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Abstract

Iodine is essential for the synthesis of the thyroid hormones thyroxine (T4) and triiodothyronine (T3). As in 
many other parts of the world, insufficient iodine intake and consequently insufficient iodine status is a public 
health challenge in the Nordic and Baltic countries. The main dietary sources of iodine in the Nordic and 
Baltic countries include cow’s milk, saltwater fish, eggs, products containing iodised salt, and iodised table salt. 
Only Denmark (DK), Finland (FI) and Sweden (SE) have implemented mandatory (DK) or voluntary (SE, 
FI) salt iodisation. New data, as well as recent studies from the Nordic and Baltic countries, strengthen the 
evidence that the main health challenges related to insufficient iodine intake remain thyroid function and thy-
roid disease, mental development, and cognitive function. Excessive intakes can also cause hyperthyroidism, 
autoimmune thyroid disease, and thyroid cancer.
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Iodine is an essential component for the synthesis of 
the thyroid hormones thyroxine (T4, a pro-hormone) 
and triiodothyronine (T3, the active hormone). 

During the foetal stage, infancy and childhood, these 
hormones are crucial for growth and numerous processes 
of neural and cognitive development, e.g. myelinisation, 
neural migration and differentiation, and gene expression 
(1–4). Although iodine excess is not considered a large-
scale public health problem, excessive intake can also 
have negative effects on thyroid function in vulnerable 
individuals including foetuses and infants. The relation-
ship between iodine and thyroid disease in a population is 
U-shaped, with an increased risk with both low and high 
iodine intake (5, 6). The most recognisable consequence 

of iodine deficiency and iodine excess is enlargement of 
the thyroid gland. Other consequences include hypothy-
roidism, decreased fertility, adverse pregnancy and birth 
outcomes, and impaired neurocognitive development in 
children (7, 8). Considerable progress has been made in 
prevention and control in recent decades due to success-
ful monitoring and salt iodisation (9, 10). Nevertheless, 
iodine deficiency continues to be the most common cause 
for preventable brain damage worldwide (11). Universal 
salt iodisation is the recommended intervention for pre-
venting and correcting iodine deficiency (12). The World 
Health Organisation (WHO) recommendation for univer-
sal salt iodisation is based on a comprehensive system-
atic review (SR) and meta-analysis showing that iodised 

Popular scientific summary
•  Iodine is an essential nutrient for synthesis of thyroid hormones and a normal thyroid function in 

humans.
•  Insufficient intake of iodine can lead to reduced thyroid function, mental development, and 

cognitive function.
•  Cow’s milk, saltwater fish, eggs, and iodised salt are the main sources of iodine in the Nordic and 

Baltic diets.
•  Iodine deficiency is also a public health issue in the Nordic and Baltic countries.
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salt reduces the risk of a wide array of adverse health 
outcomes caused by iodine deficiency (13). However, the 
WHO guideline for implementation of salt iodisation has 
only been applied in some of the Nordic and Baltic coun-
tries, as country specific food patterns differ, and some 
countries have a history of being iodine sufficient due to 
high consumption of milk and fish. In 2000, mandatory 
iodisation of table salt and bread salt was introduced in 
Denmark as a response to studies showing low iodine sta-
tus and thyroid abnormalities in adult population groups 
(14, 15). In 2004–2005, urinary iodine excretion had 
increased significantly in all age groups compared with 
the excretion levels before mandatory iodine fortification 
(16). Before 1950, there was endemic iodine deficiency in 
Norway, Sweden and Finland (17, 18). Iodine fortification 
of cow fodder resulted in a relatively high concentration of 
iodine in milk and dairy products, and high levels of con-
sumption of these products led to eradication of endemic 
goitre (increased thyroid gland size) in Norway (19). In 
Finland, it was both the addition of iodine to cow fod-
der and the introduction of iodised table salt that erased 
endemic goitre (18). Iceland was for a long time known 
for its high iodine status, which was likely due to high lev-
els of fish consumption (20). With time, dietary patterns 
have changed in all Nordic and Baltic towards decreased 
intakes of milk and white fish. Insufficient iodine intake 
is still a public health challenge in the Nordic and Baltic 
countries because of insufficient or lacking legislation on 
universal salt iodisation (18).

Methods
This scoping review of new literature regarding iodine fol-
lowed the protocol developed within the Nordic Nutrition 
Recommendations 2023 (NNR2023) project (21) (Box 1). 
The sources of evidence used in the scoping review follow 
the eligibility criteria described previously (22).

