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Abstract
Identifying mouth breathing during sleep in a reliable, non-invasive way is challeng-
ing and currently not included in sleep studies. However, it has a high clinical rel-
evance in pediatrics, as it can negatively impact the physical and mental health of 
children. Since mouth breathing is an anomalous condition in the general population 
with only 2% prevalence in our data set, we are facing an anomaly detection prob-
lem. This type of human medical data is commonly approached with deep learning 
methods. However, applying multiple supervised and unsupervised machine learn-
ing methods to this anomaly detection problem showed that classic machine learn-
ing methods should also be taken into account. This paper compared deep learning 
and classic machine learning methods on respiratory data during sleep using a leave-
one-out cross validation. This way we observed the uncertainty of the models and 
their performance across participants with varying signal quality and prevalence of 
mouth breathing. The main contribution is identifying the model with the highest 
clinical relevance to facilitate the diagnosis of chronic mouth breathing, which may 
allow more affected children to receive appropriate treatment.
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1 Introduction

The rise of machine learning in sleep research is already revolutionizing the diag-
nosis of sleep disorders (Arnardottir et  al 2021) with the automatic classification 
of sleep stages (Korkalainen et  al 2019) and the detection of respiratory events 
(Huang and Ma 2021). Machine learning as a part of sleep research and clinical 
practice can reduce the manual effort of physicians and sleep technologists and 
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increase the well-being of the patient through more precise diagnosis and less inva-
sive sleep measurements (Biedebach et al 2023). Acquiring labels for one night of 
sleep recording requires 2–3 h of manual review by a sleep technologist who is an 
expert in the field, which is both time-consuming and expensive (Arnardottir et al 
2022). Some potentially important events during sleep, such as mouth breathing, 
are often not labeled at all. Mouth breathing is a particular problem for children, 
since they may face developmental issues if they breath through their mouth dur-
ing sleep, at an early age (Gozal 1998). Children with sleep-disordered breathing 
can suffer from serious long-term implications if their condition is not recognized 
and appropriately treated (Marcus 2001). In fact, chronic mouth breathing can lead 
to obstructive sleep apnea (Izu et  al 2010), learning disorders, (Fensterseifer et  al 
2013) and a malformation of the child’s jaw area (Denotti et al 2014). The task of 
identifying mouth breathing with machine learning is challenging, since we are fac-
ing an anomaly detection problem. Healthy children usually breathe through their 
nose, which makes mouth breathing an anomalous behavior (Lee et  al 2015). In 
this paper, we analyze mouth breathing of children, in a highly imbalanced data set, 
which included only few mouth breathing sequences because most of the children 
did not breathe through the mouth at all. From the 20 labeled recordings, the child 
with the highest duration of mouth breathing had a total length of 1980 s or 33 min 
of mouth breathing in a night with 10 h of sleep. Overall, the data set that has only 
2.4% positive examples. Therefore, we assume that mouth breathing is an anomaly. 
In this paper, we aimed to reduce the manual effort for identifying mouth breathing 
in order to enable a more efficient diagnosis of the condition, which will hopefully 
enable more children to receive treatment before these health implications surface. 
There are two central challenges to identifying mouth breathing. Firstly, even for the 
sleep technologist, it is difficult to make a clear distinction between mouth and nose 
breathing, since the boundary is blurred. In general, there is no mouth breathing, 
if the mouth is closed and the air is solely flowing through the nose. However, the 
same generalization is not valid for the other way around; air can flow both through 
the nose and the mouth when there is mouth breathing (Koutsourelakis et al 2006). 
Secondly, it is challenging to acquire a sufficient amount of labeled mouth breathing 
events, since mouth breathing is an anomalous behavior in the healthy population 
and they are usually not labeled. As a result, the labeled recording might include 
only a few or no mouth breathing events at all.

When approaching this type of human medical data with machine learning, dif-
ferent rules than for tabular data apply. We need to consider that each training exam-
ple is a breathing sequence that belongs to a certain unique individual. This impacts 
both the training and testing of the machine learning model. Splitting the data with 
a common random train test split, could lead to a data leakage problem during the 
model training. Peralta et al (2021) show in a systematic review in machine learn-
ing for deep brain stimulation, that more than half of the papers in this field do not 
do a patient-wise validation. Therefore, we created the train, test and validation set 
by separating the data by participants as shown by Oner et al (2020). This is in line 
with the practical aspects of implementing the machine learning model in clinical 
practice, where the data of a new patient is fully separated from the data the model 
was trained on. The same logic holds for the evaluation of a machine learning model 
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with human medical data. Evaluating the performance of the model on participants 
separately can reveal whether the model performance varies among different groups 
of participants with certain characteristics and whether the model can generalize on 
all patients.

In this paper, we aimed to find the best way to predict pediatric mouth breathing 
during sleep by comparing different supervised and unsupervised machine learning 
models. The data set included sleep recordings of 111 participants using oronasal 
cannulas. We transformed the data set, by first splitting the full sleep recordings 
into 10-second subsequences. We trained the model on multiple signals of the sleep 
recordings including thorax and abdomen movement, oral pressure, nasal pressure, 
blood oxygen saturation, heart rate, audio volume and position. We tested the model 
using a leave-one-out cross validation and chose the model with the highest clinical 
relevance. The main contributions of this paper are three-fold: (i) to illustrate the 
challenges and required preprocessing steps for applying machine learning to sleep 
data, (ii) to identify the models with highest clinical value, and (iii) to contribute to 
the discourse of when deep learning is needed and when simplicity is key.

Our work makes an important contribution to the field of sleep research, as 
we show that mouth breathing during sleep can be automatically identified with 
machine learning, which allows a faster diagnosis of mouth breathing. Most signifi-
cantly, our work contributes to machine learning as we show the challenges of work-
ing with human medical data and outline a sensible preprocessing, training and eval-
uation method to counteract them. Importantly, we approached this problem with 
different machine learning methods, including a naive baseline, a classic machine 
learning model, time series classifiers, deep learning models and an unsupervised 
anomaly detection method. Evaluating these different methods in a leave-one-out 
cross validation showed their performance across the whole population and on an 
individual basis, which raised the question whether classic methods are preferable 
over deep learning for anomaly detection in sleep. The rest of this paper is organized 
as follows.

In the next section, we summarize the existing literature related to unsupervised 
anomaly detection and mouth breathing identification. Then, we describe our pro-
posed methodology for automatic detection of mouth breathing events, followed by 
a presentation of our results. The paper ends with a discussion of the implications of 
our contribution and steps for future work.

