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Abstract 

Snow resources worldwide are undergoing extensive changes in response to widespread and 

rapid changing of the global climate. These resources are vital in many areas and changes to 

them have and will continue to impact human societies and ecosystems in cold regions. The 

research presented in this dissertation entails the assessment and comparison of historical 

trends in the climate and snow regimes and the projection of these trends until the end of the 

21st century, under different emission scenarios. The results show that extensive changes 

have occurred to the frequency of Northern Hemisphere (NH) snow cover since the 

beginning of the 21st century, as estimated based on remote sensing data from the MODIS 

satellite instrument. The future evolution of NH snow resources was modelled for the period 

1950-2100 for each of the 21 downscaled and bias corrected CMIP5 climate models for two 

emission scenarios (RCP45 and RCP85) using the Snow17 model. The simulations show 

that the Snow Cover Frequency (SCF) is in general projected to diminish substantially across 

the NH. However, the NH 1st April Snow Water Equivalent (SWE) is projected to increase 

slightly at the beginning of the period, driven by increased snowfall at high latitudes in the 

Arctic and then decline back to 1950-1975 levels under RCP45 and 10% under those given 

RCP85. These trends were analyzed specifically for Icelandic circumstances revealing a 

trend of increasing SCF in many parts of the country over the period 1930-2021, whereas 

the simulated results project a decrease in SCF across Iceland between 1950 to 2100.  

Útdráttur 

Snjóauðlindir víðsvegar um heiminn eru nú breytingum undiropnar í kjölfar hnattrænna 

loftlagsbreytinga. Þessar auðlindir eru mikilvægar víðsvegar og breytingar á eðli þeirra hafa 

haft og munu halda áfram að hafa áhrif á mannleg samfélög og vistkerfi á kvöldum svæðum. 

Rannsókn sú er birt er í þessari ritgerð fjallar um greiningu og samanburð á sögulegri þróun 

loftlags og snjós og gerð forspár um það hvernig væntar loftlagsbreytingar munu hafa áhrif 

á snjóauðlindir út 21 öldina miðað við mismunandi sviðsmyndir í hlýnun. Niðurstöður 

rannsóknarinnar sýna fram á að víðtækar breytingar hafa þegar orðið á snjóþekju á Norður 

Hveli jarðar (NH) frá byrjun 21 aldarinnar útfrá fjarkönnunargögnum frá MODIS 

gervihnattamælinum. Spáð var fyrir um framtíðarþróun snjóauðlinda á NH fyrir tímabilið 

1950-2100 með Snow17 snjólíkaninu útfrá 21 CMIP5 loflagslíkönum fyrir tvö 

hlýnunartilvik (RCP45 og RCP85). Niðurstöður líkansins gefa til kynna að tíðni snjóhulu 

(SCF) muni almennt minnka verulega um allt NH en að hinsvegar, muni meðal rúmál vatns 

sem geymt er í snjóalögum NH aukast lítillega í byrjun tímabilsins, aðallega vegna aukinnar 

snjókomu og norðlægum breiddargráðum innan norðurheimskautsbaugs, en minnka svo 

aftur að því sem var um 1950 fyrir RCP45 en 10% neðar en svo fyrir RCP85.. Þróun í loftlagi 

og snjóauðlindum var rannsökuð sérstaklega á Íslandi, sem leiddi í ljós tölfræðilega 

marktækta aukningu á SCF stórum svæðum frá aldamótum, spá um þróun snjóauðlinda út 

21 öldina gerir hinsvegar ráð fyrir verulegri minnkun á SCF í öllum hæðarbilum á Íslandi. 
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1. Introduction  

1.1 Statement of purpose 

Snow and ice play a significant role in the surface hydrological cycle in large parts of the 

world, primarily in mountainous areas and above 40° latitude. (e.g. Adam et al., 2009). Snow 

accumulates on the ground when precipitation falls at temperatures below the freezing point 

of water, where it stays until it melts or sublimates. Snowmelt begins to occur when the 

temperature of the accumulated snow cover increases above the melting point. The thermal 

flux between the snow and its environment is mainly governed by local meteorological 

conditions, which in turn are determined by the regional and then global climate. As snow 

melts, the water finds its way into streams, lakes, and rivers where it may provide important 

ecosystem functions as well as water resources for human communities.  

Water resources managers seek to utilize the snow resource as efficiently and responsibly as 

possible. In current practice, information about the state of snow is combined with 

meteorological data to model changes in the snow cover and derive important parameters 

relating to the state of the snow, e.g., the water stored in snow, the timing of snow melt and 

the volume of meltwater. In a changing climate these parameters can be expected to change, 

and the nature of these changes may vary by region. Understanding how snow and ice will 

change with changing climate is, therefore, important for water resources managers in cold 

regions across the globe to estimate future infrastructure requirements and resource 

availability. 

1.2 Research objectives  

The doctoral research of past and future changes to the snow conditions was structured 

according to the following main research objectives. 

Research objective 1: 
Identify the environmental drivers of snow and ice mass 
balance  

The first objective of the research was to investigate the relationships between the snow and 

climate regimes and to identify the dominant climatological and meteorological factors that 

govern snow and ice mass balance. To accomplish this objective the seasonal mass balance 

of the Brúarjökull glacier was used as a case study. The relative importance of different 

meteorological, climatological, and hydrological conditions in determining daily and 

seasonal mass balance of the glacier were assessed, using both statistical and physical 

modelling approaches. The findings of the analysis of key drivers of variability in snow and 

ice are discussed in Section 3.1.  
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The obtained results of the statistical modelling framework is published as an article with 

the title Statistical summer-mass balance forecast model with application to Brúarjökull 

Glacier, South-East Iceland in the Journal of Glaciology (Eythorsson et al., 2018), presented 

herein as Appendix A.  

Research objective 2: 
Assess and compare historical trends in the snow and climate 
regimes  

The results from research Objective 1 reveal a correlation between long term climate trends 

and glacier mass balance. These results are congruent with multiple studies on the climate 

impact on glacier changes (e.g. Christian et al., 2018; O’Neel et al., 2019; Putnam et al., 

2012). Daily snow accumulation and melt behavior is largely dependent on short term local 

meteorological conditions, thus, short term (1-10 day) snow predictions may be achieved by 

using meteorological forecasts applied to a snow model. The reliability of short-term 

meteorological forecasts decreases as lead time increases, however, seasonal mass balance 

can to some extent be predicted based on climatological conditions. Thus, medium term (2-

4 months) mass balance predictions can be accomplished using information on the state of 

the snow and its surrounding climatology applied to a snow model. To achieve long term (1-

100 years) predictions of snow cover, climate forecasts must be used for modelling. 

Therefore, analysis and comparison of historical changes in snow cover and climate is the 

main topic of research Objective 2. Changes in snow cover vary, and have varying 

significance for water resources management in, depending on the region. Thus, 

understanding the historical spatio-temporal relationship between the climate and snow 

conditions on a regional scale is important for successful adaptation of water resources 

management to climate change.  

In this research, recent changes to climate and snow conditions in the Arctic were used as a 

case study. Changes to snow cover were estimated based on MODIS satellite data while 

changes to the arctic climate were estimated as changes to Köppen-Geiger (KG) climate 

classifications calculated from an ensemble of 21 downscaled Global Circulation Models 

(GCM’s). The observed changes were compared in 10 regions of the Arctic over the period 

of MODIS observations (2001-2016) revealing varying responses of local snow conditions 

to climate changes in the region. The findings of are discussed in Section 3.2 and 3.4.  

The results of the analysis and comparison of historical changes in the snow and climate 

regimes across the arctic are published as an article with the title Arctic climate and snow 

cover trends – Comparing Global Circulations Models with remote sensing observations in 

the International Journal of Applied Earth Observation and Geoinformation (Eythorsson et 

al., 2019) presented herein as Appendix B. 

Research objective 3: 
Estimate future changes in snow conditions based on 
predicted climate changes.  

The analysis of climate trends across the Arctic showed that in all but the 3 northernmost 

regions there had occurred a statistically significant change in one or both most common KG 

climate classes over the study period. In the 7 regions where, significant changes had 

occurred to the climate, the largest changes to the Snow Cover Frequency (SCF) had also 

occurred. The analysis of snow cover trends revealed that at lower latitudes SCF had 

decreased during the period, while further north by the shores of the Arctic Ocean, SCF had 
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increased. Averaged across the entire Arctic SCF had decreased by 0.91 days/decade, which 

is congruent with other recent findings (Hori et al., 2017; Liston & Hiemstra, 2011; Yunlong 

et al., 2018). The climate trends were forecast until the end of the present century and showed 

that warmer climate classes will continue to replace the dominant climate classes in the 

Arctic, tundra, and cold summer climates throughout the present century, even under a 

scenario where global radiative forcing by greenhouse gas emissions is stabilized by 2100 

(RCP4.5). Hence, to understand whether the observed trends in snow cover in the Arctic will 

continue given the expected climate changes, the snow response to these climate forcing’s 

needs to be modelled.  

Thus, the main topic of research Objective 3 is to estimate and analyze future changes to 

snow conditions based on different climate scenarios. The main source of uncertainty in the 

future progression of climate change is future anthropogenic greenhouse gas emissions. 

Understanding how snow conditions respond to an emission reduction scenario as compared 

to “business-as-usual” emissions is fundamental to adaptation and mitigation policymaking 

on both a regional and global scale.  

Predicted changes to KG climate classifications across the globe have been estimated and 

published as an article with the title Arctic climate and snow cover trends – Comparing 

Global Circulations Models with remote sensing observations in the International Journal of 

Applied Earth Observation and Geoinformation (Eythorsson et al., 2019) presented herein 

as Appendix B. The findings are discussed in Sections 3.3 and 3.4  

In this research future snow conditions were modelled and analyzed across the Northern 

Hemisphere (NH). A snow model (Snow17) was run with climate projections from 21 

downscaled GCSs for both an emission stabilization scenario (RCP4.5) and a “business-as-

usual” emission scenario (RCP8.5). The findings are discussed in Section 3.5 The results 

from the simulation of snow resources across the NH have been submitted as an article with 

the title Projected Changes to Northern Hemisphere Snow Conditions over the period 1950-

2100, given two emission scenarios to the journal; Remote Sensing Applications: Society 

and Environment, presented herein as Appendix D. (Eythorsson et al., 2023b). 

Furthermore, these results combined with the historical trends in the climate/snow regimes 

were used to estimate future snow conditions in Iceland. The findings are discussed in 

Section 3.6 and published as an article with the title Observed and Predicted Trends in 

Icelandic Snow Conditions for the period 1930-2100 to the journal; The Cryosphere., 

presented herein as Appendix C, (Eythorsson et al., 2023a).  
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1.3 Dissertation organization 

This dissertation is composed two parts. Part I contains the following four chapters: 

Introduction, Background, Applications and Results, Conclusion, and future perspectives.  

 

The Introduction chapter contains the statement of purpose and outlines the objectives of the 

doctoral research presented in this dissertation. It summarizes the motivation for the research 

described herein and describes how these results have been published and disseminated to 

the research community. The Background chapter describes the state of knowledge within 

the fields that concern this doctoral research. It contains an overview of the state of climate 

change, both globally and in Iceland, the state of knowledge about past, present and future 

changes to snow resources, the methods used to observe changes to snow resources and 

lastly the state of the art in snow modelling. The Applications and results chapter describes 

the results that have been achieved in of this doctoral research with appropriate references 

to the four academic papers that have been prepared or published because of it. The 

Conclusion and future perspectives chapter summarizes the findings of this doctoral 

research, how they relate to the present state of knowledge within its field and which future 

questions they pose. 

 

Part II is presented as an Appendix with the scientific papers which are based on this work. 

