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Abstract

Snow resources worldwide are undergoing extensive changes in response to widespread and
rapid changing of the global climate. These resources are vital in many areas and changes to
them have and will continue to impact human societies and ecosystems in cold regions. The
research presented in this dissertation entails the assessment and comparison of historical
trends in the climate and snow regimes and the projection of these trends until the end of the
21% century, under different emission scenarios. The results show that extensive changes
have occurred to the frequency of Northern Hemisphere (NH) snow cover since the
beginning of the 21% century, as estimated based on remote sensing data from the MODIS
satellite instrument. The future evolution of NH snow resources was modelled for the period
1950-2100 for each of the 21 downscaled and bias corrected CMIP5 climate models for two
emission scenarios (RCP45 and RCP85) using the Snowl17 model. The simulations show
that the Snow Cover Frequency (SCF) is in general projected to diminish substantially across
the NH. However, the NH 1% April Snow Water Equivalent (SWE) is projected to increase
slightly at the beginning of the period, driven by increased snowfall at high latitudes in the
Arctic and then decline back to 1950-1975 levels under RCP45 and 10% under those given
RCP85. These trends were analyzed specifically for Icelandic circumstances revealing a
trend of increasing SCF in many parts of the country over the period 1930-2021, whereas
the simulated results project a decrease in SCF across Iceland between 1950 to 2100.

Utdrattur

Snj6audlindir vidsvegar um heiminn eru na breytingum undiropnar i kjolfar hnattreenna
loftlagsbreytinga. bessar audlindir eru mikilvaegar vidsvegar og breytingar a edli peirra hafa
haft og munu halda afram ad hafa ahrif & mannleg samféldg og vistkerfi & kvoldum svaedum.
Rannsokn su er birt er i pessari ritgerd fjallar um greiningu og samanburd & sdgulegri préun
loftlags og snjés og gerd forspar um pad hvernig veentar loftlagsbreytingar munu hafa ahrif
& snjéaudlindir ut 21 6ldina midad vid mismunandi sviosmyndir i hlynun. Nidurstodur
rannsoknarinnar syna fram & ad viotekar breytingar hafa pegar ordid & snjépekju & Nordur
Hveli jardar (NH) fra byrjun 21 aldarinnar utfra fjarkonnunargégnum fra MODIS
gervihnattamalinum. Spad var fyrir um framtidarpréun snjéaudlinda & NH fyrir timabilid
1950-2100 med Snowl7 snjolikaninu atfra 21 CMIP5 loflagslikbnum fyrir tvo
hlynunartilvik (RCP45 og RCP85). Nidurstodur likansins gefa til kynna ad tidni snjohulu
(SCF) muni almennt minnka verulega um allt NH en ad hinsvegar, muni medal raimal vatns
sem geymt er i snjoalogum NH aukast litillega i byrjun timabilsins, adallega vegna aukinnar
snjokomu og nordleegum breiddargradum innan nordurheimskautsbaugs, en minnka svo
aftur ad pvi sem var um 1950 fyrir RCP45 en 10% nedar en svo fyrir RCP85.. broun i loftlagi
og snjéaudlindum var rannsokud sérstaklega & islandi, sem leiddi i lj6s tolfredilega
marktaekta aukningu a SCF stérum svaedum fra aldamétum, spa um préun snjoéaudlinda Gt
21 6ldina gerir hinsvegar rad fyrir verulegri minnkun & SCF i 6llum hadarbilum & islandi.
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1. Introduction

1.1 Statement of purpose

Snow and ice play a significant role in the surface hydrological cycle in large parts of the
world, primarily in mountainous areas and above 40° latitude. (e.g. Adam et al., 2009). Snow
accumulates on the ground when precipitation falls at temperatures below the freezing point
of water, where it stays until it melts or sublimates. Showmelt begins to occur when the
temperature of the accumulated snow cover increases above the melting point. The thermal
flux between the snow and its environment is mainly governed by local meteorological
conditions, which in turn are determined by the regional and then global climate. As snow
melts, the water finds its way into streams, lakes, and rivers where it may provide important
ecosystem functions as well as water resources for human communities.

Water resources managers seek to utilize the snow resource as efficiently and responsibly as
possible. In current practice, information about the state of snow is combined with
meteorological data to model changes in the snow cover and derive important parameters
relating to the state of the snow, e.g., the water stored in snow, the timing of snow melt and
the volume of meltwater. In a changing climate these parameters can be expected to change,
and the nature of these changes may vary by region. Understanding how snow and ice will
change with changing climate is, therefore, important for water resources managers in cold
regions across the globe to estimate future infrastructure requirements and resource
availability.

1.2 Research objectives

The doctoral research of past and future changes to the snow conditions was structured
according to the following main research objectives.

Identify the environmental drivers of snow and ice mass

Research objective 1:
balance

The first objective of the research was to investigate the relationships between the snow and
climate regimes and to identify the dominant climatological and meteorological factors that
govern snow and ice mass balance. To accomplish this objective the seasonal mass balance
of the Bruarjokull glacier was used as a case study. The relative importance of different
meteorological, climatological, and hydrological conditions in determining daily and
seasonal mass balance of the glacier were assessed, using both statistical and physical
modelling approaches. The findings of the analysis of key drivers of variability in snow and
ice are discussed in Section 3.1.



The obtained results of the statistical modelling framework is published as an article with
the title Statistical summer-mass balance forecast model with application to Bruarjékull
Glacier, South-East Iceland in the Journal of Glaciology (Eythorsson et al., 2018), presented
herein as Appendix A.

N . Assess and compare historical trends in the snow and climate
Research objective 2: )
regimes

The results from research Objective 1 reveal a correlation between long term climate trends
and glacier mass balance. These results are congruent with multiple studies on the climate
impact on glacier changes (e.g. Christian et al., 2018; O’Neel et al., 2019; Putnam et al.,
2012). Daily snow accumulation and melt behavior is largely dependent on short term local
meteorological conditions, thus, short term (1-10 day) snow predictions may be achieved by
using meteorological forecasts applied to a snow model. The reliability of short-term
meteorological forecasts decreases as lead time increases, however, seasonal mass balance
can to some extent be predicted based on climatological conditions. Thus, medium term (2-
4 months) mass balance predictions can be accomplished using information on the state of
the snow and its surrounding climatology applied to a snow model. To achieve long term (1-
100 years) predictions of snow cover, climate forecasts must be used for modelling.

Therefore, analysis and comparison of historical changes in snow cover and climate is the
main topic of research Objective 2. Changes in snow cover vary, and have varying
significance for water resources management in, depending on the region. Thus,
understanding the historical spatio-temporal relationship between the climate and snow
conditions on a regional scale is important for successful adaptation of water resources
management to climate change.

In this research, recent changes to climate and snow conditions in the Arctic were used as a
case study. Changes to snow cover were estimated based on MODIS satellite data while
changes to the arctic climate were estimated as changes to Koppen-Geiger (KG) climate
classifications calculated from an ensemble of 21 downscaled Global Circulation Models
(GCM’s). The observed changes were compared in 10 regions of the Arctic over the period
of MODIS observations (2001-2016) revealing varying responses of local snow conditions
to climate changes in the region. The findings of are discussed in Section 3.2 and 3.4.

The results of the analysis and comparison of historical changes in the snow and climate
regimes across the arctic are published as an article with the title Arctic climate and snow
cover trends — Comparing Global Circulations Models with remote sensing observations in
the International Journal of Applied Earth Observation and Geoinformation (Eythorsson et
al., 2019) presented herein as Appendix B.

Estimate future changes in snow conditions based on

Research objective 3: predicted climate changes.

The analysis of climate trends across the Arctic showed that in all but the 3 northernmost
regions there had occurred a statistically significant change in one or both most common KG
climate classes over the study period. In the 7 regions where, significant changes had
occurred to the climate, the largest changes to the Snow Cover Frequency (SCF) had also
occurred. The analysis of snow cover trends revealed that at lower latitudes SCF had
decreased during the period, while further north by the shores of the Arctic Ocean, SCF had



increased. Averaged across the entire Arctic SCF had decreased by 0.91 days/decade, which
is congruent with other recent findings (Hori et al., 2017; Liston & Hiemstra, 2011; Yunlong
etal., 2018). The climate trends were forecast until the end of the present century and showed
that warmer climate classes will continue to replace the dominant climate classes in the
Acrctic, tundra, and cold summer climates throughout the present century, even under a
scenario where global radiative forcing by greenhouse gas emissions is stabilized by 2100
(RCP4.5). Hence, to understand whether the observed trends in snow cover in the Arctic will
continue given the expected climate changes, the snow response to these climate forcing’s
needs to be modelled.

Thus, the main topic of research Objective 3 is to estimate and analyze future changes to
snow conditions based on different climate scenarios. The main source of uncertainty in the
future progression of climate change is future anthropogenic greenhouse gas emissions.
Understanding how snow conditions respond to an emission reduction scenario as compared
to “business-as-usual” emissions is fundamental to adaptation and mitigation policymaking
on both a regional and global scale.

Predicted changes to KG climate classifications across the globe have been estimated and
published as an article with the title Arctic climate and snow cover trends — Comparing
Global Circulations Models with remote sensing observations in the International Journal of
Applied Earth Observation and Geoinformation (Eythorsson et al., 2019) presented herein
as Appendix B. The findings are discussed in Sections 3.3 and 3.4

In this research future snow conditions were modelled and analyzed across the Northern
Hemisphere (NH). A snow model (Snow17) was run with climate projections from 21
downscaled GCSs for both an emission stabilization scenario (RCP4.5) and a “business-as-
usual” emission scenario (RCP8.5). The findings are discussed in Section 3.5 The results
from the simulation of snow resources across the NH have been submitted as an article with
the title Projected Changes to Northern Hemisphere Snow Conditions over the period 1950-
2100, given two emission scenarios to the journal; Remote Sensing Applications: Society
and Environment, presented herein as Appendix D. (Eythorsson et al., 2023b).

Furthermore, these results combined with the historical trends in the climate/snow regimes
were used to estimate future snow conditions in Iceland. The findings are discussed in
Section 3.6 and published as an article with the title Observed and Predicted Trends in
Icelandic Snow Conditions for the period 1930-2100 to the journal; The Cryosphere.,
presented herein as Appendix C, (Eythorsson et al., 2023a).



1.3 Dissertation organization

This dissertation is composed two parts. Part | contains the following four chapters:
Introduction, Background, Applications and Results, Conclusion, and future perspectives.

The Introduction chapter contains the statement of purpose and outlines the objectives of the
doctoral research presented in this dissertation. It summarizes the motivation for the research
described herein and describes how these results have been published and disseminated to
the research community. The Background chapter describes the state of knowledge within
the fields that concern this doctoral research. It contains an overview of the state of climate
change, both globally and in Iceland, the state of knowledge about past, present and future
changes to snow resources, the methods used to observe changes to snow resources and
lastly the state of the art in snow modelling. The Applications and results chapter describes
the results that have been achieved in of this doctoral research with appropriate references
to the four academic papers that have been prepared or published because of it. The
Conclusion and future perspectives chapter summarizes the findings of this doctoral
research, how they relate to the present state of knowledge within its field and which future
questions they pose.

Part Il is presented as an Appendix with the scientific papers which are based on this work.
Two ISl papers have been published based on the research presented in the current
dissertation. The manuscripts of the third and fourth papers have been submitted and are in
the peer review process. The papers are presented in full as appendices. Following is a
summary of the outline presented in of each of the papers:

Paper 1. The main goal in this paper is to develop a comprehensive framework for
developing a site specific and optimized set of melt models, given a wide range
of environmental data, to forecast the seasonal glacial mass balance in a
catchment in Eastern Iceland.

Paper 2: The main goal in this paper is to estimate the historical spatio-temporal trends of
changes in the climate and snow regimes based on extensive distributed
environmental datasets. The observed trends are analyzed and compared across
the Arctic.

Paper 3: The main goal in this paper is to simulate future snow conditions under different
climate scenarios using spatially distributed environmental data and a conceptual
snow model. The simulated spatio-temporal snow characteristics are then
analyzed across the Northern Hemisphere and throughout the 21% century.

Paper 4: In this paper the historical trends the climate and snow regimes which were
estimated in Paper 2 are compared to the in-situ observed trends in both regimes
in Iceland. These are combined with the snow simulations from Paper 3 to derive
a plausible forecast for the evolution of the Icelandic climate and snow resources
under different global emission scenarios.



2. Background

2.1 Historical and predicted changes in the
climate and snow regimes

2.1.1Global trends in climate and snow conditions

Climate Change

The just published 6" Assessment Report (AR6) by the Intergovernmental Panel on Climate
Change (IPCC) states that the scientific evidence for the anthropogenic warming of the
atmosphere, ocean and land is unequivocal, that the scale of this change to the climate system
is unprecedented and these changes are already affecting every inhabited region across the
world. The changes observed to global surface temperatures to date will continue until at
least the mid-21% century under all emission scenarios causing many changes in the climate
system, including further intensifying the water cycle and its variability. Many of these
changes are irreversible on the scale of centuries to millennia (IPCC, 2021).

To derive such predictions the research community employs a range of climate models,
which simulate the global climate system based on fundamental physical laws and
knowledge of the initial state of the system to explain and predict the movement of air, water,
particles, and energy. Due to computational limits the spatio-temporal resolution of these
models is restricted, although the model resolution continues to increase with further
advances in computational sciences. Climate models which model the circulation of mass
and energy over the entire globe are referred to as General Circulation Models (GCM) and
are used as basis for predicting future changes to the global climate. The Coupled Model
Intercomparison Project (CMIP) is tasked by the World Climate Research Program (WCRP)
to assess the performance of competing state of the art GCM and to summarize and
disseminate their findings to policy makers, research communities and the general public.
The 6 phase of the CMIP project has recently been concluded with 23 CMIP6-endorsed
models which were used to lay the scientific basis for the policy recommendations published
by IPCC in ARG6 (Eyring et al., 2021)

As stated in ARG the results of CMIP6 show that global climate system has been changing
rapidly since the start of the industrial evolution and that these changes will continue at least
until the middle of the present century (Lee et al., 2021). The results of CMIP6 have been
applied at global and regional scale to investigate different climate change impacts. Among
the projected impacts are increased drought risk and severity (Cook et al., 2020; Ukkola et
al., 2020; Zhai et al., 2020), increased flood risk (Hirabayashi et al., 2021; Sante et al., 2021),
increased monsoon precipitation (Chen et al., 2020; Wang et al., 2020) changes to the
intensity, frequency and distribution of tropical cyclones (Emanuel, 2021; Roberts et al.,
2020), rising sea levels (Hofer et al., 2020; Jevrejeva et al., 2020; Lyu et al., 2020),
decreasing snow cover, especially in the Northern Hemisphere (NH) (Mudryk et al., 2020;



Paik & Min, 2020; Zhu et al., 2021), decreasing concentrations of sea ice in both the Arctic
and Antarctic seas (Notz et al., 2020; Notz et al., 2016; Roach et al., 2020; Shu et al., 2020)
and increased melt rates of the ice sheets in Greenland and Antarctica (Bracegirdle et al.,
2020; Hofer et al., 2020; Nowicki et al., 2016; Payne et al., 2021).

One way to visualize and parameterize climate change is to classify different climate regions
based on some abstract categorization of what constitutes a distinctive climate, in terms of
climatological parameters such as air temperature and precipitation. Thus, climate regions
that are similar in some physical or biological sense can be identified and classified. One of
the most common climate classification systems is the Kdppen-Geiger system (K&ppen,
1884; Koppen & Geiger, 1968), which has been used in a range of studies in various
disciplines (e.g. Beck et al., 2018; Kottek et al., 2006; Peel et al., 2007). Using spatio-
temporal estimates of climate classifications to visualize and quantify climate variation and
change is a valuable method for researching the impacts of climate change (e.g. Chen &
Chen, 2013) and to disseminate the work of the scientific community to the general public
in way that resounds with their experiential reality (e.g. Jylh& et al., 2010).

Changes to the Earth’s energy budget are expected with high confidence to lead to an
increase in the global mean precipitation and evaporation, although the predicted rate varies
between climate models (Douville et al., 2021). A warmer climate is expected with high
confidence to increase moisture transport intensifying heavy precipitation events and season.
Warming over land is expected with high confidence to increase potential evaporation and
intensify the severity of droughts. There is high confidence that mountain glaciers will
diminish globally, and that seasonal snow duration will generally decrease. Furthermore, the
variability of the water cycle and its extremes are expected with high confidence to increase
faster than the average under all emission scenarios in most regions of the world (Douville
etal., 2021).

In the research presented in this dissertation CMIP5 models were used as a representation of
future climate conditions as the work was performed prior to the release of the CMIP6 model
ensemble.

Changing Seasonal Snow Dynamics

Snow cover represents a major geophysical feature on earth and impacts hydrology, ecology,
and geology to a varying extent in many regions of the planet. Fluctuations in the
characteristics of snow cover in an area (i.e., depth, extent, timing, duration) represent
changes to the local climatology. On a global scale, fluctuations in snow cover impact the
planetary energy balance of earth. Snow cover reflects more of the inbound solar radiation
than bare ground, leading to further heat adsorption which may in turn reduce snow cover
even further in a process named the “ice-albedo-feedback” (e.g. Callaghan et al., 2011).
Changes to seasonal snow cover associated with global climate change have and are
expected to continue to impact human societies and ecosystems in cold regions.

Connolly et al., (2019), compared observed changes to the snow cover in the Northern
Hemisphere (NH) to that predicted by all available CMIP5 models over the period 1967-
2018. The results showed a trend of decreasing snow cover across all estimates; however the
magnitude of the observed trend was greater than what most of the models had predicted.
Mudryk et al., (2020), analyzed historical snow cover trends, as estimated from an ensemble
of 6 observation-based products, and projected changes in the CMIP6 multi-model ensemble



over the NH until the end of the 21% century. Their results showed a mass loss trend of
approximately -5 Gt/yr for all months from December to May for the period 1981-2018 and
that the NH spring snow extent will decrease by approximately 8% per degree of Global
Surface Air Temperature (GSAT) increase relative to the 1995-2014 average.

Yunlong et al. (2018) analyzed variations in NH snow cover using snow cover data from
MODIS, AMSR-e and the IMS snow cover extent product for the period 2000-2015. Their
results showed that the SCD over the NH had decreased by an average of 5.3 days/decade
and the seasonal variation in SCA showed a decreasing trend for all seasons but winter. Hori
etal. (2017), analyzed snow cover trends in the NH based on a daily SCE product calculated
from a combination of MODIS and AVHRR data for the period 1979-2009. Their results
showed a that the SCE had decreased by approximately 10 days per decade during the study
period and that the SCD in western Eurasia has decreased by up to two months in the past
30 years. Liston & Hiemstra (2011), analyzed pan-Arctic snow trends for the period 1979-
2009 for the period by creating a distributed snow dataset based on MERRA reanalysis data.
Their results showed a decrease in SCD by 2.5 days per decade averaged across the Arctic.
Choi et al. (2010), studied changes to NH snow seasons over the period 1967 to 2008 using
weekly snow cover extent data generated mainly from visible satellite imagery by NOAA
and National Ice Center meteorologists (Robinson, 1993). Their results showed that NH Full
Snow Seasons (FSS) have decreased on average by 5.3 days/decade, these changes were
primarily attributed to progressively earlier spring melt.

Malmros et al. (2018), estimated snow cover changes in the Andes based on MODIS
observations over the period 2000-2016 and found that the Snow Cover Extent (SCE) and
number of Snow-Covered Days (SCD) decreased on average by 13 + 2% and 43 + 20 days,
respectively. Saavedra et al. (2018), estimated snow cover changes in the Andes based on
MODIS observations over the period 2000-2016. Their results showed that large areas
showed statistically significant decreasing trends in snow cover, especially on the eastern
side of the Andes.

Zhang & Ma (2018), analyzed the variability in the continental Eurasian SCE using the NH
EASE-Grid data for the period 1972-2006. Their results showed a significant decrease in the
spring and summer SCE and an earlier loss of snow in the spring whereas the onset of snow
cover in autumn was not found to have changed significantly during the period. Zhong et al.
(2021), studied the spatiotemporal variability of snow cover duration in Eurasia over the
period 1966-2012 based on in-situ data from 1103 station with ground-based snow
measurements. Their results showed that on average the first day of snow and the last day of
snow delayed and advanced by approximately 1 day/decade, respectively and that the ratio
of SCD to snow season length increased by about 0.01 per decade. Bach et al. (2018)
analyzed in situ observational records of mean and extreme snow depths over Europe based
on the European Climate Assessment & Data Set (ECA&D; Klein Tank et al., 2003). Their
results showed an average decrease of -12.2% and -11.4%/decade for mean and maximum
snow depths, respectively, for the period since 1951.

The published literature, summarized in this section, agrees that on average and across
estimates, the extent and duration of global snow cover has been decreasing in recent decades
and that this decrease is projected to continue under all emission scenarios. The magnitude
of this change, however, varies significantly in space and time as well as across estimates,
both for the historical period and future predictions. The 6 AR by the IPCC states that there
is very high confidence that the NH spring snow cover has been decreasing since 1978 and



that further decrease of the NH seasonal snow extent is virtually certain under all plausible
emission scenarios (Fox-Kemper et al., 2021).

Glaciological trends

Glaciers and ice caps represent most of the freshwater storage on earth. Fluctuations in the
extent of a single glacier, (measured i.e., in length, mass, area, or volume) represent changes
in the energy balance of that glacier, due to some external changes that affect the transfer of
energy to and from the glacier. On a global scale such glacier fluctuations are recognized as
high confidence indicators of climate change (Bojinski et al., 2014). Glacier fluctuations
associated with climate change have and are expected to continue to impact geophysical
features and processes that are of key importance to both human societies and ecosystems in
cold regions.

Zemp et al. (2015), used observational datasets from the World Glacier Monitoring Service
(WGMS) to estimate glacier fluctuations over the last century. Their results showed that the
rates of glacier mass loss in the 21% century are without precedent on a global scale for the
period observed and that this loss is likely to continue, even if the present climate remains
stable at present day levels. Marzeion et al. (2014), showed that the anthropogenic signal in
glacier mass balance observations during the period 1991-2010 is detectable with high
confidence, being responsible for 69 + 24 % of the global glacier mass loss, whereas over
the period 1851 — 2100 the anthropogenic signal is weaker, constituting only 25 + 35 % of
the global glacier mass loss Sommer et al. (2020), computed changes in glacier fluctuations
in the European Alps between 2000-2014 using optical and radar remote sensing imagery.
Their results revealed a rapid glacier retreat across the Alps amounting to an annual loss of
39 km? in areal coverage and an average annual mass loss of -1.03 m of water equivalent.
Kulkarni & Karyakarte (2014), analyzed observed changes in glacial extent and mass
balance in Himalayan Glaciers. Their results showed a decrease in both extent and volume
across the Himalaya, with the rate of decrease more than doubling between the time periods
1975-85 and 2000-2100.

Glacier mass loss has and will contribute to sea level rise globally. Marzeion et al. (2012)
estimated sea-level changes due to global glacier mass of all individual glaciers of the world
(excluding the Greenland Ice Sheet (GIS) and Antarctic Ice Sheet (AlS) and found their mass
loss to have contributed 114 + 5 mm of sea level rise between 1902 and 2009. Gardner et al.
(2013), estimated from satellite gravimetry and altimetry and local glaciological records that
glaciers were losing mass in all regions of the world, with the largest changes occurring
around the Arctic, in the Andes and high-mountain Asia and that over the period 2003-2009
the global glacier mass loss amounted to 259 + 28 gigatons per year. (Marzeion et al., 2014)
projected the expected future mass loss of the earths glaciers under different emission
scenarios based on 15 coupled General Circulation Models (GCM) from the CMIP5
ensemble, which suggest a future glacier derived sea level rise ranging from 148 £ 35 mm
(RCP26) to 424 + 46 mm (RCP85). Radic¢ et al. (2013), modelled that volume changes of all
glaciers in the world based on 14 GCMs from the CMIP5 project for two emission scenarios
(RCP45 and RCP85) and estimated a future glacier derived sea level rise of 155 + 41 mm
(RCP45) and 216 = 44 mm (RCP85) over the period 2006-2100). Zemp et al. (2019), used
an extrapolation of glaciological and geodetic observations to estimate a glacier derived sea
level rise of 27 £ 22 mm over the period 1961-2016 which equals the contribution of the GIS
and exceeds the loss from the AIS, amounting to a total 25-30% of the observed sea-level
rise.



Glacier fluctuations have been shown to impact the regional water cycle in a number of
ways. Huss & Hock (2018), estimated global glacier runoff changes for 56 large scale
glacierized basins over the 21% century. Their results showed a significant interbasin
variability, however, a general pattern of increasing annual glacier runoff until a maximum
is reached, after which runoff will be in steady decline. Bliss et al. (2014), projected monthly
runoff for all glaciers and icecaps outside Antarctica based on 14 global climate models for
the period 2006-2100. Their results showed continuous glacier mass loss in all regions,
however, the hydrological response varied significantly between region which depends on
the balance between higher melt rates and decreased storage as glaciers retreat. Kaser et al.
(2010), estimated the contribution of changes to water availability in large rivers systems
due to a projected delay in seasonal glacier melt. Their results showed that the seasonal delay
contribution was greatest in seasonally arid basins and negligible in monsoon regions. Huss
(2011) estimated the glacial runoff contribution to large scale drainage basins in Europe
based on monthly mass balance data for the period 1908-2008. The results showed that
glacial meltwaters are relevant to the hydrology of macroscale watersheds and water
shortages will intensify as summer glacial runoff contribution decreases water shortages.
Cauvy-Fraunié & Dangles (2019), conducted a global meta-analysis of published bio-
diversity studies and found that biodiversity in general increases as glaciers recede, however,
the species that are removed are generally highly specialized.

Glacier fluctuations are expected to impact local hazard situations as the dynamics
glacierized areas changes. Bajracharya & Mool, (2009), analyzed changes to glaciers, glacial
lakes, and glacial outburst floods in Nepal over the period 1976-2000. Their results showed
a total decrease in glacial lakes in the region, however they also recorded an increase in the
moraine-dammed lakes which is associated with an increased risk of glacial outburst
flooding. Ké&ab et al. (2003), used satellite imagery from the ASTER instrument on the
NASA TERRA satellite to assess the conditions of a rock/ice avalanche in Russia and a
glacial lake in the Alps in 2002. The results showed that the ASTER imagery is a valuable
source of estimating and quantifying glacier fluctuations and for the timely identification of
glacier hazards.

2.1.2 Changes in the Icelandic climate and show

Climate

The Icelandic climate is characterized by its maritime nature causing mild winters and cold
summers, with frequent precipitation and heavy winds. The location and mountainous
topology of Iceland creates large spatio-temporal variations in both weather and climate (e.g.
Bjornsson et al., 2007; Olafsson et al., 2007). Studies show that since the last glacial
maximum the temperature fluctuations in Iceland have been about 4°C, which is
significantly higher than the global average (Geirsdottir et al., 2013; Knudsen et al., 2008;
Langdon et al., 2011; Larsen et al., 2011; Sicre et al., 2011). This large variability in
temperature is caused by spatio-temporal changes in the location of warm and cold ocean
currents around the island (Cabedo-Sanz et al., 2016).

Continuous meteorological records exist in Iceland since the middle of the 19™ century.
Since records began the average temperature in Iceland has risen by about 0.8°C per century,
like the global average warming over the same period. Over the period 1980-2015 the
average annual precipitation has increased by 7-13 % while the average temperature has
increased by 0.5 °C per decade (Bjornsson et al., 2018).



The average temperature in Iceland is expected to increase by 1.3-2.3°C by the middle of
the 21% century compared to the average of the period 1986-2005 and if global emissions
are not significantly reduced, the warming could exceed 4 °C by the end of the 21% century.
The uncertainty in projected changes in precipitation are greater than for temperature
changes but estimates predict a 1.5 — 4.5% increase in average precipitation volume per
degree of warming (Dee et al., 2011; Nawri et al., 2017; Poli et al., 2016).

The projected climate changes in Iceland are expected to impact the local hydrological cycle,
as winters become milder and less water is stored as snow, causing streamflow to increase
in winter and decreasing peak flow during spring melt. Runoff from glaciers is expected to
increase, especially in summer, until at least the middle of the 21% century (Bléschl et al.,
2017; Jonsdottir et al., 2008; Ministerradet, 2012)

Snow

Snow is a key feature of the hydro-climatological cycle in Iceland, storing precipitation in
winter and releasing melt runoff in spring. Icelandic snow cover has been categorized as a
mixture of tundra, taiga and maritime snow types with shallow snow depth on average, high
density, frequent melt cycles and high wind stress (Sigurdsson & Jdéhannesson, 2014).
Understanding changes to key snow parameters such as the amount, spatio-temporal
distribution and physical characteristics are important for managing the water resources in
Iceland. Analysis of trends in discharge, precipitation and temperature time series has
revealed that spring snowmelt occurs earlier in the year and that spring peak flows have
decreased between the periods 1996-2007 and 1963-1995 (Jonsddttir et al., 2008).

Long term trends in snow cover have been studied by Jénsson (2001), which analyzed
manual snow cover observations around the country over the duration of continuous
measurements (~1930 — 2000). The results showed no clear trends over the entire study
period, although the average snow cover had decreased towards the end of the period. An
analysis of the relationship between snow cover and ambient air temperatures revealed an
estimated 10% loss of snow cover in each winter month, per 1°C of warming.

Gunnarsson et al., (2019) analyzed Icelandic snow cover characteristics based on a gap-filled
MODIS snow cover product for the period 2000-2018. They compared MODIS snow cover
data to in situ data from the Icelandic Meteorological Office (IMO) and remotely sensed data
from Landsat and Sentinel with good agreement. Their results showed a trend of increasing
snow cover duration for all months except October and November. The trendline for June
was significant at a the o = 0.05 level and the trendlines in May and June were significant at
the o = 0.1 level. The results of Gunnarsson et al., (2019) shows a significant decreasing
trend of average snow cover in spring/summer. These results are of particular importance as
they illustrate a significant decrease in snow cover during the season of minimum snow
cover.

The snow cover trends studied by Jonsson (2001), were based on manual observations from
manned observation stations, mostly located in lowland areas close to urban areas.
Sigurdsson & Jéhannsson, (2014), analyzed snow depth records from 4 observation sites in
the central highlands over the period 1975-2014 which revealed a slightly decreasing, albeit
not statistically significant, trend in snow depth over the period although the measurement
locations are too few to draw any conclusions for the extensive highland region. The trend
of increasing snow cover duration observed in Gunnarsson et al. (2019) over the period

10



2000-2017 is in the opposite direction to long term projections which predict snow cover to
decrease across the country over the 21% century (Johannesson et al., 2007).

Glaciers

Changes to Icelandic glaciers have been studied based on a range of sources including in situ
mass balance measurements, reconstructed surface maps, published maps, aerial
photographs, satellite stereo imagery and airborne lidar (e.g. Belart et al., 2020). The results
show that Icelandic glaciers reached their maximum extent since the settlement of Iceland
at the end of the 19" century. Over the period 1890-2019 the mass loss of Icelandic glaciers
has been estimated as 16 + 4%, which corresponds to 1.50 + 0.36 mm of sea level equivalent.
This glacier recession was mostly confined to two periods 1920-1940 and the period since
1995 whereas during the three decades between 1960-1990 most Icelandic glaciers remained
stable or even advanced (Adalgeirsdottir et al., 2020). While the surface mass balance is the
main source of mass flux in Icelandic glaciers, internal and basal melt contribute a non-
negligible portion of the overall mass balance, especially in geothermal and volcanic zones
(J6hannesson et al., 2020).

The retreat of the large and outlet glaciers in Iceland is well documented both through remote
sensing and in situ observations. (Brynjolfsson et al., 2014; Hannesdottir et al., 2015;
Hannesdottir et al., 2016; Palsson et al., 2012). The mass loss of the three largest ice caps in
Iceland (Vatnajokull, Hofsjokull and Langjokull) since 1890 has been well documented (e.g.
Bjornsson et al., 2013). The surface of the Icelandic glaciers was lidar mapped in high
resolution during the period 2007-2013 increasing the accuracy of ice volume estimates
(J6hannesson et al., 2013). The observed recession and increased volume of melt water from
the Icelandic glaciers has resulted in changes to river channels to glacial rivers (Magnusson
et al., 2009) and to the extent and placement of subglacial and moraine lakes (Bjérnsson et
al., 2001; Jéhannesson et al., 2013). A key factor in the mass balance of Icelandic glaciers is
the ice surface albedo, which is influenced by a number of environmental variables, such as
snow metamorphism, dust loading and tephra depositions from nearby volcanoes, there is a
large spatio-temporal variability in the albedo of Icelandic glaciers and the country’s largest
glacier, Vatnajokull has experienced a positive albedo trend over the period 2000-2019
(Gunnarsson et al., 2021).

Modelling of the future evolution of the Icelandic glaciers has shown that they will almost
disappear completely over the next two centuries given projected changes to the global
climate (Adalgeirsdottir et al., 2011; Gudmundsson et al., 2009; Hannesdéttir et al., 2015).
This projected retreat will significantly impact runoff from glaciated areas, with significant
challenges and opportunities to water resource managers and renewable energy producers in
the country (Johannesson et al., 2007; Thorsteinsson & Bjérnsson, 2013). The increased rate
of melt water is projected to continue to affect river channels in glacial rivers (Palsson et al.,
2016) as well as the extent and character of ice-marginal lakes (Magnusson et al., 2013;
Schomacker, 2010) .
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2.2 Snow Observations

Monitoring of snow resources, both on a local and global scale, is important for water
resources management, hazard assessments and improved geophysical understanding of the
earth’s hydro-climatological system. Many snow datasets have been recorded and presented
in the literature, based on a range of measurement technologies and covering many snow
parameters (e.g. Dong, 2018). Snow observations of all kinds can be assimilated in land
surface models to derive best estimates of spatio-temporally distributed snow parameters
(e.g. Clark et al., 2006; Slater & Clark, 2006).

2.2.1 In situ observations

The traditional method of measuring snow is the observation of snow properties on the
ground, most often concomitantly with observations of other meteorological parameters.
Measurements of snow depth (SD) and new snowfall amounts have been recorded in Europe
and North America for centuries. However, the methods and means of snow monitoring
varied significantly between locations, limiting the utility of such observations for global
snow research. The Solid Precipitation Measurement Intercomparison Project (SPMIP)
showed up to 700% variability in the proportional amount of solid precipitation recorded at
in national precipitation gauges (with wind shields) at 6 m/s wind speed (Goodison et al.,
1998).

Several international projects have been undertaken to improve the comparability of snow
measurements across the globe, with observation stations located world-wide. These projects
include the Global Cryosphere Watch — CryoNet (WMO, 2014), The Global Historical
Climatology Network (Menne et al., 2012), The WCRP — Climate and Cryosphere (CIiC)
Project (Barry, 2003), The CMC — Daily Snow Depth Analysis Data (Brown & Brasnett,
2010), The Historical Soviet Daily Snow Depth (HSDSD) (Armstrong, 2001), The Historical
Climatology Network (HCN) (Easterling, 2002), The European Climate Assessment &
Dataset (Tank et al., 2002) and the Solid Precipitation Measurement Intercomparison Project
(SPMIP) (Goodison et al., 1998).

At manned meteorological stations manual snow observations of a range of snow parameters
are made at the frequency requested by the procurer of the data. Snow Depth (SD) is one of
the most frequently collected snow parameters due to the relative ease of measurement. In
recent decades the use of automated sensors for recording snow parameters such as SD and
Snow Water Equivalent (SWE). SWE can be measured using weighing systems often
referred to as snow pillows (Engeset et al., 2017) and snow height above ground can be
monitored using e.g. ultrasonic sensors (Ryan et al., 2008) and time lapse photography of
snow stakes (Parajka et al., 2012). The use of automatic snow monitoring has improved
both the spatial and temporal resolution of snow measurements, as the limits to measurement
frequency and data storage are continually being pushed and the operational cost of
automatic stations is a fraction of that of manned stations.

Where the density of in situ snow observations is sufficient the spatial distribution of snow
parameters can be estimated using different statistical interpolation methods (e.g. Carrera-
Hernandez & Gaskin, 2007; Foppa et al., 2007; Jarvis & Stuart, 2001; Molotch et al., 2005).
Achieving the required density of point observations for adequate estimation of the spatial
distribution of snow parameters is especially challenging in regions with complex
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topography as it affects both the distribution of snow and the logistics of snow monitoring.
Studies have shown that there are significant discrepancies between point-measurements and
regional estimates of snow parameters, even in relatively well documented regions (L6pez-
Moreno & Nogues-Bravo, 2006; Meromy et al., 2013). As a result of the sparse distribution
of point-based snow monitoring stations globally global scale monitoring of changes to snow
resources are not feasible based only on in-situ observations (Dong, 2018).

