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Abstract: Tissue-engineered bone tissue grafts are a promising alternative to the more conventional
use of natural donor bone grafts. However, choosing an appropriate biomaterial/scaffold to sustain
cell survival, proliferation, and differentiation in a 3D environment remains one of the most critical
issues in this domain. Recently, chitosan/gelatin/genipin (CGG) hybrid scaffolds have been proven
as a more suitable environment to induce osteogenic commitment in undifferentiated cells when
doped with graphene oxide (GO). Some concern is, however, raised towards the use of graphene and
graphene-related material in medical applications. The purpose of this work was thus to check if
the osteogenic potential of CGG scaffolds without added GO could be increased by improving the
medium diffusion in a 3D culture of differentiating cells. To this aim, the level of extracellular matrix
(ECM) mineralization was evaluated in human bone-marrow-derived stem cell (hBMSC)-seeded 3D
CGG scaffolds upon culture under a perfusion flow in a dedicated custom-made bioreactor system.
One week after initiating dynamic culture, histological/histochemical evaluations of CGG scaffolds
were carried out to analyze the early osteogenic commitment of the culture. The analyses show the
enhanced ECM mineralization of the 3D perfused culture compared to the static counterpart. The
results of this investigation reveal a new perspective on more efficient clinical applications of CGG
scaffolds without added GO.

Keywords: biomaterials; bioreactors; chitosan; gelatin; graphene oxide; human bone-marrow-derived
mesenchymal stem cells; regenerative medicine; scaffolds; tissue engineering

1. Introduction

Tissue-engineered bone tissue grafts are viewed as a promising alternative to the
conventional use of natural donor bone grafts in terms of protocol standardization, but their
effective translation into clinical practice is still a challenge [1–4]. In particular, choosing an
appropriate biomaterial/scaffold to sustain cell survival, proliferation and differentiation
in a 3D environment remains one of the most critical aspects to approach [5,6]. Several
natural or synthetic biomaterials have been used to this aim [7–14]. In this respect, we
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recently proposed chitosan/gelatin/genipin (CGG) hybrid scaffolds doped/reinforced with
graphene oxide (GO) as a promising biomaterial/scaffold with osteogenic potential [15].
Some concern was however raised towards the use of graphene and graphene-related
material in medical applications, requiring further testing and full understanding of their
behavior in biological systems [16,17]. While the results of such studies are ongoing, we here
thus propose to evaluate the osteogenic potential of CGG scaffolds [18,19] without added
GO, by including a perfusion flow into the differentiation-inducing protocol. In fact, it is
well established that a dynamic environment can improve diffusion gradients, especially
within tridimensional tissue constructs, and thus enhance their functional behavior. Indeed,
several studies [20–26] demonstrated that the use of bioreactor systems to this aim can
improve cell phenotype commitment. Thus, here, human bone-marrow-derived stem cell
(hBMSC)-seeded 3D CGG scaffolds have been cultured under a perfusion flow and the
extent of the early osteogenic process [27–32] has been evaluated as the level of extracellular
matrix (ECM) mineralization was measured. An increased ECM mineralization was found
in 3D CGG scaffolds cultured in dynamic conditions compared to static conditions. The
results of this investigation reveal a new perspective on potential clinical applications of
CGG scaffolds without added GO.

2. Materials and Methods
2.1. Three-Dimensional Chitosan–Gelatin–Genipin Scaffolds

Crab-shell-derived medium-molecular-weight chitosan with a 75–85% deacetylation
degree, cold water fish gelatin, genipin (purity > 98%—HPLC grade), and acetic acid
(>99.7%) were purchased from Sigma Aldrich (St. Louis, MO, USA) and used without prior
purification. The composites’ synthesis was carried out in double distilled water. Genipin
crosslinked gelatin/chitosan blend scaffolds were prepared under identical conditions as
previously reported [33]. Briefly, gelatin was dissolved in water (5% w/v) by thoroughly
stirring at 50 °C for 1 h and mixed with a 1% wt. chitosan solution prepared in a mild acidic
solution (1% v/v) by stirring overnight at 40 °C. For a total of 50 mL of solution, 8.33 mL
of gelatin solution was homogenized with 41.67 mL chitosan solution. The crosslinking
was carried out with genipin (1% w/w in water). Next, materials were frozen at −80 °C and
freeze-dried (−55 °C).

