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Clonal hematopoiesis (CH) arises when a substantial proportion of mature 
blood cells is derived from a single hematopoietic stem cell lineage. Using 
whole-genome sequencing of 45,510 Icelandic and 130,709 UK Biobank 
participants combined with a mutational barcode method, we identified 
16,306 people with CH. Prevalence approaches 50% in elderly participants. 
Smoking demonstrates a dosage-dependent impact on risk of CH. CH 
associates with several smoking-related diseases. Contrary to published 
claims, we find no evidence that CH is associated with cardiovascular 
disease. We provide evidence that CH is driven by genes that are commonly 
mutated in myeloid neoplasia and implicate several new driver genes. 
The presence and nature of a driver mutation alters the risk profile for 
hematological disorders. Nevertheless, most CH cases have no known driver 
mutations. A CH genome-wide association study identified 25 loci, including 
19 not implicated previously in CH. Splicing, protein and expression 
quantitative trait loci were identified for CD164 and TCL1A.

Clonal hematopoiesis (CH) may be defined as a disproportionate expan-
sion of one or a few clones of hematopoietic stem cells (HSCs) in indi-
viduals with ostensibly normal hematopoiesis1. Hematopoiesis has a 
highly polyclonal underpinning in younger individuals, but becomes 
increasingly restricted in HSC clonal diversity with advancing age2. CH is 
associated with reduced age-adjusted life expectancy and predisposes 

to hematological neoplasia, particularly to myeloid diseases1,3,4. CH has 
also been implicated in a broad spectrum of nonhematological condi-
tions, ranging from carcinomas to cardiovascular disease (CVD)1,5–9.

Peripheral blood sampling can provide a reasonable insight into 
the clonal makeup of the recent underlying HSC population. Leuko-
cytes from normal blood are predominantly short-lived myeloid cells, 
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hematological disorder. Smoking was an independent risk factor for 
mortality but not for hematological disorders (Supplementary Table 2).

Associations of CH with disease
In case–control analysis, CH had strong associations with both mye-
loid and lymphoid neoplasia (Table 1 and Supplementary Table 3). CH 
was also associated with existing or subsequent diagnoses of chronic 
obstructive pulmonary disease (COPD), lung cancer, peripheral artery 
disease (PAD), emphysema and alcohol abuse. These nonhematological 
conditions are known to be smoking-related, and their significance was 
substantially attenuated once smoking was taken into account. This 
suggests that the associations may be due to residual confounding 
from various aspects of smoking behavior. Hematological disorder 
associations were not similarly attenuated by smoking adjustments. 
Analysis restricted to never smokers produced similar conclusions 
(Supplementary Table 4).

Case–control analysis revealed no indication of association 
between CH and key CVD phenotypes, neither in UKB nor in ISL (Supple-
mentary Table 5). Unadjusted for smoking, no CVD phenotype passed 
Bonferroni significance and, once adjusted, none was even nominally 
significant. To examine this further, we conducted a time-to-CVD-event 
analysis in UKB. We considered also whether CH defined by mutational 
barcodes differed in this respect from CH containing a CPLD mutation. 
Additionally, we examined CHIP as defined using the filtering strategy 
recommended in ref. 19,20. In all three instances, we were unable to 
measure any increased risk of CVD in people with CH. We did, though, 
observe strong effects from potential confounders in the multivari-
able model (Table 2). CH has also been implicated in pro-inflammatory 
phenomena, a suggested basis for its reported CVD association21,22. 
Accordingly, we looked for CH associations with a panel of inflamma-
tory conditions, but saw none (Supplementary Table 5). In UKB, CH 
was associated with alcoholic liver disease (Table 1) but not fatty liver 
conditions, at variance with a recent report23.

To better understand the increased mortality rate attributable to 
CH, we examined the primary cause of death records in a meta-analysis 
of ISL and UKB. Participants with CH were at increased risk of death 
from both myeloid and lymphoid hematological disorders, as well 
as lung cancer, COPD and alcohol abuse (Supplementary Table 6). As 
before, the nonhematological risks were attenuated (but not elimi-
nated) by adjustment for smoking. Chronic ischemic heart disease and 
heart failure had nominally significant hazard ratios (HRs), but did not 
meet the Bonferroni threshold. Even though a substantial number of 
deaths from acute myocardial infarction occurred in the cohort, their 
frequency was not elevated in participants with CH.

Association of mosaic somatic mutations with CH
Most prior DNA sequence-based studies identified CH using a prede-
fined list of CPLD mutations that are already known to occur in myeloid 
neoplasia4,13–15. Some studies have tested mutated genes for statistical 
association with CH or evidence of positive selection in CH1,3,24,25. Our 
method can identify CH irrespective of whether a CPLD mutation is 
present. Thus we can search in a comparatively unbiased manner for 
genes with mutations that drive CH. We conducted a gene-based burden 
test for somatic mutations associated with CH (Fig. 1a and Supple-
mentary Table 7). As anticipated from previous studies1,3,4, mutations 
in DNMT3A, TET2 and ASXL1 were the most significantly associated 
with CH. Most of the other genes are known to be commonly mutated 
in myeloid disease. Some are implicated, additionally or uniquely, in 
lymphoid neoplasia26.

We also examined the intragenic distribution of the somatic muta-
tions and used Fisher’s exact tests to identify individual mutations that 
drive the signal from each gene (Fig. 1b–e and Supplementary Fig. 1). 
ASXL1 exhibited predominantly frameshift or nonsense mutations in 
the 13th (last) exon. ASXL1 activation in myeloid neoplasia typically 
results from gain-of-function mutations that produce C-terminally 

mostly granulocytes. These cells have high production rates and short 
time lags from committed progenitor cells, which in turn require con-
tinual replenishment from HSC or multipotent progenitors10. Naturally, 
the lymphocytic lineages have a much greater time lag from the under-
lying HSC population. Clonal expansions in CH can show multilineage 
involvement extending to lymphocytes, but do not always do so11,12.

Perhaps as a result of the proximity of myeloid lineages to the 
underlying HSC population, somatic mutations that initiate myeloid 
malignancies are thought to arise in the HSC compartment. Similar 
mutations can be found in apparently normal but clonally expanded 
hematopoietic cells from individuals who appear to be well. In both 
cases, the mutations can be traced back to underlying HSC12. We refer 
to them as ‘candidate preleukemic driver’ (CPLD) mutations, because of 
their propensity to drive CH expansions and consequently to increase 
risks of hematological disease. Indeed, the presence of a CPLD mutation 
in a blood sample from an evidently healthy individual has, by many 
investigators, been used to define the presence of CH4,13–15. Clearly, and 
as pointed out by others16, this biases the detection of CH in favor of 
genes and mutations that may subsequently lead to the development 
of myeloid neoplasia.

As cell populations grow they accumulate mutations, most of 
which are presumed to be phenotypically inconsequential. As a result, 
every clone is uniquely ‘barcoded’ by the somatic mutations that were 
present in the founder cell at the inception of the clone. If a particular 
clone expands sufficiently, its mutational barcode becomes evident in 
DNA sequence reads. We have shown through whole-genome sequenc-
ing (WGS) of peripheral blood that clonal expansions indicative of CH 
can be detected by examining counts of mosaic somatic mutations (if 
sufficient care is taken to differentiate them from germline variants 
and sequencing errors)1. Thus CH expansions can be identified solely 
on the basis of barcode mutations, irrespective of whether they carry 
a CPLD mutation. This method enabled us and others to show that CH 
is very common, if not inevitable, in the elderly1–3. Moreover, most CH 
cases do not carry an obvious CPLD mutation. Here we use mutational 
barcodes to study the epidemiology and genetics of CH in participants 
from Iceland (ISL) and the UK Biobank (UKB) for whom we have gener-
ated extensive WGS data.

Results
Identification of CH cases from WGS in ISL and UKB
We used WGS from 45,510 Icelanders and 130,709 British ancestry 
participants from the UKB17,18. Average sequencing depth was 33× for 
UKB and 38× for ISL. Participants with prior diagnoses of hematologi-
cal disorders or grossly abnormal hematology measurements on entry 
were excluded. We identified people with CH based on an evolution of 
our mutational barcode strategy1. Mosaic somatic mutation barcodes 
were generated by modeling low variant allele fraction (VAF) sequence 
reads (Extended Data Fig. 1). To reduce contamination from low-VAF 
germline variants and recurrent sequencing errors, we used only indica-
tor mutations that were observed once in each cohort and restricted 
in VAF range to 0.10–0.25. Participants with barcodes containing a 
number of indicator mutations above a threshold were considered to 
have CH. We identified 16,306 people with CH, a prevalence over the 
two cohorts of 9.3%.