Two ISI papers have been published based on the research presented in the current 

dissertation. The manuscripts of the third and fourth papers have been submitted and are in 

the peer review process. The papers are presented in full as appendices. Following is a 

summary of the outline presented in of each of the papers: 

 

 

Paper 1:  The main goal in this paper is to develop a comprehensive framework for 

developing a site specific and optimized set of melt models, given a wide range 

of environmental data, to forecast the seasonal glacial mass balance in a 

catchment in Eastern Iceland.  

Paper 2:  The main goal in this paper is to estimate the historical spatio-temporal trends of 

changes in the climate and snow regimes based on extensive distributed 

environmental datasets. The observed trends are analyzed and compared across 

the Arctic. 

Paper 3:  The main goal in this paper is to simulate future snow conditions under different 

climate scenarios using spatially distributed environmental data and a conceptual 

snow model. The simulated spatio-temporal snow characteristics are then 

analyzed across the Northern Hemisphere and throughout the 21st century. 

Paper 4:  In this paper the historical trends the climate and snow regimes which were 

estimated in Paper 2 are compared to the in-situ observed trends in both regimes 

in Iceland. These are combined with the snow simulations from Paper 3 to derive 

a plausible forecast for the evolution of the Icelandic climate and snow resources 

under different global emission scenarios. 
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2. Background 

2.1 Historical and predicted changes in the 

climate and snow regimes 

2.1.1 Global trends in climate and snow conditions 

 Climate Change 

The just published 6th Assessment Report (AR6) by the Intergovernmental Panel on Climate 

Change (IPCC) states that the scientific evidence for the anthropogenic warming of the 

atmosphere, ocean and land is unequivocal, that the scale of this change to the climate system 

is unprecedented and these changes are already affecting every inhabited region across the 

world. The changes observed to global surface temperatures to date will continue until at 

least the mid-21st century under all emission scenarios causing many changes in the climate 

system, including further intensifying the water cycle and its variability. Many of these 

changes are irreversible on the scale of centuries to millennia (IPCC, 2021).  

To derive such predictions the research community employs a range of climate models, 

which simulate the global climate system based on fundamental physical laws and 

knowledge of the initial state of the system to explain and predict the movement of air, water, 

particles, and energy. Due to computational limits the spatio-temporal resolution of these 

models is restricted, although the model resolution continues to increase with further 

advances in computational sciences. Climate models which model the circulation of mass 

and energy over the entire globe are referred to as General Circulation Models (GCM) and 

are used as basis for predicting future changes to the global climate. The Coupled Model 

Intercomparison Project (CMIP) is tasked by the World Climate Research Program (WCRP) 

to assess the performance of competing state of the art GCM and to summarize and 

disseminate their findings to policy makers, research communities and the general public. 

The 6th phase of the CMIP project has recently been concluded with 23 CMIP6-endorsed 

models which were used to lay the scientific basis for the policy recommendations published 

by IPCC in AR6 (Eyring et al., 2021)  

As stated in AR6 the results of CMIP6 show that global climate system has been changing 

rapidly since the start of the industrial evolution and that these changes will continue at least 

until the middle of the present century (Lee et al., 2021). The results of CMIP6 have been 

applied at global and regional scale to investigate different climate change impacts. Among 

the projected impacts are increased drought risk and severity (Cook et al., 2020; Ukkola et 

al., 2020; Zhai et al., 2020), increased flood risk (Hirabayashi et al., 2021; Sante et al., 2021), 

increased monsoon precipitation (Chen et al., 2020; Wang et al., 2020) changes to the 

intensity, frequency and distribution of tropical cyclones (Emanuel, 2021; Roberts et al., 

2020), rising sea levels (Hofer et al., 2020; Jevrejeva et al., 2020; Lyu et al., 2020), 

decreasing snow cover, especially in the Northern Hemisphere (NH) (Mudryk et al., 2020; 
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Paik & Min, 2020; Zhu et al., 2021),  decreasing concentrations of sea ice in both the Arctic 

and Antarctic seas (Notz et al., 2020; Notz et al., 2016; Roach et al., 2020; Shu et al., 2020) 

and increased melt rates of the ice sheets in Greenland and Antarctica (Bracegirdle et al., 

2020; Hofer et al., 2020; Nowicki et al., 2016; Payne et al., 2021). 

One way to visualize and parameterize climate change is to classify different climate regions 

based on some abstract categorization of what constitutes a distinctive climate, in terms of 

climatological parameters such as air temperature and precipitation. Thus, climate regions 

that are similar in some physical or biological sense can be identified and classified. One of 

the most common climate classification systems is the Köppen-Geiger system (Köppen, 

1884; Köppen & Geiger, 1968), which has been used in a range of studies in various 

disciplines (e.g. Beck et al., 2018; Kottek et al., 2006; Peel et al., 2007). Using spatio-

temporal estimates of climate classifications to visualize and quantify climate variation and 

change is a valuable method for researching the impacts of climate change (e.g. Chen & 

Chen, 2013) and to disseminate the work of the scientific community to the general public 

in way that resounds with their experiential reality (e.g. Jylhä et al., 2010).  

Changes to the Earth’s energy budget are expected with high confidence to lead to an 

increase in the global mean precipitation and evaporation, although the predicted rate varies 

between climate models (Douville et al., 2021). A warmer climate is expected with high 

confidence to increase moisture transport intensifying heavy precipitation events and season. 

Warming over land is expected with high confidence to increase potential evaporation and 

intensify the severity of droughts. There is high confidence that mountain glaciers will 

diminish globally, and that seasonal snow duration will generally decrease. Furthermore, the 

variability of the water cycle and its extremes are expected with high confidence to increase 

faster than the average under all emission scenarios in most regions of the world (Douville 

et al., 2021). 

In the research presented in this dissertation CMIP5 models were used as a representation of 

future climate conditions as the work was performed prior to the release of the CMIP6 model 

ensemble. 

Changing Seasonal Snow Dynamics 

Snow cover represents a major geophysical feature on earth and impacts hydrology, ecology, 

and geology to a varying extent in many regions of the planet. Fluctuations in the 

characteristics of snow cover in an area (i.e., depth, extent, timing, duration) represent 

changes to the local climatology. On a global scale, fluctuations in snow cover impact the 

planetary energy balance of earth. Snow cover reflects more of the inbound solar radiation 

than bare ground, leading to further heat adsorption which may in turn reduce snow cover 

even further in a process named the “ice-albedo-feedback” (e.g. Callaghan et al., 2011). 

Changes to seasonal snow cover associated with global climate change have and are 

expected to continue to impact human societies and ecosystems in cold regions.  

Connolly et al., (2019), compared observed changes to the snow cover in the Northern 

Hemisphere (NH) to that predicted by all available CMIP5 models over the period 1967-

2018. The results showed a trend of decreasing snow cover across all estimates; however the 

magnitude of the observed trend was greater than what most of the models had predicted.  

Mudryk et al., (2020), analyzed historical snow cover trends, as estimated from an ensemble 

of 6 observation-based products, and projected changes in the CMIP6 multi-model ensemble 
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over the NH until the end of the 21st century. Their results showed a mass loss trend of 

approximately -5 Gt/yr for all months from December to May for the period 1981-2018 and 

that the NH spring snow extent will decrease by approximately 8% per degree of Global 

Surface Air Temperature (GSAT) increase relative to the 1995-2014 average.  

Yunlong et al. (2018) analyzed variations in NH snow cover using snow cover data from 

MODIS, AMSR-e and the IMS snow cover extent product for the period 2000-2015. Their 

results showed that the SCD over the NH had decreased by an average of 5.3 days/decade 

and the seasonal variation in SCA showed a decreasing trend for all seasons but winter. Hori 

et al. (2017), analyzed snow cover trends in the NH based on a daily SCE product calculated 

from a combination of MODIS and AVHRR data for the period 1979-2009. Their results 

showed a that the SCE had decreased by approximately 10 days per decade  during the study 

period and that the SCD in western Eurasia has decreased by up to two months in the past 

30 years. Liston & Hiemstra (2011), analyzed pan-Arctic snow trends for the period 1979-

2009 for the period by creating a distributed snow dataset based on MERRA reanalysis data. 

Their results showed a decrease in SCD by 2.5 days per decade averaged across the Arctic. 

Choi et al. (2010), studied changes to NH snow seasons over the period 1967 to 2008 using 

weekly snow cover extent data generated mainly from visible satellite imagery by NOAA 

and National Ice Center meteorologists (Robinson, 1993). Their results showed that NH Full 

Snow Seasons (FSS) have decreased on average by 5.3 days/decade, these changes were 

primarily  attributed to progressively earlier spring melt.  

Malmros et al. (2018), estimated snow cover changes in the Andes based on MODIS 

observations over the period 2000-2016 and found that the Snow Cover Extent (SCE) and 

number of Snow-Covered Days (SCD) decreased on average by 13 ± 2% and 43 ± 20 days, 

respectively. Saavedra et al. (2018), estimated snow cover changes in the Andes based on 

MODIS observations over the period 2000-2016. Their results showed that large areas 

showed statistically significant decreasing trends in snow cover, especially on the eastern 

side of the Andes. 

Zhang & Ma (2018), analyzed the variability in the continental Eurasian SCE using the NH 

EASE-Grid data for the period 1972-2006. Their results showed a significant decrease in the 

spring and summer SCE and an earlier loss of snow in the spring whereas the onset of snow 

cover in autumn was not found to have changed significantly during the period. Zhong et al. 

(2021), studied the spatiotemporal variability of snow cover duration in Eurasia over the 

period 1966-2012 based on in-situ data from 1103 station with ground-based snow 

measurements. Their results showed that on average the first day of snow and the last day of 

snow delayed and advanced by approximately 1 day/decade, respectively and that the ratio 

of SCD to snow season length increased by about 0.01 per decade. Bach et al. (2018) 

analyzed in situ observational records of mean and extreme snow depths over Europe based 

on the European Climate Assessment & Data Set (ECA&D; Klein Tank  et al., 2003). Their 

results showed an average decrease of -12.2% and -11.4%/decade for mean and maximum 

snow depths, respectively, for the period since 1951.  

The published literature, summarized in this section, agrees that on average and across 

estimates, the extent and duration of global snow cover has been decreasing in recent decades 

and that this decrease is projected to continue under all emission scenarios. The magnitude 

of this change, however, varies significantly in space and time as well as across estimates, 

both for the historical period and future predictions. The 6th AR by the IPCC states that there 

is very high confidence that the NH spring snow cover has been decreasing since 1978 and 
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that further decrease of the NH seasonal snow extent is virtually certain under all plausible 

emission scenarios (Fox-Kemper et al., 2021).  

 Glaciological trends 

Glaciers and ice caps represent most of the freshwater storage on earth. Fluctuations in the 

extent of a single glacier, (measured i.e., in length, mass, area, or volume) represent changes 

in the energy balance of that glacier, due to some external changes that affect the transfer of 

energy to and from the glacier. On a global scale such glacier fluctuations are recognized as 

high confidence indicators of climate change (Bojinski et al., 2014). Glacier fluctuations 

associated with climate change have and are expected to continue to impact geophysical 

features and processes that are of key importance to both human societies and ecosystems in 

cold regions.  

Zemp et al. (2015), used observational datasets from the World Glacier Monitoring Service 

(WGMS) to estimate glacier fluctuations over the last century. Their results showed that the 

rates of glacier mass loss in the 21st century are without precedent on a global scale for the 

period observed and that this loss is likely to continue, even if the present climate remains 

stable at present day levels. Marzeion et al. (2014), showed that the anthropogenic signal in 

glacier mass balance observations during the period 1991-2010 is detectable with high 

confidence, being responsible for 69 ± 24 % of the global glacier mass loss, whereas over 

the period 1851 – 2100 the anthropogenic signal is weaker, constituting only 25 ± 35 % of 

the global glacier mass loss  Sommer et al. (2020), computed changes in glacier fluctuations 

in the European Alps between 2000-2014 using optical and radar remote sensing imagery. 

