

Since the development of HPC-driven data analysis and ma-
chine learning applications is still a relatively young field with
little existing code, there is an opportunity to establish the use
of suitable software engineering practices from early on. In this
paper, we discuss the typical data analysis workflow on HPC sys-
tems with respect to reappearing patterns, reusable components
such as standard analysis algorithms, as well as aspects of appli-
cation development. As a tool to support the adoption of software

engineering practices such as modular design and structured test-
ing, we introduce the Juelich Machine Learning Library (JuML),
an HPC data analysis framework that implements said techniques.
Its five major design requirements are: (1) Provision of scalable
machine learning algorithms, (2) transparent execution on different
hardware backends, (3) well-documented, tested and intuitive API,
(4) support for the scripting workflow of domain scientists and (5) a
pluggable architecture design to enable the framework extension.
JuML has proven to be successful in a number of use cases such as
being the benchmark suite for the DEEP-EST experimental com-
puting system, but also for land cover classification, which will be
presented in Section 5.

The remainder of this paper is structured as follows. Section 2
gives a brief overview of modern, heterogeneous HPC systems and
technologies. Related work on software engineering efforts in the
HPC field as well as distributed, scalable data analysis frameworks
is discussed in Sect. 3. In Sect. 4 the typical data analysis workflow
on HPC systems is discussed and pertinent design solutions of
JuML are presented, including how applications can be tested. After
the land cover type detection use case study in Sect. 5, Sect. 6
summarizes our contributions and points out opportunities for
future work.

2 BACKGROUND—-ANATOMY OF HIGH
PERFORMANCE COMPUTING SYSTEMS

HPC systems are very diverse in their hardware components and
properties, and each can be considered more or less unique. In addi-
tion to that, particular product brands tend to disappear once market
adoption is reached, due to vendors introducing new marketable
platforms, leading to numerous code changes for developers relying
on the a particular system design. Nowadays systems are mostly
clusters with basic compute nodes equipped with a multi-core pro-
cessor and shared main memory. Additionally, larger systems, tend
to be designed in a modular or heterogeneous fashion, meaning that
the system includes specialized coprocessors, such as for example
general-purpose graphics cards (GPGPUs) [26], field-programmable
arrays (FPGAs) [28] or Many Integrated Cores (MICs) [17] boards.
The range of choices is large and every single candidate requires a
separate programming model and often special tailoring of the code
to efficiently execute on said hardware. This highly increases devel-
opment effort and cost, while at the same time reducing portability.
There are efforts to abstract from the peculiarities using high-level
APIs, e.g OpenCL [36], but they need strong compiler support or still
significant code adjustments. High performance programs usually
run in a single-program, multiple data items (SPMD) fashion. That
means each of the nodes executes the exact same binary and only
works on a different part of the simulated space or data partition.
The de facto standard inter-process communication framework for
this on HPC systems is the Message Passing Interface (MPI) [15],
which not only automatizes the distributed and parallel spawning
of the processes, but also provides the message exchange primitives.
These primitives usually allow to send and receive arrays of single
data types synchronously or asynchronously in a point-to-point or
collective manner.



JuML—Juelich Machine Learning Library

3 RELATED WORK

Over the past years, there have been increased efforts to address the
low prominence of software engineering techniques in HPC that
we summarized in Sect. 1. One of the major projects in this area
has been DARPA’s HPCS lighthouse effort [20], starting already
in 2002, to not only improve the machines’ hardware capabilities,
but also the software landscape to increase productivity. In its
wake, a number of other efforts have been established to foster
software engineering in HPC. Among these are works on the usage
of software engineering tools and methods in HPC [24], the usage
of agile development processes [34] or studies of performance in
comparison to maintainability and scalability [29]. Moreover, there
are dedicated software engineering teams in simulation projects
such as the HPC-SE team at the Barcelona Supercomputing Center
or the SimLabs in Juelich [2]. The awareness of the need for software
engineering methods is slowly arriving in the application domains
as well.