2  Related work

2.1  Time series anomaly detection

Time series anomaly detection, as a subfield of anomaly detection, has been studied 
in literature. Common application fields of anomaly detection are healthcare (Chau-
han and Vig 2015), financial fraud (Fu et al 2016), robotics (Park et al 2018) or net-
work intrusion (Leung and Leckie 2005). Literature reviews (Blázquez-García et al 
2021; Chalapathy and Chawla 2019) show the broad range of methods and applica-
tion fields of time series anomaly detection. Experimental comparisons have been 
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conducted and compare the performance of both supervised (Freeman et al 2021) 
and unsupervised (Rewicki et  al 2023) anomaly detection methods on time series 
bench marking data sets. This paper did not aim to do a exhaustive experimental 
comparison as the aforementioned papers, but instead to provide a detailed under-
standing of the application of anomaly detection on sleep data and show the chal-
lenges of detecting anomalies in this type of human bio signals.

2.2  Identifying mouth breathing

The literature on automatic identification of mouth breathing during sleep is scarce. 
In the existing literature, mouth breathing is typically identified with questionnaires 
(Sano et al 2018) and direct observation (de Castilho et al 2016). Mouth breathing 
measurement is still not commonly included in a standard polysomnography record-
ing and moreover, not manually labelled as a standard practice. One reason is the 
lack of a reliable and non-invasive measurement device. An oronasal cannula can 
separate the airflow, but is easily misplaced or fully removed during sleep. An oro-
sonasal thermistor captures the oral flow by measuring the temperature above the 
mouth (Koutsourelakis et al 2006), but thermistors have a low signal quality (Sabil 
et al 2019). A specialized mask can be used to separate the breathing channels, but 
wearing the device may bias the breathing and it is not suitable for children (Hudgel 
et al 1984). Curran et al. differentiated between the breathing channels by processing 
the sound during sleep (Curran et al 2012). They applied a Fast Fourier transforma-
tion to the raw audio signal, split it into windows of of 5–15 s and trained a deep 
neural network on this input. Their work is only comparable to a certain extend, 
because their data stemmed from recordings during awake in a controlled environ-
ment where the participants were instructed to breath through their mouth or their 
nose with an airflow of 1.7 l per s. The data used in our research reflects the real-
world conditions of noisy signals and uncontrolled airflow during sleep.

3  Method

3.1  Data

This paper is based on a a comprehensive data set1 that includes paediatric sleep 
recordings, including 10–13-year-old children with parent reported sleep-disor-
dered breathing symptoms and a gender and age-matched control group. The study 
cohort consists of 111 children from the Icelandic EuroPrevall-iFAAM birth cohort 
research (Grabenhenrich et al 2020; Keil et al 2010; Sigurdardóttir et al 2021) con-
ducted at the Landspitali University Hospital. The sleep recording was done with a 
Nox Medical A1 polysomnography (PSG) device.

1 The access to this data was granted by the National Bioethics Committee of Iceland. The study was 
approved by the Data Protection Agency of Iceland and includes written consent from each child’s legal 
guardian. We cannot make the data publicly available, as is it protected by the ethical approval.
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PSG is the continuous recording of physiologic activity during sleep. The meas-
urement includes the following sensors: Electroencephalogram (EEG), electroocu-
lography (EOG), chin and leg electromyography (EMG), electrocardiography 
(ECG), pulse oximeter, microphone, electrodermal activity (EDA) sensor, and accel-
erometry measuring the movement and body position. Thoracic and abdominal res-
piratory inductance plethysmography (RIP) belts measure the inflation and deflation 
of the chest during breathing and an oronasal cannula with separate pressure out-
puts, monitors the nasal and oral airflow, respectively (Markun and Sampat 2020). 
A visualization of a PSG set up with an oronasal cannula can be seen in Fig.  1. 
The PureFlow oronasal cannula by Braebon is specially designed to capture the oral 
flow and nasal flow separately and was utilized in this study, but is not included in 
a standard PSG. The PSG was set up at the hospital by sleep technologists, but the 
participants slept at home and returned the devices the next morning (Kainulainen 
et al 2021).

Each PSG recording was approximately 8 h long, containing 84 different sig-
nals in total. We focused on the nasal and oral flow as well as the thorax and 
abdomen movement, which measured breathing or movement. Additionally, we 
included blood oxygen saturation, the audio volume, the heart rate, and body 
position in the analysis. Two exemplary sequences of the respiratory signals can 
be seen in Fig. 2, where the thorax movement is colored in light blue, the abdo-
men movement dark blue, the nasal flow dark green, and the oral flow light green. 
The top shows a typical nose breathing sequence and the bottom shows a typi-
cal mouth breathing sequence. In the mouth breathing sequence, the oral flow 
shows higher amplitudes than the nasal flow and the amplitudes of the nasal flow 
are lower than during nose breathing. This behavior is typical for mouth breath-
ing, but cannot be generalized to all mouth breathing sequences. There were 111 

Fig. 1  A polysomnography set-up with an oronasal cannula
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recordings, of which 20 have been manually labeled by a sleep technologist. The 
manual labels were based on the oral and nasal flow signals. 10 recordings were 
manually chosen to have 5 healthy children and 5 children with sleep disordered 
breathing. The latter 10 recordings were chosen because the parent-reported 
information from the questionnaires indicated mouth breathing.

3.2  Preprocessing

The data of PSG recordings were saved in the.edf standard format, an open-
source file format commonly used for medical data in Europe. It is designed for 
multi-channel medical time series and allows different sampling frequencies for 
each signal (Kemp et al 1992). For each PSG, we extracted the signals of interest 
and each signal’s sampling frequency. Some PSGs had faulty or missing record-
ings from the RIP belts or the cannula, therefore each recording was visually 
checked for completeness. During this process, two labeled studies were removed 
due to low signal quality or measurement errors, which led to a total of 18 eligi-
ble labeled sleep studies for this paper.

The four respiratory signals have a sampling frequency of 200 Hz. As the aver-
age duration of one study is 8 h, one PSG contains on average 5,760,000 values 
per signal. Therefore, the full data set quickly becomes complex. To process this 
large amount of data, we faced a trade-off between run-time and the completeness 
of the data representation. We downsampled the signals to a sampling frequency 
of 10 Hz, because this reduced the complexity, but still captured the relevant 

Fig. 2  Two exemplary breathing periods of 10 s each. The top signal is a nose breathing sequence and 
the bottom is a mouth breathing sequence
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features in the data. We furthermore upsampled the oxygen saturation and heart 
rate with a sampling frequency of 3 Hz to have a common sample rate (Gao et al 
2018). The differences between too simplified downsampling to 1 Hz, the chosen 
downsampling to 10 Hz, and the original sampling frequency of 200 Hz can be 
seen in Fig. 3.

