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Epithelial-mesenchymal transition (EMT) is a cellular plasticity program critical for

embryonic development and tissue regeneration, and aberrant EMT is associated

with disease including cancer. The high degree of plasticity in the mammary

epithelium is reflected in extensive heterogeneity among breast cancers. Here,

we have analyzed RNA-sequencing data from three different mammary epithelial

cell line-derived EMT models and identified a robust mammary EMT gene

expression signature that separates breast cancers into distinct subgroups.

Most strikingly, the basal-like breast cancers form two subgroups displaying

partial-EMT and post-EMT gene expression patterns. We present evidence that

key EMT-associated transcription factors play distinct roles at different stages of

EMT in mammary epithelial cells.

KEYWORDS

epithelial-mesenchymal transition, gene expression signature, breast cancer, RNA-Seq,
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1 Introduction

Epithelial-mesenchymal transition (EMT) is a cellular transdifferentiation process that

converts epithelial cells to mesenchymal-like cells with migratory and invasive capabilities

(1–4). During EMT, the epithelial cells lose their polarized organization and cell-cell

junctions and undergo changes in the cytoskeleton architecture that alter the cell

morphology. EMT is crucial for developmental processes like gastrulation, neural crest

formation, and organogenesis, and for wound healing and regeneration of adult tissues (5).
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Importantly, EMT is associated with pathological conditions like

cancer and fibrosis (5–7). EMT is driven by gene expression

reprogramming, which is orchestrated by a group of transcription

factors (TFs) commonly referred to as EMT TFs, including the

SNAIL family (SNAI1/SNAIL and SNAI2/SLUG), the zinc finger E-

box binding homeobox (ZEB) family (ZEB1 and ZEB2), and the

Twist family BHLH transcription factors (TWIST1 and TWIST2)

(2, 4, 8). A key event in EMT is transcriptional repression of the E-

cadherin protein encoded by the CDH1 gene, which is conferred by

direct binding of EMT TFs to E-box motives within the CDH1

promoter (9). This is accompanied by transcriptional upregulation

of a range of genes required for the acquisition of mesenchymal

traits (3, 4, 8). Historically, EMT and opposite mesenchymal-

epithelial transition (MET), were thought to operate as binary

switches regulating the transition between two well-defined

cellular phenotypes. This notion has now changed as it has

become clear that EMT is a dynamic process that gives rise to a

range of intermediate cell states in which cells exhibit a mixture of

epithelial and mesenchymal features (2, 10). Importantly, epithelial-

mesenchymal plasticity contributes to heterogeneity within tumors

and is associated with dissemination, invasion, and metastasis to

distant organs, and therapy resistance (6, 7).

Depending on tissue and cell type, different extracellular cues

activating a wide range of signaling pathways can induce EMT (4).

Among them, the canonical TGF-b-SMAD signaling pathway has a

prominent role in eliciting EMT in developmental processes and

cancer (11). Importantly, EMT-signaling pathways and EMT TFs

confer stem-cell like properties on epithelial cells, and the link

between EMT and stem cells is experimentally well-established,

particularly for normal and neoplastic mammary cells (2, 12–16).

The mammary epithelium has a bilayered organization composed of

twomajor epithelial lineages including the luminal epithelial cells that

line the ducts, and an outer layer of contractile myoepithelial cells that

face the basement membrane (17, 18). A striking feature of the

mammary gland is that most of its development occurs postnatally.

In line with this, the mammary epithelium is interspersed by

mammary stem cells that are primarily confined to the outer basal

epithelial layer (17). Both SLUG and ZEB1 are expressed in

mammary stem cells and have been demonstrated to be important

for their stem cell state (12, 14–16).

There is a growing awareness that EMT gives rise to a range of

cellular states determined by extracellular cues and pre-existing

differentiation states of the cell (2). To study the EMT program in

mammary epithelial cells, we employed three well-defined

mammary epithelial EMT cell models comprising epithelial and

post-EMT derivatives of MCF10A, HMLE, and D492 cells. These

models, established to represent normal breast epithelial cells,

display differences reflecting their isolation and immortalized

strategies. The MCF10A cell line is a spontaneously immortalized

derivative of cells originally isolated from proliferative human

fibrocystic mammary tissue that undergo EMT upon TGF-b
treatment (19, 20). The HMLE cell line was originally isolated

from reduction mammoplasty tissue samples and immortalized by

expression of human telomerase reverse transcriptase (hTERT) and

SV40 large-T antigen (21). HMLE cells most likely derive from

multipotent mammary stem cells and naturally give rise to a cell
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(12). D492 cells are a suprabasal-derived EpCAM-positive/

sialomucin (MUC)-negative population with stem cell-like

properties that were originally isolated from reduction

mammoplasties (22). The cells were immortalized by expression

of human papilloma virus (HPV)-16 E6 and E7 genes. D492 cells

undergo EMT upon 3D cocultivation with endothelial cells (22, 23).

To identify a global mammary EMT-gene expression signature,

we analyzed whole-transcriptome data from epithelial and post-EMT

populations of HMLE, MCF10A, and D492 cells. We demonstrate

that a 265-gene mammary EMT signature is highly robust in

distinguishing breast cancer cell line subtypes and that it separates

breast cancers into distinct subgroups. Most strikingly, the 265-gene

mammary EMT signature separates basal-like breast cancers into two

subgroups displaying either post-EMT or partial-EMT gene

expression features. Finally, we present evidence that ZEB1 plays a

critical role in upregulation of gene expression during EMT and is

required for mammary epithelial cells to undergo complete EMT.
2 Materials and methods

2.1 Cell culturing

MCF10A cells were purchased from the American Type Culture

Collection (ATCC). HMLE cells were a kind gift from Robert

Weinberg, Whitehead Institute for Biomedical Research and

Department of Biology, Massachusetts Institute of Technology.

