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Abstract
The subject of this thesis is blind hyperspectral unmixing using deep learning based
autoencoders. Two methods based on autoencoders are proposed and analyzed. Both
methods seek to exploit the spatial correlations in the hyperspectral images to im-
prove the performance. One by using multitask learning to simultaneously unmix
a neighbourhood of pixels while the other by using a convolutional neural network
autoencoder. This increases the consistency and robustness of the methods.

In addition, a review of the various autoencoder methods in the literature is given
along with a detailed discussion of different types of autoencoders. The thesis con-
cludes by a critical comparison of eleven different autoencoder based methods. Ab-
lation experiments are performed to answer the question of why autoencoders are so
effective in blind hyperspectral unmixing, and an opinion is given on what the future
in autoencoder unmixing holds.

The main contributions are the following:

- An autoencoder based method (MTLAEU) which, through multitask learning, di-
rectly makes use of the spatial correlation between pixels in an HSI is introduced.

- The first fully 2D convolutional neural network autoencoder method (CNNAEU) for
blind hyperspectral unmixing is introduced. Both the encoder and the decoder are 2D
CNN models and the method is trained on patches from an HSI to be unmixed.

- A comprehensive review of the literature on blind hyperspectral unmixing using
autoencoders. The work also gives an introduction to autoencoders and how they can
be used for blind unmixing and has a critical comparison of 11 different autoencoder
based methods.
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Ágrip
Efni þessarar ritgerðar er aðgreining fjölrásamynda (e. blind hyperspectral unmixing)
með sjálfkóðurum (e. autoencoders) byggðum á djúpum lærdómi (e. deep learning).
Tvær aðferðir byggðar á sjálfkóðurum eru kynntar og rannsakaðar. Báðar aðferðirnar
leitast við að nýta sér rúmfræðilega fylgni rófa í fjölrásamyndum til að bæta árangur
aðgreiningar. Ein aðferð með að nýta sér fjölbeitingarlærdóm (e. multitask learning)
og hin með að nota sjálfkóðara útfærðan með földunartaugnaneti (e. convolutional
neural network). Hvortveggja bætir samkvæmni og hæfni fjölrásagreiningarinnar.

Ennfremur inniheldur ritgerðin yfirgripsmikið yfirlit yfir þær sjálfkóðaraaðferðir sem
hafa verið birtar ásamt greinargóðri umræðu um mismunandi gerðir sjálfkóðara og
útfærslur á þeim.

í lok ritgerðarinnar er svo að finna gagnrýninn samanburð á 11 mismunandi aðferð-
um byggðum á sjálfkóðurum. Brottnáms (e. ablation) tilraunir eru gerðar til að svara
spurningunni hvers vegna sjálfkóðarar eru svo árangursríkir í fjölrásagreiningu og stutt-
lega rætt um hvað framtíðin ber í skauti sér varðandi aðgreiningu fjölrásamynda með
sjálfkóðurum.

Megin framlag ritgerðarinnar er eftirfarandi:

- Ný sjálfkóðaraaðferð, MTLAEU, sem nýtir á beinan hátt rúmfræðilega fylgni rófa í
fjölrásamyndum til að bæta árangur aðgreiningar. Aðferðin notar fjölbeitingarlærdóm
til að aðgreina grennd af rófum í einu.

- Ný aðferð, CNNAEU, sem notar 2D földunartaugnanet fyrir bæði kóðara og afkóðara
og er fyrsta birta aðferðin til að gera það. Aðferðin er þjálfuð á myndbútum (e.patches)
og því er rúmfræðileg bygging myndarinnar sem greina á varðveitt í gegnum aðferðina.

- Yfirgripsmikil og ítarlegt fræðilegt yfirlit yfir birtar sjálfkóðaraaðferðir fyrir fjöl-
rásagreiningu. Gefinn er inngangur að sjálfkóðurum og elstu tegundir sjálfkóðara eru
kynntar. Gefið er greinargott yfirlit yfir helstu birtar aðferðir fyrir fjölrásagreiningu
sem byggja á sjálfkóðurum og gerður er gangrýninn samburður á 11 mismunandi sjálf-
kóðaraaðferðum.
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Chapter

Introduction 1
This chapter begins with introducing remote sensing hyperspectral images. The
concept of hyperspectral unmixing is explained and main approaches used in un-
mixing are reviewed. Dimensionality reduction and its relationship to hyperspectral
unmixing is also discussed. The chapter concludes with the goals and novelties of
the work presented here, along with an overview of the thesis.

•

Over the last half-decade, the new paradigm of machine learning (ML), particularly
that of deep learning (DL), has revolutionized and opened new possibilities in pro-
cessing data in data-intensive fields such as remote sensing. Hyperspectral imaging,
firmly a "big data" sub-field of remote sensing due to the high dimensionality of the
acquired data, has not been exempt from this development. Fig. 1.1 shows the number
of published papers1 found by Web of Science2 when using the search string "hyper-
spectral unmixing autoencoder". Lately, many methods developed for the processing
of hyperspectral data are based on deep learning.

Figure 1.1: The bar plot shows the number of published papers found
by Web of Science when using the search string "hyperspectral unmixing
autoencoder".

1Search restricted to ISI journal papers.
2https://wcs.webofknowledge.com/RA/analyze.do?product=WOS&SID=F5DqvtI6j2uBCmrYy9m&

field=PY_PublicationYear_PublicationYear_en&yearSort=true
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1.1 Hyperspectral Unmixing

Hyperspectral imaging belongs to the class of imaging spectrometry, where an entire
spectrum is acquired at every pixel. The technique has been defined by Goetz et al.,
in [1] as "the acquisition of images in hundreds of contiguous, registered, spectral bands
such that for each pixel a radiance spectrum can be derived". Today the number of
hyperspectral imaging applications are numerous in diverse fields, including environ-
ment and earth observation, agriculture and the food industry, biotechnology, medical
sciences, the pharmaceutical industry, manufacturing and forensic science [2–7].

Because of the high spectral resolution of hyperspectral images (HSIs), it is possible
to determine which pure materials (endmembers) are present in a scene. However,
because of the low spatial resolution of HSIs compared to multispectral images, a single
pixel will often contain more than one endmember. Therefore, determining the spectra
of the endmembers in an HSI and their proportions in each pixel, i.e., their abundances,
is a challenging inverse problem which is the central problem of hyperspectral unmixing
(HU). As a result, HU methods often determine only the endmembers, and their
abundances are then subsequently determined by another method using the extracted
endmembers. Methods that determine both the endmembers and their abundances
simultaneously are known as blind unmixing methods.

The problem of blind spectral unmixing can be formulated as a nonnegative matrix fac-
torization (NMF) problem, a type of blind source separation problem. Autoencoders
are a type of unsupervised learning neural networks that have been known since at
least 2006 [8] and are well suited for solving such problems. An autoencoder learns to
reconstruct its input but is prevented from learning the identity function. By imposing
a bottleneck in the network, the network is forced to discover and learn to leverage
any structure present in the data, resulting in compressed knowledge representations in
the bottleneck itself. Applications of autoencoders include dimensionality reduction,
feature extraction, image generation, data compression, and many more [9, 10].

With the recent renaissance of neural networks, it is not surprising that autoencoders
have become popular in HU research. The very first method to use an autoencoder for
HU was published in 2012 and was titled "Unsupervised nonlinear spectral unmixing
by means of NLPCA applied to hyperspectral imagery" [11]. This paper has gone
mostly unnoticed because unsupervised NLPCA is not the keyword commonly used
for autoencoders. The next method using an autoencoder for HU does not appear
until 2015 [12], and now eight years later, more than one hundred papers have been
published on HU using autoencoders.

1.1 Hyperspectral Unmixing

1.1.1 Hyperspectral Imaging

The history of hyperspectral imaging remote sensing is quite extensive, with its roots
dating back to the 1970s. It began with field spectral measurements in support of an-
alyzing data from NASA’s Landsat-1 [13]. The development of hyperspectral imaging
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Introduction

Figure 1.2: A graphical representation of an hyperspectral data cube.
Source: Wikimedia Commons.

was brought about by the realization, through laboratory and field spectral measure-
ments, mainly of minerals and soils, that multispectral imaging in four broad spectral
bands with Landsat’s multispectral scanner (MSS) was insufficient to distinguish and
identify minerals on the earth’s surface, which were crucial in resource exploration and
environmental assessment [13].

In the context of the remote sensing of the earth, airborne or spaceborne hyperspectral
sensors simultaneously acquire images in up to several hundred contiguous spectral
bands. The sensor captures both the light emitted and reflected by the object as a
spectrum consisting of several hundreds of channels, essentially a spectral response
curve. The resulting images have up to hundreds of channels, compared to only
a handful for traditional multispectral images, and they are organized into stacked
planes forming a data cube. Fig. 1.2 shows an example of an HSI data cube.

Because the measured signal from the surface, i.e., the reflected sunlight (radiance), is
affected by atmospheric effects such as clouds, water vapor and aerosols, it is converted
to reflectance. Reflectance is defined as the ratio between the flux coming from the
surface and the incidental flux, and is an intrinsic property of the materials being
imaged. This conversion minimizes the effects of the imaging conditions. One of
the challenges of hyperspectral imaging is atmospheric interference, which can affect
the accuracy of the captured data. The Earth’s atmosphere contains molecules and
aerosols that absorb and scatter the incoming solar radiation, leading to a loss of
energy in the spectrum. This results in a distortion of the hyperspectral data, making
it difficult to accurately interpret the data and obtain meaningful results [14].

Atmospheric correction is the process of removing the atmospheric interference from
hyperspectral images, which is essential for accurate data analysis. The atmospheric
correction process involves estimating the amount of atmospheric interference in the
data and then removing it to reveal the true spectral information of the surface. There
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1.1 Hyperspectral Unmixing

Figure 1.3: A graphical representation of hyperspectral image aquisition
using an airborne senseor.

are several methods of atmospheric correction, including empirical, radiative transfer-
based, and hybrid approaches. The choice of method depends on the characteristics
of the hyperspectral data and the atmospheric conditions [15].

Since every pixel in an HSI corresponds to a spectral response curve, the image itself
is a three-dimensional cube of either radiance or reflectance values. The reflectance
spectra of pure materials are known as endmembers. Because of the low spatial reso-
lution of hyperspectral sensors, there is usually more than one endmember present in
a pixel, and the spectrum of the pixel is some combination of the endmembers. The
proportional area that each endmember covers of the pixel is known as the abundance
fraction of the endmember.

This is illustrated in Fig. 1.3 which shows the aquisition of an hsi using an airborne
sensor. The incident sunlight is scattered off two pure materials. Some pixels, known
as pure pixels, will contain only one of the materials, while others will contain both, i.e.,
mixed pixels. The goal of HU is to determine the endmembers and their abundance
fractions in each pixel. The spectrum of a pixel can then be estimated, e.g., as a
linear combination of the endmembers with the abundance fractions as the coefficients.
It is evident that the abundance fractions for a pixel must sum-to-one as they are
proportions. Also, the spectra of pixels are nonnegative, as they are radiance or
reflectance values.

1.1.2 Mixing Models

The problem HU aims to solve arises from the fact that limited spatial resolution leads
to mixed pixels, i.e., spectral mixing due to more than one pure materials within a pixel
of the image. In what manner this spectral mixing happens and what assumptions can
be made regarding it is central to unmixing and is captured through so-called mixing
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models. There are linear and nonlinear mixing models, with the linear mixing model
(LMM) being the most widely used because of its simplicity and effectiveness.

Linear Models

Linear mixing is valid when the mixing scale is macroscopic and the incident light only
interacts with one pure material [16]. The spectral mixing is then actually occurring
inside the sensor itself because the resolution is not fine enough to separate the mate-
rials. Under the LMM, the spectrum of a pixel xp of an HSI Y ∈ Rw×h×B having B
bands is modelled as a convex combination of R endmembers am ∈ RB×1 as

xp =
R∑

m=1
smpam + ϵp, (1.1)

where the abundance fractions smp are the area proportions of the endmembers in the
pixel xp and must satisfy the following two physically inspired constraints: smp ≥ 0
or abundance nonnegativity constraint (ANC),

∑R
m=1 smp = 1 or abundance sum-to-

one constraint (ASC), and ϵp is noise. This can also be written as a matrix-vector
multiplication as

xp = Asp + ϵp, (1.2)

where A ∈ RB×R is the endmember matrix having the endmembers in its columns
and sp is the abundance vector. The main drawback of the LMM is its inability to
represent spectral variability such as variations due to varying illumination conditions.
There are other extended and augmented linear mixing models that are able to model
spectral variability such as the perturbed linear mixing model in [17], the extended
linear model in [18], the augmented model in [19], and the data dependent multiscale
model in [20].

Nonlinear Models

When the mixing scale is not macroscopic as for intimate mixtures of materials, or
the incident light scatters off multiple materials, nonlinear models are needed [21,
22]. Usually only bilinear interactions are modelled, i.e., when light reflected off one
material reflects off another, a case of secondary illumination. Models that model
bilinear interactions are called bilinear models [23–25].

Another case is intimate mixtures of grains or particles in close contact with each
other, e.g., mineral particles in sand and soil. Light in such mixtures will typically
interact multiple times with the particles making up the mixture before reaching the
observer. The modelling of the optical characteristics of intimate mixtures is highly
nontrivial and Hapke introduced a widely used model, the Hapke model [26].
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1.1 Hyperspectral Unmixing

An example of a general nonlinear model is

xp = Θ(A, sp) + ϵp, (1.3)

where the nonlinear interactions between the endmembers in A are given implicitly
by the function Θ and parameterized by the abundance vector sp. This article is only
concerned with a restriction of (1.3) to the post nonlinear structure given by

xp = Ψ(Asp) + ϵp, (1.4)

where Ψ is a nonlinear function acting on the linear transform Asp. The Hapke model
can be considered a special case of (1.4). Later it will be seen that (1.4) allows for
easier extraction of the endmember matrix A and the abundances sp than the general
model (1.3).

1.1.3 Spectral Unmixing Methods

Often the first step in hyperspectral unmixing is to determine how many endmem-
bers are in a given HSI to be unmixed, which is in itself a challenging part of the
unmixing problem. The most common methods for this are the method of virtual
dimensionality [27], hyperspectral signal identification with minimum error (HySime)
method [28], the eigenvalue likelihood maximization (ELM) method [29], and hyper-
spectral subspace identification using SURE [30].

Traditional methods for spectral unmixing are often grouped into three main cate-
gories, with the categories defined by how the problem is interpreted [31]. The cate-
gories are sparse regression methods, geometrical methods, and statistical methods.

Sparse regression methods

Among the earliest methods are the sparse regression methods that seek to express
the observed spectra as linear combinations of known spectral signatures from spec-
tral libraries [32–35]. These methods can be used when library of potential spectral
signatures for the sensor used is available. Often these endmembers are collected
from the actual location of the imagery being analyzed using field-sensors or they can
be obtained from a laboratory. The spectral signatures of the endmembers are then
used to construct a spectral library. The spectral library is then used to construct a
dictionary matrix D whose columns are the spectral signatures of the endmembers.
The abundance vector sp is then sought as the solution to the following optimization
problem [31]

sp = min
sp

∥sp∥0 subject to ∥xp − Dsp∥2 ≤ δ, (1.5)

where ∥·∥0 is the ℓ0 norm and δ is a threshold. The ℓ0 norm is the number of non-zero
elements in the vector which we want to be low.
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Geometrical methods

Another category of methods is geometrical methods. These methods are centered
around the observation that the spectral vectors generated according to the LMM lie in
a R−1 simplex in RB with the endmembers at the vertices. Geometrical methods can
be further categorized into pure pixel methods or minimum volume simplex methods
based on whether they rely on the presence of pure pixels, i.e., the spectra of pure
materials in the data, or not.

Making the assumption that every pure material in a scene has at least one pure pixel
makes the problem very computationally efficient. A very well known and widely used
pure pixel method is vertex component analysis (VCA) [36]. Another widely used
pure pixel method is the N-FINDR method [37].

Minimum volume approaches do not make any assumptions about the presence of pure
pixels which in turn makes the problem nonconvex and more computationally expen-
sive. Minimum volume methods attempt to find a set of endmembers that minimize
the volume of the simplex defined by the endmembers subject to the constraint that
the observed data must fit within the simplex [31].

A necessary condition for convergence of these methods is the presence of a certain
minimum number of pixels on each facet of the simplex, a condition that may not
hold for highly mixed data [31]. A good exmaple of a minimum volume technique
is minimum volume simplex analysis (MVSA) [38]. Further examples of ℓ1/2 and ℓq

sparsity constrained minimum volume methods are [39] and [40], respectively.

Statistical methods

Statistical methods reformulate the unmixing problem as an inference problem. In
blind unmixing, where we want to simultaneously determine the endmembers and
their fractional abundances, the problem becomes a blind source separation problem
(BSS) [41–43]. Because of the nonnegativity constraint in mixing models, nonnegative
matrix factorization (NMF) has been widely used by blind unmixing methods [39,40,
44]. Two widely used NMF methods are ℓ1/2-NMF [39] and MVC-NMF [45]. Most
statistical approaches to unmixing are either variants or extensions of NMF. Methods
based on compressed sensing, such as [46–48], also belong to this category of statistical
methods.

1.2 Notation
In this thesis the following notation will be used throughout: The number of pixels in
an HSI X will be denoted with the letter P and the number of bands with the letter
B. The letter R will be used to denote the number of endmembers to be estimated.
The endmember matrix will be denoted A and will be of size B × R, and endmember
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i will be denoted with ai, a vector of size B × 1. The abundance vector sp of pixel
p will be of size R × 1. The observed spectra xp will be of size B × 1. The k × k
neighborhood of pixels centered on pixel p will be denoted with N p

k .

When discussing neural networks the following notation will be used: The weights
of layer number l will be denoted with the letter W (l). If the neural network has
branches, the weight matrix of layer l and branch i will be denoted with W

(l)
i . The

vector of activations of layer l will be denoted with a(l) and a subscript will be used
to indicate branch number if the neural network has branches. The activation of unit
i in layer l will be denoted a

(l)
i , and another subscript will be added if the layer is a

branch.

The activation function of a neural network will be denoted with the letter g and
batch normalization with the letters BN. The network’s loss function will generally be
denoted with L and fidelity measures, and sometimes regularization terms, with the
letter J .

1.3 HSIS used in experiments and performance mea-
sures

1.3.1 Datasets

All experiments were performed using four real HSIs described below and four synthetic
datasets with increasing spectral variability. The methodology for determining the
reference endmembers is described in [49]. The datasets are:

1. Samson. The SAMSON sensor obtained this widely used dataset, and it is a
cropped image from a larger image. The size is 95 by 95 pixels, and the number
of bands is 145 covering the 401-889 nm wavelength range. The dataset has the
following endmembers: Water, Soil, and Tree.

2. Urban. Obtained by the HYDICE [50] (Hyperspectral Digital Image Collection
Experiment) sensor, this image is 307 by 307 pixels and has 210 bands covering
the 400-2500 nm wavelength range. After removing corrupted and noisy bands,
162 bands remain. Here, 4, 5 and 6 reference endmembers are used in experi-
ments. Grass, Tree, Asphalt, and Roof were selected as the references for four
endmembers. The five endmembers reference additionally includes the Soil end-
member, and the six reference endmembers reference additionally includes the
Soil and Metal endmembers.

3. Houston. This dataset is a cropped image from a larger one acquired over the
University of Houston campus, Texas, USA, in June 2012, and has 144 bands
covering the wavelengths of 380-1050 nm with a spatial resolution of 2.5 meters.
The cropped image is 170 by 170 and is centred on the Robertson Stadium on
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(a) Samson - simulated (b) Urban - simulated

(c) Houston - actual (d) Apex - actual

Figure 1.4: Simulated and actual RGB images of the datasets used in
the experiments.

the Houston Campus and surrounding area. For this dataset, four endmembers
are estimated, and the reference endmembers are selected from the averages of
the 15 classification ground truth categories that come with the dataset.

4. Apex. This hyperspectral dataset is a cropped image from a much larger one
acquired by the APEX [51] sensor during a clear day in June 2011 at an altitude
of 4600 m above sea level with a heading of 56 degrees in the vicinity of Baden,
Switzerland. Two hundred eighty-five bands cover the wavelength range between
413 nm and 2412 nm, all usable. The cropped image is 300 by 300 pixels sub-
image cropped from the larger 1500×1000 image at location (70,650). Here
four endmembers are estimated, and the reference endmembers are Asphalt,
Vegetation, Water, and Roof.
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1.3.2 Performance measures

The endmembers extracted by the methods are quantitatively evaluated by calculating
the average SAD from the reference endmembers using

mSAD = 1
R

R∑
i=1

cos−1
(

⟨m̂i, mi⟩
∥m̂i∥2 ∥mi∥2

)
, (1.6)

where m̂i are the endmembers extracted by a method, and mi are the reference
endmembers. The lower the SAD, the better the estimated endmembers resemble
the reference endmembers. In result tables, the SAD for individual endmembers will
also be given. The extracted abundance maps are also quantitatively evaluate for each
dataset by calculating the average mean squared error between them and the reference
abundance maps using

MSE = 1
P

P∑
i=1

∥Si − Ŝi∥2, (1.7)

where Ŝi are the abundance values for a particular endmember for pixel i and Si are
the reference abundance values.

1.4 Thesis contributions and organization
The topic of this thesis is blind hyperspectral unmixing using autoencoders with special
focus on the incorporation of spatial information, i.e., to exploit the spatial structure
of HSIs in addition to their spectral information. The pixels in HSIs are, as in other
natural images, strongly correlated with their neighbors. This spatial structure con-
tains information that can be used along with the spectral information to constrain
further the unmixing problem.

Unmixing methods that exploit the spatial structure are called spectral-spatial meth-
ods. The most common way to utilize the spatial structure of HSIs is by refining a
spectral method by using some spatial prior to regularize or control the sparsity and
the smoothness of the abundance maps obtained [52] or by doing preprocessing on the
data prior to using a spectral only method. Developing entirely new spatially oriented
methods is not as common.

Chapter 2 is an introduction to autoencoders and how autoencoders are used for spec-
tral unmixing. This chapter will discuss the details of implementing such autoencoders,
such as choices of activation functions, different ways of implementing the ASC and
ANC constraints, and the effects of different objective functions.

In Chapter 3, an autoencoder based method that uses multitask learning to simultane-
ously unmix a neighborhood of pixels will be introduced. This method thus attempts
to directly exploit the spatial structure of the HSI by utilizing an encoder that has
multiple branches or tasks, that share a layer, while using a single shared decoder. It
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will be demonstrated that this improves the consistency of the method and lowers the
variance of estimated endmembers.

