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Abstract: Manual material handling and load lifting are activities that can cause work-related
musculoskeletal disorders. For this reason, the National Institute for Occupational Safety and Health
proposed an equation depending on the following parameters: intensity, duration, frequency, and
geometric characteristics associated with the load lifting. In this paper, we explore the feasibility
of several Machine Learning (ML) algorithms, fed with frequency-domain features extracted from
electromyographic (EMG) signals of back muscles, to discriminate biomechanical risk classes defined
by the Revised NIOSH Lifting Equation. The EMG signals of the multifidus and erector spinae
muscles were acquired by means of a wearable device for surface EMG and then segmented to extract
several frequency-domain features relating to the Total Power Spectrum of the EMG signal. These
features were fed to several ML algorithms to assess their prediction power. The ML algorithms
produced interesting results in the classification task, with the Support Vector Machine algorithm
outperforming the others with accuracy and Area under the Receiver Operating Characteristic Curve
values of up to 0.985. Moreover, a correlation between muscular fatigue and risky lifting activities was
found. These results showed the feasibility of the proposed methodology—based on wearable sensors
and artificial intelligence—to predict the biomechanical risk associated with load lifting. A future
investigation on an enriched study population and additional lifting scenarios could confirm the
potential of the proposed methodology and its applicability in the field of occupational ergonomics.

Keywords: biomechanical risk assessment; load lifting; machine learning; physical ergonomics;
Revised NIOSH Lifting Equation; surface electromyography; wearable devices; work-related
musculoskeletal disorders

1. Introduction

The risk of developing work-related musculoskeletal disorders (WRMDs) is strongly
correlated with physical work, as shown in several studies [1–4]. Intensity, repetition, and
duration are the three elements that have the greatest impact on biomechanical risk during
manual tasks [5]. Biomechanical overload and the development of WRMDs mainly affect
workers involved in activities such as manual material handling and load-lifting activities.
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Several quantitative and semi-quantitative observational methods have been proposed in
occupational ergonomics [6–12] to evaluate the biomechanical risk exposure eventually
coupled with dedicated software such as DELMIA [13]. In this context, the National Insti-
tute for Occupational Safety and Health (NIOSH) developed a methodology for evaluating
biomechanical risk using a mathematical formula whose terms are function of intensity,
duration, and frequency of the lifting activity as well as the geometric characteristics of
the lifting task [11]. However, the various applications of these tools in actual ergonomic
studies tend to be very time consuming and trivial due to the lack of a valid framework
to guide the process [14]. For this reason, recently, as they emerge from the scientific
literature, wearable sensors are spreading in the clinical setting and, in particular, in the
context of occupational medicine and physical ergonomics [15–19], especially oriented
to monitor work activities and to prevent WRMDs [20–25]. Among these instrumental
methods, wearable sensors, which allow the acquisition of inertial signals such as linear
acceleration and angular velocity; surface electromyographic (sEMG) signals; and pressure
signals have proven to be useful to monitor workers’ activities.