D492 cells were generated as previously described (22). MCF10A

cells were cultured in DMEM/F12 (ThermoFisher Scientific),

supplemented with 5% horse serum (ThermoFisher Scientific), 20

ng/ml EGF (R&B Systems), 0.5 mg/ml hydrocortisone (Sigma-

Aldrich), 100 ng/ml cholera toxin (Sigma-Aldrich), and 10 mg/ml

insulin (Sigma-Aldrich). HMLE cells were grown in a 1:1 mixture of

MEBM (Lonza) with DMEM/F12 (Sigma-Aldrich) supplemented

with 10 ng/ml EGF, 0.5 mg/ml hydrocortisone, 0.01 mg/ml insulin,

and 1% penicillin-streptomycin. D492 cells were maintained in

DMEM/F12 (Gibco), supplemented with 10 ng/ml EGF

(Peprotech), 0.5 mg/ml hydrocortisone (Sigma-Aldrich), 0.25 mg/
ml insulin (Sigma-Aldrich), 10 mg/ml transferrin (Sigma-Aldrich),

2.6 ng/ml sodium selenite (BD Biosciences), 10-10 M estradiol

(Sigma-Aldrich), and 7.1 mg/ml prolactin (Sigma-Aldrich) in

tissue culture treated, collagen I (Advanced Biomatrix)-coated

T25 Falcon flasks (BD Biosciences). All cell lines were incubated

in a 5% CO2 humidified incubator at 37°C.
2.2 Generation of epithelial and
mesenchymal cell subpopulations
for RNA-sequencing

HMLE cells were separated into epithelial and mesenchymal

subpopulations by immunomagnetic separation. Magnetic beads

(Immunomagnetic M450 Dynabeads®, ThermoFisher Scientific)

were coated with anti-EpCAM (MOC31, IQ Products).

Trypsinized cells (1 ml) were mixed with 30 ml of coated beads
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and incubated on a rotating rack at 4°C for 30 min. The beads with

epithelial cells and cell suspension containing mesenchymal cells,

were subsequently separated using a magnet rack. HMLE cells, both

EpCAM-negative and EpCAM-positive subpopulations, were

grown to 80% confluence before sorted by flow cytometry

according to the following procedure: Single cell suspensions were

diluted in cold staining buffer (PBS containing 0.5% FCS and 3%

human immune globulin (Gammaguard)) and stained with

fluorescently-labelled antibodies diluted according to the

manufacturer’s recommendation. Antibodies used were anti-

CD24 (PE Mouse anti-human CD24, 560991, BD Biosciences),

anti-CD44 (FITC Mouse anti-human CD44, 555478, BD

Biosciences), and anti-EpCAM (APC mouse anti-human CD326

(EpCAM), 32408, BioLegend). Following 30 min incubation at 4°C,

the stained cells were spun down and resuspended in PBS and

further analyzed by LSRII flow cytometer (Becton Dickinson) using

BD FACSDiva™ software. The cell populations were sorted by

FACS DIVA flow cytometer (Becton Dickinson), equipped with a

488nm Argon laser (Coherent) and 633nm HeNe laser (Spectra

Physics), distributing cells from each population into a separate

tube containing PBS. The single cell suspensions were stained with

Hoechst 33258 Staining Dye Solution prior to flow analysis for

sorting to exclude the dead cells from the analysis. Unstained

controls were used to set the gates. A minimum of 1,000,000

events from the viable cell population were recorded for each

sample. FlowJo 7.6 software was used to analyze the data. Sorted

populations were defined as indicated in Figure 1A. To induce

EMT, MCF10A cells were treated with 10 ng/ml recombinant

human TGF-b for 8 days (Bio-Techne, CFQ-331134). Both

untreated (epithelial subpopulation) and treated cells

(mesenchymal cell population) were harvested at 80% confluency.

The generation of D492 and the post-EMT derivative, D492M, is

previously described (23). Both D492 and D492M were cultivated as

conventional 2D cultures and harvested at 80% confluency.
2.3 RNA isolation

For RNA-Sequencing, cells were lysed in 1 ml TRIzol Reagent

(ThermoFisher Scientific), and the lysates were incubated at 5 min

before addition of 0.2 volumes of chloroform. The samples were

mixed thoroughly and incubated for 20 min on ice before

centrifuged at 9000 rpm for 20 min at 4°C. The water phase was

transferred to a new 1.5 ml microcentrifuge tube and 1 volume of

isopropanol was added. The samples were incubated at -20°C for at

least 2 hours and centrifuged at 15000 g for 30 min at 4°C. The

supernatant was removed, and the pellet was washed with 1 ml 80%

ice-cold EtOH before centrifuged at full speed for 5 min at room

temperature. EtOH was removed and the pellet was air-dried. Total

RNA was resuspended in RNase free H2O.
2.4 RNA-sequencing and data analyses

Ribosomal RNA depleted RNA libraries were generated and

sequenced on a SOLiD5500 platform (Nord University, Bodø,
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Norway) as described in detail previously (24). For each cell line,

a single biological replicate was used to generate one RNA-Seq

library. The RiboMinus™ Eukaryote Kit (ThermoFisher Scientific)

was used for rRNA depletion, and the libraries were prepared

according to the SOLiD™ Total RNA-Seq Kit Protocol by

Thermo Fisher Scientific. Adaptor-trimmed sequencing reads

were mapped to the human genome (forward specific mapping,

human reference sequence GRCh38.104) using the CLC Genomic

Workbench 22. Normalized gene expression values (counts per

million, CPM) were log2 transformed and calculation of

significantly differentially expressed genes were done in CLC.