2.2. Perfusion Bioreactor

A perfusion bioreactor system was used to generate a continuous perfusion flow in
a range of 0.25 to 1 mL/min, aiming at obtaining a constant supply of nutrients and the
removal of waste products to sustain the 3D cell culture [34–36]. The device consists of
(i) a unibody plastic case (190 L, 240 W, and 90 H mm in dimension); (ii) two autoclavable
WPM2-S1EACP peristaltic pumps (WELCO, Tokyo, Japan); (iii) an appropriate set of 3D
printed culture plates. A control unit hosting an Arduino UNO, two EasyDriver stepper motor
drivers (SparkFun Electronics, Boulder, CO, USA), and a PMB-12V35W1AA power supply
(Delta Electronics, Taipei, Taiwan) was designed to guide the two peristaltic pumps. The
control unit was connected via a USB cable to a laptop that allows easy tuning the perfusion
flow via a graphical user interface (GUI). The main body of the device is intended to operate
inside a standard cell culture incubator to maintain a physiological pH and temperature.

2.2.1. Three-Dimensional-Printed Culture Plates

A set of cultures plates was designed and 3D printed using a Formlabs3 3D printer
(Formlabs, Somerville , MA, USA). The culture plate layout was designed by Fusion360
CAD software (Autodesk, San Rafael, CA, USA) and the generated file was exported in
a .stl format, imported into PreForm software (Formlabs, Somerville, MA, USA), and 3D
printed. The plates were intended to operate independently to allow comparison of two
different culture conditions. Holes (1.6 mm in diameter) were placed between adjacent wells
to allow a medium flow. The final culture plate layout consists of two 6-well plates made from
DentalLT photo-polymer resin (Formlabs, Somerville, MA, USA). This material is approved
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for biomedical applications. Culture plates were post-cured using FormWash and FormCure
devices (Formlabs, Somerville, MA, USA) following the manufacturer’s guidelines.

2.2.2. Graphical User Interface

A user-friendly GUI was implemented in Processing 3 (Processing Foundation, San Diego,
CA, USA). This interface allows us to easily administer a perfusion flow rate at three
different rates: 0.25, 0.5, and 1 mL/min. Moreover, each perfusion pump can be turned on
and off independently. The direction of the rotation can also be set independently. The GUI
can be exported to work both on Windows or Mac OS 3.5.4.

2.3. Human Mesenchymal Stem Cell Culture

Primary human bone-marrow-derived mesenchymal stem cells (hBMSCs) were pur-
chased from Lonza Inc. (Allendale, NJ, USA) and used at passage #2 for the seeding
onboard 3D scaffolds. A one-week culture followed, either within the bioreactor system
or under conventional static conditions as a control. To this aim, the cells were initially
expanded as a 2D monolayer in high glucose Dulbecco’s Modified Eagle Medium (DMEM)
containing 0.1% penicillin/streptomycin, 0.1 mM non-essential amino acids, and 10% fetal
bovine serum. After two passages, the hBMSCs were trypsinized and counted in a hemocy-
tometer using Trypan Blue staining to evaluate the number of dead cells. All reagents were
purchased from Life Technologies (Carlsbad, CA, USA).

2.4. Cell Culture

hBMSCs at passage #2 were seeded at a concentration of 85,000/50 µL onboard eight
3D chitosan–gelatin–genipin scaffolds (7 mm in height and 5 mm in diameter). Four
scaffolds were cultured in either static control or dynamic culture conditions. A 1 mL/min
perfusion flow was administered according to [37,38]. To avoid cell loss, scaffold seeding
was performed in a 96-well plate, adding over the dry scaffold 50 µL cell solution. Then,
150 µL of medium was added after 2 h.

Osteogenic Differentiation

Scaffolds were moved into the 3D-printed culture plates 36 h after cell seeding.
As shown in Figure 1, the experiment was carried out for eleven days. hMSCs

seeded onboard chitosan–gelatin–genipin scaffolds were cultured for five days in 30 mL
of proliferative medium per plate. Subsequently, for the next six days, early osteogenic
differentiation was induced by adding ascorbic acid, bone morphogenic protein-2 (BMP2),
and beta-glicerophosphate to the proliferative medium [39–41]. Half of the exhausted
medium (15 mL) was changed every 48 h in both dynamic and static cultures.

Figure 1. Timeline of experimental setting.