Their results revealed a rapid glacier retreat across the Alps amounting to an annual loss of 

39 km2 in areal coverage and an average annual mass loss of -1.03 m of water equivalent. 

Kulkarni & Karyakarte (2014), analyzed observed changes in glacial extent and mass 

balance in Himalayan Glaciers. Their results showed a decrease in both extent and volume 

across the Himalaya, with the rate of decrease more than doubling between the time periods 

1975-85 and 2000-2100.  

Glacier mass loss has and will contribute to sea level rise globally. Marzeion et al. (2012) 

estimated sea-level changes due to global glacier mass of all individual glaciers of the world 

(excluding the Greenland Ice Sheet (GIS) and Antarctic Ice Sheet (AIS) and found their mass 

loss to have contributed 114 ± 5 mm of sea level rise between 1902 and 2009. Gardner et al. 

(2013), estimated from satellite gravimetry and altimetry and local glaciological records that 

glaciers were losing mass in all regions of the world, with the largest changes occurring 

around the Arctic, in the Andes and high-mountain Asia and that over the period 2003-2009 

the global glacier mass loss amounted to 259 ± 28 gigatons per year. (Marzeion et al., 2014) 

projected the expected future mass loss of the earths glaciers under different emission 

scenarios based on 15 coupled General Circulation Models (GCM) from the CMIP5 

ensemble, which suggest a future glacier derived sea level rise ranging from 148 ± 35 mm 

(RCP26) to 424 ± 46 mm (RCP85). Radić et al. (2013), modelled that volume changes of all 

glaciers in the world based on 14 GCMs from the CMIP5 project for two emission scenarios 

(RCP45 and RCP85) and estimated a future glacier derived sea level rise of 155 ± 41 mm 

(RCP45) and 216 ± 44 mm (RCP85) over the period 2006-2100). Zemp et al. (2019), used 

an extrapolation of glaciological and geodetic observations to estimate a glacier derived sea 

level rise of 27 ± 22 mm over the period 1961-2016 which equals the contribution of the GIS 

and exceeds the loss from the AIS, amounting to a total 25-30% of the observed sea-level 

rise.  
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Glacier fluctuations have been shown to impact the regional water cycle in a number of 

ways. Huss & Hock (2018), estimated global glacier runoff changes for 56 large scale 

glacierized basins over the 21st century. Their results showed a significant interbasin 

variability, however, a general pattern of increasing annual glacier runoff until a maximum 

is reached, after which runoff will be in steady decline. Bliss et al. (2014), projected monthly 

runoff for all glaciers and icecaps outside Antarctica based on 14 global climate models for 

the period 2006-2100. Their results showed continuous glacier mass loss in all regions, 

however, the hydrological response varied significantly between region which depends on 

the balance between higher melt rates and decreased storage as glaciers retreat. Kaser et al. 

(2010), estimated the contribution of changes to water availability in large rivers systems 

due to a projected delay in seasonal glacier melt. Their results showed that the seasonal delay 

contribution was greatest in seasonally arid basins and negligible in monsoon regions. Huss 

(2011) estimated the glacial runoff contribution to large scale drainage basins in Europe 

based on monthly mass balance data for the period 1908-2008. The results showed that 

glacial meltwaters are relevant to the hydrology of macroscale watersheds and water 

shortages will intensify as summer glacial runoff contribution decreases water shortages. 

Cauvy-Fraunié & Dangles (2019), conducted a global meta-analysis of published bio-

diversity studies and found that biodiversity in general increases as glaciers recede, however, 

the species that are removed are generally highly specialized. 

Glacier fluctuations are expected to impact local hazard situations as the dynamics 

glacierized areas changes. Bajracharya & Mool, (2009), analyzed changes to glaciers, glacial 

lakes, and glacial outburst floods in Nepal over the period 1976-2000. Their results showed 

a total decrease in glacial lakes in the region, however they also recorded an increase in the 

moraine-dammed lakes which is associated with an increased risk of glacial outburst 

flooding. Kääb et al. (2003), used satellite imagery from the ASTER instrument on the 

NASA TERRA satellite to assess the conditions of a rock/ice avalanche in Russia and a 

glacial lake in the Alps in 2002. The results showed that the ASTER imagery is a valuable 

source of estimating and quantifying glacier fluctuations and for the timely identification of 

glacier hazards.  

2.1.2  Changes in the Icelandic climate and snow  

 Climate 

The Icelandic climate is characterized by its maritime nature causing mild winters and cold 

summers, with frequent precipitation and heavy winds. The location and mountainous 

topology of Iceland creates large spatio-temporal variations in both weather and climate (e.g. 

Bjornsson et al., 2007; Ólafsson et al., 2007). Studies show that since the last glacial 

maximum the temperature fluctuations in Iceland have been about 4°C, which is 

significantly higher than the global average (Geirsdóttir et al., 2013; Knudsen et al., 2008; 

Langdon et al., 2011; Larsen et al., 2011; Sicre et al., 2011). This large variability in 

temperature is caused by spatio-temporal changes in the location of warm and cold ocean 

currents around the island (Cabedo-Sanz et al., 2016).  

Continuous meteorological records exist in Iceland since the middle of the 19th century. 

Since records began the average temperature in Iceland has risen by about 0.8°C per century, 

like the global average warming over the same period. Over the period 1980-2015 the 

average annual precipitation has increased by 7-13 % while the average temperature has 

increased by 0.5 °C per decade (Björnsson et al., 2018).  
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The average temperature in Iceland is expected to increase by 1.3-2.3°C by the middle of 

the 21st century compared to the average of the period 1986-2005 and if global emissions 

are not significantly reduced, the warming could exceed 4 °C by the end of the 21st century. 

The uncertainty in projected changes in precipitation are greater than for temperature 

changes but estimates predict a 1.5 – 4.5% increase in average precipitation volume per 

degree of warming (Dee et al., 2011; Nawri et al., 2017; Poli et al., 2016).  

The projected climate changes in Iceland are expected to impact the local hydrological cycle, 

as winters become milder and less water is stored as snow, causing streamflow to increase 

in winter and decreasing peak flow during spring melt. Runoff from glaciers is expected to 

increase, especially in summer, until at least the middle of the 21st century (Blöschl et al., 

2017; Jónsdóttir et al., 2008; Ministerrådet, 2012)  

Snow 

Snow is a key feature of the hydro-climatological cycle in Iceland, storing precipitation in 

winter and releasing melt runoff in spring. Icelandic snow cover has been categorized as a 

mixture of tundra, taiga and maritime snow types with shallow snow depth on average, high 

density, frequent melt cycles and high wind stress (Sigurðsson & Jóhannesson, 2014). 

Understanding changes to key snow parameters such as the amount, spatio-temporal 

distribution and physical characteristics are important for managing the water resources in 

Iceland. Analysis of trends in discharge, precipitation and temperature time series has 

revealed that spring snowmelt occurs earlier in the year and that spring peak flows have 

decreased between the periods 1996-2007 and 1963-1995 (Jónsdóttir et al., 2008).  

Long term trends in snow cover have been studied by Jónsson (2001), which analyzed 

manual snow cover observations around the country over the duration of continuous 

measurements (~1930 – 2000). The results showed no clear trends over the entire study 

period, although the average snow cover had decreased towards the end of the period. An 

analysis of the relationship between snow cover and ambient air temperatures revealed an 

estimated 10% loss of snow cover in each winter month, per 1°C of warming.  

Gunnarsson et al., (2019) analyzed Icelandic snow cover characteristics based on a gap-filled 

MODIS snow cover product for the period 2000-2018. They compared MODIS snow cover 

data to in situ data from the Icelandic Meteorological Office (IMO) and remotely sensed data 

from Landsat and Sentinel with good agreement. Their results showed a trend of increasing 

snow cover duration for all months except October and November. The trendline for June 

was significant at a the α = 0.05 level and the trendlines in May and June were significant at 

the α = 0.1 level. The results of Gunnarsson et al., (2019) shows a significant decreasing 

trend of average snow cover in spring/summer. These results are of particular importance as 

they illustrate a significant decrease in snow cover during the season of minimum snow 

cover. 

The snow cover trends studied by Jónsson (2001), were based on manual observations from 

manned observation stations, mostly located in lowland areas close to urban areas. 

Sigurðsson & Jóhannsson, (2014), analyzed snow depth records from 4 observation sites in 

the central highlands over the period 1975-2014 which revealed a slightly decreasing, albeit 

not statistically significant, trend in snow depth over the period although the measurement 

locations are too few to draw any conclusions for the extensive highland region. The trend 

of increasing snow cover duration observed in Gunnarsson et al. (2019) over the period 
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2000-2017 is in the opposite direction to long term projections which predict snow cover to 

decrease across the country over the 21st century (Johannesson et al., 2007).  

 Glaciers 

Changes to Icelandic glaciers have been studied based on a range of sources including in situ 

mass balance measurements, reconstructed surface maps, published maps, aerial 

photographs, satellite stereo imagery and airborne lidar (e.g. Belart et al., 2020). The results 

show that Icelandic glaciers reached their maximum extent since the settlement of Iceland 

at the end of the 19th century. Over the period 1890-2019 the mass loss of Icelandic glaciers 

has been estimated as 16 ± 4%, which corresponds to 1.50 ± 0.36 mm of sea level equivalent. 

This glacier recession was mostly confined to two periods 1920-1940 and the period since 

1995 whereas during the three decades between 1960-1990 most Icelandic glaciers remained 

stable or even advanced (Aðalgeirsdóttir et al., 2020). While the surface mass balance is the 

main source of mass flux in Icelandic glaciers, internal and basal melt contribute a non-

negligible portion of the overall mass balance, especially in geothermal and volcanic zones 

(Jóhannesson et al., 2020).   

The retreat of the large and outlet glaciers in Iceland is well documented both through remote 

sensing and in situ observations. (Brynjólfsson et al., 2014; Hannesdóttir et al., 2015; 

Hannesdóttir et al., 2016; Pálsson et al., 2012). The mass loss of the three largest ice caps in 

Iceland (Vatnajökull, Hofsjökull and Langjökull) since 1890 has been well documented (e.g. 

Bjornsson et al., 2013). The surface of the Icelandic glaciers was lidar mapped in high 

resolution during the period 2007-2013 increasing the accuracy of ice volume estimates 

(Jóhannesson et al., 2013). The observed recession and increased volume of melt water from 

the Icelandic glaciers has resulted in changes to river channels to glacial rivers (Magnússon 

et al., 2009) and to the extent and placement of subglacial and moraine lakes (Björnsson et 

al., 2001; Jóhannesson et al., 2013). A key factor in the mass balance of Icelandic glaciers is 

the ice surface albedo, which is influenced by a number of environmental variables, such as 

snow metamorphism, dust loading and tephra depositions from nearby volcanoes, there is a 

large spatio-temporal variability in the albedo of Icelandic glaciers and the country’s largest 

glacier, Vatnajökull has experienced a positive albedo trend over the period 2000-2019 

(Gunnarsson et al., 2021). 

Modelling of the future evolution of the Icelandic glaciers has shown that they will almost 

disappear completely over the next two centuries given projected changes to the global 

climate (Adalgeirsdottir et al., 2011; Guðmundsson et al., 2009; Hannesdóttir et al., 2015). 