RNA-Sequencing raw reads have been deposited to SRA

(PRJNA976177). Analyzed data (full gene list) can be found in

Supplementary Table 1. Publicly available datasets were

downloaded from SRA, using the SRAtoolkit.
2.5 Gene set enrichment analysis

Enrichment of pathways in datasets was investigated by Gene

Set Enrichment Analysis (GSEA) (25). For analyzing the

enrichment in individual cell lines separately, GSEApreranked

was performed with statistically significant (p < 0.05) genes

ranked based on their log fold changes between epithelial and

mesenchymal states. Combined GSEA of both cellular states from

the three cell lines were performed using counts per million (CPM)

values of 60,605 genes. The enriched pathways were identified using

the MSigDB Hallmark gene set. Analysis were run with default

settings, with the exception of the max size for gene set exclusion,

which was set to 1000 (26).
2.6 Hierarchical clustering

Hierarchical clustering were performed and visualized using the R

package “Complex Heatmap” to identify patterns between expression

of genes across different datasets (27). For the three cell lines sequenced

in this project, count per million (CPM) values were log2 normalized

after adding 1 to the original values. RNA-sequencing data of the 48

breast cancer cell lines was downloaded from the Cancer Cell Line

Encyclopedia (https://sites.broadinstitute.org/ccle/) (28). Gene

expression data and correspondent subtype and clinical information

for the TCGA cohort, were obtained using the R package

TCGAbiolinks (29, 30), while for the METABRIC, the data was

downloaded from the cBioPortal (https://www.cbioportal.org/) (31,

32). For all three datasets, in addition to the publicly downloaded

RNA-Seq data, the expression values were z-score normalized before

hierarchical clustering was performed.

The number of clusters to be selected for downstream analysis

was optimized using the R package “clValid” (33). Gene expression

data from CCLE, TCGA, and METABRIC were scaled separately

and considered as input for the cluster stability validation function,

along with internal validation, correlation metric, and complete

method as the clustering and validation parameters. To determine

the number of clusters, we investigated the average stability of
frontiersin.org
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varying number of clusters ranging from 2 to 10 (Supplementary

Figures 1A–C). Compactness and connectedness of clusters as a

measurement of stability was considered. Dunn index, silhouette

width, and connectivity are three cluster stability measurements

that has been widely used in biological studies for such purposes

(34–36). The connectivity quantifies the extent to which datapoints

are placed in the same clusters with their neighbors and therefore

low connectivity indicates more stable clusters. Dunn index and

silhouette width are measurements of compactness of a cluster and

higher values denote more stable clusters. All three measures, in
Frontiers in Oncology 04
addition to information about separation of subtypes, were used for

determining the optimal number of clusters for each dataset.
2.7 Survival, correlation, and gene
copy-number analysis

Survival analyses for progression free interval (PFI) and disease

specific survival (DSS) were performed by using the Kaplan-Meier

method implemented in the R package “Survival” (37, 38).
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FIGURE 1

Generation and RNA-sequencing of epithelial and mesenchymal (post-EMT) subpopulations of mammary epithelial cell-derived EMT models. (A)
EpCAM-positive and EpCAM-negative subpopulations of HMLE cells were separated using anti-EpCAM-conjugated capture beads. The cell fractions
were flow cytometry-sorted into an epithelial (CD24High/CD44Low/EpCAMHigh) and a mesenchymal (CD24Low/CD44High/EpCAMLow) population. (B)
MCF10A cells were left untreated or treated with 10 ng/ml TGF-b for 8 days. (C) D492 and D492M were cultured in 2D monolayers. (D) Flow chart of
the RNA-Sequencing experiments. (E) Heatmap showing the fold change (post-EMT versus epithelial) of selected EMT marker genes, EMT transcription
factors, and housekeeping genes. (F) Positively enriched Hallmarks with the post-EMT cells identified by Gene Set Enrichment Analysis (GSEA). The data
from the three cell models are analyzed separately or combined (right panel). Ep, Epithelial; Mes, Mesenchymal; TFs, Transcription factors.
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Association of ZEB1 and SNAI1 towards the EMT states was

analyzed by calculating their correlation with the EMT-down, partial-

EMT and EMT-up genes annotated in the hierarchical clustering of the

expression data from TCGA and METABRIC cohorts. Pearson

correlation coefficients were calculated using the R package “psych”.

The correlation coefficient ranges from -1 to 1, where the minimum

and maximum limits denote strong negative and positive correlations,

respectively. The significance of these correlations was tested by the

Kruskal Wallis test and visualized using “ggpubr”.

To investigate the MYC copy number variance (CNV) in the

basal-like breast cancer patients, CNV data from the TCGA BRCA

cohort was downloaded using the Xena Browser by UCSC (39). In

short, the CNV number estimates were generated by applying

GISTIC2 and the TCGA Firehose Legacy pipeline and further

thresholding the estimates into -2, -1, 0, 1, and 2 to denote CNV.

The CNV data was subsetted to include only the basal-like patients

from cluster 1 and cluster 5, and the negative, zero and positive values

were annotated as deletion, normal, and amplification, respectively.
3 Results

3.1 Identification of a mammary EMT gene
expression signature

To identify genes that change expression in EMT in mammary

epithelial cells, we sequenced rRNA-depleted RNA from epithelial

and post-EMT cell populations of HMLE and MCF10A. rRNA-

depleted RNA from epithelial and post-EMT cell populations of

D492 cells have been sequenced by us previously and the data was

re-analyzed here (24). Briefly, EpCAM-positive and EpCAM-

negative subpopulations of HMLE cells were obtained using anti-

EpCAM-conjugated capture beads, and both cell fractions were

further flow cytometry-sorted into an epithelial (CD24High/

CD44Low/EpCAMHigh) and a mesenchymal (CD24Low/CD44High/

EpCAMLow) population (Figure 1A). MCF10A cells were either left

untreated or treated with TGF-b for 8 days to induce EMT

(Figure 1B). Picture of D492 and its stable post-EMT derivative,

D492M cultured in conventional 2D monolayers is shown in

Figure 1C. The epithelial and mesenchymal populations of the

three cell lines displayed distinct morphologies with the more

elongated post-EMT cells forming fewer cell-cell contacts

compared to the cognate epithelial state (Figures 1A–C). rRNA-

depleted RNA was subjected to sequencing and an average of 61.5

+/- 8.7 million reads were generated for each cell model

(Figure 1D). Adaptor- and quality-trimmed reads were mapped

to the human genome (GRCh38) with Ensembl gene annotation

(v104), including 60,605 genes (40). An average of 20,492 +/-664

genes were expressed in the three cell models (Figure 1D,

Supplementary Table 1). Using fold change >2.0, FDR p-value

<0.05, and difference in CPM (counts per million) >5.0 as criteria,

3,728, 2,227, and 2,945 genes were found to be differentially

expressed in epithelial and post-EMT populations of HMLE,

MCF10A, and D492, respectively. Importantly, genes encoding

mesenchymal markers including N-cadherin (CDH2), vimentin

(VIM), and fibronectin (FN1), as well as key EMT transcription
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induced in all three EMT experiments (Figure 1E). Concomitantly,