In the data analysis area, we can currently observe a potpourri
of tools, frameworks and libraries claiming to enable scalable and
large-scale experimentation. When boiling them down based on
their capabilities and ability to scale on HPC systems, two frame-
works remain—MLPack [11] and Intel DAAL [17]. Both of them
follow good software engineering practices in their own source
code, which include among others the usage of open source code
repositories, an extensive documentation with examples, and the
modularization into conceptual components. For an application
developer, the object-oriented design assists the quick development
of analysis tools that exploit parallelism in C++. Both MLPack and
DAAL have their own specific strong suits, which are subsets com-
pared to what JuML is aiming to achieve.

MLPack puts a strong emphasis on code correctness, and there-
fore unit testing, bug tracking and performance analysis. Its unit
test suite is comprehensive and covers most of the code, but is
only executed single-threaded. This is due to the fact that MLPack
does not feature any data distribution as part of the framework
and but leaves this to the developer to implement. Instead, only
CPU multi-core parallelism is included and implicitly tested. The
performance tests measure algorithm analysis qualities, such as
prediction accuracy, as well as implementation performance like ex-
ecution time and memory consumption as part of the build process.
Comparability of these measurements is not given as they measure
raw performance instead of relative performance increases.

DAAL is the most similar to JuML in terms of goals, features and
design. Both have been in development concurrently and Intel’s
product has been released slightly prior to JuML. DAAL allows
the development of data analysis applications in C++, as well as
Java and Python, using the included bindings. It has a built-in no-
tion of algorithm parallelization across multiple distributed nodes
and supports the use of Intel’s MIC Xeon Phi. However, the actual
data distribution implementation included in DAAL works only
in conjunction with Apache Spark or Hadoop as the parallel pro-
cessing platform. For technical reasons, such as scheduler and file
system incompatibility, MPI and Spark/Hadoop can generally not
be used on the same cluster system. The data distribution code
with MPI as communication framework needs to be provided by
the application user [1], which is often the most error-prone and
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time-consuming part of HPC application development. Moreover,
DAAL only supports Intel’s own MICs and does not allow the com-
putation offloading to other coprocessors. Therefore, it is only of
limited use in HPC data analysis application development.

Independent of data analysis frameworks, there is a highly pro-
ductive HPC software library called ArrayFire [21]. It offers a high-
level vector, matrix and tensor abstraction that allows the execu-
tion of computation kernels on different so-called backends. This
means processing can be executed on CPUs, a GPU using the CUDA
interface or via the OpenCL interface on any other supported co-
processor (though optimized for GPU vector processing). While it
is not able to perform distributed computations, it simplifies the
development of single-node applications. ArrayFire includes a com-
prehensive list of highly optimized standard computation routines
that further shortens code and development time. It is a good base
for application development in heterogeneous cluster systems.

4 THE JUELICH MACHINE LEARNING
LIBRARY FOR DATA ANALYSIS IN HIGH
PERFORMANCE COMPUTING

The general data analysis workflow on HPC systems does not differ
in its essentials from small-scale analysis. There are a number of
standard processes explained in the literature and established in
the industry, such as KDD or CRISP-DM [3]. Despite minor differ-
ences in these, the main steps of the analysis process always are:
1. data selection, 2. characteristics exploration and identification,
3. preprocessing, 4. model construction according to the analysis
objective, 5. evaluation, 6. postprocessing, and 7. deployment and
preservation of analysis results. Even though described in a very
linear fashion, the actual process is not rigid, but rather iterative in
nature, with the most cycles between step 3 and 6.

Common analysis goals are the classification of data items into
categories, detection of recurring patterns, prediction of future
values or filtering of outliers. This analytical framework is well
understood from small-scale data analysis and can simply be used
as a set of standard algorithms in the HPC community. What differs
is the data volume and number of observations to be analyzed.
These can easily exceed a number of terabytes up to some petabytes
for a single problem. The framework should take care of the data
distribution as well as algorithm parallelization while supporting
each of the data analysis workflow steps described above.