The signals have different scales, as the oral flow has a range from approximately 
−2 cm  H2O to 1 cm  H2O, while the thorax and abdomen only range between −
0.0005 V and 0.0005 V. As some models are sensitive to different sized scales, we 
prevented the signals with larger scales to out rule the signals with smaller scales, 
by scaling the data to the same range using the scikit-learn StandardScaler. In order 
to treat this data set as a time series classification problem, we split the data into 
sequences of 10 s. One respiration cycle, i.e., inhalation and exhalation, of children 
that are 6 years and older usually has a duration of 2–5 s during sleep (Fleming et al 
2011). Choosing an interval of 10 s guarantees that the interval contains at least one 
full breath and up to 5 full breaths. We did not choose a longer duration than 10 s, 
to do the classification as granular as possible and keep the complexity of the data, 
i.e., the length of the time series, as low as possible. We tested both disjoint splits 
and sliding window splits but as no visible difference in model performance was 
perceived, we chose the less complex method of disjoint splits. The target variable 
’breathing channel’ was labeled as 1 for mouth breathing or 0 for nose breathing. 
It was assigned to each sequence based on the annotation file. To be considered as 
target class 1, the sequence had to contain at least 3  s (the average length of one 
respiration cycle) of mouth breathing according to the manual labels by the sleep 
technologist.

Fig. 3  The same 10 s interval in 1 Hz at the top, 10 Hz in the middle, and 200 Hz (original sampling 
frequency) at the bottom
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3.3  Model training and hyperparameter optimization

The recording of each participant included approximately 2500 sequences. Since 
each participant has individual characteristics, their sleep recordings have individual 
characteristics as well, which is why we used a leave-one-out cross validation for 
model training and evaluation, i.e., we trained the model on all participants but one 
and tested the model performance on the test individual. This way, we ensured that 
no data of the test individual leaked into the model training. For the hyperparameter 
optimization, a validation set of 3 participants was separated from the rest of the 
participants. These recordings were only used for hyperparameter optimization and 
were not included in the leave-one-out cross validation. The validation participants 
included one with more than 10 mouth breathing sequences, one with zero mouth 
breathing sequences and one with low signal quality to represent different types 
of recordings that were present in the data set. We optimized the hyperparameters 
of all deep learning models on this separate validation set with a keras Random-
Search. For this we defined a grid of possible values for the number of filters, the 
kernel size, the dropout rate and the learning rate, from which the RandomSearch 
randomly selected parameter combinations. The hyperparameter optimization has 
been conducted in the same method and same extend for all deep learning mod-
els. The unsupervised deep learning models were optimized to achieve a maximal 
accuracy in the validation set. The autoencoder was optimized with a a custom loss 
function to to maximize the average reconstruction error of mouth breathing divided 
by the average reconstruction error or nose breathing. The hyperparameters of the 
feature-based model were optimized with a RandomSearch as well. Here, we tuned 
the learning rate and number of estimators. The hyperparameters for the time series 
classifiers were set through testing different values on this validation set manually.

3.4  Machine learning methods

As a comparison of multiple machine learning methods, we compare three differ-
ent time series classifiers and two supervised deep learning models using the raw 
time series as an input. Ultimately, we propose a reconstruction-based method and 
feature-based method. Each of the methods will be described in the following.

3.4.1  Supervised time series and deep learning models

All three time series models work with different representations of the data. This 
includes using the full sequence, fixed intervals, or dynamic shapelets in the training 
(Bagnall et al 2017). A brief explanation of each model and the selected parameters 
can be seen in Table 1. We also test two deep learning models, since they can han-
dle multivariate time series, which allows them to capture the interaction between 
signals.
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3.4.2  Reconstruction‑based anomaly detection

Autoencoders are commonly implemented with multi-layer neural networks. They 
learn an encoding and a decoding function using an iterative optimization process. 
The data is passed through the network, the reconstruction error is calculated and at 
each iteration, the weights of the network are updated (LeCun et al 2015). In a con-
volutional autoencoder, convolutional layers are included in the encoder and decon-
volutional layers in the decoder of the neural network (Ribeiro et al 2018). Convolu-
tional layers transform the data by sliding a filter over the time series. Several filters 
of different sizes can be applied to learn multiple discriminative features from the 
input time series. The deconvolutional layers, or transposed convolutions, work by 
the same principle but swap the forward and backward passes of the convolution. 
Average- or MaxPooling reduces the length of a time series by aggregating it with 
a sliding window (Fawaz et  al 2019). The hidden layers aim to separate relevant 
and irrelevant features, which can hide the presence of anomalies (Chalapathy and 
Chawla 2019). In the encoder, lowering the dimensionality of the input with the con-
volutional layers, creates a bottleneck after which ideally only the most explanatory 
parts of the data remain. In the decoder, the transposed convolutions increase the 
dimensionality of the data back into its original shape. The new representation, i.e 
the reconstructed input, will naturally differ from the original representation. How-
ever, this deviation is encouraged since it did not happen at random, but is a result of 

Table 1  A description of the supervised time series classifier and deep learning models used for bench-
marking

Model Description of approach and parameters

KNN-DTW The K-Nearest Neighbour classifier (KNN-DTW) calculates the distance of the full 
sequence to all other sequences, using distance time warping. Then it uses the label of 
the k nearest neighbors to classify the sequence (Ratanamahatana and Keogh 2005). We 
chose k=10 and balance the train set with downsampling

TSF The Time Series Forest (TSF) splits the sequences into intervals and calculates summary 
statistics. It only considers the ’important’ areas of the sequence. First, one classifier is 
trained for each signal, then all classifiers are combined as a Time Series Forest Ensem-
ble. We chose an ensemble size of 500 and balance the train set with downsampling 
(Deng et al 2013)

MRSEQL The Multiple Representation Sequence Learner (MRSEQL) transforms each sequence into 
a symbolic representation and selects discriminative subsequences, shapelets, for the 
classification (Le Nguyen et al 2019). We chose both the Symbolic Aggregate Approxi-
mation and the Symbolic Fourier Transformation

RNN The Recurrent Neural Network (RNN) can capture temporal dependencies and complex 
non-linear correlations within the data by using long short term memory (LSTM) layers 
(Malhotra et al 2015). We created a model with an LSTM layer of size 100, a dropout 
layer with a dropout rate of 0.2, and a dense output layer

CNN A Convolutional Neural Network (CNN) transforms the time series data with convolu-
tional filters and MaxPooling operations (Zhao et al 2017). We created a model with two 
hidden layers. The first convolutional layer had 64 filters of size 1 and is followed by a 
MaxPooling and a Dropout layer with a dropout rate of 0.2. The second convolutional 
layer had 16 filters with a size of 10. This layer was again proceeded by a MaxPooling 
layer and a Dropout layer. Finally, a Dense layer did the classification
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the learned weights of the autoencoder. Autoencoders are trained with the objective 
of minimizing the reconstruction error, i.e., the error between the original input and 
the reconstructed output (Li et al 2020). As the majority of the examples in the train-
ing data belong to the normal class, the autoencoder will mainly learn the properties 
of this normal class (Chalapathy and Chawla 2019). Reconstruction-based anomaly 
detection relies on the assumption that the reconstruction of anomalies is less accu-
rate than the reconstruction of normal instances. As a result, the reconstruction error 
is higher for anomalous examples, which allows us to use it as an anomaly score and 
detect anomalies in a fully unsupervised way (Chandola et al 2009).