As anticipated from previous studies, CH was uncommon in 
under 45-year-olds, but increased dramatically in frequency thereaf-
ter, approaching 50% by age 80. Both current and previous smoking 
substantially increased risk of CH (Extended Data Fig. 1b,c). Pack years 
further increased CH risk (P = 8.57 × 10−7), whereas years since stopped 
smoking were protective (P = 3.54 × 10−10; Supplementary Table 1), 
indicating a dose-dependent relationship between smoking and CH. 
While the mechanisms by which age and smoking promote CH are yet to 
be elucidated, both factors clearly are potential confounders in epide-
miological analyses. Participants with CH were at substantially greater 
risk of all-cause mortality and of being diagnosed subsequently with a 
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truncated proteins27. However, we also saw protein truncation mutations 
in exon 12, namely Arg404Ter and Arg417Ter, that associated strongly 
with CH (P = 9.7 × 10−6 and 2.6 × 10−6, respectively, UKB, Fisher’s exact 
test). These mutations are puzzling because they would be expected to 
induce nonsense-mediated decay of the ASXL1 transcript28, which would 
obviate a gain-of-function effect. Further investigation is warranted. 
The CH association with GNB1 was completely attributable to Lys57Glu 
mutations (P = 1.4 × 10−46, UKB, Fisher’s exact test). GNB1 mutations 
affecting Lys57 predominate in myeloid neoplasia, whereas mutations 
at other positions are more frequent in lymphoid malignancies29. In 
CALR, high-impact mutations clustered in the ninth (last) exon, sug-
gesting a gain-of-function analogous to that seen in PPM1D and ASXL1 
(Fig. 1d,e). Such mutations are present in essential thrombocythemia 
(ET) and primary myelofibrosis30; however, they have not been consist-
ently implicated as CH-defining mutations (Supplementary Table 7). We 
obtained robust evidence linking high-impact PRR14L mutations to CH 
(P = 3 × 10−11, UKB, SKAT-O). PRR14L is not generally recognized as a CH 
gene (Supplementary Table 7); however, mutations have been seen in 
chronic myelomonocytic leukemia and infrequently in CH participants31.

We previously reported a tentative association between CH 
and MYD88 mutations in ISL1. We confirm that finding robustly here 
(P = 1.9 × 10−10, UKB, SKAT-O), the strongest signal coming from Leu-
252Pro. MYD88 Leu252Pro (formerly Leu265Pro) mutations are par-
ticularly related to lymphoplasmacytic lymphoma/Waldenström 
macroglobulinemia (LPL/WM), which would not be expected to have a 
substantial bloodborne component26,32,33. However, MYD88 mutations 
also occur in an atypical minority of chronic lymphocytic leukemia 
(CLL) and Leu252Pro has been observed in normal B cells from patients 
with LPL/WM34,35. We also reported a CH association with mutations in 
MTA2 (ref. 1) and confirm that finding here (P = 7.9 × 10−7, UKB, SKAT-O). 
Individually significant missense mutations were clustered within the 
SANT domain (Fig. 1b,c), which recruits histone deacetylase-1 to the 
nucleosome remodeling and deacetylase (NuRD) complex36. Even 
though we were able to demonstrate strong associations between 
the common CPLD genes and CH, most cases could not be accounted 
for by an obvious driver mutation (Extended Data Fig. 2). Several 
factors may contribute to this; a lower sensitivity for CPLD mutation 
detection in WGS versus whole exome or panel sequencing, driver 

Table 1 | Associations between clonal hematopoiesis and disease in UKB

Phenotype UKB n cases n controls ORa P valuea ORadj smokingb Padj smokingb

C91 lymphoid leukemia 268 124,500 10.44 1.59 × 10−64 10.62 6.51 × 10−62

C911 chronic lymphocytic leukemia 229 124,010 11.94 2.59 × 10−63 12.25 9.27 × 10−61

Myeloproliferative neoplasms 194 124,670 7.62 1.60 × 10−34 7.92 1.40 × 10−34

C92 myeloid leukemia 182 124,057 7.60 1.05 × 10−33 7.41 3.85 × 10−31

F10 mental and behavioral disorders due to use of alcohol 3,069 121,730 1.91 6.32 × 10−28 1.58 9.53 × 10−14

D46 myelodysplastic syndromes 141 124,098 6.40 7.12 × 10−23 6.47 1.31 × 10−21

D473 essential hemorrhagic thrombocythaemia 183 124,056 5.32 7.71 × 10−21 5.23 9.48 × 10−20

J44 other chronic obstructive pulmonary disease 4,113 120,751 1.51 2.01 × 10−19 1.12 0.018

D45 polycythemia vera 92 124,676 8.28 1.05 × 10−18 8.12 3.29 × 10−18

C34 malignant neoplasm of bronchus and lung 1,377 123,391 1.90 2.29 × 10−18 1.45 1.00 × 10−6

C93 monocytic leukemia 25 123,134 46.51 1.01 × 10−16 47.72 9.37 × 10−17

Peripheral artery disease 2,012 122,787 1.60 9.23 × 10−14 1.27 2.46 × 10−4

D619 aplastic anemia 284 123,955 2.69 1.28 × 10−10 2.38 1.00 × 10−7

D474 osteomyelofibrosis 26 123,133 13.56 9.08 × 10−10 14.61 4.71 × 10−9

J43 emphysema 1,025 123,774 1.70 1.01 × 10−9 1.18 0.066

C83 diffuse non-Hodgkins lymphoma 359 124,536 2.29 2.73 × 10−9 2.23 3.52 × 10−8

K709 alcoholic liver disease 276 124,492 2.40 4.70 × 10−6 1.93 6.20 × 10−4

I50 heart failurec 2,922 121,942 1.28 5.03 × 10−6 1.17 0.0045

The Bonferroni cutoff level is 5.00 × 10−6, unadjusted. Phenotype list is edited to remove redundancies and subphenotypes. aMultivariable regression, adjusted for sex and age at blood draw 
(linear and quadratic). bAdditionally, adjusted for smoking status (current, previous), pack years and years since stopped smoking. cHeart failure was included in the UKB table because prior 
literature reports implicated an association with CH.

Table 2 | Time-to-event analysis of three models of CH for cardiovascular disease endpointsa

Characteristics Barcode-CH CPLD-CHb CHIPc

HR 95% CI P value HR 95% CI P value HR 95% CI P value

Clonal hematopoiesis 1.01 (0.94, 1.08) 0.88 1.01 (0.90, 1.13) 0.89 1.01 (0.88, 1.15) 0.92

Age at blood draw 1.08 (1.06, 1.10) <2 × 10−16 1.08 (1.06, 1.10) <2 × 10−16 1.08 (1.06, 1.10) <2 × 10−16

Previous smoking 1.15 (1.10, 1.22) 8.60 × 10−8 1.16 (1.10, 1.22) 8.20 × 10−8 1.16 (1.10, 1.22) 8.20 × 10−8

Current smoking 2.10 (1.95, 2.27) <2 × 10−16 2.10 (1.95, 2.27) <2 × 10−16 2.10 (1.95, 2.27) <2 × 10−16

Hypertension 1.44 (1.37, 1.51) <2 × 10−16 1.44 (1.37, 1.51) <2 × 10−16 1.44 (1.37, 1.51) <2 × 10−16

BMI 1.05 (1.04, 1.05) <2 × 10−16 1.05 (1.04, 1.05) <2 × 10−16 1.05 (1.04, 1.05) <2 × 10−16

n = 118,673; number of events = 7,242; stratified by age bin and sex. aData are from UKB. bCH containing a CPLD mutation, defined using our in-house methodology (Methods). cCHIP is defined 
using the strategy described in ref. 20. CI, confidence interval from Cox regression.
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mutations located outside the coding sequences of known CPLD 
genes, mosaic chromosomal alterations (mCA), clonally inherited 
epigenetic effects and random drift in an HSC pool with a very low 
effective population size1,2.

Differential risks of hematological disorders
We investigated the types of hematological disorders arising in par-
ticipants with CH. Moreover, we considered how the risk profile of 
CH defined by mutational barcodes (referred to herein as simply ‘CH’ 
or ‘barcode-CH’ when disambiguation is required) differed from CH 
defined by the presence of a CPLD mutation (CPLD-CH) or by the 

absence of a CPLD mutation in a barcode positive case (CPLDneg-CH) 
(Supplementary Table 8). As shown in Fig. 2a, HRs for both myeloid 
and lymphoid disorders were increased for all three CH classes. There 
were, however, differences in nuance. Participants with CPLD-CH were 
more likely to develop myeloid neoplasia than those with barcode-CH 
or CPLDneg-CH. Conversely, participants with barcode-CH or 
CPLDneg-CH were more likely to develop lymphoid neoplasia than 
those with CPLD-CH. Within myeloid subtypes, CPLDneg-CH par-
ticipants were at demonstrable risk of chronic myeloid leukemia 
(CML), myelodysplastic syndrome (MDS) and myeloproliferative 
neoplasia (MPN). However, CPLD-CH participants were at higher risk 
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of developing acute myeloblastic leukemia (AML), MDS and MPN (in 
particular, polycythemia vera (PCV)) than CPLDneg-CH participants. 
Within lymphoid subtypes, barcode-CH and CPLDneg-CH carried sig-
nificant risks of CLL, whereas CPLD-CH did not. This suggests that some 
barcode-CH cases may have incipient, undiagnosed CLL or high-count 
monoclonal B cell lymphocytosis (MBL). However, because B cells 
normally comprise a small proportion of the leukocyte population, 
even in MBL, B cell clonal expansions are unlikely to pass our CH detec-
tion threshold in the absence of an overt hematological abnormality. 
Accordingly, they are unlikely to account for a substantial number of 
barcode-CH cases. Moreover, associations with MPN and CLL could be 
driven by undetected mCA accompanying the barcode-CH37,38.