The open-source Juelich Machine Learning Library (JuML) [16]
strives to implement such a framework. It is written in C++ and uses
ArrayFire as its computation engine to support OpenCL-capable
coprocessors as well as CUDA-capable GPGPUs. JuML aims at
supporting data analysis application developers and parallel algo-
rithm designers with each of the above steps of the workflow. For
this, JuML is designed in a modular fashion with generic, reusable
components designed for application and framework developers.
This reduces code duplication and introduces single entities for
optimization. Moreover, it features a high-level API that allows
the transparent definition and assignment of parallel processing re-
sources for individual computation steps. Each of the components is
designed with the goal of speeding up data analysis in a distributed
HPC system with MPI as the distributed, parallel processing and
message exchange platform. Figure 1 depicts an overview of JuML’s
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Figure 1: UML diagram of JuML’s architecture.

internal architecture. Generally, it is divided into two virtual parts.
On the one hand, there are the classes and APIs meant to be used
by the application developers, which are situated at the top. These
are kept abstract and high-level in order to hide parallelization
details from the analysts, while on the other hand, the low-level
routines are aimed at simplifying distributed and parallel analy-
sis algorithm development. In the following subsections, we will
highlight some of the most important engineering issues in build-
ing HPC data analysis applications, and corresponding solution
strategies implemented or supported in JuML.

4.1 Data Access and Distribution

The central unit of each analysis step is the dataset that is being in-
vestigated. For many use cases, the amount of data is so large that it
needs to be split up and distributed across a number of independent
nodes. While the access pattern is often arbitrary for simulations,
e.g., particles in a certain spatial cell, it is regular for data analysis
uses cases. Each of the nodes receives an equally sized chunk of
the data in order to provide the most optimal load balancing and
thus peak parallel performance. Sometimes a halo is required, i.e.
an overlap in the data chunks, that allows the merging of partial
results of parallel computations. Essentially, this means there are
only two major data access strategies, or four, if one includes ad-
ditional weights, that account for performance differences of the
allocated processors and coprocessors.

1 juml::Dataset data("/home/analysis_data.h5", "samples");

Listing 1: Distributed dataset access example.

Based on this, the distribution strategies can be encapsulated
into reusable entities. In JuML this is realized in the Dataset class,
which abstracts the highly complex parallel I/O implementation
details from the user. Instead, the user only needs to know the path
to the desired data file and the name of the request dataset in the file,
and pass both to a Dataset constructor. Listing 1 shows an example.
JuML’s Dataset object is implemented in a lazy loading fashion,

which means data is only loaded if really required. This has two
advantages: on the one hand, it increases parallel I/O performance
by not loading superfluous data, and on the other hand, it hides the
actual chosen data distribution strategy. A concrete data analysis
implementation analyzing a dataset knows best which distribution
strategy it requires. Therefore, it will chose at analysis time one of
the four distribution strategies explained above and actually request
the Dataset object to fetch data from the storage system.

This approach and the interface design is similar to Resilient Dis-
tributed Datasets (RDDs) in Apache Spark [23] and highly simplifies
development efforts for application developers. For JuML frame-
work developers, it centralizes I/O code and thereby enables focused
performance tuning, having to enhance only one entity, and the
easy extension of other distribution strategies, if required. JuML cur-
rently allows users to load and store data in the parallel data format
HDF5 [13] and the equi-chunking strategy. Currently, netCDF sup-
port, another parallel data format, and the halo-chunking strategy
are in development. Redistribution of the data stored in a Dataset
is not supported by design as it introduces a significant perfor-
mance bottleneck. In summary, JuML’s Dataset implementation
specifically supports HPC data analysis application developers in
steps 1 and 7 of the data analysis process cycle.