the expression of the epithelial genes encoding E-cadherin (CDH1),

and occludin (OCLN) were downregulated (Figure 1E). We

performed Gene Set Enrichment Analysis (GSEA) using the Gene

Hallmarks for computing overlap for each of the cell lines (25, 41,

42). The input from each model system was genes with an FDR p-

value <0.05, ranked according to their log2 fold changes, including

9,864, 8,688, and 8,175 genes for HMLE, MCF10A, and D492,

respectively. For all three models, “Epithelial Mesenchymal

Transition” was the most significantly enriched hallmark

associated with the post-EMT cells (Figure 1F, Supplementary

Table 2). The hallmark consists of 200 EMT-related genes, of

which 80, 99, and 66 were found to be enriched in HMLE,

MCF10A, and D492, respectively (Supplementary Table 3).

Furthermore, when combining the data from the three EMT

models, the EMT hallmark gene set was again the most

significantly enriched, with 126 out of 200 genes defined as

significant (Figure 1F, right panel). By comparing the significantly

up- and downregulated genes across the three EMT models, we

found 134 to be significantly upregulated in all three models

(Figure 2A), and 131 to be significantly downregulated

(Figure 2B), giving a common signature of 265 EMT-associated

genes which we hereafter refer to as the “mammary EMT signature”

(Figure 2C, Supplementary Table 4). We then went on to compare

our signature with other signatures launched in the EMTome

database, which includes 84 EMT signatures (Supplementary

Table 5) (43). From our signature, 163 genes (62%) were found in

at least two signatures, whereas 57 genes (22%) were not reported in

any of the previous signatures. The 20 genes, from our signature,

that were most frequently found in other EMT signatures were

VIM, CDH1, ZEB1, CDH2, ZEB2, SNAI1, CCN2, TWIST1, EPCAM,

CLDN4, SERPINE1, ESRP1, WNT5A, ST14, ITGA5, RAB25,

COL5A2, ERBB3, OCLN, and MAP7, of which the majority has

been associated with the EMT process (Supplementary Table 5).

When only considering signatures derived from breast cancer cell

lines or patient samples, disregarding signatures containing <50

genes, the average overlap between our and the other signatures was

14%. This is a higher average overlap than what is found between

the existing breast cancer-related signatures within the EMTome

database, where the highest average overlap for a specific signature

was 11%. Together, this indicates that we have retrieved a robust

mammary EMT signature.
3.2 Breast cancer cell line subtypes are
distinguished by the mammary EMT gene
expression signature

Breast cancer is generally characterized by high degree of both

inter- and intratumor heterogeneity determined by cell type and/or

differentiation state of the originating mammary cell, the acquired

mutational landscape, copy-number alterations, and epigenetic

mechanisms (44, 45). However, global gene expression analyses

have led to the identification of gene expression signatures that

stratify breast cancer into molecular subtypes. In the pioneer work
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by Sørlie and Perou, five intrinsic subtypes were identified, luminal

A, luminal B, basal-like, HER2-enriched, and normal-like, that

largely reflected the clinical classification of breast cancer

subtypes based on the expression of hormone receptors, HER2,

and Ki67 (46, 47). Breast cancer cell lines are frequently used in

studies of breast cancer subtypes, and transcriptomic analyses of 51

breast cancer cell lines showed that they formed two major clusters

identified as luminal and basal-like, of which the latter further

branched into two clusters referred to as basal A and basal B (48).

To determine whether the mammary EMT signature associates with

specific breast cancer subtypes, we analyzed the expression of the

265-gene mammary EMT signature in 48 breast cancer cell lines

from the Cancer Cell Line Encyclopedia (CCLE) that classifies the

cell lines as luminal, basal A, basal B, or HER2-enriched (49). The

expression data was z-normalized to prevent any bias from absolute

expression, as absolute expression values are influenced by the

methods used for gene expression analyses (50, 51). Two out of the

265 genes, SIK1B and ENSG00000267748, were not identified in the

CCLE gene list. We performed hierarchical cluster analysis of the

263 remaining genes, which branched into three gene clusters (A-C)

that divided the cell lines into three clusters (1-3) (Figure 3,

Supplementary Figure 1A). The cell clusters nicely overlapped

with three clusters previously identified by us using the EMT

Hallmark gene set, which we identified as “Epithelial”, “Partial

EMT”, and “Mesenchymal” cell states (Figure 3, Cell state) (52).

This indicates that the genes in our mammary EMT signature, are

associated with the EMT process. Moreover, the mammary EMT

signature clearly separated the breast cancer cell lines according to

their subtypes (Figure 3, Subtype) as sample cluster 2 only consisted

of cells with the basal B subtype and cluster 3 only consisted of cells

with the basal A subtype. As reported previously for gene expression

signatures, our mammary EMT signature was not able to separate

luminal and HER2-enriched cell lines that formed one distinct
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cluster (cluster 1) (48). We examined the genes from the three gene

clusters A, B, and C (Supplementary Table 6) for the percentages of

upregulated genes identified in our EMT models. Here, gene cluster

A and B had low percentages of upregulated EMT genes, 24% and

22%, respectively (Figure 3, Up/Down). In sharp contrast, gene

cluster C had 91% upregulated genes, meaning that this cluster is

enriched for mesenchymal-associated genes (Figure 3, Up/Down).