This projected retreat will significantly impact runoff from glaciated areas, with significant 

challenges and opportunities to water resource managers and renewable energy producers in 

the country (Johannesson et al., 2007; Thorsteinsson & Björnsson, 2013). The increased rate 

of melt water is projected to continue to affect river channels in glacial rivers (Pálsson et al., 

2016) as well as the extent and character of ice-marginal lakes (Magnússon et al., 2013; 

Schomacker, 2010) .  
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2.2 Snow Observations 

Monitoring of snow resources, both on a local and global scale, is important for water 

resources management, hazard assessments and improved geophysical understanding of the 

earth’s hydro-climatological system. Many snow datasets have been recorded and presented 

in the literature, based on a range of measurement technologies and covering many snow 

parameters (e.g. Dong, 2018). Snow observations of all kinds can be assimilated in land 

surface models to derive best estimates of spatio-temporally distributed snow parameters 

(e.g. Clark et al., 2006; Slater & Clark, 2006).  

2.2.1  In situ observations 

The traditional method of measuring snow is the observation of snow properties on the 

ground, most often concomitantly with observations of other meteorological parameters. 

Measurements of snow depth (SD) and new snowfall amounts have been recorded in Europe 

and North America for centuries. However, the methods and means of snow monitoring 

varied significantly between locations, limiting the utility of such observations for global 

snow research. The Solid Precipitation Measurement Intercomparison Project (SPMIP) 

showed up to 700% variability in the proportional amount of solid precipitation recorded at 

in national precipitation gauges (with wind shields) at 6 m/s wind speed (Goodison et al., 

1998). 

Several international projects have been undertaken to improve the comparability of snow 

measurements across the globe, with observation stations located world-wide. These projects 

include the Global Cryosphere Watch – CryoNet (WMO, 2014), The Global Historical 

Climatology Network (Menne et al., 2012), The WCRP – Climate and Cryosphere (CliC) 

Project (Barry, 2003), The CMC – Daily Snow Depth Analysis Data (Brown & Brasnett, 

2010), The Historical Soviet Daily Snow Depth (HSDSD) (Armstrong, 2001), The Historical 

Climatology Network (HCN) (Easterling, 2002), The European Climate Assessment & 

Dataset (Tank et al., 2002) and the Solid Precipitation Measurement Intercomparison Project 

(SPMIP) (Goodison et al., 1998). 

At manned meteorological stations manual snow observations of a range of snow parameters 

are made at the frequency requested by the procurer of the data. Snow Depth (SD) is one of 

the most frequently collected snow parameters due to the relative ease of measurement. In 

recent decades the use of automated sensors for recording snow parameters such as SD and 

Snow Water Equivalent (SWE). SWE can be measured using weighing systems often 

referred to as snow pillows (Engeset et al., 2017) and snow height above ground can be 

monitored using e.g. ultrasonic sensors (Ryan et al., 2008) and time lapse photography of 

snow stakes (Parajka et al., 2012).  The use of automatic snow monitoring has improved 

both the spatial and temporal resolution of snow measurements, as the limits to measurement 

frequency and data storage are continually being pushed and the operational cost of 

automatic stations is a fraction of that of manned stations.  

Where the density of in situ snow observations is sufficient the spatial distribution of snow 

parameters can be estimated using different statistical interpolation methods (e.g. Carrera-

Hernández & Gaskin, 2007; Foppa et al., 2007; Jarvis & Stuart, 2001; Molotch et al., 2005). 

Achieving the required density of point observations for adequate estimation of the spatial 

distribution of snow parameters is especially challenging in regions with complex 
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topography as it affects both the distribution of snow and the logistics of snow monitoring. 

Studies have shown that there are significant discrepancies between point-measurements and 

regional estimates of snow parameters, even in relatively well documented regions (López-

Moreno & Nogués-Bravo, 2006; Meromy et al., 2013).  As a result of the sparse distribution 

of point-based snow monitoring stations globally global scale monitoring of changes to snow 

resources are not feasible based only on in-situ observations (Dong, 2018).  

2.2.2  Remote sensing of snow 

Snow resources are inherently most abundant in cold regions with high precipitation. 

Incidentally these are also the regions least favored by humans for habitation and leisure. As 

a result, in situ observations of snow are logistically challenging, and therefore sparse, in 

many areas where significant quantities of the resource are located. Monitoring the snow 

resources by means of remote sensing, either by airborne vehicles or satellites has therefore 

been an important research topic since the dawn of the satellite era in the 1960’s when the 

TIROS-1 satellite became the first satellite to allow monitoring of snow cover from space 

(Lucas & Harrison, 1990). Since the start of satellite monitoring, snow covered areas have 

been observed to decrease on average across the globe (R. D. Brown, 2000; Lemke et al., 

2007). Although increases in snow cover have been observed in some regions such a China 

(e.g. Che et al., 2008; Xuejin et al., 2019) 

Snow can be detected from remotely sensed data by observations of its physical and spectral 

properties, these however can vary based on many different factors, such as Snow Depth 

(SD), liquid water content, impurities, snow temperature, ice content, grain size and shape 

etc. (J. Foster et al., 1996; Kelly, 2009; Painter et al., 2009; Sturm, Holmgren, & Liston, 

1995; Tait, 1998). The influence of these factors on the estimation of snow conditions varies 

depending on sensor technology and resolution. Many different sensor technologies have 

been developed and are in use for measuring land surface properties like snow. However 

they can be broadly divided in two categories, optical sensors that record reflective data in 

the visible and infrared wavelengths and microwave sensor that record either microwave 

radiation emitted from the land surface that can be measured with passive microwave sensors 

or radiation backscattered by active microwave sensors (Dietz et al., 2012).   

In the visible (VIS) wavelengths snow reflects up to 80-90% of the solar radiation depending 

on grain size, age and purity (König et al., 2001; Winther et al., 1999) whereas at longer 

wavelengths, in the infrared (IR) spectrum the reflectivity of snow drops to near zero (Pepe 

et al., 2005; Wang et al., 2005). A key issue in snow monitoring is discerning between clouds 

and snow, which have similar reflective properties in the VIS and IR spectra (Hall et al., 

2010; Hyvärinen et al., 2009; Miller et al., 2005) rendering satellite scenes exceeding a 

threshold cloud cover useless for snow monitoring (Rodell & Houser, 2004)  

The land surface emits microwave radiation which can be observed by Passive Microwave 

(PM) sensors (König et al., 2001). PM data which has been applied to snow mapping has 

been collected by the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), the 

Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor Microwave 

Imager (SSM/I) Microwave emissions from the underlying ground are weakened under snow 

cover at wavelengths similar in size to the snow grains and thus, the weaker the microwave 

signal recorded by the sensor, the more snow covers the ground (Chang et al., 1987). The 

microwave signal recorded by the sensor is determined by several factors including liquid 
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water content, grain size, grain shape and the dielectric discontinuities of snow and air 

(Amlien, 2008; Clifford, 2010; Foster et al., 1999). Several factors influence the accuracy of 

PM derived snow parameters. Vegetation absorbs microwaves in similar wavelengths as 

snow (Derksen, 2008) and thus snow cover is hard to detect in forested areas (Foster et al., 

1999; Hall et al., 1982). Liquid water magnifies the microwave absorption of the snow 

causing underestimates of snow depth (Amlien, 2008). The crystal properties of the snow, 

especially the crystal size can have impact the estimation of SWE (Foster et al., 1999) 

Snow cover characteristics can also be estimated based on Active Microwave (AM) data, 

where the microwave sensor measures the backscatter of a signal emitted by the instrument. 

However, because the penetration depth of microwaves into the snow depends heavily on its 

liquid water content only wet snow can be detected reliably using active microwave data 

(Wang et al., 2008), since the  underlying ground is the main source of the back scattering 

signal under dry snow (König et al., 2001).  The research interest remains high as AM 

sensors can provide higher spatial resolution monitoring than PM sensors (Foster et al., 

2011) and AM data from the Sentinel-1 mission has shown promising results in mapping 

snow depth  (e.g. Lievens et al., 2019).  

Many algorithms have been developed to identify snow parameters based either on spectral 

data from optical sensors such as the Advanced Very High-Resolution Radiometer 

(AVHRR), the Moderate Resolution Imaging Spectrometer (MODIS), Landsat and Sentinel 

which collect the appropriate spectral data to both detect snow and discern between snow 

and clouds or from Microwave sensors. These snow mapping algorithms can be broadly 

categorized into algorithms that estimate: binary snow cover classifications from optical 

sensors (Fernandes & Zhao, 2008; Hall et al., 1995; Rosenthal & Dozier, 1996), fractional 

snow cover algorithms (Metsämäki et al., 2005; Painter et al., 2009; Salomonson & Appel, 

2006; Solberg et al., 2010), algorithms that estimate snow cover beneath clouds from 

reflective data (Gafurov & Bárdossy, 2009; Parajka et al., 2010; Wang & Xie, 2009), 

algorithms that detect both snow cover and SWE with data from PM sensors (Chang & 

Rango, 2000; Derksen et al., 2003; Kelly, 2009; Pulliainen & Hallikainen, 2001; Pulliainen 

et al., 1999) and methods that utilize both PM and reflective data to estimate snow 

parameters (Foster et al., 2011; Gao et al., 2010; Liang et al., 2008; Romanov et al., 2000).  

A promising remote sensing technology for high resolution snow monitoring is the use of 

airborne laser altimetry (lidar) which can detect vertical elevation with decimeter scale 

precision and meter scale horizontal resolution also complex terrain such as forests (Kraus 

& Pfeifer, 1998; Reutebuch et al., 2003). Snow depth can be estimated based on the 

difference between two lidar derived Digital Elevation Models (DEMs), one with snow free 

conditions and the other with snow covered ground (Deems et al., 2006; Hopkinson & 

Demuth, 2006; Miller et al., 2003). The technology of lidar offers a method for high 

resolution and accuracy mapping of snow depth (Deems et al., 2013). However, a key 

limitation is that remotely sensed lidar data is only acquirable from airborne vehicles and 

not from satellites in orbit. This causes logistical constraints for lidar monitoring at spatial 

scales larger than individual watersheds. Thus, lidar monitoring is currently restricted to high 

value snow resources in areas that are important for local water resources management.  

Other promising methods for monitoring snow resources remotely include the use of 

Interferometric Synthetic Aperture Radar (InSAR) and Polarimetric Synthetic Aperature 

Radar (PolSAR) (e.g. Tsai et al., 2019) and snow depth mapping based on satellite stereo 

imagery (e.g. Deschamps-Berger et al., 2020; Marti et al., 2016).  
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2.3 Snow modelling 

To understand and predict future behavior of the snow models are used to represent the 

physical processes that occur within the snow cover (state variables) as well as the 

interactions between the snow and its surroundings (energy and mass fluxes). Over the past 

several decades a wide range of snow models have been developed, see e.g. Magnusson et 

al., 2015 and Krinner et al., 2018 for a detailed description and comparison of some of the 

more common snow models. Snow models are generally grouped two categories: physical 

models that attempt to simulate all the physical processes occurring in the snow and 

empirical models, that rely on statistical relationships between the snow and its surroundings 

(e.g. Debele et al., 2010). In between these approaches are attempts to combine the 

advantages of each class of models, by using empirical relationships to derive a full physical 

representation of the snow (e.g. Schaefli et al., 2010). Many different models have been 

developed within each model class. Each of which are associated with their own advantages 

and disadvantages, that must be understood when selecting a model for a specific purpose. 

2.3.1 Physical representation of snow  

When temperatures are below the freezing point of water, precipitation falls as snow. If 

temperatures remain below freezing the snow will accumulate on the ground between 

precipitation events forming snowpack. In perpetually cold environments snow continuously 

accumulates, turning to ice under the pressure from its own weight and forms glaciers and 

ice sheets that can store frozen water for centuries to millennia. In warmer regions, where 

temperatures rise above freezing for some part of the year, the accumulated winter snowpack 

melts in spring to early summer. As temperatures rise ice crystals that absorb enough energy 

melt and percolate down the snowpack where it refreezes until the entire snowpack is 

isothermal at the melting point. When the whole snowpack has reached the melting point 

melt water begins to form runoff which then takes part in the surface hydrological cycle. 