In Chapter 4, the first fully convolutional autoencoder for spectral unmixing will be
introduced. The technique exploits the spatial and the spectral structure of HSIs both
for endmember and abundance map estimation. As it works directly with patches
of HSIs and does not use any pooling or upsampling layers, the spatial structure is
preserved throughout, and abundance maps are obtained as feature maps of a hid-
den convolutional layer. It will be demonstrated that this improves the performance
and consistency of the method compared with strictly spectral unmixing autoencoder
methods.

In Chapter 5, a comprehensive comparison and evaluation of many autoencoder based
method from the literature will be given. Eleven different, including the author’s own,
autoencoder based methods will be compared using four real hyperspectral datasets.

1.5 Publications
Chapter 2 is based on the following publications:

[a] Palsson, B., Sveinsson, J. & Ulfarsson, M. Blind Hyperspectral Unmixing Using
Autoencoders: A Critical Comparison. IEEE Journal Of Selected Topics In
Applied Earth Observations And Remote Sensing. 15 pp. 1340-1372 (2022)

Chapter 3 is based on the following publications:

[b] Palsson, B., Sveinsson, J. & Ulfarsson, M. Multitask Learning for Spatial-Spectral
Hyperspectral Unmixing. IGARSS 2019 - 2019 IEEE International Geoscience
And Remote Sensing Symposium. pp. 564-567 (2019)

[c] Palsson, B., Sveinsson, J. & Ulfarsson, M. Spectral-Spatial Hyperspectral Un-
mixing Using Multitask Learning. IEEE Access. 7 pp. 148861-148872 (2019)

Chapter 4 is based on the following publications:

[d] Palsson, B., Ulfarsson, M. & Sveinsson, J. Convolutional Autoencoder for Spatial-
Spectral Hyperspectral Unmixing. IGARSS 2019 - 2019 IEEE International
Geoscience And Remote Sensing Symposium. pp. 357-360 (2019)

[e] Palsson, B., Ulfarsson, M. & Sveinsson, J. Convolutional Autoencoder for Spectral-
Spatial Hyperspectral Unmixing. IEEE Transactions On Geoscience And Re-
mote Sensing. pp. 1-15 (2020)

Chapter 5 is based on the following publications:
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[a] Palsson, B., Sveinsson, J. & Ulfarsson, M. Blind Hyperspectral Unmixing Using
Autoencoders: A Critical Comparison. IEEE Journal Of Selected Topics In
Applied Earth Observations And Remote Sensing. 15 pp. 1340-1372 (2022)
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Chapter

Autoencoders 2
This chapter discusses how autoencoders are applied to blind hyperspectral image
unmixing. The chapter starts with a brief introduction to autoencoders, and then
discusses the main types of autoencoders that have been used in the literature for
unmixing. Various ways to implement the necessary constraints of the LMM are
also discussed in detail. Next, various architectural choices are discussed, along
with common regularizations used in the literature and how they are implemented.
Also discussed is how to incorporate spatial information into the autoencoder frame-
work and the proplem of hyperparameter selection and optimization.Next is short
discussion on what makes autoencoders so effective for unmixing. The chapter con-
ludes with a review of non-blind, i.e., abundance maps estimation methods using
autoencoders.

•

Fig. 2.1 shows a schematic of an autoencoder. An autoencoder consists of two parts,

Input layer

Hidden
"bottleneck"

layer

Output layer

Figure 2.1: A schematic of a simple autoencoder with a single hidden
layer bottleneck.

an encoder and a decoder. The encoder, GE , encodes the input, xp, into a latent code
or a hidden representation, hp = GE(xp), in a latent space of typically much lower
dimension. The decoder, GD, must then reconstruct the original input from the latent
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code, x̂p = GD(hp), to minimize the loss

L(xp, GD(GE(xp))), (2.1)

where L(xp, x̂p) is some measure of the discrepancy between the original input xp,
and the reconstruction by the autoencoder, x̂p. If WE denotes the weights matrix of
the encoder, and WD denotes the weights matrix of the decoder, the forward pass of
the simple autoencoder in Fig. 2.1 can be written as

x̂p = gD(WD(gE(WExp))), (2.2)

where gE and gD are the activation functions of the hidden layer and the output
layer, respectively. The reconstruction loss is indifferent to latent space characteristics,
so generally we need some additional constraints to ensure the autoencoder learns
meaningful representations, i.e., that it learns the data manifold.

Thus, by using appropriate regularization, we can force the autoencoder to only learn
the necessary variations to reconstruct training examples. This balance between being
sensitive enough to the inputs to reconstruct them accurately, and being insensitive
enough to them to learn the actual data distribution, is essential in regularized au-
toencoders. The regularized loss has the form

Lregularized(xp, x̂p) = L(xp, x̂p) + λJ(hp, WE , WD), (2.3)

where J(hp, WE , WD) is some penalty that can be a function of the activities of the
units in the bottleneck layer, the weights of the decoder, or the encoder, and the
lambda is the tuning parameter which controls how strong the regularization is.

Now, if we wish to perform spectral unmixing using an autoencoder such as in Fig. 2.1,
it is easy to derive the basic architecture of the autoencoder by comparing the forward
pass given by (2.2) to the LMM given by (1.2). The activation function of the decoder,
gE , is required to be linear, then A = WD and sp = gE(WExp).

The encoder encodes the input spectrum to a latent code that can be interpreted as the
abundance fractions. The linear decoder layer then reconstructs the input by creating
a linear combination of the columns of its weights matrix (the endmembers) with the
abundance fractions as the coefficients. The simple autoencoder, however, fails to
satisfy the ANC and ASC constraints. Hence, a bit more sophisticated architecture is
needed to implement the LMM fully.

The following few sections will give a brief overview of the different types of autoen-
coders that have been used for hyperspectral unmixing.
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2.1 Sparse Nonnegative Autoencoders
It is possible to make autoencoders discover and utilize structures in the data without
having a bottleneck layer with fewer units than the input layer. This can be done by
forcing the activations in the hidden layers to be sparse, again creating an information
bottleneck that prevents the autoencoder from just learning the identity function.
Forcing sparse activations in the hidden layers means that we encourage the network
to learn to encode and decode a given input in a manner that only activates a few
hidden units at a time in every hidden layer.

Input layer Hidden "sparse" layer Output layer

Figure 2.2: A schematic of a sparse autoencoder with a single hidden
layer. Dark hidden units have higher activation strength than the lighter
ones.

However, since the number of bands in an HSI is so much greater than the number
of endmembers to estimate, sparse autoencoders for unmixing use a sparse bottleneck
layer, i.e., a layer that has much fewer units than the input layer, and which is required
to be sparse via a regularizing term in the loss function such as ℓ1-norm penalty on
the activities of the units in the bottleneck layer.

In order to satisfy the ANC constraint, the abundance fractions, i.e., the output of
the encoder part, must be nonnegative. This can be done in more than one way. One
way is to select an activation function for the last encoder layer that outputs only
nonnegative numbers such as the rectified linear unit activation (ReLU) [53] given by

ReLU(zi) = max(0, zi), (2.4)
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or the sigmoid activation function, given by

sigmoid(zi) = ezi

1 + ezi
. (2.5)

Another way is to let the implementation of the ASC constraint also take care of the
ANC constraint. Using, e.g., the softmax activation function,

σ(z)i = ezi

1 +
∑R

j=1 ezj

, (2.6)

to implement the ASC constraint both ensures the abundance fractions sum-to-one
and that they are nonnegative. Later in this article, different ways to implement the
ASC constraint will be discussed.

It is also necessary to make sure that the weights of the decoder are all nonnegative
as they correspond to the endmembers, which represent reflectance values and must
therefore be nonnegative. This can be done in two ways: employing a nonnegativ-
ity kernel constraint in the deep learning framework used to implement the method
or using regularization that penalizes negative weights. The sparse autoencoder that
satisfies all of these nonnegativity constraints is known as a sparse nonnegative autoen-
coder. Such an autoencoder is effectively implementing NMF. It factors the observed
HSI into the product of two nonnegative matrices, namely the nonnegative matrix of
abundance fractions and the mixing matrix having the endmembers as its columns.
Such autoencoders are widely used in problems that can be solved through NMF, such
as various blind separation problems [54,55].

2.2 Variational Autoencoders
The latent space of traditional autoencoders is very irregular, which makes them un-
suitable as generative models [56]. Here, irregular means that two points close in latent
space are not guaranteed to be similar once decoded, or put another way; two similar
inputs are not necessarily encoded to points close together in the latent space. Varia-
tional autoencoders (VAE) [57] solve this problem by utilizing specialized regularized
training that ensures that the latent space has good properties. Fig. 2.3 illustrates the
essential difference between standard and variational autoencoders. In a variational
autoencoder, the encoder encodes the input to distributions over latent space instead
of values. This is done by having the encoder model output the parameters of distri-
butions and then sampling from these distributions the input values for the decoder
model. VAEs make a strong assumption about the true prior distribution, p(z|x), of
the latent space representations. During training, a loss term is added to the objective
function that makes the learned distribution q(z|x) similar to the assumed true prior
distribution p(z|x). The general loss function of a VAE is given by

LVAE(x, x̂) = L(x, x̂) +
∑

j

KL(qj(z, x)||p(z)), (2.7)
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encoding
latent

representation decoding
input

reconstruction

encoding

latent
distribution sampling

sampled latent
representation decoding

input
reconstruction

Variational autoencoders

Standard autoencoders

input

Figure 2.3: A comparison between standard autoencoders and varia-
tional autoencoders (blue path). Variational autoencoders encode the
input into a probability distribution over latent space. The decoder
samples from this distribution when decoding the encoding.

where KL is the Kullback-Leibler divergence [58] and the sum is over the dimensions
of the latent space [57].

2.3 Adversarial Autoencoders

Encoder Decoder

Discriminator

Figure 2.4: A schematic of an adversarial autoencoder.

An adversarial autoencoder is an approach that borrows ideas from generative ad-
versarial networks (GAN) to turn a regular autoencoder into a useful generative
model [59]. A schematic of an adversarial autoencoder is shown in Fig. 2.4. The
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upper part is a standard autoencoder that tries to reconstruct its input x. It has a
encoder model, qϕ(z|x), that produces a latent code z, and a decoder model, pθ(x|z),
that reconstructs the input from the latent code. The encoder model has an aggregated
posterior q(x) such that z ∼ q(x), that is given by

q(x) =
∫

x

qϕ(z|x)pd(z)dx, (2.8)

where pd(z) is the distribution of the data.

An adversarial autoencoder is obtained by regularizing the autoencoder described
above by matching the aggregated posterior q(x) to some arbitrary prior distribution
p(z) [59]. This is done by borrowing the concept of an adversarial network from GANs.
The network labeled D in Fig. 2.4 is trained to tell if the latent code comes from
the aggregate posterior q(x) or from the prior distribution p(z). The autoencoder’s
encoder acts as a generator of an adversarial network while the network D acts as a
discriminator.

During training, the adversarial network and the autoencoder are trained alternately.
First, the autoencoder updates both the encoder and the decoder to minimize the re-
construction error. Then the adversarial network updates its discriminator network D
to tell apart the true samples (sampled from the prior p(z)) from the ones generated by
the encoder part and updates its generator (the encoder) to confuse the discriminator
D.

2.4 Denoising Autoencoders
Autoencoders having only a single hidden layer and which take a partially corrupted
input and are trained to recover the original uncorrupted input are known as denoising
autoencoders (DA) [60]. At training time, the input x is partially corrupted using a
stochastic mapping, resulting in x̃. The partially corrupted input is then reconstructed
in the standard way, x̂ = GD(GE(x̃)), but the loss is calculated between the recon-
structed input x̂ and the original uncorrupted input, x [60]. It is important to notice
that the input is only degraded during training. To perform the denoising well, the
model needs to extract features that capture useful structure in the input distribution.

2.5 Marginalized Denoising Autoencoders
Many simple denoising autoencoders are often stacked to form a deep network by
feeding the latent code of the previous DA as input to the current DA in the stack [60].
The DAs are pre-trained one layer at a time, with each layer trained as a denoising
autoencoder by minimizing the error in reconstructing its input which is the output
latent code of the previous layer. When stacked denoising autoencoders (SDAs) are
used for feature learning, linear autoencoders are sufficient, i.e., the activation function
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can be set to be linear, and the effect of each autoencoder can be given by a single
linear transformation W . When considering a deep enough stack of such single layer
linear denoisers, the corruption can be marginalized out, and a closed-form solution
can be obtained for the effective reconstructing matrix W [61]. The resulting single-
layer autoencoder, which applies the reconstructing matrix, is known as a marginalized
denoising autoencoder (mDA) and has found use in spectral unmixing [61,62].

2.6 Convolutional Autoencoders
Convolutional autoencoders [63] are based on convolutional neural networks (CNNs).
These networks use convolutional layers instead of fully connected layers, which use
convolutions of learnable filters with input patches to produce feature maps. In the
context of spectral unmixing, they differ from conventional autoencoders in one crucial
aspect, which is that they are inherently spatial and make use of the spatial correlations
existing in HSIs. In contrast, conventional autoencoders look at one spectrum at a
time and need special regularization to consider spatial information.

Architecturally, they are similar to conventional autoencoders used in spectral un-
mixing. For example, the abundance maps arise naturally as the feature maps of a
"spectral bottleneck" layer, i.e., a convolutional layer having R feature maps, one for
each endmember. Similarly, the weights of the linear decoder convolutional layer can
be interpreted in terms of endmembers, but to do so for the non-trivial case of filter
size larger than 1 × 1 requires a new spectral-spatial linear mixing model as the recon-
struction of a pixel’s spectrum involves the abundances of neighbouring pixels [64].

2.7 Spectral Unmixing Autoencoders
The majority of autoencoder based methods for blind unmixing are based on the fully
connected sparse nonnegative autoencoder. Here we will take a closer look at various
implementation details and choices taken by methods in blind unmixing that can
influence the performance of spectral unmixing, e.g., choice of loss functions, choice of
activation functions, and so forth. Fig. 2.5 shows a generic autoencoder that performs
spectral unmixing.

It has a deep encoder with two hidden layers, but the hidden layers can vary from one to
several. The decoder has a nonnegative constraint for its weights and linear activation.
It is also possible to make the decoder’s weights nonnegative using a regularization
that penalizes negative weights. The activation function of the encoder is ReLU or
Leaky ReLU LReLU). The ASC constraint is enforced using a normalizing utility
layer or softmax activation. In practice, it is convenient to create a custom layer that
enforces the ASC because it makes it easier to implement abundance regularizations.
The forward pass of this general autoencoder can be written out as

x̂p = WD(σ BN g(W (2)BN g(W (1)a(0)))), (2.9)
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Figure 2.5: A schematic of a general unmixing autoencoder. The fig-
ure shows an example having two hidden layers but the actual number
could vary from one to several. The decoder has a nonnegative weights
constraint and linear activation. The ASC constraint is enforced with a
normalizing utility layer or softmax activation.

where BN denotes batch normalization using operator notation, and σ is similar opera-
tor notation for the action of the ASC enforcing layer, i.e., σa sums-to-one, a(0) = xp,
i.e., the input layer activations, and WD is the weight matrix of the linear decoder.

2.7.1 Deep versus shallow encoder

The power of depth in feedforward neural networks is still not fully understood in the
field of deep learning theory [65]. Deep neural networks can extract better features
than shallow networks for the same amount of computation. In [65], it is proven that
deep networks can approximate the class of compositional functions with the same
accuracy as shallow networks but with an exponentially lower number of training
parameters. However, deep networks are more prone to overfitting and can be harder
to train than shallow networks and generally require more regularizations. Whether
a deep encoder will extract better abundance fractions than a shallow encoder most
likely will depend on the mixing model being assumed. It could be argued that a
deep encoder can extract better abundances under a nonlinear mixing model. We will
come back to this question when discussing the experimental results. The methods
in [64,66–71] employ deep encoders.
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2.7.2 Batch normalization

Batch normalization is used to speed up the training of neural networks and make
them more stable through normalization of the inputs to a layer by re-centring and re-
scaling [72]. Initially, it was believed that batch normalization did work by mitigating
internal covariance shift, which reduces the learning rate of the network [72], but
recent research shows that it works by smoothing the objective function [73]. Batch
normalization layers are usually used after or before a nonlinear activation function
such as ReLU, and they are only active during training.

Regarding the choice of batch size, it is the authors’ experience that small batch sizes
yield better unmixing performance than large batch sizes. In [74], it is argued that
large batch sizes can lead to degradation of the quality of deep learning models as
measured by their generalization abilities as large-batch methods tend to converge to
sharp minimizers of the training and testing functions, and sharp minima lead to more
inferior generalization.

If we let ai, i = 1, . . . , m be the values of the inputs from the previous layer for a
batch B, we can write the effect of the batch normalization layer as

aBNi = BNγ,β(ai) = γâi + β, (2.10)

where

âi = ai − µB√
σ2

B + ϵ
,

µB = 1
m

m∑
i=1

ai,

σ2
B = 1

m

m∑
i=1

(ai − µB)2,

γ and β are learnable parameters, and ϵ is a very small number.

2.7.3 Choice of activation function for hidden layers

The choice of activation function for the hidden layers and especially the last hidden
layer of a deep encoder can significantly influence the behaviour and performance of
unmixing autoencoders. Like in deep learning in general, the trend has been away
from using saturating activation functions which squeeze their input, e.g., like the
sigmoid function, to using non-saturating activation functions such as the Leaky ReLU
(LReLU) variant [75] given by

LReLU(x) = max(βx, x), (2.11)
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where β is a real number between 0 and 1. The problem with saturating activation
functions is that the value of hidden units often becomes stuck at their asymptotic
values, e.g., 0 or 1 for the sigmoid activation, indicating that the pre-activation sum-
of-products is relatively large. This leads to vanishing gradients during training. The
methods in [12, 76] use a parameterized sigmoid activation function. The ReLU acti-
vation largely mitigates the problem of vanishing gradients, but the function is still
saturated to the left, and hidden units can become stuck at zero. In unmixing, this
can cause the abundance maps of certain endmembers to become zero-valued. The
works [62,70,71,77,78] all use the ReLU activation. The LReLU activation is a good
choice of an activation function as it is non saturating in both directions. The methods
in [64,67,69] all use LReLU as the activation function of hidden units.

2.7.4 Dropout

Dropout is a powerful regularization technique that helps with preventing overfitting
and improving the generalization of deep networks. It works by randomly omitting
or dropping units of a layer during the training of a neural network [79]. This pre-
vents complex co-adaptations of units on the training data. It can be thought of as
a way of performing model averaging with neural networks. In convolutional net-
works, feature maps, instead of units, are set randomly to zero or dropped, a case
of dropout known as spatial dropout [80]. When properly used, dropout can give a
better unmixing performance, primarily when used with deep encoders as they need
more regularization. Dropout is not commonly used in blind unmixing methods. The
methods in [66, 67, 77] use dropout while the method in [64], being a convolutional
network, uses spatial dropout.

2.7.5 Choices of loss fidelity function and spectral vari-
ability

The choice of function or similarity measure used for the fidelity term of the loss
function is a crucial one that can significantly influence the performance of the un-
mixing autoencoder. The main reason for this is that some similarity measures are
scale-invariant while others are not. Furthermore, due to variations in illumination
or topography, real hyperspectral data often has considerable spectral variability and
is not well modelled by the LMM. This means that the same material or mixture
of materials can have spectra that differ in scale even though they have the same
abundances.

A similarity measure that is not scale-invariant will penalize the LMM reconstructions
that differ in scale from the original spectra and thus cannot handle spectral (scale)
variability. In contrast, a scale-invariant similarity measure will only penalize based
on the difference in shape. Using a scale sensitive similarity measure for an HSI that
exhibits substantial spectral variability leads to worse unmixing performance than if
a scale-invariant measure had been used. The most common scale-invariant similarity
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measures used in unmixing are the spectral angle distance (SAD) given by

JSAD(xp, x̂p) = arccos
(

⟨xp, x̂p⟩
∥xp∥2 ∥x̂p∥2

)
, (2.12)

and the spectral information divergence (SID) measure given by

JSID(xp, x̂p) =
B∑

n=1
pn log

(
pn

qn

)
+

B∑
n=1

qn log
(

qn

pn

)
, (2.13)

where
pn = xp,n∑M

n=1 xp,n

, qn = x̂p,n∑M
n=1 x̂p,n

,

are estimates of the probability mass functions of the target and estimated spectra,
respectively. The methods in [64,66,67,69] all use the SAD similarity measure as the
fidelity term of the objective function, while the method in [81] uses the SID measure.
The most common non-scale invariant similarity measure is the mean squared error
(MSE) given by

JMSE(xp, x̂p) = ∥xp − x̂p∥2
2. (2.14)

All the methods in [12, 62, 68, 76, 78, 82–84] use the MSE measure as the fidelity term
of the network’s loss function. It is also possible to use a combination of both scale-
invariant and non-scale-invariant loss terms. The work in [77] uses such a combination
as the fidelity term. In [70], it is argued that the histogram of the reconstruction
error of an unmixing autoencoder follows a hyper-Laplacian distribution and hence an
optimal fidelity term should have the form

JHL(xp, x̂p) = ∥xp − x̂p∥q
q, (2.15)

where q is a positive real number.

2.7.6 Implementation of the ASC constraint

The last step the encoder needs to do is to make sure the latent code resulting from
the nonlinear dimensionality reduction of previous layers sums-to-one in accordance
with the ASC constraint of the LMM. One way to do this is to normalize the latent
code vector, s, resulting from the last layer of the encoder as

ŝi = si∑R
j=1 sj

, (2.16)

where ŝ is the abundance vector. If this method is to be used, it must be ensured
that all the values si, i = 1, · · · , R are nonnegative. In practice, this means that the
choice of activation function for the last layer of the encoder is restricted to strictly
nonnegative functions such as ReLU or sigmoid activation functions. It might be
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argued that thresholding the values using ReLU or dynamic ReLU,

ŝ = max(0, s − α), (2.17)

where α is a nonnegative R×1-vector learned by the network, as some works do, might
deactivate many units in the network and not utilize its full capacity. The methods
in [12, 66] use this implementation of the ASC, while [66] additionally uses it with a
dynamically thresholding ReLU activation. Another ASC implementation that does
not require strictly nonnegative activation of the last hidden layer is

ŝi = |si|∑R
j=1 |sj |

. (2.18)

This implementation also takes care of the ANC constraint. The method in [69] uses
this implementation. The method described in [77] uses a variation of (2.18), where
taking the absolute value in the nominator is omitted. Yet another implementation of
the ASC that many works use, is to apply the softmax function directly to s or scale
it first as in

ŝ = softmax(γs), (2.19)

where γ is a constant larger than one. This implementation also takes care of the ANC
constraint and by choosing large γ achieves something similar to ℓ1-norm regularization
on the abundance maps. The works [70,71] and [77] use the softmax function without
scaling to implement the ASC, while the methods in [64,67] use it with a scaling.