The genes within gene cluster C are most highly expressed in cell

line cluster 2, which is constituted by basal B cell lines (Figure 3).

The basal B cell lines have previously been shown to have similar

expression pattern as claudin-low tumors, which is associated with

post-EMT gene expression signatures (53, 54). Taken together, the

mammary EMT signature separates breast cancer cell line subtypes

in a similar manner as whole transcriptome profiles. This indicates

that the EMT state is a key feature that distinguishes breast cancer

cell lines.
3.3 The mammary EMT gene expression
signature separates basal-like breast
cancer into two groups

We went on to examine the expression of the mammary EMT

signature in RNA-sequencing data from 1041 breast cancer patients

from the TCGA cohort that were stratified according to the PAM50

signatures into luminal A (540 patients), luminal B (201 patients),

HER2-enriched (80 patients), basal-like (182 patients), and normal-

like (38 patients) subtypes (55). The mammary EMT signature

again branched into three gene clusters (A-C), that separated the

patients into six clusters (1-6) (Figure 4, Supplementary Figure 1B).

The gene clusters displayed significant overlap with the gene

clusters from the cell line analyses (72%, 52%, and 64% of genes

in clusters A, B, and C, respectively) (Figure 4, Gene Cluster –Cell
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Line, Supplementary Table 6). Cluster A was defined by high

expression of genes that were downregulated in the EMT process

and the cluster was therefore renamed to “EMT-down”. Cluster B

was typified by expression of genes that were either upregulated or

downregulated in EMT and we named this cluster “partial-EMT”.

Finally, cluster C, referred to as “EMT-up”, was mainly constituted

by genes that were upregulated in EMT. This clearly indicates that

the mammary EMT signature distinguishes breast cancers

according to their EMT state and separates them into cancers

with epithelial, partial-EMT, or post-EMT (mesenchymal)

features. Of the six patient clusters, cluster 5 was clearly enriched

for basal-like cancers (70% of all basal-like cancers), whereas the

remaining basal-like breast cancers were within cluster 1 (Figure 4,

Subtype). Most of the luminal B and HER2-enriched breast cancers

resided within cluster 6 (74% and 64%, respectively). In contrast,
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luminal A cancers were scattered among cluster 1, 2, 3, and 6 (27%,

19%, 12%, and 35%, respectively). Cluster 5, that was dominated by

basal-like cancers, was clearly defined by high expression of genes

within the “partial-EMT” cluster. Moreover, patient cluster 1, which

is constituted by a mixture of breast cancer subtypes including the

remaining basal-like cancers, was defined by high expression of

genes within the “EMT-up” cluster. Finally, cluster 6 was defined by

high expression of genes within the “EMT-down” cluster. This

indicates that the majority of luminal B and HER2-enriched breast

cancers in the TCGA cohort display epithelial traits.

We decided to focus our analyses on the basal-like breast

cancers as they are still the most aggressive breast tumors with

fewest treatment options (56). The mammary EMT signature

clearly separated the basal-like breast cancers into two subgroups

with either EMT-up (cluster 1, n=49) or partial-EMT (cluster 5,
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n=127) gene expression features. To determine whether cellular

pathways are differentially regulated in the two groups, we

performed GSEA including all the expressed genes. The three

most enriched hallmarks associated with the basal-like breast

cancers within cluster 1 are “UV-response down”, “KRAS

signaling up”, and “Epithelial Mesenchymal Transition”

(Figure 5A, Supplementary Table 7). This indicates that the basal-

like breast cancers in cluster 1 indeed formed a subgroup based on

post-EMT gene expression features. The basal-like breast cancers in

cluster 5, however, displayed a very different gene expression

pattern and were enriched with MYC-regulated genes (“MYC

targets V1” and “-V2”), E2F-target genes, and genes associated

with oxidative phosphorylation (Figure 5B, Supplementary

Table 7). The clear enrichment with MYC-regulated genes

suggests that even though MYC is not part of the mammary EMT

signature, basal-like breast cancers that have gained MYC

expression seem to be overrepresented in cluster 5. We therefore

determined MYC expression in the two subgroups of basal-like

cancers and found it to be significantly elevated in basal-like cancers

within cluster 5 compared to those residing in cluster 1 (Figure 5C).

As the MYC gene is frequently amplified in breast cancers, we

analyzed copy number variations in the basal-like cancers from
Frontiers in Oncology 08
cluster 1 and cluster 5. However, no difference in amplification of

the MYC gene in these two subgroups were identified, being 89.8%

in cluster 1 and 90.5% in cluster 5 (Figure 5D). This indicated that

elevated MYC expression in basal-like cancers in cluster 5 is caused

by other mechanisms than gene amplification. As the two

subgroups of basal-like cancers displayed different pathway

enrichment, a relevant question is whether patients within the

subgroups had different clinical outcome. However, analyses of

clinical data from the TCGA cohort showed that there were no

significant differences in disease specific survival (DSS), progression

free interval (PFI), or percentage of patients with distant metastasis

for the basal-like patients in cluster 1 and cluster 5 (Figures 5E, F,

Supplementary Figures 2A, B).

To validate the above finding in an independent patient cohort,

we applied the mammary EMT signature on microarray data from

the METABRIC breast cancer cohort (n=1898), which contained

expression data for 246 of the 265 genes within the signature (57).

