
bulk transcriptomic data. Although the authors undertook a stringent
approach to replicating their results, it is notable that even for the set
of 475 persistently altered smoking genes that achieved significance
across each study time point, only 41% (n=195) of these genes were
also significant in both independent replication cohorts. This level of
replication is not surprising for transcriptomic data, which captures
many complex signals but can be susceptible to confounding in both
cross-sectional and longitudinal study designs. Althoughmultiple
stages of replication in this study provide confidence in the 195 fully
replicated smoking-associated genes, further studies will be necessary
to tease out adaptive versus maladaptive responses to cigarette
smoke as well as the lingering consequences of smoke exposure
on human health.�
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PRS-ing Forward to Identify Genetic Risk in Idiopathic
Pulmonary Fibrosis

Over the last 2 decades, it has become clear that genetic risk is an
important determinant for development of idiopathic pulmonary
fibrosis (IPF); however, the genetic architecture underlying IPF is

complex and remains incompletely understood. Although a variety of
common and rare genetic variants have been associated with IPF, an
SNP in the promoter of the of the gene encodingMUC5B (Mucin 5B)
is the strongest disease risk factor identified to date (1, 2). Across
multiple studies, the odds ratio for IPF associated with carrying the
T (minor) allele is�4.5 (3), making it one of the most impactful
disease-associated common variants in humans. In addition to the
MUC5B region, 22 other IPF-associated common variant loci were
identified in a recent meta-analysis of genome-wide association
studies (GWAS) (4). Given the progress in identifying individual
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genetic variants associated with IPF, a significant question in the field
has become whether a predictor of combined genetic risk could be
developed that would improve on information obtained by testing
for the presence of theMUC5B risk allele.

The polygenic risk score (PRS), which was developed in 2007,
is increasingly used as a method for analyzing large-scale GWAS
data in a variety of diseases (5), including lung diseases such as
chronic obstructive pulmonary disease (6) and asthma (7).
This approach can combine a large number of common variants,
including those below the genome-wide significance threshold for
phenotype association, to identify disease risk in individuals. A new
study byMoll and colleagues in this issue of the Journal (pp. 791–801)
is the first comprehensive investigation of this method in IPF (8). The
investigators analyzed data from 14,650 study participants, including
1,970 individuals with IPF and 1,068 individuals with interstitial lung
abnormalities (ILAs), from a variety of cohorts to develop PRSs for
IPF with or without inclusion of theMUC5B risk allele. Although the
PRS calculated with inclusion ofMUC5B performed somewhat better
than the PRS in the absence of data from theMUC5B region, the top
quintile in the PRS (excludingMUC5B) was associated with an odds
ratio of�7 compared with the lowest quintile, thereby indicating
that common variants outside theMUC5B region substantially
contribute to risk for IPF. In addition, receiver operating curves for
IPF prediction showed that the highest area under the curve was
achieved by clinical modeling with a combination of the PRS
(excludingMUC5B) and genotype information regarding the
MUC5B risk allele. Furthermore, using linkage disequilibrium
score regression, the authors estimated observed-scale heritability
in IPF at�28%, in the range of prior estimates of the impact of
genetic predisposition on the development of IPF (1).

In addition to IPF, the investigators applied the PRS
methodology to ILAs, which are abnormal interstitial changes
affecting.5% of lung parenchyma on computed tomography scan
(9). ILAs are detectable in approximately 7% of individuals.50 years
of age and can in some instances precede development of clinical IPF
by several years (10). In ILA studies, the PRSmodel was associated
with presence (odds ratio, 1.25) and progression (odds ratio, 1.16) of
ILAs; however, this association was only observed in subjects with
European ancestry.

Together, the findings in this study reinforce the importance
of theMUC5B risk allele in IPF and strongly support the idea that a
wide variety of common variants throughout the genome influence
disease risk. Although testing for theMUC5B risk allele is the most
efficacious single measurement for risk assessment, prediction is
modestly improved by adding the PRS generated from the rest of
the genome. Therefore, combining the PRS with testing for the
MUC5B risk allele and clinical information could be useful in future
studies for identification of individuals at the highest risk
for development of IPF. An important question is whether genetic
risk assessment tools can be used to stratify risk before the onset of
disease, particularly to determine which ILAs are most likely to
progress to clinical disease, because ILAs are muchmore frequent
than IPF. Although the presence of theMUC5B risk allele has been
associated with ILAs (11), the results of this study are somewhat
disappointing in this regard, because the association of the PRS
with the presence and progression of ILAs was modest at best.