Materials 2023, 16, 5898 4 of 11

2.5. Micro-Computer Tomography (µCT)

µCT scanning was performed using a SkyScan 1272 micro-computer (Bruker Corpora-
tion, Billerica, MA, USA) tomograph at room temperature by rotating the object in front of
the source (voltage 45 kV, current 110 mA) for 180 degrees with a rotation step of 0.3 de-
grees; each frame resulted from an average of 4 projections per frame (550 ms/frame). The
scanning resolution (image pixel size) was set at 15 µm for all printed samples. Tomograms
were reconstructed from the raw data in Bruker NRecon software (Bruker Corporation,
Billerica, MA, USA). Bruker CTAn software (Bruker Corporation, Billerica, MA, USA) was
employed to analyze the tomograms and measure the morphological parameters of the
printed objects (total porosity, pore/wall size distribution, etc.) and to generate the sec-
ondary color-coded dataset depicting pore size variations. All procedures were performed
after thresholding (binarization; white pixels for solid sample and black pixels for pores)
and despeckling (removal or residual scanning artifacts) and were based on the image pixel
size for metric unit conversion.

2.6. Histochemical Assay and Image Analisys

Samples fixed in 4% paraformaldhyde and embedded in paraffin were cut into 5.0 µm
thick sections. Samples were stained with hematoxylin and eosin (H&E) for morphological
analyses according to [42], and with Alizarin Red S (ARS) to highlight calcium deposits
according to [43], indicative of a mineralization process initiated by cells differentiating into
an osteogenic phenotype. A quantitative analysis of ECM mineralization (i.e., calcium salt
deposits) was performed on images acquired from ARS-stained chitosan–gelatin–genipin
scaffold slices. Digital images were acquired in each experimental condition with a Eclipse
TE 2000U (Nikon, Tokyo, Japan) optical inverted microscope mounting a 4× Nikon CFI
Plan Fluor objective through a DS-5Mc digital camera (Nikon, Tokyo, Japan) operated under
a DS-U1 controller connected to a Dell XPS desktop PC equipped with ImageJ (National
Institute of Health, Bethesda, MD, USA) image analysis software (version 1.51.m9).

Calcium salt deposits were evaluated in ARS-stained sections using the maximum
entropy threshold-based image segmentation method. The count and the average size
of the calcium salt deposits, as well the total image area they covered, were calculated.
Control (static culture) and dynamic (bioreactor system) data were compared.

3. Results and Discussion

Chitosan/gelatin/genipin (CGG) scaffolds, with an intrinsic characteristic of support-
ing osteogenic induction in stem cells, were made more efficient through the addition of
graphene oxide (GO) [15,44]. Although the properties of this biomaterial have been tested,
there is some degree of concern about hypothetical side effects [16]. For this reason, while
the results of studies about this issue are pending, we evaluated if a dynamic culture of
CGG scaffolds without added GO could increase their osteogenic potential, as heralded
in previous work [45–48]. Thus, the in vitro osteogenic potential of the CGG scaffold was
investigated in either conventional (i.e., static) or perfusion flow (i.e., dynamic) conditions.
The degree of calcium salt deposition by the hBMSCs onboard the 3D scaffold was used as
the end-point of the analysis.

3.1. Characterization of CGG Scaffolds

Morphological characterization of the material before cell seeding (i.e., post-synthesis),
presented in Figure 2, confirmed the suitability of the CGG scaffold to host the hBMSCs.
In detail, qualitative and quantitative analyses were carried out by µCT. Figure 2 shows
the 3D reconstruction of a sample scaffold (Figure 2(A1,B1)), as well as the color-coded
secondary reconstruction of the pore size (Figure 2(A3,B3)) overlapped with the tomogram
of the solid specimen (Figure 2(A2,B2,C)) for a better visualization and comprehension of
its intricate pattern and interfaces. The solid sample exhibits a homogeneous architecture,
whereby the wall thickness varies to a small extent (with a ratio of more than 99% below
40 µm), contributing to its identification as a consolidated and robust scaffolding material.
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However, the pores that are formed span to a broader extent (up to 555 µm), but in a rather
balanced Gaussian distribution (Figure 2E). Despite its perceptible solidity, the measured
porosity of the freeze-dried material achieves values of 86.8% (Figure 2D); the analysis of
pore size domains depicts a great variability that is favorable for both cell lodging and
post-adhesion cellular activity, as well as metabolite exchange, supporting these processes
for viable tissue construct attainment. The very high incidence (77%) of pores within
the range of 120–300 µm could support the employment of this material for transitional
total porosity, as it is able to provide accessibility channels for cell nutrients. In addition,
the distribution of small pores is extremely homogeneous within the sample (Figure 2,
subsets 2, 3), contributing to the interconnected nature of the scaffolding template, a crucial
prerequisite of effective materials for tissue regeneration. Furthermore, the surface area
of the sample is paramount, especially in the incipient post-seeding stages of cell culture.
The surface area of the scanned specimen was measured at 1.11 × 108 µm2; however, more
relevant for material characterization is the specimen-independent measurement of the
object surface/volume ratio, which reached the value of 1.97 µm−1.