The METABRIC cohort has also stratified breast cancers as claudin-

low based on a nine cell-line predictor described by Prat and co-

workers (53, 54, 58). Hierarchical clustering analysis revealed that the

genes of the mammary EMT signature formed an EMT-up, a partial-

EMT, and two EMT-down clusters that to a large extent overlapped
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with the corresponding gene clusters in the TCGA cohort (Figure 6A,

Supplementary Table 6). Here, the overlap was 65%, 55%, and 88% of

genes in EMT-down A1 and A2, partial-EMT, and EMT-up,

respectively. The mammary EMT signature separated the patients

into four clusters (Figure 6A, Supplementary Figure 1C). Similarly to

cancers within the TCGA cohort, the majority of the basal-like

cancers formed a subgroup with a “partial-EMT” gene expression

pattern (cluster 3) that was enriched with MYC target genes

(Supplementary Table 7). Moreover, most of the claudin-low breast

cancers (65%), resided in cluster 1 that, together with cluster 2, is

defined by genes that are upregulated in EMT. Of note, claudin-low

breast cancers have recently been shown to be overrepresented by

basal-like breast cancers (58). Finally, we combined clinical data for

the basal-like and claudin-low cancers within cluster 1 and 3 and

found that, although not significant, patients within cluster 3 had

worse outcome in terms of DDS and PFI than patients within cluster

1 (Figures 6B, C, Supplementary Figures 2C, D).
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3.4 EMT TFs are responsible for the partial-
and post-EMT states

The EMT TFs play key roles in orchestrating the EMT process

and their relative activities might contribute to the vast epithelial

plasticity that gives rise to multiple cell states in normal physiology

and cancer (3). Four genes encoding EMT TFs, ZEB1, ZEB2, SNAI1

and TWIST1, are part of the generated mammary EMT signature

(Supplementary Table 4). We postulated that these four factors have

an instrumental role in forming the gene clusters that separated

basal-like breast cancers into two subgroups. We therefore analyzed

the partial-EMT and EMT-up gene clusters from TCGA and found

that SNAI1 and TWIST1 were among the partial-EMT genes,

whereas ZEB1 and ZEB2 were in the EMT-up gene cluster

(Supplementary Table 6). Next, we plotted the expression of the

four EMT TFs for the basal-like patients from cluster 1 and 5 in the

TCGA (Figure 7A) and cluster 1 and 3 in the METABRIC cohort
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(Figure 7B). Whereas SNAI1 was equally expressed or slightly

downregulated in the partial-EMT subgroups of basal-like

cancers, ZEB1, ZEB2, and TWIST1 were more highly expressed in

cluster 1 that is defined by the EMT-up genes. This suggests that the

ZEB family members and/or TWIST act as transcriptional

activators that play key roles in completing EMT in mammary

epithelial cells that will generate cells with a highly mesenchymal
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phenotype. Moreover, the findings indicate that SNAIL might be

instrumental for the partial-EMT gene expression signature

associated with the majority of the basal-like cancers. This is in

line with a recent publication showing that ZEB1 is required for

complete EMT in H-RasV12 expressing HMLE cells (HMLER),

whereas SNAIL is important for acquisition of a hybrid EMT

state (59). To shed more light on the association between SNAIL
1 2 3 4

A1
- E

M
T-

do
w

n
A2

- E
M

T-
do

w
n

B-
 p

ar
tia

l-E
M

T
C

- E
M

T-
up

SubtypeU
p/

D
ow

n
G

C
 −

 T
C

G
A

Up/Down
Down
Up

Gene Cluster − 
TCGA

Cluster A
Cluster B
Cluster C

Subtype
Basal-like
HER2-enriched
Luminal A
Luminal B
Normal-like
Claudin−low

Expression

−10

0

10

20

30

40

+ +

+
+

+
+

+ + +

+ +

+

++

++
++

+
++ +++ +

p = 0.350.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5
Years

PF
I P

ro
ba

bi
lit

y

Basal-like/claudin-low, METABRIC

140 129 119 111 104 103
200 175 144 128 124 118Cluster 3

Cluster 1

Patient Cluster
+
+

Cluster 1, EMT-up
Cluster 3, partial-EMT

Number at risk

C
+ +

+ + +
+

+
+

+ + +
+++

++
++

+

++ +++

p = 0.390.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5
Years

D
SS

 P
ro

ba
bi

lit
y

Basal-like/claudin-low, METABRIC

140 133 125 117 110 106
200 192 164 146 133 128Cluster 3

Cluster 1

Patient Cluster
+
+

Cluster 1, EMT-up
Cluster 3, partial-EMT

Number at risk

B

A

FIGURE 6

The mammary EMT signature separates breast cancers from the METABRIC cohort into four subgroups. (A) Hierarchical clustering of 1898 breast
cancer patients from the METABRIC cohort based on the mammary EMT signature. Subtype is shown as a top banner above the heatmap, while
genes found to be up- or downregulated in the EMT cell lines models (Up/Down) and the gene clusters from the TCGA (GC-TCGA) clustering are
shown as side banners on the left side of the heatmap. Expression values are row-based z-normalized reads per kilobase per million (RPKM). Patients
(columns) are clustered into the four clusters 1-4, while genes (rows) are clustered into four clusters A1 – EMT-down, A2 – EMT-down, B – partial-
EMT, and C – EMT-up. (B, C) Kaplan-Meier curve displaying the estimated Disease Specific Survival (DSS) (B) and Progression Free Interval (PFI) (C)
up to five years for basal-like and claudin-low breast cancer patients clustered in the EMT-up cluster 1 or the partial-EMT cluster 3.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1249895
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Knutsen et al. 10.3389/fonc.2023.1249895
and ZEB1 and epithelial, partial-, or post-EMT gene expression

features in the TCGA and METABRIC cohort, we determined their

correlation with each of the genes defining the three gene clusters

(Figures 7C, D). Here, a strong correlation was seen between ZEB1

and the post-EMT genes in both TCGA and METABRIC. SNAI1,

on the contrary, showed a strong correlation for both the post-EMT

genes and the partial-EMT genes in TCGA, but no specific
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correlation towards any of the gene sets in METABRIC. We

decided to further evaluate the regulatory role of ZEB1 on our

mammary EMT signature. To this end, we determined the

expression of the 265 genes within the mammary EMT signature

in in silico RNA-Seq data (GSE124843) from wild type and ZEB1

knockout (ko) MCF10A cells that had been induced to undergo

EMT by TGF-b (60). We indeed confirmed that a large majority of
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FIGURE 7