2.2.2 Remote sensing of show

Snow resources are inherently most abundant in cold regions with high precipitation.
Incidentally these are also the regions least favored by humans for habitation and leisure. As
a result, in situ observations of snow are logistically challenging, and therefore sparse, in
many areas where significant quantities of the resource are located. Monitoring the snow
resources by means of remote sensing, either by airborne vehicles or satellites has therefore
been an important research topic since the dawn of the satellite era in the 1960’s when the
TIROS-1 satellite became the first satellite to allow monitoring of snow cover from space
(Lucas & Harrison, 1990). Since the start of satellite monitoring, snow covered areas have
been observed to decrease on average across the globe (R. D. Brown, 2000; Lemke et al.,
2007). Although increases in snow cover have been observed in some regions such a China
(e.g. Che et al., 2008; Xuejin et al., 2019)

Snow can be detected from remotely sensed data by observations of its physical and spectral
properties, these however can vary based on many different factors, such as Snow Depth
(SD), liquid water content, impurities, snow temperature, ice content, grain size and shape
etc. (J. Foster et al., 1996; Kelly, 2009; Painter et al., 2009; Sturm, Holmgren, & Liston,
1995; Tait, 1998). The influence of these factors on the estimation of snow conditions varies
depending on sensor technology and resolution. Many different sensor technologies have
been developed and are in use for measuring land surface properties like snow. However
they can be broadly divided in two categories, optical sensors that record reflective data in
the visible and infrared wavelengths and microwave sensor that record either microwave
radiation emitted from the land surface that can be measured with passive microwave sensors
or radiation backscattered by active microwave sensors (Dietz et al., 2012).

In the visible (VIS) wavelengths snow reflects up to 80-90% of the solar radiation depending
on grain size, age and purity (Konig et al., 2001; Winther et al., 1999) whereas at longer
wavelengths, in the infrared (IR) spectrum the reflectivity of snow drops to near zero (Pepe
etal., 2005; Wang et al., 2005). A key issue in snow monitoring is discerning between clouds
and snow, which have similar reflective properties in the VIS and IR spectra (Hall et al.,
2010; Hyvarinen et al., 2009; Miller et al., 2005) rendering satellite scenes exceeding a
threshold cloud cover useless for snow monitoring (Rodell & Houser, 2004)

The land surface emits microwave radiation which can be observed by Passive Microwave
(PM) sensors (Koénig et al., 2001). PM data which has been applied to snow mapping has
been collected by the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), the
Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor Microwave
Imager (SSM/1) Microwave emissions from the underlying ground are weakened under snow
cover at wavelengths similar in size to the snow grains and thus, the weaker the microwave
signal recorded by the sensor, the more snow covers the ground (Chang et al., 1987). The
microwave signal recorded by the sensor is determined by several factors including liquid
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water content, grain size, grain shape and the dielectric discontinuities of snow and air
(Amlien, 2008; Clifford, 2010; Foster et al., 1999). Several factors influence the accuracy of
PM derived snow parameters. Vegetation absorbs microwaves in similar wavelengths as
snow (Derksen, 2008) and thus snow cover is hard to detect in forested areas (Foster et al.,
1999; Hall et al., 1982). Liquid water magnifies the microwave absorption of the snow
causing underestimates of snow depth (Amlien, 2008). The crystal properties of the snow,
especially the crystal size can have impact the estimation of SWE (Foster et al., 1999)

Snow cover characteristics can also be estimated based on Active Microwave (AM) data,
where the microwave sensor measures the backscatter of a signal emitted by the instrument.
However, because the penetration depth of microwaves into the snow depends heavily on its
liquid water content only wet snow can be detected reliably using active microwave data
(Wang et al., 2008), since the underlying ground is the main source of the back scattering
signal under dry snow (Konig et al., 2001). The research interest remains high as AM
sensors can provide higher spatial resolution monitoring than PM sensors (Foster et al.,
2011) and AM data from the Sentinel-1 mission has shown promising results in mapping
snow depth (e.g. Lievens et al., 2019).

Many algorithms have been developed to identify snow parameters based either on spectral
data from optical sensors such as the Advanced Very High-Resolution Radiometer
(AVHRR), the Moderate Resolution Imaging Spectrometer (MODIS), Landsat and Sentinel
which collect the appropriate spectral data to both detect snow and discern between snow
and clouds or from Microwave sensors. These snow mapping algorithms can be broadly
categorized into algorithms that estimate: binary snow cover classifications from optical
sensors (Fernandes & Zhao, 2008; Hall et al., 1995; Rosenthal & Dozier, 1996), fractional
snow cover algorithms (Metsdmaki et al., 2005; Painter et al., 2009; Salomonson & Appel,
2006; Solberg et al., 2010), algorithms that estimate snow cover beneath clouds from
reflective data (Gafurov & Bardossy, 2009; Parajka et al., 2010; Wang & Xie, 2009),
algorithms that detect both snow cover and SWE with data from PM sensors (Chang &
Rango, 2000; Derksen et al., 2003; Kelly, 2009; Pulliainen & Hallikainen, 2001; Pulliainen
et al.,, 1999) and methods that utilize both PM and reflective data to estimate snow
parameters (Foster et al., 2011; Gao et al., 2010; Liang et al., 2008; Romanov et al., 2000).

A promising remote sensing technology for high resolution snow monitoring is the use of
airborne laser altimetry (lidar) which can detect vertical elevation with decimeter scale
precision and meter scale horizontal resolution also complex terrain such as forests (Kraus
& Pfeifer, 1998; Reutebuch et al., 2003). Snow depth can be estimated based on the
difference between two lidar derived Digital Elevation Models (DEMs), one with snow free
conditions and the other with snow covered ground (Deems et al., 2006; Hopkinson &
Demuth, 2006; Miller et al., 2003). The technology of lidar offers a method for high
resolution and accuracy mapping of snow depth (Deems et al., 2013). However, a key
limitation is that remotely sensed lidar data is only acquirable from airborne vehicles and
not from satellites in orbit. This causes logistical constraints for lidar monitoring at spatial
scales larger than individual watersheds. Thus, lidar monitoring is currently restricted to high
value snow resources in areas that are important for local water resources management.

Other promising methods for monitoring snow resources remotely include the use of
Interferometric Synthetic Aperture Radar (INSAR) and Polarimetric Synthetic Aperature
Radar (PolSAR) (e.g. Tsai et al., 2019) and snow depth mapping based on satellite stereo
imagery (e.g. Deschamps-Berger et al., 2020; Marti et al., 2016).
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2.3 Snow modelling

To understand and predict future behavior of the snow models are used to represent the
physical processes that occur within the snow cover (state variables) as well as the
interactions between the snow and its surroundings (energy and mass fluxes). Over the past
several decades a wide range of snow models have been developed, see e.g. Magnusson et
al., 2015 and Krinner et al., 2018 for a detailed description and comparison of some of the
more common snow models. Snow models are generally grouped two categories: physical
models that attempt to simulate all the physical processes occurring in the snow and
empirical models, that rely on statistical relationships between the snow and its surroundings
(e.g. Debele et al., 2010). In between these approaches are attempts to combine the
advantages of each class of models, by using empirical relationships to derive a full physical
representation of the snow (e.g. Schaefli et al., 2010). Many different models have been
developed within each model class. Each of which are associated with their own advantages
and disadvantages, that must be understood when selecting a model for a specific purpose.

2.3.1Physical representation of snow

When temperatures are below the freezing point of water, precipitation falls as snow. If
temperatures remain below freezing the snow will accumulate on the ground between
precipitation events forming snowpack. In perpetually cold environments snow continuously
accumulates, turning to ice under the pressure from its own weight and forms glaciers and
ice sheets that can store frozen water for centuries to millennia. In warmer regions, where
temperatures rise above freezing for some part of the year, the accumulated winter snowpack
melts in spring to early summer. As temperatures rise ice crystals that absorb enough energy
melt and percolate down the snowpack where it refreezes until the entire snowpack is
isothermal at the melting point. When the whole snowpack has reached the melting point
melt water begins to form runoff which then takes part in the surface hydrological cycle.

A snowpack is in constant thermodynamic flux with its environment. The energy budget of
a snowpack can be described as the sum of all heat transfer components that transport heat
between the snowpack and its surroundings, as shown in Equation 2.1 (e.g. U.S. Army Corps
of Engineers, 1998),

Q=05 +0Q,+Q,+0Q,+0Q,+0Q,—40, (2.1)

where Qsn symbolises net short-wave radiation flux from solar radiation, Qi represents the
long-wave radiation flux from the environment, Qn and Qe represent the turbulent fluxes of
thermal convection from the atmosphere (sensible energy) and latent energy due to phase
changes, respectively. Qg represents heat conducted from the underlying ground and Qp
represents the energy advected with precipitation. AQ; represents the internal energy that is
stored within the snowpack. The total energy available for snowmelt then becomes the sum
of the individual energy fluxes or Qm.

In winter, or in periods of freezing temperatures, precipitation will accumulate in the
snowpack forming layers of snow with varying physical characteristics, e.g. density, crystal
structure, hardness etc. (e.g. Fierz et al., 2009). In the spring, or when the energy flux into
the snowpack increases, Qm in Equation 2.1 becomes positive, and some ice crystals will
begin to melt. The melt water percolates into the porous matrix of the snowpack where it
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either refreezes or is stored as liquid water between the snow grains, increasing the density
and water content of the snowpack. In this initial stage of snowmelt thermal energy is
transferred from the surface boundary into the body of the snowpack, until it has reached an
isothermal state where the temperature of the entire snowpack is at the melting point. When
the snowpack that has reached the isotherm and when the interstices between snow grains
are fully saturated with liquid water it is referred to as “ripe”, as any additional energy it
absorbs will result in surface runoff.

When the snowpack has become isothermal and is fully saturated with water, melt water
begins to form and flow from the snowpack. The amount of melt water, M, produced is
governed by the amount of thermal energy, Qm, absorbed by the snowpack and can be
described by Equation 2.2. (e.g. U.S. Army Corps of Engineers, 1998),

_ _9m
LipwB '’

(2.2)

Where Lt represents the latent heat of fusion of the ice-crystals, pw represents the density of
liquid water and B represents the thermal quality of the snowpack, defined as the ratio of its
water content that is in the solid phase. The accuracy with which the snow melt rate can be
calculated based on Equation 2.2. depends on the accuracy that the individual heat transfer
components in Equation 2.1. can be measured or estimated.

Short wave radiation, Qs

The main source of thermal energy across the surface of the Earth comes from solar
radiation. The amount of solar energy absorbed by a snowpack varies significantly
depending on latitude, time of day, time of year, aspect, slope, cloud cover and the
reflectivity of the snow surface. Cloud cover is the greatest source of uncertainty regarding
the amount of solar radiation that reaches the surface of the snowpack, whereas the
reflectivity of the snowpack surface determines the amount of inbound solar radiation that
is absorbed by the snow. The albedo of the snowpack surface, «, is defined as the defined as
the ratio of reflected solar radiation. The amount of solar radiation absorbed by the
snowpack, Qsn, can be described by Equation 2.3,

Q=1 -, (23)
Where, l; is the incident solar radiation.

Solar short wave radiation can be measured using different instruments and techniques (e.g.
Paulescu et al., 2013) or modelled, using a range of models (e.g. Zhang et al., 2017). The
snow and Ice albedo can be estimated using remote sensing imagery at different wavelengths
(Corripio, 2004), numerical parameterization methods (Gardner & Sharp, 2010) or by
assimilation of numerical modelling and observation (Kumar et al., 2020)

Long wave radiation, Qi

A snowpack also exchanges radiative energy with its surroundings at longer wavelengths
than radiation from the sun (6.8-100 um). A portion of the energy contained in the snowpack
is lost to the surrounding atmosphere as blackbody radiation and in turn the snowpack
absorbs from back reflection of the atmosphere and the surrounding terrain.
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The long wave radiation emitted by the snowpack can be approximated by the Stefan-
Boltzmann law, presented in Equation 2.4.

anup = E*x0* Ts4; (2.4)

Where Qinyp is the radiation of a blackbody, € = 0.99 for clean snow, ¢ is the Stefan-
Boltzmann constant and Ts is the temperature of the blackbody, in this case the surface
temperature of the snow. Contrary to solar radiation in the visible spectrum, long-wave
radiation is almost completely absorbed by snow, which can thus be modelled as a near
perfect black body (Warren, 2019).

The long wave radiation absorbed by a snowpack Qindown Can be estimated using a range of
parameterization techniques based on temperature, vapor pressure and cloud factor for
different regions (Formetta et al., 2016; Juszak & Pellicciotti, 2013; Kok et al., 2020;
Marthews et al., 2012) it can be measured in situ or by remote sensing (e.g. Ellingson, 1995)
and several distributed large scale observational datasets of surface long wave radiation have
been developed for the research community, including FLUXNET (Baldocchi et al., 2001)
and SURFRAD (Augustine et al., 2000). An analysis of the key global long wave radiation
datasets has shown an increasing trend (1.8 Wm per decade) over the period 2003-2018
(Feng et al., 2021).

The net long wave radiation budget of the snowpack Qin equals the radiation absorbed
subtracted Qindgown by the energy emitted by the snowpack Qinup, as presented in Equation 2.5.

Qin = Qindown — anup (2.5)

Turbulent heat fluxes, Qn and Qe

The turbulent motion of the air at the snow-atmosphere boundary is responsible for heat
transfer between the snowpack and the atmosphere, both due to thermal convection (sensible
heat transfer) and phase changes of the snow (latent heat transfer). The vertical eddy fluxes
of heat and water vapor transfer energy to and from the snowpack surface. The turbulent
heat transfer components Qn and Q. that occur due to these vertical eddy fluxes can be
estimated based on measurements of the factors that govern the intensity of these fluxes,
including temperature and vapor gradients between the snow surface and the open
atmosphere, surface roughness, atmospheric stratification, horizontal wind movement, air
density and atmospheric pressure.

There have been developed several ways to parameterize the turbulent heat fluxes Qn and Qe
including Obukhov length parameterization (Zeng et al., 1998), Richardsson number
parameterization (Louis, 1979) and constant exchange coefficient parameterization (Martin
& Lejeune, 1998).

Heat Conduction at the soil/show boundary, Qg

Thermal energy is not only transferred at the snow surface boundary, but also through
thermal conduction at the snow bottom boundary if there is a temperature gradient between
the bottom of the snow and the underlying ground. The energy flux at the snow-ground
boundary can be described by Equation 2.6,
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AT
where, k is the thermal conductivity of the soil and ATs/Az is the temperature gradient
between the ice and soil.

Heat convection by precipitation, Qp

In events when liquid precipitation falls on a snowpack the thermal energy contained in the
precipitation is absorbed by the snow. The heat transfer from such rain-on-snow events can
be described by Equation 2.7. (e.g. U.S. Army Corps of Engineers, 1998),

Qp = Cppy B (T, — Ty) /1000, (2.7)

where, C;, is the specific heat of rainwater, pw is the density of rainwater, Py is the volume of
rainwater, Tr is the temperature of the rain and Ts is the snow temperature. If liquid
precipitation freezes it will release the latent heat of fusion of water in the snowpack.

Internal energy of the snowpack, AQi;

As the snowpack exchanges energy with its environment the internal energy of the snowpack
is in constant flux. During cold periods the snowpack loses thermal energy to its
surroundings and its internal heat deficit (defined as the amount of heat required to reach an
isothermal state at the melting point temperature) increases. As a melt event approaches, the
snowpack absorbs energy from its surroundings, decreasing the internal heat deficit until the
pack reaches the isothermal state and surface runoff begins. The internal energy of the
snowpack can be described by Equation 2.8. (e.g., Gray and Prowse, 1992),

AQ; = ds(picpi + plel)Tmr (2.8)

where, ds, is the depth of the snowpack, pi is the snow density and p; is the density of liquid
water, Cpi is the specific heat of ice, Cp is the specific heat of liquid water and T is the mean
snow temperature. If the temperature of the snowpack is below the freezing point of water
the internal energy of the pack, then, by definition, 4Q;, is positive.

2.3.2 Physical models

Physical snow models attempt to estimate the complete mass and energy balance between
the snow and its surroundings to simulate the internal conditions of the snow at specified
time intervals. Snow accumulation is calculated by addition of the precipitation that falls
while temperature are below freezing while the rate of snow melt is estimated based on the
energy that is available to heat and melt the snow (e.g. Hock, 2005). The net energy exchange
between the snow cover and its surroundings can be quantified as the product to the net short
wave (solar) radiation, net long wave (thermal) radiation, sensible and latent convection heat
fluxes, heat advection from rain and conduction from the underlying soil (e.g. Anderson,
2006), as described in section 2.3.1. The advantages of energy balance models lie in their
ability to represent the actual physical processes occurring in the snow. This ability allows
for a detailed analysis of the snowpack and how it is affected by each component of the
energy balance and therefore, how it is likely to respond to different meteorological forcing’s
(e.g. Marks et al., 1998).
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Over the course of the last century many physical snow models have been developed, with
varying degrees of complexity and for different applications. Selecting any “best” model or
a set of optimal models is highly application and location dependent. At least five large
model intercomparison projects have been undertaken to compare the performance of
different snow models: PILPS2d (A. G. Slater et al., 2002), PILPS2e (Nijssen et al., 2003),
Rhone-AGG (Boone et al., 2004), SnowMIP (Etchevers et al., 2004) and SnowMIP2 (Essery
et al., 2009). None of these projects resulted in the identification of an overall “best” snow
model. Most of the snow models surveyed in these projects use similar parameterizations for
the key processes that occur in a snowpack. A study by Essery et al., 2013 used all possible
combinations of the parameterizations commonly used in physically based snow models to
develop an ensemble of 1701 snow models which were compared to observations from an
alpine site. The results showed that there did exist a group of models that consistently
provided good results, however, the optimal models are still likely to be location dependent.

The disadvantages of energy balance models are associated with their high data
requirements, their complexity, and the uncertainty of the data. For an accurate
representation of the energy balance, accurate data on solar radiation, thermal radiation,
temperature, wind speed, humidity, precipitation and soil conditions are required, preferably
in a dense grid across the entire catchment that is being modelled (Gabbi et al., 2014).
Acquiring these data in enough quality to simulate snow melt accurately is a challenging and
costly effort in real time and to forecast these parameters is associated with a high degree of
uncertainty. As many catchments in the world are relatively poorly documented, energy
balance models may be unsuitable for hydrological modelling of them (Sivapalan, 2003).

2.3.3 Empirical models

Empirical snow models rely on the statistical relationship between snowmelt and any of the
variables affecting the surface energy balance. Most empirical models use air temperature
as a predictor variable and are thus often referred to as temperature index models. These
were the first melt models to be developed and the first application of temperature index
snow model was in 1887 on an Alpine glacier, Der Suldenferner, (Finsterwalder & Schunk,
1887). Temperature index models have been widely applied and have shown good
performance despite their computational simplicity (Hock, 2003). The simplest case of the
temperature index models is the degree day model is presented in Equation 2.9:

M = DDF ¥, T*At, (2.9)

Where T+ is the sum of positive air temperature over a time interval At, M is snowmelt and
DDF is the degree day factor which must be calibrated for each area. Many extensions to
this simple degree day model have been developed, e.g. by adding other components of the
energy balance, each with their own calibration factor (e.g. Kustas et al., 1994; Zuzel & Cox,
1975)

The main advantage of empirical snow models is their low data requirements. Temperature
is among the simplest meteorological parameters to measure, and temperature data is widely
available in many areas. Net radiation is on average the main source of energy flux between
a snowpack and its surroundings, as discussed in section 2.1.1. However, air temperature
usually has a high correlation to snowmelt, since many of the components affecting the
energy balance, such as the net solar radiation, are also highly correlated to air temperature
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(e.g. Lang & Braun, 1990; Ohmura, 2002). Temperature index models provide good
estimates of snowmelt and have been shown to outperform energy balance models in certain
catchments (Gabbi et al., 2014).

In recent years efforts have been made to use machine learning and artificial intelligence
methods for many hydrological modelling applications (e.g. Mosavi et al., 2018). These
models are based on empirical relationships between snowmelt and the selected input data
but limit the requirements for human data analytics to determine that relationship. These
models are attractive due to their performance and operation simplicity and have shown good
performance in stream flow predictions in snow impacted catchments (Kalra et al., 2013;
Molotch et al., 2005)

The disadvantage of the empirical modelling approach is mainly the lack of analytical
capacity of the models. An empirical model may provide good or even better results than a
physically based model but may not provide the necessary information required to develop
further scientific insight into the physical processes occurring in the snowpack. The
empirical calibration factors that need to be determined from historical data are also subject
to significant uncertainty, they have been shown to range significantly depending on
catchments (Hock, 2003; Singh et al., 2000), location within catchments (Braithwaite,
Konzelmann, Marty, & Ulesen, 1998), time of day (Sing & Kumar, 1996) and time of year
(Kuusisto, 1980). All empirical models require some amount of calibration of model
parameters. If these parameters are contingent upon prevailing climate conditions the use of
the models for long term climate change scenarios may be problematic, as the underlying
climate is changing while the model predicts future snow conditions. Studies on temperature
index models have for example shown that models calibrated with historic data will
overestimate snow melt rates when applied in a warmer climate (Raleigh & Clark, 2014).

2.3.4 Conceptual models

Conceptual models attempt to take advantage of the key benefits of both the empirical and
physical models by retaining the low data requirements of the former while gaining the
analytical capabilities of the latter. Conceptual models try to explicitly include most of the
important physical processes that occur within the snow cover but do so only in a simplified
way (e.g. Anderson, 2006). Thus, many of the energy balance components of the snow
surface are indexed to simpler parameters like temperature allowing for the analysis of the
sensitivity of a snowpack to individual heat flux components.

Among the disadvantages of conceptual models is that while they retain the low data
requirements of empirical models, they can be relatively computationally complex. The
internal relations and indexing between parameters may not be straightforward or universally
applicable and these models are as reliant upon calibration as their empirical counterparts
(Kavetski et al., 2006). Thus, while conceptual models may provide improved analytical
capabilities their accuracy is contingent on accurate calibration and the more calibration
parameters, they contain the more susceptible they are to the problem of equifinality, that is
they provide good simulations but for the wrong reasons. This may lead to models that
perform well on calibration data, but provide poor results when applied to data outside of
the calibration set (Beven & Freer, 2001).
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2.3.5 Calibration and Validation

Snow models use environmental information to simulate the physical state of a snowpack.
Most snow models need to be calibrated to each specific application by inferring their
parameters from observed data (Beven & Binley, 1992). For a model to be considered
reliable, the calibrated model must be validated by comparison with independent data that
was not used in calibration. Many methods have been developed for both calibration and
validation although none has yet been widely recognized as superior (Beven et al., 2003).

Several variables can be used for calibration and validation of a snow model, they can
broadly be broken into two categories: data on the state of the snowpack (e.g., depth, extent,
Snow Water Equivalent (SWE), temperature, density) and data that describes the progression
of snow melt (e.g., river discharge, reservoir inflow, mass balance) over some spatio-
temporal scale. These data may be obtained from in situ measurements or through remote
sensing (Corbari et al., 2009). Calibration and validation can be performed using any single
type of observation or a combination of observations (Seibert, 2010).

Snow models can be applied either at a single point or in a distributed grid across a larger
area. Point models are often used to simulate a snowpack at a measurement site and are then
generally calibrated and validated based on the snowpack observations from that station,
such models are most often calibrated and validated using snow depth or SWE (e.g., Franz
et al., 2008). Snow models can be calibrated and validated based on different types of
observations and at varying scales, e.g., a model can be calibrated based on meteorological
point observations from single measurement station and then applied at basin scale and
validated by discharge or mass balance data (e.g., Engelhardt et al., 2014).

Distributed snow models are applied using distributed meteorological forcing data but can
be calibrated and validated by using data at varying scales. Either by using point observations
that are representative of the area being modelled (e.g., discharge data) or by distributed
observations (e.g., satellite measurements of Snow-Covered Area (SCA)). Studies have
shown that calibrations using both satellite derived Snow-Covered Area (SCA) and
discharge measurements provide quality simulations (Franz & Karsten, 2013). While
discharge and snow depth data have historically been favored metrics for calibration, the
inclusion of satellite derived SCA data in recent years has generally been shown to improve
the validation and calibration of hydrological models (e.g., Konz et al., 2010; Parajka &
Bloschl, 2008).

The purpose of calibrating and validating snow melt models is to reconcile environmental
theory with observed data (Gupta et al., 2008). The quality or skill of a model is measured
by the capability of the model to replicate observed data and can quantified by a range of
different efficiency criteria. A number of these efficiency criteria exist, each with its own set
of advantages and disadvantages (Krause et al., 2005). Whether the model output is
considered satisfactory is determined by the values of the efficiency criteria. The selection
of any value of these efficiency criteria for a model to be considered satisfactory is often
arbitrary and application dependent studies have been conducted to provide some general
guidelines for threshold values (e.g., Moriasi et al., 2007).
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2.3.6Spatial representation

Snow models can be applied at a point, in a lumped formulation or distributed. Point models
simulate snow conditions at individual ablation sites whereas lumped and distributed models
consider a basin scale. The lumped model, where variables are averaged or estimated over
the watershed has historically been the favored formulation for many snow modelling
applications due to computational constraints and data availability. With improved
computation technology and data acquisition, applications of distributed temperature-index
models have increased (e.g., Daly et al., 2000).

Simulating snow conditions in a distributed grid over a basin should improve the
representation of local topographic. By incorporating topographical information into the
model, a better representation of local snow conditions patterns can be achieved. Such
modelling efforts generally try to include information on slope, aspect, elevation, local
shading, and weather patterns. One approach has been to relate melt to the radiation index
computed from digital elevation models at each grid point (Dunn and Colohan, 1999).

Distributed models have been shown to outperform simple lumped approaches, especially
in representing diurnal melt cycles (Hock, 1998). Performance improvements of distributed
temperature index models have been shown to marginally improve with a more complete
representation of the energy balance (Hock, 1999). These results indicate that a large
improvement in model performance can be achieved without a need for increased data
acquisition of other energy balance variables. Nonetheless, recent studies in well
documented catchments show that distributed energy balance models outperform distributed
temperature index models where data is sufficient (Kumar et al., 2013 and Jost et al., 2012).
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3. Application and results

The main discussion in this chapter revolves around the methods, applications and results
developed in this dissertation and is in accordance with the objectives outlined in Chapter 1,
with reference to the four papers prepared in this PhD project.

3.1 Simulating seasonal glacier mass balance -
Application to Braarjokull glacier

Understanding the spatio-temporal impact of climate change on snow resources requires a
means of simulating the cryosphere portion of the water cycle, either as part of the larger
terrestrial water cycle or as an individual portion of it. Many models have been developed
to this end and a review of the major classes of snow models that have been described in the
hydrological literature as is discussed in Section 2.3 of this dissertation. All these snow
models are associated with their own advantages and weaknesses and no consensus has been
reached within the snow hydrological community on the optimal snow model configuration
(Essery et al., 2013; Etchevers et al., 2004; Krinner et al., 2018). Thus, to achieve Objective
1 of this dissertation, to identify the meteorological and climatological drivers of changes in
snow and ice mass balance, the snow melt behavior of the well-documented Bruarjokull
glacial catchment in South-Eastern lIceland was simulated using a novel data-driven
modelling framework. The results of which are presented in this subsection and published
in Eythorsson et al. (2018).

Previously published studies on melt modelling of Icelandic glaciers in general have focused
on simulating the behavior of these resources in a daily or finer time resolution (Carenzo et
al., 2009; de Wildt et al., 2003; de Wildt et al., 2003; Marshall et al., 2005). These studies
have considered both physical energy balance models and empirical degree day models,
which have both shown good performance in simulating diurnal melt rates. These models all
rely on data on some or all the factors that govern snow accumulation and snow melt. Given
meteorological forecasts snow models can be used to forecast snow conditions with lead
times roughly equal to those of the meteorological data used to force the model. Current
meteorological models can forecast weather conditions with reasonable accuracy several
days in advance. However, the uncertainty in the forecast increases rapidly with longer lead
times. Although the skill of Numerical Weather Prediction Models (NWPM) has been
continuously increasing in the past years (e.g. Hoffman et al., 2018), snow forecasting based
on the output of these NWPM’s is limited to lead times of several days to a few weeks.

The ability to predict snow melt behavior with longer lead times than those currently
achieved by modern day NWPM ‘s would be valuable for the water resource management in
catchments heavily impacted by snow, either due to glaciation or large amounts of seasonal
snow. The Bruarjokull catchment represents an ideal study area for seasonal snow modelling
as it is extensively glacierized and the amount of summer melt water that can be stored each
year is one of the key parameters in operating the Karahnjukar HPP. Making the ability to
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forecast the summer mass balance of the Braarjokull glacier an important goal to optimize
power plant operations.

3.1.1 Data

The Bruarjokull glacier is the largest outlet glacier of the Vatnajokull ice cap in South-
Eastern Iceland. The glacial meltwater from the Bruarjokull glacier in South-Eastern Iceland
has been mostly utilized in the Karahnjakar Hydro Power Plant (HPP) and represents most
of the inflow into the plant’s major reservoir, Halslon. As a result of the powerplant
development, the environmental conditions in Broarjokull catchment are extensively
monitored and time series of hydro-meteorological and glaciological data have been
collected for decades. The inflow into Halslon, the main reservoir of the Karahnjukar HPP,
iIs measured by Landsvirkjun, the operator of the power plant. A time series of inflow
extending from the commissioning of the plant in 2007 with hourly temporal resolution was
made available for the purposes of this research.

Mass balance data is collected in several measurement points across the Vatnajokull glaciers,
biannually. In spring, the winter snow accumulation is measured by ice core measurements
while in the fall, summer ablation is measured from ablation wires or rods that are placed on
the glacier during the spring survey (e.g. Thorsteinsson et al., 2004). The net annual mass
balance of the glacier in each measurement point can then be estimated as the winter
accumulation subtracted by the summer ablation. Figure 3-1 shows the location of the mass
balance sites on the Bruarjokull glacier.

Palsson et al., 2014 used these mass balance measurements to estimate the annual bass
balance in each of the glacial catchments on the Vatnajokull glacier. As a result, there is
available a time series of the annual glacial mass balance in the Bruaarjokull catchment
extending back to the year 1992. It should be noted that this time series of glacial mass
balance only represents the change in snow mass between the spring and fall measurement
surveys and does not consider any liquid precipitation that may fall on the glacier during the
summer nor snow that melts outside of the survey period (after the fall survey or before the
spring survey). It does however provide a reasonable proxy estimate of reservoir inflow,
which has only been measured since the commissioning of the power plant in 2007.

Several Automatic Weather Stations (AWS) are located on the Vatnajokull glacier, three of
whom are situated on the Braarjokull outlet. These AWS are designed to measure all the
components of the Surface Energy Balance (SEB). Additionally, several AWS are operated
on land in or in the vicinity of the Bruarjokull catchment. While these land-based AWS do
not measure the radiative components of the SEB they do collect data on other parameters
important for estimating the SEB, such as air temperature, humidity, wind speed and
precipitation. Figure 3-1 shows the location of the AWS site locations on and around the
Braarjokull glacier.

The Icelandic climate, and consequently mass balance of the Icelandic glaciers, is
significantly influenced by conditions in the surrounding ocean (e.g. Hanna et al., 2001,
2004). Large scale circulation patterns in the North Atlantic Ocean can be estimated by
several indices and variables. Atmospheric circulation patterns over the North Atlantic have
been shown to correlate with seasonal temperature and precipitation patterns in Iceland
(Hannaetal., 2004). In Eythorsson et al., (2018) the North Atlantic Multidecadal Oscillation
Index (NAOI) (Barnston & Livezey, 1987), as estimated by the National Oceanic and
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Atmospheric Administration (NOAA), the Atlantic Meridional Oscillation (AMO) (Kerr,
2000), the US National Oceanic Data Center (NODC) estimated quarterly heat content of
the northern Atlantic (60-0° W, 30-65° N) (Levitus et al., 2012) and measurements of sea
surface temperatures, from three locations around Iceland, observed by the Icelandic Marine
Research Institute, were evaluated as predictor variables for seasonal melt forecasting. The
North Atlantic Ocean indices have been shown to correlate with seasonal climate patterns in
northern Europe (e.g Palter, 2015; Zampieri et al., 2017).

1, % <

Upptyppingar
.. !

. /1% Karahnjikar S
- g

" Eyjabakkar,

Legend
® AWS lowland
4 AWS highland
A AWS on glacier

; %, <A . - S
3 Z \ : N
g7 oy 3 R il
\m . A N 1 WA Y *®  Ablation sites
[ Y N ™ -
5 A% 2 g

'/ Glacier
. - NN Lake
0 10 20 .;kardsfjoruvm , ,
- km/ ¢ River, spring
: Tt Y

Figure 3-1 Location of mass-balance sites and Automatic Weather Stations (AWS) where the
glaciological and meteorological data used in Eythorsson et al., (2018), were collected (from Eythorsson
et al. 2018)

3.1.2 Variable selection

The response variable in in Eythorsson et al., (2018), was the annual summer mass balance
of the Bruarjokull glacier, as estimated using the methods of Palsson et al., (2014). All the
available environmental data described in section 3.1.1 was assessed in terms of their
predictive potential by estimating their correlation to the response variable, estimated as the
square of the Pearson’s correlation coefficient, r. VVariables were ranked according to their
r? value, and variables with an r? value above a certain threshold value, ry were selected to
develop an ensemble of forecast models. The value of ry, was optimized by performing a
sensitivity analysis of the model results for model forecasts made on the 1% of July, as
described in Eythorsson et al., 2018. The variables which were ultimately selected to create
the final model ensemble are summarized in Table 3-1 with their correlation to the observed
summer mass balance of Bruarjokull.
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Table 3-1 Predictor variable selected for development of a multimodel forecast ensemble and their
correlation to the observed summer mass balance of Braarjokull, given as r? values (from Eythorsson et
al., 2018).

Variable Location r?
Net radiation BruNe (850 m a.s.) 0.65
AMO index Atlantic Ocean 0.48
Albedo BruNe (850 m a.s.l) 0.47
Albedo BruMi (1,200 m a.s.l) 0.36
Atmospheric Pressure Karahnjukar 0.35
Precipitation Egilsstadir 0.33
Ocean Heat Content North Atlantic 0.32

3.1.3 Multivariate model ensemble

The variables that showed the best predictive performance and are summarized in Table 4-
1 were used to create an ensemble of all possible multivariate linear regression models with
five or fewer input variables. The number of input variables were restricted to five or fewer
due to the risk of potential overfitting of the models. The number of models to include in the
ensemble was optimized by performing a sensitivity analysis of the model results, as
described in Eythorsson et al., 2018.

3.1.4 Multi-model inference

Many multivariate regression models can be created by combining five or fewer of the input
variables which showed predictive potential and are presented in Table 4-1. To select any
single one of these models to infer information about the response variable would recognize
the existence of several other competing models and reject their predictive potential. Thus,
the selection of any one of the possible models is a source of uncertainty in the estimation
of the response variable. Unless this uncertainty due to model selection is accounted for,
overconfident predictions may be made (Wang et al, 2009).

To eliminate model selection as a source of forecast uncertainty the average of the response
variable can be calculated over a range of plausible models, a method commonly referred to
as model averaging (Hjort & Claeskens, 2003) and is commonly used in many earth science
disciplines in cases where many competing models are possible (Dormann et al., 2018;
Fragoso et al., 2018; Hoge et al., 2019). Eythorsson et al., (2018)., used the frequentist model
averaging technique and estimated the response variable, the summer mass balance of the
Broarjokull glacier, M, as the arithmetic mean of all the plausible models according to
Equation 3.1.1.

=

M = M,, (3.1.1)

x| -

k=1

where the index k denotes the k™" model considered, K is the total number of models, M,is
the estimated ablation based on the k™ model. The uncertainty in the estimate is taken as the
spread in predicted values of the ensemble of plausible models.