Additionally, the use of these wearable systems coupled with artificial intelligence
(AI) is also growing in the ergonomic field, and several studies have been proposed in
the scientific literature. For instance, Conforti et al. [26] proposed a methodology to rec-
ognize safe and unsafe postures through wearable sensors and Machine Learning (ML)
algorithms fed with kinematic features extracted from linear acceleration and angular
velocity signals. They used a Support Vector Machine (SVM) algorithm reaching an ac-
curacy to classify safe and unsafe posture equal to 99.4%. Estrada et al. [27] studied the
feasibility of a Decision Tree (DT) algorithm, fed with features extracted from a bending
signal acquired by flex sensors, to recognize proper and improper sitting postures with a
laptop, reaching an accuracy equal to 80%. Olsen et al. [28] analysed the discrimination
power of ML and Deep Learning (DL) algorithms to classify correct and incorrect postures
of dental practitioners using features extracted from inclinometer data. The best algorithm
was k-Nearest Neighbour (kNN) that reached an accuracy equal to 99.94%. Antwi-Afari
et al. [29] implemented several ML algorithms fed with features extracted from foot plantar
pressure and linear acceleration with the aim to detect and classify awkward working
postures. The best classifier was SVM that showed an accuracy equal to 99.90%. Zhang
et al. [30] used an SVM to recognize jerk changes due to physical exertion using jerk-based
features extracted from 17 Inertial Measurement Units (IMUs) placed on several points
on the subject’s body. Donisi et al. [31] proposed a new methodology to discriminate
biomechanical risk classes—defined according to the Revised NIOSH Lifting Equation
(RNLE)—using a wearable inertial sensor and ML algorithms. They used only one IMU
placed on the lumbar region and extracted several time-domain features from the acquired
inertial signals; Random Forest (RF) was the best classification algorithm with an accuracy
and an Area Under the Receiving Characteristic Curve (AUCROC) greater than 90% and
94%, respectively. Aiello et al. [32] studied the kNN feasibility—fed with time-domain
features extracted from linear acceleration acquired by two accelerometers placed on the
wrists—to classify heavy-duty and hard-duty activities associated with exposure to vibra-
tions; the kNN algorithm reached an accuracy equal to 94%. Zhao et al. [33] proposed a DL
algorithm, namely, Convolutional Long Short-Term Memory (CLSTM), able to recognize
workers’ posture according to the Ovako Working posture Assessment System (OWAS)
criteria using inertial data acquired by means of IMUs placed on the forehead, chest, arm,
thigh, and calf. Umer et al. [34] studied the feasibility of several ML algorithms to predict
the physical exertion level using multiple physiological measures (ECG, skin temperature,
respiration) according to the Borg-20 scale. Yu et al. [35] calculated the workload and
planned ergonomic risks’ mitigation strategies using computer vision, IMU sensors, and
pressure insoles. Mudiyanselage et al. [36] proposed a methodology to detect the level
of risk of harmful lifting activities, defined by NIOSH, using ML and DL algorithms fed
with features extracted from thoracic and multifidus sEMG signals, while Donisi et al. [37]
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studied the classification power of some ML algorithms to discriminate biomechanical risk
classes, defined according to the RNLE, using features extracted from the bicep muscle.

Considering the increasing use of wearable sensors and AI in the physical ergonomic
field, the aim of the present work was to study the feasibility of several ML algorithms—fed
with specific frequency-domain features extracted from the Total Power Spectrum (TPS) of
the sEMG signals of the erector spinae and multifidus muscles—to classify biomechanical
risk classes defined by the RNLE. Moreover, the correlation between muscular fatigue and
risky weightlifting activities was explored. The proposed methodology, which, to the best
of the authors’ knowledge, is novel in the literature, provides a new tool—based on ML
algorithms—to assess the biomechanical risk associated with load lifting. This methodol-
ogy could overcome the limits of observational methods, nowadays considered the gold
standard, that are often time-consuming and/or depend on the operator’s experience
and skill.

2. Materials and Methods

2.1. Wearable System for Surface Electomiography—The KineLive System

The KineLive System (Kiso Ehf Inc., Reykjavík, Iceland) is a commercial wearable
system for sEMG widely used in the scientific literature [38,39]. The wireless EMG sensors
are capable of capturing muscle electrical activities at a sampling frequency of 1600 Hz. The
sensors store the data locally during acquisition. Following the end of the experiment, the
stored data are uploaded by radiofrequency to the KineLive software (shown in Figure 1).
Upon replacement into the charging station, any data on the sensors are deleted. Figure 2
illustrates the placement of four sensors, with two positioned on the upper back and two
on the lower part of the participant. These sensors are specifically targeting the erector
spinae and multifidus muscles.
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Figure 1. sEMG sensors and their case; on the monitor, the EMG signal is managed by the dedicated
software.
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Figure 2. Placement of the four sEMG sensors: 2 sensors placed on the right and left erector spinae
muscles and 2 sensors placed on the right and left multifidus muscles.

2.2. Revised NIOSH Lifting Equation

The RNLE is a methodology widely used in occupational ergonomics to assess the
potential biomechanical risk associated with manual material handling and lifting activi-
ties [40,41]. The equation allows us to calculate the Recommended Weight Limit (RWL) as
a function of specific characteristics of lifting as reported in (1):

RWL = LC × HM × VM × DM × AM × FM × GM, (1)

where:

• LC: Load Constant 25/20 kg (males, <45/>45 years old, respectively), 20/15 kg
(females, <45/>45 years old, respectively);

• HM: Horizontal Multiplier;
• VM: Vertical Multiplier;
• DM: Distance Multiplier;
• AM: Asymmetric Multiplier;
• FM: Frequency Multiplier;
• GM: Grab Multiplier.