4.2 API Design

JuML’s API is generally designed in a way to resemble the APIs
of well-known single-threaded, single-node data analysis libraries,
e.g., scikit-learn [27] or SHOGUN [35]. This should simplify port-
ing small-scale data analysis code to HPC systems, if required for
the application use cases and makes it easier for new users feel to
familiar with the JuML framework. The individual components are
modularized into individual entities that each model one particular
data analysis method or algorithm. Each of these entities accepts
Dataset objects as input and equally generates a Dataset as out-
put. At the same time, all of the analysis algorithms implement
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a common interface. Ultimately, this allows data analysis applica-
tion developers the easy and transparent exchange of the chosen
analysis algorithm and therefore minimizes required manual code
changes.

In contrast to the APIs of scikit-learn or SHOGUN, though, JuML
always requires two additional experimentation parameters beside
the actual analysis parameters. These are a handle for the local
computation backend, e.g., CPU, GPU etc., and a handle for the
cluster nodes on which to run the data analysis algorithm. The lo-
cal computation backend choice is simply forwarded to ArrayFire,
which in turn deploys the computation kernels correctly. For the
global parallelization strategy, that is the selection of nodes, JuML
accepts a MPI communicator, a data structure of the MPI framework
that encapsulates a set of computation nodes. These two handles
are sufficient for any JuML data analysis algorithm to completely
parallelize the data analysis. For an application developer, this dras-
tically reduces the amount of code that needs to be written and the
parallelization knowledge required. Where before, he would have
to implement the communication code manually (which accounts
for a major share of lines of code in HPC applications), the same
is now expressed by two singular values. Listing 2 shows an API
usage example of an arbitrarily selected data analysis algorithm
that computes locally on the GPU and uses the entire available
node allocation of the cluster system.

1 #include <juml.h>
2 #include <mpi.h>

3

i int main(void) {

5 juml::GaussianNaiveBayes gnb(

6 juml::Backend::GPU, // local gpu backend
MPI_COMM_WORLD // select global node allocation

9 return 0;
0}

Listing 2: C++ API usage example—creation of a GNB classi-
fier computing on GPUs and all available nodes.

In addition to that, JuML also supports the usage of Python as a
scripting language. This shall ease the transition of data analysts
coming from the small-scale data analysis world, where the script-
ing language is broadly used, to the large-scale data analysis world.
For this, JuML employs the technique of automatic code genera-
tion. Specifically, the SWIG [5] interface generator is utilized to
accomplish this task. It automatically searches JuML’s C++ sources,
identifies classes and generates matching Python classes.

In principle, it is also possible to generate bindings for other
languages with SWIG, say R or Julia, but this should be treated
with care. Each of these languages have their own approach to
working in data analysis and are strongly focused on particular data
containers. A wrapper needs to carefully support these differences
in the approaches to maintain the possibility of a smooth adaption of
JuML. As of the time of this writing, Python is the most widespread
data analysis scripting language in the HPC environment and is
therefore so far the only supported other programming language
despite C/C++. In summary, JuML’s API design shall mainly assist
HPC data analysis application developers in steps 4 and 5 of the
data analysis process. Listing 3 shows an example on how to use
the generated Python bindings using the example of a Gaussian
Naive Bayes classifier introduced above.
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import juml
from mpi4py import MPIL

gnb = juml.GaussianNaiveBayes (

juml.Backend.CPU, # local cpu backend
6 MPI.COMM_SELF # global node allocation
7))

Listing 3: Python API usage example—instantiation of a
GNB classifier computing on CPUs and a single node only.

4.3 Reusable Components

JuML also offers a number of reusable components that are not
meant for application developers but rather algorithm developers.
Among these are for example class label normalizers, distance func-
tions, probability density accumulators and more. As an example,
we will discuss the distributed parallel sorting algorithm that is one
of the major components required for parallelizing a number of
data analysis algorithms.