We investigated whether, among CPLD-CH participants, risks of 
hematological disorders differed by the particular CPLD gene involved 
(Fig. 2b). Significant HRs were seen for ASXL1-CH, DNMT3A-CH, 
JAK2-CH, SF3B1-CH, SRSF2-CH, TET2-CH and TP53-CH but not for 
PPM1D-CH. The risk from JAK2-CH was greater than from any other of 
the CPLD genes. While participants with DNMT3A-CH were at some-
what increased risk, HR estimates for other CPLD-CH types including 
ASXL1-CH and TET2-CH were substantially higher.

CH GWAS meta-analysis in ISL and UKB
We carried out a GWAS meta-analysis for barcode-CH (designated the 
‘CH GWAS’) in 130,709 UKB and 45,510 ISL participants, using germline 
genotypes imputed from WGS training sets17,18. We identified 25 loci with 
association signals of P < 5 × 10−8 (Fig. 3 and Supplementary Table 9). An 
additional ten low-frequency, high-effect variants require confirma-
tion and were not considered further. All of the sentinel variants had 
low variant effect predictor (VEP) impacts. At chr22q12, the sentinel 
variant was in high linkage disequilibrium (LD) (r2 = 0.95 in UKB and 
1.0 in ISL) with the well-known oncogenic ‘1100delC’ CHEK2 frameshift 
mutation rs555607708_delG (Thr367MetfsTer15)39. Conditional analy-
sis identified secondary signals at chr3q25 (a splice region variant in 
SMC4), chr5p15 (TERT) and chr21q11 (an Arg448Gly missense in NRIP1; 
Extended Data Fig. 3 and Supplementary Table 9). Scanning at a more 
relaxed stringency (P < 5 × 10−7) for variants with moderate or high 
VEP effects identified a low-frequency protective Arg684Gln variant 
in RTEL1 (rs35640778_A; odds ratio (OR) = 0.80, P = 1.75 × 10−7) and a 
Thr343Ser missense in ELF1 (rs1056820_T; OR = 0.92, P = 1.71 × 10−7).

One CH GWAS variant, at TERT, was reported by us previously in 
association with barcode-CH in ISL1. We reproduced this association; 
however, the sentinel TERT variant this time was rs7705526_A (OR = 1.28, 
P = 1.79 × 10−78), which is the same variant as subsequently reported 
for CPLD-CH13. Several other CH GWAS loci have been associated with 

related phenotypes, such as CPLD-CH13–15, mCA38,39, loss of Y chromo-
some (LoY)40–42 or MPN43,44. The LD between our CH GWAS variants 
and those signals is detailed in Supplementary Table 10. We found no 
previous reports for 19 of the CH GWAS loci.

To gain further insight into CH without known drivers, we repeated 
the GWAS using only CPLDneg-CH participants as cases (Extended Data 
Fig. 4 and Supplementary Table 11). Effects were broadly similar to the 
barcode-CH GWAS (m = 1.02, P = 1.47 × 10−18). Following two new loci 
were detected: TERC and KDM6B. The protective effect of chr14:TCL1A 
rs2887399_T was stronger in CPLDneg-CH, perhaps due to the differing 
effects of this allele in various CPLD mutation backgrounds (see CPLD 
gene specific CH GWAS associations, below). CHEK2 and SMC4 variants 
had somewhat larger effects in barcode-CH.

CPLD gene-specific CH GWAS associations
We repeated the GWAS meta-analysis on CPLD-defined CH for driver 
genes where there was sufficient power to do so. Considering all vari-
ants that were significantly associated with barcode-CH or any one 
of the CPLD-CH types, we compared their effects on barcode-CH and 
various types of CPLD-CH. There were substantial differences in effects 
between CPLD-CH types (Extended Data Fig. 5 and Supplementary 
Table 12).

Viewing the patterns overall, most variants demonstrated no effect 
on ASXL1-CH. While TET2-CH, for example, showed a highly significant 
slope when regressed on barcode-CH (m = 0.94, P = 5.64 × 10−10), the 
slope for ASXL1-CH versus barcode-CH was much shallower and of lower 
significance (m = 0.41, P = 8.76 × 10−4). Moreover, PPM1D-CH produced 
no significant regression against barcode-CH. One possible explanation 
is that environmental factors have a greater influence on ASXL1-CH 
and PPM1D-CH than on other CPLD-CH types— risk of PPM1D-CH was 
substantially increased in patients who have undergone chemotherapy 
(OR = 7.9, P = 4.5 × 10−4; Supplementary Table 13), while ASXL1-CH was 
more strongly associated with smoking than other CPLD-CH types 
(Supplementary Table 14) in agreement with previous reports9,45,46.

CH GWAS variants affect blood traits, telomeres and MPN
To gain insight into the functionality and pleiotropic effects of the CH 
GWAS variants, we examined published GWAS associations for them 
and variants in LD (Supplementary Table 15). Even though participants 
with grossly abnormal hematology had been excluded from the study, 
many clinical hematology parameters47 showed associations with the 
CH phenotype. Moreover, many CH GWAS loci had associated clinical 
hematology traits in the GWAS Catalog or UKB data (Supplementary 
Tables 15 and 16 and Extended Data Fig. 6).
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Fig. 2 | Differential risks of subsequent hematological disorders for barcode-
CH, CPLD-CH and CPLDneg-CH. a, HR and 95% CI from Cox regressions for 
subtypes of hematological disorder, stratified by CPLD-CH, barcode-CH and 
CPLDneg-CH. Diagnoses were included if they arose 6 months or more after 
blood sampling for CH determination. Data are meta-analysis of UKB and ISL 

(n = 162,963 participants overall, 14,837 with barcode-CH, 5,288 with CPLD-CH 
and 11,692 with CPLDneg-CH). b, HR and 95% CI for subsequent hematological 
disorder stratified by CPLD genes. MM, multiple myeloma; MGUS, monoclonal 
gammopathy of undetermined significance; OMF, osteomyelofibrosis.
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Several CH GWAS variants were reportedly associated with leuko-
cyte telomere length (LTL) in the GWAS Catalog. To investigate this in 
detail, we examined the relationship between CH and LTL, using UKB 
samples that were contemporaneously assessed for both CH (in this 
study) and LTL (in ref. 48). CH, along with age and prior or current smok-
ing, was strongly associated with shorter LTL (β = −0.129, P < 2 × 10−16; 
Supplementary Table 17) as seen previously in ISL1. Moreover, most 
CH GWAS variants associated with shorter telomeres, in line with the 
CH:LTL phenotype association. However, the two chr5:TERT variants 
and a variant on chr6p22 (near the MHC) were significantly associated 
with longer telomeres (Fig. 4a and Supplementary Table 18). As a result 
of this discordance, no significant regression parameters could be 
obtained and, consequently, a Mendelian randomization (MR) analysis 
was not considered prudent. For a complementary examination of the 
effects of LTL GWAS variants on the CH phenotype, we conducted a new 
GWAS for LTL in the UKB, using our current WGS-based imputation. We 
found 191 LTL variants (Supplementary Table 19). Their effects on LTL 
and CH are plotted in Fig. 4b. We found evidence of a massive discord-
ance of effects, with some longer LTL alleles associated with increased 
CH risk and others associated with reduced risk (indicated as ‘cloud 1’ 
and ‘cloud 2,’ respectively, in Fig. 4b). Here again, MR analysis was not 
considered advisable.

Observed LTL is measured in blood that may contain CH expan-
sions. So, any variant that promotes CH but does not directly affect 
telomeres would appear to cause shorter telomeres, because of the 
association between CH and contemporaneously observed short tel-
omeres. By the same token, such CH-promoting variants might be 
identified as LTL-associated variants in an LTL GWAS. To examine this, 
we repeated the GWAS for LTL, using only participants without proven 
CH. There was no evident difference in the effects of LTL GWAS variants 
between the two subgroups (Extended Data Fig. 7).

As was shown in Fig. 2a, CH associated strongly with subsequent 
diagnoses of MPN in line with its proposed status as a clinical precursor 
to MPN49. The majority of CH GWAS variants also conferred risk of MPN 
(Fig. 4c and Supplementary Table 18). MR analysis was consistent with 
CH having a causative effect on MPN (inverse-variance weighted (IVW), 
P = 7.86 × 10−6; Supplementary Table 20).