We used the Root Mean Squared Error (RMSE) as distance metric for defining 
the reconstruction error, because the input and output of our model were mul-
tivariate time series. We chose RMSE above other distance metrics as it gives 
relatively high weight to large errors. For each 10-second interval, we calculate 
the RSME by averaging the squared root of the distance between the original and 
reconstructed signal at all 100 time steps. Equation 1 shows how the RMSE for 
signal j is calculated over all n=100 time steps:

In the model training, we used the average RMSE of all included signals as the loss 
function for optimization. In the reconstruction-based anomaly detection, we used 
the RMSEs of the individual signals as new features. In order to use these new fea-
tures for reconstruction-based anomaly detection, we need to define a classification 
threshold t. All examples with a higher reconstruction error than t are classified as 
anomalies and all examples with a lower reconstruction error than t were classified 
as normal instances. Hence, we classify all examples above t as mouth breathing, 
and all examples below t as nose breathing. Defining an appropriate threshold is 
crucial for the success of the anomaly detection. We ran experiments with different 
approaches of setting the threshold to find the one which achieves the most accurate 
classification. The most straightforward approach is taking the average reconstruc-
tion error of all signals. We also took the distribution of the data into account by 
adding the standard deviation of the reconstruction error to the threshold. Thus, we 
defined the threshold t as the average reconstruction error plus the average standard 
deviation over s signals as shown in Eq. 2.

Knowing the reconstruction error of each signal individually, allows us to use sub-
sets of the signals for defining a threshold as well. Figure 4, a correlation matrix 
between the reconstruction errors and the breathing channel, here referred to as tar-
get variable y, shows that some reconstruction errors correlate more with the breath-
ing channel than others. The highest correlation can be seen between y and the oral 
pressure. For this reason, we propose a second approach of setting the threshold, 
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2
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using only the most discriminative feature, the oral flow, instead of the average. The 
definition of this threshold t is shown in Eq. 3.

During this experimenting, we observe that sequences with bad signal quality have 
extremely high overall average reconstruction errors. Hence, we define a threshold 
that uses both the reconstruction error of the oral flow and the average reconstruc-
tion error. We extend the definition from Eq. 3 by adding a constraint on the average 
reconstruction. Now, we furthermore discard sequences which have a higher average 
reconstruction error than 99% of all other sequences.

The autoencoder in this paper was implemented with a convolutional neural net-
work using TensorFlow and is built as a keras sequential model. We constructed 
the autoencoder by starting with a simple set-up, the input layer, one convolutional 
layer, and one transposed deconvolutional layer followed by a max-pooling- or 
respectively upsampling layer with all default values. To avoid the risk of overfit-
ting, we added dropout layers for regularization. Then the complexity of the model 
was gradually increased and an autoencoder with two hidden layers in the encoder 
and decoder was chosen. One important property of the model is the dimensional-
ity of the latent space. The representation of the data in this state is crucial for the 
reconstruction and therefore the success of the anomaly detection. A too big latent 
space prevents the data from learning a model at all. In the most extreme case, with 
a latent space of the same size as the input space, the reconstruction error is zero 
and no classification is possible. Choosing a too small latent space is also not rec-
ommended, as too much information is lost in the bottleneck. We choose a range of 
possible filter and kernel sizes that do not allow a too small or too big latent space in 
the hyperparameter optimization. The full autoencoder architecture can be found in 
Fig. 9 in the appendix. The hyperparameter tuning results in an optimal learning rate 
of 0.001, using the RMSProp optimizer. Finally, we train the model in 50 epochs 
with a batch size of 256.

(3)t = RMSEoral + �oral

Fig. 4  Correlation matrix between the reconstruction errors and the target variable y
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We trained the unsupervised model on a bigger train set than the other models, 
as it additionally included unlabeled recordings, but we tested it on the same test set 
as the other models. Since the participants of the study were not randomly selected, 
but consisted of 50% of children with a history of sleep-disordered breathing and 
50% of a control group with a history of normal breathing, we did a pre-selection for 
the train set. This step aimed to lower the number of mouth breathing sequences in 
the train set to a level that reflects the average population better. This pre-selection 
was done based on a parental questionnaire regarding the child’s breathing behavior 
during sleep. If the parents answered that they observed their children sleeping with 
an open mouth, waking up with a dry mouth, or breathing through their mouth dur-
ing the day, we disqualified the child from the train set. This led to disqualifying 54 
children from the training, which approximately reflects the percentage of the study 
population with abnormal breathing behavior. Including these children in the train 
set could contradict the assumption that mouth breathing is the rare exception. It 
is still possible, that mouth breathing was included in these recordings, but we can 
assume that the proportion of mouth breathing in this subset of recordings was low.

Reconstruction-based anomaly detection can also be implemented as a semi-
supervised model. Similar to the unsupervised approach, the autoencoder is trained 
without using any labels and no labeled anomalous examples are needed. Instead, 
we use only examples of the normal class for the model training as described in 
Chalapathy and Chawla (2019). The idea behind a semi-supervised approach is to 
train the autoencoder only on sequences that certainly do not contain any mouth 
breathing. This way, we do not have to rely on the assumption that the imbalance in 
the data set is high enough to disregard the mouth breathing sequences in the train-
ing data.

3.4.3  Feature‑based classification

As a comparison to the unsupervised deep learning model, we train a classifier 
which works with simple statistical features. We transform the 3-dimensional time 
series data set into a 2-dimensional data set with time-independent features. This is 
done by calculating summary values for each sequence of 100 time steps, including 
the mean, standard deviation, minimum and maximum of each signal. Additionally, 
we create two more features based on the oronasal cannula. We calculate the dif-
ference between the mean of the oral flow and nasal flow, as well as the difference 
between the standard deviation of the oral flow and nasal flow, which can be seen in 
Eq. 4, where n is the number of time steps.