26



3.1.5 Selecting an optimal subset of models for inference

The predictive quality of each of the models in the multimodel ensemble was assessed by
three evaluation metrics: The Nash-Sutcliffe efficiency (NSE), the ratio of the root mean
square error to the standard deviation of the measured data (RSR) and the percent bias. These
three metrics were recommended by Moriasi et al., (2007), for watershed simulations, their
mathematical formulae are described in Equations 3.1.2 - 3.1.4

n obs sim 2
'—1(Yi - )

NSE =1--—2 >, (3.1.2)
z:zn=1(Yi0bs_ymelm)
- (3.1.3)
Z?: Yiobs_YiSLm 2
RSR = RMSE :\/ ( )'
STDEV ops \/ZT‘_l (¥o bs_ymean)z
n(yobs_ysim), 100 (3.1.4)
PBIAS = Ui D

L (r2P) ’

where n is the number of data points in the dataset, Yobs is the observed mass balance of
Braarjokull in the i year, Ysim is the simulated mass balance in the i year and Y mean is the
mean observed mass balance. Moriasi and others (2007) suggested that a model simulation
could be judged as satisfactory if NSE > 0.5, RSR < 0.7 and PBIAS < £25%. In Eythorsson
et al., (2018) an ensemble of optimal models was created by only selecting those models
from the multimodel ensemble which met these three criteria.

3.1.6 Model Evaluation and results

The skill of the multi-model forecast ensemble created in Eythorsson et al., (2018) was
evaluated in its ability to forecast the summer mass balance of the Braarjokull glacier, in
terms of the evaluation metrics NSE, RSR and PBIAS described in Equations 3.1.2 - 3.1.4.
The model forecasts were evaluated using five-fold cross-validation, meaning that the data
were split five ways where 4/5™ of the observations were used for calibration and 1/5™ was
used for evaluation of the results. Table 3-2 shows the evaluation metrics NSE, RSR and
PBIAS for forecasts made between the 15" of May and the 1% of July.

Table 3-2 Evaluation metrics, NSE, RSR, PBIAS for forecasts made between the 15" of May and 1%t of
July (from Eythorsson et al., 2018)

Forecast Date NSE RSR PBIAS (%)
15t May -0.95 1.39 9.2
15t June 0.13 0.93 3.2
15 June 0.45 0.75 2.7
15t July 0.71 0.54 0.27

Figure 3-2 shows the model averaged forecasts of the Brdarjokull summer mass balance for
all the five folds used for cross validation for forecasts made on the 1% of July, the 1% and
15" of June and the 15" of May.

27



July 1st forecast June 15th forecast

st 1]
e ?%é$$é

Summer mass Balance [GL]

1500
1000
W AT T T T T T T T T T T — T T T T T T T T T T T T T T
2001 2002 2003 2004 2005 2006 2007 2008 2008 2010 2011 2012 2013 2014 2015 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
June 1st forecast May 15th forecast
ES
3 %
2 ELTIE AP, N Y "I M = T - -
PR B IR, 4
o .i o -
k]
3 200 o 2000 o= gl of= = Fu T amnn - A S i
@
£ 2000 -
= 1000 — Average mass bal
£ 1500 = - J
£ . o
< 1000 - % ob
T T T T T T T T T T T T T 1T — T T T T T T T T T T T T T T
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 3-2 Model-average forecasts of Bruarjokull summer mass balance for all five folds used for cross
validation (from Eythorsson et al., 2018)

The results in Figure 3-2 and Table 3-2 illustrate that satisfactory predictions of the summer
mass balance of the Braarjokull glacier were achieved when the models were run with data
that are available at the 1% of July, at which time the glacial summer melt season is starting.
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3.2 Observing global snow cover changes

Climate change can be expected to impact the extent, duration and volume of snow in areas
with both seasonal and perpetual snow cover (e.g. Adam et al., 2009; Kapnick & Delworth,
2013). Understanding how these changes are distributed spatially and temporally requires
reliable measurements of the parameters that are important for understanding and simulating
snow dynamics. Many snow datasets have been described in the literature and made
available to the research community, collected in various spatio-temporal resolution and
extent, using different measurement technologies, and containing a wide range of snow
parameters. These data sets range from individual snow pit measurements to time series of
point based in situ measurements, to distributed datasets of remotely sensed snow cover
extent (e.g. Dong, 2018). Thus, to achieve part of Objective 2 of this dissertation (assessing
the historical changes to snow conditions), the spatio-temporal changes in snow cover were
estimated using satellite derived snow cover data from the MODIS instrument on NASA’s
Terra and Aqua satellites, as it provides with a widest spatial coverage and finest temporal
resolution of any of the observational snow cover datasets available in the literature. These
results are presented in this subsection and published in Eythorsson et al., (2019)

3.2.1 Estimating Show Cover Frequency

Snow cover, which persist on the ground for extended periods and occurs regularly, is one
of the key elements governing the hydrology and ecology of an area (Vavrus, 2007). The
duration of snow cover over the year determines which species of flora and fauna can inhibit
a place (e.g. Billings & Mooney, 1968). Snow Cover Frequency (SCF) is an estimate of how
impacted by snow an area is and can be calculated as the number of snow-covered days
divided by the number of days in the year. The SCF is an important geophysical feature, as
it is a key determinant of the local surface albedo, regulating solar absorption (e.g. Cohen,
1994) and has also be used to estimate species habitat suitability (Barichivich et al., 2013).
With the advent and availability of large scale open source satellite data observations and
sophisticated computational platforms the estimation and mapping of SCF data has been
made possible for the research community, in a way hitherto impossible, to analyze and
investigate snow dynamics (e.g. Basang et al., 2017; Choudhury et al., 2021).

Many methods have been applied to remotely estimate key parameters in the terrestrial snow
cover, from both airborne vehicles and satellites using a range of sensor technologies (Dietz
et al., 2012). Data from these sensors are commonly used in hydrological modelling (e.g
Dong, 2018; Helmert et al., 2018). With improved sensing technologies and a maturing
satellite industry, global datasets with high temporal resolution observations or estimates of
snow cover have been made readily available and routinely used in snow research. One of
the key snow cover datasets for the present-day snow research community is the Moderate
Resolution Imaging Spectroradiometer (MODIS) snow cover product, which has been
available since 2000 and provides global daily snow cover extent in 500 m spatial resolution.
The MODIS snow dataset has been evaluated based on many other observational snow
datasets (e.g. Arsenault et al., 2014; Hall et al., 2019) and is frequently used to study the
observed snow dynamics over the period which has passed since the year 2000 (e.g. Dariane
etal., 2017; Lietal., 2018). In Eythorsson et al., (2019), the MODIS MOD10A1 snow cover
product was used to calculate the annual SCF globally for the period 2000-2016, and to
identify the areas where there had occurred a statistically significant change in the SCF over
that period.
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The annual SCF was calculated in 500 m spatial resolution across the globe, based on the
MODIS10A1.005 snow cover product. The MODZ10AL1 snow cover product was re-mapped
to classify each pixel as snow/ice (1) or no snow/ice (0) for each valid observation in the
dataset. To reduce the panoramic distortion caused by the curvature of the earth, which
causes overlapping satellite scan lines, observations with zenith angles greater than 25° were
removed excluded from the analysis. As this panoramic distortion has been shown to be a
cause of systematic error in snow mapping with MODIS data (Ackerman et al., 2008; Frey
et al., 2008; H Souri & Azizi, 2013). Metadata on sensor nadir angle was extracted from the
MODO9GA dataset and merged with the MOD10A1 data. The MOD10AL data was not
subjected to any additional cloud masking as the improvements made to the fifth collection
of MODIS imagery has resulted in significant improvements of its inherent cloud masking
algorithm (Frey et al., 2008) and has been shown to be in good agreement with other cloud
detection datasets (Ackerman et al., 2008; Ault et al., 2006; Wang et al., 2016). Missing
observations (due to e.g., cloud cover, sensor malfunction or polar night) were
indiscriminately excluded from the analysis.

The annual SCF was subsequently estimated for each 500x500m pixel globally as the
number of days which each pixel was covered with snow, divided by the total number of
valid observations in that pixel, for each year in the period 2000-2016. The trend in annual
SCF in each pixel over the study period was estimated using two statistical slope estimation
methods: linear regression and Sen’s estimator of slope method (Sen, 1968). The statistical
significance of the estimated trend lines was then estimated using two non-parametric
hypothesis tests: the Mann-Kendall trend test (Maurice & Kendall, 1975) and Sen’s slope
test (Sen, 1968). In general, comparable results were achieved using both statistical slope
estimation methods. However, the Mann-Kendall method was more sensitive to
misclassified pixels, especially over permanent snow cover. Sen’s slope estimation method
showed more resilience to outliers due to misclassified pixels and was thus used in all
subsequent analysis. Statistically significant changes to snow cover in each pixel was
reported at two confidence levels (o =0.01 and a = 0.05).

Figure 3-3 shows a map of the areas which were shown to have experienced a statistically
significant increase in SCF (blue) and a statistically significant decrease in SCF (red) over
the period 2000-2016, as estimated using the Sen’s slope estimation method for the a = 0.05
confidence level. The results presented in Figure 3-3 show that over the period that the
MODIS data has been collected (2000-2016) there has been a statistically significant
decrease in the SCF in large areas of the continental subarctic. At higher latitudes, especially
near the Arctic coastline extended areas where the SCF had increased during this period were
observed. This pattern of increasing SCF is observed in the north-western Canadian and
Alaskan arctic coastline, the eastern Siberian coastline and to a slightly lesser extent in
northern Fenno-Scandia and Iceland. However, on the western coast of Greenland and the
southern part of Novaya Zemlya the opposite trend, of increasing SCF was observed. This
incongruity of SCF patterns on the coastline surrounding the Arctic seas is interesting. It is
most likely explained by that in Western Greenland and Novaya Zemlya the decreasing SCF
is observed due to deglaciation and the loss of permanent snow cover (Carr et al., 2014;
Melkonian et al., 2016; Straneo & Heimbach, 2013), whereas in the North American,
Eurasian Arctic the patterns of increasing SCF may be due to an increasing volume of winter
precipitation which causes a deeper winter snowpack and may extend the duration of the
annual snow cover (Kopec et al., 2016; Singarayer et al., 2006).
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Figure 3-3 Areas of increasing (blue) and decreasing (red) SCF, as estimated using Sen’s slope estimation
method at the a = 0.05 confidence level.

Eythorsson et al. (2019) estimated that 8.3% of the Arctic land surface has experienced a
statistically significant (a0 = 0.05) change in the local SCF over the MODIS period (2001-
2016). Over the same period the average Arctic SCF, below 500 m.a.s.l., was found to have
decreased by 0.25% per year, or by 9.1 days per decade. These results are in line with the
findings of prior research which have estimated changes to the snow regime in this area. The
number of snow covered days (SCD) in the Northern Hemisphere (NH) was estimated to
have decreased by 5.3 days/decade over the MODIS period by Yunlong et al., (2018) using
remotely sensed MODIS, IMS and AMSR-e data. Hori et al., (2017) showed that over the
period 1979-2009 the frequency of snow cover over the NH had decreased by 10 days /
decade, estimated using remote sensing data from MODIS and AVHRR. This trend of
decreasing NH SCF has also been simulated based on hydro-climatological datasets. Liston
& Hiemstra, (2011), used the MERRA reanalysis product to model NH snow cover over the
period 1979-2009 and observed an average decrease in NH SCD by 2.5 days/decade.
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3.3 Estimating and predicting changes to global
climate classifications

Climate projections, like those produced by GCM’s, estimate future conditions in climate
state variables based on predicted changes to forcing variables that determine spatio-
temporal changes in the state of the climate. The output of such models are thus the values
of the state variables at each time increment that the model is run in, distributed across the
spatial extent over which the model is run. Although such information about parameters such
as temperature and precipitation in a distributed grid across the globe is valuable for many
applications, further abstractification of the climate model output can provide insight into
important aspects of climate change and the impacts it will have on many processes on the
earth’s surface. One way to abstractify this data is to use it to categorize areas of climate
regions that are meaningful in some physical or biological sense. One of the most commonly
used climate classifications systems is the Koppen-Geiger system, which has been applied
to a range of studies in many scientific disciplines (Beck et al., 2018; Kottek et al., 2006;
Peel et al., 2007). Thus, in order to achieve the second part of Objective 2 of this dissertation
(assess the historical changes in the climate regime), the spatio-temporal changes in Képpen-
Geiger climate classifications were estimated using the ensemble of Global Circulation
Models (GCM’s) from the fifth project phase of the Coupled Model Intercomparison Project
(CMIP5) (Taylor et al., 2012), as these models make up the key scientific background for
the International Panel on Climate Change (IPCC) policy recommendation for global
policymakers, and thus represent the one of the most relevant estimates of future climate
conditions for humanity. These results are presented in this subsection and published in
Eythorsson et al., (2019).

3.3.1Koppen-Geiger classification system

The local climate of an area is a key characteristic of that region in the minds of most of its
human inhabitants. It determines which species of animals and plants can reside there and it
impacts our level of comfort, our lifestyles and can even impact our mental health. It is one
of the most distinctive feature changes that we notice while travelling from place to place.
Using spatio-temporal estimates of climate classifications to visualize and quantify climate
variation and change is a valuable method for researching the impacts of climate change (e.g.
Chen & Chen, 2013) and to disseminate the work of the scientific community to the general
public in way that resounds with their experiential reality (e.g. Jylhé et al., 2010).

The Koppen-Geiger (KG) climate classification system has been widely used in a range of
disciplines to classify local climates. The system classifies the climate of an area based on
monthly average measurements of air temperature and precipitation and can be applied to
point measurements from individual weather stations or in a distributed grid, using a
distributed meteorological dataset. The classification criteria of the Koppen-Geiger
classification system are presented in Table 3-3. The system assigns climates into five main
groups, A (tropical), B (Arid), C (temperate), D (continental) and E (polar). All groups except
the polar climates (group E) are further divided into seasonal precipitation subgroups,
marked by the second letter in the climate class, and finally all groups except the tropical
climates (group A) are assigned a temperature subgroup, indicated by the third letter in the
climate class. Thus, for example, climate class Csa represents temperate climate with dry
and hot summers.
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Table 3-3 Criteria for Kdppen-Geiger classifications and their symbols

1st  2nd - 3rd Description Criteria®
A Tropical Teold > 18
f -Rain forest Pary 260
m -Monsoon Not Af and Pary = 100-MAP/25
w -Savannah Not Af and Pary < 100-MAP/25
B Arid MAP < 10*Pthreshold
w -Desert MAP < 5*Pthreshold
S -Steppe MAP 2 5*Pthreshold
h -Hot MAT > 18
k -Cold MAT < 18
C Temperate Thot > 10 & 0 < Teotd < 18
S -Dry Summer Psdry < 40 & Psdry < Pwwet/3
w -Dry Winter Pwdry < Pswet/10
f -Without dry season Not Cs or Cw
a -Hot Summer Thot > 22
b -Warm Summer Not a & Tmonl0 >4
C -Cold Summer Notaorb & 1<Tmnl0<4
D Cold Thot > 10 and Teola <0
S -Dry Summer Psdry < 40 & Psdry < Pwwet/3
w -Dry Winter Pwdry < Pswet/10
f -Without dry season Not Ds and Not Dw
a -Hot Summer Thot > 22
b -Warm Summer Not a & Tmon10 >4
C -Cold Summer Nota,bord
d -Very Cold Winter Not a or b & Teold <-38
E Polar Thot <10
T -Tundra Thot >0
F -Frost Thot <0

* MAP = Mean annual precipitation, MAT = mean annual temperature, Trot = temperature of the hottest
month, Teld = temperature of the coldest month, Tmonio = number of months with mean temperatures above
10, Pary = precipitation in the driest month, Psary = precipitation in the driest month in summer, Pwary =
precipitation in the driest month in winter, Pswet = precipitation in the wettest month in summer, Pwwet =
precipitation in the wettest month in winter, Ptnreshola = varies according to: (if 70% of MAP occurs in winter
then Pihreshold = 2*MAT, if 70% of MAP occurs in summer then Pihreshold = 2*MAT+28, otherwise Pihreshold = 2*MAT
+14). Summer (winter) is defined as the warmer (cooler) six-month period of ONDJFM and AMJJAS.

From Peel et al., 2007

3.3.2 Projecting future Climate Classifications

In Eythorsson et al., (2019) a code was developed in Google Earth Engine (GEE) (Gorelick
et al., 2016) to classify local climates according to the KG classification criteria presented
in Table 3-3. The code was applied to classify the climate of each pixel (0.2-degree
horizontal resolution) globally for each year in the time period 1950-2100, using temperature
and precipitation data calculated from the ensemble average of the downscaled and bias
corrected CMIP5 GCM results as published in the NASA-NEX GDDP dataset (Thrasher et
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al., 2006), for both the Representative Concentration Pathway (RCP) RCP4.5 and RCP8.5

scenarios (van Vuuren et al., 2011).

Figure 3-4 shows an example of the global annual KG classifications for the years 1951 and
2099 produced in Eythorsson et al. (2019). The results show a general trend across the globe
where warmer climate classes migrate to higher latitudes, replacing the colder climate
classes. Nowhere is this warming trend as apparent as in the Arctic and continental sub-
Arctic where climate classes associated with warm and hot summers are expected to replace
cold summer and polar climates over large areas. This migration of warmer climate classes
into high latitude areas was found to be more rapid and widespread under RCP85 as
compared to RCP45. However, under RCP45 the coverage of the currently most common
climate class in the Arctic (Cold climate with cold summers and no dry season, Dfc) is

expected to decrease by about 40% by the year 2100.
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Figure 3-4 Examples of annual Képpen-Geiger (KG) classification maps for year 1951 (upper) and

2099 given the RCP45 emission scenario (lower).

The Koppen-Geiger classifications projected in Eythorsson et al. (2019), can be explored in
more detail in an online app developed by the first author. The app, available through the

following
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https://dareyt.users.earthengine.app/view/koppengeiger2  presents

an


https://dareyt.users.earthengine.app/view/koppengeiger2

interactive map of the global KG classifications for the periods 1950-1960 and 2090-2100
under both the RCP4.5 and the RCP8.5 emission scenarios based on the ensemble average
of the 21 CMIP5 GCMs in the NASA NEX GDDP database. The application allows the user
to compare side by side how local climates are expected to change over the period 1950-
2100 depending on future emission scenarios.

Figure 3-5 shows a screenshot of the KG classification app developed by the author. The
KG classification for the period 1950-1960 are shown on the leftmost pane, the middle pane
shows the KG classifications for the period 2090-2100 under the RCP45 emission scenario
and the rightmost pane shows the classifications for the period 2090-2100 under the RCP85
emission scenario.

' : Experimental -
Earth Engine Apps ™" Q_ Search places
19300960 2000-2100 RCP4.5 2000-2100 RCPS.5

5
f.l ab

g ] i .
= ; w i

f

& T 'y '
1] 'vl ‘ ‘ wl # o LB
) p : L ol
[ W i b 1
2 A F ‘ =
Legend: [l Af [l Am Aw [l Bwh BWK BSh BSk Csa csb [l csc CWa cwb [l cwe CFa crb [l crc [l osa [l osb [l psc [l psd owa [l owb [l owe i

Figure 3-5 Snapshot of the KG classification app developed from the results of Eythorsson et al., (2019).

In Eythorsson et al., (2019) climate change over an area was estimated as a change in KG
classification over that area due to a change in local temperature and precipitation patterns
over time, given the RCP45 emission scenario. Figure 3-6 shows the proportional coverage
of the Polar climate classes (ET and EF) and the four tertiary subgroups of the Cold climate
classes, Warm summer (Dsb, Dwb, Dfb), Hot summer (Dsa, Dwa, Dfa), Cold summer (Dsc,
Dwc, Dfc) and Very cold winter (Dsd, Dwd, Dfd), across the Arctic for each year in the
period 1950-2100 with a 15 year rolling average. The most common climate classes in the
Arctic, covering about 50% of its area at present, are the cold climate classes with cold
summers (Dfc, Dsc and Dwc). Climate classes associated with very cold winters (Dwd and
Dsd) and polar climates (ET and EF) are expected to decrease in coverage steadily
throughout the study period. Climate classes associated with warm (Dfb, Dsb and Dwb) and
hot summers (Dfa, Dsa and Dwa) were shown to increase in their coverage throughout the
period, with a notable acceleration in the rate of increase after the turn of the 21° century.
The results of Eythorsson et al., (2019), showed that during the period 1950-2020 cold
summer classes are rapidly replacing polar (ET and EF) and very cold winter (Dwd and Dsd)
climate classes, with cold summer classes reaching a peak coverage around year 2020,
whereas in the latter part of the study period (2020-2100) classes with warm (Dfb, Dwb and
Dsb) and hot summers (Dfa, Dwa and Dsa) were projected to advance further north into the
Arctic, resulting in net decline in the coverage of the cold summer climate classes.
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Figure 3-6 Proportional areal coverage of the most common groups of KG classes in the Arctic, below
500 m.a.s.l., for the period 1950-2100. A 15-year rolling mean is shown as a solid line (from Eythorsson
et al., 2019)

Table 3-4 shows the proportional areal coverage of the Polar and Cold Climate classes within
the Arctic and the changes in that proportional coverage between the periods 1951-1960 and
2090-2099. The results show that over the study period the coverage of the most common
Acrctic climate class in the beginning of the period, cold climate with cold summers and no
dry season (Dfc) is expected to decrease by 41% while the second most common class, Polar
tundra (ET) is expected to decrease by 34%. The results showed that as these colder climate
classes recede further north, climate classes associated with warm and hot summers are
expected to expand in coverage by 185% and 733% respectively, under the RCP45 scenario.

Table 3-4 Proportional coverage of Polar and Cold climate classes within the Arctic AMAP boundary
and the changes between the periods 1951-1960 and 2090-2099 (from Eythorsson et al., 2019).

1951-1960 2090-2099 Net Change

Polar | 26.4% 17.3% -35%

Polar Frost (EF) 0.4% 0.1% -86%
Polar Tundra (ET) 26.0% 17.2% -34%

Very Cold Winters | 15.9% 3.1% -80%

Dry Winters (Dwd) 4.3% 0.1% -97%

Dry Summers (Dsd) 11.5% 3.0% -74%

£ Cold Summers | 49.1% 43.8% -11%

§ No Dry Season (Dfc) 30.4% 18.0% -41%

S Dry Winters (Dwo) 2.9% 1.8% -36%
S Dry Summers (Dsc) 15.8% 23.9% 51%

Warm Summers | 6.6% 18.7% 185%

No Dry Season (Dfb) 4.3% 12.9% 197%

Dry Winters (Dwb) 0.2% 1.2% 518%
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Dry Summers (Dsb) 2.1% 4.6% 126%
Hot Summers | 2.0% 16.9% 733%
No Dry Season (Dfa) 0.9% 7.6% 770%
Dry Winters (Dwa) 0.5% 1.1% 125%
Dry Summers (Dsa) 0.7% 8.3% 1099%
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3.4 Comparing trends in climate classifications
and Snow Cover - an Arctic case study

Eythorsson et al., (2019), compared the changes in KG climate classifications with changes
in the local Snow Cover Frequency (SCF), as estimated from the MOD10A1.005 dataset,
described in Section 4.2, within 10 selected study areas in the Arctic. Figure 3-7 shows the
location of the study areas which were selected as they have been defined by the Arctic
Monitoring and Assessment Program (AMAP) as specific pollution prevention areas,
because they are considered to be especially vulnerable to human development and climate
change (AMAP, 2015). The study areas were restricted to the Arctic lowlands, under 500
m.a.s.l., as these are the areas which are most important for human development in the
region. Figure 3-7 also shows the Arctic area, as delineated by AMAP, with a red dotted
line.
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Figure 3-7 The Arctic area (AMAP, 2015) and the 10 pollution prevention areas in the Arctic which were
selected for comparing changes in the snow and climate domains (from Eythorsson et al., 2019)
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Figure 3-8 shows the annual SCF and the proportional coverage of the two most common
KG classes in each of the study areas shown in Figure 3-7, for the period 2001-2016. The
trends were estimated using least square linear regression and the significance of the slope
of the proportional coverage of the KG classes was estimated using the non-parametric Sen’s
estimator of slope and Mann-Kendall methods.

The results showed evidence for statistically significant changes (a = 0.05) to one or both
main KG climate classes in seven of the ten study areas over the period 2001-2016. In all
these cases there had occurred a warming trend, which was observed as either a statistically
significant decrease in a colder climate class or an increase in a warmer climate class, or
both. When compared to the changes in SCF in these same areas three distinct patterns were
revealed: (i) in the northernmost areas of the Arctic (Canadian Arctic Archipelago, Svalbard
& East Greenland, Taymir Peninsula & Norilsk Area) no significant trends were observed
in the KG climate classifications as well as the smallest changes to the SCF, (ii) in the study
areas closer to the Atlantic Ocean (Baffin Iceland & West Greenland, Kola Peninsula &
Northern Fennoscandia, Novay Zemlya & Kara and Pechora Areas) significant warming
trends were observed over the same period that the SCF had decreased significantly in many
areas, and (iii) in the study areas closer to the Pacific Ocean (Lower Mackenzie river and
delta area, Northern Alaska, Chuckotsky peninsula, Lena river delta) significant warming
trends were observed over the same period that the SCF had increased.
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Figure 3-8 Snow Cover Frequency (SCF) and proportional coverage of the two most common KG
classes in each study area over the period 2001-2016 (from Eythorsson et al., 2019).

Table 3-5 shows the estimated changes in the coverage of the two main KG classifications
in each of the 10 areas studied in Eythorsson et al. (2019), over the period 2001-2016 and
the percentage of the study areas which are below 500 m a.s.l. where a statistically significant
SCF trend was observed. The results presented in Table 3-5 show a statistically significant
trend in one or both most common climate classes in seven of the ten study areas considered.
These same areas had proportionally the largest areas where the SCF had experienced a
statistically significant change in the local SCF (4.8 — 13.6% at o = 0.05).
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Table 3-5 Changes in coverage of the two main KG classes in the period 2001-2016 and the percentage of study areas below 500 m.a.s.l. showing a significant SCF
trend. Significant results at the o. = 0.05 confidence level are in bold. (From Eythorsson et al., 2019)

SCF significant area [%]
1¢ KG Class 2 KG class
(%pos. / %neg.)
Change 2001- MK Change 2001- MK
Area Name Sen’s slope Name Sen’s slope a=0.05 a=0.01
2016 [%] p-value 2016 [%] p-value
Cold summer no 3.6 0.9
Arctic AMAP area -7.7% 0.255 inSign Tundra (ET) -5.99% 0.025 Sign
dry season (Dfc) (+0.8/-2.8) (+0.2/-0.7)
Cold summer no 11.5 3.7
Chukotsky Peninsula -21.60% 0.72 inSign Tundra (ET) -77.00% 0.0006 Sign
dry season (Dfc) (+11.4/-0.07) (+3.7/-0.0)
Cold summer very Cold/dry summers 13.6 6.4
Lena River Delta -25.30% 0.006 Sign 490.50% 0.005 Sign
cold winter (Dfd) (Dsc) (+12.9/-0.7) (+6.2/-0.2)
Cold summer no Dry summer very 1.8 0.4
Taymir Peninsula, Norilsk Area 0.70% 0.881 inSign 13.30% 0.805 inSign
dry season (Dfc) cold Winter (Dsd) (+1.4/-0.4) (+0.3/-0.1)
Novaya Zemiya, Kara & Pechora Cold summer no Warm summer no 4.8 1.6
-30.20% 0.009 Sign 198.60% 0.006 Sign
Seas, Mouth of Pechora River dry season (Dfc) dry season (Dfb) (+0.5/-4.3) (+0.1/-1.5)
Kola Peninsula & Northern Warm summer no Cold summer no 9.1 3.6
29.60% 0.009 Sign -62.20% 0.003 Sign
Fennoscandia dry season (Dfb) dry season (Dfc) (+2.3/-6.8) (+0.7/-0.29)
Warm summer no 1.2 0.9
Svalbard and Eastern Greenland -3.40% 0.52 inSign Tundra (ET) -1.30% 0.21 inSign
dry season (Dfb) (+0.6/-1.6) (+0.2/-0.7)
Baffin Island and West Greenland Cold summer no 7.8 3.0
Tundra (ET) -7.00% 0.025 Sign 5.00% 0.042 Sign
Area dry season (Dfc) (+3.1/-4.7) (+1.1/-1.9)
Canadian Arctic Archipelago & Cold/dry summers 13 0.5
Tundra (ET) -8.10% 0.255 inSign 6.50% 0.22 inSign
Arctic Islands (Dsc) (+0.08/-1.2) (+0.2/-0.3)
Lower Mackenzie River and Delta Cold/dry summers Dry/hot summers 11.3 4.5
-11.29% 0.21 inSign 32.78% 0.02 Sign
area (Dsc) (Dsa) (+10.7/-0.6) (+4.3/-0.2)
Northern Alaska and North slope Cold/dry summers Dry/hot summers 11.1 4.3
4.03% 0.45 inSign 84% 0.006 Sign
area (Dsc) (Dsa) (+11.05/-0.05) (+4.3/-0.0)
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The warming trend observed across the Arctic in Eythorsson et al., (2019), is unsurprising
as there is a consensus that the Arctic is warming at an amplified rate as compared to the
global average. A phenomenon known as polar amplification which has been documented
in present and historical periods of rapid climate change (J. Cohen et al., 2014; Serreze &
Barry, 2011; Serreze & Francis, 2006). However, the observed regional differences in how
snow resources respond to this warming are notable, and important for local hydrological
and ecological adaptation strategies in these areas. In the northernmost areas (i) the local
temperature has indeed risen; however, this rise has not resulted in a change in climate
classification. Since there has not been any notable change in the general climatology of
these regions, they are not expected to have undergone major snow hydrological changes. In
the regions closer to the Atlantic Ocean (ii) cold climates are replacing polar climate and
warm and hot summer climates are replacing cold summer climates within the Cold climate
group, in line with this shift toward warmer climates the local SCF has decreased in large
areas. In the study areas closer to the Pacific Ocean (iii) the same climate warming trends
are observed as in ii), however, this rise in temperature has been accompanied with a larger
increase in precipitation, as sea ice concentrations in these areas has decreased significantly
in recent years, increasing local evaporation- and, subsequently, precipitation rates
(Maslanik et al., 2011; Serreze & Stroeve, 2015), which is likely to increase both the
frequency and volume of snowfall.
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3.5 Projecting changes to NH snow resources
under different climate change scenarios

The conclusions of Eythorsson et al., (2019) showed that significant changes were estimated
to have occurred in the climate and snow regimes in the Arctic over the last decades. To
understand how snow resources will continue to be impacted by a changing climate, future
snow conditions must be simulated based on current best estimates of future climate
conditions. As demonstrated by Eythorsson et al., (2018) seasonal ablation behavior in areas
with abundant snow and ice resources can be predicted reasonably well a few months in
advanced based on the initial conditions of the surrounding hydro-climatological system and
as discussed in Section 2.3 of this dissertation, reliable shorter term forecasts can be
produced based on initial state variables and meteorological forecasts. However, to simulate
large scale snow response to climate change over a longer time frame, snow conditions
should be simulated based on the results of scientifically accepted climate model results.
Thus, in order to achieve Objective 3 of this dissertation, snow conditions were simulated
based on the CMIP5 GCM ensemble for the time period 1950-2100 in a 0.2-degree
horizontal resolution, using the Snow17 conceptual snow model which has been used by the
National Weather Service River Forecast System (NWSRFS) since the 1970’s (E. Anderson,
2006). The results of which are presented in this subsection and Eythorsson et al., (2023b).

3.5.1 Methods

As discussed in Section 2.3 of this dissertation there exists a wide selection of snow models
which have been developed for a range of applications. In Eythorsson et al. (2023b) the
Snowl7 model (Anderson, 2006) was selected since: it has low input data requirements
(temperature and precipitation); it has an extensive record of operational use with the
National Weather Service River Forecast System (NWSRS); it provides estimates of many
key snow variables which are empirically approximated; and it has been applied to several
regional studies on climate change impacts to snow resources (e.g. Miller et al., 2011; Notaro
etal., 2014).

The Snow17 model is a conceptual snow accumulation and snow melt model simulates the
most relevant processes that occur within a snowpack, including heat storage, water
retention, transmission of liquid water and snow melt. The model simulates these key
processes based on a temperature index approach and the only data inputs required are
temperature and precipitation. The Snow17 model simulates the snowpack as a single layer
and can be applied to point measurements or in a distributed grid. The outputs of the Snow17
model are the Snow Water Equivalent (SWE) of stored snow and the outflow (precipitation
runoff and snowmelt) in each grid point for each time step with which the model is run.

Tools and datasets

In Eythorsson et al. (2023b), Google Earth Engine (GEE) (Gorelick et al., 2016) was used
to access the data used in the study, to perform the model simulations as well as to perform
all spatio-temporal and statistical analysis of the results. ArcMap 10.7.1 was used to produce
the illustrations of the results presented in the Article and this section. Table 3-6 summarizes
the datasets used in Eythorsson et al. (2023Db).
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Table 3-6 Datasets used for snow modelling and parameter estimation and model evaluation (from
Eythorsson et al. 2023b)

Dataset Description Purpose Reference
MOD10A1 D. K. Hall, Sal
?/002 MODIS/Terra snow cover product. Model evaluation ( 2 I:ig,gss? Zc)OnIZ;\son,

- Model evaluation
GLDAS-2 Global daily hydro- meteorological data | - Model forcing (Rodell et al., 2004)
- Parameter estimation

NASA NEX- Ensemble of 21 daily downscaled and bias

GDDP corrected GCMs from the CMIP5 project. Model forcing (Thrasher et al., 2006)
GTOPO30 Global Digital Elevation Map (DEM) Parameter estimation (LP-DAAC, 2004)

GLCF Global Land Cover Data Parameter estimation (Sexton et al., 2013)
WGS43261 Arctic permafrost map Parameter estimation (Brown et al., 2002)

Parameter estimation

The Snow17 model requires eleven model parameters to operate. These model parameters
must be specified by the user of the model and if the model is run in a distributed fashion,
the model parameters must be evaluated in each grid cell to which the model is applied. In
Eythorsson et al., (2023b), model parameters were determined based on previously
published guidelines for the Snow17 model depending on local conditions, as estimated from
global hydro-climatological datasets. The following are descriptions of the Snow17 model
parameters along with the methodology applied to parameter estimation for each. The
parameter values and source methodology used for the parameter estimation in Eythorsson
et al. (2023b) are summarized in Table 3-7.

Table 3-7 Snow17 parameters, description, value ranges and estimation methodology (from
Eythorsson et al. 2023b)

Parameter Description Range Units Methodology
GCF Gauge under-catch factor 1.0 - Andersson, (2006)
MFMAX Maximum Melt Factor 0.7-2.4 mm/°C*6h Mizukami & Koren, (2008)
MFMIN Minimum Melt Factor 0.001-1.5 mm/°C*6h Mizukami & Koren, (2008)
UADJ Average wind during rain on snow 0.02-0.4 mm/mb Andersson, (2006)
PXTEMP Temperature determining rain/snow -1-3 °C Andersson, (2006)
MBASE Base temp. where melt occurs 0 °C Andersson, (2006)
NMF Maximum negative melt factor 0.05-0.3 mm/°C*6h Andersson, (2002)
TIPM Antecedent temperature index 0.05-0.2 - Andersson, (2002)
PLWHC Liquid water holding capacity 0.02-0.3 % Andersson, (2002)
DAYGM Constant basal melt rate 0-0.3 mm/day Andersson, (2006)

Gauge Catch Factor (GCF)

The GCF corrects the amount of new snow recorded for each time step to account for gage
catch deficiency, blowing snow across areal divides and sublimation. The forcing datasets
that were used in this project do not suffer from gage catch deficiencies since the GLDAS
precipitation is estimated from satellite observations (Matthew Rodell et al., 2004) and the
NASA-NEX GDDP dataset is downscaled and bias corrected using the GMFD dataset which
has been corrected for gauge undercatch errors (Sheffield et al., 2006). Also, when
simulation across long time periods with multiple snow fall events, gage catch efficiencies
can be assumed to cancel out (E. Anderson, 2006). When simulation snow cover across large
areas, the amount of snow transferred across areal divides can be assumed to be negligible
(Anderson, 2002). The GCF was therefore set to be 1 globally in Eythorsson et al., (2023b).
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Maximum Melt Factor (MFMAX)

The Snow17 model uses a melt factor to estimate the amount of surface snowmelt that occurs
based on air temperature, precipitation volume and precipitation temperature (Anderson,
2006). The melt factor oscillates sinusoidally between a maximum value, MFMAX, which
occurs at the summer solstice (21% of June) and a minimum value, MFMIN, which occurs at
the winter solstice (21% of December). MFMAX was estimated for each model grid cell
based on the average surface energy balance in that grid cell, as proposed by Mizukami &
Koren, (2008), as described by Equation 3.5.1 :

1.03 % (1 —g) * Rpp + 2.04 + 0.42 x u (3.5.1)
2(R+ 1)

MFMAX =

Where g is the percent forest cover in each grid cell, Rpg is the ratio between solar insolation
at ground level with topography and without topography, R is the ratio between solar
insolation in the winter and in the summer and u is the wind speed at 10m above the surface.
The percent forest cover in each grid cell, g, was estimated based on the tree canopy cover
dataset from the Global Land Cover Facility (GLCF) (Sexton et al., 2013). In Eythorsson et
al., (2023b), Rpe was estimated in a distributed grid using the methods of McCune & Keon,
(2002) and elevation data from the Global Digital Elevation Map (GTOPO30) dataset (LP-
DAAC, 2004). To estimate R, the average winter and summer solar insolation were
estimated in a distributed grid as the net average incident shortwave radiation in winter
(December-February) and summer (June-August) from the GLDAS dataset (Matthew
Rodell et al., 2004) for the period 1950-1999. The average wind speed, u, was estimated in
a distributed grid as the mean wind speed in June from the GLDAS dataset for the period
1950-1999.