CH GWAS variants are involved in expression quantitative trait 
loci (eQTL), splicing quantitative trait loci (sQTL) and protein 
quantitative trait loci (pQTL)
We considered whether the CH GWAS variants affect RNA abundance 
or splicing of nearby genes. For each sentinel variant, we identified 
all variants in LD (r2 ≥ 0.8) and then queried public RNA-seq eQTL and 
sQTL databases, focusing on blood or blood-related cell types. Variants 
with substantial cis effects were investigated further in ISL RNA-seq 
data from 17,848 peripheral blood samples (Supplementary Table 21).  
eQTL at ABCC5 and TRIM59/SMC4 are described in Extended Data  
Fig. 8, while other salient examples are discussed below:

CD164 is, biologically, a good candidate for a role in CH patho-
genesis. It is expressed on early HSC and can affect their prolifera-
tion, differentiation, adhesion to bone marrow stromal elements, 
migration and retention in HSC niches50–52. Public sources revealed 
a CD164 sQTL in blood, lymphoblastoid B-cell lines (LCL) and several 
nonhematological tissues. The top reported sQTL in whole blood has 
r2 = 0.81 with our sentinel CH GWAS hit (rs3056655), while the top 
sQTL in LCL has r2 = 0.86. Using ISL blood RNA-seq, we ascertained 
that the sQTL affects the two major isoforms of CD164, which differ 
by the presence (CD164-202) or absence (CD164-203) of exon 5. The 
latter isoform lacks the full-length CD164 protein’s glycosaminoglycan 
attachment site. Increased exon 5 skipping was strongly associated with 
the rs3056655_A CH risk allele (P = 3.04 × 10−302, β = 0.44). Coverage 
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(indicated in Supplementary Table 9).
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plots of ISL RNA-seq data from CD8+ T cells and monocytes revealed a 
decrease in overall CD164 gene expression associated with the CH risk 
allele rs3056655_A (Fig. 5).

We carried out a proteomic analysis of plasma samples from 12,636 
UKB participants for whom we had CH status information, using the 
Olink platform to interrogate levels of 1,472 proteins and test them for 
association with CH. Several proteins of relevant biological interest 
ranked highly (by significance), including the hematopoietic progeni-
tor cell growth factors FLT3LG and CLEC11A, thrombopoietin THPO, 
pro-inflammatory cytokines CCL5 and TNFSF12 and smoking marker 
ALPP (Supplementary Table 22). Second in the ranking was TCL1A, an 
oncoprotein in T cell leukemias, lymphomas, CLL and several nonhe-
matological cancers53. Higher TCL1A levels were associated with CH 

(P = 2.05 × 10−13, β = 0.21), and this replicated ISL SomaScan proteomic 
data (P = 2.86 × 10−3, β = 0.06) (ref. 54). TCL1A is of particular interest 
because a CH GWAS variant is located 162 bp upstream of the gene’s 
transcription start site (Fig. 6a). The minor allele, rs2887399_T (minor 
allele frequency (MAF) ∼20%), is protective against CH in our data. It 
has been implicated (with varying direction of effect) in CPLD-CH, 
mCA and LoY (see above and refs. 13,41,55). The rs2887399_T allele 
is reported to suppress ectopic expression of TCL1A in CPLD mutant 
HSC56. A search for cis-pQTL using UKB Olink and ISL SomaScan iden-
tified two conditionally independent LD classes of variant, both with 
minor alleles acting to reduce TCL1A expression. One LD class of pQTL 
was correlated with rs2887399_T (r2 ∼0.67), whereas a second LD class 
pQTL, typified by rs78986913_A was not (r2 ∼0.092, MAF ∼4%; Fig. 6b,c). 
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Curiously, rs78986913_A did not show an independent signal in GWAS 
for CH predisposition in conditional analysis (Padj = 0.78).

To investigate this further, we searched for RNA-seq cis-eQTL for 
TCL1A. In whole blood, both the 4% MAF rs78986913_A and the 20% MAF 
rs2887399_T variant classes reduced expression of TCL1A. Conditioning 
the eQTL signal on rs78986913, COLOC57 revealed an 85% probability 
of peak identity between the rs2887399 eQTL and the CH GWAS peak. 
Both the 4% MAF and 20% MAF variants classes affected expression in B 
cells. However, in monocytes only the 20% MAF rs2887399_T variant was 
associated with TCL1A RNA expression and a 4% MAF rs78986913_A peak 
was not in evidence (Fig. 6d–g). It appears that, in this case, the eQTL 
and pQTL of relevance to CH may be restricted to the myeloid lineage.

Discussion
This study expands greatly on our previous investigation of CH detected 
using mutational barcodes1, extending the number of cases from 1,403 
to 16,306. We reaffirm the strong associations between CH, age and 
smoking and provide evidence that smoking has a dose-dependent 

impact on CH. Aside from confirming the risk for hematological dis-
eases, we find that CH associates with COPD, lung cancer, PAD, emphy-
sema and alcohol abuse. These conditions are all smoking-related. The 
effects of CH on their risks were strongly attenuated when adjusted for 
smoking. It is likely that the remaining associations are due to residual 
confounding from various aspects of smoking behavior that could not 
be fully taken into account in the analysis. It is notoriously difficult to 
remove all residual confounding from smoking behavior, especially 
when using self-reported information58,59. An attractive hypothesis is 
that smoking creates an inflammatory state, exerting pressure on the 
hematopoietic system, depleting the HSC and progenitor cell pool 
and driving compensatory HSC self-renewal, thereby increasing the 
probability of a clonal outgrowth60–62.

Studies that reported an association between CH and CVD 
received a great deal of attention, having been reviewed exten-
sively15,21,22. Somewhat less attention was given to contemporane-
ous studies reporting a lack of association, albeit sometimes in 
smaller samples7–9,12,14,15,63. The present study finds no evidence of an 
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Fig. 5 | CH GWAS variants are associated with splicing and expression of 
CD164. a, Splice diagram of the two major CD164 mRNA isoforms from whole 
blood RNA-seq data. Blue bars depict exons and are wider in coding regions. 
Introns are depicted as black arrowed lines. The sQTL affects skipping or 
inclusion of exon 5. Effects (β in s.d. units) from linear regression of the CH 
risk rs3056655_A allele are as follows: E4 to E6 (β = 0.44, P = 3.04 × 10−302; E4 to 
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the arcs indicates the overall usage of the different splice junctions. Black arcs 
indicate a reduction in usage in association with rs3056655_A, while the brown 

arc indicates an increase. b, Colocalization plot of the CD164 locus showing 
association from logistic/linear regression of rs3056655 with CH (blue) and 
with the E4 to E6 splice event in whole blood (red, −log10(P) is divided by 40 
for scaling). c, RNA-seq coverage plot of CD164 from 822 CD8+ cytotoxic T cell 
samples, stratified by rs3056655 allele, showing reduced levels of expression in 
rs3056655_A (CH at-risk) heterozygotes and homozygotes. Note that rs3056655 
is multi-allelic, but only the rs3056655_A (CH at-risk) and _G (CH protective) 
alleles were seen in the RNA-seq samples. d, As c, but RNA-seq from 899 
monocyte samples.
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association between CVD and barcode-CH or CPLD-CH. The strong 
potential for confounding by age and smoking has been emphasized, 
here and elsewhere14. Moreover, our stringent exclusion of people 
with a pre-existing hematological abnormality may be a factor. Some 
hematological disorders (particularly MPN) have known associations 
with blood clotting and CVD risk64. We observed an increased inci-
dence of CVD among the participants whom we excluded compared 
to participants without CH (HR = 5.08, P < 2 × 10−16). We also note that 
published CVD risks are seen particularly for ASXL1-CH (which has a 
demonstrable smoking bias) and JAK2-CH (which associates strongly 
with MPN)9,15. Not taking these considerations sufficiently into account 
may create or inflate an apparent CVD risk.

There may be a large number of undiscovered mutations that 
confer a sufficient fitness advantage to drive HSC clonal expansions to 
overt CH over a long period of time2,24,25. We find several genes that are 
not well recognized as CH drivers, some with previously noted involve-
ment in myeloid (or in some cases lymphoid) disease. Nevertheless, 
most CH still cannot be accounted for by an obvious driver mutation. 
No satisfactory explanation has yet emerged and the question merits 
further investigation.

Here we provide new evidence for 25 loci with germline variants 
that predispose to barcode-CH. We additionally identify three second-
ary signals and two suggestive, missense variants. Several variants 
overlap with loci that have been associated with CPLD-CH, mCA, LoY 

and MPN, underlining the close relationships between these pheno-
types1,9,14,15,42–44,65,66. CH GWAS variants commonly show pleiotropic 
associations with blood cell traits, LTL and MPN but not CVD—no CH 
GWAS variants had listings for CVD in the GWAS Catalog, and MR analy-
sis gave no indication that CH risk variants increased CVD outcomes 
(Supplementary Table 20).