After computing the RWL, the Lifting Index (LI) is computed, dividing the weight
lifted by the RWL. The LI is a measure of the potential biomechanical risk associated with
the weightlifting [42]. A lifting associated with a LI < 1 is defined as acceptable or safe,
while a LI > 1 is indicative of a risky lifting with a potential biomechanical risk that increases
as the value of the LI increases.

2.3. Study Population

The study was carried out on a study population composed of 8 subjects (7 male,
1 female) whose anthropometric characteristics are reported in Table 1. The study was
conducted at the Motion Sickness Laboratory of the Reykjavik University. The selected par-
ticipants were not affected by musculoskeletal disorders or other occupational pathologies.
The study was approved by the local Ethics Committee in accordance with the Declaration
of Helsinki, and all the participants signed a declaration of informed consent.
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Table 1. Anthropomorphic characteristics of the study population reported as mean ± standard
deviation.

Characteristics

Age (years) 24.50 ± 3.25
Height (cm) 181.75 ± 4.23
Weight (kg) 80.38 ± 8.52
Body Mass Index (kg/m2) 24.40 ± 3.28

2.4. Study Protocol

Each participant carried out a task session based on two different trials. The first trial
consisted of 30 consecutive load-lifting tasks in a condition with a LI < 1 (LI = 0.5) defined
as a NO-RISK class, while the second trial consisted of 30 consecutive load-lifting tasks in
a condition with a LI > 1 (LI = 1.3) defined as a RISK class. Table 2 shows the parameter
values used to compute the LI.

Table 2. Combination of weight, frequency, and vertical displacement variables for lifting activities
corresponding to LI < 1 and LI > 1 according to the RNLE.

Trial 1 (LI < 1, LI = 0.5) Trial 2 (LI > 1, LI = 1.3)

Vertical
Displacement

(cm)

Frequency
(lifts/min)

Weight Lifted
(kg)

Vertical
Displacement

(cm)

Frequency
(lifts/min)

Weight Lifted
(kg)

M & F M & F M F M & F M F M F

50–120 2.5 7 5 50–120 6 4 15 10

M: male, F: female.

The trial was performed using a plastic container with ergonomic handles and weights
equally distributed inside. The participants performed the lifting task adopting the squat
technique (safe posture) with a two-handed grip as shown in Figure 3.
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Figure 3. Phases of a load-lifting task.

2.5. Digital Signal Processing and Feature Extraction

The EMG signals acquired from the erector spinae and multifidus muscles underwent
a digital signal processing consisting of filtering and segmentation in order to extract the
Regions of Interest (ROIs) within which to carry out a feature extraction in the frequency-
domain. EMG signals were filtered with an 8th-order Butterworth filter, with a band pass
ranging from 15 to 400 Hz. Successively, the signals were rectified and then filtered with a
4th-order Butterworth low-pass filter with a cut-off frequency equal to 20 Hz. Finally, the
resulting signals were filtered by means of a Savitzky–Golay filter [43] with a third-order
polynomial and a frame length equal to 3001. An empirical threshold was applied to
compute the starting and ending points of the window time during which the participant
performed the lifting task (Figure 4A,B), and therefore, the ROIs corresponding to the
muscle contraction were selected from the original EMG signal (Figure 4C).
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Figure 4. (A) Rectified original signal (in grey), rectified and filtered signal by means of Savitzky–
Golay filter (in blue), and threshold (in yellow) to determine the start and stop points (in green and
red, respectively). A single lifting is illustrated. (B) Rectified original signal (in grey), rectified and
filtered signal by means of Savitzky-Golay filter (in blue), and threshold (in yellow) to determine the
start and stop points (in green and red, respectively). All the liftings of a single trial are illustrated.
(C) Original EMG signal and start and stop points employed to identify the ROIs.