Qualified and relevant SRs are the main evidence-based 
documentations used while setting dietary reference val-
ues (DRVs) in NNR2023. An initial scoping review for 
iodine was carried out by the NNR2023 Committee in 

accordance with the PRISMA guidelines (22), to evaluate 
if  topics relevant to iodine should be shortlisted for a new 
SR within the NNR2023 project. The initial search was 
first conducted in PubMed on January 11th, 2020, with 
the following search string: iodine [MeSH Terms] AND 
(‘2011’[Date – Publication]: ‘3000’[Date – Publication]) 
AND Humans [Filter] AND (‘Diet’ OR ‘Dietary’ OR 
‘Food’ OR ‘Nutrition’ OR ‘Nutritional’) AND system-
atic review [Publication Type]. This retrieved several 
high-quality SRs (1, 13, 23–28), leading to the conclusion 
that no subtopic of iodine should be shortlisted for a de 
novo SR in the NNR2023 project (29).

The main literature search for the present scoping 
review was performed on May 12th, 2021, where three 
additional SRs found to be relevant for the NNR were 
retrieved using the same search string as in the initial 
search (30–32). An updated search was performed on 
April 4th, 2022, identifying one new SR relevant for 
the NNR (33). Furthermore, three additional SRs were 
retrieved from the initial search at this stage (34–36). 
A recent randomised, double-blind, dose-response cross-
over iodine balance study, with low risk of bias, was used 
when suggesting change in the DRV for infants and chil-
dren below 2 years (37).

Physiology
Dietary iodine is in general rapidly and efficiently (>90%) 
absorbed in the small intestine as inorganic iodide (I-) 
(38, 39). Iodine is then actively transported from the cir-
culation and concentrated in the thyroid (38, 40–42). 
The rate of clearance from circulation depends on iodine 
intake, and is 10% or less in sufficiency, but can reach 80% 
in chronic deficiency. The thyroid stores up to 80% of total 
body stores, reaching up to 20 mg in healthy adults, but 
300 µg in infants (39, 43, 44). When iodine intake is suffi-
cient, the kidneys excrete >90% of ingested iodide in urine 
as iodide (38) in a process involving both glomerular filtra-
tion and tubular reabsorption. Small amounts of iodide 
are lost through skin and faeces (41, 42, 45). Iodine absorp-
tion and utilisation can be affected by goitrogens, mainly 

•  This article is one of many scoping reviews commissioned as part of the Nordic Nutrition Recommendations 2023 
(NNR2023) project (21)

•  The articles are included in the extended NNR2023 report but, for transparency, these scoping reviews are also 
published in Food & Nutrition Research

•  The scoping reviews have been peer reviewed by independent experts in the research field according to the standard 
procedures of the journal.

•  The scoping reviews have also been subjected to public consultations (see report to be published by the NNR2023 
project).

•  The NNR2023 committee has served as the editorial board.
•  While these articles are a main fundament, the NNR2023 committee has the sole responsibility for setting dietary 

reference values in the NNR2023 project.

Box 1. Background articles for Nordic Nutrition Recommendations 2023
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sulphur-containing glucosides (glucosinolates). These are 
dietary constituents that can inhibit the uptake of iodine 
into the thyroid gland (e.g. thiocyanates) or interact with 
hormone production (e.g. goitrins) (46). These compounds 
occur in Brassica species such as cabbage, Brussels sprouts, 
turnips, and rapeseeds. The levels of glucosinolates in most 
diets are generally too low to have an impact on iodine sta-
tus (47). Goitrogenic effects of thiocyanate from cigarette 
smoking is also well known (48).

During pregnancy iodine requirements increase to fulfil 
foetal and maternal thyroid hormone needs (49). Three 
main factors contributing to increased maternal iodine 
needs include: (1) approximately 50% increase in maternal 
thyroid hormone production, (2) increased iodine clear-
ance by kidneys, (3) transfer of maternal iodine to foetus 
via the placenta (50, 51).