Based on MR using the few instrumental variables that were avail-
able to them at the time, a study described in ref. 67 concluded that 
long-LTL alleles predispose to CH, whereas CH alleles predispose 
toward shorter telomeres. This is not fully consistent with our obser-
vations, in which we see many discordant effects (Fig. 4). MR studies 
typically show that long-LTL alleles are associated with cancer predis-
position, whereas observed telomere lengths in blood of predisposed 
people or in tumors can be either longer or shorter. Indeed, we find 
that CH is linked to shorter observed LTL, perhaps as a result of extra 
divisions that an HSC clone had to undertake to gain its dominance (see 
Fig. 4a above and ref. 1). In leukemias, paradoxically, risk is increased 
by both long and short observed LTL, measured prospectively68. A 
rationalization for this, as evidenced in congenital telomeropathies, 
could be that too short telomeres impair HSC function and precipitate 
a bone marrow insufficiency. This places a selective pressure on the 
HSC population and the marrow is repopulated by HSCs that have 
acquired alterations allowing them to bypass the replicative exhaus-
tion induced by the telomere erosion69,70. MR studies in MPN, CLL and 
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Fig. 6 | CH risk variants, pQTL and eQTL at the TCL1A locus. a, Locus zoom 
of CH GWAS results at TCL1A. b, Cis-pQTL analysis of variants affecting plasma 
protein levels of TCL1A in 47,133 UKB participants. c, As b, but from 35,559 
ISL participants. d, RNA-seq cis-eQTL analysis of TCL1A in whole blood. e, 
Colocalization analysis of CH GWAS and blood eQTL signals at the TCL1A locus. 
The CH GWAS (green) and unadjusted eQTL signals (red) do not coincide. 

However, when the eQTL signal is adjusted for the 4% MAF rs78986913 variant 
(Padj values shown in blue), then the peaks overlap with a PP.H4 = 85% probability 
that they correspond to the same signal. The position of the CH GWAS sentinel 
variant rs2887399 is indicated by the gray vertical line. f, TCL1A eQTL from 758 
B cell RNA samples. g, TCL1A eQTL from 884 monocyte samples. In all panels 
except e, the r2 focus is on rs2887399.
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leukemias in general implicate long-LTL alleles as risk factors44,68,71,72. 
A long-LTL genetic constitution may relax the replicative constraints 
that normally keep HSC expansions in check, allowing emergent HSC 
clones to expand and present a larger target for secondary oncogenic 
events. It is therefore plausible that both long-LTL and short-LTL vari-
ants could act to promote CH.
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Methods
Epidemiology
Iceland. The study included WGS of whole blood samples from 45,699 
Icelanders participating in various projects at deCODE genetics. The 
study was authorized by the Icelandic National Bioethics Committee 
and the Data Protection Authority (License VSN-16-104). All individuals 
gave written informed consent.

UKB. The study included WGS of whole blood samples from 130,709 
participants in the UKB. The study was authorized by the North West 
Research Ethics Committee (reference 06/MRE08/65). All individuals 
gave written informed consent. Genotype and phenotype data for 
our study were obtained, and research was conducted under the UKB 
application license 56270.

Study exclusion criteria. For UKB we included only participants with 
self-declared British or Irish ethnicity (UKB field 21000). For ISL, to 
suppress germline singleton mutations in the samples (which can be 
mistaken for high VAF somatic mutations1), we excluded individuals 
with unproven Icelandic ancestry as far back as great-grandparents. 
Our definition of CH excludes pathological expansions of defined, 
committed lineages such as lymphomas, leukemias, MDS and MPN. 
Accordingly, participants were excluded from most analyses (unless 
otherwise specified) if they had a diagnosis of a hematological disorder 
(International Classification of Diseases, Tenth Revision (ICD10) codes 
C81-C96 and D45-D47) before or within 6 months after blood draw. 
Participants were also excluded if they had substantial evidence of 
abnormality from hematology parameters measured at recruitment 
(if available), comprising white blood cells (WBC) < 1.5 × 109 or >35 × 109 
cells per l or hemoglobin concentration (HGB) < 8 g dl−1, or platelet 
count (PLT) < 50 × 109 cells per l.

WGS for CH case definition
UKB. Reads were aligned to GRCh38 reference (GRCh38 reference with 
alt contigs plus additional decoy contigs and HLA genes) with bwa mem 
(v0.7.17). Duplicates were marked using Picard MarkDuplicates (v2.20.3). 
A base quality recalibration table was created using GATK BaseRecali-
brator (v4.0.12) with known sites files dbSNP138, Mills and 1000G gold 
standard indels, and known indels from GATK resource bundle (from 
gs://genomics-public-data/resources/broad/hg38/v0). For each chro-
mosome in chr1 to chr22, chrX, chrY, the resulting base recalibration 
table was applied using GATK ApplyBQSR (v4.0.12) and then variants 
were called for each sample individually using GATK HaplotypeCaller 
and GATK GenotypeGVCFs (v4.0.12). Variants were (hard) filtered using 
criteria in http://gatkforums.broadinstitute.org/discussion/2806/
howto-apply-hard-filters-to-a-call-set. Average sequence depth was 33.

We extracted all singleton SNPs (SNPs occurring only once in the 
UKB cohort) for 149,960 participants, then filtered on genotype qual-
ity (GQ) ≥ 90 to obtain some 287 million singleton variants (ignoring 
hard filtering).

The following filter steps were applied:

•	 use FILTER in (PASS, Low_QD)
•	 15 ≤ depth ≤ 60
•	 minor allele reads ≥3 to remove spurious low-VAF bump

We estimate the number of somatic singleton mutations with 
0.1 ≤ VAF ≤ 0.25 as the number of observed variants in this VAF range 
minus the number of expected germline variants. To model the 
expected number of germline variants in this VAF range, we make the 
following assumptions:
•	 The expected number of germline variants in the VAF ranges 

0.1–0.25 and 0.75–0.9 are approximately equal (that is, there is 
symmetry in the germline variant VAF distribution).

•	 The vast majority of variants in VAF ranges 0.35–0.65 and 
0.75–0.90 are germline variants.

•	 The ratio of germline variants in VAF ranges 0.75–0.90 and 
0.35–0.65 is approximately constant for each participant, given 
sequencing depth and sequencing center.

For each depth, we compute the ratio of total observed (germline) 
variants in VAF range 0.75–0.9 compared to VAF range 0.35–0.65. This 
computation is done separately for each sequencing center. For each 
participant, the number of expected germline variants in VAF range 
0.1–0.25 for a given sequencing depth is then computed as the expected 
fraction of germline variants in VAF range 0.75–0.9, given the observed 
number of variants in VAF range 0.35–0.65 at the given depth. Only 
sequencing depths ≥21 were considered. Based on an expected frac-
tion of CH of around 1% at age 40, we set a threshold of ≥20 observed 
somatic singleton indicator mutations with 0.1 ≤ VAF ≤ 0.25 to define 
CH. This threshold was adjusted for sequencing center (+1 for Vanguard 
and −2.2 for Sanger) to achieve agreement of age dependency between 
the sequencing centers. Note that the VAF of the indicator mutations 
is not a precise measurement of the VAF of the CH clone—because only 
∼20 indicator mutations are required to define CH, VAF distributions 
of somewhat smaller and larger clones are likely to pass through the 
detection window. Moreover, larger clones will generate subclones 
with indicator mutations of lower VAF.

ISL. For ISL, we needed to accommodate for different sequencing plat-
forms. A total of 33,189 samples sequenced on Illumina HiSeqX were 
processed to determine CH status as previously1. For 12,510 samples 
sequenced on Illumina NovaSeq, reads were aligned to hg38 reference 
using bwa mem (v0.7.10), indels realigned using GATK IndelRealigner 
(GATK 2.3-9) and duplicates removed using Picard MarkDuplicates 
(V1.117). Genotypes were called using GATK HaplotypeCaller and GATK 
GenotypeGVCFs (v.2014.4-3.3.0-0-ga3711aa). Variants were (hard) fil-
tered as above. CH status was determined as described above for UKB; 
however, singletons were determined based on a cohort of ∼100,000 
sequenced participants. As no base quality recalibration was applied 
to ISL, the estimated number of somatic singletons for 0.1 ≤ VAF ≤ 0.25 
was higher than for UKB (46 for WGS NoPCR Nova and 32 for NEB WGS). 
Average sequence depth was 38.

Definition of CPLD-CH. We ran Strelka2 (2.9.10) somatic workflow on 
CPLD gene regions on CRAM files from genome alignment (see above). 
To suppress artifacts due to mapping problems, we used one of the 
CRAM files as a normal sample for all other samples. Variants were 
filtered on depth >10, FILTER = ‘PASS,’ and 0.01 ≤ VAF ≤ 0.99. To identify 
germline variants, we performed a binomial test on VAF against 0.5, 
and classified calls with P > 0.05 as potential germline calls. Variants 
with >5 observations and >75% potential germline calls were removed. 
We annotated the remaining variants using VEP and kept only those 
moderate/high-impact variants that were either high impact (but not 
in ‘GNAS,’ ‘JAK2,’ ‘SRSF2,’ ‘SF3B1’) or present in ref. 13.

Note that the definition of CPLD-CH is not subject to the same VAF 
restrictions as the mutational barcode method described above. More-
over, particularly in younger individuals, CPLD-CH can be detected 
in the absence of a mutational barcode, as discussed in ref. 1 (see also 
Supplementary Table 8).