For each ROI of the EMG signal, the TPS was computed using the fast Fourier trans-
form (fft) algorithm. From the TPS, the following features were extracted:

• Total power (Power) [V2]: the integral under the spectrum curve;
• Peak power (P_power) [V2/Hz]: the maximum value of the TPS;
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• Median frequency (F_median) [Hz]: the frequency that divides the total power area
into two equal parts;

• Mean frequency (F_mean) [Hz]: the mathematical mean of the spectrum curve;
• Peak frequency (F_peak) [Hz]: the frequency at which the P_power is attained;
• Kurtosis (adimensional): the standardized fourth moment of a distribution that repre-

sents a measure of the tailedness of a given distribution;
• Skewness (adimensional): the third standardized moment of a distribution that repre-

sents a measure of the asymmetry of a given distribution.

2.6. Statistical Analysis

A Shapiro–Wilk normality test was performed to assess the normality of each feature
before to carry out a parametric (t-test) or non-parametric (Wilcoxon test) two-tailed paired
test. This statistic test was used to verify whether each feature was differentiated in a
statistically significant way between the condition with LI < 1 (NO-RISK class) and the
condition with LI > 1 (RISK class). For all the statistical tests, a confidence level equal to
95% was chosen (definition of statistical significance: p-value < 0.05).

2.7. Machine Learning Analysis

ML is a field of inquiry devoted to understanding and building models that leverage
data to improve performance regarding a set of tasks. It uses statistical techniques and
advanced algorithms to improve the accuracy of prediction.

Several ML algorithms were implemented to assess the feasibility of the proposed
methodology to discriminate biomechanical risk classes according to the RNLE. The ML
classification algorithms analysed are illustrated below.

DT is a classifier algorithm that represents the simplest and the most used logic-based
classification technique. The algorithm classifies data by ordering them as trees on the
basis of their characteristic values [44]. The following hyperparameters of DT J48 were set:
confidence factor equal to 0.25, minimum number of instances per leaf equal to 2, and seed
equal to 1; the pruning was not implemented.

Gradient Boost Tree (GBT) is a boosting algorithm whose purpose is to reduce the
loss of the function model by adding learning weaknesses and using gradient descent to
establish the local minimum of the differential function [45]. For this algorithm, the limit
number of levels (tree depth) was set equal to 5, and the number of models and the learning
rate were set to 92 and 0.832, respectively.

The kNN algorithm ranks the unlabelled instance vector according to the label class
that has the majority among its closest k neighbours in the training set [46]. A k equal to 11
was set, and a Euclidean distance was computed.

Naive Bayes (NB) is a probabilistic ML method. The probability of each class for a
given instance is calculated, and the class with the highest probability is then returned [47].
Default probability, minimum standard deviation, threshold standard deviation, and maxi-
mum number of unique nominal values per attribute were set to 0.0001, 0.068, 0.006, and
33, respectively.

An SVM in a binary classification—as in the case under study—finds a hyperplane that
divides data from two different classes. The largest possible distance is established between
the separating hyperplane by maximizing the margin, thus creating the separation [48].
A polynomial kernel with power equal to 1.882, bias equal to 1.894, and gamma equal to
1.495 was chosen.

Logistic Regression (LR) iteratively identifies the strongest linear combination of
features with the highest probability to detect the observed outcome [49]. As a solver
algorithm, the stochastic average gradient was selected. The maximum number of epochs
and the parameter epsilon were set to 197 and 0.005, respectively. The learning rate strategy
was considered fixed, and the step size was set to 1.886.



Bioengineering 2023, 10, 1103 8 of 17

For all the ML algorithms, the hyperparameters optimization was carried out in order
to maximize the classification accuracy. Moreover, for the LR, kNN, and SVM algorithms,
the min–max normalization was performed.

As a validation strategy, the ten-fold cross-validation (CV) was adopted. It consists
of splitting the dataset into ten subsets, with the iterative use of nine of them to train the
model and the final one to evaluate its performance [50]. Moreover, a stratified CV was
performed in order to keep the proportions between the two classes unaltered among the
folds [51].

Moreover, another validation strategy was adopted to better generalize the validation
of our proposed approach, namely, the leave-one-subject-out CV. Seven subjects were used
to train the predictive models and one subject to test the algorithms, and this was conducted
iteratively eight times.