To date, PRSmethodology has not had a substantial impact on
clinical practice, and pitfalls of PRSs in predicting risk of age-related

traits have been documented (12). Other issues related to maximizing
the power and utility of PRS include limitations in the size of
GWAS datasets available for relatively rare diseases, difficulties in
extrapolation to ethnicities underrepresented in GWAS datasets,
and underlying assumptions of lack of specific gene-by-environment
interactions (13, 14), all of which may have implications for
application in IPF. Also, PRSmethodology does not account for
rare genetic variants, which can have a major impact on disease risk
in the�8.5% of individuals with sporadic IPF who harbor loss-of-
function rare variants in telomere maintenance genes (15). Despite
these issues, this study represents substantial progress in genetic risk
assessment in IPF. Further refinement of PRS calculations is likely
in the future as larger andmore ethnically diverse genetic data in
subjects with IPF become available.�
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The Influence of Physiologic Burdens Related to Obstructive Sleep
Apnea on Cardiovascular Outcomes

It is impossible to ignore the impact of cardiovascular disease (CVD),
as it claimsmore than 800,000 lives each year and accounts for 32%
of all deaths (1). Diving into the complex etiology of CVD, the
increasing role of sleep disorders has become evident, thus shaping this
nationwide health crisis and propelling the American Heart Association
to include healthy sleep in its Life’s Essential 8 guidelines (2).

Obstructive sleep apnea (OSA) is arguably foremost among sleep
disorders augmenting cardiovascular risk, with its diagnosis and
severity typically gleaned from the apnea–hypopnea index (AHI),
measured on polysomnography (PSG) or home sleep apnea tests.
Although patients with OSA are at increased cardiovascular risk,
there is lingering obscurity regarding the AHImetric and questions
as to its precision, how accurately it reflects the salient biologic aspects
of OSA, and its utility as a defining metric potentially explaining
negative clinical trials involving intervention with continuous
positive airway pressure (3, 4).

Although there are other traditional metrics besides AHI in PSG
reports, such as oxygen saturation (SpO2

) nadir and the percentage
of sleep time spent under 90% SpO2

, these provide only a partial
reflection of the true biophysiological sleep landscape. They fail, for
instance, to delve into the depth and duration of physiological signal
desaturations during events. This limitation of current standard
reporting of metrics, combined with the richness of the data captured
during the examination, serves as a major impetus for researchers to
explore other ideas for PSGmetrics, including those derived from
event-based physiological burdens.

In this issue of the Journal, Labarca and colleagues (pp. 802–813)
examine in depth the association of hypoxic burden (OSA-related
total area under the desaturation curve) with incident CVD, coronary
heart disease (CHD), and mortality compared with the ventilatory

burden (the event-specific area under the ventilation signal identified
by amplitude changes in the nasal pressure signal) and arousal
burden (the total duration of all arousals divided by the total sleep
time) (5). Their study provides information on the strength of
predicting CVD-related outcomes even when accounting for
confounding. Of note, some measures of sleep disturbance
physiological burden, such as the sleep apnea–specific hypoxic
burden in association with CVD, have been reported and in of itself
does not represent a novel finding (6–8). Rather, the novelty of the
present work resides in providing key insights into the
interrelatedness of sleep-specific physiological burden metrics
reflecting different pathophysiologic aspects.

To perform the study, Labarca and colleagues (5) analyzed PSGs
from the community-based cohort of MESA (Multi-Ethnic Study of
Atherosclerosis) (n=2,035, 917 men) and the MrOS (Osteoporotic
Fractures inMen) cohort (n=2,896, all men). InMESA, outcomes
were based on regular follow-up calls, and inMrOS, participants
were contacted every 4months after the sleep study. In both
cohorts, medical records and death certificates were also evaluated.
Fortunately, both cohorts are publicly available in the National Sleep
Research Resource, a valuable, accessible, and extensive collection of
deidentified physiological signals and clinical data elements.

In their primary analysis, the authors address the associations
of hypoxic, arousal, and ventilatory burdens with longitudinal
outcomes. They used Cox regression and four different models,
each with an increasing number of covariates for adjustment from
demographics to comorbidities. Also, for model 4, they added the
variable desaturation sensitivity, defined as the ratio of hypoxic
burden to ventilatory burden, aiming to adjust for the tendency
toward desaturation of the individual. For theMESA dataset, every 1
SD increase in hypoxic burden was significantly associated with a
21% increase in the risk of all-cause mortality and a 33% increase
in the risk of all CVD. The ventilatory burden was significantly
associated with a 24% increased risk of all-cause mortality and a
32% increased risk of all CVD. The statistical significance of the
results persisted even when attempting to more rigorously take into
account visceral adiposity (i.e., replacing body mass index with waist

This article is open access and distributed under the terms of the
Creative Commons Attribution Non-Commercial No Derivatives
License 4.0. For commercial usage and reprints, please e-mail
Diane Gern (dgern@thoracic.org).

Originally Published in Press as DOI: 10.1164/rccm.202307-1243ED
on August 23, 2023

752 American Journal of Respiratory and Critical Care Medicine Volume 208 Number 7 | October 1 2023

EDITORIALS

 

https://doi.org/10.1164/rccm.202209-1808OC
http://crossmark.crossref.org/dialog/?doi=10.1164/rccm.202307-1243ED&domain=pdf&date_stamp=2023-09-12
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dgern@thoracic.org
https://doi.org/10.1164/rccm.202307-1243ED