To define CHIP in Table 2, we used the strategy recommended in 
refs. 19,20, adapted to our dataset. Variants in the 73 candidate genes 
(except U2AF1) were called using Strelka2. Variants were annotated 
with VEP v.100. Variants given in Vlasschaert Supplementary Table 1 
(ref. 20) were selected and kept if they had depth ≥20 and minAD ≥3. 
Variants occurring at ≥15 times were tested for association with age and 
rs7705526—variants with P > 0.1 or estimate <0 for both covariates were 
removed. A binomial test was used to remove putative germline vari-
ants by testing if the read depth was statistically different from half of 
the sum of all sequencing reads at that site. Variants with P > 0.01 were 
removed, except for variant sites TET2 H1904R, I1873T and T1884A.
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Phenotypes and metadata
ISL phenotypic data were taken from national registries, hospital and 
project-based datasets curated in the deCODE genetics phenotypic 
database. For UKB, age at blood sampling was computed from UKB 
field 3166. ICD10 diagnoses were taken from the following UKB fields:

•	 ICD10 hospital inpatient summary (41270).
•	 Self-reported illnesses, cancer (20001) and noncancer (20002).
•	 Cause of death from death registry, primary (40001) and sec-

ondary (40002).
•	 Cancer registry ICD10 (40006) and ICD9 (40013).
•	 OPCS4 hospital inpatient summary (41272).

Smoking. The smoking phenotype was focused on heavy smokers (cur-
rent or previous) and was defined based on the following UKB fields:

•	 1249, past tobacco smoking (−3 = no answer, 1 = on most or all 
days, 2 = occasionally, 3 = tried once or twice, 4 = no) .

•	 1239, current tobacco smoking (−3 = no answer, 1 = on most or all 
days, 2 = occasionally, 0 = no).

•	 3436, age started smoking in current smokers.
•	 2867, age started smoking in former smokers.
•	 2897, age stopped smoking.
•	 2887, number of cigarettes previously smoked daily.
•	 3456, number of cigarettes currently smoked daily.

We used data only from the first assessment. Smoking status 
was defined as current if 1239 = 1 and previous if 1249 = 1, otherwise 
never. Pack years and years since stopped smoking were derived 
from 3436, 2867, 2897, 2887 and 3456. The fraction of participants 
with CH was modeled using logistic regression for all participants 
with the available covariates smoking status, pack years and years 
since stopped smoking. Nonlinear transformations for pack years 
and years since stopped smoking were based on the results of the 
generalized additive model.

Hematological disorders were classified according to the follow-
ing scheme:

•	 All hematological disorders—C81-C96, D45-D47, then…
•	 Any myeloid disease—C92-C94, D45, D46, D47.0, D47.1, D47.3, 

D47.4, D47.5
•	 AML and related—C92.0, C92.4, C92.5, C92.6, C92.8, C93.0, C94
•	 CML and related—C92.1, C92.2, C92.3, C93.1, C93.3
•	 MDS—D46
•	 MPN (non-CML)—D45, D47.0, D47.1, D47.3, D47.4, D47.5
•	 PCV—D45
•	 ET—D47.3
•	 OMF—D47.4
•	 Any lymphoid disease—C81-C91, D47.2, D47.9
•	 CLL—C91.1
•	 MM—C90
•	 MGUS—D47.2

Disease and clinical hematology parameter phenotype–phenotype 
association testing. We tested for association between CH and case–
control phenotypes by logistic regression, using sex and age at blood 
draw (linear and quadratic) as covariates. To correct for the influence 
of smoking, we also performed logistic regression using smoking 
status (and, in some cases, pack years and years since stopped smok-
ing) as additional covariates. We estimated, conservatively, that we 
tested 10,000 independent disease phenotypes and set the Bonferroni 
adjustment level accordingly at 5.00 × 10−6. For clinical hematology 
parameters and other quantitative phenotypes, we tested for asso-
ciation between the number of somatic singletons and quantitative 
phenotypes by linear regression, using sex and age at blood draw (linear 
and quadratic) as covariates. The number of somatic singletons was 
inverse normal transformed stratified by sequencing center and sex. 
Quantitative traits were inverse normal transformed stratified by sex.  

To correct for the influence of smoking, we also performed linear 
regression using smoking status as an additional covariate.

Time-to-event analysis of CVD, hematological disorders, survival 
and cause of death analysis. For UKB, the median age at blood draw 
was 58.4 years and the median follow-up time was 12.0 years (range: 
10.2–14.7). For ISL, the median age at blood draw was 53.0 years and the 
median follow-up time was 14.7 years (range: 0–20.8). For time-to-event 
and survival analysis, we fitted Cox proportional hazards models using 
the R package Survival (v3.3-1). We stratified by sex and 5-year age bin 
and adjusted for age at blood draw and smoking. Assumptions for the 
Cox proportional hazards model were checked using the ‘cox.zph’ func-
tion of the R package. The CAD phenotype comprised ICD10 codes from 
first reported diagnoses or cause of death (I200, I21, I210, I211, I212, I213, 
I214, I219, I21X, I22, I220, I221, I228, I229, I24, I240, I241, I248, I249, I25, 
I250, I251, I252, I256, I258, I259) and OPCS4 codes (K401, K402, K403, 
K404, K411, K412, K413, K414, K451, K452, K453, K454, K455, K491, K492, 
K498, K499, K502, K751, K752, K753, K754, K758, K759). Primary cause 
of death data were obtained from field 40001 for UKB and from the 
National Register of Deaths for ISL. Analysis was conducted where ≥10 
participants had the same cause of death. Participants with nonqualify-
ing causes of death were right-censored. For the time-to-event analysis 
of hematological disorders shown in Fig. 2, hematological events with 
ICD codes described above were registered if they occurred 6 months 
or more after sampling for CH assessment. Participants who could not 
be assessed for CPLD status were excluded. In an analysis of HR for 
CPLDneg-CH, participants who were barcode-CH positive, CPLD-CH 
positive were excluded.

Somatic genetics
Gene-based somatic mutation burden testing. Burden testing of 
somatic variants was performed using SKAT-O73. For all protein-coding 
genes, we retrieved genotypes for those high/moderate-impact variants 
that occurred less than 500 (UKB) or 175 (ISL) times and removed likely 
germline variants (that occurred >5 times with a mean VAF between 0.45 
and 0.55). SKAT-O was run with adjustment for age at blood draw, eth-
nicity, sex and sequencing center. We report on genes where one of the 
VEP categories was Bonferroni significant (P < 1.0 × 10−6) in one cohort 
and at least nominally significant in the other, or the Pcombined<1.0 × 10−9. 
Individual variants were assessed using Fisher’s exact test.

Chemotherapy and CPLD mutations. We extracted the date of first 
chemotherapy (OPCS4 code X72%, X73%) from the UKB phenotype 
database. In total, 403 participants had undergone chemotherapy 
before blood sampling. We then estimated the relative risk of a defined 
CPLD mutation by multivariable logistic regression including terms for 
age, sex and smoking status.

CH GWAS
Genotyping, WGS and imputation. For ISL, 174,987 samples were 
genotyped using chip arrays from the Illumina OmniExpress family 
(n = 136,215) with the remaining samples using older HumanHap fam-
ily chips. Sequence variants for imputation were identified by WGS 
data from 63,118 samples. Joint variant calling used GraphTyper v.1.4  
(ref. 74). Genotypes for these variants were imputed into the chip-typed 
samples using long-range phasing75 yielding phased genotypes for 
173,025 participants.

For UKB, chip genotyping, WGS and imputation are detailed in  
ref. 17. Briefly, genotyping was performed using a custom-made Affy-
metrix chip (UK BiLEVE Axiom) on the first 50,000 participants and 
the UKB Axiom for the remainder. Sequence variants for imputation 
were identified by WGS of 150,119 samples, performed by deCODE 
genetics and the Wellcome Trust Sanger Institute. Joint variant call-
ing was performed using GraphTyper v.1.4. Long-range phasing was 
used to impute the WGS-derived genotypes into 431,079 participants.
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CH GWAS, association testing and meta-analysis. Methods for GWAS 
association testing are described in detail elsewhere17,76. Briefly, associa-
tion between imputed variants and barcode-CH as a binary phenotype 
was tested by logistic regression under a multiplicative genetic model. 
For ISL, the model included as covariates—sex, county of birth, current 
age or age at death (first- and second-order terms included) and an indi-
cator function for the overlap of the lifetime of the individual with the 
time span of phenotype collection. In UKB, 20 principle components 
were used to adjust for population stratification, with age and sex 
included as covariates. LD regression was used to account for cryptic 
relatedness and stratification77. Analysis of quantitative hematologi-
cal parameters and LTL used the linear mixed model implemented in 
BOLT-LMM78. For meta-analyses, GWAS results from ISL and UKB were 
combined using a fixed-effects inverse-variance method based on 
effect estimates and s.e. in which each dataset was assumed to have a 
common OR but allowed to have different population frequencies for 
alleles and genotypes. Sequence variants were mapped to NCBI Build 
38 and matched on position and allele to harmonize the datasets. We 
tested ∼75.2 million variants for association, with MAF > 0.001% and 
imputation information >0.8 in at least one of the cohorts. For con-
ditional analysis, the sentinel signal at each locus was defined as the 
variant with the lowest Bonferroni adjusted P value using adjusted 
significance thresholds79. Conditional analysis used individual-level 
genotype data to test possible secondary signals ±500 kb from the 
sentinel signal.