The feasibility of the proposed ML algorithms was evaluated using the following
metrics: accuracy, F-measure, specificity, sensitivity, precision, recall, and AUCROC [52].
Moreover, the confusion matrix of the best algorithms was also reported.

A feature importance by means of the calculation of the Information Gain (IG) was
computed. The IG is an indicator of the amount of information provided by the features [53].

Finally, a trend analysis using a linear regression model was carried out in order to
assess whether any trends of the parameters, namely, F_mean and F_median, occurred,
since several works in the scientific literature have shown a correlation between muscular
fatigue and a change in the spectrum of the EMG signal [54–57].

The ML analysis was performed using the Knime Analytics Platform, a platform
widely used in the biomedical engineering field [58–63].

3. Results

Firstly, a statistical analysis by means of a parametric (t-test) or non-parametric
(Wilcoxon test) two-tailed paired test was carried out in order to assess if each feature
was differentiated in a statistically significant way between the two risk classes, namely,
NO-RISK and RISK. This analysis was performed separately for the erector spinae muscle
and the multifidus muscle. Tables 3 and 4 show the results of the two-tailed paired test for
the erector spinae and multifidus muscle, respectively.

Secondly, an ML analysis was carried out to assess the feasibility of the ML algorithms
fed with frequency-domain features extracted from the TPS of the EMG to discriminate
biomechanical risk classes defined by means of the RNLE. Table 5 shows the evaluation
metric scores reached by the ML algorithms using the ten-fold cross-validation and consid-
ering both muscles. In Table 6, the confusion matrix of the best algorithms, namely, SVM,
is reported.

Table 3. Paired test between NO-RISK/RISK classes for each feature extracted from the EMG signal
acquired from the erector spinae muscle.

Features
NO-RISK

Mean ± Std
RISK

Mean ± Std
p-Value

Power_ER 8.316 × 10−9
± 7.216 × 10−9 1.084 × 10−8

± 6.612 × 10−9 <0.001
P_power_ER 1.205 × 10−10

± 7.835 × 10−11 1.891 × 10−10
± 1.037 × 10−10 <0.001

F_peak_ER 48.611 ± 11.562 47.975 ± 11.226 0.523
F_median_ER 66.192 ± 10.160 64.776 ± 9.057 <0.001
F_mean_ER 79.215 ± 11.387 77.833 ± 10.237 <0.001
Kurtosis_ER 71.608 ± 37.604 74.134 ± 37.724 0.011

Skewness_ER 6.787 ± 1.361 6.954 ± 1.257 0.001

Definition of statistical significance: p-value < 0.05. ER: erector spinae.
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Thirdly, to obtain more robust and generable results, we performed a ML analysis
using the leave-one-subject-out CV using N-1 subjects to train the classifiers and one
subject to test and repeat this procedure N times (with N denoting the number of subjects
that compose the study population). The results of this further ML analysis are reported
in Table 7.

Moreover, a feature importance by means of the calculation of the IG was performed,
and the results are showed in Figure 5.

Table 4. Paired test between NO-RISK/RISK classes for each feature extracted from the EMG signal
from the multifidus muscle.

Features
NO-RISK

Mean ± Std
RISK

Mean ± Std
p-Value

Power_ML 1.095 × 10−8
± 6.919 × 10−9 1.881 × 10−8

± 1.326 × 10−8 <0.001
P_power_ML 1.298 × 10−10

± 8.016 × 10−11 2.896 × 10−10
± 2.435 × 10−10 <0.001

F_peak_ML 51.650 ± 16.828 48.935 ± 16.022 0.004
F_median_ML 78.600 ± 15.788 74.606 ± 17.650 <0.001
F_mean_ML 97.406 ± 15.216 92.443 ± 17.717 <0.001
Kurtosis_ML 66.686 ± 37.298 75.974 ± 48.0.69 <0.001

Skewness_ML 6.347 ± 1.518 6.781 ± 1.828 <0.001

Definition of statistical significance: p-value < 0.05. ML: multifidus.

Table 5. Evaluation metric scores using features extracted from EMG signals (both erector spinae
and multifidus), k-fold cross-validation strategy (k = 10) and optimization parameters for each
classification algorithm.