The ASC constraint can also be implemented through regularization by adding a
penalty term to the loss function that penalizes if the abundances do not sum-to-
one. This can, however, increase the instability of the training process and the time
needed for convergence. The techniques described in [70,71] enforce the ASC through
such regularization. A related implementation is to augment the data matrix and the
decoder weight’s matrix with constant vectors. The methods in [62,68,78,82] use this
to weakly enforce the ASC constraint.

2.7.7 Abundance regularizations
In order to further constrain the unmixing problem, reasonable assumptions or priors
regarding the abundance fractions are used to construct regularization terms that force
the latent codes or the learned representations to live in certain subspaces of the latent
space which reduces its effective dimensionality. The most common assumption made
is that the abundance maps are sparse. Increased sparsity can be achieved by ℓ1-
norm regularization, or more generally by ℓp-norm regularization, i.e., by an objective
function of the form

Lℓp regularized(xk, x̂k) = L(xk, x̂k) + λ∥sk∥p
p, (2.20)

where p is a real number between 0 and 1, and sk is the abundance vector for spectrum
xk. The methods in [70, 71, 77, 84] all use ℓ1-norm regularization to promote sparsity
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of the abundances.

In [70], it is argued that different abundance maps are close to orthogonal since no
more than two endmembers are usually mixed within one pixel. This work introduces
a new prior based on this, named orthogonal sparse prior (OSP), given by

LOSP(B) =
∑
i<j

B·i · B·j

∥B·i∥2∥B·j∥2
, (2.21)

where B ∈ Rb×R is a batch of size b of generated abundance maps. An ablation
study shows that the OSP regularization leads to more sparse abundance maps than
the conventional norm based prior. In [83], an variational autoencoder is used as an
abundance regularization to enforce the ASC constraint.

2.7.8 Weights and endmember regularizations

Weight decay, ℓ2-norm regularization on the weights of the encoder and decoder, is
commonly employed to reduce overfitting and for better generalization. It can be
applieds by adding a term in the loss function as

Lℓ2 regularized(xk, x̂k) = L(xk, x̂k) + λ∥W ∥2
2, (2.22)

where

∥W ∥2 =

 m∑
i=1

n∑
j=1

W 2
ij

1/2

,

and W is the weight matrix of the layer we wish to regularize. ℓ2 regularization
penalizes the sum of squares of the weights and thus encourages smaller weights.
Unlike ℓ1 regularization, it does not lead to sparse solutions. The works in [77,84] use
ℓ2 for the weights of both the encoder and the decoder. The method in [78] applies
ℓ21 regularization to the encoder’s weights with ℓ21-norm being a rotational invariant
ℓ1-norm (R1-norm) defined as [85]

∥W ∥21 =
m∑

i=1

 n∑
j=1

W 2
ij

1/2

,

for an m × n matrix W .

Another well-known regularization of the endmembers, i.e., the weights of the de-
coder, is minimum volume regularization. This regularization aims to minimize the
volume of the simplex defined by the origin and the endmembers, i.e., the columns of
WD. All reconstructed spectra are guaranteed to lie inside this simplex, being convex
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combinations of the endmembers. The volume of this simplex is often denoted by

MinVol(WD) = ∥ det WD∥,

and so the loss function with minimum volume regularization has the form

LMV regularized(xk, x̂k) = L(xk, x̂k) + λMinVol(WD), (2.23)

The methods [82,83] employ this regularization.

2.7.9 Multitask learning

Recently, there have been two works for HU [67,68] that have utilized multitask learn-
ing (MTL). In the context of neural networks, MTL means that the network learns
multiple related tasks in parallel and parameters are shared between the tasks, usually
via shared layers [86]. Thus, the different tasks are implemented as different branches
of one network, which can have multiple inputs and outputs, depending on the prob-
lem being solved [87]. The benefits of MTL in spectral unmixing autoencoders include
the following:

• Faster learning. When tasks are correlated, they will contribute to the aggre-
gate gradient during backpropagation and increase the effective learning rate on
the input to hidden layer weights [86]. This means that useful features will form
faster in the shared hidden layer of the network.

• Reduced risk of overfitting. It has been shown that when layers are shared
between tasks, the risk of overfitting the shared parameters can be up to an
order N smaller, where N is the number of tasks [88].

• Improved stability. It has been shown that MTL tasks prefer hidden layer
representations that other tasks prefer [86]. For MTL autoencoders where each
task is unmixing a different pixel of a patch, and can lead to an increased stability
and consistency of the method.

• Incorporation of spatial information. MTL allows for the construction of
autoencoders that can unmix a whole patch at a time by having one task for
unmixing each pixel from the patch. This allows for fully connected networks
that can directly exploit the spatial correlation in the HSI with all the above-
listed benefits of MTL.

In [67], MTL is utilized for spectral-spatial unmixing, and in [68], MTL is utilized
to perform bilinear mixing model (BMM) spectral unmixing. One task performs the
linear unmixing and another task does updates the bilinear components.
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2.7.10 Approaches utilizing adversarial and variational au-
toencoders

Recently, there have been several works published in HU that utilize variational au-
toencoders. In [83], a VAE is used to ensure the nonnegativity and sum-to-one con-
straints of the abundances. The work in [89], employs a VAE to learn a spectral
variability model and generate endmembers. They are then used in the solution of
a spectral unmixing problem, cast as an alternating nonlinear least-squares problem
that is then solved iteratively. Alternately adjusting the abundances and the low-
dimensional representations of the endmembers in the generative model.

Recently, several works where adversarial autoencoders and generative models are used
for unmixing have been published. The work in [90] proposes a joint metric neural
network in the form of an adversarial autoencoder, where the Wasserstein distance
between features in the discriminator is used to regularize the autoencoder, which
is using SAD as the loss function. The Wasserstein distance between features of
real and reconstructed spectra provide useful gradient information that promotes the
autoencoder to reach a solution with better unmixing performance.

In [91], an abundance estimation method is proposed using 1D convolution kernels
and spectral uncertainty. High-level representations are computed and are further
modelled with the Multinomial Mixture Model (MMM) to estimate abundance frac-
tions under high spectral uncertainty. A new trainable uncertainty term based on a
nonlinear neural network is used in the reconstruction step. The uncertainty models
are optimized by Wasserstein generative adversarial network to improve stability and
capture uncertainty.

In [92], a method which uses a general perceptual loss-constrained adversarial au-
toencoder network to improve the unmixing performance is proposed. The encoder
compresses the input pixels into hidden representations, which are estimates of the
abundances of the materials while the decoder reconstructs the input pixels using
the estimated abundances and endmembers. The network is trained to minimize the
reconstructed error between the input and reconstructed pixels. A discriminator net-
work is used to distinguish between the real and reconstructed pixels and is trained
to maximize the discrepancy between the two. The method combines a general per-
ceptual loss with the adversarial loss to further improve the consistency of high-level
representations. The perceptual loss is calculated using hidden layers of the discrimi-
nator network to capture the feature difference between the input and reconstructed
pixels.

2.7.11 Utilization of spatial information

Like other natural images, hyperspectral images have highly correlated pixels, and it
is very desirable to make use of this spatial information. However, most unmixing
methods are strictly spectral and do not directly exploit the spatial structure of hy-
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perspectral images. This means that the methods work with one pixel at a time, even
though it may use regularizations based on assumptions about the spatial structure,
which will not be considered here to count as directly exploiting the spatial structure.
At the time of writing, there are quite a few approaches based on autoencoders that
directly exploit the spatial structure of HSIs. The earliest methods in this category
are the method in [67] directly unmixes a patch at a time using a multiple branch
architecture that is inspired by multitask learning (MTL) [86,87].

The technique proposed in [64] was the first fully convolutional autoencoder for spec-
tral unmixing and is inherently spatial in nature. It exploits the spatial and spectral
structure of HSIs both for endmember and abundance map estimation. By working
directly with patches of HSIs and not using pooling or upsampling layers, it preserves
the spatial structure throughout the network and abundance maps arise naturally as
feature maps of a hidden convolutional layer. This makes it very easy to apply complex
spatial regularization on the abundances such as total variation (TV). However, the
technique utilized 2D convolutions instead of 3D, which is not optimal as it only in-
troduces a spectral bottleneck, similar to a non-convolutional autoencoder, instead of
utilizing convolutions along the spectral dimension to better extract spectral features.

In [93], the authors introduce a framework that utilizes 3-D convolutional neural net-
works to jointly learn spectral-spatial priors and integrate spatial information into
unmixing methods. Additionally, the framework includes a carefully designed decoder
to handle endmember variability and employs a variational inference strategy to in-
troduce uncertainty to endmembers. To prevent overfitting, the encoder networks are
subjected to structured sparsity regularizers, and an ℓ2,1 loss is incorporated to ensure
sparseness in the estimated abundances.

Another approach to utilize and integrate spatial information into the unmixing pro-
cess is the use of multi- or two-stream networks, where two or more autoencoder
networks work in collaboration. There have been a few works published that utilize
this strategy. The study in [94] introduces the SSCU-Net, a novel spatial-spectral
collaborative unmixing network that comprises a spatial AE network and a spectral
AE network. The design of this network is rooted in the understanding that spatial
information more effectively informs endmember extraction while spectral informa-
tion better aids abundance estimation in AE-based unmixing networks. To leverage
this discovery, the SSCU-Net employs a two-stream deep network architecture, in-
corporating a collaborative strategy that focuses on both abundance fractions and
endmember information, ensuring efficient end-to-end training. Additionally, the net-
work integrates a new superpixel utilization method by incorporating superpixels into
the AE network, enhancing the use of spatial information. On the spectral side, the
AE network uses spectral convolution to maximize spectral information utilization.

In [95], a novel approach for deep spatial-spectral feature extraction in HSI is intro-
duced using a spatial-spectral feature learning network named ACAE. This method
employs Dual-branch CNN and LCA-ResBlocks to optimize spatial-spectral feature
extraction. The method innovatively employs adaptive convolution and local context
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adaptive residual blocks to harness spatial details from hyperspectral images. Addi-
tionally, sparse constraints based on pixel correlations are applied to the loss function
to bolster spatial information utilization. The dual-branch encoding network distinc-
tively separates and then fuses spectral and spatial features, utilizing a convolutional
network to further enhance their integration.

2.7.12 Endmember number estimation and robustness to dead
pixels and noise

As was mentioned in Section 1.1.3, the first step in hyperspectral unmixing of real
world images is estimating the number of endmembers in the scene. However, all of
the methods discussed here do not do this and require that the number of endmem-
bers is known beforehand. This is partly because the number of endmembers is an
important architectural parameter that determines the number of hidden units in un-
mixing autoencoders and also because the endmember number estimation can be done
separately. However, there are methods, such as the one in [96] that incorporate the
estimation of the number of endmembers into the method pipeline. The method is a
nonlinear unmixing method that has some other innovative features worth discussing
here. One is the use of a the radial basis function (RBF) for application of the kernel
trick [97] in a custom layer in the encoder to determine the abundances. The endmem-
bers are estimated to be the centers of the RBFs, estimated using K-means clustering
in the kernelized space, and the abundances are estimated as the normalized distances
to the centers in the kernelized space. Kernel methods can be effective in unmixing
as they can map the data to a higher dimensional space where the data is is more
linearly separable [97]. Another feature is a spatial averaging filter that is applied to
every pixel. The filter is a n × n averaging filter where the weights are determined
by the RBF distances of neihbouring pixels from the center pixel. This filtering can
greatly increase the robustness of the method to dead pixels and noise as the adjacent
pixels are likely to contain information from the same material. Most of the methods
discussed here do not take any specal measures to increase robustness to corrupt data
as result of dead pixels or other equipment malfunction. Autoencoder methods are
still fairly robust to noise in general as they inherently denoise the data as a result
of the compression and reconstruction process. Another way to deal with dead pixels
and similar corruption would be to selectively filter them out before training.

2.7.13 Hyperparameter Selection

Tuning hyperparameters is a big issue with deep learning-based methods and lot of
effort has been devoted to the problem. If A is a machine learning algorithm with N
hyperparameters having domains, Λ1, · · · , ΛN , the hyperparmeter configuration space
is N dimensional, Λ = Λ1 × Λ2 × · · · ΛN . A particular hyperparameter configuration
is then a vector, λ, in this space and the algorithm instantiated with these parameters
can be denoted Aλ. The general problem of hyperparameter tuning can then be stated
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as [98]
λ∗ = arg min

λ∈A
E(Dtrain,Dvalid)∼DV (L, Aλ, Dtrain, Dvalid). (2.24)

Here, V (L, Aλ, Dtrain, Dvalid), measures the loss of the model A with hyperparameters
λ trained on Dtrain and evaluated on validation data Dvalid.

In deep learning, algebraic models are usually unavailable, and the model usually has
to be treated as a blackbox when tuning hyperparameters. Generally, any blackbox
optimization method can be applied to hyperparameter tuning of deep learning models.
Two standard but primitive methods are grid search and random search. In grid search,
a finite set of values of each hyperparameter are specified, and the model evaluated on
the Cartesian product of these sets. Grid search suffers from the curse of dimensionality
as the required number of evaluations grows exponentially with the dimension of the
configuration space [98]. Random search, which samples configurations randomly,
works usually better than grid search when some hyperparameters are much more
important than others [99].

In recent years, Bayesian optimization [100] has emerged as a state-of-the-art optimiza-
tion framework for the optimization of blackbox functions, especially for autoencoder
methods. The main reason for this is that the network’s actual loss is not a measure of
its unmixing performance. Instead, the network’s loss is a similarity measure between
the input and the reconstructed input. However, the unmixing performance measures
the quality of the weights of the linear decoder (the endmembers) and the abundances
that are the encoder part’s latent codes. Thus, it cannot be said that autoencoder
methods converge to a solution regarding the endmembers or abundances, in contrast
with many traditional methods.

It is, therefore, challenging to use traditional hyperparameter tuning methods such as
Bayesian hyperparameter optimization [100] or maximum-a-posteriori (MAP) [101] to
select hyperparameters for autoencoder unmixing methods. This is in part because
the number of epochs used for training is one of the hyperparameters. Also, because of
random weight initialization, many runs are required per hyperparameter configuration
to get a reliable measure for any automatic or manual hyperparameter selection. Doing
hyperparameter grid search is often the only way to reliably select hyperparameters,
but it can be very time-consuming as it requires a significant number of runs. For the
experiments in this article, the hyperparameter values used for the methods were the
ones recommended by their authors.

2.7.14 Why do autoencoders work so well compared to
traditional methods?

Why do autoencoders work well for spectral unmixing compared to traditional meth-
ods? What exactly is it that makes them perform so well? A linear nonnegative
autoencoder, having single layer encoders and decoders and using the MSE loss func-
tion, essentially performs NMF and should perform similarly to NMF methods in
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unmixing. However, autoencoders allow any loss functions such as SAD, whereas tra-
ditional methods use the MSE. Additionally, when using more complex architectures,
the following can be listed as advantages of autoencoders over traditional methods:

1. Hierarchical feature learning: Deep autoencoders, having multiple layers,
are able to learn a hierarchy of features from the data. The initial layers of-
ten capture low-level patterns, while the deeper layers represent more abstract
and composite features. This hierarchical representation allows them to better
capture the intricacies of spectral data.

2. Data compression and noise reduction: Autoencoders are trained to com-
press data into a lower-dimensional latent space and then reconstruct it. This
can inherently denoise the data to some extent, focusing on the most salient
features, which can be beneficial in cases where the spectral data is noisy.

3. Modeling of non-linearities: Autoencoders, being neural networks, can model
non-linear relationships within the data. This is particularly useful in cases
where spectral mixing is not purely linear, allowing autoencoders to capture
more complex interactions between spectral components.

4. Flexibility: Autoencoders implemented with deep learning frameworks can be
easily customized and integrated with other neural network architectures, such
as convolutional layers for handling spatial information in hyperspectral images,
which can enhance the spectral unmixing performance. It is easy to implement
complex mixing models and regularizations.

5. Incorporating Priors: While traditional methods can incorporate certain pri-
ors, deep learning based autoencoder models can be more easily designed to
integrate more complex prior information about the data or the unmixing pro-
cess using specialized layers or loss functions.

6. Scalability: When implemented on GPUs, deep learning models can handle
large datasets much more efficiently. This scalability allows them to be trained
on larger amounts of data, potentially leading to better and more robust models.

The option to use scale-invariant loss functions such as SAD gives autoencoders a
significant advantage over traditional methods for linear unmixing. Also, the encoder
and the decoder can be arbitrarily nonlinear, which can further improve performance,
especially abundances. In the experimental section an ablation study will be performed
using a simple spectral unmixing autoencoder to try to answer this question.

2.8 Non-Blind Methods Based on Autoencoders
Until now, only blind unmixing methods based on autoencoders have been discussed.
Non-blind approaches are methods that estimate the abundances of endmembers but
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not the endmembers themselves. Many methods use neural networks for abundance
estimation, and in most cases, such networks are essentially autoencoders or utilize
autoencoders. This section will discuss various non-blind approaches that are based
on autoencoders but it not meant to be comprehensive review of such methods.

An autoencoder is simply a neural network trained to reconstruct its input and is
prevented from learning the identity function. We have seen a direct correspondence
between the weights of a linear decoder in a spectral unmixing autoencoder and the
endmembers matrix, according to the LMM. If we have a set of endmembers given, they
can be used as the weights of a non-trainable linear decoder, i.e., they are prevented
from changing during training which then only trains the encoder part. Such a network
is still an autoencoder but works like a nonlinear regression method that determines
the abundances maps corresponding to the given endmembers.

This approach is used in [102], where the encoder part of an spectral unmixing network
is improved to utilize convolution layers to enable deeper architectures of the encoder
and a special spectral normalization layers are used instead of batch normalization.
The decoder has fixed weights with endmembers coming from another method. An-
other method based on this concept is [103] where the encoder is a deep convolutional
network using a deep prior. The fixed decoder approach can be generalized to use a
whole spectral library of endmembers, resulting in methods that are a combination of
autoencoder unmixing and sparse regression based methods using a spectral library.

The technique in [104] is an example of such a method. The encoder has a deep
convolutional architecture, but the last two layers are fully connected and use the
softmax activation, essentially a classifier that picks the most suitable endmembers
out of many. The input to the decoder layer has a much higher number of units than
the number of endmembers to be estimated, but most of these activations will be zero
since the output of the encoder is required to be sparse.

Another approach for abundance estimation utilizes multitask learning (multi-stream
networks) and involves two different networks or tasks that share layers. A recon-
structing autoencoder network is guided by another network that shares layers with
the autoencoder in this approach. This guiding network is typically trained to learn
the relationship between endmember candidates obtained by another endmember ex-
traction method and their abundances as determined by the LMM. This network will
guide the reconstructing autoencoder and make its encoder part encode spectra to
abundances. The works [105,106] are examples of this type of approach.

A variation of this is the method described in [107], where the guiding network is itself
a spectral unmixing autoencoder that shares decoder weights with another spectral un-
mixing autoencoder. The guiding network is trained on endmember bundles obtained
by VCA from superpixel segmentation of an HSI. Both networks are encouraged to
produce latent codes that follow the Dirichlet distribution, i.e., sum-to-one.

This short overview of non-blind methods illustrates further how powerful and widespread
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the autoencoder architecture is becoming in hyperspectral unmixing.
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Chapter

Spatial-Spectral Hyperspectral
Unmixing Using Multitask
Learning

3

Hyperspectral images, like other natural images, have highly correlated pixels and
it is very desirable to make use of this spatial information. In this chapter, a
deep learning based method for blind hyperspectral unmixing is introduced. The
method uses multitask learning through multiple parallel autoencoders to unmix
a neighborhood of pixels simultaneously. Operating on image patches instead of
single pixels enables the method to take advantage of spatial information in the
hyperspectral image. The method is the first in its class to directly utilize the
spatial structure of hyperspectral images (HSIs) for the estimation of the spectral
signatures of endmembers in the data cube. We evaluate the proposed method using
two real HSIs and compare it to seven state-of-the-art methods that either rely only
on spectral or both on spectral and spatial information in the HSIs. The proposed
method outperforms all the baseline unmixing methods in experiments

•

3.1 Introduction
As in most natural images, there is a strong spatial correlation between pixels in
an HSI. The majority of HSU methods developed so far do not exploit the spatial
structure of HSIs but methods that do so are called spectral-spatial methods. What
such spectral -spatial methods have in common, is the use of natural assumptions
about the spatial correlation of pixels in an HSI as priors to control sparsity and
smoothness of the obtained abundance maps.

In this chapter, a novel autoencoder based method which attempts to make direct use
of spatial information from neighboring pixels in an HSI is introduced. The method
directly unmixes a whole neighborhood of pixels at a time using an architecture that
is inspired by multitask learning (MTL) [86, 87]. It consists of multiple branches of
unmixing autoencoder, each tasked with unmixing a single pixel in a neighborhood,
that share features between them. Even though the tasks are identical, MTL is still
beneficial. The main benefits of MTL are the following:

• Faster learning. Correlated tasks contribute to the aggregate gradient during
backpropagation and thus increase the effective learning rate on the input to
hidden layer weights [86]. Useful features form faster in the shared hidden layer
of the network.
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• Reduced risk of overfitting. Having shared hidden layers can greatly reduce
the risk of overfitting. It has been shown that the risk of overfitting shared
parameters can be up to an order N smaller, where N is the number of tasks,
than overfitting task-specific parameters [88].

• Improved stability. For some HSI datasets with correlated and underrep-
resented endmembers, a nonnegative sparse autoencoder (NNSAE) often finds
two (or more) very different solutions that correspond to different local minima,
with one of them preferred. It can be difficult to ensure consistency in such
cases, i.e., that the network always chooses the preferred solution. It has been
demonstrated that MTL tasks prefer hidden layer representations that other
tasks prefer [86]. In our case, this along with the fact that all autoencoders
share a decoder, means that the preferred solution becomes even more preferred
in an MTL setting, leading to increased stability.

• Incorporation of spatial information. Through the sharing of the first hid-
den layer between autoencoders, each autoencoder or task has access to all fea-
tures from all the pixels input to the network. By selecting these pixels from a
neighborhood in the HSI, we are exploiting the spatial correlation in the HSI,
i.e., the assumption that all the pixels from a small neighborhood should have
similar abundances. This reinforces the network’s learning of shared features
between pixels and enhances the effectiveness of the multitask learning.