Minimum Melt Factor (MFMIN)

MFMIN occurs on the winter solstice and represents the smallest value of the melt factor in
each grid cell over the year as it occurs at a time with the lowest amount of surface radiation.
In Eythorsson et al., (2023b), MFMIN was estimated in a distributed grid based on the local
Surface Energy Balance (SEB) according to the methods proposed by Mizukami & Koren,
(2008), as described by Equation 3.5.2:

MFMIN = R « MFMAX (3.5.2)

Where R is the ratio between solar insolation in the winter and in the summer, which
estimated as the ratio between the net average incident shortwave radiation in winter
(December-Feb) and summer (June-August) from the GLDAS dataset for the period 1950-
1999.

Snow cover Index (SI)

Sl is a model parameter which describes the mean areal Snow Water Equivalent (SWE)
above which there is always 100% areal snow cover. In Eythorsson et al., (2023b), the SI
parameter was set at 999 mm globally based on the guidelines presented in Anderson,
(2002). As the model resolution is course enough that a range of topography can reasonably
be expected in each grid cell the SI parameter was not distributed spatially.

Areal Depletion Curve (ADC)
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The ADC is a curve that defines the areal extent of snow cover as a function of how much
of the original snow remains after significant bare ground has opened after a melt event and
thus implicitly accounts for the reduction in areal melt rates as less area is covered by snow.
In Eythorsson et al., (2023b) the ADC was varied linearly between 0-1 based on the ratio of
the SWE state variable at each model timestep in each grid cell and Sl according to the
guidelines in Andersson., (2006) as described by Equation 3.5.3:

SWE

Adjusted wind speed (UADJ)

UAD)J describes the average wind function during rain on snow events and is used in the
model to estimate the sensible and latent heat transfer components of the snowpack SEB. In
Eythorsson et al., (2023b) UADJ was estimated in a distributed grid based on the guidelines
presented in Andersson., 2002, as described by Equation 3.5.4:

UADJ = 0.002 * u, (3.5.4)

Where uy is the six-hour wind travel in km, one meter above the snow surface. In Eythorsson
et al., (2023b), UADJ was estimated as the average wind speed from the GLDAS wind field
for the period 1950-19909.

Precipitation Partition (PXTEMP)

The portion of precipitation that falls as snow vs. rain is described by the model parameter
PXTEMP. The form of precipitation varies based on air temperature and below a set value,
PXTEMPL, all precipitation falls as snow and above a set value, PXTEMP2, all precipitation
falls as rain. In Eythorsson et al., (2023b) PXTEMP1 was set to -1°C and PXTEMP2 was
set to 3°C globally and between these values the PXTEMP parameter was varied linearly,
based on the guidelines presented in Anderson, (2006).

Melting Point Temperature (MBASE)

MBASE is to determine the temperature gradient for non-rain melt computations and
represents the temperature at which snow begins to melt. In Eythorsson et al., (2023b) the
MBASE parameter was set to 0°C globally, based on the guidelines presented in Anderson,
(2006)

Negative Melt Factor (NMF)

The negative melt factor is used in the Snow17 model to determine the energy exchange at
the snow-air boundary when melt is not occurring, and it has the same seasonal variation as
the non-rain melt factor. Andersson, 2002, recommends a maximum NMF range of 0.05 to
0.30, where lower NMF values are associated with areas where the average snow density is
less than 0.3 g/ml and higher values associated with areas where snow density is generally
higher than 0.5 g/ml. In Eythorsson et al., (2023b), snow density was estimated in a
distributed grid from the snow depth and snow water equivalent from GLDAS-2 for the
period 1950-1999. For areas with low snow densities (<0.3 g/ml) NMF was set to 0.05,
where snow density was high (>0.5 g/ml) NMF was set to 0.3, and linearly interpolated
between these values elsewhere.

Antecedent Temperature Index (TIPM)
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TIPM is an antecedent index of snow pack temperatures near the surface. Anderson, (2002)
recommends TIPM values of 0.05 for areas with generally deep snowpack (greater than 3
feet maximum depth) and values of 0.2 for areas with shallow snowpack (less than 1 foot).
In Eythorsson et al., (2023b) the mean annual maximum snow depth was calculated in a
distributed grid from the GLDAS-2 dataset for the period 1950-1999. For areas with deep
snowpack (> 3 ft) TIPM was set to 0.05, for areas with shallow snowpack (< 1 ft) TIPM was
set to 0.2 and for areas with medium snowpack (1ft < & < 3ft) TIPM was interpolated
linearly.

Physical Liquid Water Holding Capacity (PLWHC)

PLWHC is given as the decimal fraction of ice in the snow. Anderson, (2002) recommends
PLWHC values between 0.02 and 0.05 with the lower values associated with areas with deep
snow cover. In Eythorsson et al., (2023b) the mean annual maximum snow depth was
estimated in a distributed grid from GLDAS for the period 1950-1999. For areas with deep
snowpack (> 3 ft) PLWHC was set to 0.02, for areas with shallow snowpack (< 1 ft) PLWHC
was set to 0.05 and for medium snowpack (1ft < & < 3ft) PLWHC was interpolated linearly
between these values.

Basal Melt Rate (DAYGM)

DAYGM describes the constant daily amount of melt at the ground snhow interface
(mm/day). Anderson, (2002) recommends DAY GM values between 0 for generally frozen
soils to 0.3 in areas with intermittent snow cover or temperate climates. In Eythorsson et al.,
(2023b) frozen soils were identified using the NH permafrost map from the National Snow
and Ice Data Center (Brown et al., 2002). In areas with continuous permafrost DAY GM was
set to 0.0, in areas with discontinuous permafrost DAY GM was set to 0.1, in isolated patches
of permafrost DAY GM was set to 0.2 and in other areas DAY GM was set to 0.3.

Model Evaluation

In Eythorsson et al., (2023b) the Snow17 model results were evaluated based on distributed
historical data on the Northern Hemisphere (NH) Snow Water Equivalent (SWE) and Snow-
Covered Area (SCA). The model was run with two different forcing datasets for evaluation
purposes: i) NASA NEX-GDDP and ii) GLDAS-2. The simulated snow conditions were
compared to a) SCA from the MODIS/TERRA snow cover dataset (MOD10A1.v006). b)
SCA calculated from the GLDAS-2 dataset and ¢) SWE from the GLDAS-2 dataset. The
model was evaluated for the period of the 2004 water year. This year was selected as it is in
the overlap between the data availability of MODIS/TERRA (2001- 2020), GLDAS-2
(1948-2010) and historic GDDP data (1950-2006) and it had an average SWE across the NH
within that period of overlap.

The model was forced with both the NASA NEX-GDDP dataset and the GLDAS-2
dataset for the historical period to i) compare the accuracy of snow conditions simulated
using bias corrected GCM results and simulations based on an assimilated data product that
incorporates satellite- and ground based observational data with land surface modelling and
data assimilation techniques and ii) to assess the NASA-NEX GDDP results in light of the
model’s capability to replicate the GLDAS-2 SWE field, using forcing data from that same
dataset.

The correlation between the simulated and observed daily SWE and SCA was
estimated by calculating the Pearson’s Correlation coefficient, R, for all combinations of
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simulations and observations. The ratio between the root mean square error and the standard
deviation (RSR) was also calculated for all combinations of simulations and observations
for both SWE and SCA. Simulations were considered satisfactory if RSR < 0.7 as suggested
by Moriasi et al., (2007).

Snow Projections

In Eythorsson et al., (2023b) the Snow17 model was run in GEE to simulate daily snow
conditions across the Northern Hemisphere (NH) over the period 1950-2100 in a 0.2°
horizontal resolution. The model was forced with daily temperature and precipitation data
from the ensemble of the 21 downscale and bias corrected GCM results from the CMIP5
study, as contained in the NASA-NEX GDDP dataset. The model was initialized at the
beginning of each water year during the study period so that it would not store water between
years.

3.5.2Results

Model Evaluation

The model was evaluated based on both Snow Cover Frequency (SCF) and Snow Water
Equivalent (SWE) for the 2004 water year. The model was run with input data from both the
NASA NEX-GDDP and the GLDAS-2 datasets, the runs are referred to as (GDDPsim) and
(GLDAS:sim), respectively. Simulated SWE values were compared to GLDAS-2 SWE data
(GLDASHist) and simulated SCA was compared to SCA estimated from both
MODIS/TERRA data (MODobs) and GLDAS-2 (GLDAShis).

Figure 3-9 shows the Snow Cover Frequency (SCF) for the 2004 water year as estimated by:
1) GDDPsim i) GLDASsim iii) GLDAShist and iv) MODobs
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Figure 3-9 Snow Cover Frequency (SCF) for the 2004 water year, i) as simulated using the ensemble
average of the NASA NEX-GDDP dataset (GDDPsim), ii) as simulated using GLDAS-2 data (GLDASsim),
iii) as observed in the GLDAS-2 data (GLDAShist) and iv) as observed by MODIS/TERRA (MODobs)
(from Eythorsson et al. 2023b)

Figure 3-9 shows similar snow cover patterns across the four SCF estimates. However, there
are a few minor discrepancies: In GDDPsim (i) there is a lack of snow cover in north-eastern
Alaska due to minimal precipitation in this area, this is also visible in GLDASsim (ii), though
less pronounced. The largest SCF values were observed in GLDASis (iii), which especially
showed a higher SCF on the Tibetan plateau. In general, MODops (iv) was more consistent
with the simulated SCF than GLDAShist.

Figure 3-10 shows the mean annual SWE for the 2004 water year as estimated by: i)
GDDPsim: i) GLDAS;im iii) GLDAShist. Note that the GLDAShist shows the full depth of the
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Greenland glacier and thus the SWE data are not comparable there. As depicted in Figure 3-
10 there were similar SWE patterns between the three SWE estimates. The highest values
were consistently observed in Southern Greenland as well as in coastal regions around the
Northern Atlantic Ocean and the pacific northwest in Northern America. The results show
that GLDAShist has generally lower SWE values as compared to both GLDASsim and
GDDPsim. This may not be surprising as studies have shown that the GLDAS-2 snow field
has a negative bias as compared to most other global SWE products (Mudryk et al., 2015).
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Figure 3-10 Mean annual SWE for the 2004 water year, i) as simulated using the ensemble average of
the NASA NEX-GDDP dataset (GDDPsim), ii) as simulated using the GLDAS-2 dataset (GLDASsim) and
iii) as observed in the GLDAS-2 dataset (GLDAShist) (from Eythorsson et al., 2023b).

Figure 3-11 shows the correlation between simulated and observed daily SCA for the 2004
water year, as estimated by Pearson’s Correlation coefficient, R, for the correlations between
1) GDDPsim and GLDAShist i) GDDPsim and MODops 1ii) GDDPsim and GLDASsim V)
GLDASsim and MODobs V) GLDAS;sim and GLDASHist and vi) GLDAShist and MODaps.
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Figure 3-11 Pearson’s Correlation, R, for daily SCA values over the 2004 water year as estimated
between: i) GDDPsim and GLDAShist ii) GDDPsim and MODops iii) GDDPsim and GLDASsim iv) GLDASsim
and MODobs SCA v) GLDASsim and GLDASHist and vi) GLDAShist and MODobs.
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The results in Figure 3-11 indicate that the lowest correlations were observed between the
two observed data products, MODobs and GLDASist (vi). Generally, lower correlations were
observed for the comparison between GLDAS:im and observations (v and iv) than for the
comparison between GDDPsim and observed values (i and ii). The highest correlations were
observed between the two simulated products (iii)). Consistently in all estimations, the
lowest correlations are observed in areas close to the southern edge of the snow boundary,
where freeze and thaw cycles are frequent. This is unsurprising as these areas have the most
complex snow cover dynamics.

Figure 3-12 shows the correlation between simulated and observed daily SWE for the 2004
water year, as estimated by Pearson’s Correlation coefficient, R, for the correlations between
1) GDDPsim and GLDAShist ii) GDDPsim and GLDAS;im and iii) GLDASsim and GLDAShist.
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Figure 3-12 Pearson’s Correlation, R, for daily SWE values during the 2004 water year as estimated
between i) GDDPsim and GLDAShist ii)) GDDPsim and GLDASsim and iii) GLDASsim and GLDAShist

Figure 3-12 shows that the highest correlations were observed between the two simulated
products (Fig 5-1)). The results showed that the highest inconsistencies between simulated
and observed SWE are: on the Tibetan Plateau, the north Shore of Alaska and the Canadian
Arctic Archipelago as well as in areas close to the southern edge of the snow boundary,
where freeze and thaw cycles are frequent. These areas have in common that the average
annual SWE is low and as is the absolute volume of precipitation that falls as snow.

The correlation between GLDAS;sim and GLDAShist was notably lower than the correlation
between the GDDPsim and GLDAShist as Figure 3-12 shows.

The model evaluation showed that the model produced similar SCA and SWE patterns as
those observed by MODIS/Terra and GLDAS-2 snow cover data, as illustrated in Figure 3-9
and Figure 3-10. The correlations between simulated and observed daily SWE and SCA
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values are high in most regions of the NH as depicted in Figure 3-11 and Figure 3-12. This
suggests that the model provides as good an estimate of NH SCA and SWE as do either of
the observed products. In terms of the evaluation metric RSR, the model provided
satisfactory results when compared to SWE and SCA observations. Thus, the model is
expected to provide a reasonable estimate of future snow conditions when forced with
climate projections.

Projecting future snow conditions

The average annual number of Snow-Covered Days (SCD) was calculated for the first and
last quarter centuries of the dataset, the 3 quarter of the 20" century 1950-1975 and the 4%
quarter of the 21% century 2075-2100, respectively.

Figure 3-13 shows i) the mean SCD for 1950-1975 ii) the percentage change in SCD between
2075-2100 and 1950-1975 under RCP45 and iii) same as ii) but for RCP85.
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Figure 3-13 i) Mean number of Snow-Covered Days (SCD) for the period 1950-1975, ii) percentage
change in SCD between 2075-2100 and 1950-1975 under RCP45 and iii) same as ii) but for RCP85 (from
Eythorsson et al., 2023b).

The results shown in Figure 3-13 indicate that the frequency of snow cover is expected to
decrease during the present century, across the NH. The only areas that show an increasing
SCD are on the border of the Tibetan Plateau and the Gobi Desert. Snow cover is expected
to disappear almost completely in many mid-latitude areas at the periphery of the current
seasonal snow extent. Large regions in Central Europe, Northern Middle East, Northern
China as well as in the Northern part of the conterminous USA are expected to be mostly
snow free throughout the year by the end of the present century. Even in the northern Arctic

SCD is expected to decrease by up to 25% given a “business-as-usual” emission scenario
(RCP85).

The average annual Snow Water Equivalent (SWE) was calculated for the first and last
quarter centuries of the dataset, respectively. Figure 3-14 shows i) the mean winter (SWE)
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for 1950-1975, ii) the percentage change in SWE between 2075-2100 and 1950-1975 under
RCP45 and iii) same as ii) but for RCP85.
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Figure 3-14 1 Snow Water Equivalent (SWE) for the period 1950-1975, ii) percentage change in SWE
between 2075-2100 and 1950-1975 under RCP45 and iii) same as ii) but for RCP85 (from Eythorsson et
al., 2023b).

Figure 3-14 shows that the mean winter SWE is expected to decrease in mid latitude areas
of the NH during the present century. At higher latitudes however SWE is expected to
increase, in some cases by more than 100%. The biggest relative increase in SWE is expected
to occur in the high Arctic areas around the Bering strait, eastern Siberia and the north-
western coast of North America as well as in the western Tibetan Plateau. These increases
are more pronounced under a “business-as-usual” emission scenario (RCP85) than under a
scenario where global radiative forcing due to anthropogenic GHG emissions is expected to
stabilize around mid-century (RCP45). The decreasing SWE at lower latitudes is likewise
expected to be more pronounced given RCP85 compared to RCP45.

Figure 3-15 shows the simulated NH average 1% April SWE over the period 1950-2100 (left
panel) and the NH average annual SCF over the same period (right panel). The results show
that under the RCP85 scenario SCF is expected to decrease nearly linearly throughout the
present century, whereas given RCP45 the SCF is expected to stabilize at about 85% of
1950-1975 levels by the end of the 21st century. 1% April SWE is expected to increase
slightly in the beginning of the period and then start to decline by about 2020, back to 1950-
1975 levels under RCP45 and to 10% under those levels under RCP85.

51



1st April SWE Snow Cover Frequency

74 4

72

70 4

68

L

W."|||'H'||T|'IF\?}I{‘1'h

= 66 1 ‘J'I" 1 A
m IFy
=
N 64 -

62

s0d — RCP45 — RCP45

7 = RCP85 24 | = RCP85
58 4 ——- 1950-1975 average ——- 1950-1975 average

T T T T T T T 22 T T T T T T T
1960 1980 2000 2020 2040 2060 2080 2100 1960 1980 2000 2020 2040 2060 2080 2100

Figure 3-15 Annual Snow Cover Frequency (SCF) (right) and 1% of April Snow Water Equivalent (SWE)
across the NH (left). The shaded areas represent the upper and lower quantiles of the ensemble
simulations, and the solid line a 10-year moving average. (From Eythorsson et al., 2023b).

Figure 3-15 also shows that the frequency of snow cover is expected to decrease significantly
throughout the 21% century given both emission scenarios. Figure 3-14 shows that most of
this decrease will occur at lower latitudes where seasonal snow cover become less frequent.
Figure 3-15 shows that this decrease in SCD is already underway, which is in an agreement
with several earlier studies which have found decreasing snow cover in the NH in recent
decades (Darri Eythorsson et al., 2019; Hori et al., 2017; Yunlong et al., 2018). Figure 3-15
also shows that despite decreasing SCF the NH 1%t April SWE is expected to increase over
the 21% century. Figure 3-14 shows that this increase is driven by increasing SWE in the
Arctic, whereas at lower latitudes, SWE is decreasing.

This increase in snow in the high arctic is attributed to increasing precipitation, which in turn
stems from decreasing sea-ice concentrations in the Arctic Ocean, which brings more
atmospheric moisture to these areas. The increasing SWE at high latitudes is consistent with
prior findings (e.g. Kopec et al., 2016; Singarayer et al., 2006). The results of this study show
that under RCP45, increased precipitation in high latitude areas will result in an increasing
1%t April SWE throughout the 21% century, whereas under RCP85 the NH 1 April SWE will
peak in second half of the century as the declining snowpack at lower latitudes overtakes the
increasing arctic SWE. This pattern of decreasing SWE at lower latitudes and increasing
SWE in the Arctic has been observed in previous studies (e.g. Wang et al., 2018).

Eythorsson et al. (2023b) calculated the relative change in both SWE and SCD (in %)
between 1950-1975 and 2075-2100 in some of the largest snow-impacted watersheds of the
NH. Figure 3-16 shows the study basins, color coded by the change on 1% April SWE. Blue
colored basins showed more than 10% increase in SWE, red colored basins showed more
than 10% decrease in SWE while grey basins showed less than 10% change in SWE, under
the RCP45 emission scenario.
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Figure 3-16 Changes to 1%t April SWE in the study basins selected in Eythorsson et al., (2023b). Blue
basins showed more than 10% increase in SWE, red basins showed more than 10% decrease in SWE
while grey basins showed less than 10% change in SWE, under the RCP45 emission scenario (from
Eythorsson et al., 2023b).

Table 3-8 shows the relative average change in SWE and SCD between 1950-1975 and
2075-2100 in the river basins selected in Eythorsson et al. (2023b). The basins where mean
winter SWE is expected to increase by more than 10% under RCP45 are colored blue,
likewise the basins where SWE is expected to decrease by more than 10% are colored red,
basins where SWE is expected to change by less than 10% are colored grey.

Table 3-8 Relative change in SWE and SCD (in %) between 1950-1975 and 2075-2100 in the study basins.
Basins colored blue have more than 10% increase in mean winter SWE over the period, red colored
basins showed more than 10% decrease in SWE and grey colored basins had less than 10% change in
SWE, under the RCP45 emission scenario (from Eythorsson et al., 2023b).

_ Rcpas |  Rees
Basin
ASWE[%] ASCD[%] | ASWE[%] A SCD[%]
Indigirka 56.7 -6.4 97.3 -10.9
Kolyma 46.5 -6.5 74.1 -11.4
Lena 31.8 -7.2 52.5 -12.5
Yukon 33.4 -14.0 48.4 -20.9
Ob 28.4 -9.2 18.7 -19.2
Yenisey 26.4 -7.8 42.0 -14.7
Mackenzie 12.3 -9.0 14.3 -16.2
Volga 2.5 -15.9 -9.8 -30.2
Daldlven -3.9 -15.6 -22.6 -33.4
Fraser -4.9 -20.2 -29.1 -36.6
Saskatchewan-Nelson 0.5 -12.9 -12.6 -23.6
Indus -4.0 -14.6 -7.1 -23.1
Mekong -8.0 -5.0 -11.8 -9.5
Ganges-Brahmaputra -15.7 -12.9 -20.8 -18.7
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St. Lawrence -19.8 -20.9 -44.0 -43.7
Amur -25.8 -20.0 -42.9 -26.4
Don -24.1 -21.7 -61.6 -48.1
Dnieper -34.7 -25.9 -84.0 -68.5
Yangtze -27.0 -21.3 -31.4 -26.3
Seine -46.8 -45.8 -46.9 -45.9
Colorado -43.0 -40.7 -53.2 -51.3
Columbia -55.9 -53.5 -73.2 -72.4
Mississippi -58.4 -48.7 -73.4 -66.4
Rhone -76.8 -70.6 -81.4 -76.9
Danube -78.8 -67.5 -92.8 -89.0
Rhine -94.3 -91.2 -97.5 -97.0
Vistula -81.3 -58.7 -99.0 -96.2
Oder -95.9 -90.9 -99.5 -99.0
Elbe -92.0 -81.6 -99.8 -99.0

Figure 3-16 shows that all study basins flowing to the Arctic Ocean are expected to
experience a more than 10% increase in mean winter SWE whereas in lower latitude basins
SWE are mostly expected to decrease. This decrease is most pronounced in mid-Ilatitude
rivers of central Europe (Elbe, Oder, Rhone, Vistula, Danube and Dneiper) and North
America (Mississippi, Columbia, and Colorado). Basins of the Himalaya region are expected
to experience both decreasing SCD and SWE, however, not as pronounced as in the central
European and North American basins.

Table 3-8 shows that in all basins the SCD is expected to decrease during the study period,
under both emission scenarios. The decrease is greater under the RCP85 scenario than under
RCP45, with some basins expected to experience an almost complete loss of snow cover
given the business-as-usual (RCP85) scenario. Table 3-8 shows that despite decreasing SCD
the 1%t of April SWE is expected to increase in all the northernmost basins. This is attributed
to increasing precipitation, as these historically arid areas receive more atmospheric moisture
as sea ice cover decreases and more open water is exposed (eg. Kopec et al., 2016;
Singarayer et al., 2006).

The declining snow pack in the basins in the subarctic North America has been well
documented (e.g. Kang et al., 2016; Mote et al., 2005). A recent study showed that across
the conterminous United States both SWE and SCD decreased significantly over the period
1982-2016 (Zeng et al., 2018) which is consistent with the results of this study. Previous
studies on snow resources in the Himalaya region have shown decreasing frequency of snow
cover as well as decreasing snow storage and snow melt runoff (Maurer et al., 2019; Stigter
et al., 2017), which are consistent with the findings of the present study. A recent study of
in-situ snow depth measurements found that the mean snow depth had decreased by 12%
per decade over the period 1951-2017 (Fontrodona Bach et al., 2018). The increasing
snowfall in Northern Eurasia has also been studied, and has been shown to have decreased
the length of the growing season (Vaganov et al., 1999). In the Arctic region, the results of
this study are consistent with prior studies which have found increasing snow cover (e.g.
Cohen et al., 2012; Eythorsson et al., 2019) and snow storage (Callaghan et al., 2011) in
recent decades. The findings presented in Eythorsson et al. (2023b) show that these observed
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trends, decreasing snow resources at lower latitudes while increasing in the Arctic, will
continue at a steady or increasing pace, at least for the next few decades.
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3.6 Analyzing historical and predicted snow
cover and climate trends - a case study for
Iceland

Snow and ice are key components of the Icelandic ecology and hydro-climatology.
Understanding how these resources are likely to respond to local climate changes is among
the most important questions facing water resources managers and other natural resources
planners in Iceland. Icelandic snow resources are highly sensitive to changes in the local
climate as has been demonstrated (e.g. Bjornsson & Palsson, 2008; Eythorsson et al., 2018).
In many of the cold regions of the Northern Hemisphere (NH) snow resources have
undergone significant changes in recent decades, due to climate trends which are expected
to continue throughout the 21% century at least, e.g., as shown in Eythorsson et al., (2019).
Furthermore, Eythorsson et al., (2023b), showed that NH snow resources are generally
expected to undergo significant further changes under all plausible emissions scenarios.
Although these trends do have grave global implications in a myriad of ways, the practical
adaptation to them must occur on a local scale. Thus, considering the aim of this dissertation,
the trends in the climate and snow regimes were analyzed in terms of a local context with a
case study for Iceland. The results of which are presented in this subsection and published
in Eythorsson et al., (2023a).

3.6.1 Historical Show Cover Trends

In situ observations

The Icelandic Meteorological Office (IMO) collects most in-situ meteorological
observations in Iceland. Part of IMO routine measurements are daily manual observations
of snow cover at 9am. The locations of these observation sites are shown in Figure 3-17. The
figure notably shows how sparse these observational sites are, especially in the central
highlands where most of the countries snow resources are located. Data were acquired from
the IMO from a total of 266 manned sites over the period 1930-2021. Data includes
observations of local snow depth (SND), Snow Cover (SNC), precipitation (R), precipitation
class (RTEG), and a visual estimate of surrounding mountain snow cover (SNCM) (Icelandic
Meterologocial Office, 2021). Snow depth, in cm, is measured for all days with snow
covered ground at the monitoring site. SNC and SNCM are visually classified as: 0 = no
snow, 2 = patchy snow cover, 4 = fully covered ground. (Icelandic Meterologocial Office,
2008). Gunnarsson et al. (2019), compared the IMO snow cover data to the MODIS snow
cover products and observed a good agreement between the two datasets.
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Figure 3-17 Topographical map of Iceland and the locations of the Icelandic Meteorological Office
(IMO) observation stations where snow data recorded (from Eythorsson et al., 2023a)

The annual SCF was calculated for all stations by summing the number of snow-covered
days and dividing by the number of observations for each year. The significance of the
trendline in SCF over time was assessed for all stations which had more than 10 years of
observations within the data period (2000-2016) using the non-parametric Mann-Kendall
hypothesis test. The null hypothesis Ho was that there is no trend in the data and the
alternative hypotheses are that there is a statistically significant increase (H1) or decrease
(H2) in the SCF.

Figure 3-18 (left panel) shows the average temperature and precipitation in Iceland over the
period 1950-2021 as estimated from the ensemble average of the GDDP dataset and the
average of an ensemble of long-term IMO station observations (Icelandic Meterological
Office, 2023). The figure shows similar trends and averages in temperature and precipitation
from both data sources. Figure 3-18 (center panel) shows the annual average SCF for all
IMO monitoring stations for the period 1930-2021, calculated for local (circles) and
mountain (triangles) snow cover based both on just observations of fully snow-covered
ground (SNC or SNCM = 4) and including patchy snow cover (SNC or SNCM > 2), the in-
situ data is shown with a 10-year rolling average and a linear trendline. The figure shows the
average annual SCF estimated from the MODIS TERRA/AQUA snow cover products (black
markers) for observations above (stars) and below (crosses) 500 m a.s.l. Figure 3-18 (right
panel) shows the average annual snow depth (SND) of all IMO monitoring stations for the
period 1930-2021 along with a linear trendline. Note that most IMO stations are in the
lowlands, which on average see less snow cover than the interior highlands, where the most
snow is.
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Figure 3-18 Left panel: Average annual temperature and precipitation in Iceland over the period 1950-
2021 as estimated by the ensemble average of the 21 GCM-s in the NASA NEX-GDDP dataset and the
IMO. Center panel: Annual average SCF for all IMO monitoring stations for the period 1930-2021,
calculated for local (circles) and mountain (triangles) snow cover for observations of fully snow covered
ground, SNC or SNCM =4 (blue) and including patchy snow cover, SNC or SNCM > 2 (red), the average
annual SCF estimated from the MODIS TERRA/AQUA snow cover products (black markers) is shown
for observations above (stars) and below (crosses) 500 m a.s.l. Right panel: average annual snow depth
of all IMO monitoring stations. (from Eythorsson et al., 2023a)

MODIS snow cover

Annual Snow Cover Frequency (SCF) was calculated with 500 m x 500 m resolution for
Iceland based on the MOD10A1.005 MODIS/TERRA snow cover daily product (Dorothy
K Hall, Riggs, & Salomonson, 2006) using the methods described in Eythorsson et al.,
(2019). The MOD10A1.005 dataset was remapped to provide a binary classification for valid
observations. Observations with zenith angles > 25° were excluded to decrease the
panoramic bow tie effect which is a panoramic distortion known to cause systematic errors
in snow mapping (Souri & Azizi, 2013). Invalid observations due to cloud cover or polar
night, for example, were masked by giving them a null value. The number of days a pixel is
covered with snow was counted and divided by the number of valid observations of that
pixel, per year. On average 60 valid observations/year per pixel were observed. The annual
SCF was calculated for the period where MODIS observations are available (water years
2001-2016). The trend of annual SCF values in each pixel over the period was estimated by
linear regression and Sen’s estimator of slope methods. The statistical significance of the
observed trend was assessed using both the non-parametric Sen’s estimator of slope
methods.

Figure 3-19 shows the trend in annual SCF over Iceland as estimated from MODIS
observations (left) and areas where the trendline is statistically significant (o = 0.05) for both
MODIS and in situ observations (SNC = 4) (right). Blue regions and markers show areas
where the SCF had increased significantly, and the red areas with decreasing SCF.
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Figure 3-19 Left panel: trend in annual SCF over Iceland as estimated from MODIS. Right panel:
areas where the trendline is statistically significant (a = 0.05) for both MODIS and in situ observations
(SNC =4). 2019 outlines of glaciers and the ice divides of their major outlet glaciers are shown with
black lines (RGI Consortium, 2019). (from Eythorsson et al., 2023a)

Figure 3-19 show that many areas in Iceland have experienced a significant change in the
local SCF, both as estimated from MODIS data and from manned snow cover observations
over the period 2001-2021. Most of these areas have experienced an increase in SCF,
especially the eastern highlands and the mountainous regions of Northern and Northwestern
Iceland. A few small areas showed a statistically significant decrease in the local SCF over
the period, these areas are located either in lowland areas or at the termini of the major outlet
glaciers in Iceland, whose recession in recent years has been well documented
(Adalgeirsdottir et al., 2020; Hauser & Schmitt, 2021).

Table 3-9 shows the statistical significance of the linear snow trends, estimated using the
Mann-Kendall trend test, for both the period of historical records (1930-2021) and the
MODIS period (2001-2021), of p values. Statistically significant trendlines at the a = 0.05
level are shown in bold

Table 3-9 Statistical significance of the linear snow trends, estimated using the Mann-Kendall (MK)
trend test, for both the period of historical records (1930-2021) and the MODIS period (2001-2021), of
p values Statistically significant trendlines at the a = 0.05 level shown in bold.

Trend [% per year] p-value

1930-2021 2001-2021 1930-2021 2001-2021
SCFM (SNCM > 2) 0.15 0.43 1.2*10° 0.02
SCFM (SNCM = 4) 0.038 0.21 0.2 0.07
SCF (SNC > 2) 0.15 0.37 1.8 ¥ 106 0.01
SCF (SNC=4) 0.076 0.19 0.7 * 103 0.06
SND 0.081 0.30 1.54 * 105 0.002
MODIS below 500 m a.s.l. - 0.29 - 0.04
MODIS above 500 m a.s.l. - 0.24 - 0.11
MODIS all elevations - 0.26 - 0.04

The results in Table 3-9 shows that the increasing SCF and SND trend shown in Figure 3-18
is statistically significant over the period 1930-2021 for all SCF estimates except for
observations of SNCM = 4, fully snow-covered mountains. Over the MODIS period 2001-
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2021 the trend is significant for all metrics except for observations of fully snow-covered
mountains and for MODIS observations above 500 m a.s.l.

SCF in areas of recent land surface changes.

The annual SCF values were extracted for three locations in Iceland where land surface
changes had physically impacted the local SCF during the MODIS period. The locations
selected were: (a) Holuhraun volcano, which erupted in the winter of 2014; (b) the Halslon
area, where a major storage reservoir was commissioned in 2007 and an ice-covered lake
replaced a deep canyon; and (c) Eystri Hagafellsjokull, where the glacier terminus has
receded in recent years. The locations of these areas are shown in Figure 3-20.
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Figure 3-20 Time series of annual SCF in locations where known land surface changes have taken place
over the period of MODIS observations (2000-2016)

The results shown in Figure 3-20 show a clear change in the time series of SCF around the
time where the land surface changes describe above took place. To test whether the change
observed in the SCF times series was statistically significant a Mann-Whitney-Wilcoxon
(MWW) hypothesis test on two sample means, before and after the land surface changes.
The null hypothesis was that the means of the two series are the same: Ho: g1 = p2 and the
alternative hypothesis was that the means are not the same: Hi: pl # u2.

Table 3-10 shows the results of the hypothesis tests. The results show that for all three
locations the null hypothesis was rejected. Hence, the SCF record captures physical land
surface changes that occurred during the period and the timing of these changes can be
identified by the MWW test. We also note that, like the Halslén reservoir, all other
hydropower reservoirs constructed during the MODIS era, Spordéldulén, Ufsarlon and
Kelduérldn, could be clearly identified from the SCF maps.

Table 3-10 Results of Mann-Whitney-Wilcoxon (MWW) on two sample means, before and after known
land surface changes in three locations in Iceland
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Location: Time of change MWW SCF trend

p-value
Holuhraun 2014 0.017 Significant decrease
Halslon 2007 0.00025 Significant increase
Eystri Hagafellsjokull 2008 0.00031 Significant decrease




3.6.2 Estimating and Projecting Climate Classifications

Koppen-Geiger climate classifications were calculated for Iceland in a 0.2-degree horizontal
resolution using the methods described in Section 3.3 and published in Eythorsson et al.,
2019. Climate classifications were assigned to each pixel based on the classification criteria
outlined by Kottek et al. (2006) and Peel et al. (2007), as summarized in Table 3-3. The
classification scheme contains five main classes, each with two levels of subclasses, in total
30 climate classes. As example, an area that has the main class D — Cold, second subclass w
— dry winter and the third subclass a — hot summer would have the code Dwa.

The Icelandic climate was classified for each year in the period 1950-2100. We used the
ensemble average of the NASA NEX dataset for both historical and predicted future climate
conditions. The dataset contains an ensemble of 21 Global Circulation Models (GCM’s)
used in the CMIP5 model intercomparison project of the International Panel on Climate
Change (IPCC) (Taylor et al., 2012). The climate classifications were calculated for the
Representative Concentration Pathway (RCP) - RCP 4.5 as a more conservative prediction
of future climate change. RCP 4.5 is a stabilization scenario where total radiative forcing is
stabilized before 2100 by employment of a range of technologies and strategies for reducing
greenhouse gas emissions, whereas RCP 8.5 is characterized by increasing greenhouse gas
emissions over time and is representative for scenarios in the literature leading to high
greenhouse gas concentration levels (van Vuuren et al., 2011). The proportion of each
climate class was calculated for each year in four elevation bands Coastline (0-100 m a.s.l.),
Lowland (100-500 m a.s.l.), Highland (500-1000 m. a.s.l.) and Glaciers/Mountains (1000 +
m a.s.l.). A high resolution (20x20m) digital elevation model (DEM) from the National Land
Survey of Iceland was used to calculate the elevation bands.