SVM KNN DT GR Boost LR NB

Accuracy 0.961 0.907 0.715 0.943 0.85 0.671
F-measure 0.962 0.91 0.735 0.942 0.857 0.719
Specificity 0.955 0.866 0.642 0.963 0.801 0.500
Sensitivity 0.967 0.947 0.789 0.923 0.898 0.841
Precision 0.956 0.876 0.688 0.962 0.819 0.627

Recall 0.967 0.947 0.789 0.923 0.898 0.841
AUCROC 0.985 0.961 0.712 0.987 0.910 0.782

Table 6. Confusion matrix of the best classification algorithm (SVM).

NO-RISK RISK

NO-RISK 238 8
RISK 11 235

Table 7. Evaluation metric scores using features extracted from EMG signals (both erector spinae and
multifidus), leave-one-subject-out CV strategy and optimization parameters for each classification
algorithm.

SVM KNN DT GR Boost LR NB

Accuracy 0.848 ± 0.068 0.787 ± 0.102 0.522 ± 0.153 0.647 ± 0.189 0.785 ± 0.066 0.553 ± 0.067
F-measure 0.855 ± 0.059 0.728 ± 0.187 0.509 ± 0.212 0.687 ± 0.209 0.776 ± 0.082 0.518 ± 0.193
Specificity 0.806 ± 0.148 0.923 ± 0.084 0.448 ± 0.405 0.483 ± 0.398 0.794 ± 0.165 0.488 ± 0.476
Sensitivity 0.890 ± 0.095 0.650 ± 0.240 0.583 ± 0.330 0.812 ± 0.288 0.776 ± 0.168 0.618 ± 0.408
Precision 0.836 ± 0.102 0.909 ± 0.078 0.585 ± 0.226 0.638 ± 0.215 0.817 ± 0.118 0.653 ± 0.206

Recall 0.890 ± 0.095 0.650 ± 0.240 0.583 ± 0.330 0.812 ± 0.288 0.776 ± 0.168 0.618 ± 0.408
AUCROC 0.918 ± 0.106 0.907 ± 0.074 0.559 ± 0.200 0.735 ± 0.207 0.839 ± 0.087 0.674 ± 0.127
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Figure 5. Ranking of the features extracted from EMG signals acquired from multifidus and erector
spinae muscles according to the IG approach.

Finally, a trend analysis was carried out in order to study the effect of the muscular fa-
tigue occurring during the liftings in the two study conditions, namely, NO-RISK and RISK.
Figure 6 reports the trend analysis for the multifidus F_mean and multifidus F_median in
both conditions, namely, RISK and NO-RISK. For the sake of brevity, the same plots for the
erector spinae are not reported, but they are discussed in the Discussion section.

−

−

Figure 6. Cont.
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Figure 6. (A) Mean frequency trend relating to multifidus muscle (NO-RISK) (m = 0.122, q = 0.460).
(B) Mean frequency trend relating to multifidus muscle (RISK) (m = −0.343, q = 0.628). (C) Median
frequency trend relating to multifidus muscle (NO-RISK) (m = 0.102, q = 0.437). (D) Median frequency
trend relating to multifidus muscle (RISK) (m = −0.215, q = 0.574).

4. Discussion

The objective of this work was to explore the feasibility of several ML algorithms
fed with frequency-domain features extracted from the TPS of the EMG of back muscles
(multifidus and erector spinae) to discriminate biomechanical risk classes associated with
load lifting according to the RNLE.

The results reported in Tables 3 and 4 show that all the frequency-domain features
extracted from the TPS of the multifidus muscle exhibited a statistically significant dif-
ference between the two classes (almost always, the maximum statistically significant
difference p-value is lower than 0.001), namely, NO RISK and RISK, while for the erector
spinae muscle, only the F_peak feature did not exhibit a statistically significant difference
with a p-value equal to 0.523. This former statistical analysis allows us to suppose that
the multifidus muscle is more predictive of the biomechanical risk classes compared to
the erector spinae. This result may be associated with the fact that lower back muscles
are more stressed in load-lifting tasks compared to the dorsal ones; in fact, most of the
musculoskeletal disorders associated with lifting loads affect the lumbar region.