In more traditional methods, i.e., non-neural network methods, MTL is often imple-
mented by capturing the relationship of multiple related tasks using a low-rank struc-
ture through a nuclear norm regularization, and identifying the outlier tasks using a
group-sparse structure [108].

To summarize, the main contributions of the proposed method and improvements over
our previous method described in [66] are the following:

• The method makes direct use of the spatial information in an HSI by unmixing
a whole patch at a time using multiple parallel autoencoders. Hence, the major
difference is that the proposed method is a spectral-spatial unmixing method,
while the previous method is a spectral unmixing method.

• The method uses the softmax function to enforce the abundance sum-to-one
constraint.

• The method makes better use of batch normalization and dropout than our
previous method.

The experimental section aims to confirm that the incorporation of spatial information
using multiple tasks gives better results than a single task autoencoder. The proposed
method is a substantial improvement over our previous autoencoder method [66] as
can be seen in the experimental section. It significantly outperforms all the comparison
methods, especially regarding consistency and has much lower variance.
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3.1.1 Spectral-spatial methods

Spectral-spatial methods are unmixing methods that seek to exploit the spatial re-
lationship in HSIs. Such methods most often introduce weighing factors to penalize
non-zero coefficients on the sparse solution or regularization terms based on the abun-
dance fractions to enhance sparsity and sharpness of abundance maps. A good example
of such a method and one of the first methods to exploit the rich spatial structure of
HSIs was the SUnSAL-TV method [109].

Another similar method is [110]. Other examples are methods using spectral–spatial
weighted sparse regression described in [111]. In [44,112,113], a TV regularization term
is used as a way of exploiting spatial homogeneity in the image while still retaining
sharp edges. Examples of NMF methods using spatial regularization are [114,115]. An
example of a hybrid linear and nonlinear NMF unmixing method based on a spatial
prior is given in [116].

Another class of spatial-spectral methods are superpixel segmentation methods. These
methods use a superpixel segmentation method as preprocessing technique to hyper-
spectral images. Following this, the unmixing is applied directly on the mean spectra
of the various image segments. Such processing significantly improves the signal qual-
ity of the data and reduces the ill effects of noise. Examples of this are [117–119] and
[120] which applies a spatial group sparsity regularization derived from segmentation.
What all these methods have in common, is the use of natural assumptions about the
spatial correlation of pixels in an HSI as priors to control sparsity and smoothness of
the obtained abundance maps.

3.2 The method

Fig. 3.1 shows a schematic of the method. There are k2 tasks in the form of autoen-
coders, one for each pixel in a k × k neighborhood Nk, input to the method. The
inputs are concatenated and connected into a large hidden layer shared by all the au-
toencoders. This shared hidden layer enables all the unmixing tasks to access features
from all the neighboring pixels. Such sharing of representations between tasks can
improve both learning and generalization [86], and is called hard parameter sharing in
the language of MTL.

The architecture branches again after the shared layer. Each autoencoder performing
further dimensional reduction through an additional hidden layer, called Ai in Fig. 3.1.
The activations for each autoencoder become the abundance fractions after applying
the abundance sum-to-one constraint (ASC). However, since endmembers are a prop-
erty of an HSI as a whole, all autoencoders are required to use the same decoder
having weights WD, placing a constraint on each of them to discover the same end-
members. This is what connects all the tasks. If one tasks modifies the endmembers,
the endmembers are modified for all the tasks.
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Figure 3.1: A schematic of the proposed method.

Table 3.1: The layers/transformations in each encoder and their expres-
sions listed sequentially.

Layer/Transform Expression

1 Input i a
(0)
i = x

N (p)
k

i

2 Concatenation
a(1) = [a(0)

1 , · · · , a
(1)
i , · · · , a

(1)
k2 ]

= Ca
(0)
i

3 Hidden layer
shared a(2) = g(W (2)a(1))

4 Batch
normalization a

(3)
i = BN a

(2)
i

5 Hidden layer
not shared a

(4)
i = g(W (4)

i a(3))

6 Batch
Normalization a

(5)
i = BN a

(4)
i

7 ASC
constraint

a
(7)
i,j = e

αa
(6)
i,j∑R

j=1 e
αa

(6)
i,j

= σαa
(6)
i
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Now, it might be asked whether using a single autoencoder with single augmented in-
put, consisting of the k × k neighborhood vectorized, might give similar benefits. The
problem with that approach is that the reconstruction loss could only consider the
reconstrution of the center pixel in the neighborhood in order to get meaningful end-
members with the correct number of bands. The autoencoder would not be sufficiently
forced to utilize the extra information in the large input since the reconstruction of
the extra pixels is not considered.

3.2.1 Loss function

Each NNSAE consists of an encoder part, GE , and a decoder part, GD. The encoder
encodes the input xp into a hidden representation hp = GE(xp). The encoder of
autoencoder i consists of the layers or transformations listed sequentially in Table 3.1.
We have used operator notation to denote the operations given in rows 2, 4, 6, and
7. From the table we can construct an expression for the hidden representation hp,
obtained by a feed-forward pass, as

GE(xNk
i ) = σα BN g(W (3)

i BN g(W (2)Ca
(0)
i )). (3.1)

Here g is the activation function which is the LeakyReLU [53] function, and σα is
the softmax function with scaling parameter α which enforces the ASC constraint
according to row 7 in Table 3.1. We apply dropout [79] after the shared hidden layer
using a dropout rate of 0.5. We also apply batch normalization [72], denoted BN ,
after both hidden layers. The decoder then reconstructs the input as x̂p from the
hidden representation as

x̂p = GD(hp). (3.2)

The final layer in the network is the decoder having weights WD which are constrained
to be nonnegative, and which has linear activation as required by the LMM. The action
of the decoder is a simple linear transformation which can be written as

GD(hN
(p)
k

i ) = WDh
N

(p)
k

i , (3.3)

where h
N

(p)
k

i is the hidden representation belonging to pixel i in the neighborhood N
(p)
k

which is the input to the method. The loss function we use for each autoencoder i is
the spectral angle distance (SAD) and is given by

L(i) = cos−1
(

⟨xi, x̂i⟩
∥xi∥2 ∥x̂i∥2

)
.

The total loss of the neural network is the sum of each individual autoencoder loss.
The method divides the HSI into a collection of neighborhoods Nk and unmixes one
neighborhood at a time. The neighborhood loss is the sum of the individual pixel
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(a) Samson (b) Urban

Figure 3.2: Simulated RGB images of the HSIs used in experiments.

losses for each pixel in the neighborhood

LNk(xp) =
k2∑

i=1
L(i), (3.4)

and the total loss is the sum of the neighborhood losses for all k × k neighborhoods in
the training dataset consisting of N randomly chosen patches from the HSI

L =
N∑

p=1
LNk(xp). (3.5)

At the end of training, the decoder weights matrix, WD, contains the endmembers
and the abundances of each pixel xp are the activations hp in the last hidden layer
before the decoder. These can be extracted by doing prediction for the whole HSI
using a network consisting only of the already trained encoder.

3.3 Experiments
Experiments were conducted on the Urban and Samson datasets. We quantitatively
evaluate the endmembers extracted for each dataset using 1.6 and the extracted abun-
dance maps using 1.7.

We evaluate the proposed multitask autoencoder unxmixing (MTAEU) method using
k × k neighborhoods for k = 2, 3, 4, 5. Also included in the experiments are the results
of a single task autoencoder (STAEU) having the same architecture as the MTAEU
network. We compare our results for extracted endmembers and abundance maps to
seven other methods, six of which perform blind unmixing, one method that only ex-
tracts endmembers. Three of the comparison methods are based on deep learning. The
comparison methods are vertex component analysis (VCA) [36], sparsity constrained
nonnegative matrix factorization (ℓ1/2-NMF) [39], sticky hierarchical Dirichlet process
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Figure 3.3: Mean SAD from reference for both datasets versus the width
of patch, k. The plot for the Urban (4 endmembers) dataset is on the
left and the plot for the Samson dataset is on the right.

(SHDP) [121] which is a spatial-spectral blind unmixing method, spatial group sparsity
regularized nonnegative matrix factorization (SGSRNMF) which is a spatial-spectral
blind unmixing method [120], deep autoencoder unmixing (DAEU), an autoencoder
based method described in [66], stacked nonnegative sparse autoencoder (SNSA) un-
mixing method described in [82], and an untied denoising autoencoder With sparsity
(uDAS) unmixing method described in [62].

All autoencoder methods except for SNSA and uDAS are initialized randomly, while
the rest of the methods are all initialized or partially initialized using VCA. The
activation function used for the autoencoder methods is the LeakyReLU function
and the number of randomly selected patches used in the training for the proposed
method was N = 2000 for the Urban dataset and N = 300 for the Samson dataset.
The optimizer used was the RMSProp [122] optimizer having learning rate 0.02 and
learning rate decay of 0.02. The networks were trained for 100 epochs.

Fig. 3.3 shows the average SAD from 25 runs in radians from the reference for both
datasets as a function of k for k = 1, · · · , 5. The error bars are the standard deviation.
It can be seen from the figure that MTL is beneficial in both cases, especially for the
Urban dataset and also that k = 3 achieves the lowest SAD score for both datasets
and also the least variance.

Fig. 3.4 shows the result of an experiment designed to evaluate the effect of selecting
the pixels in a patch in their original spatial arrangement versus selecting the input
pixels randomly. Such an experiment can confirm whether the method is using the
spatial information in the scene. The experiment was performed using the Urban
dataset for four different sizes of k × k neighborhoods. Fig. 3.4 shows a boxplot of the
results of 25 runs for each value of k. The figure shows clearly that keeping the spatial
arrangement of the pixels gives much better average SAD from the reference and less
variance than selecting the pixels randomly. The results are in line with the benefits
of MTL discussed earlier. It must be noted that if the number of neighborhoods used
in training is increased, the difference becomes somewhat less, which shows also that
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Figure 3.4: Boxplot of SAD from ground truth for the Urban dataset (4
endmembers) showing the effect of selecting pixels into patches randomly
vs. spatially for three different patch sizes. Number of neighborhoods
used in training is 2000 and number of epochs is 100.

spatial arrangement speeds up the convergence of the method greatly. Another trend
which the figure depicts well, is the more spatial the method becomes, i.e., as more
neighboring pixels are used, the greater the difference between spatial and random
arrangement becomes for a fixed number of neighborhoods used in training.

Table 3.2 shows the SAD in radians of extracted endmembers from the reference,
both for individual endmembers and the average, for the proposed method and the
comparison methods for the Urban dataset using four reference endmembers. Fig. 3.5
shows the endmembers extracted by all the methods except VCA. The blue curves
are the extracted endmembers (from 25 runs) and the red curves are the reference
endmembers. When calculating SAD scores and displaying endmembers in plots, the
endmember solutions are matched to the most similar reference endmembers as mea-
sured by the SAD metric. This is needed because the order of endmembers returned
by the autoencoder methods is essentially random between runs.

It can be seen from both Table 3.2 and Fig. 3.5 that the autoencoder methods are
in a class of their own compared to the other methods used in the experiments. The
MTAEU method achieves the best score for all endmembers except the Tree endmem-
ber and also the lowest average SAD score, whereas STAEU achieves the lowest SAD
score for the Tree endmember. This should not be over-interpreted, the scores which
are averages, are similar and also the reference is should not be considered some final
truth. What is more important, is the fact that the proposed method has a lower
variance. A consistent method having low variance is preferable over method which
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Figure 3.5: The endmember spectra extracted by the proposed method
using 3x3 pixel neighborhood and the comparison methods for the Urban
data set with 4 endmembers. The red curves are the reference endmem-
bers and the blue curves are extracted endmembers.
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Figure 3.6: The endmember spectra extracted by the proposed method
using 3x3 pixel neighborhood and the comparison methods for the Sam-
son data set. The red curves are the reference endmembers and the blue
curves are extracted endmembers.
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Figure 3.7: The endmember spectra extracted by the proposed method
using 3x3 pixel neighborhood and the comparison methods for the Urban
data set with 6 endmembers. The red curves are the reference endmem-
bers and the blue curves are extracted endmembers.

Table 3.2: SAD(×10−2) in radians from reference for the Urban dataset
with 4 reference endmember. The figures are the mean of 25 runs along
with the standard deviation. Best results are in bold typeface.

Method/Endm 1 (Asphalt) 2 (Grass) 3 (Tree) 4 (Soil) Average
VCA 21.9(3.1) 40.1(4.2) 20.2(8.6) 82.4(0.2) 41.2(1.9)
SHDP 33(14) 42(27) 8.8(4.1) 41(16) 31.1(3.9)
SGSRNMF 48(35) 63(28) 9.6(0.7) 21(11) 35.5(5.8)
NMF-ℓ1/2 15(10) 54(39) 15.7(9.4) 49(21) 29.6(5.9)
SNSA 29.12(0.04) 121.65(0.42) 7.77(0.01) 9.23(0.05) 41.9(0.1)
uDAS 18.1(3.3) 116(16) 15.0(3.9) 17.00(0.12) 41.5(4.1)
DAEU 7.2(2.4) 7.7(2.9) 7.1(3.0) 22(21) 10.9(2.4)
STAEU 1px 9.8(2.8) 4.6(1.5) 3.7(0.8) 9.3(5.4) 6.8(2.0)
MTAEU 9px 8.4(0.5) 4.21(0.37) 5.4(0.4) 4.15(0.46) 5.6(0.2)
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Table 3.3: SAD(×10−2) in radians from reference for the Urban dataset
with 6 reference endmembers. The figures are the mean of 25 runs along
with the standard deviation. Best results are in bold typeface.

Method/Endm. 1 (Asphalt) 2 (Grass) 3 (Tree) 4 (Roof) 5 (Metal) 6 (Dirt) Average
VCA 32(29) 55(42) 30.4(6.7) 28(11) 68(17) 106(32) 53.4(6.7)
SHDP 44(20) 29(12) 14.6(7.7) 30(17) 64(22) 39(18) 36.8(3.6)
SGSNMF 28.4(6.9) 55(17) 9.6(1.4) 5.8(3.1) 54(12) 18(20) 28.4(5.2)
NMF-ℓ1/2 44(21) 73(58) 45(56) 8.6(4.9) 59(23) 13(14) 41(3)
SNSA 72(25) 64(9) 17(1) 36.1(8.7) 81(20) 41.6(12.5) 52.0(2.4)
uDAS 29(14) 89(45) 14.4(5.3) 21.2(8.9) 43(22) 55(41) 41.7(4.9)
DAEU 19(11) 19.1(3.9) 13.0(4.7) 50.6(6.2) 34(29) 40(27) 29.3(3.5)
STAEU 1 px 5.0(1.2) 8.5(2.2) 10.3(2.9) 6.2(2.8) 56(21) 9.7(5.2) 16.0(3.5)
MTAEU 9 px 3.87(0.83) 9.0(2.5) 8.3(4.5) 7.5(2.1) 72(18) 10.9(3.8) 18.5(2.3)

Table 3.4: SAD(×10−2) in radians from reference for the Samson
dataset. The figures are the mean of 25 runs along with the standard
deviation. Best results are in bold typeface.

Method/Endm. 1 (Soil) 2 (Tree) 3 (Water) Average
VCA 12(24) 4.9(0.3) 13.0(0.1) 9.7(7.3)
NMF-ℓ1/2 5(18) 3.6(0.6) 4.3(0.2) 4.2(6.2)
SHDP 2(34) 3.70(0.04) 20.6(9.4) 15(14)
SGSRNMF 0.86(0.01) 3.95(0.20) 9.2(0.3) 4.68(0.03)
SNSA 0.25(32) 7.5(1.5) 28.4(6.9) 20(12)
uDAS 3.12(0.15) 5.5(0.5) 14.1(1.2) 7.6(0.5)
DAEU 2.7(4.6) 3.3(0.3) 3.9(0.4) 3.3(1.6)
STAEU 1 px 2.1(0.5) 5.6(1.0) 3.6(0.7) 3.7(0.4)
MTAEU 9 px 2.3(0.6) 3.7(0.3) 3.38(0.31) 3.11(0.18)
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might achieve a slightly better SAD score w.r.t. some reference endmembers but has
high variance. Also, the individual endmember scores are not entirely independent
but are linked through the ASC constraint. A bad solution for one endmember can
affect the solutions for the other endmembers if its abundance is significant. In the
end, the MTAEU method does achieve better MSE score for the Tree abundance map
than STAEU.

Fig. 3.5 shows very clearly that the MTAEU method has both a far less variance
than the STAEU method and has far better consistency, i.e., no outlier solutions. In
contrast, the comparison methods, aside from STAEU and SNSA, have bad consistency
and large variance, especially the SHDP and NMF-ℓ1/2 methods. The low variance
and the excellent consistency of the MTAEU method is directly in accordance with
the benefits of MTL listed above in the introduction.

The extracted endmembers by MTAEU need to simultaneously give optimal recon-
struction for k2 autoencoders in parallel. As discussed earlier, multiple tasks increase
stability. The endmembers are the weights of the last layer in the network which
acts as a decoder for all the different encoder branches and are influenced by them
all. Even if one branch seeks a solution in a different local minima, it will not have
too much effect on the extracted endmembers of the whole network. The consistency
of the method can thus be expected to increase with increasing k. This increased
consistency is a clear benefit over ordinary single task deep learning based methods.

Table 3.3 shows the SAD in radians of extracted endmembers from the reference,
both for individual endmembers and the average, for the proposed method and the
comparison methods for the Urban dataset using six reference endmembers. Fig. 3.7
shows the endmembers extracted by all the methods except VCA. For six endmembers
the table shows that the STAEU method achieves the lowest average SAD score for the
Urban dataset. Fig. 3.5 shows the reason for this as it can be seen that both STAEU
and MTAEU have trouble estimating the "Metal" endmember. In the Urban dataset,
the Metal endmember is underrepresented and we have seen that in such situations
the autoencoders can achieve lower global reconstruction error or loss by estimating
the underrepresented endmember as a variant of a heavily represented endmember.
A better estimate could be obtained by the autoencoder methods by increasing the
number of patches used in training and/or applying regularization on abundances,
but there is a trade-off between this number and the general quality of estimated
endmembers.

As can be seen in Fig. 3.7, both the STAEU and MTAEU methods tend to estimate it
as a variant of either the Tree or the Grass endmember. The SAD between the reference
Grass endmember and the reference Metal endmember is lower than it is between the
Tree endmember and Metal. For STAEU, the Metal endmember is more often similar
to the reference Grass endmember than it is to the reference Tree endmember, giving a
better average score for the Metal endmember. MTAEU, however, is more consistent
in estimating the Metal endmember similar to the Tree one.
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Table ?? shows the SAD from the reference for the Samson dataset. As before, the
values in the table are the average of 25 experiments and the results shown for the
proposed method are for the optimal neighborhood size, which was for 3 × 3 neighbor-
hoods. The best results are in bold typeface. The MTAEU method achieves the best
average SAD score on this dataset and the best SAD score for the Water endmem-
ber. More significantly, MTAEU has substantially lower variance than the single pixel
method, STAEU. The DAEU method achieves the second best average score followed
by the SGSRNMF method which has the least variance of all the methods. Fig. 3.6
shows the extracted endmembers and again the same pattern can be observed with
MTAEU having considerably less variance and more consistency than STAEU.

Figure 3.8: The abundance maps produced by MTAEU for the Ur-
ban dataset (top row) and the reference abundance maps (bottom row).
The first column is the abundance for the "Tree" endmember, the sec-
ond column the "Asphalt" endmember, the third column is the "Roof"
endmember, and the last column the "Grass" endmember.

Table 3.5: MSE (×10−2) between extracted abundance maps and the
reference abundance maps for all methods for the Urban dataset with
four reference endmembers. The figures are the mean of 25 runs along
with the standard deviation. Best results are in bold typeface.

Methods 1 (Asphalt) 2 (Grass) 3 (Tree) 4 (Soil) Average
SHDP 9.5(2.0) 13.5(7.1) 8.3(2.4) 7.0(5.5) 9.6(2.0)
SGSNMF 14.0(2.5) 13.0(4.3) 7.2(1.8) 3.6(1.8) 9.4(1.0)
NMF-ℓ1/2 17.2(0.3) 20.5(0.4) 18.9(0.3) 5.72(0.06) 15.6(0.1)
SNSA 11.3(0.1) 16.80(0.05) 12.60(0.07) 4.33(0.02) 11.26(0.02)
uDAS 10.1(0.4) 18.7(3.9) 9.2(1.1) 3.85(0.12) 10.5(0.7)
DAEU 3.1(1.8) 5.6(2.6) 3.9(3.4) 1.9(1.3) 3.6(1.5)
STAEU 1 px 2.7(0.8) 2.8(0.4) 0.9(0.3) 1.2(1.1) 1.9(0.6)
MTAEU 9 px 2.3(0.1) 2.3(0.2) 0.7(0.1) 0.79(0.08) 1.50(0.08)
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Table 3.6: MSE (×10−2) between extracted abundance maps and the
reference abundance maps for all methods for the Urban dataset with
six reference endmembers. The figures are the mean of 25 runs along
with the standard deviation. Best results are in bold typeface.

Methods 1 (Asphalt) 2 (Grass) 3 (Tree) 4 (Roof) 5 (Metal) 6 (Dirt) Average
SHDP 8.0(2.5) 13.8(6.1) 9.1(3.4) 3.5(1.3) 6.8(5.1) 5.0(3.8) 7.7(1.5)
SGRSNMF 8.8(1.0) 21.4(5.0) 7.3(1.3) 2.87(0.15) 2.5(4.6) 2.6(3.5) 7.6(1.0)
NMF-ℓ1/2 9.9(1.8) 25.9(6.0) 18.2(4.5) 3.3(1.1) 2.5(0.7) 3.9(1.9) 10.6(1.4)
SNSA 9.6(0.7) 15.9(3.9) 12.60(0.44) 3.9(0.1) 6.8(1.4) 5.2(1.0) 9.0(0.9)
uDAS 11.4(2.6) 19.2(6.3) 8.9(1.9) 3.6(0.5) 2.6(2.9) 10.0(8.8) 9.3(1.8)
DAEU 4.3(2.1) 5.1(4.7) 4.1(3.1) 1.9(1.2) 5.9(3.9) 8.0(3.4) 4.9(1.4)
STAEU 1 px 2.3(0.7) 6.6(3.6) 5.5(1.5) 0.57(0.11) 7.5(2.2) 2.1(1.3) 4.1(0.9)
MTAEU 9 px 1.6(0.5) 4.8(3.1) 6.4(2.1) 0.58(0.08) 7.2(1.9) 1.0(0.4) 3.6(0.8)

Table 3.7: MSE (×10−2) between extracted abundance maps and the
reference abundance maps for all methods for the Samson dataset. The
figures are the mean of 25 runs along with the standard deviation. Best
results are in bold typeface.