A snowpack is in constant thermodynamic flux with its environment. The energy budget of 

a snowpack can be described as the sum of all heat transfer components that transport heat 

between the snowpack and its surroundings, as shown in Equation 2.1 (e.g. U.S. Army Corps 

of Engineers, 1998),  

𝑄𝑚 = 𝑄𝑠𝑛 + 𝑄𝑙𝑛 + 𝑄ℎ + 𝑄𝑒 + 𝑄𝑔 + 𝑄𝑝 − 𝛥𝑄𝑖, (2.1) 

where Qsn symbolises net short-wave radiation flux from solar radiation, Qln represents the 

long-wave radiation flux from the environment, Qh and Qe represent the turbulent fluxes of 

thermal convection from the atmosphere (sensible energy) and latent energy due to phase 

changes, respectively. Qg represents heat conducted from the underlying ground and Qp 

represents the energy advected with precipitation. ΔQi represents the internal energy that is 

stored within the snowpack. The total energy available for snowmelt then becomes the sum 

of the individual energy fluxes or Qm.  

In winter, or in periods of freezing temperatures, precipitation will accumulate in the 

snowpack forming layers of snow with varying physical characteristics, e.g. density, crystal 

structure, hardness etc. (e.g. Fierz et al., 2009). In the spring, or when the energy flux into 

the snowpack increases, Qm in Equation 2.1 becomes positive, and some ice crystals will 

begin to melt. The melt water percolates into the porous matrix of the snowpack where it 
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either refreezes or is stored as liquid water between the snow grains, increasing the density 

and water content of the snowpack. In this initial stage of snowmelt thermal energy is 

transferred from the surface boundary into the body of the snowpack, until it has reached an 

isothermal state where the temperature of the entire snowpack is at the melting point. When 

the snowpack that has reached the isotherm and when the interstices between snow grains 

are fully saturated with liquid water it is referred to as “ripe”, as any additional energy it 

absorbs will result in surface runoff.  

When the snowpack has become isothermal and is fully saturated with water, melt water 

begins to form and flow from the snowpack. The amount of melt water, M, produced is 

governed by the amount of thermal energy, Qm, absorbed by the snowpack and can be 

described by Equation 2.2. (e.g. U.S. Army Corps of Engineers, 1998),  

𝑀 =
𝑄𝑚

𝐿𝑓𝜌𝑤𝐵
 , (2.2) 

Where Lf represents the latent heat of fusion of the ice-crystals, ρw represents the density of 

liquid water and B represents the thermal quality of the snowpack, defined as the ratio of its 

water content that is in the solid phase. The accuracy with which the snow melt rate can be 

calculated based on Equation 2.2. depends on the accuracy that the individual heat transfer 

components in Equation 2.1. can be measured or estimated. 

Short wave radiation, Qs 

The main source of thermal energy across the surface of the Earth comes from solar 

radiation. The amount of solar energy absorbed by a snowpack varies significantly 

depending on latitude, time of day, time of year, aspect, slope, cloud cover and the 

reflectivity of the snow surface. Cloud cover is the greatest source of uncertainty regarding 

the amount of solar radiation that reaches the surface of the snowpack, whereas the 

reflectivity of the snowpack surface determines the amount of inbound solar radiation that 

is absorbed by the snow. The albedo of the snowpack surface, α, is defined as the defined as 

the ratio of reflected solar radiation. The amount of solar radiation absorbed by the 

snowpack, Qsn, can be described by Equation 2.3,  

𝑄𝑠𝑛 = (1 − 𝛼)𝐼𝑖 , (2.3) 

Where, Ii is the incident solar radiation. 

Solar short wave radiation can be measured using different instruments and techniques (e.g. 

Paulescu et al., 2013) or modelled, using a range of models (e.g. Zhang et al., 2017). The 

snow and Ice albedo can be estimated using remote sensing imagery at different wavelengths 

(Corripio, 2004), numerical parameterization methods (Gardner & Sharp, 2010) or by 

assimilation of numerical modelling and observation (Kumar et al., 2020) 

Long wave radiation, Qln 

A snowpack also exchanges radiative energy with its surroundings at longer wavelengths 

than radiation from the sun (6.8-100 µm). A portion of the energy contained in the snowpack 

is lost to the surrounding atmosphere as blackbody radiation and in turn the snowpack 

absorbs from back reflection of the atmosphere and the surrounding terrain.  
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The long wave radiation emitted by the snowpack can be approximated by the Stefan-

Boltzmann law, presented in Equation 2.4.  

𝑄𝑙𝑛𝑢𝑝 =  𝜀 ∗ 𝜎 ∗ 𝑇𝑠
4, (2.4) 

Where Qlnup is the radiation of a blackbody, ε = 0.99 for clean snow, σ is the Stefan-

Boltzmann constant and Ts is the temperature of the blackbody, in this case the surface 

temperature of the snow. Contrary to solar radiation in the visible spectrum, long-wave 

radiation is almost completely absorbed by snow, which can thus be modelled as a near 

perfect black body (Warren, 2019). 

The long wave radiation absorbed by a snowpack Qlndown can be estimated using a range of 

parameterization techniques based on temperature, vapor pressure and cloud factor for 

different regions (Formetta et al., 2016; Juszak & Pellicciotti, 2013; Kok et al., 2020; 

Marthews et al., 2012) it can be measured in situ or by remote sensing (e.g. Ellingson, 1995) 

and several distributed large scale observational datasets of surface long wave radiation have 

been developed for the research community, including FLUXNET (Baldocchi et al., 2001) 

and SURFRAD (Augustine et al., 2000). An analysis of the key global long wave radiation 

datasets has shown an increasing trend (1.8 Wm-2 per decade) over the period 2003-2018 

(Feng et al., 2021).  

The net long wave radiation budget of the snowpack Qln equals the radiation absorbed 

subtracted Qlndown by the energy emitted by the snowpack Qlnup, as presented in Equation 2.5. 

𝑄𝑙𝑛 = 𝑄𝑙𝑛𝑑𝑜𝑤𝑛 − 𝑄𝑙𝑛𝑢𝑝 (2.5) 

Turbulent heat fluxes, Qh and Qe 

The turbulent motion of the air at the snow-atmosphere boundary is responsible for heat 

transfer between the snowpack and the atmosphere, both due to thermal convection (sensible 

heat transfer) and phase changes of the snow (latent heat transfer). The vertical eddy fluxes 

of heat and water vapor transfer energy to and from the snowpack surface. The turbulent 

heat transfer components Qh and Qe that occur due to these vertical eddy fluxes can be 

estimated based on measurements of the factors that govern the intensity of these fluxes, 

including temperature and vapor gradients between the snow surface and the open 

atmosphere, surface roughness, atmospheric stratification, horizontal wind movement, air 

density and atmospheric pressure. 

There have been developed several ways to parameterize the turbulent heat fluxes Qh and Qe 

including Obukhov length parameterization (Zeng et al., 1998), Richardsson number 

parameterization (Louis, 1979)  and constant exchange coefficient parameterization (Martin 

& Lejeune, 1998).  

Heat Conduction at the soil/snow boundary, Qg 

Thermal energy is not only transferred at the snow surface boundary, but also through 

thermal conduction at the snow bottom boundary if there is a temperature gradient between 

the bottom of the snow and the underlying ground. The energy flux at the snow-ground 

boundary can be described by Equation 2.6, 
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𝑄𝑔 = 𝑘 ∗
Δ𝑇𝑠

Δ𝑧
, (2.6) 

where, k is the thermal conductivity of the soil and ΔTs/Δz is the temperature gradient 

between the ice and soil. 

Heat convection by precipitation, Qp 

In events when liquid precipitation falls on a snowpack the thermal energy contained in the 

precipitation is absorbed by the snow. The heat transfer from such rain-on-snow events can 

be described by Equation 2.7. (e.g. U.S. Army Corps of Engineers, 1998), 

𝑄𝑝 = 𝐶𝑝𝜌𝑤𝑃𝑟(𝑇𝑟 − 𝑇𝑠)/1000, (2.7) 

where, Cp is the specific heat of rainwater, ρw is the density of rainwater, Pr is the volume of 

rainwater, Tr is the temperature of the rain and Ts is the snow temperature. If liquid 

precipitation freezes it will release the latent heat of fusion of water in the snowpack. 

Internal energy of the snowpack, ΔQi 

As the snowpack exchanges energy with its environment the internal energy of the snowpack 

is in constant flux. During cold periods the snowpack loses thermal energy to its 

surroundings and its internal heat deficit (defined as the amount of heat required to reach an 

isothermal state at the melting point temperature) increases. As a melt event approaches, the 

snowpack absorbs energy from its surroundings, decreasing the internal heat deficit until the 

pack reaches the isothermal state and surface runoff begins. The internal energy of the 

snowpack can be described by Equation 2.8. (e.g., Gray and Prowse, 1992), 

∆𝑄𝑖 = 𝑑𝑠(𝜌𝑖𝐶𝑝𝑖 + 𝜌𝑙𝐶𝑝𝑙)𝑇𝑚, (2.8) 

where, ds, is the depth of the snowpack, ρi is the snow density and ρl is the density of liquid 

water, Cpi is the specific heat of ice, Cpl is the specific heat of liquid water and Tm is the mean 

snow temperature. If the temperature of the snowpack is below the freezing point of water 

the internal energy of the pack, then, by definition, ΔQi, is positive. 

2.3.2  Physical models 

Physical snow models attempt to estimate the complete mass and energy balance between 

the snow and its surroundings to simulate the internal conditions of the snow at specified 

time intervals. Snow accumulation is calculated by addition of the precipitation that falls 

while temperature are below freezing while the rate of snow melt is estimated based on the 

energy that is available to heat and melt the snow (e.g. Hock, 2005). The net energy exchange 

between the snow cover and its surroundings can be quantified as the product to the net short 

wave (solar) radiation, net long wave (thermal) radiation, sensible and latent convection heat 

fluxes, heat advection from rain and conduction from the underlying soil (e.g. Anderson, 

2006), as described in section 2.3.1. The advantages of energy balance models lie in their 

ability to represent the actual physical processes occurring in the snow. This ability allows 

for a detailed analysis of the snowpack and how it is affected by each component of the 

energy balance and therefore, how it is likely to respond to different meteorological forcing’s 

(e.g. Marks et al., 1998). 
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Over the course of the last century many physical snow models have been developed, with 

varying degrees of complexity and for different applications. Selecting any “best” model or 

a set of optimal models is highly application and location dependent. At least five large 

model intercomparison projects have been undertaken to compare the performance of 

different snow models: PILPS2d (A. G. Slater et al., 2002), PILPS2e (Nijssen et al., 2003), 

Rhone-AGG (Boone et al., 2004), SnowMIP (Etchevers et al., 2004) and SnowMIP2 (Essery 

et al., 2009). None of these projects resulted in the identification of an overall “best” snow 

model. Most of the snow models surveyed in these projects use similar parameterizations for 

the key processes that occur in a snowpack. A study by Essery et al., 2013 used all possible 

combinations of the parameterizations commonly used in physically based snow models to 

develop an ensemble of 1701 snow models which were compared to observations from an 

alpine site. The results showed that there did exist a group of models that consistently 

provided good results, however, the optimal models are still likely to be location dependent. 

The disadvantages of energy balance models are associated with their high data 

requirements, their complexity, and the uncertainty of the data. For an accurate 

representation of the energy balance, accurate data on solar radiation, thermal radiation, 

temperature, wind speed, humidity, precipitation and soil conditions are required, preferably 

in a dense grid across the entire catchment that is being modelled (Gabbi et al., 2014). 