Figure 3-21 shows examples of the KG classification maps projected for Iceland in 0.2-
degree horizontal resolution for the years 1951 and 2099. The four most common KG classes
in Iceland in both periods were: ET — Polar Tundra, Dfc — Cold climate with cold summers
and no dry season, Dfb — Cold climate with warm summer and no dry season, and Dsc —
Cold climate with cold summers and dry summers.
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Figure 3-21 Examples of annual KG classification maps calculated for Iceland in the study for the years 1951
(upper) and 2099 (lower)

The results show that between 1950 and 2099 the polar tundra climate (ET) that initially
covered a significant portion of the highlands will mostly disappear, except at the
Vatnajokull Glacier. The ET is replaced by a cold climate with the cold summer classes Dfc
and Dsc. A warm summer climate (Dfb), that in the first period was mostly limited to small
areas in the southern lowlands on each side of the Myrdalsjokull Glacier, will by the end of
the period have spread almost around the entire country and stretched far into the highlands.
At the middle of the current century temperate climate classes (Cfb, Cfc and Csb) will start
appearing consistently in coastal areas. This would be the first time that such climate
classifications would be experienced in Iceland since records began.

Figure 3-22 shows the proportional coverage of the top climate classes for the period 1951-
2099. The uppermost graph shows the results for the whole of Iceland and the lower graphs
show the main climate classes within each elevation zone. The results in Figure 3-22 show
that by the end of the current century the polar tundra climate (Class ET) in Iceland will
decrease from about 20% coverage in 1950 to about 5%, by the middle of the current century
and the ET class will disappear altogether in the coastal and lowland regions. Over the same
period, warm summers (class Dfb) will increase by about the same amount. The net coverage
of the most common climate class, Dfc, will not change much over the period. However, as
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seen in Figure 3-21 and Figure 3-22, class Dfc is replaced by class Dfb in coastal areas while
it replaces class ET in the highlands; thus we expect the spatial distribution of class Dfc to
change significantly during the period.
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Figure 3-22 Time series of the annual proportional coverage of the three main KG Classes in each
elevation zone in Iceland for the period 1951-2099 (from Eythorsson et al., 2023a).

3.6.3Projecting Changes to Snow Resources in Iceland

Daily snow conditions in Iceland were simulated in 0.2-degree horizontal resolution for the
period 1950-2100 for each of the 21 downscaled and bias corrected Global Circulation
Models GCM’s in the NASA NEX-GDDP dataset (Thrasher et al., 2006) using the Snow17
model for both the RCP45 and RCP85 emission scenarios. The methods used for the snow
modelling are described in detail in section 3.5.1 and published in Eythorsson et al., (2023a).
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Figure 3-23 shows on the left the simulated average winter SWE across Iceland for both
RCP45 (green) and RCP85 (red). Error! Reference source not found. shows on the right
the simulated average annual SCF across for RCP45 (green) and RCP85 (red). Observations
from monitoring stations of mountain (crosses) and local (stars) snow cover and MODIS
observations (triangles) are shown in black. The shaded area represents the upper and lower
quantiles of the ensemble simulations, and the solid line represents a 10-year moving average
of the ensemble.
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Figure 3-23 Left panel: simulated average winter SWE across Iceland for both RCP45 (green) and
RCP85 (red). Right panel: simulated average annual SCF across Iceland as projected by RCP45 (green)
and RCP85 (red). Observations from monitoring stations of mountain (crosses) and local (stars) snow
cover and MODIS observations (triangles) are shown in black. The shaded area represents the upper
and lower quantiles of the ensemble simulations, and the solid line shows a 10-year moving average of
the ensemble. (from Eythorsson et al., 2023a)

The results in Figure 3-23 shows that both SWE and SCF are expected to decrease in Iceland
over the course of the 21% century. The decrease is more severe given the RCP85 emission
scenario as compared to RCP45. The simulated estimates of average annual SCF (right) are
in line with MODIS observations over the period 2001-2021. In situ observations of local
and mountain snow cover (SNC or SNCM > 2) fall below and above the simulated averages,
respectively, as expected. The simulated SWE estimates show a decrease in SWE over the
period 1950-2100 a trend which grows faster after the 2020s, whereas the observed snow
depth measurements (shown in Figure 3-18) show a significant increase (p = 1.54 * 107)
over the period 1930-2021. The results presented in Figures 3-18 and 3-23 reveal an
increasing trend in SCF and SND over a period where both metrics are projected to trend
downward. The results also illustrate the substantial natural climate variability in Icelandic
snow conditions.

The results in Figure 3-18 show a positive trend for temperature and precipitation in Iceland
over the period 1950-2021. Increasing temperatures result in enhanced snow melt, which is
apparent in a flat or decreasing SCF in coastal regions (as shown in Figure 3-19Error!
Reference source not found.), whereas at higher elevation the increased precipitation
enhances winter snow accumulation leading to higher SCF despite the enhanced melt rates
during summer. With further climate change less, precipitation will fall as snow at higher
elevations and both SND and SCF are expected to have decrease across the country by the
end of the 21% century, as illustrated in Figure 3-23.

64



The results in Figure 3-23 show that there is a large variability in the average SCF from the
observational IMO stations, shown as blue dots on the figure. The observational data shows
that the SCF increases with elevation, however there is a large variability between stations
especially at the lowlands. The figure also shows how few of the observational sites are
located at high elevation, where most of Iceland’s snow resources are located.

The results shown in Figure 3-23 show that snow resources are projected to diminish in
Iceland at all elevation zones. These projected changes to Icelandic snow resources are in
line with previous projections of the future evolution of Icelandic snow cover over the 21%
century (Johannesson et al., 2007). The observed increase in snow cover, both by remote
sensing and in situ measurements, over the period 2000-2021 also agree with the results of
Gunnarsson et al. (2019) which also used satellite remote sensing data to show that there had
been an increase in snow cover in Iceland for all months except October and November over
the same period. The results of Eythorsson et al., (2023a) study suggest that the increase in
snow cover in Iceland, observed both from remotely sensed and in situ data, is associated
with increased precipitation causing a more frequent and thicker snowpack which persist
longer, despite enhanced melt rates.

These results deserve further investigation. It should be noted that the MODIS period, 2000-
2021, used to estimate the historical SCF changes in this study is short and trends observed
during this period could be induced by low frequency cyclical climate patterns, or by a small
amount of extreme weather events. However, the causes and the impacts of these changes to
Icelandic snow resources needs to be better understood. Differences in future snowpack
changes by elevation should be studied to understand the impact on the Icelandic
hydrological cycle, which will further affect the local ecology, hazard assessments, water
resources management, and hydropower production in the country.
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4. Conclusion and future perspectives

The objective of this dissertation was to investigate from observations the impact of climate
change on snow conditions that has already occurred and based on the best available
assumptions on future climate change, to estimate by modelling how snow conditions are
likely to continue to respond to changing climate forcings in different regions. In this
dissertation and the scientifical journal articles that have been produced because of this work,
this objective has been achieved in the following steps:

Firstly, a novel approach for predicting seasonal snow mass balance in glaciated catchments
was published in (Eythorsson et al., 2018) and is discussed in detail in section 3.1of this
dissertation. Secondly, the spatio-temporal changes in the climate and snow regimes were
estimated globally and compared and analyzed within the context of the Arctic region, the
results of which have been published in Eythorsson et al., (2019) and are discussed in detail
in sections 3.2 - 3.4 of this dissertation. Future snow conditions were modelled across the
Northern Hemisphere (NH) based on the expected changes to the climate regime, given
different plausible emission scenarios, the results of which are presented in Eythorsson et
al., (2023b) and are discussed in detail in section 3.5 of this dissertation. Lastly, the observed
past and projected future changes in the climate and snow regimes are analyzed in a regional
context for Iceland, the results of which are presented in Eythorsson et al., (2023a) and are
discussed in detail in section 3.6 of this dissertation.

4.1 Conclusion

The main results of this dissertation are the large changes to snow resources, both observed
and projected, in the NH. These results show that in general snow cover has been decreasing
significantly, especially at lower latitudes, while some high latitude areas have experienced
an increase in the frequency of snow cover. These trends were in general projected to
continue throughout the 21% century with severe implications to societies and ecosystems in
cold regions. These ongoing changes will affect the habitability of flora and fauna in cold
regions, straining local ecosystems and inducing species migrations and extinctions. The
projected changes to snow resources will impact the lifestyles and culture of societies and
indigenous peoples across the NH providing complex problems and opportunities for water
resources management and potential energy production in these regions as the local
hydrological cycle is impacted by changing climate forcings.

Reliable forecasting of snow resources behavior is a key aspect of water resource
management in cold regions. The Karahnjukar HPP in South-Eastern Iceland (by far the
largest powerplant in Iceland) receives most of its inflow from the glacial meltwater of the
Broarjokull glacier. Several studies have considered the simulation of snow melt behavior
on Braarjokull using both empirical and physical approaches. These modelling efforts have
all focused on the diurnal modelling of snow melt based on environmental input parameters
that can only be forecast reliably a few days in advance. Eythorsson et al., (2018) showed
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that the summer mass balance behavior of the Brlarjokull glacier can be predicted
satisfactorily in the beginning of the melt season, using only the data on initial conditions of
the hydro-climatological system that are available at that time, using a novel data driven
modelling approach. These results are important for the water resource managers in glacially
dominated catchments, like those managing the Kéarahnjukar HPP, as they demonstrate that
the key source of runoff, glacial summer melt, in these areas can be satisfactorily predicted
at the beginning of the melt season, 2-3 months in advance.

While glacial mass balance is a key hydrological parameter in few cold watersheds, water
resources management in cold areas also require an understanding of seasonal snow cover
dynamics, and especially at the present time how these dynamics can be expected to respond
to a changing climate. Eythorsson et al., (2019) used MODIS snow cover data to estimate
the changes that have occurred to the Snow Cover Frequency (SCF) in 500m horizontal
resolution globally, during the period 2000-2016 and to identify those areas where the
changes in SCF over that period have been statistically significant. The study revealed that
large areas around the southern fringe of the Northern Hemisphere (NH) seasonal snow
coverage have seen a significant decrease in SCF since the turn of the century. An opposite
pattern was observed at the northern fringe of the NH seasonal snow coverage, where the
SCF has increased in many coastal regions around the Arctic Ocean.

These historical SCF trends in the Arctic were compared to the regional climate change,
which was estimated as changes to the proportional coverage of Koppen-Geiger (KG)
Climate classes. The results showed a trend of climate classes associated with warmer
weather migrating northward, which has persisted to date and was projected to continue at
least until the end of the present century. This warming was observed in 7 of the 10 Arctic
study areas considered in Eythorsson et al., (2019) and in Iceland as presented in Eythorsson
et al., (2023a). The warming trend observed in these regions coincides with changing snow
dynamics as the largest change to the local SCF in the arctic was seen in these same regions.
It was only in the northernmost regions of the Arctic were little to no changes to either the
SCF or the climate classifications was observed. Averaged across the Arctic the SCF was
observed to have decreased by 9.1 days per decade over the study period, which corresponds
to previous studies on snow cover in the general area (Hori et al., 2017; Liston & Hiemstra,
2011; Yunlong et al., 2018).

As warmer climate classes are expected to migrate ever northward until the end of the present
century at least, as shown e.g. in Eythorsson et al., (2019) and (Beck et al., 2018), snow
conditions can be expect to change drastically in regions where winter snow cover has
historically been an important factor in the local hydro-climatology and ecology. Eythorsson
etal. (2023b) modelled the evolution of NH snow resources over the period 1950-2100 using
the Snow17 model forced with the ensemble of the downscaled and bias corrected CMIP5
projections as contained in the NASA-NEX GDDP dataset, for both the RCP45 and RCP85
emission scenarios. The simulated snow conditions for the historical period showed a high
correlation to remotely sensed Snow-Covered Area (SCA) from the MODIS/Terra snow
cover dataset and to the Snow Water Equivalent (SWE) field from the GLDAS-2 dataset.
The results from Eythorsson et al., (2023b) showed that NH snow resources are expected to
undergo considerable changes until the end of the present century. The average SCF in the
NH was projected to decrease by 12.5% and 23.1% between the periods 1950-1975 and
2075-2100, under the RCP45 and RCP85 scenarios, respectively. While the frequency of
snow cover is expected to decrease significantly, the average winter SWE was projected to
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increase by 3.9% and 2.2% between the same periods under the RCP45 and RCP85 emission
scenarios, respectively.

The decrease in NH SCF shown in the results of Eythorsson et al., (2023b) is primarily
ascribed to a decreasing number of snow-covered days at the southern fringe of the NH
seasonal snow layer, where some basins may see the loss of almost all their winter SWE
snow storage under the RCP85 scenario. The SCF was also projected to decrease at higher
latitudes, albeit significantly less. However, the 1% of April SWE at higher latitudes was
projected to increase even though the number of days with snow covered ground was
expected to decrease. In all the largest rivers draining into the Arctic Ocean the contribution
of snow melt was found to increase significantly and, in some cases, almost double between
the periods 1950-1975 and 2075-2100.

The pattern of decreasing SCF in mid latitudes was also observed in Eythorsson et al., (2019)
based on the MODIS/Terra snow cover product. Thus, the trends that have already been
observed in these areas can be expected to continue, at an accelerated pace throughout the
21% century given the RCP85 trajectory or at a slowly declining pace and stabilizing by the
end of the century given the RCP45 trajectory. Increased snowfall at high latitudes is
expected due to sea ice decline and increased regional evaporation from the Arctic Ocean
(Kopec et al., 2016; Singarayer et al., 2006). This was observed as an increase in SCF in
Eythorsson et al., (2019) over the historical MODIS period (2000-2016) and as an increase
in the 1% of April SWE in Eythorsson et al., (2023b). The increase in SCF observed in high
latitudes in Eythorsson et al., (2019) is expected to reverse as these areas continue to warm
and by the end of the century the SCF will have decreased significantly across the entire NH.

Collectively, the results of the work presented in this dissertation show that significant
changes have occurred to snow resources in many regions across the NH as estimated based
on remotely sensed data from the MODIS/Terra instrument and presented in Eythorsson et
al., (2019). Snow Cover Frequency (SCF) was shown to have decreased in many mid-
latitude areas whereas around the arctic ocean large areas had seen an increase in the local
SCF. These changes to have occurred concomitantly with local climate warming, as
estimated from trends in the coverage of KG climate classes, with only the northernmost
parts of the Arctic remaining with relatively unchanged climate and snow regimes, as
presented in Eythorsson et al., (2019). These trends were replicated and shown to continue
at least until the end of the 21% century by modelling NH snow conditions based on the
ensemble of downscaled and bias corrected GCM models from the CMIP5 project. The
model results revealed a trend of decreasing snow cover frequency across the hemisphere
while snow storage volume was projected to increase around the Arctic, as presented in
Eythorsson et al., (2023b). The results of both Eythorsson et al., (2019; 2023b) show that the
NH snow and climate regimes have undergone significant changes and that these changes
can be expected to continue for the foreseeable future, however, these trends were shown to
vary significantly depending on region. An analysis of climate and snow changes in
Icelandic snow resources showed that the Icelandic climate is expected to change
significantly throughout the present century, over the same period snow resources are
expected to diminish across the country, as presented in Eythorsson et al., (2023a). Analysis
of SCF trends estimated from MODIS/Terra snow cover data revealed observable glacial
ablation around the termini of most Icelandic outlet glaciers, whereas over the same time
SCF had increased significantly in large areas in the highland. This SCF increase over the
MODIS period is likely due to decadal scale oscillations in atmospheric and ocean currents
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in the North Atlantic, which have been shown to significantly affect the seasonal mass
balance behavior of Icelandic glaciers, as presented in Eythorsson et al., (2018).

4.2 Future Perspectives

The results of this dissertation show that snow resources in the Northern Hemisphere have
and are expected to continue undergoing significant changes. These results are in line with
the just published 6™ Assessment Report (AR6) by the International Panel on Climate
Change (IPCC) where it states that there is very high confidence that the NH spring snow
cover has been decreasing since 1978 and that further decrease of the NH seasonal snow
extent is virtually certain under all plausible emission scenarios (Fox-Kemper et al., 2021).
These projections have significant consequences for societies and ecosystems in cold
regions, which require further attention and research to optimize local mitigation and
adaptation measures in these regions.

The Snow17 model results which was used in Eythorsson et al., 2023a and Eythorsson et al.,
2023b were calculated in a 0.2-degree horizontal resolution based on the ensemble average
of the 21 bias corrected and downscaled GCMs from the CMIP5 experiment (Taylor et al.,
2012). In Iceland, where topography can greatly influence local meteorological
characteristics (e.g. Rdgnvaldsson et al., 2007), snow cover estimates would benefit from a
finer spatial resolution. The results in Figure 3-23 confirm that many topographical effects
are smoothed out in the simulated snow cover estimates, as compared to the MODIS snow
cover products. To improve the understanding of future changes to snow resources in Iceland
these changes should be modelled at a higher resolution e.g. using regional climate models
such as the EURO-CORDEX (Jacob et al., 2013).

The long-term trend in snow cover projected in Eythorsson et al., (2023a) and e.g. in
(Johannesson et al., 2007) shows a decrease in snow cover across the country, however the
short term trend observed both through in situ and satellite observations and shows a trend
of increasing SCF in large parts of the country, as shown by Eythorsson et al., (2023a) and
Gunnarsson et al., 2019. These results deserve further attention, it is important for water
resources managers in Iceland to have the best available estimates of future snow resources
and to understand if and then why these trends differ in the short and the long term. It should
be investigated whether the short-term increase in SCF is due to short term oscillations in
the Iceland climate, stemming from variations in oceanic or atmospheric circulation patterns.
Furthermore, the Icelandic snow resources were simulated based on the ensemble average
of all the 21 GCMs in the NASA NEX GDDP database. The selection of models into the
ensemble impacts the accuracy of the results. It is worth analyzing which of the models show
the highest correlation to Icelandic meteorology and only simulate future snow conditions
based on those GCMs which show satisfactory simulations of the Icelandic climate.

The results of Eythorsson et al. (2018), showed that the summer mass balance of the
Bruarjokull could be predicted satisfactorily based on information on the initial conditions
of the surrounding hydro-climatological system at the beginning of the glacial melt season.
The model framework developed in Eythorsson et al. (2018), can in essence be applied to
any type of predictive modelling where there is a statistical relationship between the
predictor and response variables. Given the promising results from Eythorsson et al. (2018),
it is worth developing these methods further and apply them to snowmelt, discharge and
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reservoir inflow forecasting at various temporal scales, for the key glacially dominated
watersheds in Iceland. This could potentially improve streamflow forecasting in Iceland at
various lead times, providing valuable information for water resources managers across the
country.

The results of Eythorsson et al. (2023b), show that snow coverage is expected to decrease
across the NH between the periods 1950-1975 and 2075-2100. However, the mean winter
SWE is expected to increase substantially in roughly the same areas which were shown to
have experienced an increase in SCF over the period 2000-2016 in Eythorsson et al. (2019).
These results deserve further attention. A regional analysis of future scenarios in snow
resources should be conducted for the Arctic. Estimates produced by both GCMs as well as
regional Arctic climate models such as the Regional Arctic System Model (Cassano et al.,
2017; Hamman et al., 2016) should be compared as well as between different snow models.
Lastly, the effect of increasing SCF in the historically arid regions of the high Arctic on the
earth’s radiation budget should be considered.
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ABSTRACT. Forecasting of glacier mass balance is important for optimal management of hydrological
resources, especially where glacial a significant portion of stream flow, as is the
case for many rivers in Iceland. In this study, a method was developed and applied to forecast the
summer mass balance of Braarjokull glacier in southeast Iceland. In the present study, many variables
measured in the basin were evaluated, including glaciological snow accumulation data, various
climate indices and logical including temy humidity and radiation. The
most relevant single predictor variables were selected using correlation analysis. The selected variables
were used lo define a set of potential multivariate linear regression models that were optimized by select-
ing an ble of plausible models showing good fit to calibration data. A balance estimate was
calculated as a uniform average across ensemble predictions. The method was evaluated using fivefold
cross-validation and the statistical metrics Nash-Sutcliffe efficiency, the ratio of the root mean square

error to the std dev. and percent bias. The results showed that the model produces satisfactory predic-

tions when forced with initial cond, data

at the b

g of the summer melt season,

between 15 June and 1 July, whereas less reliable predictions are produced for longer lead times.

KEYWORDS: glacier mass balance, glacier modelling, ice and climate, melt-surface

1. INTRODUCTION

Water storage in snow and ice is an important factor in the
hydrological cycle in many regions of high altitudes and lati-
tudes like Iceland, where 11% of the country is covered by
glaciers (Bjornsson and Palsson, 2008). Simulation and pre-
diction of melt behavior provide valuable information for
water resources management, e.g. regarding reservoir fill
rates, potential power production and load on hydraulic
structures. Short-term predictions of a few days improve
daily operations and risk analysis, whereas longer term pre-
diction of seasonal melt behavior assists in the systematic
optimization of networks of reservoirs and diversions.

Prior work in melt modeling of Icelandic glaciers has
focused on either empirical (degree day) and physical
(energy balance) modeling approaches. Both have shown
good performance for simulating glacial mass balance (c.g.
De Ruyter de Wildt and others, 2003b; Marshall and
others, 2005; Carenzo and others, 2009; Engelhardt and
others, 2014). Empirical approaches to mass-balance model-
ing have been considered sufficient when the underlying
physical processes need not be resolved (e.g. Réveillet and
others, 2017). More recently, the vast potential of remote-
sensing data has been increasingly applied to snowmelt esti-
mation in basins where little information is available (Kalra
and others, 2013; Qiu and others, 2014; Drolon and
others, 2016).

Observations have shown that across the globe glaciers
are losing mass and retreating. These studies have further
concluded that the rapid retreat in the early 21st century is
without precedent on a global scale (Barnett and others,
2005; Liu and others, 2015; Zemp and others, 2015; Roe

and others, 2017). In line with the trend of glaciers globally,
Icelandic glaciers have experienced retreat in recent years
and their mass loss since the end of the 19th century has
been shown to be responsible for 0.03 mm sea level rise glo-
bally (Bjornsson and others, 2013). Studies of the response of
Icelandic glaciers to the expected climate change have
shown that the country’s main ice caps will mostly disappear
over the next two centuries, leaving glaciers only at the
highest elevations (Adalgeirsddttir and others, 2006, 2011).

Studies have predicted that increased glacial ablation will
result in increased river runoff in Icelandic rivers throughout
the 21st century (Jonsdéttir, 2010; Gudmundsson and others,
2011; Matthews and others, 2015). While little prior work
exists on summer mass-balance modeling of Icelandic gla-
ciers, several studies have considered the subject in other
regions. These attempts have cither employed statistical
modeling techniques or used physical models forced with
climate simulations (Fujita and Ageta, 2000; Schéner and
Bohm, 2007).

The present study considers the prediction of the summer
mass balance of Brdarjokull in SE Iceland. The Bradarjokull
catchment, which is more than 90% glacierized, was har-
nessed for hydropower generation by the construction of
the Halslon reservoir in 2006 (Gardarsson and Eliasson,
2006). Due to its hydroelectric potential, data have been
recorded on hydro-meteorological variables in the catch-
ment, including measurements of glacier mass balance
since 1993 (De Ruyter de Wildt and others, 2003a, b;
Rasmussen, 2005).

Braarjokull covers an area of 1550 km?, making it the
largest outlet glacier of the Vatnajokull ice cap, representing
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Fig. 1. Location of mass-balance points and automatic weather stations (AWS) which collect the meteorological data that were used in the

study (Data on land cover from National Land Survey of Iceland).

~19% of the total area covered by the ice cap. The glacier
ranges in elevation from 600 to ~1550 m a.s.l. and the
mean equilibrium line lies at an altitude ~ 1200 m a.s.l.
(Bjornsson and Palsson, 2008). The glacier slopes gently
toward the central Icelandic highland plateau and is classi-
fied as a surging outlet glacier with a surge frequency of
80-100 years, the last one occurring in 1964 (Kjer and
others, 2008). Unlike other outlets of the ice cap,
Braarjokull is not underlain by geothermal areas. Due to
the proximity to surrounding volcanoes, its surface is period-
ically covered in volcanic tephra, thus decreasing its albedo
(Larsen, 1998; Moller and others, 2014). In the three main
volcanoes near the basin, Bardarbunga, Grimsvétn and
Kverkfjoll, tephra events occur on average ~15 eruptions
per century (Oladottir and others, 2011).

The forcing of physically based melt models with meteoro-
logical forecast model output on seasonal time scales inevit-
ably incurs the large uncertainty in the forcing data. In this
paper, statistical modeling was investigated to attempt the
prediction of summer mass balance directly from the initial
conditions of the system on the forecast date, thereby minim-
izing the uncertainties. The motivation for the study was to
investigate whether the mass balance of the Braarjokull
could be predicted at the beginning of the melt season and
to develop a simple operational model for reservoir opera-
tors. The goal of the study was to assess the predictive
power of the information available by employing statistical
approaches and the impact of lead times on predictions.

2. DATA

The data used in the present study consisted of glaciological
mass-balance measurements, meteorological variables

measured around the Brdarjokull basin, and climate indices
which have been shown to correlate with Icelandic
weather patterns (e.g. Baldwin and others, 2003; Hanna
and others, 2004).

2.1. Glaciological measurements

Winter accumulation and summer ablation of Vatnajokull
are measured in biannual measurement surveys at the
boundaries of the melt season in spring and autumn.
Winter accumulation is estimated by drilling ice cores and
the summer ablation is measured from ablation wires or
rods that are placed on the glacier in spring, when winter
accumulation is measured (Thorsteinsson and others,
2004). The annual net mass balance is calculated as the
sum of the winter accumulation and the summer ablation.
Figure 1 shows the approximate location of mass-balance
sites on the surface of Braarjokull as small circles.

The annual mass balance within each catchment on the
glacier has been estimated based on the ablation stake mea-
surements by extrapolating across the area (Palsson and
others, 2014). The summer mass balance within the
Halslon reservoir catchment was used as the response vari-
able in the present study, while the winter accumulation at
the various accumulation sites was used as an input variable.
It should be noted that the estimated mass balance did not
include liquid precipitation that fell on the glacier during
the summer nor snow that melted outside the survey
period. Furthermore, the uncertainty in the mass-balance
measurements is not reported. The glaciological summer
mass-balance data were selected as response variable
based on the overlap of the shorter time series of discharge
for the reservoir inflow which started in 2007.
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2.2. Meteorological variables

Data were obtained from eight automatic weather stations
(AWS) in and around the Braarjokull basin. Three AWS on
the glacier surface were used at elevations of 850, 1200
and 1400 m as.l. denoted as BruNe, BruMi and Brukf,
respectively. The stations are designed to collect measure-
ments of the components of the snow surface energy
balance, shown as triangles in Figure 1. Time series of the
measurements were acquired as daily averages of the follow-
ing parameters: air temperature, relative humidity, net radi-
ation, wind speed and surface albedo.

Data from ten land-based AWS surrounding the
Braarjokull basin were obtained, six based in the central
highlands and four in the lowlands. The locations of the
land-based AWS are shown as squares and pentagons in
Figure 1. Time series were obtained as mean daily values
of the following parameters: air temperature, dew point tem-
perature, vapor pressure, relative humidity, atmospheric
pressure and wind speed, and additionally precipitation
measurements from the AWS at Egilsstadir.

2.3. Climatological variables

Icelandic climate has been shown to be significantly influ-
enced by prevailing ocean conditions surrounding the
island as well as changes in the large-scale circulations in
the North Atlantic Ocean (Hanna and others, 2001). Large-
scale changes in atmospheric circulation have also been
shown to correlate significantly with long-term Icelandic
climate trends (e.g. Hanna and others, 2004).

To incorporate information on the variability in the ocean
conditions surrounding Iceland, the following two datasets
were acquired: monthly averages of the Atlantic
Multidecadal Oscillation (AMO) index (Enfield and others,
2001) and quarterly averages of the heat content of the
Northern Atlantic (60-0°W, 30-65°N) measured in the top
700 m of the ocean by the US National Oceanic Data
Center (NODC). The AMO index is defined from the trends
in Sea Surface Temperature (SST) in the North Atlantic and
has been shown to be correlated with temperature and pre-
cipitation patterns in Europe (Ghosh and others, 2017;
Zampieri and others, 2017). Furthermore, the heat transport
through the North Atlantic by the warm Gulf Stream has
been shown to be a key factor in determining the climate
of Northern Europe (e.g. Palter, 2015).

To incorporate information about the atmospheric circula-
tions into the model, monthly averages of the North Atlantic
Oscillation Index (NAOI) were acquired from the US
National Oceanic and Atmospheric  Administration
(NOAA). The NAOI is a measure of the changes in the differ-
ence in atmospheric pressure at sea level between the
Icelandic and the Azores. Studies have shown the NAOI to
be significantly correlated with temperature and precipita-
tion patterns in Iceland (Hanna and others, 2004).

3. METHODS

3.1. Time series

The data were obtained as hourly or daily averages from the
AWS and as point measurements of the winter accumulation
data and climatological indices. The AWS data were aggre-
gated to average values to represent the initial conditions of
the system at four different dates in spring, specifically for
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Fig. 2. Average daily discharge into Halslon reservoir for the period
2007-2015. The shaded area represents a proxy for the predicted
mass balance.

the periods beginning on 1 April and ending on 15 May, 1
June, 15 June and 1 July.

The main aim of the study was to predict the summer
inflow into the Halslén Reservoir. Due to the short time
series of inflow (2007-2015) the summer mass balance of
Briarjokull was selected as a proxy. Figure 2 shows the
average daily discharge into the Halslon reservoir, where
the shaded area shows the period between the forecast
date on 1 July to the time of the fall ablation survey when
the total summer mass balance of the glacier is calculated.
The mass-balance data do not represent hydrological fluxes
such as the drainage from the 10% of the basin, which is
de-glacierized, baseflow and basal melt due to geothermal
fluxes and liquid precipitation that falls on the glacier in
summer. Despite this, we consider that the summer mass
balance of the 90% glacierized portion of the basin offers a
good representation of the inter-annual variability of net
summer inflow into the reservoir. Thus, the total inflow,
represented by the shaded area under the curve, will be sig-
nificantly correlated to the summer mass balance, the quan-
tity to be predicted in the present studly.

The method was initially applied to 1 July data; then pre-
dictions of the summer mass balance were produced for each
of the dates to assess the evolution of the predictive perform-
ance of the modeling approach in the period leading up to
the summer melt season. The availability of the acquired
data overlapped for the period 2001-2015, which was
selected as the study period for the research. A breakdown
of the input variables screened in the study along with their
correlation to Brdarjokull summer mass balance is given in
Appendix A.

The number of years used in the present study were N =
15. The input data were aggregated to a single average value
for each year that represented the initial conditions of the
system prior to the date of prediction. The data were split
into training and test sets using the K-fold cross-validation
method. In the present study, K was selected as 5 and the
dataset was split into five subsets, each using three observa-
tions to test the model and 12 observations for calibration. A

103



104

4 Eythorsson and others: Statistical summer mass-balance forecast model with application to Braarjokull glacier, South East Iceland

fivefold cross-validation was selected over a leave-one-out
approach (where K = N) to reduce the variance in the error
estimates (James and others, 2013).

3.2. Variable selection

In the present study, many predictor variables were consid-
ered, whereas the number of observations of the response
variable were few. To reduce the number of predictors and
prevent model overfitting, variables were selected that
showed a significant correlation with the response variable,
the observed mass balance of the glacier. The variables
were ranked by their r* value, and variables with r* values
above a certain threshold were selected for further model
development. The threshold value for variable selection
was determined by sensitivity analysis of model results, as
described in the subsequent sections.

3.3. Multivariate model ensemble

The selected variables can be used to create many multivari-
ate regression models, none of which may be obviously
superior to any of the others. Rather than selecting any
single model, an ensemble of all potential competing
models was developed. The selected variables were used
to calculate a set of all possible multivariate linear regression
models comprising five or fewer input variables. The input
variables were limited to five due to computational limita-
tions and the potential risk of overfitting the short time
series. The optimal number of input parameters to include
in the models of the ensemble was investigated by sensitivity
analysis of model results with a range of numbers of input
parameters, as described in subsequent sections.

3.4. Multi-model inference

Selection of any single one of the regression models in the set
of possible models would recognize the existence of several
potential and competing models and introduce additional
uncertainty in the estimator due to the model selection.
Unless the uncertainty associated with model selection is
accounted for, overconfident estimates of model predictions
may be inferred (Wang and others, 2009).

An alternative to selecting a single model is to average the
prediction over a range of plausible models. This technique,
called model averaging, incorporates the uncertainty asso-
ciated with model selection into predictions of unknown
variables (Hjort and Claeskens, 2003). The model averaging
approach has in recent years been applied to several hydro-
logical model applications (Diks and Vrugt, 2010; Tsai,
2010).

Methods for model averaging include Bayesian model
averaging (BMA) and frequentist model averaging (FMA). In
BMA, model uncertainty is evaluated by assigning prior prob-
abilities to all models being considered, whereas in the FMA,
no prior probabilities are required and all estimators are
determined by the data (Buckland and others, 1997;
Raftery and others, 1997; Hoeting and others, 1999). In the
present study, the FMA approach to model averaging was
chosen as it relies only on the available data.

The response variable was estimated from a model ensem-
ble by calculating the ensemble average. Several weighting
functions have been reported in the literature to incorporate
the measures of model plausibility into model averaging,

based, for example, on goodness-of-fit metrics Akaike infor-
mation criterion (Buckland and others, 1997), Bayesian infor-
mation criterion and focused information criterion (FIC)
(Burnham and Anderson, 2002; Zhang and others, 2012).
Other strategies for weight function selection include the
minimization of Mallow’s C, criterion and weight choice
based on the unbiased estimator of risk (Liang and others,
2011). In cases where little prior information is available
on the likelihood of each model, or models having similar
priors, assigning a uniform weight to each model is a reason-
able choice (Raftery and others, 1997). In the present study, a
uniform weight was selected.

3.5. Optimal subset of models

Another important consideration of the model averaging
methodology is the selection of a set of models over which
to average. A complete Bayesian solution to the problem is
to average over the entire set of possible models (Madigan
and Raftery, 1994). However, as the set of potential models
can become large, averaging over the entire set may not be
practical. To reduce the number of models to be considered,
Madigan and Raftery (1994) suggested excluding models that
poorly fit the calibration data.

The quality of each model in the set of possible models
was assessed by several evaluation metrics. Moriasi and
others (2007) surveyed several model evaluation metrics for
watershed simulations and recommended using three
metrics: the Nash-Sutcliffe efficiency (NSE), the ratio of the
root mean square error to the std dev. of measured data
(RSR) and the percent bias (PBIAS) for evaluation of hydro-
logical models (Moriasi and others, 2007). These three
metrics were selected for model evaluation in the present
study; their mathematical formulations are described as:

n obs __ y/sim 2
NSE =1 ,M (1)

EL et el

T (pte— )

RMSE
RSR = = . 2
STDEV s \/ZA”-] (ylphs _ ymcan)z ( )
_UA YQI)S e s Ysim 100
pBiAs = 2 (7 yb) {100 3)
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where n is the number of data points in the dataset, Yo% is the
observed mass balance in the ith year, Y™ is the simulated
mass balance in the ith year and Y™*" is the mean observed
mass balance. Moriasi and others (2007) suggested that a
model simulation could be judged as satisfactory if NSE >
0.5, RSR < 0.7 and PBIAS < +25%.

An ensemble of plausible models was created by evaluat-
ing all models in the set of possible multivariate regression
models in accordance with the recommended values of
NSE, RSR and PBIAS. Models with NSE < 0.5, RSR> 0.7
and PBIAS > +25% were eliminated from further analysis
and the remaining models were stored for multi-model
inference.