We then applied a feature selection based on the Pearson correlation coefficient 
between the feature and the target variable. We selected the 10 most correlated 
features for the model training. Figure 5 shows the correlations of the 10 selected 
features.

(4)Oronasal Difference =
1

n
∗

n
∑

i=1

Oral Flow −
1

n
∗

n
∑

i=1

Nasal Flow
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These features were then used as an input for the supervised classification method 
gradient boosting machine (GBM). A GBM is an ensemble method that commonly 
excels over other machine learning methods in bench marking studies or practical 
applications (Natekin and Knoll 2013). Ensemble methods use the combined clas-
sification power of multiple individual machine learning classifiers. While other 
ensemble methods simply average the predictions of multiple classifiers, the strength 
of a GBM lies in the sequential training of models, which allows it to take the clas-
sification errors of the previous models into account. We trained the GBM with a 
learning rate of 1 and use 1000 estimators.

3.5  Evaluation

We evaluated the models by comparing the predicted labels by our models to the 
manual labels provided by the sleep technologist. To achieve a comprehensive 
evaluation of how the models can predict mouth breathing in unseen sleep record-
ings, we performed a leave-one-out cross validation. This form of cross validation 
evaluates the models for each sleep recording individually by using the recordings 
of all children but one for training and the remaining one for testing. This way, we 
could observe the inter-subject variability and use a higher amount of training data. 
We calculated the average precision and recall scores as proposed by Forman and 
Scholz (2010) to avoid bias from the class imbalance in different folds. As we are 
facing a highly imbalanced classification problem, it does not make sense to con-
sider accuracy as an evaluation measure. Instead, we rely on metrics, which evaluate 
the classification of the minority class, such as precision, recall, and F1 score. For 
the final results, we added up the confusion matrices of all folds for each model and 
calculated the precision, recall and F1 score from the total number of true positives, 
false positives and false negatives. The individual classification results of the models 
on each child’s recording can be found in Table 4 in the appendix.

We furthermore calculated the standard deviation of these different metrics 
across the participants. This showed how much the classification performance var-
ies across participants and therefore how good the model can generalize on test sets 
with unique characteristics. Another perspective towards the anomaly detection is 

Fig. 5  Correlation of features with target variable mouth breathing
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added when we divide the participants in the test set by a high or low number of 
mouth breathing, which represents the group of healthy and sleep disordered par-
ticipants. This analysis reveals which models can handle test sets with close to zero 
positive examples. In this group we additionally calculate the False Positive Rate 
(FPR) by dividing the number of false positives by the number of false positives and 
true negatives. This test shows how strongly a model would overestimate the degree 
of mouth breathing in an healthy individual.

4  Results

4.1  Naive baseline

As a naive baseline, we do stratified random guessing, which takes the distribution 
of nose breathing and mouth breathing examples in the train set into account. Each 
sample in the test set gets the label nose breathing or mouth breathing with a proba-
bility that reflects the class distribution. This approach resulted in an F1 score lower 
than 0.01, which gives a hint at the difficulty of classification in a highly imbalanced 
data set.

4.2  Overall evaluation

All supervised models were evaluated within the same leave-one-out cross vali-
dation as the reconstruction-based anomaly detection to achieve comparability 
between all models. Table 2 shows the performance of all models evaluated on 15 
different test folds using the leave-one-out cross validation. Evaluating the overall 
performance of the machine learning models, showed that the GBM using statistical 
features as an input is the best classifier with an F1 score of 0.54. The reconstruc-
tion-based classifier has a similar F1 score of 0.508. Comparing the classification 
accuracy of all supervised models showed, that the deep learning models were not 

Table 2  Comparison of average classification accuracy, standard deviation among all folds in brackets 
and training time for time series classifiers, supervised deep learning models, and autoencoders

The best-performing method for each approach is shown in bold

Classifier Type Training time Precision Recall F1 score

Random Naive baseline – 0.021 0.022 0.022
GBM Feature-based 2 min 0.445 0.704 0.546
KNN-DTW Similarity-based 15 min 0.256 0.477 0.333
TSF Interval-based 6 min 0.121 0.243 0.162
MRSEQL Shapelet-based 31 min 0.231 0.861 0.364
RNN Deep learning 40 min 0.454 0.229 0.304
CNN Deep learning 4 min 0.350 0.120 0.179
Autoencoder Reconstruction-based 8 min 0.401 0.695 0.508
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necessarily better than the time series classifiers. The classifiers KNN-DTW and 
MRSEQL, which can handle multivariate time series as an input, performed bet-
ter than the TSF, which combines the predictions of the individual time series in 
an ensemble. The best performing supervised model was MRSEQL, which even 
exceeded the performance of the deep learning models. Both deep learning mod-
els have a lower classification accuracy than the classic feature-based classifier. The 
recall, i.e., how many of the true mouth breathing sequences were identified as such, 
and the precision, i.e., how many of the predicted mouth breathing were correct, 
give an enhanced insight on the model performance. Most machine learning models 
in the evaluation had a high recall but a low precision. This means they identified 
many true positives, but also predicted many false positives. The only exceptions to 
this trend were the deep learning models. Both the RNN and the CNN had a higher 
precision than recall. Especially the CNN led to a low recall score, as it fails to iden-
tify most of the true mouth breathing sequences. Looking at the individual training 
folds showed, that for some participants the CNN was not able to make any predic-
tion and resulted in an F1 score of 0.

4.3  Individual‑level evaluation

Evaluating the performance of the machine learning models on an individual level 
showed that the classification accuracy of all models varies strongly. The best per-
forming models, the feature-based classifier and the reconstruction-based classifier 
both had a standard deviation of the F1 score of 0.3. This shows that the models 
work well for some participants and perform poorly on other participants. Review-
ing the participants one by one showed that the performance of all models was 
weaker for the participants with a lower amount of mouth breathing. This is plau-
sible, as an increased imbalance ratio affects the classifier performance as shown 
by Lemnaru and Potolea (2011). Furthermore, having evaluation folds with zero 
positive examples in the test set can naturally only lead to a decrease of precision, 
recall and F1 score as achieving true positive classifications is impossible in this set-
ting. However, it is a relevant results since these participants with zero or few mouth 
breathing sequences represent healthy, non-mouth breathing participants, which is 

Fig. 6  Distribution of F1 score across participants with a low number of mouth breathing (n = 8) and a 
high number of mouth breathing (n = 7)
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the majority of the population. Dividing the test set into participants with more than 
10 mouth breathing sequences and lower or equal to 10 mouth breathing sequences 
shows how each model would perform when classifying healthy or sleep disordered 
participants.