Figure 2. Morphological characterization of chitosan–gelatin–genipin scaffolds by µCT. (A1–A3)
Cross-sectional morphology of the acellular freeze-dried sample; (B1–B3) overall view of the scanned
sample; subset 1, morphology of the solid sample; subset 2, pore reconstruction overlapped to
solid objects; subset 3, pore reconstruction and relative pore size according to the color legend.
(C) Subdivision illustrates a dual view of the solid sample and overlapped pore dataset with the solid.
(D,E) Plot of the pore size and wall thickness distribution.
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3.2. Matrix Mineralization upon Dynamic Culture

To overcome the diffusion constraints inherent to a 3D cell culture in a conventional
static environment, a custom bioreactor system was used to generate a continuous perfusion
flow to sustain cell growth.

Building on our experience in designing and prototyping devices for dynamic
culture [37,38,49], we here developed a dedicated tool (Figure 3A) consisting of a unibody
plastic case (190 L, 240 W, and 90 H mm in dimensions) and two autoclavable peristaltic
pumps acting on two distinct ad hoc culture plates (Figure 3B) and operated by an original
graphical user interface (GUI, Figure 3C). This new layout consists of two six-well plates
made from DentalLT photo-polymer resin (Formlabs, Somerville, MA, USA) and operated
independently to allow comparison of two different culture conditions. In particular, holes
(1.6 mm in diameter) were placed between adjacent wells to allow a medium flow.

Figure 3. Perfusion bioreactor system overview. (A) Perfusion bioreactor; (B) Six-well plate;
(C) Graphical user interface (GUI): peristaltic pumps (P1 and P2) status (ON/OFF), flow direction,
and flow speed.
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Figure 4A,B shows the viability and distribution of the hBMSCs seeded in the 3D
CGG scaffolds. Hematoxylin/eosin staining analysis highlighted a higher amount of cells
(purple spots) in dynamic conditions (Figure 4B) compared to static conditions (Figure 4A).
Figure 4C,D shows that 3D-perfused CGG scaffolds display enhanced levels of extracellular
matrix (ECM) mineralization, suggesting an early osteogenic commitment. In fact, alizarin
red S staining analysis highlighted a higher amount of calcium deposits (black spots)
in dynamic conditions (Figure 4D) compared to static conditions (Figure 4C). For both
analyses, a remodelling of the scaffold structure was observed when hBMSCs were cultured
in dynamic conditions, resulting in thickening of the scaffold texture.

Figure 4. Histological analysis of the 3D chitosan–gelatin–genipin scaffold seeded with hBMSCs
and subjected to six days of osteogenic induction. (A,B) Hematoxylin and eosin assay on scaffolds
cultured in static (A) vs. dynamic (B) conditions; (C,D) Alizarin Red S assay on scaffolds cultured in
static (C) vs. dynamic (D) conditions. Pictures acquired at 40× magnification, using Cell^A Software
(version 2.5). Scale bar 500 µm.

A detailed quantification of the calcium salt deposit amount, carried out through the
maximum entropy threshold-based image segmentation method, is presented in Figure 5.
In particular, Figure 5B shows the segmented area referring to the calcium salt deposition
over the 3D CGG scaffold fibers by the hBMSCs when cultured under static condition
(Figure 5A). Figure 5D shows the segmented area referring to the calcium salt deposi-
tion over the 3D CGG scaffold fibers by the hBMSCs when cultured under dynamic
conditions (Figure 5C).
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Figure 5. Quantification of calcium deposits using alizarin red S staining. (A) Static conditions;
(C) dynamic conditions; (B,D) segmented areas of the calcium salt deposits.

The amount of scaffold area covered by the calcium salt deposits in both static and
dynamic conditions is reported in Table 1. The results are reported as the count and average
size of the calcium salts, as well as the total image area covered. Higher values were
obtained for 3D CGG scaffolds cultured in dynamic conditions.

Table 1. Amount of scaffold area covered by the calcium salts.

Slice Count Total Area Average Size

ARS Static 892 0.610 6.837 × 10−4

ARS Dynamic 4754 6.730 0.001

4. Conclusions

The purpose of this work was to improve the osteogenic potential of chitosan/gelatin/
genipin (CGG) scaffolds without added graphene oxide (GO) by including a perfusion
flow into the differentiating protocol of human bone-marrow-derived stem cells seeded
onboard the scaffold. A histological analysis showed enhanced extracellular matrix miner-
alization under a perfusion flow in an osteogenic medium, suggesting an early osteogenic
commitment. The results of this investigation reveal a new perspective on potential clinical
applications of CGG scaffolds without added GO.
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