Madigan and Raftery (1994) suggested that, in the case of
models that fit the calibration data equally well, the less com-
plicated model should be selected as it receives more support
from the data. In the present study, a sensitivity analysis was
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Table 1. NSE of different model configurations with varying
Ihreshold and number input variables, optimal value of NSE =1

Table 3. PBIAS of different model configurations, optimal value of
PBIAS =0

Number of variables

Number of variables

1 2 3 4 5 1 2 3 4 5
ihreshold Fihreshold
0.2 -0.09 0.48 0.53 0.51 0.44 0.2 0.76 2.55 2.45 3.15 4.29
0.25 —0.03 0.55 0.56 0.54 0.48 0.25 0.85 2.46 2.39 3.02 3.66
0.3 0.23 0.69 0.71 0.71 0.66 0.3 —2.65 —0.08 0.41 0.75 1.23
0.35 0.24 0.61 0.64 0.64 0.44 0.35 -3.05 -0.75 0.38 0.47 1.45

performed on model predictions by varying the number of
allowed input variables in the models and thus identifying
the optimal number of variables to include. .

The model averaging estimate of glacier ablation, A, is
then given by

A= A, 4)

=~
Il

=
Mz

1

where the index k denotes the kth model considered, M is the
total number of models and A is the estimated ablation
based on the kth model. The uncertainty in the estimate is
taken as the spread in predicted values of the ensemble of
models.

4. RESULTS AND DISCUSSION

4.1. Multimodel inference

The selection of a threshold value of r* for variable selection
and the number of input variables used in the model were
optimized by performing a sensitivity analysis of the model
results. The results were evaluated using the metrics NSE,
RSR and PBIAS and were calculated using four threshold
values of  [0.2, 0.25, 0.3, 0.35] and five options for the
number of model input variables [1, 2, 3, 4, 5. Model
ensembles were calculated for each combination of model
options and the ensemble mean was used to calculate the
evaluation metrics. The use of the median ensemble
response was also investigated and yielded almost identical
results. Tables 1-3 show the results for the evaluation
metrics: NSE, RSR and PBIAS, respectively, while Table 4
shows the total number of models in each ensemble.

The results of the sensitivity analysis showed that the
optimal values of NSE and RSR were obtained using a thresh-
old value of * = 0.3 and constraining the number of input
parameters in the models to four (optimal results are

Table 2. RSR of different model configurations, optimal value of
RSR=0

highlighted in Tables 2—4). In terms of PBIAS, the optimal
configuration was found with a threshold r* = 0.3 and two
input variables in the models. However, the PBIAS of
several configurations showed very low bias including the
optimal configuration in terms of NSE and RSR. Hence it
was concluded that the optimal model ensemble was
achieved by selecting potential input variables with r* >
0.3 and restricting the number of inputs into each model in
the ensemble to three. As shown in Table 4, this model
ensemble contains 35 plausible models.

4.2. Variable selection

The time series of all the acquired potential input variables
were assessed based on their correlation with the observed
summer mass balance of Braarjokull. Variables with a correl-
ation coefficient below a set threshold value of 0.3 as deter-
mined in Section 4.1 were eliminated from further analysis.
The variables selected for model development and their cor-
responding r* values are presented in Table 5.

4.3. Model evaluation

The model was evaluated according to its ability to predict
observed values of mass balance of the glacier in terms of
the evaluation metrics NSE, RSR and PBIAS described in
Section 3.5. The models were evaluated using fivefold
cross-validation; thus, the data were split five ways providing
12 observations for calibration, leaving three observations for
model evaluation for each fold. Table 5 shows the evaluation
metrics obtained in the present study for each of the five folds
used for cross-validation.

The results in Table 6 show that for four out of the five
folds, all evaluation metrics indicated a satisfactory predic-
tion in accordance with the specifications of Moriasi and
others (2007). However, for the third fold, evaluated with

Table 4. Number of models in the ensemble of plausible models
with different configurations of number of input variables and thresh-
old r value

Number of variables

Number of variables

1 2 3 4 5 1 2 3 4 5
’llhrbchulrl rtzhmshnld
0.2 1.04 0.72 0.69 0.69 0.75 0.2 15 105 455 1365 3003
0.25 1.01 0.67 0.66 0.68 0.72 0.25 1 55 165 330 462
0.3 0.88 0.56 0.53 0.53 0.58 0.3 7 21 35 35 21
0.35 0.87 0.62 0.60 0.59 0.75 0.35 5 10 10 5 1
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Table 5. Final variables selected for model development and their
correlation to the observed summer mass balance of Braarjokull,
given as r* values

Variable Location P

Net radiation BruNe (850 m a.s.l) 0.65
AMO index Atlantic Ocean 0.48
Albedo BruNe (850 m a.s.l) 0.47
Albedo BruMi (1200 m a.s.l) 0.36
Atmospheric pressure Karahnjukar 0.35
Precipitation Egilsstadir 0.33
Ocean heat content North Atlantic 0.32

observations from the period 2007-2009, low NSE and high
RSR values were observed, whereas PBIAS was within
acceptable range.

Figure 3 shows the observed mass balance of the
Braarjokull for the study period with predicted values from
each fold in a box and whiskers plot. The observed
summer mass balance is shown as black stars; the notch in
the box represents the median of the ensemble predictions,
while the ends of the box represent the upper and lower quar-
tiles; the whiskers encompass the range of all ensemble pre-
dictions. Considering the time series of simulated and
observed values shown in Figure 3 during the period
2007-2009, both were very close to the long-term average
mass balance of the glacier. When the observed values
were close to the mean value, the denominator in Eqns (1)
and (2) took on a small value, inflating the evaluation
metrics, NSE and RSR. Thus, during periods where the
mass balance is consistently close to the mean, these
metrics may provide a poor indication of the quality of the
model outputs.

The results in Figure 3 show that the range of ensemble
predictions encompasses the observed values for all observa-
tions in the study period except 2004 and 2012. Furthermore,
the ensemble mean provides a reasonable estimate of the
observed mass balance for the range of observations consid-
ered. The evaluation metrics described in Eqns (1)(3) were
calculated for all predictions yielding values of NSE = 0.71,
RSR=0.54 and PBIAS =0.27%. The results suggest that
the model has satisfactory performance with low bias for
under- or overpredicting the mass balance.

Table 6. Evaluation metrics for model averaged predictions using
fivefold cross-validation

Evaluation period NSE RSR PBIAS (%)
2001-2003 0.71 0.53 49
2004-2006 0.66 0.57 10.7
2007-2009 -0.72 13 —32
2010-2012 0.75 0.49 =61
2013-2015 0.87 0.35 -8.7

Models show satisfactory performance with NSE > 0.5, RSR < 0.7 and PBIAS
<*25%.

4.4. Model performance in time

The results described in the previous sections were obtained
using data available on 1 July. To assess how the predictive
performance of the method evolved over time in spring, as
the melt season approached predictions were calculated
for data available for 15 May, 1 June and 15 June. Table 6
shows the evaluation metrics observed for predictions at
each of these dates compared with 1 July.

The evaluation metrics presented in Table 7 show that the
predictive information in the data diminished quickly as the
lead time increased to dates prior to 1 July. For predictions
made on 15 May, negative values of NSE were observed,
indicating that the model predictions performed worse than
simply reporting the mean mass balance of the glacier.

Figure 4 shows the predictions from the model suite using
data from the four dates in spring. The results show that for
longer lead times, the spread in ensemble predictions
increased. Especially, ensembles for the years 2008 and
2009 showed a large variability in model outputs. The
model also had poorer performance in predicting the
extremes of the observations with longer lead times.
The results show that predictions made prior to 1 July were
less reliable and the earliest time when satisfactory predic-
tions could be made was between 15 June and 1 July.

Figure 5 shows the correlation of the selected input variables
shown in Table 5 to the Braarjokull summer mass balance at
the four forecast dates in spring. The table shows that the key
predictor on 1 July forecast, net radiation at BruNe, has
much less predictive power earlier in the spring. The same
applies to the albedo at both BruNe and BruMi, which show
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Fig. 3. Model averaged predictions of Braarjokull summer mass balance for all fivefold cross-validations. Observed glacier mass balance is

shown as black stars.
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Table 7. Evaluation metrics for predictions with longer lead times
with models showing satisfactory performance on 1 July

Forecast date NSE RSR PBIAS (%)
15 May -0.95 1.39 9.2

1 June 0.13 0.93 3.2

15 June 0.45 0.75 2.7

1 July 0.71 0.54 0.27

Satisfactory performance is defined as models having NSE > 0.5, RSR < 0.7
and PBIAS € +25%.

some predictive power on 15 June but none earlier. This
suggests that spring snow conditions on the glacier are not indi-
cative of the summer melt. By the end of June, as the melt
season is beginning on the glacier, these variables start
showing the power to predict the summer melt patterns.

The precipitation at Egilsstadir and atmospheric pressure
at Karahnjukar similarly show little to no correlation to the
summer mass balance on the earliest forecast dates. This sug-
gests that the precipitation patterns in late spring and early

July 1st forecast

summer play an important role in determining the summer
melt, whereas precipitation patterns during the winter are
less important in determining the ultimate summer melt.
This can also be deduced from the fact that none of the
winter accumulation measurements showed correlation to
the observed summer mass balance.

The AMO index and the North Atlantic Ocean Heat
content, however, show a persistent correlation to the
summer mass balance throughout all the forecast dates.
This suggests that a large portion of the inter-annual variabil-
ity in Icelandic glacier mass balance is affected by the large-
scale oceanic circulations and heat transport in the North
Atlantic Ocean. The trends in these variables persist in
much longer time frames than local climate conditions and
contain significant predictive power for glacial mass-
balance forecasts at least as early as the end of the first
annual quarter. These results suggest that a significant
portion of the variability in summer mass balance of
Icelandic glaciers can be forecast well in advance of the
melt season with lead times up to the length of the autocor-
relative time scales of the AMO index.
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Fig. 4. Model averaged predictions of Briarjokull summer mass balance for all fivefold cross-validations. The optimal model found with 1 July
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Lastly, we note that the NAOI did not show any correl-
ation to the summer mass balance. This suggests that large-
scale atmospheric circulation in the North Atlantic, while
indicative of Icelandic climate, is not an important factor in
summer melt patterns of Icelandic glaciers. Hence, in terms
of glacial mass balance, the ocean circulation in the North
Atlantic is a much more important variable than atmospheric
circulation.

5. CONCLUSION

The study showed that, of all the potential input variables
available in the basin, seven showed a significant correlation
with the summer mass balance. The variables deemed to
contain predictive information at the beginning of the melt
season were associated with average net radiation, glacier
albedo, precipitation, atmospheric pressure and heat flux
in the North Atlantic. It was observed that out of all potential
multivariate regression models incorporating these vari-
ables, only a few adequately predicted summer mass
balance. As selection of any single model would cause
additional uncertainty in the estimation of the response vari-
able due to model selection, an ensemble of plausible multi-
variate regression models was calculated and the average of
the model results was used to predict the glacier mass
balance.

The selection of a subset of plausible models over which
to average was investigated. The results suggest that the
optimal subset was found by eliminating models with poor
fit to calibration data. Sensitivity analysis of model predic-
tions suggested that the optimal number of input variables
to include in the models was three and with variables
exhibiting significant correlation included as inputs. The
results showed that, in terms of the model evaluation mea-
sures NSE, RSR and PBIAS, satisfactory predictions of
summer mass balance could be made by calculating a
uniform average of model forecasts over the set of plausible
models.

Investigation of the lead time with which predictions are
calculated showed that model performance becomes less
reliable as simulations are performed earlier in spring.
Satisfactory predictions can be produced between 15 June
and 1 July, at which time the melt season is beginning and
predictions of summer melt volumes are valuable to water
resources managers.
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APPENDIX A
See Table A1.

Table A1. Breakdown of the potential input variables surveyed along with their correlation to Briarjékull summer mass balance

Variable Location Period Rﬁdju,(ed Variable Location Period Rﬁdjusked
Net radiation BruNe Q2 0.645  Relative humidity Hvalsnes Q2 0.050
AMO North Atlantic Past 0.479  Dew point temperature Eyjabakkar Q1 0.045
month
Albedo BruNe Q2 0.466  Relative humidity Myvatn Q1 0.026
Albedo BruMi Q2 0.359  Outgoing longwave BruNe Q2 0.014
radiation
Atmospheric pressure Karahnjukar Q2 0.355  Winter accumulation BBO Winter 0.013
Precipitation Egilsstadir Q2 0.336  Winter accumulation B10 Winter 0.008
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Table A1. (Cont.)

Variable Location Period Rﬁdi“sm, Variable Location Period R,%,.j.,md
Heat content North Atlantic Ocean  Past 0.318  Relative humidity BruMi Q1 0.007
month
Reflected solar radiation BruNe Q2 0.298  Wind speed Myvatn Q1 0.004
Wind speed Myvatn Q2 0.291  Wind speed Upptyppingar Q1 0.000
Winter accumulation B12 Winter 0.261  Temperature Skaftafell Q2 —0.003
Atmospheric pressure Eyjabakkar Q2 0.259  Outgoing longwave BruMi Q2 —0.004
radiation
Atmospheric pressure Egilsstadir Q2 0.256  Wind speed Karahnjukar Q1 —0.004
Wind speed Egilsstadir Q2 0.232  Vapor pressure Karahnjukar Q2 -0.008
Temperature Eyjabakkar Q2 0.227  Temperature Egilsstadir Q2 -0.017
Winter accumulation B19 Winter 0.218  Positive degree days BruNe Q1 —0.021
Wind direction BruNe Q2 0.200  Atmospheric pressure Laufbali Q2 —-0.023
Atmospheric pressure Egilsstadir Q1 0.195  Negative degree days BruNe Q1 —-0.024
Wind speed Hvalsnes Q2 0.192  Temperature BruNe Q1 -0.027
Winter accumulation B16 Winter 0.191  Temperature Egilsstadir Q1 —-0.030
Relative humidity Jokulheimar Q2 0.191  Atmospheric pressure Teighorn Q2 —0.030
Incoming longwave BruNe Q2 0.187  Wind speed BruNe Q1 —0.030
radiation
Atmospheric pressure Eyjabakkar Q1 0.182  Dew point temperature Karahnjukar Q2 -0.033
Temperature Karahnjukar Q2 0.182  Relative humidity Eyjabakkar Q1 —-0.033
Sea temperature anomaly North Atlantic Past 0.180  Wind direction Upptyppingar Q1 —-0.034
month
Albedo Brune Q1 0.177  Wind speed Eyjabakkar Q1 —0.035
Relative humidity Jokulheimar Q2 0.167  Wind speed Setur Q2 —0.037
Wind speed Laufbali Q2 0.158  Temperature Teighorn Q2 —0.044
Wind speed Skardsfjoruviti Q2 0.157  Relative humidity Eyjabakkar Q2 —0.046
Winter accumulation B13 Winter 0.157  Temperature Laufbali Q2 —-0.046
Relative humidity BruNe Q1 0.155  Winter accumulation B09 Winter —-0.047
Reflected solar radiation BruMi Q2 0.152  Temperature BruMi Q2 —0.049
Winter accumulation Bru Winter 0.151  Wind direction BruNe Q1 —0.051
Relative humidity Karahnjukar Q2 0.146  Incoming solar radiation BruMi Q2 —-0.051
Wind speed Skaftafell Q2 0.143  Wind direction Karahnjukar Q2 —0.055
Temperature Eyjabakar Q1 0.139  Precipitation Egilsstadir Q1 -0.055
Wind speed BruMi Q2 0.139  Atmospheric pressure Jokulheimar Q2 —-0.056
Temperature Setur Q2 0.135  Temperature Skardsfjoruviti - Q2 —0.056
Incoming longwave BruNe Q1 0.133  Wind direction Upptyppingar Q2 —0.058
radiation
Wind speed Egilsstadir Q1 0.126  Incoming longwave BruMi Q2 -0.060
radiation
Winter accumulation BUD Winter 0.124  Wind speed BruNe Q2 —0.060
Positive degree days BruMi Q2 0.117  Wind direction Karahnjukar Q1 —0.064
Reflected solar radiation BruNe Q1 0.116  Atmospheric pressure Setur Q2 —0.065
Wind speed Upptyppingar Q2 0.116  Incoming solar radiation BruNe Q2 —0.066
Wind speed Eyjabakkar Q2 0.110  Wind direction Eyjabakkar Q2 —-0.068
Incoming solar radiation BruNe Q1 0.107  Relative humidity Myvatn Q2 —-0.068
Temperature Jokulheimar Q2 0.107  Wind direction Eyjabakkar Q1 —0.068
Winter accumulation B18 Winter 0.106  Negative degree days BruNe Q2 —-0.069
Net radiation BruMi Q2 0.103  NAOI North Atlantic ~ Past —0.069
month
Wind speed Jokulheimar Q2 0.102  Negative degree days BruMi Q2 —0.071
Relative humidity BruNe Q2 0.098  Wind Speed Teighorn Q2 —-0.072
Atmospheric pressure Karahnjukar Q1 0.097  Wind direction BruMi Q2 -0.072
Wind speed Karahnjukar Q2 0.097  Relative humidity Skaftafell Q2 —0.074
Dew point temperature Karahnjukar Q1 0.088  Temperature Hvalsnes Q2 —0.075
Temperature Myvatn Q2 0.080  Temperature BruNe Q2 —0.075
Temperature Myvatn Q1 0.078  Vapor pressure Eyjabakkar Q2 —-0.075
Temperature Karahnjukar Q1 0.070  Relative humidity Karahnjukar Q1 -0.077
Outgoing longwave radiation  BruNe Q1 0.069  Relative humidity Egilsstadir Q1 -0.077
Winter accumulation B14 Winter 0.067  Dew point temperature Eyjabakkar Q2 -0.077
Vapor pressure Eyjabakkar Q1 0.067  Positive degree days BruNe Q2 -0.082
Relative humidity Egilsstadir Q2 0.054  Net radiation BruNe Q1 —0.090
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period 1950-2100 according to the Képpen-Geiger (KG) classification system using the ensemble average of
NASA-NEX CMIP5 projections for the rcp 4.5 scenario. Snow Cover Frequency (SCF) in days/year was calculated
from the MODIS10A1 snow product and the SCF trends were calculated across the Arctic for the MODIS period
(2001-2016). Ten pollution monitoring areas in the Arctic lowlands, especially vulnerable to climate change
impacts, were selected for analyzing the climate and snow regimes. In seven of the ten arcas we observed
significant changes in the climate during the MODIS period and these same areas also showed the largest SCF
trends. At lower latitudes we observed decreasing SCF, while further north, by the shores of the Arctic seas, SCF
has increased. Averaged across the Arctic we observed a 0.91 days/year decrease in SCF. Our results show that
across the Arctic warmer climate classes have and will continue to replace polar tundra and cold summer re-
gions. Based on the CMIP5 simulations, we expect the coverage of the currently dominant Arctic climate class,
Cold climate with cold summers and no dry season (Dfc), to decline by about 40% by 2100 and be replaced by

climate classes associated with warm (Dfb, Dsb, Dwb) and hot (Dfa, Dsa, Dwa) summers.

1. Introduction

We studied the impact of climate change on snow resources in the
Arctic. The historical and future expected climate warming was as-
sessed, as estimated by Global Circulations Model (GCM) projections for
the rcp 4.5 scenario. We combined information on the climate trends
with satellite observations of snow cover to investigate the climate
impact on snow resources in the area. The results were analyzed to
identify physical drivers for the observed changes on a regional basis
and assess the future evolution of the Arctic snow regime. The specific
research questions we considered were whether there has been and/or
can we expect significant changes in the Arctic climate and, if climate
change has occurred, can it be detected by remote sensing observations
of the local snow cover?

The climate in the Arctic has been warming at twice the global rate
and polar regions are expected to experience the most rapid climate
change globally (Larsen et al., 2015). Among the impacts that have
been observed already are melting permafrost (Lawrence et al., 2008),
declining sea ice concentrations (Notz and Stroeve, 2016), species mi-
grations (Thuiller et al., 2008) and extreme weather events (Cohen
et al.,, 2014). These impacts, which are expected to further advance in
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the future, will drastically impact Arctic societies and ecosystems
(Overland et al., 2013). An essential factor for societal adaptation in the
Arctic will be to understand the impact of changing climate regimes on
local water resources, which are stored in the landscape as ice and snow
for large portions of the year (Diffenbaugh et al., 2013; Eliasson et al.,
2017).

A key estimate of the availability of snow resources from remote
sensing is Snow Cover Frequency (SCF), the number of snow-covered
days per year. SCF can indicate growing season length and habitat
suitability (Barichivich et al., 2013) and is an important geophysical
feature as snow cover will reflect most of the inbound solar radiation
(Cohen, 1994). As it is an important element in several land surface
processes, SCF is an important variable in geophysical simulations, e.g.
hydrological modelling in cold regions (Bokhorst et al., 2016). Due to
its importance, snow cover has been a key observation target for remote
sensing using satellites since the 1960’s (Cohen, 1994; Guan et al.,
2013). Many instruments have been deployed to map global snow cover
using various sensor technologies including optical sensors (e.g.
Landsat, AVHRR, MODIS, GOES) and microwave technology (e.g.
SMMR and AMSR-E) (Dietz et al., 2012). Data from these sensors have,
for example, been assimilated in hydrological models to improve
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streamflow simulations (Huang et al., 2017).

Among the best estimates of future climate conditions are GCM
projections, whose skill has improved in recent years and which are the
basis for developing and implementing societal adaptation strategies
(Stocker et al., 2013). We used the ensemble average of the CMIP5
projections for the Representative Concentration Pathway (rcp) 4.5
emission scenario to represent historical and future climate conditions,
respectively (Taylor et al., 2012). The GCM output can be used to
classify regional climate into different climate regimes. Climate change
can then be quantified by analyzing changes of these regimes over time
(Chen and Chen, 2013). A widely accepted classification scheme is the
Koppen-Geiger (KG) climate classification system, which classifies cli-
mate regimes based on temperature and precipitation estimates
(Koppen, 1918). The KG system has been used in a variety of disciplines
to estimate both global and local impacts of climate change (Chen and
Chen, 2013) and as a method to validate GCM results (Lohmann et al.,
1993). With the availability of gridded high resolution climate simu-
lations and improved computational capabilities, these maps can now
be produced with higher spatial and temporal resolution allowing for a
more detailed analysis of climate changes (Kottek et al., 2006; Spinoni
et al., 2015).

In this study we analyzed SCF trends using MODIS data that is
available for the period (2001-2016) to investigate how they compare
with climate changes predicted by recent GCM projections. We argue
that if significant changes in the climate and snow regimes coincide in
space and time, longer term GCM projections can be considered more
reliable and can be used to predict long term SCF trends.

Our hypothesis is that the warming trend that has been observed in
the Arctic would result in a decreasing trend in snow cover across the
area. We expect this trend to be more pronounced at lower latitudes but
also present further north. Our results indicate that the interaction
between the climate and snow regimes is not this straightforward, as in
some locations we observed a significant increase in SCF simulta-
neously with a shift toward warmer climate.

2. Materials and methods
2.1. Tools and datasets

In this study the Google Earth Engine (GEE) (Gorelick et al., 2016)
was used for all spatial analysis, while some of the statistical analysis
and plotting of the results was performed in Python using the SciPy
toolbox (Oliphant, 2007). All the datasets used in the study were
available in the GEE data catalog. Graphs were created using Pyplot and
maps were produced in ArcGIS.

Representative Concentration Pathway (rcp) 4.5 is a stabilization
scenario in which total radiative forcing will be stabilized before 2100
by employment of a range of technologies and strategies for reducing
greenhouse gas emissions (van Vuuren et al., 2011). The NASA NEX
dataset (Thrasher et al., 2006) was used to estimate daily climate
conditions by calculating the ensemble average of the CMIP5 projec-
tions for the rcp 4.5 scenario (van Vuuren et al., 2011; Taylor et al.,
2012). The NASA NEX dataset contains downscaled projections of the
21 GCMs from the CMIP5 model inter-comparison project (Taylor et al.,
2012). The CMIP5 calculations were performed in support of the fifth
assessment report of the International Panel on Climate Change (IPCC
ARS) (Taylor et al., 2012). The NASA NEX dataset is bias-corrected as it
contains the CMIP5 GCM reproduction of historic climate.

The MOD10A1.005 MODIS/Terra dataset was used for daily snow
cover classifications. The GE data catalog provides the MODIS global
daily snow cover products MOD10A1 (Terra) and MYD10A1 (Aqua)
(Hall et al., 2006). These datasets contain gridded daily snow cover
identified using the Normalized Difference Snow Index (NDSI). The
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MODIS/Terra product was selected over MODIS/Aqua due to the failure
of the band 6 detectors on MODIS/Aqua which impact the calculation
of the NDSI (Barnes et al., 2003). Several studies conducted to validate
the MODIS snow products have shown good performance compared to
other satellite-derived snow results (Maurer et al., 2003) and to ground
observations (Xu et al., 2017). The MODO9GA dataset from NASA
EOSDIS LP DAAC was used for information about the nadir angle of the
MODIS observations.

For calculations involving elevation, we used the GTOPO30 30 arc-
second global digital elevation model (LP-DAAC, 2004).

2.2. Study areas

We selected ten pollution monitoring areas within the Arctic
boundary defined by the Arctic Monitoring and Assessment Program
(AMAP) of the Arctic Council as our study areas. For comparison,
analysis was also performed for the entire AMAP area. These ten areas
were selected as they are considered especially vulnerable to human
development and climate change (AMAP, 2015). The study areas were
restricted to the Arctic coastline and lowlands and code was written in
GEE to select only data from elevations below 500 m a.s.l. The study
areas are shown in Fig. 1. The study areas refer to 70% of the total
AMAP area and 92% of the AMAP area below 500 m.a.s.l. We analyzed
the Arctic lowlands in our study, because we expect the greatest
changes to the climate and snow regimes in these areas. Furthermore,
these lower elevation areas are where most human development is lo-
cated and are the most important areas for wildlife and vegetation
habitat. At higher elevation in the Arctic, where glaciation is much
more common, large changes in snow or climate were not expected and
any changes would be of less consequence for Arctic societies and
ecology.

The study areas were manually approximated using the geography
tools in the JavaScript version of GEE, while the AMAP boundary was
obtained and uploaded as an asset to GEE. The AMAP boundary and the
selected pixels of the study areas are shown in Fig. 1.

2.3. Climate classification trends

KG climate classifications were calculated globally at 0.2-degree
horizontal resolution. We implemented an algorithm in GEE to classify
each pixel based on the KG classification criteria which are summarized
in Appendix A (Kottek et al., 2006; Peel et al., 2007). The classification
consists of five main classes, each with two levels of subclasses, yielding
a total of 30 climate classes. Thus, for example, an area classified with
the main class D — Cold, second subclass f — no dry season and the third
subclass b — warm summer, would have the code Dfb. The algorithm was
applied to the Arctic region to calculate annual KG classifications for
the duration of the NASA NEX dataset (1951-2100) for the rcp 4.5
scenario.

The ensemble average of the climate models was calculated and
taken as an estimate of future conditions. We chose to use the ensemble
average of the 21 GCMs in the NEX dataset for rcp 4.5 to run the KG
categorical classification scheme. We used the ensemble average as this
is a good representative of the of future climate states defined by the rcp
4.5 scenario of the CMIP5 GCM ensemble.

For this study, climate change was estimated as a change in the KG
classification for each grid cell due to a change in temperature and
precipitation patterns in that same grid cell over varying time periods
(Beck et al., 2005). The proportional coverage of each climate class
within each study area was found for each year, yielding a time series of
proportional KG class coverage in each area. We calculated KG classes
for the full period of the NEX dataset (1951-2099) while SCF was es-
timated using MODIS data available for the period (2001-2016). We
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Fig. 1. The Arctic AMAP area and the selected pixels of the ten study areas below 500 m. a.s.l.

Data: AMAP (2015).

used the SCF time series to attempt to validate the GCM projections as
we argue that significant changes in the climate and snow regime
should coincide in time and space; the projections can then be used to
predict future SCF trends and to assess them for periodicity.

2.4. Snow cover frequency trends

We calculated annual SCF at a 500 m X 500 m resolution across the
Arctic based on the MODIS10A1.005 snow cover product. We re-
mapped the MODIS10A1 dataset to provide a binary classification of
snow cover for all valid observations by assigning pixels with value 1
(snow/ice) or 0 (no snow/ice). Observations with zenith angles greater
than 25° were filtered out to reduce the so-called panoramic "bow-tie”
effect. This is a panoramic distortion that is exacerbated by the curva-
ture of the earth, causing overlap in satellite scan lines, leading to data
repetition, which is known to cause systematic error in snow mapping
in general (Souri and Azizi, 2013) and decreasing accuracy of the
MODIS cloud cover mask specifically (Ackerman et al, 2008). In-
formation about the sensor nadir angle was extracted from the
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MODO9GA dataset and merged with the remapped MOD10A1l. The
snow cover detection algorithm used to develop MOD10A1 uses all the
MODIS swaths acquired in a given day to select the best observation
using the NDSI (Baker, 2011).

The MODIS cloud detection algorithm has been evaluated over polar
areas and has exhibited misclassification rates for daytime observations
of as high as 20% (Liu et al., 2004). With the release of the fifth col-
lection of MODIS imagery significant improvements have been made to
the cloud mask (Frey et al., 2008). Wang et al. (2016) compared the
MODIS cloud mask to the CloudSat-Cloud-Aerosol and Infrared Path-
finder Satellite Observations (CALIPSO) (C-C) and found 77.8% agree-
ment between the methods (Wang et al., 2016). Ackerman et al., 2008
compared the MODIS cloud mask with ground-based Lidar and satellite-
borne Laser Altimeter data and found 85% agreement among the
methods. Ault et al. (2006) compared the MODIS cloud cover detection
to field observations and found agreement between 86-92%. Based on
these studies, we used the MOD10A1 data as is, without additional
cloud masking. In this study, missing observations because of, for ex-
ample, cloud cover or polar night were masked by assigning them a null
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value. Pixels with null values that also occurred between consecutive
swaths with high nadir angles were rejected. These procedures reduced
the number of valid observations annually so that across the Arctic we
observed on average 60 valid observations/year per pixel

We calculated the annual SCF for each pixel by filtering the image
collection by year and counting the number of times each pixel was
covered in snow, dividing by the number of valid observations in each
year. Annual SCF maps were calculated for the period of MODIS ob-
servations (2001-2016) based on all valid MODIS observations. We did
not perform any gap-filling on the MODIS snow cover product to avoid
introducing bias in case the number of valid observations is correlated
to snow cover. The trend in SCF over the MODIS time series was esti-
mated by linear regression and Sen’s estimator of slope method (Sen,
1968) at each pixel. The statistical significance of the trend line was
then assessed, using both the non-parametric Mann-Kendall trend test
(Maurice and Kendall, 1975) and Sen’s estimator of slope methods, as
described in the following sections.

2.5. Comparing trends in KG class coverage and SCF

In each study area the timeseries of proportional KG coverage were
investigated for evidence of statistically meaningful change during the
period of overlap (2001-2016) using the non-parametric Mann-Kendall
and Sen’s estimator of slope methods. Confidence levels of a = 0.05
and a = 0.01 were selected as thresholds for reporting statistically
significant results. The threshold values of a were selected as this has
been a tradition in quantitative research. However, as a value of slightly
less than 0.05 only provides a weak argument against the null hy-
pothesis (Wasserstein and Lazar, 2016), p-values are reported for all
analyses performed in this study to report the strength of the evidence
against the null hypothesis.

The evidence for statistical significance of the trends in SCF and KG
class coverage was assessed. Since the distribution of the data is un-
known and not assumed to be normally distributed, we estimated the
significance of trend using the non-parametric Sen’s slope method (Sen,
1968) and the Mann-Kendall hypothesis test (Kendall 1975). Both of
these methods have frequently been used to quantify significance of
trend in hydro-meteorological time series (Drapela and Drapelova,
2011; Gocic and Trajkovic, 2013). The null hypothesis was that there
was no monotonic trend in the data: Hy: s = 0, while the alternative
hypothesis was that a monotonic trend was present: H;: |s| > 0. Maps
were developed showing areas with significant evidence for the rejec-
tion of the null hypothesis.

The significance of the trend identified by linear regression was
assessed using the Mann-Kendall test. The test was applied using the
ee.Reducer.kendallsCorrelation() function in GEE and the stats.kendalltau
() function in SciPy was used. Significant values of r were estimated
from the large sample approximation which is valid for n > 10. Z-va-
lues corresponding to these significance levels were found for the
standard normal distribution (Helsel and Hirsch, 2002).

The trend was also estimated using Sen’s slope method, which is less
sensitive to outliers. The method was applied using the
ee.Reducer.sensSlope() function in GEE and the stats.mstats. theilslopes()
function in SciPy. The slope was estimated between all data points in
the time series and ordered from smallest to largest. Sen’s slope esti-
mate was calculated to give the mean of the slope estimates. The con-
fidence intervals about the slope estimate were calculated for a = 0.01
and a = 0.05. The slope was determined to be statistically different
from zero if the upper and lower confidence intervals shared the same
sign (Gocic and Trajkovic, 2013).
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3. Results
3.1. Trends in climate classifications

We classified Arctic climate annually for the period 1951-2100 as
per the methods described in Section 2.3. We calculated the propor-
tional coverage of each climate class in each study area for each year in
the record. Our results showed that, across the Arctic and especially at
lower latitudes, climate classes associated with warmer and longer
summers have been replacing colder climates. Our results further show
that these trends are expected to continue throughout the 21st century.

Fig. 2 shows the climate classifications for the years 1951 and 2099.
The figure shows that cold climate with warm summers and no dry
season (Dfb), which historically has been the main climate class in the
continental subarctic, will spread northward until at least the end of the
current century, replacing climates associated with cold summers and
very cold winters. Fig. 2 shows that all the main climate classes within
the Arctic belong to the groups of Cold (D) or Polar (E) climate.

Table 1 shows the average coverage of the polar and cold climate
classes within the Arctic AMAP boundary for the decades 1951-1960
and 2090-2099 grouped by sub category. Table 1 also shows the
change in coverage of the same classes during this period. The results
show that all classes associated with polar and cold climate with very
cold winters are expected to decline during the period. On average, cold
climate with cold summers is expected to decline, although the dry/
cold summer class (Dsc) is expected to expand by half. All climate
classes associate with warm and hot summers are expected to more
than double during the present century. We note that KG class Dfd, cold
climate with very cold winters and no dry season was not observed.

Fig. 3 shows the time series of proportional coverage for the main
groups of climate classes in the Arctic AMAP area during the period
1951-2099 with a rolling 15-year average. Our results show that
throughout the period cold climate classes with cold summers (Dfc, Dsc
and Dwc) are the most common Arctic climates below 500 m.a.s.l. Fig. 3
shows that classes with very cold winters (Dwd and Dsd) and polar
climates (ET and EF) decline steadily throughout the study period.
Climate classes with warm (Dfb, Dsb and Dwb) and hot summers (Dfa,
Dsa and Dwa) consistently increase in coverage throughout the period,
with the rate of increase accelerating after year 2000. Our results show
that in the beginning of the period the cold summer classes are rapidly
replacing polar (ET and EF) and very cold winter (Dwd and Dsd) climate
classes, with cold summer classes reaching a peak coverage around year
2020. In the latter part of the period classes with warm (Dfb, Dwb and
Dsb) and hot summers (Dfa, Dwa and Dsa) advance further north into
the Arctic, causing a net decline in the coverage of the cold summer
climate classes.

Our results show that by the end of the 21st century the coverage of
the most common Arctic climate class in the beginning of the period,
cold climate with cold summers and no dry season (Dfc) will have de-
creased by about 40%. The second most common class, Polar tundra
(ET) is expected to decrease by 34% during the same period. We expect
that as these colder climate classes recede further north, climate classes
associated with warm and hot summers will expand in coverage by
185% and 733% respectively.

3.2. SCF trends

We estimated the SCF trends in the Arctic using linear regression
and the Sen’s slope estimator method, as described in Section 2.4. The
methods showed good agreement and yielded similar slope estimates.
The evidence for the significance of the trends was estimated using the
Sen’s slope estimator test and the Mann-Kendall trend test for the Sen’s
slope and linear regression trends, respectively.
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Fig. 2. Examples of annual Képpen-Geiger (KG) classification maps, for year 1951 (upper) and 2099 (lower).

Fig. 4 shows areas with significant SCF slope as highlighted (blue for
decreasing SCF and red for increasing SCF) for both statistical methods
and significance levels of @ = 0.05 and a@ = 0.01. The results show that,
in general, both methods identify the same areas as exhibiting
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significant SCF slope. However, the Mann-Kendall method identified
areas with permanent snow cover as having a significant increase in
SCF, most notably on the Greenland ice sheet. The Sen’s method was
less sensitive to outliers due to pixel misclassification and did not
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Table 1
Coverage of Polar and Cold climate classes within the Arctic AMAP boundary
and changes between 1951-1960 and 2090-2099.