Method 1 (Soil) 2 (Tree) 3 (Water) Average
SHDP 8.1(2.9) 6.2(1.5) 15.59(0.91) 10.0(1.2)
SGRSNMF 3.16(0.04) 5.74(0.32) 12.27(0.35) 7.06(0.22)
SNSA 12.5(2.1) 13.5(0.9) 16.91(0.87) 14.30(0.67)
uDAS 6.51(0.81) 6.66(0.54) 16.74(0.69) 9.97(0.38)
NMF-ℓ1/2 14.0(6.3) 10.5(2.0) 6.6(4.3) 10.3(3.3)
STAEU 1 px 2.04(0.79) 0.84(0.51) 1.0(0.2) 1.28(0.44)
MTAEU 9 px 0.76(0.14) 0.37(0.07) 0.3(0.1) 0.48(0.08)
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Figure 3.9: SAD from reference endmembers in radians for all methods
and three different noise ratios for the Urban dataset (4 endmembers).

Tables 3.5, 3.7, and 3.6 show the MSE between the extracted abundance maps, both
for individual endmembers and overall, for all blind unmixing methods for all the
datasets. Again the numerical values are the mean value of 25 runs along with their
standard deviation and the best results are in bold typeface. In all cases, the MTAEU
method achieves the lowest average MSE score. It also has the least variance of all
the methods. This is not surprising, both given the benefits of MTL discussed earlier,
and the fact that the abundance maps for MTAEU are the mean of all the abundance
maps of the k2 autoencoders in the network. There will generally be some variance
in the k2 decoders which produce the abundances even though the decoders are all
identical.

Fig. 3.8 shows an example of the abundance maps extracted by the method for the
Urban dataset (4 endmembers) along with the reference maps. It can be seen that the
abundance maps produced by the method are somewhat more intense and the fraction
of low pixel abundances is lower in the maps, i.e., the method is more confident. This
can be seen, e.g., in the figure for the Asphalt endmember. The roads are more intense
in color than in the reference map shown. This is a result of using the nonlinear softmax
function to enforce the ASC constraint. As the scaling factor α is increased, relatively
small values get pushed to smaller values, increasing the "confidence" of abundances
as they can be interpreted as probabilities being a result of the softmax function.

Fig. 3.9 shows the SAD from reference endmembers for all methods for three different
SNR values, 20 dB, 30 dB, and 40 dB, for the Urban dataset with four endmembers
estimated. As can be seen from the figure, all the methods are fairly robust to noise.
Autoencoder methods are generally very robust to noise since they are denoising in
nature as the network does not have the capacity to learn the added Gaussian noise.
It is a bit surprising how well all the methods, except SGSRNMF and uDAS, perform
with 20 dB SNR. Also, it is noticeable how small the variance for all noise levels is for
the MTAEU method using 5 × 5 pixel neighborhood.
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The experiments confirm all the main benefits of MTL that were listed in Sec. 3.1.
Fig. 3.4 shows that the method is indeed spatial in nature and the multiple tasks speed
up learning considerably. Fig. 3.3 along with figures 3.5, 3.7, and 3.6 show that the
MTAEU method has less variance and better consistency than the DAEU and STAEU
methods and that 3 × 3 neighborhoods are optimal, demonstrating that multitasking
leads to better consistency and lower variance of endmember solutions. This is also
true for the extracted abundance maps as our results also demonstrate. Lastly, the
average running times for all methods for the Urban dataset can be seen in Table 3.8.

Table 3.8: Running times for all methods in minutes for the Urban
dataset. The running time for the proposed method increases roughly
linearly with increasing neighborhood size.

MTLAEU STAEU DAEU SNSA uDAS SHDP SGSNMF NMF-ℓ1/2
1-6 1 2 37 16 2 240 2
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Chapter

Convolutional Autoencoder
For Spectral-Spatial
Hyperspectral Unmixing

4

In this chapter, we present a new spectral-spatial linear mixture model and an
associated estimation method based on a convolutional neural network autoencoder
unmixing (CNNAEU). The CNNAEU technique exploits the spatial and the spectral
structure of HSIs both for endmember and abundance map estimation. As it works
directly with patches of HSIs and does not use any pooling or upsampling layers,
the spatial structure is preserved throughout, and abundance maps are obtained as
feature maps of a hidden convolutional layer. We compared the CNNAEU method to
four conventional and three deep learning state-of-the-art unmixing methods using
four real HSIs. Experimental results show that the proposed CNNAEU technique
performs particularly well and consistently when it comes to endmembers’ extraction
and outperforms all the comparison methods.

•

4.1 Introduction
The high spectral resolution of hyperspectral sensors allows for the identification of
distinct materials based on their spectral signatures. This is, however, complicated
by the limited spatial resolution of such sensors. Because of the low spatial resolu-
tion, there is usually more than one distinct material in every pixel of the acquired
image. Blind hyperspectral unmixing (HU) is the process of determining the spectral
signatures of different materials and also their fractional abundances in every pixel.
At the end of the process, we want to be able to reconstruct the original data with
as little error as possible, from the set of extracted endmembers and their associated
abundance maps.

4.1.1 Motivation and contributions

The motivation behind our method is to exploit the spatial structure of HSIs in addi-
tion to their spectral information. The pixels in HSIs are, as in other natural images,
strongly correlated with their neighbors. This spatial structure contains information
that can be used along with the spectral information to constrain further the unmixing
problem.

Unmixing methods that exploit the spatial structure are called spectral-spatial meth-
ods. The most common way to utilize the spatial structure of HSIs is by refining a
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spectral method by using some spatial prior to regularize or control the sparsity and
the smoothness of the abundance maps obtained [52] or by doing preprocessing on the
data prior to using a spectral only method. Developing entirely new spatially oriented
methods is not as common.

In this chapter, a new spectral-spatial linear mixture model is introduced along with
an associated estimation method based on a convolutional neural network (CNN)
autoencoder. This is, to our best knowledge, the first blind spectral-spatial unmixing
method based on CNNs. Since the method uses CNN it involves spatial filtering to
extract features to aid it in the unmixing task, thus directly exploiting the spatial
structure of the HSI. Furthermore, the technique preserves the spatial structure of
HSIs throughout the method while abundance maps arise naturally as feature maps
of a hidden convolutional layer. This makes it very simple to apply various spatial
regularizations on the abundance maps, such as total variation (TV).

4.1.2 Publication review

The number of unmixing methods based on deep learning has been increasing rapidly
over the last few years. Most of these methods are based on autoencoders and are
therefore unsupervised. The nonnegative sparse autoencoder (NNSAE) has proved
to be successful for unmixing. Such autoencoders satisfy the linear mixing model by
having a linear decoder with nonnegative weights and by enforcing the abundance
sum-to-one constraint (ASC) for abundances [123]. Examples of recent autoencoder
methods are [12,62,66,69,77,83]. All recent autoencoder approaches, except for [67],
process a single spectrum at a time and hence do not include any spatial information.

Incorporating spatial information in unmixing, specifically for endmember extrac-
tion, has mainly been done in three different ways. Firstly, by developing new spa-
tially oriented methods that provide some way of assessing the purity of a pixel or
a neighborhood without using a geometrical method [124]. Examples of such meth-
ods are [125, 126]. Second, by the refinement of spectral only methods, e.g., by using
spatial priors to regularize or penalize solutions obtained by existing methods. Good
example of this is the SUnSAL-TV method [109] and also [110]. An example of meth-
ods using spectral–spatial weighted sparse regression is described in [111]. Examples
of how a TV regularization term can be used to exploit spatial homogeneity in HSIs
while keeping sharp edges are given in [44, 109, 112, 113]. Some examples of spatial
regularization in NMF methods are [44, 114, 115]. An example of a hybrid linear and
nonlinear NMF unmixing method based on a spatial prior is given in [116].

Lastly, incorporating spatial information can be done by preprocessing the data before
applying a spectral only method. A good example of this is [127], where for each
pixel, a scalar spatially derived factor relating to the similarity of pixels lying within
a certain spatial neighborhood is computed and used to weigh the importance of the
spectral information in a pixel in terms of its spatial context. Superpixel segmentation
methods are also examples of methods that use a superpixel segmentation method as
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Table 4.1: The indexing convention used for the matrices Mm and Wm.
Shown is an example for a 3 × 3 filter. We will often use the letter c for
the center location, i.e., Wc = W5 in this example.

col. 1 col. 2 col. 3
row 1 W1 W4 W7
row 2 W2 W5 W8
row 3 W3 W6 W9

a preprocessing technique before unmixing. Examples of superpixel methods are given
in [117–119] and [120] which applies a spatial group sparsity regularization derived
from segmentation.

4.1.3 Notation

In this chapter, we write CONV n to refer to convolutional layer number n. We will
use the notation Wij , i, j = 1, · · · , f to denote the B × R matrices that are obtained
by fixing the first two indices of F to i and j. Often we will use a single index to index
these matrices and will use the convention shown in Table 4.1 for labelling them.

The remainder of this chapter is organized as follows. Section 4.2.1 describes the
proposed CNNAEU method. In Section 4.3, experimental results using four real HSI
datasets are given along with a comparison with four conventional and three deep
learning state-of-the-art HU methods. Finally, in Section 6.3 conclusions will be drawn.

4.2 Problem formulation and method
We are given P observed spectra, each having B bands. Having estimated the number
of endmembers in the HSI as R, which can be done for example by using [28, 30], we
assume a new spectral-spatial model

xp = Msp +
∑

i∈Np\p

Mis̃i + ϵp, p = 1, · · · , P, (4.1)

where sp ∈ RR×1
+ is an abundance vector that sums to one, M ∈ RB×R

+ contains the
endmembers in its columns, Np \ p is an f × f neighborhood around p, with f an odd
number, while excluding p (the center pixel), Mi ∈ RB×R

+ , s̃i ∈ RR×1
+ , Mis̃i is the

spectral contribution to xp from location i in its neighborhood, and ϵp is noise. We
index the pixels in the neighborhood N as shown in Table 4.1.

This new model differs from the widely used linear mixing model (LMM) by allowing
all pixels in an f × f neighborhood centered on a pixel to contribute to the pixel’s
reconstruction. In this paper, we investigate the problem of estimating the endmember

41



4.2 Problem formulation and method

Figure 4.1: A schematic of the method. The convolutional autoencoder
is trained on patches from the HSI. It has three convolutional layers.
The abundance maps of the input patches are the feature maps from
the second convolutional layer. The endmembers are extracted from the
filters of the last layer which has linear activation. BN stands for batch
normalization.

matrix M and the abundances sp for every pixel in the HSI by interpreting the problem
as blind unmixing, and solving it using a CNN autoencoder.

An autoencoder is a neural network that learns a representation of the HSI data. This
means that the training is unsupervised, even though it might seem supervised, as it
does not require labelled data. By introducing a hidden layer that acts as a bottleneck,
the network learns a low-dimensional code for the input, and learn to reconstruct the
input data from the code. The encoder is the part that performs this encoding, and
the decoder is the part that reconstructs the input from the code. If the decoder is
linear, the low-dimensional code for an HSI are the abundances and the weights of the
decoder are the endmembers.

4.2.1 Estimation method

The method is a CNN autoencoder that is trained on N patches, Bi = {x1, · · · , xn×n},
i = 1, · · · , N , and xj ∈ RB×1, from an HSI, Y ∈ RD1×D2×B . We do not use biases,
pooling layers or upsampling, only non-strided CONV layers that do not reduce the
spatial resolution or the size of the input.

Fig. 4.1 shows a schematic of the method. The first layer in the network is the input
layer. The second layer, CONV 1, is a 2D convolutional layer with 48 feature maps,
filter of size 3×3, and LeakyReLU activation. We apply batch normalization [72] after
the convolutional layer to speed up the learning. Next, we apply spatial dropout, a
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version of dropout better suited to CNNs [80] to reduce over-fitting and improve gen-
eralization, with dropout rate 0.2. This means that entire feature maps are randomly
set to zero with a probability of 20 percent.

Next comes another convolutional layer, CONV 2, having R feature maps, filter size
1 × 1, and LeakyReLU activation. Again we apply both batch normalization and
spatial dropout with dropout rate 0.2 after the convolutional layer. This is the spectral
bottleneck leading to the abundance maps. The next layer and the final layer in the
encoding part of the autoencoder, is the layer that enforces the abundances sum-to-
one constraint (ASC) at every pixel. It applies the softmax function pixel-wise to the
collection of output feature maps from the previous layer, but scales the values by a
factor α first. We used α = 3.5 in experiments. The output of this layer are feature
maps that can be interpreted as the abundances that sum-to-one at every pixel.

The last layer in the network is the linear decoder layer. This is a convolutional layer
with B feature maps, filter size f ×f where f is an odd number, and linear activation.
This layer reconstructs the input patch from the abundance patches resulting from
the abundances-sum-to-one enforcing layer. If the filter size is 1 × 1, it is easy to show
that the weights, W , of the filter is a B × R matrix which contains the endmembers
as its columns. If the filter size is f × f , we will get f2 B × R matrices since the filter
is an element of Rf×f×R×B . Furthermore, it is straightforward to rewrite the formula
for the reconstruction of pixel p in a patch as

x̂p =
f2∑

m=1
Wmhm,

where the single index m is indexing the locations in the f × f patch as shown in
Table 4.1. Thus, for every location in row i and column j of the f × f neighborhood,
there corresponds an element of RB×R, i.e., a matrix having the same dimensions as
the endmember matrix. This expression can be rearranged to obtain

x̂p =

 f2∑
m=1

Wm

 hc +
f2∑

m=1
m ̸=c

Wm(hm − hc).

By comparing to ((4.1)) we can identify

M =
f2∑

m=1
Wm

Mi = Wi (4.2)
sp = hc

s̃i = hi − hc.

Thus, the abundance maps are obtained by encoding the HSI with the autoencoder.
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The endmembers are obtained directly from the weights of the decoder layer.

Loss function

We use the spectral angle distance (SAD) for the fidelity term of the loss function for
our autoencoder. The spectral angle distance between two vectors, x and x̂, is given
by

JSAD(x, x̂) = arccos
(

⟨x, x̂⟩
∥x∥2∥x̂∥2

)
. (4.3)

The loss measures the discrepancy between the input patch and its reconstruction by
the CNN. The loss for patch Bi is calculated as

L(i) = 1
|Bi|

∑
xp∈Bi

JSAD(xp, x̂p). (4.4)

The loss for the training dataset is then

L =
N∑

i=1
L(i). (4.5)

4.3 Experiments
All experiments were performed using the Urban, Samson, Houson, and the Apex
datasets and the extracted endmembers and abundance maps evaluated using 1.6 and
1.7, respectively.

The quality of extracted endmembers weighs more heavily in our evaluation of the
method than the quality of the abundance maps. This is because the abundance
maps produced by our method tend to be very binary, i.e., abundances are either
very low or very high, almost like classification maps. This happens because of batch
normalization and the fact that we are using a ReLU like activation and the softmax
function to enforce the ASC constraint.

Another potential issue regarding the abundance estimation is our use of SAD loss.
This loss, although very good for endmember extraction, is not an optimal metric for
data reconstruction since it is scale invariant. It is possible that SAD loss leads to
higher variance in the abundance estimation than is explainable by considering only
the variance in the quality of the extracted endmembers. Still, methods using SAD loss
can achieve fairly good results for abundance estimation as the results of the MTAEU
method demonstrate.

We can always get fairly good abundance maps from good endmembers by, e.g., using
the method of fully constrained least squares (FCLS) [128], or by using an autoencoder
that has a fixed decoder, i.e., endmembers, and does not use batch normalization.
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We did in fact additionally use a fully connected autoencoder to produce improved
abundance maps for fixed endmembers extracted by CNNAEU.

To evaluate our method we compare the average scores for our extracted endmembers
and abundance maps to the results from seven state-of-the-art methods. We use the
mSAD and MSE of 25 runs for all experiments and report the average values along
with the standard deviation. We also report the average SAD from reference along
with standard deviation for each individual endmember. The comparison methods are
listed in Table 4.2.

Table 4.2: The benchmark methods used for comparison in experiments.

Method Description
ℓ1/2-NMF Sparsity constrained nonnegative matrix factorization [39]. A

spectral only method.
SGSRNMF Spatial group sparsity regularized nonnegative matrix

factorization [120]. A spectral-spatial method.
SHDP Sticky hierarchical Dirichlet process [121]. A spectral-spatial

method.
uDAS Untied denoising autoencoder with sparsity [62]. A spectral only

method.
SNSA Stacked nonnegative sparse autoencoder [129]. A spectral only

method.
DAEU Deep autoencoder unmixing [66]. A spectral only method.

MTLAEU Multitask learning autoencoder unmixing [67]. A spectral-spatial
method.

Methods in rows 2, 3, and 7 in the table, are spectral-spatial methods, and the methods
in rows 4-7 are based on autoencoders. The DAEU, MTAEU and CANNAEU meth-
ods were all initialized randomly, while all other methods are initialized or partially
initialized using VCA.

4.3.1 Hyperparameter settings

Table 4.3 lists the CNNAEU’s hyperparameters and their settings. Values of most
hyperparameters were chosen using grid search and a single dataset (Urban) with
reference endmembers. The size of the filters in layer CONV 1 was chosen to be 3×3 as
larger sizes make the abundance maps look a bit fussy. The size of filters in layer CONV
2 was chosen to be 1 × 1 because of similar considerations. We performed a sensitivity
analysis of selected hyperparameters w.r.t. the average SAD. One hyperparameter
at a time was increased and decreased by 5%, 10%, 15%, and 20%, respectively.
The experiment was performed using the Urban dataset, and ten runs were used to
calculate the average SAD and MSE for each setting. The results, given in Table 4.4,
show that the maximum deviation in average SAD is only 14% and the maximum

45



4.3 Experiments

deviation in average MSE is only 17%. This means that the chosen settings of the
hyperparameters do not correspond to some unusual and deep local minima. Values of
the parameters that are close to the original values yield results that are close to the
score obtained for the original values. Also, an increase of 14% in the average SAD
from the reference score would not affect the ranking of our method for any datasets.
Since the number of epochs is fixed, we allowed the number of patches used in training
to vary between datasets as their sizes are different and we wish to avoid overtraining
on smaller datasets. For our experiments, we determined the number of patches for
the Urban dataset using grid search and then for the other datasets we scaled this
number by the ratio of the product of the number of columns, rows, and bands for the
dataset and the corresponding product for the Urban dataset.

Table 4.3: Hyperparameter settings used in the experiments.

Hyperparameter Value used in experiments
Input patch size 40 × 40
Number of filters in CONV 1 48
Size of filters in CONV 1 3 × 3
Size of filters in CONV 2 1 × 1
Size of filters in CONV 3 11 × 11
Softmax scaling parameter α 3.5
Optimizer RMSprop
Learning rate 0.0003
Batch size 15
Training Epochs 320

Table 4.4: Sensitivity to hyperparameter values. The numbers are the
change in average SAD score when a hyperparameter is increased or de-
creased by the value displayed in the top row of the table. The numbers
in parenthesis are the corresponding change in the average MSE score
of the abundance maps. The average SAD score is the average SAD of
extracted endmembers from reference endmembers of 10 runs for each
hyperparameter configuration. The average MSE is the average MSE
of extracted abundance maps from reference maps of 10 runs for each
hyperparameter configuration.

Hyperparam. Batch size Learning rate #patches #filters in CONV 1 Patch size

-5% 7.4% (5.5%) 3.3% (7.2%) 7.7% (3.4%) 6.4% (5.2%) 6.6% (1.6%)
+5% 2.6% (2.5%) 8.9% (10.8%) 5.4% (4.5%) 5.5% (1.3%) 4.5% (-0.5%)
-10% 10.7% (3.5%) 7.2% (3.9%) 6.2% (11.2%) 9.0% (2.4%) 11.2% (1.1%)
10% 6.2% (2.4%) 12.2% (7.0%) 14.2% (12.2%) 10.0% (-0.5%) 9.4% (5.9%)
-15% 13.6% (12.4%) 4.4% (2.0%) 7.7% (16.6%) 8.3% (4.7%) 9.8% (11.2%)
+15% 5.8% (5.5%) 11.7% (5.8%) 15.5% (12.2%) 10.1% (8.6%) 17.1% (8.8%)
-20% 3.5% (10.2%) -1.4% (8.9%) 10.8% (10.7%) 13.5% (12.5%) 4.3% (11.9%)
+20% 7.5% (10.0%) 12.5% (11.7%) 10.0% (6.9%) 13.7% (5.7%) 4.9% (8.4%)
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Figure 4.2: The effect of gradual spatial degradation of the input HSI
on the performance of the method.

4.3.2 Spatiality
To confirm if the method is spatial in nature, we performed an experiment where
we investigate the performance of the method with increasing spatial degradation
of an HSI. If the technique is utilizing the spatial structure of the HSI to perform
the unmixing, then gradually destroying the spatial structure by permuting areas in
the HSI should result in the method performing increasingly worse when holding all
hyperparameters constant.

Fig. 4.2 shows the result of this experiment for the Urban dataset as a boxplot. There
are 25 runs behind every setting. We used patch size of 40 × 40 with 200 training
patches in the training dataset and trained the network for 100 epochs. The categorical
labels have the following meaning:

Normal This is using the original dataset unchanged.

5 rows This dataset is obtained by permutation of the rows of the image in blocks
of five.

5 x 5 This dataset is obtained by dividing the original image into 5 by 5 patches
and randomizing their locations.

2 x 2 This dataset is obtained by dividing the original image into 2 by 2 patches
and randomizing their locations.
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Random This dataset is obtained by totally randomizing every pixel location by a
random permutation of the array of spectra before reshaping it into a 2D
image.

As can be seen clearly from the figure, the performance, as measured by the mSAD
in radians, decreases with increasingly fine grained permutations of the pixels of the
original image. When all spatial structure has been completely destroyed, the mSAD
is between 0.25 and 0.30 radians after 100 epochs compared to around 0.05 radians
for the original image. This shows that the CANNAEU method is indeed spatial in
nature.

4.3.3 The matrices Wij

In this section, we will investigate the matrices Wij , i, j = 1, · · · , f , that are obtained
from the decoder’s filter by fixing the first two indices to i, j. Fig. 4.3 shows plots
of the contents of the filter for the Urban dataset for all four endmembers and all 25
locations for a filter having size 5 × 5.