Trans-placental iodine transfer and increased renal 
iodine clearance of 30–50% contributes to increased 
iodine requirements (51). In the early stages of intrauter-
ine life, organogenesis is nearly complete by the 12th week 
of gestation; therefore, thyroid hormone insufficiency 
during the first trimester of pregnancy may irreversibly 
affect the neurodevelopment of the progeny (52). From 
16 to 20 weeks of gestation, the foetal thyroid becomes 
active, but remains solely dependent on maternal iodine 
supply for proper functioning and thyroid hormone pro-
duction (53). As a result, maternal iodine stores are crucial 
to sustain levels of thyroid hormones needed for success-
ful foetal development and pregnancy outcomes (3, 54).

Infancy is a period of faster growth than any other 
period in life, and due to its importance for growth, thy-
roid hormone production is at a rate of 5–6 μg/kg body 
weight/day in infancy, but drops to 1.5 μg/kg body weight/
day in healthy adults. The gland has limited storage capac-
ity at this early age, and is not able to increase fractional 
clearance to the same extent as the adult thyroid does 
during deficiency. In accordance with that, the thyroid 
requires more iodine per kg of body weight in infancy 
than in other periods of life (37, 55, 56). This is evident 
in areas of deficiency where infants are more susceptible 
to hypothyroidism than their lactating mothers, pregnant 
women, and women of reproductive age (56, 57).

Iodine is secreted into breastmilk at a concertation gradi-
ent 20 to 50 times that of plasma through increased expres-
sion of the sodium/iodide symporter present in breast cells 
(58). It has been estimated that 40–45% of maternal con-
sumption is excreted into breast milk. Thiocyanate from 
smoking may inhibit the iodine transport in the mammary 
gland and reduce iodine content of breastmilk (59).

Breast milk iodine concentrations of around 150 µg of 
iodine per litre has been reported from areas where salt 
iodisation programmes have been implemented, while the 
content is much lower in areas with high prevalence of 
goitre (9–32 µg/L) (60, 61). No reference range has been 

specified for breast milk iodine concentration, but studies 
suggest that positive iodine balance of full-term infants is 
reached at breast milk iodine concentration of 100–200 
µg/L (60, 61). When iodine intake is inadequate, compen-
satory mechanisms enhance iodine transport to breast-
milk, but may not be adequate to ensure sufficient iodine 
intake in breastfed infants (58). Iodine concentration in 
breastmilk samples from the Nordic countries range from 
median concentrations of 68–71 μg/L in Norway (62, 63), 
84 μg/L in Iceland (64), 90 μg/L in Sweden (65), and 83 
μg/L in Denmark (66), suggesting that breast milk iodine 
concentration may not be sufficient to meet the iodine 
requirement for breastfed infants.

Assessment of iodine status
Several complementary indicators are used for assessment 
of iodine status; urinary iodine concentration (UIC), thy-
roid volume (TV), serum thyroid stimulating hormone 
(TSH), thyroid hormones, and serum thyroglobulin (Tg). 
Median UIC in spot urine samples is the recommended 
indicator to assess iodine status in populations (67). UIC 
is a good marker of short-term iodine status (i.e. days), 
and although UIC at the individual level varies with recent 
food intake and hydration status, the median UIC is a 
valid marker of iodine intake at the group level (10, 39). 
UIC cannot be used to determine the proportion of the 
population with iodine deficiency or excess. However, hav-
ing two independent spot samples from a subsample of 
the study population can be used to estimate the habitual 
long-term iodine intake and the prevalence of deficiency 
and excess (8). In school aged children and non-pregnant 
adults, iodine intake is considered sufficient when the 
median UIC in the population is 100–299 µg/L (67). In 
pregnant women, iodine intake is considered sufficient 
when the median UIC is 150–249 µg/L (68).

Daily iodine intake for population estimates can be 
extrapolated from UIC, using estimates of mean 24-h 
urine volume using the equation: UIC (µg/L) × 0.0235 × 
body weight (kg) = iodine intake (µg/day) (69), assuming 
90% excretion and 1.5 litre urine per 24 h. Thus, a median 
UIC of 100 µg/L in an adult corresponds roughly to an 
average daily intake of 150 µg. The approach does not 
account for iodine uptake in the thyroid and is less valid 
in iodine-deficient situations and during pregnancy and 
lactation.