1951-1960 2090-2099 Net Change
Polar 26.4% 17.3% —35%
Polar Frost (EF) 0.4% 0.1% —86%
Polar Tundra (ET) 26.0% 17.2% —34%
Cold Climate  Very Cold Winters 15.9% 3.1% —80%
Dry Winters (Dwd) 4.3% 0.1% —97%
Dry Summers (Dsd) 11.5% 3.0% —74%
Cold Summers 49.1% 43.8% -11%
No Dry Season (Dfc) 30.4% 18.0% —41%
Dry Winters (Dwc) 2.9% 1.8% —36%
Dry Summers (Dsc) 15.8% 23.9% 51%
Warm Summers 6.6% 18.7% 185%
No Dry Season (Dfb)  4.3% 12.9% 197%
Dry Winters (Dwb) 0.2% 1.2% 518%
Dry Summers (Dsb) 2.1% 4.6% 126%
Hot Summers 2.0% 16.9% 733%
No Dry Season (Dfa)  0.9% 7.6% 770%
Dry Winters (Dwa) 0.5% 1.1% 125%
Dry Summers (Dsa) 0.7% 8.3% 1099%
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Fig. 3. Proportional coverage of the most common groups of KG classes in the
Arctic, below 500 m.a.s.1. for the period 1951-2099. A 15-year rolling mean is
shown as solid line.

exhibit this behavior in glaciated terrain. Hence, for further analysis of
the results, Sen’s method was used. The results in Fig. 4 show large
areas of decreasing SCF at lower latitudes surrounding the Arctic circle,
whereas at higher latitudes, around the shoreline of the Arctic seas
patterns of increasing SCF were observed. Averaged across the arctic
AMAP area below 500 m.a.s.1, the findings suggest a decrease in the SCF
of 0.25%/year, or 9.1 days/decade, in the period 2001-2016.

3.3. Comparison of SCF and climate trends

We calculated the trends in annual coverage of the two most
common KG classes and the average SCF trend in each of the ten study
areas, as defined in Section 2.5. The trends were calculated for the
overlapping period (2001-2016).
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Fig. 5 shows the time series of proportional KG class coverage and
SCF for this period. The results differed between areas with changes
being evident in some places, whereas in other areas no clear changes
were observed, neither for the snow nor the climate regimes. In general,
warmer climate classes were observed to replace colder ones during the
study period.

Furthermore, we assessed the evidence for the statistical sig-
nificance of the KG trend line in each study area, using the methods
described in Section 2.5. We also calculated the percentage of each area
where a significant SCF trend was observed. Table 2 shows the changes
in the two most common KG climate classes in all study areas and the
result of the statistical analysis of whether the changes can be con-
sidered statistically significant. Table 2 also shows the portion of each
area where a statistically significant SCF trend was observed, as de-
scribed in Fig. 4. The table shows the total portion of significant SCF
trends as well as the portions of positive and negative SCF trends. The
results show that in seven study areas we identified a statistically sig-
nificant trend in the coverage of one or both of the two main climate
classes. These areas also had the biggest portion of statistically sig-
nificant SCF trends (4.8-13.6% at a = 0.05). In the three areas where
the climate had not changed statistically significantly - Taymir Pe-
ninsula & the Norilsk area, Svalbard & Eastern Greenland area and the
Canadian Arctic Archipelago — we also observed the smallest portion of
significant SCF trends (< 2% at a = 0.05). Hence, the results shown in
Table 2 are consistent in that the most pronounced changes in snow
cover were observed in areas where the most significant climate change
had occurred.

Our results show that, across the AMAP area polar tundra (ET) has
retreated significantly while at the same time SCF has decreased sig-
nificantly in 2.8% of the area and increased in 0.8%, at the a = 0.05
confidence level. Table 2 shows that in different study areas these
trends vary considerably, although in all cases polar or cold summer
climate classes are replaced by warmer climate classes.

In both the Lower Mackenzie river delta and the Northern Alaska &
North slope area we observed climate with dry/hot summers (Dsb)
advancing significantly while SCF has been increasing. In the Lena
River Delta area cold summer regions with very cold winters (Dfd) have
receded and cold/dry summer (Dsc) regions have advanced while SCF
has increased. In the Chukotsky Peninsula, Polar Tundra (ET) has re-
ceded while SCF has increased. In these four areas we observed a pat-
tern of warmer climate classes advancing at the same time as SCF is
increasing. We suggest that the increased SCF observed are driven by
changes in the precipitation regime, however, the KG classes that are
changing in these areas do not lend themselves to detailed analysis of
precipitation patterns.

In both the Kola Peninsula area and the Novaya Zemiya & Pechora
Seas area, cold summer regions (Dfc) have receded and warm summer
regions (Dfb) have advanced while SCF has decreased. On Baffin Island
and in Western Greenland, polar tundra (ET) has receded and cold
summer climate (Dfc) has advanced while SCF has increased and de-
creased by about the same amount.

4. Discussion

In this study we compared trends in climate change and snow cover
frequency in the Arctic. Our results showed that KG climate classes
associated with warm summers have been spreading northward in the
Arctic, replacing cold summer climates and polar tundra. These changes
are most evident at lower latitudes while colder climate classes are
more persistent further north. This is consistent with the snow cover
changes we observed at lower latitudes where we saw a decreasing SCF
trend around the Arctic perimeter. These results also support our ori-
ginal hypothesis that warming climate would lead to decreasing
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Fig. 4. Areas of significant slope in SCF, at significance levels a = 0.05 and a = 0.01 using the Mann Kendall hypothesis test (left) and Sen’s slope estimator (right)
(blue: increasing SCF, red: decreasing SCF) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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frequency of snow coverage. At high latitudes, however, around the
Arctic shores, we observed increasing SCF trends in many areas, the
opposite of our original hypothesis. This pattern was most obvious in
areas close to the Bering Strait, and to a lesser extent in areas close to
the Barents and Norwegian Seas.

We observed that 8.3% of the Arctic AMAP area has undergone a
significant change in SCF in the MODIS period (2001-2016). Averaged
across the Arctic SCF has decreased by 0.25%;/year or by 9.1 days per
decade. These findings agree with prior studies on changes to the snow
regime in the area. Yunlong et al. (2018) used MODIS, AMSR-e and the
IMS snow cover extent product to develop cloud-free daily snow cover
extent maps and estimated a decrease in Northern Hemisphere (NH)
Snow Covered Days (SCD) by 5.3 days/decade over the MODIS period;
Hori et al. (2017) combined MODIS and AVHRR data to derive a daily
Snow Cover Extent (SCE) product for the Northern Hemisphere and
found a decreasing trend of 10 days/ decade over large areas of the NH
during the period 1978-2015; Liston and Hiemstra (2011) modeled NH
snow cover using MERRA reanalysis data and found a decrease in SCD
by 2.5 days per decade across the Arctic in the period 1979 —2009. On
average these studies suggest that the frequency of snow cover in the
Arctic has decreased by 6.7 days/decade.

In seven study areas of ten we observed evidence for statistically
significant climate change during the period 2001-2016 These areas
also showed the largest portions of statistically significant SCF trends.
These areas have in common proximity to marine areas where sea ice
concentration has decreased significantly in recent years (Maslanik
et al., 2011). The three areas where no significant climate change and
limited SCF trends were detected are all located in the far north and two
are in or near the central continental Arctic where sea ice concentra-
tions have not changed as dramatically. These results are consistent
with previous findings that suggest that the decreasing sea ice con-
centrations in the surrounding seas have resulted in increased pre-
cipitation over these historically arid areas (Kopec et al., 2016). Al-
though consistent with models (Singarayer et al., 2006) the increasing
SCF trends we observed in this study are not found in the studies of
Yunlong et al. (2018) or Hori et al. (2017).

In our study we used the MODIS TERRA snow cover product to
quantify changes in snow cover. We did not use the MODIS AQUA
products due to known issues with band 6 (Barnes et al., 2003). We
calculated the SCF rather than performing gap filling and calculating
the SCD to prevent adding uncertainty associated with the gap filling
method. We suggest that further work should be done to validate and
compare gap-filled and multi-sensor snow products to ground-based
observations and modeling results to limit and quantify the uncertainty
associated with these data. We note that the MODIS period, 2001-2016
is rather short, and trends during this short period can be induced by
low frequency cyclical climate patterns, or by a small amount of ex-
treme weather events. However, combined with the climate data we
argue that trends observed in both the snow and climate regime during
this period can be considered reliable. Both the KG climate classifica-
tion and presence of snow cover are primarily dependent on pre-
cipitation and temperature. Although the mapping from the precipita-
tion and temperature fields to the climate classification and SCF is quite
different, our results show that statistically significant changes in these
regimes are correlated and that snow cover trends are a useful indicator
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of assessing changes to regional climate.

Our analysis of climate classifications in the Arctic for the period
1951-2099 suggests that, according to the CMIP5 projections for rcp
4.5, the changes observed during the MODIS era are part of a larger
trend that will continue throughout the present century. Given the
consistency of the climate trends and their correlation to local snow
cover changes, the SCF trends observed in the period 2001-2016 are
unlikely to be an artifact of natural periodicity in the climate regime.
We expect the northward progress of warmer climate classes will con-
tinue at least throughout the present century, as will the decreasing SCF
trends as observed in this study. At the same time at higher latitudes,
we expect SCF to continue increasing as sea ice concentration continues
to decrease.

5. Conclusions

Across the Arctic we observed a consistent trend of warmer climate
classes, associated with longer and warmer summers, spreading ever
northward. In seven of ten study areas we observed evidence for sig-
nificant climate change occurring in the period 2001-2016. In these
same areas, we also observed the largest SCF trends. In general, we
observed decreasing SCF trends at lower latitudes while further north,
in the areas bordering the Arctic seas, we observed increasing SCF
trends. This increase in SCF at high latitudes has most likely been from
increased precipitation due to increasing humidity that results from a
declining sea ice concentration. These results are consistent with prior
studies in the area.

Our results show that, according to the CMIP5 projections for rcp
4.5, the climate changes observed in the Arctic since 2001 are part of a
larger climatic trend that is expected to continue at least throughout the
present century. Based on these projections we expect decreasing SCF
trends to spread northward, while at higher latitudes, we expect SCF to
continue increasing as sea ice concentrations decrease. These changes
will impact the Arctic ecosystem, local communities and current ex-
ploitation of natural resources and potential utilization of new areas
and resources, such as for mining, oil/gas extraction, and transporta-
tion.
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Appendix A. Képpen-Geiger Classification Criteria

See Table Al.
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Table Al
Criteria for Koppen-Geiger classifications and their symbols.
st 2nd 3rd Description Criteria"
A Tropical Teota =18
f -Rain forest Pyry = 60
m -Monsoon Not Af and Pyry = 100-MAP/25
w -Savannah Not Af and Pgy < 100-MAP/25
B Arid MAP < 10*Pgyeshold
w -Desert MAP < 5*Pureshold
s -Steppe MAP = 5*Preshold
H -Hot MAT = 18
K -Cold MAT < 18
C Temperate Thoe > 10& 0 < Teqg < 18
s -Dry Summer Poary < 40 & Pyry < Pyyu/3
w -Dry Winter Pudary < Pswer/10
f -Without dry season Not Cs or Cw
A -Hot Summer Thot = 22
B -Warm Summer Not a & Tyy,10 = 4
C -Cold Summer Notaorb& 1 = Ty,10 = 4
D Cold Tho > 10 and Teo = 0
s -Dry Summer Pary < 40 & Pyry < Pyue/3
w -Dry Winter Pudry < Pswer/10
f -Without dry season Not Ds and Not Dw
A -Hot Summer Thot = 22
B -Warm Summer Not a & Tyy,10 = 4
G -Cold Summer Not a, bord
D -Very Cold Winter Notaorb & Teg < —38
E Polar Thot < 10
i -Tundra Thee >0
F -Frost That = 0
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Abstract. This study presents an estimate of historical snow
conditions in Iceland and a projection of these conditions,
given different emission scenarios. Historical snow condi-
tions were estimated using in situ observations from manned
meteorological stations over the period 1930-2021 and by
remotely sensed observations from the MODIS instruments
over the period 2001-2021. Historical and future climate
conditions, as described by each of the 21 general circulation
models (GCM) from the 5th iteration of the Coupled Model
Intercomparison Project (CMIPS) as contained in the NASA
Earth Exchange (NEX) Global Daily Downscaled Projec-
tions (GDDP) dataset, were used to simulate snow conditions
in Iceland over the period 1950-2100 under the Represen-
tative Concentration Pathways (RCP) RCP4.5 and RCP8.5
with the SNOW-17 model. The results show an increase in
the average annual snow cover frequency (SCF) over the his-
torical record detected both in the in situ (1930-2021) and re-
motely sensed data (2001-2021). Average annual snow depth
measurements also revealed an increasing trend over the his-
torical record. Simulated snow conditions show a substan-
tial decrease in both snow water equivalent (SWE) and SCF
over the period 1950-2100, a trend more pronounced under
RCP8.5 as compared to RCP4.5.

1 Introduction

The Icelandic climate is categorized as maritime, with mild
winters, cold summers, strong winds, frequent precipitation
and large spatiotemporal variations in weather and micro-
climate (Bjornsson et al., 2007; Olafsson et al., 2007). It is
strongly influenced by ocean conditions in the North Atlantic

(e.g., Massé et al., 2008) and mass balance trends of Ice-
landic glaciers are highly correlated with changes in large-
scale ocean circulations (Eythorsson et al., 2018). Since
the Last Glacial Maximum (LGM) the average annual air
temperature in Iceland has increased by about 4 °C (Geirs-
doéttir et al., 2013; Knudsen et al., 2008; Langdon et al.,
2011; Larsen et al., 2011; Sicre et al., 2011). The aver-
age air temperature in Iceland has risen by 0.08 °C/decade
since the 1850’s, comparable to the global average, and by
0.5 °C/decade over the period 1980-2016 (Bjornsson et al.,
2018). Since 1890 the Icelandic glaciers have lost about 16 %
of their mass and 18 % of their surface area, contributing
about 1.5 mm of global sea level rise (Adalgeirsdéttir et al.,
2020; Bjornsson et al., 2013) and are expected to lose most of
their remaining mass over the next two centuries at the cur-
rent pace (Adalgeirsdottir et al., 2006; Bjornsson and Pals-
son, 2008; J6hannesson et al., 2004; Schmidt et al., 2020).
Runoff in Iceland is generally expected to increase in win-
ter as less water is stored in the snowpack and runoff from
glaciers is expected to increase until at least the middle of
the 21st century (Bloschl et al., 2017; Jénsdéttir, 2008), the
rate of which is expected to vary depending on ocean con-
ditions in the North Atlantic, where recent cooling has led
to a slowdown in mass loss of Icelandic glaciers (Noél et
al., 2022). Spring melt is generally predicted to begin earlier
and autumn snow cover to occur later (Johannesson et al.,
2007). Analysis of a recently developed gap-filled MODIS
snow cover product suggests that the snow cover duration
has increased during the period 2000-2018 for all months
expect October and November (Gunnarsson et al., 2019). Un-
derstanding of future expected changes to snow in Iceland is
important for water resources management as it constitutes

Published by Copernicus Publications on behalf of the European Geosciences Union.



124

52 D. Eythorsson et al.

a considerable portion of the regional hydrological cycle, es-
pecially in the interior highlands where the majority of the
country’s energy production occurs, in hydropower plants
fed by glacial rivers.

Snow cover monitoring by satellite remote sensing has
been studied since the 1960s and several global snow cover
products have been produced based on these observations.
(Dong, 2018; Frei et al., 2012; Robinson et al., 1993). The
MODIS instruments on the Terra and Aqua satellites (Dietz
et al., 2012) provide a good balance of spatial and temporal
resolution, with two daily observations and 500 m x 500 m
pixels (Aalstad et al., 2020). An important variable for snow
remote sensing is the snow cover frequency (SCF), the num-
ber of days with snow cover divided by the number of valid
observations per year (Nolin et al., 2021), which is related
to e.g., growing season length and habitability (Callaghan et
al., 2011). The SCF is a key variable in the Earth’s energy
balance (Cohen, 1994) and can be used to analyze the im-
pacts of climate change on the cryosphere (Brown and Mote,
2009).

Snow condition estimates by both general circulation
models (GCM) and regional climate models (RCM) capture
the main traits of annual snow cycles but are know to con-
tain biases due to their relatively simple snow schemes (Frei
et al., 2018; Matiu and Hanzer, 2022). In general the GCM-
RCM pair predicts continuation of the ongoing reduction in
average snow conditions until the middle of the 21st century
(Verfaillie et al., 2018). Improved estimates of snow condi-
tions have been achieved, e.g., using various re-analysis (e.g.,
Fiddes et al., 2019), downscaling (Fiddes et al., 2022; Smi-
atek et al., 2016) and data assimilation methods applied ei-
ther to GCM-RCM snow projections or projections of snow
conditions by different snow models forced with downscaled
and/or bias corrected GCM-RCM data (e.g., Hanzer et al.,
2018).

Many snow models have been developed and described in
the literature (e.g., Krinner et al., 2018; Magnusson et al.,
2015). The SNOW-17 model was developed for the US Na-
tional Water Service where it has been used for operational
snow forecasting for the past several decades (Anderson,
2006). The SNOW-17 model has been applied to several re-
gional climate change studies (Miller et al., 2011; Notaro et
al., 2014) and has shown good correlation to MODIS snow-
covered area (SCA) observations (Franz and Karsten, 2013) .
A key advantage of the SNOW-17 model is that it is a concep-
tual model which simulates snowpack conditions based on a
temperature index which is both more computationally effi-
cient compared to full energy balance models and requires
fewer and simpler forcing data variables.

The objective of this study was to analyze observed trends
and predict the development of snow conditions in Ice-
land under different plausible climate scenarios. This article
presents an analysis of historical and future trends in Ice-
landic climate and snow conditions. Improved understanding
of how local snow resources are likely to respond to chang-
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ing climate conditions is important as these changes are ex-
pected to impact local communities and ecosystems as well
as changing the challenges and opportunities for exploiting
natural resources in cold areas (Eliasson et al., 2017). In this
study changes to historical snow cover properties were es-
timated based on both in situ and remotely sensed observa-
tions. Future snow conditions were projected by modeling
based on a globally downscaled and bias corrected ensemble
of GCMs from the 5th iteration of the Coupled Model Inter-
comparison Project (CMIPS5). The novelty of this study is the
analysis of an extended dataset of in situ records of snow con-
ditions in Iceland combined with a reliable remotely sensed
dataset of snow conditions in the area and the comparison of
these observations with snow conditions simulated using a
trusted snow model.

2 Methods
2.1 Tools and datasets
2.1.1 Insitu snow observations

Data on in situ snow measurements at manned monitoring
stations were acquired from the Icelandic Meteorological Of-
fice (IMO) (Icelandic Meteorological Office, 2021). The data
contain all observations and manual measurements of local
snow depth (SND), snow cover status (SNC), precipitation
(R), precipitation class (RTEG), and a visual estimate of sur-
rounding mountain snow cover status (SNCM) for a total of
266 manned observation stations that have recorded snow
data in the period 1930-2021. The SNCM is measured with
the intent to represent the SNCM in the highlands at 550—
650ma.s.l. in the mountains visible from each observation
station, as best applicable to the site of each station. The SNC
is measured with the intent to represent the average snow
cover status in the near vicinity of the observation station,
within 1 km radius (Icelandic Meteorological Office, 2008).

Figure 1 (left panel) shows the locations of the monitor-
ing stations that have recorded SNC continuously for at least
20 years at some time during 1930-2021. The figure shows
that the observations are spread around the lowlands near the
coastline with more sparse observations in the interior high-
lands. Figure 1 (right panel) shows the number of IMO sta-
tions reporting snow variable observations over the period
1930-2021 and the average annual snow depth across all sta-
tions for the same period. The number of stations reporting
snow data was below 10 until 1950 and rapidly increased
thereafter, the number of stations recording snow cover sta-
tus increased prior to those recording snow depth, from the
1960s onwards snow depth has been recorded at more than
60 stations. Figure 1 (right panel) shows that the average
annual snow depth from all stations has remained similar
throughout the study period.
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Figure 1. Left panel: topography of Iceland (National Land Survey of Iceland, 2016) and the location of IMO monitoring stations where
snow has been measured continuously for at least 20 years in the period 1930-2021. Right panel: number of IMO stations observing snow
variables and the average annual snow depth from all stations over time (Icelandic Meteorological Office, 2021).

2.1.2 Remote sensing and geospatial data

The MODI10A1.006 and MYD10A1.006 daily snow cover
products from the MODIS instruments on NASA’s Aqua and
Terra satellites (Hall and Riggs, 2016a, b) were used to es-
timate spatial changes in snow cover over the period of the
2001-2021 water years. The NDSI_Snow_Cover band was
used to estimate the presence of snow in each pixel. The
band contains the value of the normalized difference snow
index (NDSI) which leverages the fact that snow is highly
reflective within the visible spectrum but not the shortwave
infrared (Painter et al., 2009; Dozier, 1989). The NDSI val-
ues in each pixel are given in a range of 0—100 where a value
of NDSI > 0 often indicates the presence of some snow in
the pixel and a value of 100 that the pixel is likely fully snow
covered. The NDSI is not to be confused with fractional snow
covered area (FSCA) which is a measure of the fractional
snow coverage of a pixel although there exist commonly
used transformations between MODIS, FSCA and NDSI, in-
cluding linear (Salomonson and Appel, 2006), inverse linear
(Fiddes et al., 2019) and other regression methods (Alonso-
Gonzilez et al., 2021). Results from the Sentinel-2 mission
have also shown good performance of other NDSI-FSCA
transformations (Gascoin et al., 2020). Regression methods
have shown good performance on medium resolution ob-
servations such as from MODIS, whereas higher resolu-
tion observations have been shown to benefit from spec-
tral unmixing (Aalstad et al., 2020; Cortés et al., 2014).
The NDSI_Snow_ Cover_Basic_QA band was used to select
observations by quality estimation. A 10 x 10m DEM (Is-
landDEM) was used for topographical information (National
Land Survey of Iceland, 2016).

https://doi.org/10.5194/tc-17-51-2023

2.1.3 Climate data

The NASA Earth Exchange (NEX) Global Daily Down-
scaled Projections (GDDP) dataset (Thrasher et al., 2012)
was used as an estimate of historical and future climate. The
dataset contains global minimum and maximum near sur-
face air temperatures and surface precipitation rates, as esti-
mated by 21 globally downscaled and bias-corrected CMIP5
GCMs, in 0.2° horizontal resolution for the period 1950—
2100. It is noted that the CMIP6 version of the NEX-GDDP
dataset was published after the conclusion of the present
study and could be considered in future studies (Thrasher et
al., 2022). Daily average temperature was calculated as the
mean of daily minimum and maximum temperatures and the
ensemble mean was used to represent future climate. Climate
and land cover data from the Global Land Data Assimila-
tion System V 2.0 (GLDAS-2) (Rodell et al., 2004) dataset
was used for parameter estimation and permafrost extent data
from the Arctic Permafrost Map (WGS43261) were also used
for parameter estimation (Brown et al., 2002).

2.2 Data processing
2.2.1 Insitu observations

The SND is recorded for all days with snow covered ground,
in cm, SNC and SNCM are classified by visual observation
as: 0 = no snow, 2 = patchy snow cover, 4 = fully cov-
ered ground (Icelandic Meteorological Office, 2008). The
SND for 1 April was calculated for all stations with more
than 20 years of continuous snow depth measurements within
the period 1930-2021 (n = 89). The annual snow cover fre-
quency (SCF) was calculated for all stations with more than
20 years of continuous snow cover status observations within
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the period 1930-2021 (n = 93). The SCF was calculated as
the number of days with snow covered ground divided by
the number of days in the year, for both fully snow cov-
ered ground (SNC or SNCM = 4) and for patchy to full
snow cover status (SNC or SNCM > 2). The SCF was cal-
culated both for observations on the immediate surroundings
of the observation site (SFC) and on the surrounding moun-
tains (SFCM).

2.2.2 Remotely sensed observations

A binary snow cover classification was derived from
the MODI0A1.006 and MYDI0A1.006 snow cover
products (Hall and Riggs, 2016a, b). Data from the
NDSI_Snow_Cover band was selected for observations with
the highest quality estimate (NDSI_Snow_Cover_Basic_QA
= 0). The daily mean of NDSI_Snow_Cover band was
calculated from both snow cover products. Pixels with
NDSI_Snow_Cover > 0 were classified as snow cover (1),
and others as no snow (0). The average annual SCF was
calculated by counting the number of snow-covered days
and dividing by the number of days with valid observations
in each pixel, per hydrological year. The SCF was calculated
based on the highest quality observations, thus excluding
lower quality observations as well as missing data due to
cloud cover. The availability of MODIS data during polar
darkness is a temporal limitation for the dataset.

2.2.3 Snow modeling

Daily snowpack in Iceland was simulated for each hydrologi-
cal year in the period 1950-2100 using the SNOW-17 model
(Anderson, 2006). The model was run in a 0.2 ° resolution
with daily average precipitation and temperature data from
each of the 21 downscaled and bias corrected CMIP5 GCMs
in the NASA NEX GDDP dataset (Thrasher et al., 2012).
The model was initialized at the start of each hydrological
year in the study period to prevent snow accumulation be-
tween years. The model was applied to each of the 21 CMIP5
GCMs in the NASA NEX GDDP dataset and to both the
RCP4.5 and RCP8.5 scenarios. These scenarios were chosen
to represent both a business as usual scenario (RCP8.5) and a
stabilization scenario (RCP4.5) where anthropogenic climate
forcing is assumed to be stabilized by the end of the century.
The SNOW-17 algorithm was coded in Google Earth Engine
(GEE), the simulations were performed in GEE and the input
data were accessed through the GEE data catalog.

The SNOW-17 uses 10 model parameters that must be
specified by the user for each location. In this study the
SNOW-17 parameters were determined at the model reso-
lution across Iceland based on local topography, ecology and
hydrology. The recommendations provided by the author of
the model (Anderson, 2006) were followed for all model
parameters except the melt factors MFMAX and MFMIN,
which are key model parameters that describe the relation
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between surface air temperature and snowmelt. For the melt
factors the methods of Mizukami and Koren (2008) were fol-
lowed as they incorporate information about the local slope,
aspect, shading, vegetation cover and local shortwave energy
balance. The method for parameter determination was se-
lected as calibration of parameters influenced by prevailing
climate conditions would cause bias across the time scales
considered in this study, although it incurs the uncertainty
associated with parameter estimation. The supporting data
used for parameter determination were SWE, surface air tem-
perature, precipitation and snowfall rates, near surface wind
speed, land cover classification and net solar radiation from
the Global Land Data Assimilation System V 2.0 Dataset
(GLDAS-2), a 10 x 10 m Digital Elevation Model (DEM) of
Iceland (IslandDEM) and permafrost extent data from the
Arctic Permafrost Map (WGS43261). Table 1 summarizes
the description of each of the SNOW-17 model parameters
and presents the value ranges, units, source methodology and
supporting datasets used for the determination.

The yearly 1 April SWE was extracted for each ensem-
ble member. The annual SCF was also calculated for each
ensemble member as the number of times a model grid cell
contained snow per year divided by the number of days in
that year. The 1 April SWE was used as it has a long history
of use as a snow metric for streamflow forecasting and the
SCF was used as it has been suggested as a more appropriate
snow metric for a changing climate (Nolin et al., 2021).

2.24 Data analysis

This study analyzed a large amount of data on Icelandic snow
conditions with the purpose of studying long-term trends
in snow conditions based on publicly available authoritative
datasets. The presence of a statistically significant trend in
the time series of in situ observed mean annual SCF and
SND was estimated using the Mann-Kendall trend test and
by using Sens’s estimator of slope method for the MODIS
observations. Both of these tests have often been applied to
trend analysis in snow cover studies (Notarnicola, 2020; Yil-
maz et al., 2019). The Sen’s slope method was applied to
the remotely sensed observations as it is tolerant to outliers
(e.g., Nguyen et al., 2022). The trend test p-values were cal-
culated for the annual SCF and SND time series. If p<0.05
the change in the observed data was assumed to be unlikely
due to random variability, indicating a presence of a mono-
tonic trend. The average annual snow rain ratio in Iceland
was estimated from the ensemble mean of air temperature
and surface precipitation data from the NEX-GDDP dataset
by applying a simple rain / snow partitioning scheme, where
precipitation is classified as snow under a set temperature
threshold (0 °C). The GEE (Gorelick et al., 2016) was used to
access data, perform simulations and analyze results. Statisti-
cal analysis was performed using GEE and the SciPy toolbox
(Oliphant, 2007). ArcMap 10.7.1 was used to produce maps
showing the results.

https://doi.org/10.5194/tc-17-51-2023



D. Eythorsson et al.: Observed and predicted trends in Icelandic snow conditions 55

Table 1. SNOW-17 model parameters and the value ranges, units, source methods and supporting data used for each.

Parameter Range  Units Supporting data Methodology
Gauge under-catch factor 1.0 - - Andersson (2006)
(GCF)
Maximum melt factor 0724 mm°C~!.6h~! IslandDEM GLDAS-2 Mizukami and Koren (2008)
(MFMAX)
Minimum melt factor 0.001-1.5 mm°C~'-6h~! IslandDEM GLDAS-2  Mizukami and Koren (2008)
(MFMIN)
Average wind during rain on 0.02-04 mmmb! GLDAS-2 Andersson (2006)
snow (UADIJ)
Temperature determining —-1-3 °C GLDAS-2 Andersson (2006)
rain or snow (PXTEMP)
Base temperature where melt 0 °C - Andersson (2006)
occurs (MBASE)
Maximum negative melt 0.05-0.3 mm°C~!.6h~! GLDAS-2 Andersson (2002)
factor (NMF)
Antecedent temperature index 0.05-0.2 - GLDAS-2 Andersson (2002)
(TIPM)
Physical liquid water holding 0.02-0.3 % GLDAS-2 Andersson (2002)
capacity (PLWHC)
Constant basal melt rate 0-03 mmd! WGS43261 Andersson (2006)
(DAYGM)
3 Results with a linear trend line and a 10-year rolling average. Due

3.1 Historical snow cover trends

Figure 2a shows the average temperatures and precipitation
in Iceland over the period 1950-2021 as estimated from the
ensemble mean of the 21 GCMs in the GDDP dataset. The
figure shows that both temperature and precipitation have a
positive trend during the period while the variability in pre-
cipitation has been more than for temperature observations.
Figure 2b shows the annual average SCF for all IMO mon-
itoring stations for the period 1950-2021, calculated for lo-
cal (circles) and mountain (triangles) snow cover status both
based on only observations of fully snow-covered ground
(SNC or SNCM = 4) and including patchy snow cover sta-
tus (SNC or SNCM > 2), the in situ data are shown with
a 10-year rolling average and a linear trendline. The figure
shows the average annual SCF estimated from the MODIS
Terra and Aqua snow cover products (black markers) for ob-
servations above (stars) and below (crosses) 500 ma.s.l. The
figure shows an increasing trend for all observations and that
the MODIS observations below and above 500 m a.s.1. corre-
spond well with snow cover status observations around the
observation sites and in the surrounding mountains, respec-
tively. Figure 2c shows the average annual snow depth (SND)
of all IMO monitoring stations for the period 1950-2021
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to the considerable increase in the number of stations report-
ing snow measurements in the 1950s, as illustrated in Fig. 1,
data prior to that were not used for trend analyses. The figure
shows an increasing trend of SND over the period with the
highest values recorded by the end of the 20th century.

The results in Fig. 2 show that on average both SND and
SCF in Iceland have a positive trend over the period 1950—
2021. The trend is more apparent when considering both full
and patchy snow cover status, (SNC or SNCM > 2) and
the data reveal considerable natural climate variability. The
MODIS estimates of SCF below and above 500 ma.s.l. are
comparable to the in situ estimates of local and mountain
SCEF, respectively.

Figure 3 shows the estimated average annual snow / rain
ratio and the projected average annual changes to precipita-
tion and temperature in Iceland over the period 1950-2100
compared to 1950-1960 averages (temperature = —3.35 °C,
precipitation 1028 mmyr~!) given two emission scenarios.
The figure shows that as both temperature and precipita-
tion are expected to experience a continuation of the ongo-
ing increase from the 1950-1960 average the average annual
snow / rain ratio across Iceland is expected to decrease con-
tinually, from around 0.6 to around 0.2 and 0.1 for RCP4.5
and RCP8.5, respectively. This trend will be apparent sooner
at lower elevations where air temperatures are closer to the
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Figure 2. (a) Average annual temperature and precipitation in Iceland over the period 1950-2021 as estimated by the ensemble mean of
NASA NEX-GDDP. (b) Annual average SCF for all IMO monitoring stations for the period 1950-2021 and (c) average annual snow depth
of all IMO monitoring stations. The solid lines represent a 10-year rolling average.
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Figure 3. Estimated average annual snow / rain ratio and projected
changes for average annual temperature and precipitation in Iceland
for the period 1950-2100 given the RCP4.5 and RCP8.5 emission
scenarios.

snow / rain partitioning threshold. At higher elevations the
observed increase in precipitation will result in a temporar-
ily thicker snowpack overall, as air temperatures are fur-
ther from reaching the threshold, which would offset the in-
creased winter snowmelt and shorten the snow cover dura-
tion associated with temperature rise until the threshold is
reached.

Table 2 summarizes the statistical significance of the esti-
mated snow trends, estimated using the Mann-Kendall trend
test, for both the period of extensive historical records (1950—
2021) and the MODIS period (2001-2021), in terms of p val-
ues. The values for the historical trends are calculated from
1950 as the number of stations reporting snow data are few
prior to the 1950s, as shown in Fig. 1. The results show
that the increasing SCF and SND trends observed in Fig. 2
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are statistically significant over the period 1950-2021 for all
SCF estimates except for observations of SNCM = 4 (fully
snow-covered mountains). Over the MODIS period 2001—
2021 the trend is significant for all metrics except for ob-
servations of SNC = 4 and for MODIS observations above
500 ma.s.l.

Figure 4a shows the relative change in annual SCF over
Iceland as estimated from MODIS observations over the pe-
riod 2001-2021. Figure 4b shows areas where the trend line
is statistically significant (o = 0.05) for both MODIS and in
situ observations (SNC = 4) shown as symbols. Blue re-
gions and markers show areas where the SCF had signifi-
cantly increased and the red areas with decreasing SCF. The
results show that many areas in Iceland have experienced a
significant change in the local SCF, both as estimated from
MODIS data and from in-situ snow cover status observa-
tions over the period 2001-2021. Most of these areas have
experienced an increase in SCF, especially the eastern high-
lands and the mountainous regions of northern and north-
western Iceland. A few areas showed significant decreases
in the SCF and most of those were located at the termini of
the country’s major outlet glaciers, where a retreat has been
well documented (Hannesdoéttir et al., 2019; Adalgeirsdottir
et al., 2020; Hauser and Schmitt, 2021) or in coastal areas.
The areas where the largest change in SCF is observed from
MODIS data over the period 2001-2021 are those where geo-
physical surface changes have occurred, e.g., due to glacial
retreat. All manned observation sites where a decrease in
SCF or SND had occurred over the period were located at
low elevation in coastal areas except for one.

3.2 Projected seasonal snow conditions
Figure 5 shows the results of the simulation of daily snow
conditions in Iceland for the period 1950-2100 for both

representative concentration pathways (RCP) RCP4.5 and
RCP8.5. Figure 5a shows the average winter SWE across Ice-

https://doi.org/10.5194/tc-17-51-2023



D. Eythorsson et al.: Observed and predicted trends in Icelandic snow conditions

57

Table 2. Statistical significance of the linear SCD and SCF trend lines, estimated using the Mann-Kendall (MK) trend test, for the full
historical period (1950-2021) and the MODIS period (2001-2021). Statistically significant trend lines at the o = 0.05 level are shown in

bold.
Trend [% per decade] | p-value

1950-2021  2001-2021 | 1950-2021  2001-2021
SCFM (SNCM > 2) 0.1 43 | 1.4x10°6 0.02
SCFM (SNCM = 4) 0.0025 2.1 0.9 0.07
SCF (SNC > 2) 0.1 39 0.025 0.01
SCF (SNC =4) 0.002 1.9 0.6 0.06
SND 0.05 3.0 0.006 0.002
MODIS below 500 ma.s.1. - 29 - 0.04
MODIS above 500 m a.s.l. - 2.4 - 0.11
MODIS all elevations - 2.6 - 0.04
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Figure 4. (a) Percentage relative change in annual SCF over Iceland as estimated from MODIS over the period 2001-2021. (b) Areas where
the SCF trend line is statistically significant (@ = 0.05) for both MODIS and in situ observations (SNC = 4), where in situ observations are
shown with symbols. The 2019 outlines of glaciers and the ice divides of their major outlet glaciers are shown with black lines (Hannesdéttir

et al., 2020).

land and 5b shows the simulated average annual SCF along
with in situ and MODIS-derived SCF estimates.