Figure 6 shows the F1 score of the individual participants as a distribution for 
each machine learning model. The plot on the left side shows the low or non-mouth 
breathing participants and the plot on the right side shows the participants with more 
than 10 mouth breathing sequences. We can see that the CNN, which did not per-
form well in the overall evaluation with an F1 score of 0.179 was the best perform-
ing model for the participants with a low-amount of mouth breathing. The recon-
struction-based model and the feature-based model both had a low performance on 
the low-mouth breathing sequences. However, the autoencoders and the GBM were 
leading the performance in the high-mouth breathing participants. Both the CNN 
and the RNN have a False Positive Rate (FPR) of 0.007. This equals to approxi-
mately 15 false positives on average in each participant. Even though the feature-
based classifier in comparison has a FPR of 0.015 with 33 false positives on average.

4.4  Reconstruction‑based anomaly detection

Applying the autoencoder on an unseen test set resulted in a reconstruction error that 
was indeed higher for mouth breathing than for nose breathing. The average recon-
struction error of the anomalous class was twice as high as the average reconstruc-
tion error of the normal class. This can be seen in Fig. 7, which shows the distribu-
tion of the reconstruction errors of mouth breathing and nose breathing separately.

We can see that most of the nose breathing examples (92.8%) have a reconstruc-
tion error below 1. The mouth breathing examples have higher reconstruction errors 
in a range between 0.5 and 5. This shows different distributions of the reconstruction 

Fig. 7  The distribution of the reconstruction error by target class (nose breathing in purple, mouth 
breathing in orange). For visualization, the majority class is downsampled to the size of the minority 
class
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error of the two classes, which is why we can use the reconstruction error as an 
anomaly score. However, as the classes do overlap (shown in red in Fig. 7), a perfect 
separation of normal and anomalous data by threshold was impossible based on the 
reconstruction error.

Figure  8 shows how precision, recall and F1 score changed by gradually 
increasing the threshold value. Testing the classification accuracy of the different 
threshold approaches showed that the way the threshold was defined had a high 
impact on the classification performance. The estimated thresholds used for clas-
sification did not necessarily match the optimal thresholds like the one shown in 
Fig. 8 as the grey dotted line. Figure 8 shows that even small deviations from this 
optimal separation led to a strong decrease in classification performance. Hence, 
the following results show the classification ability of this particular unsuper-
vised classification approach, but do not necessarily reflect the full potential of 
the autoencoder for reconstruction-based anomaly detection.

The summarized results of evaluating the unsupervised- and semi-supervised 
autoencoder are shown in Table 3. The classification with the average threshold led 
to low results even though theoretically a separation of the classes is given as seen 

Fig. 8  Precision and recall for the classification at different threshold values

Table 3  Classification accuracy for unsupervised and semi-supervised models

The highest value for each approach is shown in bold

Autoencoder Signals used for the threshold Precision Recall F1

Unsupervised Average of all signals 0.107 0.380 0.167
Oral flow 0.308 0.721 0.431
Average signals & oral flow 0.352 0.659 0.459

Semi-supervised Average of all ssgnals 0.094 0.383 0.151
Oral Flow 0.243 0.827 0.376
Average signals & oral flow 0.401 0.695 0.508
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in Fig. 7. The average threshold is not only higher for mouth breathing but also in 
bad signal quality. For this reason, it was not suitable for the unsupervised detection 
of mouth breathing. The results strongly improved when only the oral threshold is 
used for the classification. This approach achieved the highest recall of 0.827 in the 
semi-supervised training. We could further improve the F1 score of this approach 
by combining the information from the average and mouth breathing reconstruction 
error. This approach achieved the best overall results in the semi-supervised training 
with a precision of 0.401, a recall of 0.695 and an F1 score of 0.508.

4.5  Error analysis

In order to gain a deeper understanding of the classification performance, we review 
a subset of the misclassified sequences of the reconstruction based anomaly detec-
tion with a sleep technologist. In particular, we review the false positives, i.e the nose 
breathing sequences the model labels as mouth breathing. We take the time stamps of 
a subsample of the test set and review these sequences in the sleep analysis software 
Noxturnal by Noxmedical. The following reasons for misclassifications were identified:

• Slight or short mouth breathing: Some sequences show mouth breathing 
in the manual review but were not labeled as such, because it was only slight 
mouth breathing. In many of these cases, it was shortly before or after a labeled 
sequence of mouth breathing. Others were correctly labeled but were disre-
garded in the preprocessing because the mouth breathing was very short and 
only sequences with at least three seconds of mouth breathing were considered 
as mouth breathing sequences.

• Mouth breathing during awake state: There are multiple sequences that actu-
ally had mouth breathing but were not labeled as such by the sleep technologist, 
because they occurred during an awakening, which is not considered as clinically 
relevant.

• Bad signal quality: In some sequences, the sleep technologist cannot decide 
whether mouth breathing is present, because the signals are noisy or include arti-
facts. In one sequence it is clearly visible that the oximeter lost contact. In other 
cases, we assume that the oronasal cannula has moved.

This review shows us that the we cannot always rely on the manual labels as the 
ground truth. Setting clear borders where mouth breathing starts and stops is a chal-
lenge for the human reviewer as well, especially in recordings with bad signal qual-
ity. We should keep in mind that assigning the labels is a subjective task and that 
interrater variability is an ongoing research area in sleep (Danker-hopfe et al 2009). 
It also reveals a weakness of the preprocessing, which indicates we should lower 
the required minimum amount of mouth breathing per sequence in future work. 
Whether we should exclude mouth breathing during awakenings from the evaluation 
or include information about the sleep stages in the input data remains an open ques-
tion. Overall, the error analysis also showed that many of the false positives have not 
been entirely false after all.
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5  Discussion

The results demonstrated that machine learning can be used to automatically dif-
ferentiate between mouth breathing and nose breathing. The comparison of time 
series classifiers, deep learning models, unsupervised models and a feature-based 
classifier showed that overall the feature-based classifier was the best performing 
machine learning method. Evaluating the performance of these models in the leave-
one-out cross validation showed that the model performance varied strongly across 
participants. The two best performing models, the reconstruction-based anomaly 
detection and the feature-based classifier showed a similar standard deviation. They 
also showed a similar performance drop on the test set with a low number of mouth 
breathing in comparison to the test set with participants with a high number of 
mouth breathing. This showed that both models may overestimate the severity of 
mouth breathing when used in clinical practice.