Distributed parallel sorting is a key to domain decomposition
in data analysis algorithm implementations. In simulation codes
one can often find a natural object or systems that allows to split
up the domain into independent sub-problems. These in turn can
then be assigned to individual processes and computed in parallel.
This heavily reduces the amount of communication and limits syn-
chronization to the sub-problem boundaries. The major benefit is a
highly scalable and more optimal parallel computation. A typical
example is the subdivision of a simulated fluid dynamics space into
sub-volumes. For data analysis problems, however, this can not
be as easily done, since there is no inherent divisible system in
the domain except the spanning boundary of each of the analysis
features and their minimum and maximum. If this space is subject
to some ordering, for instance a partial one, it is possible to per-
form a data-driven domain decomposition. In order to impose such
an ordering, one needs to sort the data. Afterwards, the resulting
independent data chunks can be assigned to processors as in the
simulation problems.

Among the parallel data analysis algorithms that use this strat-
egy are for example distributed decision trees [6] or the parallel
HPDBSCAN [14] algorithm. JuML provides an optimized version
of such a global sorting algorithm—that is, the processor with the
lowest rank has the smallest element and the one with the high-
est rank has the largest element, and every element in-between is
partially ordered—in the form of the balanced parallel sorting by
regular sampling [33]. This algorithm is highly scalable to large
amounts of data and auto-balances the number of data items each
processor receives.

Using this reusable framework, the amount of code and devel-
opment time required to implement new data analysis algorithms
in the JuML framework is greatly reduced and the probability of
implementing a highly scalable solution increased. Since applica-
tion use case developers also often become framework developers
on HPC systems, as explained in Sect. 1, this is indirectly also a
benefit for the application development use case, where JuML does
not yet provide an implementation of the required data analysis
method. Depending on the application development stage, JuML’s
reusable components support the development of HPC data analysis
applications in steps 2 to 6 of the data analysis process.
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4.4 Testing

Testing, specifically unit and system testing, is a difficult topic in
the high performance community. There are a number of testing
goals beside simple correctness, which are not widely considered
in other software development areas, such as numerical stability of
the computations, a multitude of different hardware environment
configurations—CPU, GPGPUs, FPGAs, etc.—as well as a high de-
gree of parallelization and concurrency. There are works by various
authors on how to effectively tackle these generally [31] and in
details through the application of effective testing methods [24],
mocking approaches [9] or concrete case studies [25]. The main
issue is the diffusion of the findings into the practical application
within the HPC projects, where often one can find little to no use
at all.

Most HPC projects that actually do test their code make use
of standard unit testing frameworks such as GTest [37] or Boost
Test. However, the way that these tests are usually designed and
executed is flawed. First, the tests are either not provided for the par-
allel and distributed sections of the code. Second, these either test
only low-level functionality, say a singular computational kernel,
or they are not executed in parallel. This means that tests actually
often do not cover the most complex and critical aspects of the
code. The two main reasons for this are the lack of parallel and
distributed testing frameworks and the unwillingness of application
developers to commit expensive and limited compute resources for
“use case irrelevant” computation. Third, if tests are provided, they
are usually replicated and slightly adjusted for each of the compu-
tation backends, e.g., CPU, GPU, etc. Considering good software
engineering practices, this violates the don’t-repeat-yourself (DRY)
principle [38].

JuML tries to overcome these problems by providing the pos-
sibility of performing parallel and distributed unit tests executed
on each computational backend. These are not only intended for
the JuML framework developers, but are also accessible for applica-
tion developers. The test execution on the different computation
backends is realized by extending the test case definition macros of
JuML’s baseline testing framework GTest. Instead of defining test
cases using the TEST macro, a JuML developer should use TEST_ALL,
which generates an individual test case for each of the automatically
detected and set up computation backends. This way, tests need to
be written only once.