Acquiring these data in enough quality to simulate snow melt accurately is a challenging and 

costly effort in real time and to forecast these parameters is associated with a high degree of 

uncertainty. As many catchments in the world are relatively poorly documented, energy 

balance models may be unsuitable for hydrological modelling of them (Sivapalan, 2003). 

2.3.3  Empirical models  

Empirical snow models rely on the statistical relationship between snowmelt and any of the 

variables affecting the surface energy balance. Most empirical models use air temperature 

as a predictor variable and are thus often referred to as temperature index models. These 

were the first melt models to be developed and the first application of temperature index 

snow model was in 1887 on an Alpine glacier, Der Suldenferner, (Finsterwalder & Schunk, 

1887). Temperature index models have been widely applied and have shown good 

performance despite their computational simplicity (Hock, 2003). The simplest case of the 

temperature index models is the degree day model is presented in Equation 2.9:  

𝑀 = 𝐷𝐷𝐹 ∑ 𝑇+Δ𝑡𝑛
𝑖=1 , (2.9) 

Where T+ is the sum of positive air temperature over a time interval Δt, M is snowmelt and 

DDF is the degree day factor which must be calibrated for each area. Many extensions to 

this simple degree day model have been developed, e.g. by adding other components of the 

energy balance, each with their own calibration factor (e.g. Kustas et al., 1994; Zuzel & Cox, 

1975)  

The main advantage of empirical snow models is their low data requirements. Temperature 

is among the simplest meteorological parameters to measure, and temperature data is widely 

available in many areas. Net radiation is on average the main source of energy flux between 

a snowpack and its surroundings, as discussed in section 2.1.1. However, air temperature 

usually has a high correlation to snowmelt, since many of the components affecting the 

energy balance, such as the net solar radiation, are also highly correlated to air temperature 
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(e.g. Lang & Braun, 1990; Ohmura, 2002). Temperature index models provide good 

estimates of snowmelt and have been shown to outperform energy balance models in certain 

catchments (Gabbi et al., 2014).  

In recent years efforts have been made to use machine learning and artificial intelligence 

methods for many hydrological modelling applications (e.g. Mosavi et al., 2018). These 

models are based on empirical relationships between snowmelt and the selected input data 

but limit the requirements for human data analytics to determine that relationship. These 

models are attractive due to their performance and operation simplicity and have shown good 

performance in stream flow predictions in snow impacted catchments (Kalra et al., 2013; 

Molotch et al., 2005) 

The disadvantage of the empirical modelling approach is mainly the lack of analytical 

capacity of the models. An empirical model may provide good or even better results than a 

physically based model but may not provide the necessary information required to develop 

further scientific insight into the physical processes occurring in the snowpack. The 

empirical calibration factors that need to be determined from historical data are also subject 

to significant uncertainty, they have been shown to range significantly depending on 

catchments (Hock, 2003; Singh et al., 2000), location within catchments (Braithwaite, 

Konzelmann, Marty, & Ulesen, 1998), time of day (Sing & Kumar, 1996) and time of year 

(Kuusisto, 1980). All empirical models require some amount of calibration of model 

parameters. If these parameters are contingent upon prevailing climate conditions the use of 

the models for long term climate change scenarios may be problematic, as the underlying 

climate is changing while the model predicts future snow conditions. Studies on temperature 

index models have for example shown that models calibrated with historic data will 

overestimate snow melt rates when applied in a warmer climate (Raleigh & Clark, 2014). 

2.3.4  Conceptual models 

Conceptual models attempt to take advantage of the key benefits of both the empirical and 

physical models by retaining the low data requirements of the former while gaining the 

analytical capabilities of the latter. Conceptual models try to explicitly include most of the 

important physical processes that occur within the snow cover but do so only in a simplified 

way (e.g. Anderson, 2006). Thus, many of the energy balance components of the snow 

surface are indexed to simpler parameters like temperature allowing for the analysis of the 

sensitivity of a snowpack to individual heat flux components. 

Among the disadvantages of conceptual models is that while they retain the low data 

requirements of empirical models, they can be relatively computationally complex. The 

internal relations and indexing between parameters may not be straightforward or universally 

applicable and these models are as reliant upon calibration as their empirical counterparts 

(Kavetski et al., 2006). Thus, while conceptual models may provide improved analytical 

capabilities their accuracy is contingent on accurate calibration and the more calibration 

parameters, they contain the more susceptible they are to the problem of equifinality, that is 

they provide good simulations but for the wrong reasons. This may lead to models that 

perform well on calibration data, but provide poor results when applied to data outside of 

the calibration set (Beven & Freer, 2001). 
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2.3.5  Calibration and Validation 

Snow models use environmental information to simulate the physical state of a snowpack. 

Most snow models need to be calibrated to each specific application by inferring their 

parameters from observed data (Beven & Binley, 1992). For a model to be considered 

reliable, the calibrated model must be validated by comparison with independent data that 

was not used in calibration. Many methods have been developed for both calibration and 

validation although none has yet been widely recognized as superior (Beven et al., 2003).  

Several variables can be used for calibration and validation of a snow model, they can 

broadly be broken into two categories: data on the state of the snowpack (e.g., depth, extent, 

Snow Water Equivalent (SWE), temperature, density) and data that describes the progression 

of snow melt (e.g., river discharge, reservoir inflow, mass balance) over some spatio-

temporal scale. These data may be obtained from in situ measurements or through remote 

sensing (Corbari et al., 2009). Calibration and validation can be performed using any single 

type of observation or a combination of observations (Seibert, 2010).  

Snow models can be applied either at a single point or in a distributed grid across a larger 

area. Point models are often used to simulate a snowpack at a measurement site and are then 

generally calibrated and validated based on the snowpack observations from that station, 

such models are most often calibrated and validated using snow depth or SWE (e.g., Franz 

et al., 2008). Snow models can be calibrated and validated based on different types of 

observations and at varying scales, e.g., a model can be calibrated based on meteorological 

point observations from single measurement station and then applied at basin scale and 

validated by discharge or mass balance data (e.g., Engelhardt et al., 2014). 

Distributed snow models are applied using distributed meteorological forcing data but can 

be calibrated and validated by using data at varying scales. Either by using point observations 

that are representative of the area being modelled (e.g., discharge data) or by distributed 

observations (e.g., satellite measurements of Snow-Covered Area (SCA)).  Studies have 

shown that calibrations using both satellite derived Snow-Covered Area (SCA) and 

discharge measurements provide quality simulations (Franz & Karsten, 2013). While 

discharge and snow depth data have historically been favored metrics for calibration, the 

inclusion of satellite derived SCA data in recent years has generally been shown to improve 

the validation and calibration of hydrological models (e.g., Konz et al., 2010; Parajka & 

Blöschl, 2008). 

The purpose of calibrating and validating snow melt models is to reconcile environmental 

theory with observed data (Gupta et al., 2008). The quality or skill of a model is measured 

by the capability of the model to replicate observed data and can quantified by a range of 

different efficiency criteria. A number of these efficiency criteria exist, each with its own set 

of advantages and disadvantages (Krause et al., 2005). Whether the model output is 

considered satisfactory is determined by the values of the efficiency criteria. The selection 

of any value of these efficiency criteria for a model to be considered satisfactory is often 

arbitrary and application dependent studies have been conducted to provide some general 

guidelines for threshold values (e.g., Moriasi et al., 2007). 
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2.3.6 Spatial representation  

Snow models can be applied at a point, in a lumped formulation or distributed. Point models 

simulate snow conditions at individual ablation sites whereas lumped and distributed models 

consider a basin scale. The lumped model, where variables are averaged or estimated over 

the watershed has historically been the favored formulation for many snow modelling 

applications due to computational constraints and data availability. With improved 

computation technology and data acquisition, applications of distributed temperature-index 

models have increased (e.g., Daly et al., 2000).  

Simulating snow conditions in a distributed grid over a basin should improve the 

representation of local topographic. By incorporating topographical information into the 

model, a better representation of local snow conditions patterns can be achieved. Such 

modelling efforts generally try to include information on slope, aspect, elevation, local 

shading, and weather patterns. One approach has been to relate melt to the radiation index 

computed from digital elevation models at each grid point (Dunn and Colohan, 1999).  

Distributed models have been shown to outperform simple lumped approaches, especially 

in representing diurnal melt cycles (Hock, 1998). Performance improvements of distributed 

temperature index models have been shown to marginally improve with a more complete 

representation of the energy balance (Hock, 1999). These results indicate that a large 

improvement in model performance can be achieved without a need for increased data 

acquisition of other energy balance variables. Nonetheless, recent studies in well 

documented catchments show that distributed energy balance models outperform distributed 

temperature index models where data is sufficient (Kumar et al., 2013 and Jost et al., 2012). 
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3. Application and results 

The main discussion in this chapter revolves around the methods, applications and results 

developed in this dissertation and is in accordance with the objectives outlined in Chapter 1, 

with reference to the four papers prepared in this PhD project.  

3.1 Simulating seasonal glacier mass balance – 

Application to Brúarjökull glacier 

Understanding the spatio-temporal impact of climate change on snow resources requires a 

means of simulating the cryosphere portion of the water cycle, either as part of the larger 

terrestrial water cycle or as an individual portion of it. Many models have been developed 

to this end and a review of the major classes of snow models that have been described in the 

hydrological literature as is discussed in Section 2.3 of this dissertation. All these snow 

models are associated with their own advantages and weaknesses and no consensus has been 

reached within the snow hydrological community on the optimal snow model configuration 

(Essery et al., 2013; Etchevers et al., 2004; Krinner et al., 2018). Thus, to achieve Objective 

1 of this dissertation, to identify the meteorological and climatological drivers of changes in 

snow and ice mass balance, the snow melt behavior of the well-documented Brúarjökull 

glacial catchment in South-Eastern Iceland was simulated using a novel data-driven 

modelling framework. The results of which are presented in this subsection and published 

in Eythorsson et al. (2018). 

Previously published studies on melt modelling of Icelandic glaciers in general have focused 

on simulating the behavior of these resources in a daily or finer time resolution (Carenzo et 

al., 2009; de Wildt et al., 2003; de Wildt et al., 2003; Marshall et al., 2005). These studies 

have considered both physical energy balance models and empirical degree day models, 

which have both shown good performance in simulating diurnal melt rates. These models all 

rely on data on some or all the factors that govern snow accumulation and snow melt. Given 

meteorological forecasts snow models can be used to forecast snow conditions with lead 

times roughly equal to those of the meteorological data used to force the model. Current 

meteorological models can forecast weather conditions with reasonable accuracy several 

days in advance. However, the uncertainty in the forecast increases rapidly with longer lead 

times. Although the skill of Numerical Weather Prediction Models (NWPM) has been 

continuously increasing in the past years (e.g. Hoffman et al., 2018), snow forecasting based 

on the output of these NWPM’s is limited to lead times of several days to a few weeks.  

The ability to predict snow melt behavior with longer lead times than those currently 

achieved by modern day NWPM‘s would be valuable for the water resource management in 

catchments heavily impacted by snow, either due to glaciation or large amounts of seasonal 

snow. The Brúarjökull catchment represents an ideal study area for seasonal snow modelling 

as it is extensively glacierized and the amount of summer melt water that can be stored each 

year is one of the key parameters in operating the Kárahnjúkar HPP. Making the ability to 
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forecast the summer mass balance of the Brúarjökull glacier an important goal to optimize 

power plant operations. 