CPLD-CH GWAS. The GWAS was repeated using individuals who were 
identified as carrying a somatic mutation in CPLD genes as affected. 
For the CPLD-CH × barcode-CH effect × effect plots, variants were 
included if they were associated at P < 5 × 10−8 (or 5 × 10−7 for moderate- 
or high-impact variants) in barcode-CH or in any one of the CPLD-CH 
classes and had not been excluded as high impact, rare variants as 
indicated in Supplementary Table 9. Variants were not plotted if they 
had abs(logeOR) > 3, but they were included in the data table (Sup-
plementary Table 12).

Investigation of pleiotropic traits in the GWAS Catalog. For each 
sentinel variant, we identified all variants in LD (r2 ≥ 0.8) within ±500 kb. 
For those variants, we then searched the GWAS Catalog80 for reported 
associations with P < 1 × 10−7.

LTL and MPN effect × effect plots and MR. Variants selected for 
effect × effect plots and MR of LTL and MPN were genome-wide sig-
nificant according to stringent weighted Bonferroni criteria after 
stepwise conditional analysis at each locus79. LTL variants and effects 
were determined by GWAS using UKB LTL data48. MPN outcomes were 
freshly recalculated using current UKB data (Supplementary Table 18).  
MR analyses were performed using linear regression without an inter-
cept term, weighted by the inverse-variance of the outcome asso-
ciations (IVW), MR coupled with an intercept test and weighted linear 
regression with an intercept term (MR-Egger81).

RNA eQTL and sQTL analysis. Public domain databases that were 
screened for RNA-seq eQTL and sQTL data are detailed in the Data 
Availability section. In-house RNA-seq analysis was performed as an 
extension of our previous studies76,82—we isolated RNA from whole 
blood samples from ISL participants (n = 17,848), in addition to 822 
T cell, 758 B cell and 899 monocyte samples, using Chemagic Total RNA 
Kit special (PerkinElmer) and sequenced it using Illumina HiSeq 2599 
and NovaSeq systems. STAR software (v.2.5.3) was used to align RNA-seq 
reads to personalized genomes83. Kallisto84 was used to estimate tran-
script abundances. BOLT-LMM was used to test additive model associa-
tion between transcript abundance and genetic variants. Adjustment 
factors were as follows: sequence artifact estimations, demographic 
characteristics, blood cell counts and 100 leave-one-chromosome-out 

(LOCO) principle components of the gene expression matrix. The top 
cis-eQTL was defined as the variant with the most significant associa-
tion within 1 Mb of the gene.

LeafCutter (v.0.2.6) (ref. 85) was used to quantify RNA alternative 
splicing. Linear regression under the additive model was used to test 
the association between alternative splicing events and linked genetic 
variants using quantile-normalized-percentage-spliced-in (PSI) values 
for each junction. Adjustment factors were as follows: sequence artifact 
estimations, demographic characteristics, blood cell counts and 15 
LOCO principle components of the quantile-normalized PSI matrix. 
Colocalization analysis between CH GWAS variants and eQTL was car-
ried out using COLOC57 implemented in R.

Proteomics. Proteomic analysis of ISL plasma samples (including 
n = 18,527 participants assessed for CH) using the SomaScan version 
4 panel was described previously54. Proteomic analysis of UKB plasma 
samples (n = 12,636 participants with CH assessment) was conducted 
using the Olink Explore 1536 platform as part of the UKB-Pharma Pro-
teomics Project (UKB application 65851). The vast majority of the 
samples were randomly selected from among UKB participants. Olink 
measurements used the normalized protein expression (NPX) values 
recommended by the manufacturer, which include normalization.

To test for associations between plasma protein levels and CH, 
we used the following model: protein level ∼ CH + age + sex + smok-
ing + blood count phenotypes, where the smoking phenotype is ‘ever 
smoked’ (UKB ID20160) and blood count phenotypes are WBC, eosino-
phil (EO) %, lymphocyte number (LY#), plateletcrit (PCT), platelet 
(PLT), high light scatter reticulocyte number (HLR#), HLR%, monocyte 
number (MO#), reticulocyte (RET) %, immature reticulocyte fraction 
(IRF), reticulocyte number (RET#) platelet distribution width (PDW), 
mean corpuscular hemoglobin (MCH), mean corpuscular volume 
(MCV), mean sphered cell volume (MSCV), basophil (BA) %, MO%, 
eosinophil number (EO#), neutrophil (NE) %, and red cell distribution 
width (RWD). All the blood-related phenotypes were corrected for 
age and sex and standardized to normal distribution before entering 
into the model.

Statistical testing. All statistical tests used in the study were two-sided. 
None of the P values quoted were adjusted for multiple testing.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
In addition to data presented in Supplementary Tables 1–22, the fol-
lowing new datasets are made available at: https://www.decode.com/
summarydata/
1. Variant level GWAS meta-analysis data for ISL and UKB for barcode-CH 
and each CPLD-CH type illustrated in Fig. 3.
2. Mutation level counts and Fisher’s exact test results for each somatic 
mutation tested in ISL and UKB.
WGS, genotype and phenotypic data for UKB participants can be 
accessed by approved researchers via the UKB research analysis plat-
form: https://ukbiobank.dnanexus.com/landing. Guidance on access 
can be found here: apply for access (ukbiobank.ac.uk). Individual-level 
ISL WGS, RNA-seq and phenotype data cannot be made publicly avail-
able because that is prohibited by the Icelandic Act on Data Protec-
tion and Processing of Personal Data and conditions set forth to us by 
the Icelandic Data Protection Authority. On-site access to the data at 
deCODE genetics facilities may be granted. Interested parties should 
write to the lead contact author S.N.S. with a brief description of the 
requirements and intended use. Requests will be discussed by the 
deCODE data access committee and a response given within 4 weeks.
We used data from the following public domain sources:
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GWAS Catalog80 (https://www.ebi.ac.uk/gwas/home 26/10/2021 
release) for reported GWAS associations.
GTEx v8 (ref. 86; https://gtexportal.org/home/) for eQTL/sQTL, vari-
ous tissues.
eQTL Catalog87 (https://www.ebi.ac.uk/eqtl) for eQTL/sQTL, various 
tissues.
GEUVADIS88 (https://www.cnag.crg.eu/projects/geuvadis) for eQTL/
sQTL in LCL.
Ref. 89 for eQTL/sQTL in monocytes, neutrophils and T cells.
eQTLGen Consortium90 (https://www.eqtlgen.org) for eQTL/sQTL in 
blood.
Ref. 91 for eQTL/sQTL in vascular and metabolic tissues.
xQTL Serve92 (https://mostafavilab.stat.ubc.ca/xQTLServe) for eQTL/
sQTL in brain.
Ref. 93 for eQTL/sQTL in dendritic cells.
Ref. 94 for eQTL/sQTL in monocytes.
MuTHER95 (http://www.muther.ac.uk) for eQTL/sQTL in adipose, LCL 
and skin.
Ref. 96 for eQTL/sQTL in liver.
Ref. 97 for eQTL/sQTL in lung.
Ref. 98 (https://nephqtl.org) for eQTL/sQTL in kidney.
Ref. 99 (http://icahn.mssm.edu/gwas2genes) for eQTL/sQTL in vari-
ous tissues.
Ref. 100 for eQTL/sQTL in leukocytes.
Ref. 101 for eQTL/sQTL in blood.
Ref. 102 (GEO (https://www.ncbi.nlm.nih.gov/geo) accession 
GSE196830) for eQTL/sQTL in 14 immune cell types.
Ref. 103 for eQTL/sQTL in LCL.

Code availability
No custom code/software was used in the study. The publicly available 
software used is indicated in the Methods above and collated in the 
attached Reporting Summary.
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Extended Data Fig. 1 | Age and smoking dependency of CH. a, Frequency 
distribution in UKB of singleton mutations: Mutations that were observed only 
once in the cohort were plotted by variant allele fraction (VAF). The counts 
were further stratified by the age of the subject at blood draw. Note that there 
is a ‘bump’ in the distribution starting below a VAF of approximately 0.3 and 
that the size of this ‘bump’ is age dependent. This distribution was modeled to 
identify people with more than the expected number of low-VAF mutations, as 
explained further in the Methods. b, Proportion of subjects with CH increases 

with age. The line connects the observed CH proportions, error bars are 95%CI. 
Data are from the ISL sample (n = 45,510), which has a larger age range than UKB. 
c, Effects of current and previous smoking on CH by age: CH was modeled by age 
and stratified by current or previous smoking status using sex, Pack-Years and 
Years Since Stopped Smoking as covariates. Points correspond to observed CH 
proportions and error bars are 95%CI. Lines correspond to a logistic regression 
fit. Data are from the UKB sample (n = 130,709).