Moreover, there is also a variant that allows the developer to
utilize test fixtures. This is particularly interesting for testing data
analysis code as it usually requires to load a particular test data
set on the which correct analysis is tried. For this purpose, JuML
offers an additional TEST_ALL_F macro for unit test cases with
fixtures. While the implementation of TEST_ALL is straightforward,
the latter is not. It requires the generation of an additional external
fixture class, similar to what Google Test is doing behind the scenes,
in order to encapsulate the data generation. Unlike the generated
Google Test cases, however, the call needs to be intercepted and
the correct computational backend set beforehand. Therefore JuML
needs to mimic this behavior and assign it accordingly. Listing 4
shows an algorithmic sketch of how the TEST_ALL_F macro has
been implemented.

Furthermore, JuML provides an extension to the test runner
CTest [22] that is uses to execute the tests distributed on the clus-
ter system. The added ADD_MPI_TEST function again registers an
individual test for each of the used node counts, which enables
better error tracing. In this function, common problematic edge
cases are checked, such as a node count that is a prime number or
the usage of just a single core. Application developers can override
these node allocations and provide their own tested node counts
at any time. Generally, JuML’s testing tries to keep the number of
tested nodes low, in order to preserve computation time of project
allocations. In addition to that, there are also a number of standard
data sets already included in the JuML bundle, such as Fisher’s iris
data set that are not only useful for code correction tests, but also
to benchmark freshly implemented new data analysis methods.

1 // original fixture class of Google Test
class FIXTURE_TEST {

3 FIXTURE_TEST() {

4 // setup code here

5 b3

6 )

8 // forward defin on reriting from the fixture
9 #define INTECEPTOR_FORWARD_DEFINITION(FIXTURE) \
10 class FIXTURE##_Interceptor : public FIXTURE { \
11 protected: \

12 void test(); \

13 g

15 // per-backend test generato

16 #define TEST_BACKEND_F (FIXTURE, BACKEND) \
17 TEST_F(FIXTURE## _Interceptor) { \

18 // set backend

19 juml::setBackend (BACKEND); \

20 / call the test case

21 this->test(); \

24 / definition of the main macro for all backends
25 #define TEST_ALL_F (FIXTURE) \

26 TEST_INTERCEPTOR_FORWARD_DEFINITION(FIXTURE) \
27 TEST_BACKEND_F (FIXTURE, juml::Backend::CPU) \

28 #ifdef OTHER_BACKEND \

29 TEST_BACKEND_F (FIXTUREm OTHER_BACKEND) \

30  #endif \

31 void FIXTURE##_Interceptor::test

34 TEST_ALL_F(FIXTURE_TEST, FEATURE) {

35 // test code here

36 }

Listing 4: TEST_ALL_F macro implementation sketch.

5 USAGE IN PRACTICE

JuML is already used in a number of scientific research projects. As
a first case study demonstrating JuML’s benefits, we describe here
a remote sensing problem that employs JuML’s artificial neural
network (ANN) implementation in order to perform land cover
type classification [30]. This means that a probabilistic model is
constructed that can classify each pixel of a satellite image, as
seen in Figure 2a, according to its land cover type, e.g., field, road,
building, etc. To achieve this, a neural network learns patterns from
annotated ground truth data and should then be able to detect said
patterns in new, unseen data. With such a neural network, it is
possible to automatically generate parts of street maps or monitor
urban planning efforts. Figure 2b depicts an example from the city
of Rome analyzed in this way to predict land cover types.
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(a) Satellite image.

(b) Land cover types.
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Figure 2: Example of a remote sensing land cover type pre-
diction problem. Aerial image of Rome with a geometrical
resolution of 1.3 m and 55 different frequency bands.