3.1.1  Data 

The Brúarjökull glacier is the largest outlet glacier of the Vatnajökull ice cap in South-

Eastern Iceland. The glacial meltwater from the Brúarjökull glacier in South-Eastern Iceland 

has been mostly utilized in the Kárahnjúkar Hydro Power Plant (HPP) and represents most 

of the inflow into the plant’s major reservoir, Hálslón. As a result of the powerplant 

development, the environmental conditions in Brúarjökull catchment are extensively 

monitored and time series of hydro-meteorological and glaciological data have been 

collected for decades. The inflow into Hálslón, the main reservoir of the Kárahnjúkar HPP, 

is measured by Landsvirkjun, the operator of the power plant. A time series of inflow 

extending from the commissioning of the plant in 2007 with hourly temporal resolution was 

made available for the purposes of this research.  

Mass balance data is collected in several measurement points across the Vatnajökull glaciers, 

biannually. In spring, the winter snow accumulation is measured by ice core measurements 

while in the fall, summer ablation is measured from ablation wires or rods that are placed on 

the glacier during the spring survey (e.g. Thorsteinsson et al., 2004). The net annual mass 

balance of the glacier in each measurement point can then be estimated as the winter 

accumulation subtracted by the summer ablation. Figure 3-1 shows the location of the mass 

balance sites on the Brúarjökull glacier.  

Palsson et al., 2014 used these mass balance measurements to estimate the annual bass 

balance in each of the glacial catchments on the Vatnajökull glacier. As a result, there is 

available a time series of the annual glacial mass balance in the Brúarjökull catchment 

extending back to the year 1992. It should be noted that this time series of glacial mass 

balance only represents the change in snow mass between the spring and fall measurement 

surveys and does not consider any liquid precipitation that may fall on the glacier during the 

summer nor snow that melts outside of the survey period (after the fall survey or before the 

spring survey). It does however provide a reasonable proxy estimate of reservoir inflow, 

which has only been measured since the commissioning of the power plant in 2007.  

Several Automatic Weather Stations (AWS) are located on the Vatnajökull glacier, three of 

whom are situated on the Brúarjökull outlet. These AWS are designed to measure all the 

components of the Surface Energy Balance (SEB). Additionally, several AWS are operated 

on land in or in the vicinity of the Brúarjökull catchment. While these land-based AWS do 

not measure the radiative components of the SEB they do collect data on other parameters 

important for estimating the SEB, such as air temperature, humidity, wind speed and 

precipitation. Figure 3-1 shows the location of the AWS site locations on and around the 

Brúarjökull glacier. 

The Icelandic climate, and consequently mass balance of the Icelandic glaciers, is 

significantly influenced by conditions in the surrounding ocean (e.g. Hanna et al., 2001, 

2004). Large scale circulation patterns in the North Atlantic Ocean can be estimated by 

several indices and variables. Atmospheric circulation patterns over the North Atlantic have 

been shown to correlate with seasonal temperature and precipitation patterns in Iceland 

(Hanna et al., 2004). In  Eythorsson et al., (2018) the North Atlantic Multidecadal Oscillation 

Index (NAOI) (Barnston & Livezey, 1987), as estimated by the National Oceanic and 
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Atmospheric Administration (NOAA), the Atlantic Meridional Oscillation (AMO) (Kerr, 

2000), the US National Oceanic Data Center (NODC) estimated quarterly heat content of 

the northern Atlantic (60-0° W, 30-65° N) (Levitus et al., 2012) and measurements of sea 

surface temperatures, from three locations around Iceland, observed by the Icelandic Marine 

Research Institute, were evaluated as predictor variables for seasonal melt forecasting. The 

North Atlantic Ocean indices have been shown to correlate with seasonal climate patterns in 

northern Europe (e.g Palter, 2015; Zampieri et al., 2017). 

 

Figure 3-1 Location of mass-balance sites and Automatic Weather Stations (AWS) where the 

glaciological and meteorological data used in Eythorsson et al., (2018), were collected (from Eythorsson 

et al. 2018) 

3.1.2  Variable selection 

The response variable in in Eythorsson et al., (2018), was the annual summer mass balance 

of the Brúarjökull glacier, as estimated using the methods of Pálsson et al., (2014). All the 

available environmental data described in section 3.1.1 was assessed in terms of their 

predictive potential by estimating their correlation to the response variable, estimated as the 

square of the Pearson’s correlation coefficient, r. Variables were ranked according to their 

r2 value, and variables with an r2 value above a certain threshold value, rt, were selected to 

develop an ensemble of forecast models. The value of rt, was optimized by performing a 

sensitivity analysis of the model results for model forecasts made on the 1st of July, as 

described in Eythorsson et al., 2018.  The variables which were ultimately selected to create 

the final model ensemble are summarized in Table 3-1 with their correlation to the observed 

summer mass balance of Brúarjökull.  
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Table 3-1 Predictor variable selected for development of a multimodel forecast ensemble and their 

correlation to the observed summer mass balance of Brúarjökull, given as r2 values (from Eythorsson et 

al., 2018). 

Variable Location r2 

Net radiation BruNe (850 m a.s.l) 0.65 

AMO index Atlantic Ocean 0.48 

Albedo BruNe (850 m a.s.l) 0.47 

Albedo BruMi (1,200 m a.s.l) 0.36 

Atmospheric Pressure Karahnjukar 0.35 

Precipitation Egilsstadir 0.33 

Ocean Heat Content North Atlantic 0.32 

 

3.1.3  Multivariate model ensemble 

The variables that showed the best predictive performance and are summarized in Table 4-

1 were used to create an ensemble of all possible multivariate linear regression models with 

five or fewer input variables. The number of input variables were restricted to five or fewer 

due to the risk of potential overfitting of the models. The number of models to include in the 

ensemble was optimized by performing a sensitivity analysis of the model results, as 

described in Eythorsson et al., 2018.  

3.1.4  Multi-model inference 

Many multivariate regression models can be created by combining five or fewer of the input 

variables which showed predictive potential and are presented in Table 4-1. To select any 

single one of these models to infer information about the response variable would recognize 

the existence of several other competing models and reject their predictive potential. Thus, 

the selection of any one of the possible models is a source of uncertainty in the estimation 

of the response variable. Unless this uncertainty due to model selection is accounted for, 

overconfident predictions may be made (Wang et al, 2009).  

To eliminate model selection as a source of forecast uncertainty the average of the response 

variable can be calculated over a range of plausible models, a method commonly referred to 

as model averaging (Hjort & Claeskens, 2003) and is commonly used in many earth science 

disciplines in cases where many competing models are possible (Dormann et al., 2018; 

Fragoso et al., 2018; Höge et al., 2019). Eythorsson et al., (2018)., used the frequentist model 

averaging technique and estimated the response variable, the summer mass balance of the 

Brúarjökull glacier, M, as the arithmetic mean of all the plausible models according to 

Equation 3.1.1.  

𝑀 =
1

𝐾
∑ 𝑀𝑘

𝐾

𝑘=1

, (3.1.1) 

where the index k denotes the kth model considered, K is the total number of models, 𝑀𝑘is 

the estimated ablation based on the kth model. The uncertainty in the estimate is taken as the 

spread in predicted values of the ensemble of plausible models. 
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3.1.5  Selecting an optimal subset of models for inference  

The predictive quality of each of the models in the multimodel ensemble was assessed by 

three evaluation metrics: The Nash-Sutcliffe efficiency (NSE), the ratio of the root mean 

square error to the standard deviation of the measured data (RSR) and the percent bias. These 

three metrics were recommended by Moriasi et al., (2007), for watershed simulations, their 

mathematical formulae are described in Equations 3.1.2 - 3.1.4 

𝑁𝑆𝐸 = 1 −
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)

2
𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

, (3.1.2) 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
=

√∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑖

𝑠𝑖𝑚)
2𝑛

𝑖=1

√∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

, 

(3.1.3) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)∗(100)𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

, 
(3.1.4) 

where n is the number of data points in the dataset, Yobs is the observed mass balance of 

Brúarjökull in the ith year, Ysim is the simulated mass balance in the ith year and Ymean is the 

mean observed mass balance. Moriasi and others (2007) suggested that a model simulation 

could be judged as satisfactory if NSE > 0.5, RSR < 0.7 and PBIAS < ±25%. In Eythorsson 

et al., (2018) an ensemble of optimal models was created by only selecting those models 

from the multimodel ensemble which met these three criteria.  

3.1.6  Model Evaluation and results 

The skill of the multi-model forecast ensemble created in Eythorsson et al., (2018) was 

evaluated in its ability to forecast the summer mass balance of the Brúarjökull glacier, in 

terms of the evaluation metrics NSE, RSR and PBIAS described in Equations 3.1.2 - 3.1.4. 

The model forecasts were evaluated using five-fold cross-validation, meaning that the data 

were split five ways where 4/5ths of the observations were used for calibration and 1/5th was 

used for evaluation of the results. Table 3-2 shows the evaluation metrics NSE, RSR and 

PBIAS for forecasts made between the 15th of May and the 1st of July.  

Table 3-2 Evaluation metrics, NSE, RSR, PBIAS for forecasts made between the 15th of May and 1st of 

July (from Eythorsson et al., 2018) 

Forecast Date NSE 
 

RSR 
 

PBIAS (%) 
 

15th May -0.95 1.39 9.2 
1st June 0.13 0.93 3.2 

15th June 0.45 0.75 2.7 
1st July 0.71 0.54 0.27 

 

Figure 3-2 shows the model averaged forecasts of the Brúarjökull summer mass balance for 

all the five folds used for cross validation for forecasts made on the 1st of July, the 1st and 

15th of June and the 15th of May.  
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Figure 3-2 Model-average forecasts of Brúarjökull summer mass balance for all five folds used for cross 

validation (from Eythorsson et al., 2018) 

The results in Figure 3-2 and Table 3-2 illustrate that satisfactory predictions of the summer 

mass balance of the Brúarjökull glacier were achieved when the models were run with data 

that are available at the 1st of July, at which time the glacial summer melt season is starting.  
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3.2 Observing global snow cover changes  

Climate change can be expected to impact the extent, duration and volume of snow in areas 

with both seasonal and perpetual snow cover (e.g. Adam et al., 2009; Kapnick & Delworth, 

2013). Understanding how these changes are distributed spatially and temporally requires 

reliable measurements of the parameters that are important for understanding and simulating 

snow dynamics. Many snow datasets have been described in the literature and made 

available to the research community, collected in various spatio-temporal resolution and 

extent, using different measurement technologies, and containing a wide range of snow 

parameters. These data sets range from individual snow pit measurements to time series of 

point based in situ measurements, to distributed datasets of remotely sensed snow cover 

extent (e.g. Dong, 2018). Thus, to achieve part of Objective 2 of this dissertation (assessing 

the historical changes to snow conditions), the spatio-temporal changes in snow cover were 

estimated using satellite derived snow cover data from the MODIS instrument on NASA’s 

Terra and Aqua satellites, as it provides with a widest spatial coverage and finest temporal 

resolution of any of the observational snow cover datasets available in the literature. These 

results are presented in this subsection and published in Eythorsson et al., (2019) 

3.2.1  Estimating Snow Cover Frequency  

Snow cover, which persist on the ground for extended periods and occurs regularly, is one 

of the key elements governing the hydrology and ecology of an area (Vavrus, 2007). The 

duration of snow cover over the year determines which species of flora and fauna can inhibit 

a place (e.g. Billings & Mooney, 1968). Snow Cover Frequency (SCF) is an estimate of how 

impacted by snow an area is and can be calculated as the number of snow-covered days 

divided by the number of days in the year. The SCF is an important geophysical feature, as 

it is a key determinant of the local surface albedo, regulating solar absorption (e.g. Cohen, 

1994) and has also be used to estimate species habitat suitability (Barichivich et al., 2013). 

With the advent and availability of large scale open source satellite data observations and 

sophisticated computational platforms the estimation and mapping of SCF data has been 

made possible for the research community, in a way hitherto impossible, to analyze and 

investigate snow dynamics (e.g. Basang et al., 2017; Choudhury et al., 2021).  