Table 5 reports the scores reached from each ML algorithm, and the feasibility of the
ML (except NB) algorithms coupled with the extracted features to discriminate the two
biomechanical risk classes is highlighted. The low performances of the NB could be due to
the correlation existing between instances and between features, since the NB algorithm
needs to be fed with non-correlated features. The best ML algorithm was SVM with an
accuracy, F-measure, specificity, sensitivity, precision, recall, and AUCROC equal to 0.961,
0.962, 0.955, 0.967, 0.956, 0.967, and 0.985, respectively. Conventionally, AUCROC values
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greater than 0.70 are indicative of a moderate discrimination power of the algorithm, values
greater than 0.80 show a good discrimination, while values greater than 0.90 underline an
excellent discrimination. The SVM fed with the extracted features reached an AUCROC
equal to 0.961, demonstrating its excellent discrimination power for this specific task.
Moreover, as shown in the confusion matrix (Table 6), the SVM classifier misclassified only
19 out of 492 instances.

Considering the correlation existing among the instances (liftings) of the same subject,
a further ML analysis was performed in order to obtain more robust results. Table 7 shows
the metrics’ score of the ML algorithms using the leave-one-subject-out CV; in this way, no
instances related to a single subject are present in both the training and the test set. SVM
was the best ML algorithm once again with an accuracy and AUCROC equal to 0.848 and
0.918 (in mean value), respectively.

The ML analyses proved that the SVM algorithm coupled with the extracted frequency-
domain features is a valid tool to discriminate biomechanical risk classes associated with
load lifting, since the AUCROC values are always greater than 90%.

The feature-importance analysis shown in Figure 5 highlighted the discriminative
power of the following features: P_power, power, F_mean, and F_median of both muscles.
P_power and power are strictly correlated with the force of contraction, while F_mean
and F_median are correlated with muscular fatigue [64]. These results are in line with the
interpretation that increasing the risk (performing a lifting task with an LI greater than
one) increases the force of the contraction and the muscular fatigue. In fact, looking at
Tables 3 and 4, the power and P_power increase with higher LIs, while the F_mean and
F_median decrease with higher LIs because muscular fatigue takes over. Therefore, these
features were demonstrated to have a predictive value to discriminate biomechanical risk
classes. Moreover, as shown in Figure 5, the features related to the multifidus muscle are
more important than the features related to the erector spinae muscle (67.5% and 32.5%,
respectively); these results are in line with the results of the statistical analysis, underlining
the impact of risky load-lifting activities on injuries associated with the lumbar region.

Different studies presented in the scientific literature have attempted to classify biome-
chanical risk classes according to the RNLE using ML algorithms. Donisi et al. [31] proposed
a methodology to discriminate biomechanical risk classes according to the RNLE using
time-domain features extracted from inertial signals (acceleration and angular velocity)
acquired by means of an IMU placed on the lumbar zone, reaching accuracy and AUCROC
values greater than 90% and 94%, respectively. In another study, Donisi et al. [65] explored
the feasibility of a logistic regression model fed with time- and frequency- domain features
extracted from signals acquired using one IMU placed on the sternum to classify risk classes
associated with lifting activities according to the RNLE, reaching an accuracy equal to
82.8%. Differently from the present study, the authors used inertial signals.

Similarly, an approach using sEMG signals was proposed by Mudiyanselage et al. [36]
that studied the feasibility of several ML algorithms fed with time-domain features ex-
tracted from sEMG signals of the multifidus and the thoracic muscles. Contrary to our
work, in [36], the best ML algorithm was the DT that reached an accuracy equal to 99.96%.
In the study of Donisi et al. [37], the authors studied the feasibility of time-domain and
frequency-domain features extracted from bicep EMG signals to discriminate risk/no-risk
conditions according to the RNLE, reaching evaluation metrics’ scores greater than 95%, but
they investigate only tree-based ML algorithms, and they did not investigate the muscular
fatigue. Moreover, they considered a very small study population, and therefore, the results
cannot be considered robust. Finally, they focused on the bicep muscle, which is not subject
to injury as much as back muscles during load-lifting activities.