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01555-z

Method
Barcode

Candidate gene

DNMT3A/TET2

0.0

0.2

0.4

0.6

0 25 50 75 100
Age at blood draw [years]

Fr
ac

tio
n 

of
 s

ub
je

ct
s 

w
ith

 C
H

Method
Barcode

Candidate gene

0.0

0.1

0.2

40 50 60 70
Age at blood draw [years]

Fr
ac

tio
n 

of
 s

ub
je

ct
s 

w
ith

 C
H

a b

Extended Data Fig. 2 | Only a minority of CH cases have a known CPLD 
mutation. The proportion of subjects with barcode-CH by age is shown in blue. 
Proportions of subjects where a CPLD mutation had been identified (CPLD-
CH) are in green and the proportion with a mutation in DNMT3A or TET2 are in 

magenta. CPLD mutations were defined as in ref. 13. The lines indicate a data fit 
using a generalized additive model with cubic splines. Shading indicates 95%CI.  
a, Data from UKB. b, Data from ISL.
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Extended Data Fig. 3 | Locus zoom plots for loci where a secondary signal was 
detected by conditional analysis. Plots show conditional logistic regression 
GWAS results (−log10P vs chromosomal position) from 16,306 cases and 159,913 
controls. The adjusted signals are shown, with the primary signal in the upper 

part of each panel and the secondary signal in the lower part. r2 values relative to 
the peak signal are shown by color as indicated in the color bar, bottom right.  
a, SMC4 locus. b, TERT locus. c, NRIP1 locus.
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Extended Data Fig. 4 | GWAS of CPLDneg-CH and comparison of effects with 
barcode-CH GWAS. Data are a meta-analysis of ISL and UKB. GWAS variants  
were included if they were significantly associated with barcode-CH or  
CPLDneg-CH. The plotted points are association effect estimates (loge odds ratio) 
and 95%CI from logistic regression association testing for variants in  

barcode-CH (16,306 cases, 159,913 controls) and CPLDneg-CH (11,692 cases, 
151,277 controls) respectively. The fitted inverse variance weighted linear 
regression, fixed through the origin, is shown as a red dotted line. Variants that 
were newly discovered in the CPLDneg-CH GWAS are colored green. Labeled loci 
are discussed in the text.
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Extended Data Fig. 5 | Effects of GWAS meta-analysis variants on various 
types of CPLD-CH vs barcode-CH. GWAS variants were included if they were 
significantly associated with barcode-CH or any of the CPLD-CH types. The 
x-axes show the effects (loge odds ratio) and 95%CI (horizontal lines) for each 
variant in barcode-CH, determined by logistic regression. The y-axes show the 
corresponding effects and 95%CI (vertical lines) for each variant in the different 
types of CPLD-CH, as indicated above each panel. The dotted line shows the 
position of the diagonal. Gray lines indicate the position of no effect. Detailed 
data including case and control numbers are in Supplementary Table 12. The 
chr14:TCL1A rs2887399_T allele was protective against barcode-CH, TET2-CH 
and ASXL1-CH whilst the same allele increased risk of DNMT3A-CH, in line with 
previous reports. The chr14:TCL1A variant is indicated in the DNMT3A-CH and 
ASXL1-CH panels to illustrate the reversal of effect. Similarly, the chr6:CD164 
chr6:CD164 rs3056655_A allele increased risk of barcode-CH and DNMT3A-CH but 

decreased risk of TET2-CH13,14. The latter result was seen only in UKB, whereas ISL 
data could not confirm it. The chr3:SMC4 rs201009932 variant had no discernible 
effect on ASXL1-CH while it had a pronounced effect on JAK2-CH. chr3:THRB had 
no apparent effect on DNMT3A-CH and chr5:TERT rs7705526 had no effect on 
PPM1D-CH. Other variants showed prominent effects only in specific CPLD-CH 
types: chr12:SOX5 and chr14:DLK1 had no evident effects outside of barcode-CH, 
while chr13:KLF12 had no apparent effect outside of PPM1D-CH. The chr9:JAK2 
rs16922785_G allele (indicated in the JAK2-CH panel) only conferred CH risk in the 
context of the JAK2 Val617Phe somatic mutation and was preferentially linked 
to it in cis, as has been noted previously for the 46/1 JAK2 haplotype and MPN 
risk104. rs16922785 is in moderate LD with the 46/1 haplotype (r2 = 0.68) and had 
a somewhat stronger association with JAK2-CH than the 46/1 haplotype tagger 
rs12343867_C (P = 1.60 × 10−9 vs 1.04 × 10−7).
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Extended Data Fig. 6 | Effects of CH GWAS variants on clinical hematology 
parameters. a, GWAS Catalog reports: For each sentinel CH GWAS variant, we 
identified all variants in LD with r2 > = 0.8 within +/−500kb. For those variants, 
we searched the GWAS Catalog for reported associations with P-values < 1 × 10−7 
from linear regression association. CH GWAS loci (y-axis) are colored red if the 
Alt allele increased CH risk, otherwise blue. Circles are colored red if the Alt allele 
was associated with an increase in the hematological trait value (x-axis), blue if 
there was a decrease and gray if the direction of effect could not be ascertained. 
b, Associations from linear regression between sentinel CH GWAS variants 
and clinical hematology traits measured on contemporaneous samples in the 
UKB: CH GWAS loci (y-axis) are colored red if the Alt allele increased CH risk, 
otherwise blue. Hematological trait symbols (x-axis) are colored red if their 
values increased in association with the CH phenotype, blue if they decreased 
in CH and gray if they were not associated with CH. Blocks are colored in if the 
effect of the CH GWAS variant on the trait was at least nominally significant: red 

indicates that the Alt allele was associated with an increase in the hematological 
trait value, blue indicates a decrease. Intensity of color indicates the effect size. 
Hematological traits are ordered by hierarchical clustering within the CH at-risk 
and CH protective strata. Platelet parameters were affected by the greatest 
number of variants: PCT, PLT, PDW and MPV; followed by erythrocytic parameters 
MCH, RBC and MCV. The best alignments in direction of effects (that is where 
the effects of the variant on CH and the hematological trait were consistent with 
the phenotype:phenotype association) were seen again for platelet parameters 
PDW, PCT and PLT as well as for MO#, LY# and BA%. From the perspective of the 
CH GWAS variants, the variants affecting the most hematological traits were 
chr6:CD164 and chr6:HLA-C. However chr6:CD164 had rather poor alignment in 
the direction of effects. The best alignments were seen for chr21:14966851 NRIP1, 
chr3:THRB and chr3:16068930:SMC4. Clinical hematology parameters are as 
defined in Sheard47.
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Extended Data Fig. 7 | Effects leukocyte telomere length (LTL) GWAS variants 
on LTL in UKB and in a UKB sub-sample with barcode-CH cases removed. A 
GWAS was conducted on a sub-sample of UKB from which proven CH cases had 
been removed (n = 111,523). The effects of LTL GWAS variants were compared 
between the two samples: LTL effect on the x-axis and the no CH LTL effect on 

the y-axis. The plotted points are association the effect estimates from linear 
regression and the bars indicate 95%CI. The red dotted line indicates the fitted 
inverse variance weighted (IVW) regression. Gray lines indicate the position of  
no effect.
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Extended Data Fig. 8 | Co-localization of eQTL with CH GWAS loci 
chr3q27:ABCC5 and chr3q25:TRIM59/SMC4. a, Public databases report 
that ABCC5 expression is down regulated in association with the CH risk allele 
chr3:183954156_GT in whole blood, monocytes and T-cells. This eQTL was 
confirmed in ISL whole blood RNAseq (β = −0.926 sd, P = 1 × 10−1657). We noted a 
closely correlated, moderate impact splice region variant (rs7636910, r2 = 0.96) 
in ABCC5. The panel shows a plot of RNAseq eQTL signals from whole blood 
(red) and CH GWAS results (blue) by genomic location. eQTL P-values are 
scaled as indicated in the legend. Co-localization analysis (COLOC57) indicated 
a PP.H4 = 74% probability that the eQTL and CH GWAS signals arise from the 
same, single causative variant. ABCC5 is, however, not a compelling biological 
candidate for CH causation. b, Public databases report that TRIM59 and SMC4 
expression in blood is increased in association with CH risk allele rs2305407_A, 

which is annotated as an SMC4 splice region variant. These signals replicated 
in ISL blood RNAseq (TRIM59: β = 0.458sd, P = 1 × 10−420; SMC4: β = 0.073sd, 
P = 1.75 × 10−11). There were two independent CH GWAS signals at 3q25; a 
1-2%EAF CH risk variant chr3_160368930_T_TA and a ∼ 55%EAF CH risk variant 
rs2305407_A, which carries the eQTL association. Accordingly, the CH GWAS plot 
(blue) shows the Padj values for rs2305407_A conditioned on chr3_160368930_T_
TA. The TRIM59 RNAseq eQTL signal (red) is scaled as indicated in the legend. 
COLOC revealed a PP.H4 = 96% probability of peak identity. COLOC did not show 
substantial evidence of peak identity with the SMC4 eQTL, whether the CH GWAS 
signal was conditioned on chr3_160368930_T_TA or not, with PP.H4 = 4.5% and 
2.2%, respectively. eQTL and CH GWAS signals were derived from linear and 
logistic regression association analysis, respectively.
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