Looking at Fig. 4.3, there are two things that stand out. Firstly, the relative scale
of the plots compared to the center plot, and lastly the variations in the shape of
the plots, the filter for certain endmembers seems to contain plots of more than one
different endmembers. Based on our experimentation, we can summarize the behavior
of the filter regarding the two above mentioned outstanding features with regard to
the spatial structure of the HSI as following:

1. The relative scale of surrounding locations is entirely dependent upon the amount
of spatial correlations in an HSI. If there are no spatial correlations, only the
center location will be non zero and it will contain the estimated endmember.

2. If an endmember is often considerably mixed with another, this will be reflected
in the filter plots of the endmember. The plots in locations other than the central
location can look similar to the other endmember.

Fig. 4.4 illustrates observation number 1 here above. When the spatial structure of
the Urban HSI has been destroyed by randomly permuting the pixels, the scale of the
plots in non-central locations goes to zero as can be seen in Fig. 4.4b. However, by
selecting a sub-image of Urban that is more homogeneous with respect to the Tree
and Grass endmembers than the original image, the plots in Fig. 4.4c are obtained.
The relative scale of non-central locations has increased with the increased spatial
correlations in the scene.

Fig. 4.3c illustrates observation number 2 above well. It is the filter plot for the Roof
endmember which, in the Urban HSI, is very often mixed with the Trees and Grass
endmembers. In locations (1,3), (3,1), (5,3) and (3,5) the plots contain nothing that
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(a) Grass (b) Tree

(c) Roof (d) Asphalt

Figure 4.3: Plots of the endmember matrices of the 5x5 filter for the
Urban dataset.
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(a) Original (b) Random-
ized. No spatial
correlations.

(c) More
homogenous
subimage.

Figure 4.4: The "Grass" endmember filter for different degrees of spatial
correlations in the Urban dataset.

resembles the Roof endmember, but looks very similar to the Tree/Grass endmembers.
The same can also be observed in the plot for the Asphalt endmember in Fig. 4.3d,
which is also often mixed with vegetation endmembers in the Urban HSI. The same
locations show something that looks similar to the vegetation endmembers.

The spatial nature of the reconstruction of a pixel’s spectrum by the CNN autoencoder
as described by (4.1) makes the two observations above very reasonable. For the case
with no spatial structure, then generally hm is very different from hc, while at the
same time the network cannot rely on the neighboring abundances of a pixel for its
reconstruction, forcing it to make the Wm close to zero for locations other than the
center.

Now, let us consider the case of an HSI that is heavily correlated. In this case the
network can rely on neighboring pixels for the reconstruction of a pixel. However,
we can generally expect hm be close to hc so the their difference will be small in
magnitude, forcing the network to increase the norms of Wm for locations other than
the center. This means that the relative size of the plots of Wij will become similar
and large compared to the center location, as Fig. 4.4c is showing.

It is clear that a decoder filter of size f × f can give some qualitative information
about the HSI being unmixed. Also, having f larger than 1 does indeed give slightly
better estimation of endmembers.

4.3.4 Endmembers

In this section, we will focus on the extracted endmembers from the experiments.
Table 4.5 shows the mSAD of the extracted endmembers along with standard deviation
from 25 runs, along with the average SAD from references for individual endmembers
for the Urban dataset for all the methods. Fig. 4.5 shows the extracted endmembers
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for all the methods for the Urban dataset with four reference endmembers. The
blue curves are the extracted endmembers from 25 runs while the red curves are the
reference endmembers.

As can be seen from the figure, the MTAEU and CNNAEU methods are in a class of
their own for this dataset. They are the only methods that have both good performance
and excellent consistency. The proposed method actually has better SAD score and
less variance of the two.

The SNSA method has a very low variance also, but its solution is not good. All the
methods except for the DAEU, MTAEU and CNNAEU have trouble with estimating
the Grass endmember correctly, which is a bit surprising since it is a very well rep-
resented endmember in the dataset. The NMF-ℓ1/2 does the best job aside from the
aforementioned methods.

Table 4.6 shows the mSAD of the endmembers extracted by all the methods for the
Samson dataset along with the average SAD from references for individual endmem-
bers. Fig. 4.6 shows the extracted endmembers along with the reference. It can be
seen from the figure that most of the methods do not have much trouble with this
dataset. The method that has the best SAD score is the MTAEU method and it also
has the second least variance. This is the only dataset where we had to use small
patch size in order to get good and stable results. The dataset itself is also very small,
only 95 by 95 pixels, which could be the reason why a higher number of small patches
gives better results than having fewer and much larger patches in the training dataset.

Table 4.5: Urban dataset. Mean SAD and standard deviation compar-
ison for endmember extraction in radians. Best results in bold.

Method Asphalt Grass Tree Roof Average

NMF-ℓ1/2 0.1161±0.0233 0.573±0.323 0.1571±0.0921 0.4891±0.2065 0.3338±0.0644
SGSRNMF 0.2446±0.0204 1.3006±0.0444 0.0967±0.0113 0.1916±0.0862 0.4584±0.0148
SHDP 0.2658±0.0751 0.5524±0.3172 0.0777±0.0171 0.4117±0.172 0.3269±0.0555
SNSA 0.2912±0.0003 1.2165±0.0042 0.0777±0.0001 0.0923±0.0005 0.4194±0.0011
uDAS 0.1805±0.0321 1.1609±0.1515 0.1496±0.0385 0.17±0.0011 0.4153±0.0403
DAEU 0.072±0.0235 0.0769±0.0285 0.0707±0.0291 0.2155±0.0845 0.1088±0.0234
MTAEU 0.0843±0.0046 0.0421±0.0036 0.0539±0.0039 0.0415±0.0045 0.0555±0.0019
CNNAEU 0.0575±0.0058 0.0366±0.0047 0.0321 ±0.0039 0.0332±0.0066 0.0398 ±0.003

Table 4.6: Samson dataset. Mean SAD and standard deviation com-
parison for endmember extraction in radians. Best results in bold.

Method Soil Tree Water Average

NMF-ℓ1/2 0.4013±0.2097 0.0636±0.0379 0.1319±0.1005 0.1989±0.1034
SGSRNMF 0.0086±0.0001 0.0395±0.0019 0.0923±0.0024 0.0468±0.0003
SHDP 0.2147±0.3299 0.0375±0.0004 0.2064±0.0916 0.1527±0.139
SNSA 0.2493±0.3122 0.075±0.0146 0.2844±0.0677 0.2029±0.1218
uDAS 0.0312±0.0014 0.0547±0.0049 0.1405±0.0117 0.0755±0.0051
DAEU 0.0497±0.0216 0.0553±0.0121 0.053±0.0208 0.0527±0.0117
MTAEU 0.0225±0.006 0.0371±0.0028 0.0338±0.0031 0.0311 ±0.0017
CNNAEU 0.0373±0.021 0.0397±0.0038 0.043±0.0092 0.04±0.0067
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Figure 4.5: Urban dataset. Endmembers extraction for comparison.
Reference endmembers in red.
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Figure 4.6: Samson dataset. Endmembers extraction for comparison.
Reference endmembers in red.
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Parking lot1 Parking lot2 Running track Grass healthy
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Figure 4.7: Houston dataset. Endmembers extraction for comparison.
Reference endmembers in red.
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Figure 4.8: Apex dataset. Endmembers extraction for comparison. Ref-
erence endmembers in red.
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Table 4.7: Houston dataset. Mean SAD and standard deviation com-
parison for endmember extraction in radians. Best results in bold.

Method parking_lot1 parking_lot2 running_track grass_healthy Average

NMF-ℓ1/2 0.0665±0.0029 0.7426±0.091 0.2678±0.0696 0.1366±0.0252 0.3034±0.0305
SGSRNMF 0.0939±0.0040 0.1347±0.0018 0.4289±0.0034 0.0931±0.0010 0.1877±0.0010
SHDP 0.0751±0.0024 0.6988±0.0255 0.2323±0.0013 0.1585±0.0283 0.2912±0.0082
SNSA 0.0971±0.0953 0.8269±0.0366 0.4958±0.1987 0.2485±0.0174 0.4171±0.0568
uDAS 0.113±0.11 0.3039±0.1492 0.155±0.053 0.108±0.056 0.17±0.0388
DAEU 0.1263±0.0352 0.2798±0.1588 0.114±0.0389 0.0937±0.0825 0.1534±0.0353
MTAEU 0.0427±0.009 0.0786±0.0128 0.2894±0.0886 0.0642±0.0104 0.1187±0.0226
CNNAEU 0.0291 ±0.0095 0.0775±0.007 0.0671±0.0767 0.0272 ±0.0062 0.0502±0.0193

Table 4.8: Apex dataset. Mean SAD and standard deviation compari-
son for endmember extraction in radians. Best results in bold.

Method Road Water Roof Grass Average

NMF-ℓ1/2 0.5265±0.0484 0.4725±0.0717 0.1301±0.0175 0.1036±0.0147 0.3081±0.027
SGSRNMF 0.1779±0.1707 0.3619±0.0917 0.1327±0.0794 0.0574±0.0082 0.1825±0.0788
SHDP 0.4123±0.1293 0.6068±0.1956 0.196±0.0631 0.0947±0.027 0.3274±0.069
SNSA 0.6324±0.179 0.5669±0.0909 0.0946±0.0604 0.0607±0.0024 0.3387±0.0525
uDAS 0.3109±0.1021 0.5195±0.1595 0.1289±0.0483 0.0984±0.0469 0.2644±0.0623
DAEU 0.3637±0.1113 0.1061±0.0245 0.232±0.1731 0.1193±0.0369 0.2053±0.0343
MTAEU 0.1126±0.0403 0.1365±0.0163 0.546±0.2461 0.0992±0.0076 0.2236±0.0711
CNNAEU 0.0587±0.0196 0.0417±0.0037 0.1233±0.0060 0.0621±0.0038 0.0714±0.0045

Table 4.7 shows the mSAD of the endmembers extracted by all the methods for the
Houston dataset along with the average SAD from references for individual endmem-
bers. Fig. 4.7 shows all the extracted endmembers along with the reference. Looking
at the figure, one can see that the proposed method has again both very good end-
members and very good consistency and low variance. Only in one run does it fail
to extract the "running_track" endmember correctly and instead produces a vari-
ant of the "grass_healthy" endmember. The MTAEU method has some trouble with
the consistency of the endmember "running_track" and often finds a variant of the
"grass_healthy" endmember instead, most likely it is the "grass_stressed" endmember.
The DAEU method has high variance for this dataset and often gets a bad solution for
the "parking_lot2" endmember. It is very correlated to the "parking_lot2" endmem-
ber which could be an explanation for this behavior. The NMF methods generally
have trouble with the "running_track" endmember.

Table 4.8 shows the mSAD of the extracted endmembers for all the methods for the
Apex dataset along with the average SAD from references for individual endmembers.
Fig. 4.8 shows all the extracted endmembers along with the reference. Here the pro-
posed method achieves the best SAD score and has the best consistency and lowest
variance by far of all the methods. The MTAEU method often incorrectly estimates
the roof endmember and extracts an endmember corresponding to trees. There are a
lot of trees in the image and often obscuring roofs partially so there are a lot of mixed
pixels containing both the tree and the roof endmember.

The DAEU method has less trouble with the roof endmember but is often estimating
the tree endmember instead of the road endmember. There are also a lot of mixed pix-
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els containing both these endmember in the scene. It is somewhat surprising how much
trouble all the other methods, uDAS in particular, have with the water endmember.
This endmember is abundant in the scene and its variability is not great.

Regarding the quality of extracted endmembers and method consistency it is clear
that the proposed method ranks first among all the methods in the experiments.
It seems that the spatial aspect of the method greatly reduces the variance of the
method and improves its consistency. It outperforms the MTAEU method, which is
also a spectral-spatial exhibiting low variance and good consistency, in all the datasets
except for Samson.

4.3.5 Abundance maps

As was mentioned at the start of this section, the abundance maps produced by
CNNAEU are very intense looking, i.e., both very sparse and binary. It is possible to
extend the method so it refines the abundance maps after extracting the endmembers.
This could be done by using an autoencoder in serial with the unmixing one, which
has its decoder’s weights set to be the extracted endmember matrix and made non-
trainable so they are fixed, and does not use batch normalization layers. By training
it for a few epochs, it will produce abundance maps which are not nearly as binary
looking.

We did this to improve the abundance map results, using a fully connected autoencoder
with a single hidden layer and enforcing the ASC constraint using the softmax function.
The resulting method is named CNNAEU2 and we will report MSE from the reference
abundance maps for both CNNAEU and CNNAEU2.

In Table 4.9 the mean MSE and standard deviation comparison for abundance maps
extraction for the Urban dataset with four endmembers is given. Fig. 4.9 shows
examples of the extracted abundance maps by all the methods for the same dataset.
The figure shows well the issue with the abundance maps produced by the proposed
method. It also shows the refined maps by the CNNAEU2 method.

Table 4.9: Urban dataset. Mean MSE and standard deviation compar-
ison for abundance maps extraction. Best results in bold.

Asphalt Grass Tree Roof Average

NMF-ℓ1/2 0.1733±0.0013 0.2035±0.0039 0.1886±0.0032 0.0572±0.0006 0.1557±0.0004
SGSRNMF 0.0816±0.0058 0.1995±0.0103 0.0715±0.0171 0.0358±0.0018 0.0971±0.0085
SHDP 0.0909±0.0144 0.148±0.0724 0.0833±0.0235 0.0745±0.0569 0.0992±0.0204
SNSA 0.1129±0.0005 0.1681±0.0005 0.126± 0.0007 0.0433±0.0002 0.1126±0.0002
uDAS 0.1013±0.0036 0.1872±0.0381 0.0916±0.0103 0.0385±0.0012 0.1046±0.0071
DAEU 0.0307±0.0172 0.0556±0.0258 0.0391±0.033 0.0189±0.0131 0.036±0.0147
MTAEU 0.023±0.001 0.0225±0.0016 0.0068 ±0.0009 0.0079±0.0008 0.015±0.0008
CNNAEU 0.066±0.0041 0.0868±0.0071 0.0437±0.0073 0.0284±0.0067 0.0562±0.0049
CNNAEU2 0.0156 ±0.0016 0.0158 ±0.0016 0.0073±0.0015 0.0073 ±0.0015 0.0115 ±0.001
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Table 4.10: Samson dataset. Mean MSE and standard deviation com-
parison for abundance maps extraction. Best results in bold.

Soil Tree Water Average

NMF-ℓ1/2 0.14±0.0622 0.1045±0.0192 0.0658±0.0417 0.1034±0.0323
SGSRNMF 0.0316±0.0004 0.0574±0.0031 0.1227±0.0034 0.0706±0.0021
SHDP 0.0814±0.0288 0.0623±0.0145 0.1559±0.009 0.0999±0.012
SNSA 0.1251±0.02 0.1347±0.0084 0.1691±0.0086 0.143±0.0066
uDAS 0.0651±0.0079 0.0666±0.0053 0.1674±0.0067 0.0997±0.0037
DAEU 0.0439±0.045 0.0198±0.0103 0.0239±0.0471 0.0292±0.0311
MTAEU 0.0076±0.0014 0.0037±0.0007 0.0029± 0.0010 0.0048±0.0008
CNNAEU 0.1068±0.06 0.0899±0.0558 0.0376±0.0982 0.0781±0.0576
CNNAEU2 0.0765±0.0676 0.0631±0.0707 0.0166±0.0133 0.0521±0.0449

Table 4.11: Houston dataset. Mean MSE and standard deviation com-
parison for abundance maps extraction. Best results in bold.

Method parking_lot1 parking_lot2 running_track grass_healthy Average

NMF-ℓ1/2 0.1366±0.0163 0.0997 ±0.0055 0.0183±0.0039 0.0059 ±0.0027 0.0651±0.005
SGSRNMF 0.2799± 0.0003 0.2253±0.0004 0.0359±0.0009 0.004± 0.0001 0.1363± 0.0002
SHDP 0.1881±0.0079 0.1362±0.0049 0.0214±0.0012 0.0085±0.0007 0.0885±0.0027
SNSA 0.2455±0.0038 0.1554±0.0125 0.0629±0.0172 0.1235±0.0117 0.1468±0.0025
uDAS 0.2428±0.0459 0.2218±0.0394 0.0319±0.0051 0.0452±0.0794 0.1354±0.0245
DAEU 0.1903±0.0461 0.1665±0.0692 0.0834±0.0795 0.0266±0.0195 0.1167±0.0335
MTAEU 0.1558±0.0821 0.2431±0.0968 0.161±0.1094 0.0151±0.0101 0.1437 ±0.0537
CNNAEU 0.2178±0.0685 0.2034±0.0701 0.0669±0.0153 0.0314±0.0111 0.1299±0.0348
CNNAEU2 0.1196± 0.0926 0.1187±0.081 0.0090±0.0064 0.0067±0.0011 0.0635±0.0441

Table 4.12: Apex dataset. Mean MSE and standard deviation compar-
ison for abundance maps extraction. Best results in bold.

Method Road Water Roof Grass Average

NMF-ℓ1/2 0.2926±0.0385 0.1578±0.0121 0.051±0.0152 0.0199±0.0226 0.1303±0.0096
SGSRNMF 0.1027±0.0674 0.1646±0.0231 0.0461±0.0086 0.0084 ±0.0224 0.0805±0.0255
SHDP 0.172±0.046 0.127±0.0302 0.0363 ±0.0106 0.0204±0.0214 0.0889±0.018
SNSA 0.0973± 0.0016 0.1862±0.0072 0.0809±0.0003 0.1091± 0.0052 0.1184±0.0026
uDAS 0.1082±0.0801 0.2319±0.0401 0.0567±0.0056 0.0284±0.0233 0.1063±0.0254
DAEU 0.183±0.0226 0.1074±0.0054 0.0809±0.0486 0.0443±0.0052 0.1039±0.0094
MTAEU 0.1457±0.0523 0.0790±0.0048 0.1267±0.0543 0.0432±0.014 0.0987±0.0242
CNNAEU 0.1458±0.0196 0.1058±0.0181 0.0959±0.0185 0.0647±0.007 0.1031±0.0111
CNNAEU2 0.0575 ±0.0339 0.0808±0.0098 0.0448±0.0142 0.0278±0.0055 0.0527±0.0142
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Figure 4.9: Urban dataset. Abundance maps extraction comparison
and reference maps in the first column.
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Figure 4.10: Samson dataset. Abundance maps extraction comparison
and reference maps in the first column.
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Figure 4.11: Houston dataset. Abundance maps extraction comparison
and reference maps in the first column.
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Figure 4.12: Apex dataset. Abundance maps extraction comparison
and reference maps in the first column.
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The MTAEU method achieves the lowest MSE score with a very low variance, and is
closely followed by the CNNAEU2 method which also has very small variance. The
maps produced by CNNAEU rank third (excluding CNNAEU2). As can be seen from
the figure, even though they are intense, they are still good maps and could actually
be used for classification.

Table 4.10 shows the MSE from reference abundance maps for the Samson dataset
for all the methods. Fig. 4.10 shows examples of the extracted abundance maps by
all the methods for the same dataset. MTAEU scores best of all the methods again
followed closely by CNNAEU2. It is interesting to see how high the variance is for
the CNNAEU method. It does not reflect the low variance of the SAD score for the
extracted endmembers. Of the other spectral-spatial methods, SGSRNMF achieves
the best score.

Table 4.11 shows the MSE of abundances from the reference abundance maps for
the Houston dataset for all the methods. Fig. 4.11 shows examples of the extracted
abundance maps by all the methods for the Houston dataset. On this dataset it is
CNNAEU2 that achieves the best score. Second best is NMF-ℓ1/2 and third best is
DAEU. The SHDP and SGSRNMF and the SNSA methods have all very low variance
compared to the other methods.

Table 4.12 shows the MSE from the reference abundance maps for the Apex dataset
for all the methods. Fig. 4.12 shows examples of the extracted abundance maps by
all the methods for the Apex dataset. The maps produced by the CNNAEU2 method
achieve the lowest MSE score for this dataset. All the other methods have average
MSE close to 0.1.

4.3.6 Robustness to noise

To investigate the method’s robustness to noise, we performed experiments where we
added white noise with SNR = 20 dB, 30 dB and 40 dB to the Urban dataset prior
to unmixing with all methods. Fig. 4.13 shows a bar chart of the mSAD score for all
the methods versus SNR grouped by methods. The figure shows that all the methods
are fairly robust to noise. Also. it is surprising how well the methods, except for
SGSRNMF and uDAS, performed with 20 dB SNR. The proposed method seems to
be largely unaffected by the added noise. The low variance of the method for all noise
levels stands out in the comparison.

4.3.7 Computational complexity

Here, we discuss the running time of the method and compare it to the running time
of the other methods. Table 4.13 shows the average running time in seconds for all the
methods for all the images and additionally one large image, a 900x900 pixel subset
of the Apex HSI named "Apex big" in the table. It must be kept in mind that for the
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Figure 4.13: Urban dataset. Mean SAD and standard deviation com-
parison in radians for robustness test.

Table 4.13: CPU time in seconds for all unmixing methods and all
datasets used in the experiments along with one additional large dataset
named "Apex big" in the table.

Method Urban Samson Houston Apex Apex big
ℓ1/2-NMF 83 7 31 152 1186
SGSNMF 276 27 85 312 1007
SHDP 14425 939 8745 16743 NA
SNSA 809 106 708 1813 5856
uDAS 940 5 158 1654 14424
DAEU 226 4 65 165 242
MTAEU 80 58 105 95 223
CNNAEU 143 37 59 111 150
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methods DAEU, MTAEU, and CNNAEU, the training set is only a small subset of all
possible patches or pixels, so the effect of the image size is not very apparent for the
smaller datasets for these methods. Generally, these methods produce good results
for running times around 2 minutes for the smaller images.

The running time for the other methods is more closely related to the sizes of the
images. As can be seen from the table, the running time for the methods DAEU,
MTAEU, and CNNAEU are much lower than for the comparison methods for the
large image. The running time for the proposed method is around 2 minutes compared
to 17 minutes for ℓ1/2-NMF and around 4 hours for the uDAS method. The running
time for SHDP scales exponentially with image size, and therefore it was omitted from
the comparison for the large image. The experiments were performed on a computer
having an eight-core CPU and 64 GB of memory and a GPU having 11 GB of memory.
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Chapter

Comprehensive Comparison of
Autoencoder Methods for
Unmixing

5

This chapter provides a comprehensive comparison of autoencoder-based methods
for unmixing hyperspectral images. The comparison is performed on both real and
synthetic datasets. The performance of 11 methods is evaluated and compared
using four real datasets with accompanying reference endmembers and reference
abundance maps. Furthermore, all methods are evaluated on four synthetic datasets
having the same absolute ground truths but with different spectral variability. The
results of both endmember extraction performance and abundance maps generation
for all the methods are discussed, especially how they can be interpreted in light of
the discussions in previous sections. Lastly, the computation costs of the methods
are compared and discussed.