Figure 5 shows that both SWE and SCF are expected to
decrease in Iceland over the course of the 21st century and
that this decrease has been ongoing throughout the study pe-
riod. Figure 5b shows that MODIS-derived SCF estimates
over the period 2001-2021 fit well with the simulated val-
ues. In situ observations of local and mountain snow cover
status (SNC or SNCM > 2) fall below and above the simu-
lated averages, respectively, as expected. However, although
observed and simulated SCF estimates fit well with the mag-
nitude and variability of each other, their trend is opposite.
The observational data show an increasing SCF trend while
the simulations show a decreasing trend over the historical
period 1950-2020. This pattern of opposing trends is also ob-
served in terms of snow magnitude as the simulated SWE es-
timates show a decrease in SWE, whereas the observed snow
depth measurements (shown in Fig. 2) show a significant in-

https://doi.org/10.5194/tc-17-51-2023

crease (p = 1.54x 1073) over the period 1930-2021. The re-
sults also illustrate the substantial natural climate variability
in Icelandic snow conditions.

The results in Fig. 2 show a positive trend for temperature
and precipitation in Iceland over the period 1950-2021. In-
creasing temperatures result in enhanced snowmelt, which is
apparent in a flat or decreasing SCF in coastal regions (shown
in Fig. 4), whereas at higher elevations the increased precip-
itation enhance winter snow accumulation leading to higher
SCF despite the enhanced snowmelt during summer, lead-
ing to a countrywide increase in average SCF. This effect
of increased snow cover at high elevations can be expected
to persist until temperatures have risen above freezing for a
considerable portion of the winter at the highest elevations
as well, after which snow cover is expected to decrease at all
elevations. Due to variability in the Icelandic landscape and
topography this effect should be more apparent when simu-
lated at a finer spatial resolution.

The Cryosphere, 17, 51-62, 2023

129



130

58 D. Eythorsson et al.: Observed and predicted trends in Icelandic snow conditions

1st April SWE

(@)

SWE [mm]

~—— historical GDDP
— RCP4.5
—— RCP8.5

1960 1980 2000 2020 2040 2060 2080 2100

45 Snow Cover Frequency

(b)

70

301 — nistorical GDDP

— RCP4.5
= RCP8.5
20 --- 5CFM obs
»»»»» SCF obs
—— MODIS obs

10

1940 1960 1980 2000 2020 2040 2060 2080 2100

Figure 5. (a) Simulated average winter SWE across Iceland for both RCP4.5 (green) and RCP8.5 (red). (b) simulated average annual SCF
across Iceland as projected by RCP4.5 and RCP8.5 compared to observations from monitoring stations of mountain and local snow cover
status as well as the MODIS snow cover products. The shaded area represents the upper and lower quantiles of the ensemble simulations and
one standard deviation from the mean of the observations. The solid line shows a 10-year moving average.

Recent studies have suggested a regional cooling in the
ocean temperatures surrounding Iceland due to changes in
the thermohaline circulation in the North Atlantic Ocean
(Caesar et al., 2018). This regional cooling, which has been
connected to a temporary slowing of glacial ablation in Ice-
land (Noél et al., 2022), would explain the opposing trends
observed in Fig. 5 as this regional cooling is poorly repre-
sented in the CMIPS5 models used for the snow simulations
in this study. The North Atlantic cooling trend is projected to
halt around 2050 given the results of the Community Earth
System Model version 2 (Danabasoglu et al., 2020).

4 Discussion and conclusion

The analysis of snow observations showed a significant in-
crease in both snow cover frequency (SCF) and 1 April SWE,
both as estimated from in situ observations over the period
1930-2021 and from observations from the MODIS instru-
ments on NASA’s Terra and Aqua satellites over the period
2001-2021. The MODIS observations were comparable with
in situ observations of both local and mountain snow cover
status. The results also revealed a large natural variability in
snow conditions, which was expected due to the sensitivity
of the Icelandic climate to fluctuations in large-scale atmo-
spheric and ocean circulations in the North Atlantic region
(e.g., Hanna et al., 2004; Massé et al., 2008). The results
showed a significant increase in average annual snow depth
over all stations for the period 1930-2021.

Simulated SCF was consistent with SCF estimates from
both MODIS and in situ observations for the historical pe-
riod, although the simulated trend was opposite to the trends
in both observational datasets. The simulations show that
SCF is expected to significantly decrease over the projected
period 20062100 especially below 500 m a.s.1., where snow
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cover is expected to become a rare occurrence by the end of
the period, given the RCP8.5 emission scenario. The simu-
lated SWE shows a significant decrease in SWE over the pe-
riod 1950-2021 whereas average annual SND from all IMO
stations has a positive trend over the same period. The re-
sults show that the water storage in Icelandic winter snow-
pack could decrease by about half or 3/4 under the RCP4.5
and RCP8.5 emission scenarios, respectively, over the period
1950-2100.

The results of this study suggest that the increased SCF in
Iceland, observed both from remotely sensed and in situ data,
is associated with increased precipitation causing a more fre-
quent and thicker snowpack which persists longer, despite
enhanced melt rates. This is consistent with Bjornsson et
al. (2018) who found annual precipitation to have increased
by about 10 % during the period 1980-2015. This increas-
ing trend was also observed by Gunnarsson et al. (2019)
who used multisource satellite remote sensing data to show
that there had been an increase in snow cover in Iceland
for all months except October and November over the pe-
riod (2000-2017). The simulated snow conditions are also
in agreement with previous projections of a decrease in SCF
and snow mass across Iceland, as the rising average temper-
ature causes spring melts to begin earlier and autumn snow
cover to occur later (e.g., Johannesson et al., 2007).

The results presented in this study deserve further inves-
tigation. Observations of snow conditions reveal a large nat-
ural variability which may be affected by large scale circu-
lations in atmospheric and ocean circulations in the North
Atlantic as well as global temperature changes. The observa-
tions of both snow cover and snow depth indicate an increas-
ing trend in these variables over the historical period whereas
simulated snow conditions predict a decrease in both over the
course of the present century, the extent of which is depen-
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Table 3. Underlying research datasets used in this study.

Dataset Purpose

Reference

DOI:

NASA NEX-GDDP Model forcing

Thrasher et al. (2012)

https://doi.org/
10.5194/hess-16-3309-2012
https://ds.nccs.nasa.gov/thredds/catalog/
bypass/NEX-GDDP/catalog.html

GLDAS-2 Parameter estimation Beaudoing and Rodell  https://doi.org/
(2020) 10.5067/ETTYRXPJKWOQ
Arctic Permafrost Ex-  Parameter estimation Brown et al. (2002) https://doi.org/
tent (WGS43261) 10.7265/skbg-kf16
IslandDEM Parameter estimation - https://www.lmi.is/is/landupplysingar/
and analysis gagnagrunnar/nidurhal
MYDI10A1.006 Remotely sensed snow  Hall and Riggs (2016a,  https://doi.org/

MODI10A1.006 observations b)

10.5067/MODIS/MOD10A1.006
https://doi.org/10.5067/MODIS/MYD10A1.006

In situ snow observa- —
tions

IMO snow observations

fyrirspurnir@vedur.is

dent on future emission scenarios. The observed increases in
SCF and SWE could be part of natural climate variability
induced by low-frequency cyclical climate patterns, or by a
small amount of extreme weather events. The causes and the
impacts of these changes to Icelandic ecology and society
should be better understood as future changes to snow con-
ditions will impact the hydrological cycle, which will further
affect the local ecology, hazard assessments, water resources
management, and hydropower production in the country.

Code and data availability. All data used for the analysis in this
study are freely available and were accessed either through the
Google Earth Engine database or by direct correspondence with the
data provider. The datasets used in this study and their source litera-
ture and links are provided in Table 3. The code for the snow model
and/or the remote sensing analysis can be made available upon re-
quest.
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ABSTRACT

h diti P

In this study Northern H e (NH) snow c were d and analyzed for the period 1950-2100 under two emission scenarios
RCP45 and RCP85. Daily snow conditions were simulated using the Snow17 model run on the Google Earth Engine (GEE) parallel cloud computing
platform with each of the 21 GCMs in the NASA NEX GDDP dataset. The model was evaluated based on Snow Water Equivalent (SWE) and Snow
Cover Area (SCA) data from the GLDAS-2 dataset and SCA remote sensing data from the MODIS/Terra instrument. The results showed that both NH
SWE and the number of Snow-Covered Days (SCD) have and will continue to decrease at lower latitudes, whereas in many high latitude regions SWE
is expected to increase, even as SCD is decreasing. The average annual NH SCD is expected to decrease by 12.5% and 23.1% between the periods
1950-1975 and 2075-2100, under RCP45 and RCP85, respectively. Between the same periods however, the NH mean winter SWE is expected to in-
crease slightly in the beginning of the period under both RCPs. By 2100, SWE will have reduced to the 19501975 level under RCP45. Under RCP85,
SWE will be 10% lower than the 1950-1975 level. These changes will pose a great challenge for water resource management across a wide spectrum,
including impacting current way of living.

1. Introduction

This study presents an analysis of the evolution of Northern Hemisphere (NH) snow conditions over the period 1950-2100 under

two different emission scenarios, RCP45 and RCP85 (Meinshausen et al., 2011). Daily snowpack conditions were simulated across the
NH in 0.2-degree horizontal resolution using a conceptual snow model, Snow17 (Anderson, 2006). The model was run using daily av-
erage precipitation and temperature data from the NASA-NEX GDDP dataset (Thrasher et al., 2012), which contains the ensemble of
downscaled and bias corrected Global Circulation Models (GCMs) from the CMIPS5 project (Taylor et al., 2012). The model simula-
tions were evaluated for the historic period using remote sensing data from the MODIS/Terra snow cover product (Hall et al., 2016)
and meteorological data from the Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004).

The ARG report by the Intergovernmental Panel on Climate Change (IPCC) states with very high confidence that the NH spring
snow cover has decreased since 1978 and that further decrease of NH seasonal snow extent is virtually certain under all plausible

emission scenarios (Fox-Kemper et al., 2021). These changes will have major hydrological, ecological and societal implications in
cold regions (e.g. Eliasson et al., 2017; Instanes et al., 2016). Changes to NH snow conditions have been observed in several studies.
Yunlong et al. (2018) using MODIS, IMS and AMSR-E data, estimated a decrease in NH snow cover by 5.3 days/decade since 2001.
Hori et al. (2017) found an average decrease in Snow Cover Extent of 10 days/decade in large areas of the NH since 1978, using
MODIS and AVHRR data. Eythorsson et al. (2019) estimated a decrease in Arctic Snow Cover Frequency (SCF) of 9.1 days/decade
since 2001 using MODIS data. Fontrodona Bach et al. (2018) studied in situ snow depth data across Europe and found an average de-
crease in mean snow depth of 12.2% per decade. Mudryk et al. (2020) estimated a snow mass loss trend in NH of -5 Gt/yr for all

months from December to May for the period 1981-2018 based on 6 observational snow products. The range in estimated changes to
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NH snow cover illustrate the uncertainty in observing this complex phenomenon using different observational data sources (e.g.
Brown and Robinson, 2011). Connolly et al. (2019) showed an observed trend of decreasing snow cover in the NH, which exceeded
that predicted by all CMIP5 models over the period 1967-2018.

Under future climate scenarios observed snow trends are expected to continue and even amplify (van Oldenborgh et al., 2013;
Vihma et al., 2016). Successful adaptation to a changing hydrological regime in these regions is therefore reliant on skillful predic-
tions of future snow conditions (Scheepers et al., 2018). Wang et al. (2018) compared the snow cover simulations in the NH from the
CMIP5 project and the Community Earth System Model (Kay et al., 2015) under different emission scenarios and found that all mod-
els predicted a decreasing frequency of snow cover. Brown and Mote (2009) analyzed the sensitivity of snow variables to future cli-
mate warming and found that the number of Snow-Covered Days (SCD) was the most sensitive to different levels of warming. Mudryk
etal. (2020) analyzed snow projections in the CMIP6 ensemble and showed that NH spring snow extent is on average expected to de-
crease by 8%;/1 °C of global surface air temperature (GSAT) increase relative to the 1995-2014 average.

The goal of this paper was to study spatio-temporal changes to NH snow conditions under different emission scenarios across the
hemisphere and in selected study basins. The novelty is that a dedicated and well documented snow model (Snow17) was used to
model NH snow conditions based on downscaled and bias corrected temperature and precipitation estimates from the CMIP5 GCM
ensemble. GCM snow parameter estimates are known to contain biases due to their relatively simple snow schemes (Matiu and
Hanzer, 2022) as well as in their temperature and precipitation estimates which are the key parameters for snow modelling (Jacob et
al., 2013). Thus, using Snow17 with downscaled and bias corrected input data will give improved simulations of snow conditions. To
illustrate the effect of predicted climatic changes in different regions the results were mapped to selected individual watersheds in the
NH as these are the spatial units of concern for water resources management.

2. Methods
2.1. Data

Daily average downscaled and bias corrected precipitation and temperature were calculated from the GLDAS-2 and NASA NEX-
GDDP dataset and used to run the Snow17 model. The Bias-Correction Spatial Disaggregation (BCSD) method is used to downscale
the input data. It is a statistical downscaling algorithm specifically developed to address the current limitations of global GCM outputs
(Maurer and Hidalgo, 2008; Thrasher et al., 2012; Wood et al., 2004). Snow data from the MODIS10A01.V006 and GLDAS-2 datasets
were used to evaluate the model results. Permafrost data from the WGS43261 dataset, land cover data from the GLCF dataset, eleva-
tion data from the GTOPO30 dataset and various parameters from the GLDAS-2 dataset were used for parameter estimation. The spa-
tial data used in this study were mapped to the model resolution, 0.2°, in GEE using the native ee.Image.reproject() function. Table 1
summarizes the datasets used in the project.

2.2. Data processing

Google Earth Engine (GEE) (Gorelick et al., 2016) was used to access data, perform the model simulations as well as spatio-
temporal and statistical analysis of the results. GEE is an emerging platform for large scale analysis of remote sensing and geoinforma-
tion and has commonly been applied in hydrological research (e.g. Chen and Zhao, 2022; Liu et al., 2022), including snow cover map-
ping (Banerjee et al., 2021; Eythorsson et al., 2019; Snapir et al., 2019) and regional snow modelling based on downscaled climate
projections (Eythorsson et al., 2022).

Table 1
Datasets used in this study.
Dataset Description Variables Purpose Reference
MOD10A1 v006 MODIS/Terra snow cover product. - NDSI_Snow_ Model evaluation Hall et al. (2016)
Cover
GLDAS-2 Global daily hydrometeorological data - SWE_inst - Model evaluation ~ Rodell et al. (2004)
- Tair f inst - Parameter
- Rainf f tavg estimation
- Wind_f_inst
- SWdown_f_tavg
- tree_canopy_
cover
- SnowDepth_inst
NASA NEX- Ensemble of 21 daily downscaled and bias corrected GCMs from the - tasmin Model forcing Thrasher et al.
GDDP CMIP5 project. - tasmax (2006)
- pr
GTOPO30 Global Digital Elevation Map (DEM) - elevation Parameter estimation LP-DAAC (2004)
GLCF Global Land Cover Data - tree_canopy_ Parameter estimation ~ Sexton et al. (2013)
cover
WGS43261 Arctic permafrost map. - Permafrost Parameter estimation Brown et al. (2002)

extent
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2.2.1. Snow model

In this study the Snow17 model was used to simulate daily snow conditions in the Northern Hemisphere (NH) for the period
1950-2100 at a 0.2-degree resolution. The model was developed as part of the Unites States National Water Service River Forecast
System (US NWSRS) and is used for operational snow forecasting (Anderson, 2006). It is a conceptual snow accumulation and melt
model that uses a temperature index approach to simulate the key processes occurring in a body of snow including heat storage, water
retention, transmission of liquid water, and snowmelt. The model takes in temperature and precipitation data, simulates a single layer
snowpack, and returns its Snow Water Equivalent (SWE) as well as outflow (snowmelt and precipitation runoff). It has been applied
to regional studies to evaluate the climate change impact on snow conditions (e.g. Miller et al., 2011; Notaro et al., 2014). Snow17
simulations have been evaluated based on the MODIS snow cover products with good results (Franz and Karsten, 2013).

Snow17 requires several model parameters, which must be specified by the user. In this study, model parameters were determined
in a distributed grid at the model resolution based on previously published guidelines for the Snow17 model, thereby accounting for
local conditions. The recommendations of the model author (Anderson, 2006; 2006) were followed for most of the parameters. For
the melt factors MFMIN and MFMAX, which are the key parameters governing snow melt rates, the methods proposed by Mizukami
and Koren (2008) were used as they incorporate information on the local surface energy balance, such as shading, aspect, slope, vege-
tation cover and average solar irradiance, into the determination of the local melt factor which were determined based on local shad-
ing, aspect and slope, estimated from based on the GTOPO-30 digital elevation model as well as local vegetation cover and average
solar irradiance estimated based on the GLDAS-2 dataset.

Apart from the melt factors, the parameters with the greatest influence on model performance are the gage under-catch factor
SUCF and the average wind during rain on snow UADJ. The SUCF corrects the amount of new snow recorded for each time step to ac-
count for gage catch deficiency, blowing snow across areal divides and sublimation. The forcing datasets that were used in this project
have been corrected for gage catch deficiencies (Rodell et al., 2004; Sheffield et al., 2006). When simulation across long time periods
and large areas with multiple snow fall events, gage catch deficiencies can be assumed to cancel out (Anderson, 2006). UADJ de-
scribes the average wind function during rain on snow events and is used in the model to estimate the sensible and latent heat transfer
components of the snowpack SEB. UADJ was estimated as the average wind speed from the GLDAS-2 wind field for the period
1950-1999. Of the minor parameters PXTEMP determines the ratio of rain versus snow in precipitation. MBASE describes the temper-
ature at which melt occurs, set as 0 °C globally in this study. NMF is the negative melt factor which determines the energy exchange at
the snow-air boundary when melt is not occurring. It has the same seasonal variation as the melt factors and is estimated based on av-
erage snow density. TIPM is the antecedent temperature index which describes snowpack temperatures near the surface and is esti-
mated based on average snow depths. PLWHC describes the physical liquid water holding capacity of the snow and was estimated
based on average snow depths. DAYGM is the constant basal melt rate occurring at the snow/ground boundary and was estimated
based on permafrost extent data.

The Snow17 parameters were estimated based on environmental data, including data on SWE, precipitation rates, surface air tem-
peratures and near surface wind velocity, land cover classification and solar radiation from the GLDAS-2 dataset, topographical data
from the GTOPO-30 digital elevation model and permafrost extent from the Arctic Permafrost Map (WGS43261). Table 2 presents a
summary of the Snow17 parameters, their description, ranges, values, and source methodologies.

2.2.2. Model evaluation

The model was evaluated based on historical Snow Water Equivalent (SWE) and Snow Cover Area (SCA) data for the 2004 water
year. The evaluation simulation was performed using temperature and precipitation inputs from the GLDAS-2 dataset. The model sim-
ulations were compared to a) SWE and SCA data from the GLDAS-2 dataset and b) SCA data from MODIS/TERRA snow cover dataset
(MOD10A1.v006). The simulations were evaluated based on the 2004 water year as it had average SWE and SCA conditions across
the NH within that period of overlap between the input and evaluation data.

The model performance was evaluated by calculating the ratio between root mean square error and the standard deviation (RSR)
of daily SCA estimates across the NH. RSR is a recommended evaluation metrics for hydrologically relevant processes (e.g. Sthapit et
al., 2022) and simulations are generally considered satisfactory if RSR <0.7 (Moriasi et al., 2007). The average spatial correlation be-
tween the modelled and observed SWE and SCA was also calculated across the NH over the study period as the Pearson's Correlation
coefficient, R.

Table 2
Snow17 parameters, description, value ranges and estimation methodology.
Parameter Description Range Units Methodology
SUCF Gage under-catch factor 1.0 - Anderson (2006)
MFMAX Maximum Melt Factor 0.7-2.4 mm/°C*6h Mizukami & Koren (2008)
MFMIN Minimum Melt Factor 0.001-1.5 mm/°C*6h Mizukami & Koren (2008)
UADJ Average wind during rain on snow 0.02-0.4 mm/mb Anderson (2006)
PXTEMP Temperature determining rain/snow -1-3 °C Anderson (2006)
MBASE Base temp. where melt occurs 0 °G: Anderson (2006)
NMF Maximum negative melt factor 0.05-0.3 mm/°C*6h Anderson (2006)
TIPM Antecedent temperature index 0.05-0.2 - Anderson (2006)
PLWHC Liquid water holding capacity 0.02-0.3 % Anderson (2006)
DAYGM Constant basal melt rate 0-0.3 mm/day Anderson (2006)
3
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2.2.3. Snow projections

The Snow17 model was run with each of the 21 downscaled and bias corrected GCM's in the NASA-NEX GDDP dataset using daily
precipitation and temperature data for the period 1950-2100. The model was initialized at the beginning of each water year so that it
would not store water between years. The annual number of snow-covered days was calculated for each water year in the study pe-
riod by calculating the number of days where SWE >0 between October 1st and September 31st annually. The yearly mean winter
SWE was estimated by calculating the mean simulated SWE between the dates December 22nd and March 20th for each water year in
the study period. The relative changes in the annual mean winter SWE and SCD between 1950-1975 and 2075-2100 were calculated
for both RCP45 and RCP85. The average annual 1st April SWE was calculated across the NH. Lastly, the relative changes in SWE and
SCD were analyzed in a selection of large snow impacted watersheds across the NH with different hydrological characteristics, shown
in Fig. 1.

3. Results and discussion
3.1. Model evaluation

The model simulations were evaluated based on Snow Cover Area (SCA) and Snow Water Equivalent (SWE) data for the 2004 wa-
ter year. The model was run with input data from the GLDAS-2 dataset. Simulated SWE values were compared to GLDAS-2 SWE data
and simulated SCA was compared to SCA estimated from both MODIS/TERRA data and GLDAS-2.

Table 3 shows the average spatial correlation coefficient between the daily modelled and observed SWE and SCA across the NH
for the 2004 water year. The upper number in shows the average Pearson's correlation, R, and the lower number within parenthesis
the associated two-sided p-value.

The results shown in Table 3 suggest that there is a high correlation between the simulated and observational SCA and SWE esti-
mates. It is notable that both correlation estimates for SCA were higher than the correlation between MODIS and the GLDAS2 snow
field (R = 0.7, p = 0.028). The RSR between the daily SCA simulations MODIS observations was 0.13 and 0.39 between the simula-
tions and the GLDAS-2 snow observations. For comparison the RSR between the two observational datasets was 0.34. The model eval-
uation showed that the model produced satisfactory simulations of SCA in the NH comparable to both observational datasets. The
model results showed a high correlation to both SWE and SCA observations comparable to the correlation of the observational
datasets to each other. This suggests that the model satisfactorily simulates large scale SCA and SWE conditions in the NH and is thus
expected to provide a reasonable estimate of future snow conditions within that domain when forced with downscaled and bias cor-
rected climate projections.

3.2. Snow projections

The average annual SCD and mean winter SWE were calculated for the first and last quarter centuries of the dataset, that is, the
3rd quarter of the 20th century 1950-1975; and the 4th quarter of the 21st century 2075-2100, respectively.

Fig. 2 shows i) the mean SCD for 1950-1975; ii) the percentage change in SCD between 2075-2100 and 1950-1975 under RCP45;
and iii) same as ii) but for RCP85. The results show that SCF in the NH is expected to decrease during the present century in almost
all regions, under both emission scenarios. The only areas that show an increasing SCD are on the border of the Tibetan Plateau and
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Fig. 1. River basins in the Northern Hemisphere for which changes in SCD and SWE were analyzed.

Table 3
Average spatial correlation coefficient, R, between the modelled and observed SWE and SCA across the NH for the 2004 water year. The lower number within
parenthesis the associated two-sided p-value.

Observation data Parameter R (p)

GLDAS-2 SWE 0.77 (0.008)

GLDAS-2 SCA 0.77 (0.002)

MODIS SCA 0.81 (0.027)
4
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Fig. 2. i) Mean number of Snow-Covered Days (SCD) for the period 1950-1975, ii) percentage change in SCD between 2075-2100 and 1950-1975 under RCP45 and iii)
same as ii) but for RCP85.

the Gobi Desert. Snow cover is expected to disappear almost completely in many mid-latitude areas at the periphery of the current
seasonal snow extent. Large regions in Central Europe, Northern Middle East, Northern China as well as in the Northern part of the
conterminous USA are expected to be mostly snow free throughout the year by the end of the present century. This pattern of de-
creasing SCD globally which is readily observable under both emission scenarios is more pronounced under RCP85 than RCP45.

Fig. 3 shows i) the mean winter (SWE) for 1950-1975; ii) the percentage change in SWE between 2075-2100 and 1950-1975 un-
der RCP45; and iii) same as ii) but for RCP85. The results show that the mean winter SWE is expected to decrease in mid latitude areas
of the NH during the 21st century. At higher latitudes however, mean winter SWE is expected to increase, in some cases by more than
100%. The biggest relative increase in mean winter SWE is expected to occur in the high Arctic areas around the Bering strait, eastern
Siberia and the north-western coast of North America as well as in the southwestern Tibetan Plateau. These patterns of increasing
SWE at high latitudes are due to increasing winter precipitation that stems from an intensification of the hydrological cycle as air tem-
peratures rise and surrounding sea ice decreases (Maslanik et al., 2011). These patterns are readily observable under both emission
scenarios but more pronounced under RCP85 than RCP45.

Fig. 4 shows the NH annual SCD (left) and mean winter SWE (right) as compared to a 1950 baseline. The results show SCD is ex-
pected to decrease linearly throughout the 21st century under RCP85 but would stabilize at about 85% of 1950 levels by 2100 un-
der RCP45. The NH mean winter SWE is expected to increase under both emission scenarios. Given the RCP85 scenario NH mean
winter SWE is expected to peak around mid-21st century and then start to decline, whereas under RCP45 NH mean winter SWE is
expected to increase throughout the century to more than 4% above 1950 levels.

Fig. 4 shows that the frequency of snow cover is expected to decrease significantly throughout the 21st century given both emis-
sion scenarios. The results shown in Fig. 2 shows that most of this decrease will occur at lower latitudes where the winter snow sea-
son will shorten. The results in Fig. 4 show that this decrease in SCD is already underway, which is in an agreement with several ear-
lier studies which have found decreasing snow cover in the NH in recent decades (Connolly et al., 2019; Eythorsson et al., 2019;
Mudryk et al., 2020; Yunlong et al., 2018)

Fig. 4 also shows that the NH mean winter SWE is expected to increase slightly in the beginning of the period and decline after
about 2020 down to 1950-1975 levels by 2100 under rcp45 but about 10% under the 1950-1975 average under rcp85. Fig. 3 shows
increasing SWE in the Arctic, whereas at lower latitudes, SWE is decreasing, suggesting that total snow storage in the NH may re-
main at present levels despite decreasing SCF. This increase in Arctic SWE is consistent with prior findings (e.g. Kopec et al., 2016;
Singarayer et al., 2006) and can be attributed to increasing precipitation, which in turn stems from decreasing sea-ice concentrations
in the Arctic Ocean, which brings more atmospheric moisture to these areas. The results show that SWE is expected to increase
throughout the 21st century under RCP45, whereas under RCP85 the NH mean winter SWE is expected to peak in the second half of
the century, as the declining snowpack at lower latitudes overtakes the increasing arctic SWE. This pattern of decreasing SWE at
lower latitudes and increasing SWE in the Arctic are consistent with prior studies (e.g. Wang et al., 2018).
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Fig. 3. Mean winter Snow Water Equivalent (SWE) for the period 1950-1975, ii) percentage change in SWE between 2075-2100 and 1950-1975 under RCP45 and iii)
same as ii) but for RCP85.
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Fig. 4. Annual Snow Cover Frequency (SCF) (right) and 1st of April Snow Water Equivalent (SWE) across the NH (right). The shaded areas represent the upper and
lower quantiles of the ensemble simulations, and the solid line a 10-year moving average.

Table 4 shows the relative change in SWE and SCD between 1950-1975 and 2075-2100 in the study basins. Basins where mean
winter SWE is expected to increase by more than 10% under RCP45 are colored blue, likewise the basins where mean winter SWE
is expected to decrease by more than 10% are colored red, basins where mean winter SWE is expected to change by less than 10%
are colored grey. Based on the UN-adjusted population count, 30.1% of the NH population lives within the boundaries of these wa-
tersheds (CIESIN, 2018).

Fig. 5 shows the study basins, blue basins showed more than 10% increase in SWE, red basins showed more than 10% decrease in
SWE while grey basins showed less than 10% change in SWE, under RCP45. The results show that all study basins discharging into the
Arctic Ocean are expected to experience a more than 10% increase in mean winter SWE whereas at lower latitude basins SWE are
mostly expected to decrease. Table 4 shows that this decrease is most pronounced in mid-latitude rivers of central Europe (Elbe, Oder,
Rhone, Vistula, Danube and Dnieper) and North America (Mississippi, Columbia, and Colorado). Basins in the Himalaya region are
expected to experience both decreasing SCD and SWE, although, not as pronounced.
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Fig. 4. Annual Snow Cover Frequency (SCF) (right) and 1st of April Snow Water Equivalent (SWE) across the NH (right). The shaded areas represent the upper and
lower quantiles of the ensemble simulations, and the solid line a 10-year moving average.

Table 4 shows the relative change in SWE and SCD between 1950-1975 and 2075-2100 in the study basins. Basins where mean
winter SWE is expected to increase by more than 10% under RCP45 are colored blue, likewise the basins where mean winter SWE
is expected to decrease by more than 10% are colored red, basins where mean winter SWE is expected to change by less than 10%
are colored grey. Based on the UN-adjusted population count, 30.1% of the NH population lives within the boundaries of these wa-
tersheds (CIESIN, 2018).

Fig. 5 shows the study basins, blue basins showed more than 10% increase in SWE, red basins showed more than 10% decrease in
SWE while grey basins showed less than 10% change in SWE, under RCP45. The results show that all study basins discharging into the
Arctic Ocean are expected to experience a more than 10% increase in mean winter SWE whereas at lower latitude basins SWE are
mostly expected to decrease. Table 4 shows that this decrease is most pronounced in mid-latitude rivers of central Europe (Elbe, Oder,
Rhone, Vistula, Danube and Dnieper) and North America (Mississippi, Columbia, and Colorado). Basins in the Himalaya region are
expected to experience both decreasing SCD and SWE, although, not as pronounced.
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Table 4

Relative change in SWE and SCD (in %) between 1950-1975 and 2075-2100 in the study basins. Basins colored blue have more than 10% increase in mean winter
SWE over the period, red colored basins showed more than 10% decrease in SWE and grey colored basins had less than 10% change in SWE, under the RCP45 emis-
sion scenario.

Basin Latitude RCP45 RCP85
A SWE [%] A SCD [%] A SWE [%] A SCD [%]

Indigirka High 56.7 —6.4 97.3 -10.9
Kolyma High 46.5 -6.5 74.1 -11.4
Lena High 31.8 =7.2 52.5 -12.5
Yukon High 33.4 -14.0 48.4 -20.9
Ob High 28.4 -9.2 18.7 -19.2
Yenisey High 26.4 -7.8 42.0 -14.7
Mackenzie High 12.3 -9.0 14.3 -16.2
Volga Mid 25 -15.9 -9.8 -30.2
Dalélven Mid -39 -15.6 -226 -33.4
Fraser Mid -4.9 -20.2 -29.1 -36.6
Saskatchewan-Nelson Mid 0.5 -12.9 -12.6 -23.6
Indus Low -4.0 -14.6 -7.1 -23.1
Mekong Low -8.0 -5.0 -11.8 -9.5
Ganges-Brahmaputra Low -15.7 -12.9 -20.8 -18.7
St. Lawrence Mid -19.8 -20.9 —44.0 —-43.7
Amur Mid -25.8 -20.0 -42.9 -26.4
Don Mid —-24.1 =21.7 —61.6 —48.1
Dnieper Mid -34.7 -25.9 -84.0 —68.5
Yangtze Low -27.0 =21.3 -31.4 -26.3
Seine Low —46.8 —45.8 —46.9 —45.9
Colorado Low -43.0 —40.7 -53.2 -51.3
Columbia Low -55.9 -53.5 -73.2 -72.4
Mississippi Low -58.4 —48.7 -73.4 —66.4
Rhone Low -76.8 -70.6 -81.4 -76.9
Danube Low -78.8 -67.5 -92.8 -89.0
Rhine Mid —94.3 -91.2 -97.5 -97.0
Vistula Mid -81.3 -58.7 -99.0 -96.2
Oder Mid -95.9 —-90.9 —99.5 -99.0
Elbe Low -92.0 -81.6 -99.8 -99.0

£511, FAO, NOAR, USGS
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Fig. 5. Changes to mean winter SWE in the study basins. Blue basins showed more than 10% increase in SWE, red basins showed more than 10% decrease in SWE
while grey basins showed less than 10% change in SWE, under the RCP45 emission scenario. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)

The results in Table 4 show that the SCD is expected to decrease in all the study basins, under both emission scenarios. The de-
crease is greater under the RCP85 scenario than under RCP45, with some basins expected to experience an almost complete loss of
snow cover. Fig. 5 shows that despite decreasing SCD the mean winter SWE is expected to increase in all the northernmost basins. The
results presented in Table 4 and Fig. 5 show that in general lower latitude basins are expected to experience a more pronounced de-
crease in snow cover and snow water equivalent magnitude whereas higher latitude basins are expected to see less decrease in snow
cover and all high latitude basins are expected to experience an increase in snow water equivalent. Fig. 5 shows that although pro-
jected changes in snow conditions in general correlate with latitude, other factors such as elevation, local climatology and topography
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influence how snow conditions are expected to change over the course of the study period, as e.g., illustrated by the Himalayan
basins, Indus and Mekong, which are forecast to see less change to snow conditions despite their low latitude.

The declining snow pack conditions in the basins of the continental subarctic have been well documented, both in North America
(e.g. Kang et al., 2016; Mote et al., 2005) and Europe (e.g. Fontrodona Bach et al., 2018). Both SWE and SCD have decreased across
the conterminous United States over the period 1982-2016 (Zeng et al., 2018), which is consistent with the results of this study. De-
creasing snow cover, snow storage and snow melt runoff in the Himalaya region has been documented e.g. by Maurer et al. (2019)
and Stigter et al. (2017), which are consistent with the findings of the present study. In the Arctic region, the results of this study are
consistent with prior studies which have found increasing snow cover (e.g. Cohen et al., 2012; Eythorsson et al., 2019) and snow stor-
age (Callaghan et al., 2011) in recent decades. Vaganov et al. (1999) showed that increasing snowfall in Northern Eurasia has been
shown to have decreased the length of the regional growing season. The results presented in this study show that the trend of declin-
ing snowpack at lower latitudes and increasing SWE in large high latitude areas in the Arctic is expected continue at a steady or in-
creasing pace, at least for the next few decades.

4. Conclusion

This study presents an analysis of simulated snow conditions across the Northern Hemisphere (NH) for the period 1950-2100
given the RCP45 and RCP85 emission scenarios. The model parameters were determined at the model resolution based on best prac-
tices given long term local environmental conditions. The model performance showed high correlations between simulations and two
observational datasets. In this study simulations are based on downscaled environmental input data, thereby projecting future snow
conditions at a finer spatial resolution than in the CMIP5 models. Modelling at a finer spatial resolution better accounts for local envi-
ronmental conditions thus making the projections more relevant for local and regional water resources management. Here, future
snow conditions are simulated using a well-documented snow model based on bias-corrected GCM temperature and precipitation pro-
jections, whose bias in GCM projections have been documented (e.g. Jacob et al., 2013), thereby providing less distorted projections
of future snow conditions than GCMs,