To assess whether this classification accuracy is precise enough to replace man-
ual annotation work, we should consider the implications of false positive and false 
negative classifications for the sleep technologists, as well as the consequences 
that arise for the child. Classifying too many nose breathing sequences as mouth 
breathing sequences gives the impression that a child suffers from a condition they 
do not have or only mildly suffer from. On the contrary, capturing none or too few 
of the true mouth breathing sequences may lead to underestimating the severity of 
mouth breathing and preventing the child from receiving the appropriate diagnosis 
and treatment. Our best performing model has a precision of 44.5% and can identify 
70.4% of all mouth breathing sequences. Therefore, it is likely to identify a high per-
centage of the mouth breathing sequences but may overestimate the mouth breath-
ing. Both the feature-based and reconstruction-based methods have a low precision 
but high recall. Therefore they could be suitable to support the sleep technologist 
by highlighting the sequences which are likely to be mouth breathing and leave the 
final decision to the expert. This approach of supporting the medical staff instead of 
fully replacing medical staff has shown success when integrating machine learning 
applications in clinical practice (Henry et al 2022). Whether sleep technologists rely 
completely on the prediction in the future or use it as a reference value for faster 
manual review depends on the desired accuracy of the mouth breathing labels, but 
either way decreases the manual labeling effort.

Applying the reconstruction-based anomaly detection approach on sleep data and 
observing separation of the classes by reconstruction error shows that this approach is 
applicable to sleep data. We can see that the unsupervised approach has a lower clas-
sification accuracy than the semi-supervised approach. There are several reasons which 
may account for this gap. Firstly, the remaining mouth breathing sequences in the train 
set of the unsupervised approach negatively impact the reconstruction-based anomaly 
detection. This would show that our proposed model strongly relies on the assump-
tion of an imbalanced data set. Secondly, we also include non-labeled recordings in 
the train set of the unsupervised model. As these have not been reviewed manually, we 
have no information of the amount of mouth breathing or the signal quality in these 
recordings. Another limitation of the reconstruction-based anomaly detection is that 
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the autoencoder is not able to differentiate between different types of anomalies. Even 
though we assume that mouth breathing sequences are anomalies, we cannot assume 
that all anomalies are mouth breathing. Consequently, the false positives, that are incor-
rectly classified as mouth breathing partly also point towards other anomalies such as 
measurement errors, which makes our model less applicable for low quality recordings.

However, the comparison of different methods showed that a classic machine learn-
ing approach outperforms the deep learning models. The feature-based classifier sim-
plifies the time series into summary features. This shows that the shape of the signals 
is not relevant for the classification, but rather their altitude and range. Therefore, our 
research shows, that for this specific application, deep learning models are not superior 
to classic machine learning models. This goes in line with previous publications ques-
tioning the need for deep learning in other domains (Gunnarsson et al 2021; Shwartz-
Ziv and Armon 2022). It is an ongoing debate when and how deep learning is needed. 
The superior performance of our model in comparison to the model by Curran et al 
(2012) may arise from including more features than only the audio signal. However, 
including more signals has not only advantages, as a PSG study is more of an effort 
than a microphone study. The overall results show, that the signals we included in the 
model are suitable for identifying mouth breathing. It is surprising that the statistical 
features and the reconstruction error show different correlation with the target vari-
able mouth breathing, as shown in Figs. 4 and 5. While the reconstruction error of 
the autoencoder mainly shows correlation of the oral flow and the target variable, the 
statistical features also shows correlations to the audio volume and the oxygen satura-
tion. One reason for that could be that these signals have different properties and are 
the blood oxygen and audio volume are more meaningful as summary statistics and 
the oral flow signal is more meaningful as a raw signal. A mixed approach of inputting 
the oral flow as a raw signal and the audio and blood oxygen saturation as statistical 
features could be an interesting approach to pursue in future work.

We need to keep in mind, that machine learning models can identify complex pat-
terns from the training data but do not have human reasoning. In one sleep record-
ing, the oronasal cannula is misplaced in a way that the pressure transducer, which 
captures the mouth breathing, was placed above the nose. For 6 h, the nose breathing 
signal is gone, but the mouth breathing is unusually high. Listening to the audio and 
looking at the unusual patterns of the mouth breathing signal, let the sleep technolo-
gist conclude that it was a measurement error, even though it looked like extreme 
mouth breathing. This is a line of thought that comes naturally to the sleep technolo-
gist, but can not be achieved by a machine learning model. For this reason, the abil-
ity of our machine learning models is limited by the quality of the sleep recording 
and can be negatively impacted by measurement errors.

6  Conclusion

These findings are relevant for research focusing on sleep-disordered breathing, 
because they show that mouth breathing can be automatically identified. Using the 
signals from the oronasal cannula, thorax and abdomen belts, pulse oximeter, and 
microphone, our proposed approach can classify mouth breathing with an F1 score 
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of 0.546. This means, that the manual annotation work can be decreased with the 
use of machine learning. Comparing classic and deep machine learning models, 
showed that classic methods outperform deep learning and have a higher clinical rel-
evance in this application. The results from the reconstruction-based method showed 
that we are not dependent on labeled mouth breathing sequences in the training to 
identify mouth breathing. The results of all machine learning models varied strongly 
across participants, which highlights the importance of patient-wise evaluation. In 
future research, we want to test whether these models also work on the data of adults 
with sleep-disordered breathing. To improve the model performance, the superor-
dinate time series should be taken into account, as a sequence is more likely to be 
mouth breathing if the preceding and succeeding sequences are mouth breathing as 
well. The model could be further improved by classifying individual breaths instead 
of fixed 10-second intervals as proposed in Holm et al (2022).

Appendix 1: Autoencoder architecture

See Fig. 9.
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Fig. 9  The architecture of the convolutional autoencoder
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Appendix 2: Results of leave‑one‑out cross validation

See Table 4.

Table 4  Model performance on 
each test fold

Fold Model TN FP FN TP

1 KNN-DTW 1442 29 22 51
TSF 1423 48 68 5
MRSEQL 1421 50 0 73
RNN 1471 0 72 1
CNN 1470 1 72 1
AE AVG 1383 88 4 69
AE ORAL 1439 32 1 72
AE ORAL & AVG 1446 25 1 72
SAE AVG 1401 70 17 56
SAE ORAL 1449 22 2 71
SAE ORAL & AVG 1452 19 1 72
GBM 1469 2 27 46

2 KNN-DTW 1206 25 2 0
TSF 1204 27 0 2
MRSEQL 1191 40 0 2
RNN 1228 3 2 0
CNN 1223 8 1 1
AE AVG 1161 70 0 2
AE ORAL 1219 12 0 2
AE ORAL & AVG 1225 6 2 0
SAE AVG 1165 66 0 2
SAE ORAL 1219 12 1 1
SAE ORAL & AVG 1225 6 2 0
GBM 1221 10 1 1