In the study by Varecchia et al. [66], the combined use of an artificial neural network fed
with time-domain and frequency-domain features, extracted from sEMG and optoelectronic
systems, resulted in a classification accuracy of up to 90% in discriminating three NIOSH
risk classes (LI = 1, LI = 2, LI = 3). In another work by the same authors [67], a new feature
named Lifting Energy Consumption [68] was used to feed a neural network, demonstrating
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an accuracy of up to 100%. The limitation of the methodology proposed by the authors, as
highlighted by the authors themselves, is due to the poor applicability in the workplace
due to the high number of sensors (both sEMG sensors and markers of an optoelectronic
system). This configuration confines the biomechanical risk assessment to the laboratory.
However, this issue can be solved by using the methodology proposed in this paper, where
just two wearable sensors for sEMG are adopted.

The analysis of the EMG during fatiguing effort is a field of interest to many researchers.
In occupational ergonomics, researchers and practitioners are concerned with workplace
fatigue and the extent to which normal everyday activities may result in muscular fatigue
that can be documented using EMG. Neck pain, shoulder pain, and back pain are serious
problems for many professions, and there are many applications in ergonomics regarding
the use of EMG to explore neck and low-back pain. Indeed, the EMG signal and the related
parameters change with muscular fatigue in several muscles [64].

Great attention has been given to understand the changes in frequency characteristics
of the EMG signal during fatiguing effort. Among these characteristics, the principal ones
investigated in the scientific literature have been the F_mean and the F_median extracted
from the TPS of the EMG signal [69].

Changes in the F_mean and F_median are both valuable, though they are highly
intercorrelated. The decline in F_mean and F_median with fatigue is a common observation,
since it has been seen in a wide variety of muscles [70–72] and has been verified by many
researchers in numerous static and dynamic conditions.

On the basis of the results highlighted in the above-mentioned articles about the link
between muscular fatigue and the change in the TPS of the EMG, the trend analysis pre-
sented in Figure 6 shows a negative trend in the F_mean and F_median for the lifting tasks
performed in the RISK condition, while the trends in the same parameters for the lifting
tasks performed in the NO-RISK condition showed a non-significant positive trend. This
result suggests that during RISK liftings, muscle fatigue occurs, underling the predictive
value of these two features to discriminate RISK/NO-RISK lifting activities.

Based on these results, the proposed methodology—which combine ML algorithms
and features extracted from the TPS of EMG back muscles—proved to be able to discrimi-
nate biomechanical risk classes associated to lifting activities according to the RNLE.

5. Conclusions

The proposed methodology, based on AI and wearable sensors for sEMG, showed
its feasibility—although preliminary in view of the small study population and lifting
scenarios—to discriminate biomechanical risk classes associated with manual handling
and, in particular, with load lifting. The study results show that the SVM algorithm was the
best one able to classify biomechanical risk classes—defined by means of the RNLE—with
accuracy and AUCROC values up to 0.985. This procedure allows biomechanical risk
assessment in an automatic, economic, non-time-consuming, non-operator-dependent, and
non-invasive way and therefore could be of direct practical relevance for occupational
ergonomics. Moreover, the limited number and type of sensors renders the procedure
of biomechanical risk assessment also suitable in the workplace and not confined to the
laboratory, such as the other methodologies proposed in the scientific literature. Although
combining different types of sensors can give more information about the worker’s risk
level [73], the use of a single type of sensor, as in the case under study, can make the
procedure more usable in the workplace. This paper has some limitations: limited sample
size, age range too narrow, and imbalanced gender. Indeed, in this paper, we focused
on a small, young study population (eight subjects) without any pathologies, and we
did not consider individuals of advanced age with comorbidities and/or bone fragility,
conditions that can trigger or aggravate WRMDs; indeed, older workers, as a function of
having spent longer time in the job, are more susceptible to these conditions as a result of
cumulative exposure. Moreover, we considered an unbalanced study population (seven
males and one female), and it is demonstrated that women exhibit a higher incidence and
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prevalence of WRMDs than men in association with anthropometric differences. Finally,
other sociodemographic variables, such as ethnicity, sex, age, and economic status, can be
directly related to the onset of WRMDs, and therefore, they should be taken into account.
Future investigations on a larger (in terms of age and samples) and gender-balanced
study population and more lifting scenarios could confirm the potentiality of the proposed
methodology and its feasibility to be integrated with methodologies used in the physical
ergonomics field in order to assess the biomechanical risk to which workers are subject
during manual material handling.
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