ZEB1 acts as a transcriptional activator and is required for acquisition of post-EMT gene expression pattern. (A, B) SNAI1, TWIST1, ZEB1, and ZEB2
expression in basal-like patients from the TCGA (A) post-EMT cluster 1 (C1) and partial-EMT cluster 5 (C5) and METABRIC post-EMT cluster 1 (C1)
and partial-EMT cluster 3 (C3). Expression values are log2(RPKM+1). (C) and (D) Correlation analysis for individual genes withing the 265-gene
mammary EMT signature with ZEB1 and SNAI1 in TCGA (C) and METABRIC (D). (E) Hierarchical clustering of the mammary EMT signature in wild
type and ZEB1 knockout MCF10A cells left untreated of treated with TGF-b. Genes found to be up- or downregulated in the EMT cell lines models
(Up/Down), gene clusters from the breast cancer cell lines (GC-CL) clustering, and gene clusters from the TCGA (GC-TCGA) clustering are shown as
side banners on the left side of the heatmap. Expression values are row-based z-normalized counts per million (CPM). (F) Hierarchical clustering of
the mammary EMT signature in HMLER ZEB1 knock out cells (ZEB1 ko), ZEB1 ko cells that overexpress SNAI1 (SNAI1 oe), and SNAI1-expressing cells
that are rescued by ectopic expression of ZEB1 (ZEB1 rescue). * P<0.05; *** P<0.001; **** P<0.0001. ns, not significant.
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the genes within the mammary EMT signature followed the same

expression pattern upon induction of EMT in the wild type cells in

this experiment, as in our cellular models. Strikingly, 78% of the

upregulated genes within the mammary EMT signature were not

upregulated in the ZEB1 ko cells (Figure 7E, Up affected, orange

square). On the other hand, the majority (71%) of the genes that

were downregulated in the signature, were also downregulated in

the ZEB1 ko cells (Figure 7E, Down non-affected, green square). To

determine whether enhanced SNAI1 expression could compensate

for loss of ZEB1 expression in the 134 upregulated genes within the

mammary EMT signature, we assessed in silico RNA-seq data from

HMLER cells that were forced into a stable epithelial state by

knocking out ZEB1 expression (GSE119149) (59). In these cells, it

has previously been shown that ectopic expression of SNAI1 drove

the cells into a partial EMT state, whereas coexpression of SNAI1

and ZEB1 induced the cells to undergo complete EMT (59). Ectopic

expression of SNAI1 in ZEB1 ko cells only induced the expression

of a minor subset of the upregulated genes identified in the

mammary EMT signature (Figure 7F, SNAI1 affected, green

square). In sharp contrast, the majority of the genes were induced

upon ZEB1 rescue (Figure 7F, ZEB1 affected, orange square). This

clearly indicates that even though SNAI1 is part of our mammary

EMT signature, SNAIL does not mediate transcriptional

upregulation of genes that is required for the EMT process to be

fully completed.
4 Discussion

The plasticity of epithelial cells, allowing them to acquire

mesenchymal traits under certain circumstances, is an essential

physiological process in embryonic development and tissue

regeneration. It is now generally accepted that aberrant onset of

EMT is associated with serious human diseases including cancer. To

provide novel insight into the EMT process in non-transformed

mammary epithelial cells, we have here performed whole-

transcriptome analyses of epithelial and post-EMT subpopulations

of three well-defined mammary epithelial cell-derived EMT models

(HMLE, MCF10A, and D492 cells). From these data, we derived a

commonmammary EMT signature reflecting a conserved core of 265

differentially expressed genes. Importantly, although GSEA

demonstrated a clear enrichment of genes within the EMT

hallmark for each of the three mammary EMT cell models,

approximately 60% of the differentially expressed EMT-associated

genes (57,6%, 58,7%, and 61,1% in HMLE, MCF10A, and D492,

respectively), were cell type-specific. Cell type-specific changes during

EMT are reflected by high degree of diversity in published EMT gene

expression signatures. This is clearly seen for the EMT signatures

within the EMTome database (43), in which the average overlap

between any two signatures is low (≤ 11%, considering signatures

consisting of >50 genes). This demonstrates the importance of

including multiple cell models to identify global EMT-associated

genes. The signature clearly separates established breast cancer cell

lines into three groups following their subtyping as basal A, basal B,

and luminal/HER2-enriched. This confirms that the EMT state is

indeed a significant contributor to classification of breast cancer cell
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lines (48, 53, 54, 61, 62). Of note, the three cell linemodels used in this

study display basal-like features and might therefore be better models

for basal-like cancer cells. In the future, it would be interesting to see

whether ER-positive normal mammary epithelial cells, like the

recently obtained iHBECERpos cell line (63), display the same level

of plasticity as basal-like cells and can be included in studies aimed at

better refining luminal breast cancer cell lines according to the

EMT state.

We have found that the mammary EMT signature also

separates breast cancers from the TCGA and METABRIC cohorts

into distinct subgroups. Based on expression of the genes within the

signatures, they can roughly be divided into cancers with post-EMT

features (EMT-up), epithelial features (EMT-down), and partial-

EMT features. With exception of luminal B and HER2-enriched

cancers in the TCGA cohort, all breast cancer subtypes are

represented in the post-EMT subgroup. However, tumor purity is

an important issue that needs to be considered when interpreting

bulk tumor gene expression data, and post-EMT features can be

conferred to samples by infiltrating stromal cells (64). For instance,

we noted that whereas 46% of luminal A cancers display EMT-up

gene expression features, only a small subfraction of luminal B

cancers have mesenchymal gene expression pattern. It is tempting

to speculate that this is caused by differences in the tumor purity as

luminal A tumors cancers are generally smaller than luminal B

cancers, which might influence tumor cellularity in the samples

(65). The fact that very few luminal breast cancer cell lines display

mesenchymal characteristics, supports the notion that the post-

EMT gene expression pattern seen in many luminal A breast cancer

samples might be heavily influenced by non-tumor cells.