From the domain scientists’ point of view, i.e., the remote sensing
experts, JuML has greatly helped in providing faster experimen-
tation, while keeping the code similar in complexity compared to
single-threaded implementations. If the exact same neural network
would have been implemented in Python using state-of-the-art
deep learning frameworks, such as Keras or Lasagne, the actual
analysis code would have been very similar in length (off by less
than ten lines of code). However, those frameworks can only fa-
cilitate a single GPU on a single node. JuML instead allows the
distribution of the computation across multiple nodes simply by
passing an additional argument, the MPI communicator, to the al-
gorithm. Using this approach, the experimentation computed much
faster: using eight processing nodes yielded a speed-up of five, or
in other words, only one fifth of the time was required to obtain
the solution. With an overall prediction accuracy of ~91,1% the
land cover types have been predicted mostly accurately achieving
comparable results to other recent studies, such as for example
Cavallaro et al. [8]. The experimentation was performed on the JU-
RECA supercomputer [18] using multiple GPGPU compute nodes,
each having two CUDA-aware [26] NVIDIA K80s. Figure 3 shows
the obtained speed-ups during the training phase with a batch size
of 100.

Another example for JuML’s application is the benchmarking of
the data analysis hardware module of the experimental DEEP-EST
supercomputing system [10]. One of the project’s use cases will per-
form object detection and segmentation in multi-dimensional point
clouds. These are spatial coordinate meshes of electro-magnetic
wave reflections off surfaces, usually recorded by autonomous Li-
DAR vehicles or drones. Analysis goals include the identification of
buildings and structures that can then be used for the generation
of maps or city planing change tracking. An example of such a
four-dimensional point cloud of the old town of Bremen, including
already segmented objects, can be found in Figure 4. JuML supports
the implementation of the use case in two major ways. First, it pro-
vides all required low-level routines that are needed for the main
analysis algorithm, i.e. HPDBSCAN [14], to be ported to the new
platform. Second, and even more important, it also significantly
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Nodes

Figure 3: ANN Speedup with 1000 hidden neurons on the
Rome land cover type classification problem.

assists in scaling the analysis application to larger data scales. The
project plan is to not only investigate a single town, but to analyze
the point cloud of the entire nation of the Netherlands. The transi-
tion in this case is going to be transparent if realized with JuML,
as it simply requires exchanging the data path origin. Our library
then takes care of the correct data distribution using the afore-
mentioned Dataset class. This will drastically reduce the amount
of code having to be written, thus reduces sources for errors and
speeds up development. Due to the fact that the DEEP-EST project
is still underway, we are unfortunately not yet able to show any
scalability or speed-up plots at this time.

(a) Raw data.

(b) Segmented objects.

Figure 4: Example of four-dimensional point cloud data of
the old town of Bremen. The four dimensions are the spatial
coordinates and the heat radiation off the surface.

6 CONCLUSION AND FUTURE WORK

In this work, we have recapitulated the lack of thorough appli-
cation of good software engineering practices in building high
performance community applications. With the emerging field of
large scale data analysis arises the opportunity to employ software
engineering approaches right from the start. We have therefore
introduced the HPC data analysis library JuML, that enables easy
encapsulation of data access and distribution can easily be encap-
sulated and provides common interfaces for algorithm classes that
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allow a simple and high-level definition of a scalable parallaleliza-
tion strategy for application developers. Reusable low-level compo-
nents like global sorting routines or class-normalizers enable the
effective implementation of additional library features, such as new
analysis algorithms, by library developers. The incorporation of
coprocessors in heterogeneous cluster systems can be achieved via
the hardware abstraction technology ArrayFire, serving as JuML’s
computation engine. This made it a prime for usage in various
research projects, such as for example the benchmarking suite for
data-analysis module of the experimental DEEP-EST system, as
well as the presented land cover classification use case. In the lat-
ter, we have achieved a peak speed-up of up 6.59 using 12 graphic
cards, while maintaining the same code length compared to non
distributed state-of-the-art libraries.

Contrary to other fields, the question of performance testing is of
paramount interest for the HPC community. In our future work, we
will therefore strive to find the major performance tuning parame-
ters and try to abstract them in some form of hardware abstraction
layer. The important measurement metric here is the parallel ef-
ficiency, which measures whether a scalable implementation can
maintain its execution time.
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