•

5.1 Experimental Results
This section provides an experimental foundation for chapter 2 and tries to determine
experimentally what makes unmixing autoencoders perform well. The performance of
11 blind unmixing methods will be evaluated and compared using the Urban, Samson,
Houston, and Apex datasets and accompanying reference endmembers and reference
abundance maps. Additionally, all methods were evaluated on four synthetic datasets
with increasing spectral variability.

Furthermore, all methods will be evaluated on four synthetic datasets having the same
absolute ground truths but with different spectral variability. Also, ablation experi-
ments will be performed on a very general and simple spectral unmixing autoencoder.
Firstly, the ablation experiments aim to demonstrate what makes autoencoder-based
methods powerful compared to traditional methods. Secondly, the effects of three dif-
ferent ways to enforce the ASC will be studied for two different activation functions for
the encoder. Finally, the effects of non-linear vs linear decoders will be investigated.

The endmember extracted by methods will be evaluated using the mean spectral angle
distance (mSAD), 1.6. Abundance maps generated by the methods will be compared
to reference abundance maps using the RMSE measure given by 1.7 The results of
both endmember extraction performance and abundance maps generation for all the
methods will be discussed, especially how they can be interpreted in light of the
discussions in previous sections. Lastly, the computation costs of the methods will be
compared and discussed.
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5.1.1 Methods compared in experiments

The methods compared in the experiments are listed in Table 5.1. The source code for
methods number 4, 6, and 7 could not be obtained, so the authors implemented them.
Method 12, sparsity regularized NMF, is a benchmark traditional method. The Endnet
method was not published as an usable blind method as the generated abundance maps
were of low quality due to particular implementation of a batch normalization layer and
high ℓ1-norm sparsity regularization. In our implementation, the batch normalization
does not ruin the abundance maps, and neither does the chosen optimal strength
of the ℓ1 regularization. Therefore, the method produces usable abundance maps in
our implementation. The method mDAE was initially implemented in Matlab, but
we used the Tensorflow deep learning framework for our implementation. Methods
number 1, 2, 3, and 4 are randomly initialized. All other methods are initialized using
VCA.

5.1.2 Ablation Experiments

These experiments use a simple spectral unmixing autoencoder. Its architecture is
shown in Fig. 5.1.

Figure 5.1: The architecture of the simple autoencoder used in the
ablation experiments.

The encoder only has a single layer, and the activation can be either the ReLU or the
Leaky ReLU activation with slope parameter 0.1 for the negative pre-activations. A
batch normalization layer is used after the activation to speed up learning. The ASC
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Table 5.1: The methods used in the experiments.

# Name Architecture Loss ASC Regularization
1 DAEU [66] Deep encoder SAD Uses (2.16)

2 MTLAEU [67] Branched deep encoder uti-
lizing multitask learning with
shared decoder

SAD Scaled soft-
max

None

3 CNNAEU [64] Fully CNN encoder and de-
coder

SAD Scaled soft-
max

None

4 SIDAEU [81] Shallow encoder SID Uses (2.16) dynamical
thresholding

5 OSPAEU [70] Deep encoder Hyper-
Laplacian

Uses (2.18) Orthogonal
sparse prior

6 Endnet [77] Single layer encoder with a cus-
tom matrix-vector product

SAD + small
MSE term

Softmax l1 on abund.
and l2 on
endm.

7 mDAU [12] Marginalized denoising au-
toencoder in cascade with an
unmixing autoencoder with
tied weights

MSE Uses aug-
mented
matrices

None

8 NLAEU [69] Deep autoencoder nonlinear
unmixing with a decoder hav-
ing additionally two extra lay-
ers that model the interactions
between the endmembers ac-
cording to (1.4)

MSE Uses (2.18)
but no ANC

None

9 SNSA [129] Stacked nonnegative sparse au-
toencoder with outlier detec-
tion prior to unmixing

MSE Uses aug-
mented
matrices

minimum vol-
ume

10 uDAS [62] An untied denoising autoen-
coder with sparsity

MSE Uses aug-
mented
matrices

ℓ21 on end-
members

11 DAEN [83] The method uses an varia-
tional autoencoder for spectral
unmixing which uses the VAE
indirectly to enforce the ASC
constraint. The method op-
tionally uses stacked autoen-
coders to prepare a outlier free
training data set for the un-
mixing autoencoder

MSE Uses VAE
for ASC and
ANC

Minimum
volume

12 NMF-
ℓ1/2 [39]

Sparsity constrained nonnega-
tive matrix factorization (ℓ1/2-
NMF) [39]

MSE Uses aug-
mented
matrices

ℓ1/2 on abun-
dances

is enforced using one of the following: the softmax function, simple normalization
according to (2.16) or normalization of absolute values according to (2.18). The loss
function is either the SAD or MSE function.
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(a) Samson dataset (b) Urban dataset

(c) Samson dataset (d) Urban dataset

Figure 5.2: Comparison between a simple autoencoder using either the
MSE or SAD function for the fidelity term, and the NMF-ℓ1/2 method.
The autoencoder uses either the LReLU or ReLU activation. The black
bars show the standard deviation. All experiments consisted of 25 runs.
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Comparison with NMF-ℓ1/2 In this experiment, the simple autoencoder is com-
pared with the NMF-ℓ1/2, a widely used NMF method that is sparsity regularized.
The ASC will be enforced using the softmax function, and the ReLU activation func-
tion is used for the encoder. The loss function is either MSE or SAD. Fig. 5.2 shows
the results of the experiment for the Urban and the Samson datasets.

Fig. 5.2 shows that a simple spectral unmixing autoencoder using the MSE function
for the fidelity term and LReLU activation is only slightly better than the NMF-ℓ1/2
method for the Urban dataset and slightly worse for the Samson dataset. When the
autoencoder uses the SAD loss function and the LReLU activation, the performance
becomes significantly better than the performance of the NMF method. However,
when the activation function is the ReLU, we see a much worse performance with the
autoencoder.

This is because of ReLU units getting stuck when using the ReLU activation and batch
normalization. The ReLU activation has a zero gradient for negative pre-activations,
while the LReLU always has a nonzero gradient. This shows that care should be taken
when using the ReLU activation as it can lead to bad performance.

This experiment largely answers why autoencoder methods can achieve much bet-
ter unmixing performance than methods using the MSE loss function. The scale-
invariance of the SAD loss function makes the autoencoder able to handle the spectral
variability inherent in most real HSIs.

Comparison between different ASC and activation combinations In this
experiment, the effect of different ways to enforce the ASC will be compared for both
MSE and SAD losses and using the ReLU and LReLU activations. Three different
ways of enforcing the ASC will be tested:

• Using the softmax function.

• Normalizing the activations according to (2.16).

• Normalizing the absolute value of the activations (absnorm) according to (2.18).

The results of this experiment are shown in Fig 5.3. The results are interesting but
not surprising. For LReLU and the Urban dataset, the difference between the different
ways of enforcing the ASC is negligible. However, for the Samson dataset with LReLU,
softmax is by far the best option for both losses.

This difference is because LReLU allows negative activations, and for the Samson
dataset, there seems to be a much more preference for negative activations than for
the Urban dataset. Negative activations in the layer just before the ASC is enforced
will negatively affect the simple normalization as it will break the constraint. It might
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(a) Urban dataset with
LReLU

(b) Samson dataset with
LReLU

(c) Urban dataset with ReLU (d) Samson dataset with
ReLU

Figure 5.3: Comparison between three ways of enforcing the ASC con-
straint for both the MSE and SAD losses and using the LReLU or ReLU
activations. The black bars show the standard deviation. All experi-
ments consisted of 25 runs.
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be argued that LReLU activation will lead to less sparse abundance maps than if
ReLU activation combined with batch normalization is used. In deep encoders, a
ReLU activation for the last layer might work well and give more sparse maps. The
absnorm method is not as affected, but softmax does not care about the signs of the
activations and will always return a vector that sums-to-one. It seems that the neural
network can best adapt to the softmax method of enforcing the ASC.

The ReLU part of this experiment is plagued by the vanishing gradient problem be-
cause of random initialization and is hard to interpret. This experiment shows that
for some datasets, it can matter how the ASC is enforced. Using the softmax method
seems always to work best and can be considered the safest option. By using a scal-
ing factor for the activations entering the softmax function, the function can be soft
thresholding and act very similarly to ℓ1-sparsity regularization.

Linear and Nonlinear Decoders Until now, we have mainly discussed autoen-
coders having linear decoders where the endmembers are the weights of the decoder
at the end of training. It is possible to have multi-layered and nonlinear decoders in
spectral unmixing autoencoders. If the decoder has multiple layers, the endmembers
cannot be extracted as the weights of any layers. However, the endmembers can be
obtained from the decoder part by decoding one-hot vectors, i.e., the abundances of
pure pixels.

In this final ablation experiment, we will compare two autoencoders with identical
encoders, but one has a linear decoder and the other a nonlinear decoder. In the case
of the nonlinear decoder, the endmembers are obtained by a prediction by the decoder
part on the identity matrix (abundances of pure pixels). The nonlinear decoder has
three layers: one with 4×R units, and two layers with B units each, where R is the
number of estimated endmembers and B is the number of bands in the image. This
particular decoder does not correspond to any well known nonlinear mixing model and
cannot even be said to be post-nonlinear. However, because of the great flexibility of
deep learning models, it would be easy to implement most commonly used nonlinear
mixing models. Especially models of the post-nonlinear variety as described by 1.4. For
examples on nonlinear unmixing models implemented via autoencoders, see [69,93,96]

Two datasets are used, the Urban and Samson datasets and the LReLU activation was
used for the encoder. Four different batch sizes are used: 6, 10, 15, and 25. Fig. 5.4
shows the results of the experiment. The figures in the top row are the mSAD of
extracted endmembers, and the figures in the bottom row show the RMSE for the
abundance maps.

What first stands out when looking at Fig. 5.4 is that the batch size is a critical
hyperparameter, especially for the endmembers. The best SAD performance on the
Urban and Houston images is for small batch sizes, while for Samson, it is best to use
moderately large batch size. It can be seen that for the Urban image, having more
parameters in the decoder is beneficial for the mSAD scores of extracted endmembers.
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(a) Urban
dataset - SAD

(b) Samson
dataset - SAD

(c) Houston
dataset - SAD

(d) Urban
dataset - RMSE

(e) Samson
dataset - RMSE

(f) Houston
dataset - RMSE

Figure 5.4: Comparison between having a linear or nonlinear decoder.
The encoder uses the LReLU activation. Four different batch sizes are
tested. The graphs in the top row show the average SAD for extracted
endmembers while the bottom row shows the RMSE of the abundances.
The black lines show the standard deviation. All experiments consisted
of 25 runs.
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The case of the Samson image is not as clear and depends on the batch size. The re-
sults for the Houston image indicate clearly that a nonlinear decoder results in better
mSAD scores, indicating that this image has more nonlinear mixing than the other im-
ages. Regarding the quality of the abundance maps, the experiment is not conclusive.
However, it is interesting to see that a nonlinear decoder that does not correspond
to the LMM can benefit endmember extraction while the quality of abundance maps
does not change much.

Summary The results of the ablation experiments can now be summarized:

• Autoencoder methods should use a scale-invariant loss such as SAD, and the
use of MSE should be avoided unless the methods specifically handle spectral
variability through an extended LMM.

• Using the LReLU activation in combination with softmax to enforce the ASC
works well, but abundance maps might be less sparse than if ReLU is used. Care
should be taken when using the ReLU activation to prevent units getting stuck.

• Batch size affects the performance of unmixing autoencoders and is dataset de-
pendent.

• Using a nonlinear decoder with more parameters can benefit the quality of ex-
tracted endmembers, especially for images with nonlinear mixing. The effect on
the quality of the abundance maps is not very significant.

5.1.3 Experiments with real HSIs

Endmember Extraction

When evaluating the endmember extraction performance of the methods, three qual-
ities will be in focus:

• The average SAD from the reference endmembers.

• The variance of the average SAD score. A good method should have a low
variance.

• The consistency of the method is studied.

Consistency is not quite the same thing as variance. Here we are looking at if the
method finds the same endmembers every time or most of the time. A method hav-
ing bad consistency might, e.g., be confusing one endmember for a variant of another
for some runs. Plotting all extracted endmembers for every run and showing these
together in a single figure is an excellent way to evaluate the methods. The Urban,
Houston, and Apex datasets were used to evaluate the endmember extraction perfor-
mance of the methods.
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Urban dataset In the first experiment, we use the Urban dataset, extract the first
four, then five, and finally six endmembers, and compare the extracted endmembers to
reference endmembers. As the number of estimated endmembers increases, it becomes
harder to get good solutions, and it is interesting to see how the solutions for the initial
endmembers behave as new endmembers, in addition, are estimated. Figures 5.5,
5.6, 5.7 show extracted endmembers for all the methods for the Urban dataset with
four, five, and six reference endmembers, respectively. The reference endmembers are
shown with red colour. Tables 5.2, 5.3, 5.4 tabulate the average SAD from reference
endmembers in radians along with the standard deviation for the Urban dataset with
four, five, and six reference endmembers, respectively.

Table 5.2: The mean SAD(×10−2) from reference endmembers in ra-
dians along with the standard deviation for all methods for the Urban
dataset with four reference endmembers. Best results are in bold.

Endmember Asphalt Grass Tree Roof Average
Method
CNNAEU 5.75±0.59 3.66±0.48 3.21±0.4 3.32±0.67 3.98±0.31
MTAEU 8.43±0.47 4.21±0.37 5.4±0.4 4.15±0.46 5.6±0.2
DAEU 7.2±2.4 7.7±2.9 7.07±2.97 21.55±8.62 10.88±2.39
SIDAEU 10.39±3.86 9.95±6.63 6.4±2.3 21.5±12.1 12.06±3.23
OSPAEU 12.9±1.3 9.0±1.9 13.5±6.0 20.1±27.2 13.86±6.35
Endnet 6.18±1.18 5.38±1.69 3.63±0.45 5.08±1.61 5.1±0.5
mDAE 16.26±3.78 81.2±38.8 48.5±41.0 49.5±14.0 48.9±7.5
NLAEU 20.2±11.3 43.0±31.1 93.4±39.1 22.7±10.5 44.9±3.9
SNSA 28.58±2.14 120.2±15.7 7.88±0.14 12.0±5.8 42.2±2.8
uDAS 21.04±1.98 107.2±20.0 14.0±2.5 26.5±4.3 42.2±6.3

Table 5.3: The mean SAD from reference endmembers in radians along
with the standard deviation for all methods for the Urban dataset with
five reference endmembers. Best results are in bold.

Endmember Asphalt Grass Tree Roof Soil Average
Method

CNNAEU 3.79±0.31 6.11±0.97 13.2±0.9 4.04±0.69 10.75±0.98 7.58±0.34
MTAEU 12.11±23.63 5.65±3.54 11.32±1.68 6.61±0.96 16.52±4.67 10.44±4.82
DAEU 11.64±6.03 20.05±7.09 14.0±3.4 41.71±8.21 31.6±18.0 23.8±3.3
SIDAEU 23.8±22.7 20.0±6.3 9.9±2.1 15.1±11.2 43.4±27.2 22.5±3.0
OSPAEU 36.0±33.2 7.72±1.38 8.94±3.06 30.1±28.7 5.07±1.23 17.6±6.1
Endnet 3.68±0.56 4.06±1.17 11.71±1.12 13.13±4.63 15.1±3.3 9.53±0.87
mDAE 22.2±6.2 94.2±32.5 77.8±40.1 53.4±15.8 67.5±22.7 63.0±7.8
NLAEU 21.5±14.7 86.2±52.6 33.6±21.9 12.12±5.13 46.9±35.3 40.1±4.7
SNSA 79.1±31.3 77.6±16.6 15.1±0.8 21.6±11.6 44.0±14.8 47.5±5.1
uDAS 16.7±4.0 59.2±49.7 17.0±4.7 21.3±4.8 78.2±42.4 38.5±4.1

When estimating four endmembers, CNNAEU, MTAEU, and Endnet show good per-
formance, low variance, and good consistency. The DAEN method has low variance
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Figure 5.5: Plots of all extracted endmembers by all methods (blue
curves) and the reference endmembers (red) for the Urban dataset with
four reference endmembers.
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Figure 5.6: Plots of all extracted endmembers by all methods (blue
curves) and the reference endmembers (red) for the Urban dataset with
five reference endmembers.
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Figure 5.7: Plots of all extracted endmembers by all methods (blue
curves) and the reference endmembers (red) for the Urban dataset with
six reference endmembers.
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Table 5.4: The mean SAD from reference endmembers in radians along
with the standard deviation for all methods for the Urban dataset with
six reference endmembers. Best results are in bold.

Endmember Asphalt Grass Tree Roof Metal Soil Average
Method

CNNAEU 4.3±1.0 4.9±2.5 13.39±1.66 4.3±0.8 36.3±11.3 10.3±3.0 12.3±1.7
MTAEU 4.5±0.7 7.5±2.1 7.7±4.0 6.1±0.8 7.1±18.1 12.1±4.1 18.1±3.0
DAEU 16.3±7.0 21.6±12.1 13.0±4.6 44.0±6.9 38.0±30.5 45.3±31.9 29.7±4.2
SIDAEU 21.9±20.7 23.7±3.2 8.74±1.48 28.0±17.6 37.5±24.7 58.0±25.0 29.6±2.9
OSPAEU 66.4±29.8 6.83±1.47 26.8±26.9 14.4±13.8 50.0±25.7 4.5±1.5 28.2±7.1
Endnet 5.81±1.04 5.49±2.15 12.5±1.1 31.1±6.1 15.1±9.3 24.3±6.8 15.7±1.3
mDAE 31.4±14.8 79.7±32.1 90.3±38.0 49.9±17.5 52.7±20.0 55.8±22.9 60.0±6.0
NLAEU 31.4±29.0 51.0±48.4 28.8±23.0 14.8±4.6 38.1±14.1 51.6±39.6 35.9±4.4
SNSA 52.4±22.1 76.3±26.9 16.3±2.2 46.1±15.4 67.1±30.8 53.1±29.8 51.9±3.8
uDAS 24.3±9.0 89.8±52.3 14.1±5.8 22.9±10.5 56.1±20.6 37.0±40.9 40.7±5.8

and good consistency but a bad SAD score. The mDAE method, which is the only
method with tied weights, is very unstable, and this instability can be attributed to
tying the weights and spectral variability in the image. The method NLAEU has
highly negative endmembers as it lacks a nonnegativity constraint. This makes the
method essentially unusable when not initialized with "good" endmembers.

The methods uDAS, SNSA, and DAEN interestingly all yield similar endmembers,
and they are the only methods implemented in Matlab and not using an established
deep learning framework such as Tensorflow or Pytorch. The DAEU and SIDAEU
methods have high variance, medium consistency, and not very good SAD scores.
The OSPAEU technique has bad consistency and high variance. Finally, the "Roof"
endmember oscillates between three different solutions indicating some instability in
the training process.

As the number of estimated endmembers are increased to five, the average SAD scores
of all methods increase and the consistency of many of the methods decreases sig-
nificantly, with endmembers that previously had good consistency become unstable.
Again, CNNAEU, MTAEU, and Endnet show the best performance and consistency,
with CNNAEU having the lowest mSAD and variance. MTAEU has one inconsis-
tent run where it estimates the Asphalt endmember as a "Tree" endmember variant,
resulting in worse mSAD and higher variance.

The OSPAEU technique estimates the new "Soil" endmember quite well, but the "As-
phalt" endmember, which previously, when estimating four endmembers was good,
becomes unstable. Interestingly, the NLAEU method, which previously yielded highly
negative endmembers, estimates them consistently mostly nonnegative. Still, the con-
sistency is not good. DAEN, uDAS, and SNSA seem to have trouble estimating the
new "Soil" endmembers.

When estimating six endmembers, the trend of increasing average SAD and decreasing
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consistency continues. The best performing methods are again CNNAEU, MTAEU,
and Endnet. CNNAEU and MTAEU have greater difficulty estimating the "Metal"
endmember than the Endnet method, but they retain excellent consistency and good
SAD scores for the five other endmembers. Both methods are spectral-spatial methods.
For Endnet, the cost of a good "Metal" endmember is a poorer solution for the "Soil"
endmember. All the other methods show bad consistency for most endmembers other
than "Tree", which is the best-represented endmember in the Urban scene.

Interestingly, the only method to consistently estimate the "Metal" endmember well is
the Endnet method. This method uses a highly customized hidden layer in the encoder
where the standard dot product used to calculate the layer’s activations from its weight
matrix and inputs is replaced with a custom and more "spectrally discriminating" dot
product based on the SAD similarity measure. For some reason, the DAEN method
sometimes took too long to extract six endmembers for this dataset, so it had to be
omitted from this experiment.

Table 5.5: The mean SAD (×10−2) from reference endmembers in ra-
dians along with the standard deviation for all methods for the Houston
dataset with four reference endmembers. Best results are in bold.

Method parking_lot1 parking_lot2 running_track grass_healthy Average

CNNAEU 3.13±0.51 7.53±0.96 7.91±7.21 4.11±0.91 5.66±2.14
MTAEU 4.27±0.92 7.86±1.30 28.9±9.1 6.42±1.06 11.87±2.31
DAEU 12.63±3.09 28.0±16.2 11.4±4.0 9.37±8.42 15.3±3.6
SIDAEU 9.65±2.31 15.6±4.7 25.3±13.8 6.91±5.59 14.4±3.6
OSPAEU 1.27±0.31 10.58±0.26 13.4±2.6 10.28±1.14 8.88±0.63
Endnet 8.00±0.75 6.35±0.51 23.4±1.2 1.65±0.32 9.85±0.36
mDAE 33.5±24.8 55.4±26.8 27.7±8.3 24.4±8.21 35.2±6.1
NLAEU 24.2±18.2 66.8±16.3 21.6±0.5 11.6±1.0 31.1±0.8
SNSA 9.71±9.72 82.7±3.7 49.6±20.3 24.9±1.8 41.7±5.8
uDAS 11.3±11.2 30.4±15.2 15.5±5.4 10.8±5.7 0.17±0.0396

Houston dataset The extracted endmembers by all methods for the Houston dataset
are shown in Fig. 5.8, and the SAD scores for individual endmembers along with the
average SAD is tabulated in Table 5.5. The three best-performing methods for this
dataset are CNNAEU, OSPAEU, and Endnet. Endnet has excellent consistency, but
its solution for the "running_track" endmember is different from the reference. CN-
NAEU also has excellent consistency, with only one run out of 25 coming up with a
different solution for the "running_track" endmember, and it also achieves the lowest
average SAD score. OSPAEU has some problem with the "running_track" endmem-
ber and oscillates between two solutions, one of them being the reference endmember.
The method achieves the second-lowest average SAD score for the dataset.