The median cut-off of UIC at ≥100 µg/L as an indicator 
of sufficient iodine intake was established for school aged 
children, and there is an ongoing debate whether this cut-
off is too high for non-pregnant adults (10). The WHO 
cut-off for median UIC in pregnant women at 150 µg/L 
corresponds to an intake of 250 µg/day, while the previous 
Nordic recommendation from 2012 for iodine intake of 
175 µg/day (70) corresponds to a median UIC of 105 µg/L, 
which is closer to the cut-off for non-pregnant adults.
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Other biomarkers include TSH and the thyroid 
hormones T4 and T3. However, the normal reference 
ranges are wide, and these biomarkers are useful only in 
moderate to severe iodine-deficiency. Tg is a precursor 
of  thyroid hormones and is a longer-term biomarker of 
iodine status compared to UIC for monitoring iodine 
status in children and adults. Elevated Tg has been pro-
posed to be a sensitive biomarker of  both iodine defi-
ciency and excess, but validated cut-offs in adults are 
lacking (71, 72).

Goitre prevalence has been used as measure of iodine 
deficiency, but TV measurement is a reliable indicator of 
goitre prevalence only in areas of moderate and severe 
deficiency and not in areas with milder iodine deficiency 
(71, 73).

Iodine intake in Nordic and Baltic countries
Ideally, iodine status should be assessed by biomark-
ers, but rough estimates of  iodine status can also be 
made by dietary assessment using multiple diet records, 
repeated 24-h recalls or food frequency questionnaires 
(FFQ), comparing the estimated habitual iodine intake 
with DRVs. While precision is a limitation of  all dietary 
assessment methods, assessing dietary iodine intake is 
even more demanding. This is because quantification 
of  iodine from iodized salt both at the table and in 
cooking makes dietary assessment particularly diffi-
cult. Iodised salt in food production can vary, if  it is 
practised in a country, and there is also a considerable 
variation in the iodine concentrations in foods, such as 
fish and dairy.

Iodine intake estimated from food and dietary supple-
ments should be validated by assessing urinary iodine in a 
subsample of participants (71). A large variation in iodine 
intake can be seen in the Nordic and Baltic countries, both 
between countries as well as gender and age groups. The 
main sources of iodine include cow’s milk, saltwater fish, 
eggs, iodized table salt and products containing iodized 
salt, such as bread (18, 74). The lowest iodine intake is 
reported in Lithuania (with mean intake around 30 µg/d 
for adult men and women) (74). However, intake of iodine 
from supplements or salt was not included in the estimate. 
Iodine intake in other countries range from an average of 
94 µg/d in adult women in Latvia to 268 µg/d for adult 
men in Denmark (74).

Health outcomes relevant for Nordic and Baltic 
countries
Iodine deficiency remains a public health problem in 
many subgroups and regions around the world, including 
the Nordic and Baltic countries (64, 73, 75–81). The main 
health- related challenges include thyroid function and 
thyroid disease, mental development and cognitive func-
tion, and excessive iodine intake.

Thyroid function and thyroid disease
The role of iodine in chronic diseases is primarily through 
thyroid dysfunction. Worldwide, iodine deficiency is the 
main cause of thyroid disorders, including hypothyroid-
ism (82). However, chronic exposure to excess iodine may 
also cause hypothyroidism (24). A SR and meta-analysis 
of iodine intake and thyroid diseases concluded that the 
prevalence of most thyroid diseases is lowest in popula-
tions with median UIC in the range 100–299 µg/L (27). 
Data from Denmark have shown that hypothyroidism 
prevalence decreases in populations with mild iodine 
deficiency compared to those with severe deficiency, 
while autoimmune hypothyroidism prevalence increases 
as population iodine intake increases to sufficiency or 
excess (83). The clinical implications of hypothyroidism 
relate to nearly all organs and affect both physical and 
mental health, e.g. metabolic, cardiovascular and neuro-
cognitive disorders (84). Furthermore, both low and high 
iodine intakes may contribute to the development of thy-
roid cancer (25, 85), while the overall incidence of thy-
roid cancer is not influenced by iodine intakes within the 
normal range from dietary sources. Data from countries 
before and after implementation of salt iodisation have 
shown a change in the distribution to less malignant sub-
types and decrease in thyroid cancer mortality (85, 86). 
In mild-to-moderate iodine deficiency, increased thyroid 
activity can compensate for low iodine intake and main-
tain normal thyroid function in most individuals, although 
chronic thyroid stimulation will result in an increase in the 
prevalence of toxic nodular goitre and hyperthyroidism 
in populations (7). Furthermore, some studies indicate 
that an abrupt increase in iodine intake, e.g. initiation of 
iodine supplement use in pregnancy, may result in a tran-
sient stunning effect on the thyroid gland, inhibiting the 
release of thyroid hormones (50, 87).