The mammary EMT signature separates basal-like breast

cancers into two subgroups displaying either post-EMT (“EMT-

up”) (27%, TCGA) or partial-EMT gene expression patterns (70%,

TCGA). As distinct from the other breast cancer subtypes, basal-

like breast cancers are overrepresented by cancers displaying

partial-EMT features. Gene Set Enrichment Analyses clearly

suggest that cellular pathways are differentially regulated in the

two subgroups. Perhaps most strikingly, the partial-EMT gene

cluster is enriched for MYC target genes, and in line with this,

MYC expression in basal-like breast cancers with partial-EMT

features is higher than in basal-like cancers with post-EMT

features. Of note, MYC is not part of the mammary EMT

signature and was not identified among the genes that changed

expression in EMT in neither HMLE, D492, nor MCF10A cells.

However, we can’t exclude that MYC still contributes to the partial-

EMT phenotype seen in the majority of the basal-like breast

cancers. The MYC gene is located on chromosome 8q24 that is

amplified in many solid cancers (66, 67). In breast cancer, 8q24

amplification is most frequent in basal-like breast cancers and is

associated with poor disease outcome (55, 57, 67–69). The

enrichment with both MYC- and E2F-target genes in the basal-

like breast cancers with a partial-EMT phenotype, might indicate

that these cancers are highly proliferative and potentially more

aggressive. Indeed, it has been demonstrated that breast cancer cells

that have acquired a partial-EMT state are more tumorigenic than

cancer cells that have undergone complete EMT (59, 70, 71). In the

TCGA cohort, we did not find any differences in clinical outcome
frontiersin.org

https://doi.org/10.3389/fonc.2023.1249895
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Knutsen et al. 10.3389/fonc.2023.1249895
when comparing basal-like cancers displaying partial-EMT or post-

EMT gene expression. However, in the METABRIC cohort, when

considering both claudin-low and basal-like cancers, cancers with a

partial-EMT phenotype display worse prognosis than cancers with

mesenchymal features. This needs to be further confirmed in

more cohorts.

By combining experimental and in silico analyses of gene

expression data in mammary epithelial EMT cell models, we

present evidence that SNAIL and ZEB1 play distinct roles at

different states of the EMT process. Our results support

previously published data showing that ZEB1 is instrumental for

epithelial mammary cells to undergo complete EMT (59, 72). In line

with this, we found ZEB1 to be more highly expressed in basal-like

cancers displaying post-EMT gene expression patterns than in

basal-like cancers displaying partial-EMT features. Moreover, our

data indicate that ZEB1-regulated pathways have a particularly

important role in turning on genes required for the acquisition of

a mesenchymal phenotype. How ZEB1, which is thought to

primarily act as a transcriptional repressor in EMT, mediates

upregulation of these genes, remains to be resolved. There are

indeed intricate cross-regulations between the EMT TFs, and

between EMT TFs and post-transcriptional regulatory

mechanisms, for instance those involving miRNAs from the miR-

200 family (72). ZEB1 has been shown to function as a

transcriptional activator in complex with other transcription

factors, such as YAP and AP1-factors c-Jun and FOSL1 in breast

cancer (73). Interestingly, we noted thatWNT5A andWNT5B were

among the upregulated genes in the mammary EMT signature.

WNT5A/5B are ligands of the noncanonical Wnt signaling

pathway, and WNT5A has previously been shown to play a

critical role in maintaining HMLER cells, as well as the SUM159

breast cancer cell line, in a fully mesenchymal state (59).

Noncanonical Wnt signaling activates c-Jun, and in the future it

will be interesting to see whether ZEB1-cJun complexes act as

transcriptional activators in mammary epithelial cells that have

undergone complete EMT. For the genes within the mammary 265

gene signature, ZEB1 seems to play a less prominent role as a

repressor, as 71% of the downregulated genes were still

downregulated in TGF-b treated ZEB1-depleted MCF10A cells.

Of note, CDH1 was not among the ZEB1-independent genes. It is

tempting to speculate that silencing of gene expression is primarily

mediated by SNAIL, which has previously been shown to drive

mammary epithelial cells into a partial-EMT phenotype (59). Our

data is in agreement with this, as we find SNAI1 to be part of a gene

cluster that is associated with partial-EMT. Furthermore, as

opposed to ZEB1, SNAI1 is equally expressed in basal-like breast

cancers with partial-EMT and post-EMT features. To conclude, our

data support the concerted action of SNAIL and ZEB1 in mammary

EMT, where the two factors have distinct roles in the transition to

partial and complete EMT states.
5 Conclusion

To conclude, we have identified a mammary EMT signature

composed of 265 gene by comparing EMT-driven changes in gene
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expression in HMLE, MCF10A, and D492 cells. We have

demonstrated that this is indeed a powerful EMT signature and

that the signature distinguishes subgroups of breast cancer tumors.

Further studies will demonstrate whether the EMT signature can

further stratify patients and predict the response to certain therapy

regimens. Finally, we provide further evidence that SNAIL and

ZEB1 play distinct roles in EMT in mammary epithelial cells.
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Meier curve displaying the estimated Disease Specific Survival (DSS) (A) and
Progression Free Interval (PFI) (B) up to twenty-five years for basal-like breast

cancer patients clustered in the EMT-up cluster 1 or the partial-EMT cluster 5
in TCGA. (C) and (D) Kaplan-Meier curve displaying the estimated Disease

Specific Survival (DSS) (C) and Progression Free Interval (PFI) (D) up to twenty-
five years for basal-like breast cancer patients clustered in the EMT-up cluster

1 or the partial-EMT cluster 3 in METABRIC.
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