MTAEU also has trouble with the "running_track" endmember, showing similar be-
haviour as OSPAEU. The DAEU and SIDAEU methods have high variances despite
having reasonably good consistency. mDAE does better on this dataset than it did on
Urban but is still unstable because of the tied weights. The methods SNSA, uDAS and
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Figure 5.8: Plots of all extracted endmembers by all methods (blue
curves) and the reference endmembers (red) for the Houston dataset
with four reference endmembers.
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DAEN all have trouble with the parking_lot2 endmember, which is highly correlated
to the parking_lot1 endmember. Also, only uDAS is extracting the "running_track"
endmember similar to the reference. NLAEU has some trouble with the parking_lot
endmembers, and the consistency is not good with these endmembers. Its solution for
the "running_track" endmember has a good consistency, but it is not the reference
endmember.

Overall, the methods are doing better on the average on this dataset than on the Ur-
ban dataset. The difference in performance between methods that use scale-invariant
fidelity terms and those that do not is less than for the Urban dataset, indicating that
the Houston dataset has less spectral variability concerning scaling of spectra. The
common ambiguity in the solutions for the "running_track" endmember is probably
because it is the most under-represented endmember.

Apex dataset The Apex dataset is the final dataset for the evaluation of blind
unmixing performance. Fig. 5.9 shows all extracted endmembers for all the methods
while Table 5.6 tabulates the average SAD scores for individual endmembers along
with the mSAD score. This dataset has very distinct and easily identifiable endmem-
bers. The water endmember in this dataset can be challenging because the water
spectra have a tiny scale compared to the other endmembers. Methods using scale
sensitive similarity measures such as MSE can have difficulties with extracting such
endmembers. The methods can often lower the objective function by extracting a
variant of a well-represented endmember having a much larger scale instead of the
sought after endmember. An endmember having a tiny scale can also manifest as a
poorly learned endmember having irregularities and generally being badly formed.

Table 5.6: The mean SAD (×10−2) from reference endmembers in ra-
dians along with the standard deviation for all methods for the Apex
dataset with four reference endmembers. Best results are in bold.

Method Road Water Roof Grass Average
CNNAEU 5.87±2.00 4.17±0.37 12.33±0.61 6.21±0.38 7.14±0.46
MTAEU 11.3±4.1 13.7±1.7 54.6±25.1 9.92±0.77 22.4±7.3
DAEU 36.4±11.4 10.6±2.5 23.2±17.7 11.9±3.8 20.5±3.5
SIDAEU 34.4±4.5 17.0±4.4 12.84±2.29 5.61±1.67 17.5±2.3
OSPAEU 7.5±0.9 6.62±1.44 16.5±25.2 13.2±2.5 10.95±6.07
Endnet 9.0±1.0 109.9±0.4 5.15±0.68 9.35±0.79 33.3±0.4
mDAE 48.2±17.7 105.7±18.4 23.0±8.8 49.6±7.7 56.6±6.3
NLAEU 39.7±9.0 71.8±16.3 14.0±2.1 38.2±6.7 40.9±5.7
SNSA 63.2±18.3 56.7±9.3 9.46±6.16 6.07±0.24 33.9±5.4
uDAS 30.8±10.4 58.3±15.9 12.6±5.0 10.0±4.8 27.9±5.9

Looking at Fig. 5.9, we see that all methods utilizing SAD as the similarity measure in
the loss function have no trouble extracting the "Water" endmember, and it is very close
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Figure 5.9: Plots of all extracted endmembers by all methods (blue
curves) and the reference endmembers (red) for the Apex dataset with
four reference endmembers.
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to the reference. The water spectra in the dataset have minimal spectral variability,
which explains the excellent match. CNNAEU has excellent consistency and only a
slight variance for this dataset. OSPAEU, which does use a scale sensitive fidelity term,
the hyper-Laplacian loss, does manage to extract the "Water" endmember very well.
The loss is essentially a p-norm of the difference between input and reconstruction
raised to the power p and having p = 0.7, which can explain why the lower scale of
the endmember is not as problematic as it is for the MSE loss.

The Endnet method fails consistently to extract the "Water" endmember and extracts
some vegetation endmember instead. This can be explained by the MSE term in the
loss of this method. Despite this, the method has a good consistency and low vari-
ance. The MTAEU and DAEU methods fail to consistently extract the correct form
of the "Roof" endmember and extract some vegetation endmember instead. It is hard
to attribute this to some implementation details without doing some experimenta-
tion. However, the methods that have bad consistency for the "Roof" endmember all
have deep encoders, i.e., MTAEU, DAEU, and OSPAEU. NLAEU, SNSA, uDAS, and
DAEN all have trouble with the "Road" and the "Water" endmember.

Abundance maps

The quality of generated abundance maps by blind unmixing methods depends on
the quality of the extracted endmembers. The discussion of abundance maps will be
limited to the Urban dataset. Fig. 5.10 shows the generated abundance maps by all
methods for the best mSAD score. Table 5.7 tabulates the RMSE scores for individual
endmembers and the average of all maps.

Table 5.7: The mean RMSE between generated abundance maps and
reference maps along with the standard deviation for the Urban dataset
with four reference endmembers. Best results are in bold.

Method Asphalt Grass Tree Roof Average
CNNAEU 25.7±0.8 29.4±1.2 20.8±1.7 16.8±1.9 23.7±1.0
MTAEU 15.2±0.3 15.0±0.5 8.2±0.5 8.9±0.4 12.3±0.3
DAEU 16.9±4.8 22.9±5.6 18.6±6.9 13.14±4.1 18.6±3.8
SIDAEU 17.2±5.5 19.7±5.2 16.3±3.8 16.2±6.2 17.7±4.2
OSPAEU 26.6±4.6 34.6±3.0 30.9±4.5 19.4±4.7 28.7±2.0
Endnet 14.21±2.63 17.4±1.5 8.96±1.09 11.02±2.38 13.4±1.3
mDAE 34.3±3.9 32.7±4.1 36.2±3.3 29.5±7.4 33.5±2.6
NLAEU 27.4±1.1 34.5±3.4 37.4±7.5 17.5±3.1 30.5±1.3
SNSA 33.6±1.0 41.1±0.2 35.4±0.4 20.7±0.2 33.5±0.4
uDAS 32.7±1.0 43.4±1.8 31.4±2.0 20.4±0.9 33.0±0.3

The method that achieves the lowest RMSE score is the MTAEU method. CNNAEU,
despite having a lower mSAD score, does not achieve a good RMSE score. Fig. 5.10
shows that the abundance maps for CNNAEU are intense and sparse. This is a
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Figure 5.10: The abundance maps for the run with the best mSAD score
for all methods for the Urban dataset. The reference abundance maps
are in the top row. 86
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consequence of using the softmax function to enforce the ASC and using a sizeable
spatial filter for the decoder convolutional layer, causing high values of the feature
maps entering the softmax function, which acts like ℓ1-sparsity regularization. This
could have been fixed by dividing the pre-activation with a number that depends on
the filter size of the decoder.

The OSPAEU method also produces very intense and binary looking abundance maps.
This results likely from the orthogonality prior of the abundance maps. The Endnet
method achieves the second-lowest RMSE score and produces good abundance maps.
This method employs forced sparsity by applying a "top_k" function to the abun-
dances, selecting the k highest abundances and setting all the others to zero. A value
of k = 2 was used in the experiments.

It must be noted that the authors of the Endnet method did not intend it to be used
for generating abundance maps because of how they implemented a custom batch nor-
malization layer that resulted in very poor maps. However, in our implementation of
their method, the abundance maps look good and are perfectly usable. The abundance
maps of the other methods are not good because the extracted endmembers by these
methods are not good.

5.1.4 Synthetic datasets with varying spectral variability

For this experiment, a variational autoencoder was used to learn the Urban image
and the reference endmembers (4 endmembers) were encoded into codes in the 2D
latent space of the encoder. By sampling within a circle in the latent space centred
on the codes of the reference endmembers, new variations of the endmembers can
be generated using the generator part, and the radius of the sampling circle controls
the spectral variability of the sampled endmembers. A 100 by 100 pixel crop of the
Urban dataset reference abundance maps was then used to provide the ground truth
abundance fractions for every pixel, and new spectra generated by using sampled
endmembers for every pixel in the abundance maps.

Four such datasets were generated with sampling radii of 0, 10, 20 and 40. Fig. 5.11
shows examples of sampled endmembers for two different radii. Every method was
run 25 times for each of these synthetic datasets, and a bar plot of the average SAD
for each dataset is shown in Fig. 5.12.

Fig. 5.12 is very informative. It shows clearly the effect of spectral variability on
the performance of methods using the MSE objective function. The six rightmost
methods all use the MSE fidelity term, and they all achieve very good mSAD for
zero spectral variability. Even the mDAE method that performs very poorly on real
datasets achieves good mSAD for zero spectral variability. It is striking to see how
similar the performance of the NAE-VCA, SNSA, uDAS, and DAEN is to NMF-ℓ1/2 on
these datasets. As the spectral variability increases, the non-scale-invariant methods
perform increasingly worse.

87



5.1 Experimental Results

(a) Sampled endmembers using radius = 5

(b) Sampled endmembers using radius = 40

Figure 5.11: Sampled endmembers for the synthetic experiment based
on the Urban image for two different sampling radii.
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Figure 5.12: A bar plot showing the average SAD for the four synthetic
datasets. The spectral variability increases with increasing sampling
radius. The six rightmost methods all use the MSE objective function.
The black vertical lines show the standard deviation. All experiments
consisted of 25 runs.

The methods using scale-invariant fidelity terms exhibit excellent robustness against
spectral variability. Only DAEU performs increasingly worse with increasing spectral
variability. The spectral-spatial methods CNNAEU and MTAEU show the best overall
performance. The results of this experiment indicate that synthetic datasets with
low or zero spectral variability is not a good benchmark for autoencoder methods in
general. Low spectral variability results in bias towards non-scale-invariant fidelity
terms on such datasets that would not be reflected on real datasets.

5.1.5 Robustness to noise

A blind unmixing experiment was performed using the Samson dataset to investigate
the methods’ robustness to noise. The dataset was corrupted with noise to obtain four
versions having signal-to-noise-ratio (SNR) of 10, 20, 30, and 40 dB. Fig. 5.13 shows
a bar chart of the mSAD score of all the methods for the Samson dataset for the four
different SNR levels and the original uncorrupted dataset. The figure shows that most
methods are relatively robust to noise. MTAEU and OSPAEU seem largely unaffected
by the noise for this dataset. Endnet shows good performance and low variance for
all SNR levels but is relatively largely affected by SNR = 10 dB. Paradoxically, SNSA
and DAEN perform best at SNR = 10 dB. NLAEU is heavily affected by noise, and
SIDAEU does not handle SNR = 10 dB well. CNNAEU performs best under moderate
noise (SNR=30) corruption and also has low variance for this SNR. On the original
dataset, Endnet and MTAEU show the best performance and least variance. The
NMF method performs best at SNR = 20 and 30 dB.
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Figure 5.13: A bar plot of the mSAD score for all methods for the
Samson dataset with four different levels of SNR and the original un-
corrupted dataset. The black vertical lines show the standard deviation.
All experiments consisted of 25 runs.

5.1.6 Computation cost

Table 5.8: The computation time in seconds for a single run for the
methods for three datasets.

Dataset Urban (4 endm.) Houston Apex
CNNAEU 95 24 347
MTAEU 58 55 60
DAEU 79 77 83
SIDAEU 47 44 52
OSPAEU 34 18 34
Endnet 112 98 105
mDAE 27 36 69
NLAEU 220 22 215
DAEN 3400 1102 3602
SNSA 809 708 1813
uDAS 940 158 1654

It is very difficult to meaningfully compare the running time of different methods since
it is very dependent upon hyperparameters such as batch size, the number of train-
ing data samples, and implementation details such as what programming language
and deep learning framework is being used. Also, CNN methods run on GPU while
dense neural network methods run on CPU if implemented using Tensorflow or Mat-
lab. Table 5.8 shows running times in seconds for a single run for the methods for
three different datasets. The main conclusion that can be drawn from Table 5.8 is
that methods implemented in the Python programming language using the Tensor-
flow or Pytorch deep learning frameworks are significantly faster than the methods
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implemented in Matlab. The experiments were performed on a computer having an
eight-core CPU and 64 GB of memory and a GPU having 11 GB of memory.
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Chapter

Conclusions 6
In this chapter, the conclusions and main contributions are reviewed. Future re-
search topics are also discussed.

•

6.1 Main Contributions
The goal of this thesis was to develop blind unmixing methods based on deep learning
autoencoders and investigate the strength and weakness of these methods. A secondary
objective was to find ways to take the spatial correlations between pixels into account to
improve the performance of the autoencoder based methods. The main contributions
of this thesis are listed here.

6.2 Spatial-Spectral Hyperspectral Unmixing Us-
ing Multitask Learning

An autoencoder based method, MTAEU, which directly makes use of the spatial cor-
relation between pixels in an HSI is introduced. The method leverages multitask
learning by simultaneously unmixing a neighborhood of pixels at once. The unmixing
of each pixel is a separate encoder task but the tasks share a hidden layer and the
linear decoder is shared between all the tasks.

In HSIs, the pixels are often highly correlated in terms of their spatial location. While
many techniques for HSU do not take advantage of this spatial structure, there are
some methods known as spectral-spatial techniques that do. These methods use as-
sumptions about the spatial correlation of pixels in an HSI as a way to constrain the
sparsity and smoothness of the resulting abundance maps.

Even though the tasks are identical or doing the same thing, MTL is still beneficial.
The main benefits of MTL are the following:

• Faster learning

• Reduced risk of overfitting

• Improved stability

• Incorporation of spatial information

93



6.3 Convolutional Autoencoder For Spectral-
Spatial Hyperspectral Unmixing

The method was evaluated using two real HSIs and compared to some state-of-the-art
methods and was found to perform significantly better than the comparison methods.
The results for the two datasets used confirm that MTL

(a) makes the method spatial in nature.

(b) speeds up the convergence of the method.

(c) leads to better consistency.

(d) lowers the variance of estimated endmembers and abundance maps.

The experiments also show that the method does indeed exploit the spatial correlations
in an HSI.

6.3 Convolutional Autoencoder For Spectral-
Spatial Hyperspectral Unmixing

The first fully 2D convolutional neural network autoencoder method (CNNAEU) for
blind hyperspectral unmixing is introduced. Both the encoder and the decoder are
2D CNN models and the method is trained on patches from an HSI to be unmixed.
Because the method is trained on patches, the spatial structure is preserved through-
out, and abundance maps arise naturally as feature maps produced by the encoder.
This makes it particularly easy to implement various spatial regularizations on the
abundance maps.

In order to interpret the weights of a decoder having spatial filters larger than 1×1, the
following spatial-spectral unmixing model is introduced:G given P observed spectra,
each having B bands. Having estimated the number of endmembers in the HSI as R,
a novel spectral-spatial model is assumed, given by

xp = Msp +
∑

i∈Np\p

Mis̃i + ϵp, p = 1, · · · , P, (6.1)

where sp ∈ RR×1
+ is an abundance vector that sums to one, M ∈ RB×R

+ contains the
endmembers in its columns, Np \ p is an f × f neighborhood around p, with f an odd
number, while excluding p (the center pixel), Mi ∈ RB×R

+ , s̃i ∈ RR×1
+ , Mis̃i is the

spectral contribution to xp from location i in its neighborhood, and ϵp is noise. We
index the pixels in the neighborhood N as shown in

This model shows how neighboring pixels contribute to the reconstruction of each
pixel’s spectrum, and how the method takes advantage of spatial correlations in both
the encoder and the decoder.
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The CNNAEU method was compared to four conventional and three deep learning
state-of-the-art unmixing methods using four real HSIs. Three of the comparison
methods are spectral-spatial methods. Experimental results show that the CNNAEU
technique outperforms the comparison methods when it comes to endmember extrac-
tion. It achieved the best SAD score in all datasets except for Samson dataset, which
might be explained by its small size. Overall, the method had very low variance and
the best consistency by far. Experiments also demonstrate the method’s robustness
to noise.

The abundance maps produced by CNNAEU are binary and therefore do not achieve
very low MSE from reference. To circumvent this problem, the method was extended to
determine the abundance maps directly from the endmembers using a fully connected
autoencoder with a linear and fixed decoder. The maps produced by this new method,
CNNAEU2, are not as binary looking and achieved the best MSE score for the Apex
and the Houston datasets and the second-best score for the other two datasets. Overall,
the proposed method significantly outperforms all the other methods and compares
very favorably to our previous methods.

6.4 Blind hyperspectral unmixing using autoen-
coders: A critical comparison

This work is a review of the literature on blind hyperspectral unmixing using autoen-
coders. The paper gives an introduction to autoencoders and how they can be used
for blind unmixing. It discusses all the various types of autoencoders used in the lit-
erature, both for blind unmixing and non-blind, i.e., abundance estimation methods.
It gives a comprehensive overview of the various methods based on autoencoders for
blind unmixing in the literature and has a critical comparison of a variety of methods.

Chapters 1, 2, and 5 of this thesis are based on this paper. Chapter 2 discusses the
various types of autoencoders used in the literature and how they can be used for
blind unmixing. It also discussed various way to implement the necessary constraints
required for unmixing, i.e., ASC and non-negativity. Also, how spatial information can
be incorporated into the autoencoder is discussed. The chapter also tries to answer
the question of why autoencoders are so versatile and powerful for blind unmixing
compared to traditional methods.

In Chapter 5 the performance of 11 blind unmixing methods was evaluated and com-
pared using four real and four synthetic datasets having increasing spectral variability,
with reference endmembers and abundance maps as ground truth. The methods were
based on neural network autoencoders, and ablation experiments were performed to
study the effects of different ways of enforcing the abundance sum-to-one constraint
(ASC), different activation functions for the encoder, and linear vs non-linear decoders.
Also, the effect of increasing spectral variability on the performance of the methods
was investigated.
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6.4 Blind hyperspectral unmixing using autoencoders: A critical
comparison

The performance of the endmember extraction was evaluated using the mean spectral
angle distance (mSAD), and the performance of the abundance map generation was
evaluated using the root mean squared error (RMSE) measure. The computation costs
of the methods were also compared. The results of these experiments showed that the
neural network autoencoder methods were able to achieve high accuracy in endmember
extraction and abundance map generation compared to traditional methods.

Eleven different autoencoder methods were compared by performing blind unmixing
on four different real hyperspectral datasets in the hope of elucidating what works and
what does not. It is generally very hard to interpret experiment results in terms of
concrete implementation details of neural network methods when they differ in many
ways. Still, some important qualities such as the nature of the objective function, leave
a discernible mark on the performance of the methods, and these will be discussed
below. Because of inherent spectral variability in real HSIs and the inability of the

Figure 6.1: Box plot of the average mSAD of methods grouped by
whether their loss function is scale invariant, semi-invariant, or not at
all.

LMM to model it, the scale invariance of the loss function used by the methods seems
to matter greatly. Fig. 6.1 shows the average mSAD of method groups where they are
grouped by whether their loss is scale invariant, semi-invariant, or not at all invariant.
The SAD and SID similarity measure are scale invariant. The semi-invariant group
consists only of the Endnet method, which has a small MSE term in its loss function.
All methods using the MSE and the hyper-Laplacian loss function belong to the last
group of scale sensitive methods. The graph shows very clearly that having a scale
sensitive loss function leads to substantially lower performance than if a scale invariant
loss had been used.
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This is an important conclusion. Scale sensitive fidelity terms should be avoided
if the method is performing unmixing in accordance with the LMM model. Unless
the architecture of the method is designed to handle spectral variability, such as the
method in [71], a scale invariant loss or as close to it as possible should be chosen. Even
if spectral variability is handled by the method, another problem remains if a strongly
scale sensitive similarity measure such as MSE is used, which is the inability to extract
endmembers which have a very small scale compared to all the other endmembers in
a scene, such as the water endmember in the Apex dataset.

Another observation concerns the use of spatial information, i.e., whether methods
process a single spectrum at a time, or if they operate on a patch at a time and
make use of the spatial correlations existing within real HSIs. The CNNAEU and
MTAEU methods perform very well over all, and they are the only methods that
operate on whole patches of HSIs at a time. Making use of as much of the available
information within an HSI as possible can only lead to better unmixing performance,
if done correctly. Better performance can come, e.g., in the form of lowered variance
and better consistency. In the light of this, it is somewhat surprising that at the time
of writing there is still only one fully convolutional blind unmixing method.

The intersection of hyperspectral unmixing and deep learning is currently a very vi-
brant field of research, and with more and more autoencoder based method being
published with every passing year, utilizing the latest results from the study of au-
toencoders in the context of DL, one cannot but feel excited for what the future holds.

6.5 Further Work
There are many ways in which the work presented in this thesis can be extended. The
following are some possible directions for future work.

• Improve the CNNAEU method to give good abundance maps. The CNNAEU
method produces rather binary abundance maps, which is a limitation of the
method when using large filters in the decoder and allowing nearby pixels to
contribute to the reconstruction of the spectrum of a pixel.

• Develop autoencoder methods that utilize the transformer architecture [130] for
blind unmixing. The transformer architecture has been shown to be extremely
versatile and dominates the field of natural language processing. The attention
mechanism has recently been adapted to images [131] and shows great promise.
It would be interesting to see if it can be used for blind unmixing to exploit the
local spatial context of each pixel in the HSI to improve the performance.

• One characteristic of current deep learning based unmixing methods is that they
are only trained on a single image, the image to be unmixed. This is a limitation
of the current methods, and it would be interesting to see if it is possible to
train a method on many images and then use it to unmix new images with very
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little training or fine-tuning. This could be useful when training models based
on the transformer architecture and the training data could be a large collection
of HSIs taken with the same sensor.

• Exploring kernel based methods and using encoders based on kernel methods to
investigate if the unmixing performance is enhanced by unmixing in the kernel-
ized space.
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