3 KNN-DTW 3062 44 30 27
TSF 3041 65 21 36
RNN 3102 4 35 22
MRSEQL 2971 135 4 53
CNN 3101 5 49 8
AE AVG 2982 124 17 40
AE ORAL 3044 62 17 40
AE ORAL & AVG 3062 44 29 28
SAE AVG 2979 127 16 41
SAE ORAL 3020 86 9 48
SAE ORAL & AVG 3061 45 24 33
GBM 3088 18 35 22
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Table 4  (continued) Fold Model TN FP FN TP

4 KNN-DTW 3284 89 0 0

TSF 3269 104 0 0

MRSEQL 3213 160 0 0

RNN 3372 1 0 0

CNN 3371 2 0 0

AE AVG 3221 152 0 0

AE ORAL 3297 76 0 0

AE ORAL & AVG 3329 44 0 0

SAE AVG 3194 179 0 0

SAE ORAL 3333 40 0 0

SAE ORAL & AVG 3363 10 0 0

GBM 3369 4 0 0
5 KNN-DTW 954 32 11 14

TSF 942 44 16 9
MRSEQL 930 56 3 22
RNN 974 12 6 19
CNN 984 2 10 15
AE AVG 936 50 16 9
AE ORAL 956 30 5 20
AE ORAL & AVG 964 22 8 17
SAE AVG 927 59 15 10
SAE ORAL 964 22 7 18
SAE ORAL & AVG 966 20 6 19
GBM 956 30 1 24

6 KNN-DTW 1290 9 104 30
TSF 1276 23 87 47
MRSEQL 1116 183 7 127
RNN 1297 2 103 31
CNN 1299 0 115 19
AE AVG 1220 79 75 59
AE ORAL 1284 15 51 83
AE ORAL & AVG 1289 10 59 75
SAE AVG 1216 83 74 60
SAE ORAL 1271 28 50 84
SAE ORAL & AVG 1281 18 61 73
GBM 1291 8 74 60
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Table 4  (continued) Fold Model TN FP FN TP

7 KNN-DTW 3376 79 0 14

TSF 3343 112 2 12

MRSEQL 3214 241 0 14

RNN 3437 18 8 6

CNN 3440 15 9 5

AE AVG 3269 186 0 14

AE ORAL 3381 74 0 14

AE ORAL & AVG 3405 50 2 12

SAE AVG 3259 196 0 14

SAE ORAL 3341 114 0 14

SAE ORAL & AVG 3393 62 2 12

GBM 3383 72 2 12
8 KNN-DTW 2814 82 40 49

TSF 2779 117 73 16
MRSEQL 2728 168 25 64
RNN 2862 34 45 44
CNN 2886 10 73 16
AE AVG 2712 184 76 13
AE ORAL 2786 110 65 24
AE ORAL & AVG 2814 82 67 22
SAE AVG 2664 232 71 18
SAE ORAL 2781 115 36 53
SAE ORAL & AVG 2830 66 58 31
GBM 2843 53 36 53

9 KNN-DTW 963 31 4 2
TSF 963 31 2 4
MRSEQL 973 21 0 6
RNN 987 7 3 3
CNN 990 4 4 2
AE AVG 950 44 4 2
AE ORAL 962 32 1 5
AE ORAL & AVG 971 23 2 4
SAE AVG 948 46 4 2
SAE ORAL 956 38 1 5
SAE ORAL & AVG 971 23 3 3
GBM 976 18 1 5
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Table 4  (continued) Fold Model TN FP FN TP

10 KNN-DTW 1783 52 2 1

TSF 1755 80 1 2

MRSEQL 1777 58 1 2

RNN 1835 0 3 0

CNN 1834 1 3 0

AE AVG 1685 150 0 3

AE ORAL 1776 59 2 1

AE ORAL & AVG 1790 45 3 0

SAE AVG 1711 124 0 3

SAE ORAL 1768 67 2 1

SAE ORAL & AVG 1787 48 3 0

GBM 1736 99 1 2
11 KNN-DTW 3348 107 0 3

TSF 3327 128 2 1
MRSEQL 3150 305 0 3
RNN 3423 32 0 3
CNN 3427 28 0 3
AE AVG 3250 205 2 1
AE ORAL 3328 127 0 3
AE ORAL & AVG 3353 102 0 3
SAE AVG 2940 515 2 1
SAE ORAL 3111 344 0 3
SAE ORAL & AVG 3349 106 0 3
GBM 3438 17 3 0

12 KNN-DTW 1854 71 0 0
TSF 1835 90 0 0
MRSEQL 1869 56 0 0
RNN 1907 18 0 0
CNN 1903 22 0 0
AE AVG 1750 175 0 0
AE ORAL 1784 141 0 0
AE ORAL & AVG 1800 125 0 0
SAE AVG 1795 130 0 0
SAE ORAL 1855 70 0 0
SAE ORAL & AVG 1873 52 0 0
GBM 1911 14 0 0
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Table 4  (continued) Fold Model TN FP FN TP

13 KNN-DTW 3312 102 106 96

TSF 3268 146 191 11

MRSEQL 3265 149 45 157

RNN 3410 4 195 7

CNN 3412 2 201 1

AE AVG 3236 178 191 11

AE ORAL 3311 103 34 168

AE ORAL & AVG 3342 72 39 163

SAE AVG 3206 208 183 19

SAE ORAL 2919 495 0 202

SAE ORAL & AVG 3358 56 29 173

GBM 3273 141 4 198
14 KNN-DTW 2531 51 15 15

TSF 2548 34 22 8
MRSEQL 2530 52 4 26
RNN 2580 2 19 11
CNN 2581 1 25 5
AE AVG 2433 149 12 18
AE ORAL 2531 51 3 27
AE ORAL & AVG 2552 30 5 25
SAE AVG 2429 153 13 17
SAE ORAL 2528 54 3 27
SAE ORAL & AVG 2546 36 5 25
GBM 2574 8 3 27

15 KNN-DTW 2574 88 0 4
TSF 2582 80 1 3
MRSEQL 2496 166 0 4
RNN 2622 40 4 0
CNN 2620 42 3 1
AE AVG 2465 197 1 3
AE ORAL 2544 118 0 4
AE ORAL & AVG 2563 99 2 2
SAE AVG 2490 172 1 3
SAE ORAL 2517 145 0 4
SAE ORAL & AVG 2562 100 2 2
GBM 2593 69 2 2

KNN-DTW = K-Nearest Neighbours with Distance Time Warping, 
TSF = Time Series Forest, MRSEQL = Multiple Representation 
Sequence Learner, RNN = Recurrent Neural Network, CNN = Con-
volutional Neural Network, SAE = Semi-supervised Autoencoder, 
AE= Autoencoder, GBM = Gradient Boosting Machine
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