Mental development and neurocognitive function
Iodine deficiency has been described as the single great-
est cause of preventable mental impairment (39). In areas 
with chronic moderate to severe iodine deficiency, chil-
dren score an estimated 7–10 points lower on IQ tests 
(1, 13). Iodine deficiency can present as a spectrum of 
disorders depending on the degree of severity. In regions 
of severe iodine deficiency, i.e. median UIC < 20 µg/L in 
school-aged children and adults (67), adverse physical and 
mental health effects are well documented, and there is 
convincing evidence that iodine supplementation initiated 
prior to or in early pregnancy improves child physical and 
mental development (7, 39). In regions of mild-to-moder-
ate iodine deficiency, i.e. median UIC in pregnant women 
<150 µg/L (67), the evidence for adverse effects is limited, 
suggestive (28, 49, 88). This also applies to studies on 
iodine supplementation in pregnancy (30, 32). Adverse 
effects associated with mild-to-moderate iodine deficiency 
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are more consistent when maternal median UIC is below 
<100 µg/L (cut-off  in non-pregnant adults) than when 
median UIC is higher than 100 µg/L but below <150 
µg/L (cut-off  for pregnant women), as for example lower 
cognitive scores and poorer school performance in chil-
dren reported in European pregnancy cohorts (89–94). 
Furthermore, there is no clear evidence of beneficial 
effects of maternal iodine supplementation on child neu-
rodevelopmental outcomes in pregnant populations with 
median UIC in the range 100–150 g/L (35, 95, 96).

Excessive intake
Excessive intakes can cause hyperthyroidism, autoim-
mune thyroid disease, and thyroid cancer (25). Goitre 
caused by excessive intakes is prevalent in populations 
that reside in coastal regions and consume seaweed, like 
Japan. Other countries have excessive intakes as a result of 
iodine-rich drinking water (China) or excessively iodised 
salt (Brazil, Georgia) (24, 49). Subgroups in populations 
with adequate intakes can also be exposed to excessive 
iodine through iodinated contrast media, iodine-contain-
ing antiseptics, supplements or natural products (6). In 
the Nordic countries there is an increasing interest in sea-
weed as a resource for future nutrition. Algae are often 
suggested as a vegetarian source of iodine, especially in 
vegan diets. However, because the content of iodine in 
algae vary considerably (some varieties might contain 
toxic amounts), the iodine content of algae should be 
known and consumers should be aware of the risk of 
excess iodine intake (97, 98).

Requirement and recommended intakes

Adults and adolescents
The recommended intake (RI) in NNR2012 for adults and 
adolescents was set to 150 µg/day (70). The RI for adults 
was equal to that by WHO, the European Food Safety 
Authority (EFSA) and the US Institute of  Medicine 
(IOM, now National Academy of Sciences, Engineering, 
and Medicine), while the NNR2012 recommendation for 
adolescents was slightly higher than those by EFSA and 
IOM (67, 69, 99). The requirements for iodine were based 
on thyroid iodine accumulation and turnover. The iodine 
requirement to prevent goitre is estimated to be 50–75 
µg/day or a daily intake of approximately 1 µg/kg body-
weight (67, 69, 99–101). The average requirement (AR) 
was estimated to be 100 µg/day for both adult women 
and men, and at this intake the iodine concentration in 
the thyroid gland reaches a plateau. The daily iodine 
turnover in subjects with normal thyroid function is at 
a similar level (69). The RI of 150 µg/day for adults and 
adolescents includes a safety margin for any goitrogenic 
substances. The lower limit of  intake for adults was esti-
mated at 70 µg/day.

Infants and children
In NNR2012, the RI for infants and children were based 
on data on goitre prevalence and urinary iodine excretion 
in European children and on extrapolations from adults 
based on energy and growth requirements (about 1–2 
µg/kg body weight plus a 100% safety margin) (102). An 
intake of 50–70 µg/day was estimated to be sufficient for 
infants below the age of 2 years, assuming iodine suffi-
ciency in pregnancy and lactation (60, 102). EFSA (2014) 
established an adequate intake (AI) of 70 µg/day for 
infants 7–11 months and of 90 µg/day for children 1–3 
years of age (99) based on the threshold for UIC of 100 
µg/day. WHO based their recommendation for infants (90 
µg/day) on the intake level needed to achieve positive met-
abolic balance in a study in Belgian infants (68). The study 
was conducted at a time when the population in Belgium 
was iodine deficient (5). WHO has sustained the recom-
mendation of 90 µg/day to ensure sufficient iodine intake 
in all populations. A new randomised, double-blind, 
dose-response crossover iodine balance study published 
in 2016, conducted in 2–5 month old full-term, iodine suf-
ficient infants, showed that iodine balance was achieved at 
a minimum daily iodine intake of 11 µg/kg, corresponding 
to 72 µg/day, and proposed a recommended dietary allow-
ance (RDA) of 80 µg/day to maintain adequate iodine 
status during the first 6 months of life (37). Based on new 
data and studies from the Nordic and Baltic countries, 
adjustments of the DRVs should be considered.

Pregnancy and lactation
During pregnancy and lactation, iodine turnover is 
increased. In NNR2012, an extra 25 µg/day (175 µg/
day) was recommended during pregnancy and an extra 
50 µg/day (200) µg/d was recommended during lactation 
to provide sufficient iodine in the breast milk (103, 104). 
Evidence from European cohort studies suggests that even 
mild-to-moderate iodine deficiency during pregnancy 
may be associated with adverse pregnancy outcomes (87) 
and subtle impairments in child neurocognitive function 
(89–94). The results from these studies show that iodine 
intakes at or above the RI of 150 µg/day for women of 
childbearing age are associated with the lowest preva-
lence of adverse health outcomes in mothers and babies. 
Therefore, ensuring adequate daily iodine in years and 
months before pregnancy is more important than a large 
increased in iodine intake after pregnancy has started. If  
the lactating mother has a sufficient iodine intake, iodine 
in breast milk will cover the needs of an infant during the 
first months of life (36). However, the current evidence 
supports the WHO recommendation that breastfeeding 
mothers in the Nordic and Baltic countries should use 
an iodine containing supplement because dietary iodine 
and current strategies for salt iodisation is not sufficient to 
meet the requirement of breastfed infants (5, 34).
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Iodine fortification and supplementation
The main challenge regarding iodine nutrition in the 
Nordic and Baltic countries is that large subgroups of 
the population are mild-to-moderately iodine deficient, 
particularly women of childbearing age (64, 73, 75–77, 
79, 80) immigrants (105, 106) vegetarians and vegans (31, 
98, 107). There are few natural dietary iodine sources, and 
only Denmark, Finland, and Sweden have implemented 
mandatory (DK, FI) or voluntary (SE) salt iodisation 
(18). Universal salt iodisation of all salt is the strategy 
recommended by WHO (12, 13, 67). This should be 
accompanied by monitoring of iodine status in groups 
that are vulnerable to inadequate or excessive intakes (67). 
In Europe, iodine concentrations in salt vary from 5 μg 
to 75 μg iodine per gram of table salt. Sweden uses 50 
µg/g and Finland uses 25 μg/g (18). In Denmark, the level 
used to be 13 μg/g, but was increased to 20 μg/g in 2019 
in table salt and salt used in industrial bread and bakery 
items (108).

Results from the Norwegian MoBa study suggest no 
benefit of iodine supplementation starting in pregnancy, 
but mixed results with respect to potential negative effects 
of iodine supplements (7, 89–91). There is not sufficient 
evidence to recommend initiation of iodine supplementa-
tion or fortification during pregnancy in mild-to-moder-
ately iodine deficient populations (23, 28, 30, 32). Recent 
SRs conclude that initiation of iodine supplementation or 
fortification during pregnancy is too late to confer benefits 
(30, 32). Thus, it is important to ensure adequate iodine 
intake in women of childbearing age, in order for them to 
enter pregnancy with sufficient thyroidal iodine stores to 
meet the increased demand. Similarly, available trial data 
do not show any evidence of beneficial effects of iodine 
supplementation for preterm infants (26). However, the 
current evidence supports the WHO recommendation 
that breastfeeding mothers in the Nordic and Baltic coun-
tries should use an iodine containing supplement because 
dietary iodine and current strategies for salt iodisation is 
not sufficient to meet the requirement of breastfed infants 
(5, 34).

Upper intake levels and toxicity
There is a substantial inter-individual variation with 
respect to the dose of iodine that can cause adverse 
effects. This complicates the assessment of an upper safe 
limit of intake. Persons with normal thyroid function can, 
in general, tolerate prolonged consumption of iodine up 
to 1 mg/day (109, 110). EFSA has proposed 600 µg/day 
of iodine as the safe upper level (UL) for adults (110) 
(Table 1). The UL is based on elevations in TSH levels 
after iodine intake and an enhanced response in TSH lev-
els to thyrotropin releasing hormone (TRH) stimulation. 
These effects are of a biochemical nature and are not asso-
ciated with any clinically adverse effects. The UL includes 

an uncertainty factor and is also considered acceptable for 
pregnant and lactating women. In children, a median UIC 
≥ 500 µg/L was found to be associated with increasing TV 
in children 6–12 years old, but a UIC of 300–500 µg/L was 
not (111). The authors of that study, however, did not rule 
out the possibility of adverse effects of a UIC in the range 
of 300–500 µg/L that were not detected in the study (111).

Data gaps for future research
Implementation of universal salt iodisation has been success-
ful in reducing the prevalence of iodine deficiency disorders 
by increasing iodine intake in vulnerable groups, including 
school-age children, non-pregnant non-lactating women 
of reproductive age, pregnant women, lactating women, 
0–6 months old infants, and 7–24 months old infants (13). 
An international, cross-sectional, multicentre study that 
included 5860 participants from all the above-mentioned 
population groups and evaluated the effect of universal salt 
iodisation ~25 mg/kg that covered a high proportion of the 
total amount of salt consumed. The median UIC increased 
in all groups, and in infants and young children the median 
UIC was in the range of 300–400 µg/L, reflecting intakes 
close to and higher than the existing UL in a substantial 
proportion of the children (112). However, this was not 
considered a concern outweighing the benefit of correcting 
iodine intakes in women of childbearing age. A benefit-risk 
assessment by the Norwegian Scientific Committee for 
Food and Environment estimated that moderate iodisation 
of household salt and salt in bread and bakery products 
would ensure iodine intakes above the estimated AR for the 
majority of women of childbearing age, while at the same 
time result in intakes above the UL for 8–18% of 1–2-year-
old children (88). The report concluded that ‘no level of 
iodisation would benefit all age and gender groups without 
posing increased risk of harm to others or that the benefits 
in one population group outweigh the risk in others’. The 
ULs for infants and young children are extrapolated from 
adults, and the UL of 200 µg/day in 1–2-year-old children 

Table 1. Tolerable upper intake levels for iodine for different age 
groups (EFSA)

Age UL µg/daya

1–3 years 200

4–6 years 250

7–10 years 300

11–14 years 450

15–17 years 500

Adults 600

Pregnant women 600

Lactating women 600

aThe ULs for children were derived by adjustment of the adult UL on 
the basis of metabolic weight (body weight0.75) (110). UL = upper level.
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might be too low (5). Future research is needed to re-eval-
uate the risk of iodine intakes above the current UL of 
200 µg/day for 1–2-year-old children versus the benefit of 
implementing universal salt iodisation to increase iodine 
intake in women of childbearing age.

More nationally representative data on iodine status 
in infants and toddlers is warranted. Studies in infants 
should be aligned with studies in lactating women and 
include breast milk iodine concentration. Children at 
particular risk for iodine deficiency include breastfed 
and weaning infants in countries with no or voluntary 
salt iodisation at low coverage or fed by mothers on a 
restrictive diet, and toddlers receiving homemade com-
plementary foods with low iodine content and no added 
iodised salt (5).

Well-designed randomised controlled trials address-
ing neurocognitive function of children born in areas of 
mild-to-moderate iodine deficiency are lacking, includ-
ing studies assessing the safety of supplementation with 
iodine during pregnancy. Furthermore, studies that estab-
lish optimal concentration range of iodine in breast milk 
are needed. Several studies have pointed out a discrep-
ancy between what has been considered sufficient iodine 
intake in breastmilk and the WHO recommendation for 
breastfed infants (62–64).

The current evidence regarding iodine status and obe-
sity have shown diverging associations, particularly in 
school children (113). In the Nordic countries, studies in 
pregnant women show no association between body mass 
index and UIC (75, 87, 93, 114). Further studies, partic-
ularly in children, need to address the role of body mass 
index as a factor potentially influencing iodine intake and 
markers of iodine status.
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