Many methods have been applied to remotely estimate key parameters in the terrestrial snow 

cover, from both airborne vehicles and satellites using a range of sensor technologies (Dietz 

et al., 2012). Data from these sensors are commonly used in hydrological modelling (e.g 

Dong, 2018; Helmert et al., 2018). With improved sensing technologies and a maturing 

satellite industry, global datasets with high temporal resolution observations or estimates of 

snow cover have been made readily available and routinely used in snow research. One of 

the key snow cover datasets for the present-day snow research community is the Moderate 

Resolution Imaging Spectroradiometer (MODIS) snow cover product, which has been 

available since 2000 and provides global daily snow cover extent in 500 m spatial resolution. 

The MODIS snow dataset has been evaluated based on many other observational snow 

datasets (e.g. Arsenault et al., 2014; Hall et al., 2019) and is frequently used to study the 

observed snow dynamics over the period which has passed since the year 2000 (e.g. Dariane 

et al., 2017; Li et al., 2018). In Eythorsson et al., (2019), the MODIS MOD10A1 snow cover 

product was used to calculate the annual SCF globally for the period 2000-2016, and to 

identify the areas where there had occurred a statistically significant change in the SCF over 

that period.  
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The annual SCF was calculated in 500 m spatial resolution across the globe, based on the 

MODIS10A1.005 snow cover product. The MOD10A1 snow cover product was re-mapped 

to classify each pixel as snow/ice (1) or no snow/ice (0) for each valid observation in the 

dataset. To reduce the panoramic distortion caused by the curvature of the earth, which 

causes overlapping satellite scan lines, observations with zenith angles greater than 25° were 

removed excluded from the analysis. As this panoramic distortion has been shown to be a 

cause of systematic error in snow mapping with MODIS data (Ackerman et al., 2008; Frey 

et al., 2008; H Souri & Azizi, 2013). Metadata on sensor nadir angle was extracted from the 

MOD09GA dataset and merged with the MOD10A1 data. The MOD10A1 data was not 

subjected to any additional cloud masking as the improvements made to the fifth collection 

of MODIS imagery has resulted in significant improvements of its inherent cloud masking 

algorithm (Frey et al., 2008) and has been shown to be in good agreement with other cloud 

detection datasets (Ackerman et al., 2008; Ault et al., 2006; Wang et al., 2016). Missing 

observations (due to e.g., cloud cover, sensor malfunction or polar night) were 

indiscriminately excluded from the analysis.  

The annual SCF was subsequently estimated for each 500x500m pixel globally as the 

number of days which each pixel was covered with snow, divided by the total number of 

valid observations in that pixel, for each year in the period 2000-2016. The trend in annual 

SCF in each pixel over the study period was estimated using two statistical slope estimation 

methods: linear regression and Sen’s estimator of slope method (Sen, 1968). The statistical 

significance of the estimated trend lines was then estimated using two non-parametric 

hypothesis tests: the Mann-Kendall trend test (Maurice & Kendall, 1975) and Sen’s slope 

test (Sen, 1968).  In general, comparable results were achieved using both statistical slope 

estimation methods. However, the Mann-Kendall method was more sensitive to 

misclassified pixels, especially over permanent snow cover. Sen’s slope estimation method 

showed more resilience to outliers due to misclassified pixels and was thus used in all 

subsequent analysis. Statistically significant changes to snow cover in each pixel was 

reported at two confidence levels (α = 0.01 and α = 0.05).  

Figure 3-3 shows a map of the areas which were shown to have experienced a statistically 

significant increase in SCF (blue) and a statistically significant decrease in SCF (red) over 

the period 2000-2016, as estimated using the Sen’s slope estimation method for the α = 0.05 

confidence level. The results presented in Figure 3-3 show that over the period that the 

MODIS data has been collected (2000-2016) there has been a statistically significant 

decrease in the SCF in large areas of the continental subarctic. At higher latitudes, especially 

near the Arctic coastline extended areas where the SCF had increased during this period were 

observed. This pattern of increasing SCF is observed in the north-western Canadian and 

Alaskan arctic coastline, the eastern Siberian coastline and to a slightly lesser extent in 

northern Fenno-Scandia and Iceland. However, on the western coast of Greenland and the 

southern part of Novaya Zemlya the opposite trend, of increasing SCF was observed.  This 

incongruity of SCF patterns on the coastline surrounding the Arctic seas is interesting. It is 

most likely explained by that in Western Greenland and Novaya Zemlya the decreasing SCF 

is observed due to deglaciation and the loss of permanent snow cover (Carr et al., 2014; 

Melkonian et al., 2016; Straneo & Heimbach, 2013), whereas in the North American, 

Eurasian Arctic the patterns of increasing SCF may be due to an increasing volume of winter 

precipitation which causes a deeper winter snowpack and may extend the duration of the 

annual snow cover (Kopec et al., 2016; Singarayer et al., 2006).  
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Figure 3-3 Areas of increasing (blue) and decreasing (red) SCF, as estimated using Sen’s slope estimation 

method at the α = 0.05 confidence level. 

Eythorsson et al. (2019) estimated that 8.3% of the Arctic land surface has experienced a 

statistically significant (α = 0.05) change in the local SCF over the MODIS period (2001-

2016). Over the same period the average Arctic SCF, below 500 m.a.s.l., was found to have 

decreased by 0.25% per year, or by 9.1 days per decade. These results are in line with the 

findings of prior research which have estimated changes to the snow regime in this area. The 

number of snow covered days (SCD) in the Northern Hemisphere (NH) was estimated to 

have decreased by 5.3 days/decade over the MODIS period by Yunlong et al., (2018) using 

remotely sensed MODIS, IMS and AMSR-e data. Hori et al., (2017) showed that over the 

period 1979-2009 the frequency of snow cover over the NH had decreased by 10 days / 

decade, estimated using remote sensing data from MODIS and AVHRR. This trend of 

decreasing NH SCF has also been simulated based on hydro-climatological datasets. Liston 

& Hiemstra, (2011), used the MERRA reanalysis product to model NH snow cover over the 

period 1979-2009 and observed an average decrease in NH SCD by 2.5 days/decade.  
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3.3 Estimating and predicting changes to global 

climate classifications 

Climate projections, like those produced by GCM’s, estimate future conditions in climate 

state variables based on predicted changes to forcing variables that determine spatio-

temporal changes in the state of the climate. The output of such models are thus the values 

of the state variables at each time increment that the model is run in, distributed across the 

spatial extent over which the model is run. Although such information about parameters such 

as temperature and precipitation in a distributed grid across the globe is valuable for many 

applications, further abstractification of the climate model output can provide insight into 

important aspects of climate change and the impacts it will have on many processes on the 

earth’s surface. One way to abstractify this data is to use it to categorize areas of climate 

regions that are meaningful in some physical or biological sense. One of the most commonly 

used climate classifications systems is the Köppen-Geiger system, which has been applied 

to a range of studies in many scientific disciplines (Beck et al., 2018; Kottek et al., 2006; 

Peel et al., 2007). Thus, in order to achieve the second part of Objective 2 of this dissertation 

(assess the historical changes in the climate regime), the spatio-temporal changes in Köppen-

Geiger climate classifications were estimated using the ensemble of Global Circulation 

Models (GCM’s) from the fifth project phase of the Coupled Model Intercomparison Project 

(CMIP5) (Taylor et al., 2012), as these models make up the key scientific background for 

the International Panel on Climate Change (IPCC) policy recommendation for global 

policymakers, and thus represent the one of the most relevant estimates of future climate 

conditions for humanity. These results are presented in this subsection and published in 

Eythorsson et al., (2019). 

3.3.1 Köppen-Geiger classification system 

The local climate of an area is a key characteristic of that region in the minds of most of its 

human inhabitants. It determines which species of animals and plants can reside there and it 

impacts our level of comfort, our lifestyles and can even impact our mental health. It is one 

of the most distinctive feature changes that we notice while travelling from place to place. 

Using spatio-temporal estimates of climate classifications to visualize and quantify climate 

variation and change is a valuable method for researching the impacts of climate change (e.g. 

Chen & Chen, 2013) and to disseminate the work of the scientific community to the general 

public in way that resounds with their experiential reality (e.g. Jylhä et al., 2010).  

The Köppen-Geiger (KG) climate classification system has been widely used in a range of 

disciplines to classify local climates. The system classifies the climate of an area based on 

monthly average measurements of air temperature and precipitation and can be applied to 

point measurements from individual weather stations or in a distributed grid, using a 

distributed meteorological dataset. The classification criteria of the Köppen-Geiger 

classification system are presented in Table 3-3. The system assigns climates into five main 

groups, A (tropical), B (Arid), C (temperate), D (continental) and E (polar). All groups except 

the polar climates (group E) are further divided into seasonal precipitation subgroups, 

marked by the second letter in the climate class, and finally all groups except the tropical 

climates (group A) are assigned a temperature subgroup, indicated by the third letter in the 

climate class. Thus, for example, climate class Csa represents temperate climate with dry 

and hot summers.  
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Table 3-3 Criteria for Köppen-Geiger classifications and their symbols 

1st  2nd  3rd Description Criteria* 

A   Tropical Tcold ≥ 18 

 f  -Rain forest Pdry ≥ 60 

 m  -Monsoon Not Af and Pdry ≥ 100-MAP/25  

 w  -Savannah Not Af and Pdry < 100-MAP/25 

B   Arid MAP < 10*Pthreshold 

 w  -Desert MAP < 5*Pthreshold 

 s  -Steppe MAP ≥ 5*Pthreshold 

  h   -Hot MAT ≥ 18 

  k   -Cold MAT < 18 

C   Temperate Thot > 10 & 0 < Tcold < 18 

 s  -Dry Summer Psdry < 40 & Psdry < Pwwet/3 

 w  -Dry Winter Pwdry < Pswet/10 

 f  -Without dry season Not Cs or Cw 

  a   -Hot Summer Thot ≥ 22 

  b   -Warm Summer Not a & Tmon10 ≥ 4 

  c   -Cold Summer Not a or b & 1 ≤ Tmon10 ≤ 4 

D   Cold Thot > 10 and Tcold ≤ 0 

 s  -Dry Summer Psdry < 40 & Psdry < Pwwet/3 

 w  -Dry Winter Pwdry < Pswet/10 

 f  -Without dry season Not Ds and Not Dw 

  a   -Hot Summer Thot ≥ 22 

  b   -Warm Summer Not a & Tmon10 ≥ 4 

  c   -Cold Summer Not a, b or d 

  d   -Very Cold Winter Not a or b & Tcold <-38 

E   Polar Thot < 10 

 T  -Tundra Thot > 0 

 F  -Frost Thot ≤ 0 

 

3.3.2  Projecting future Climate Classifications  

In Eythorsson et al., (2019) a code was developed in Google Earth Engine (GEE) (Gorelick 

et al., 2016) to classify local climates according to the KG classification criteria presented 

in Table 3-3. The code was applied to classify the climate of each pixel (0.2-degree 

horizontal resolution) globally for each year in the time period 1950-2100, using temperature 

and precipitation data calculated from the ensemble average of the downscaled and bias 

corrected CMIP5 GCM results as published in the NASA-NEX GDDP dataset (Thrasher et 

* MAP = Mean annual precipitation, MAT = mean annual temperature, Thot = temperature of the hottest 

month, Tcold = temperature of the coldest month, Tmon10 = number of months with mean temperatures above 

10, Pdry = precipitation in the driest month, Psdry = precipitation in the driest month in summer, Pwdry = 

precipitation in the driest month in winter, Pswet = precipitation in the wettest month in summer, Pwwet = 

precipitation in the wettest month in winter, Pthreshold = varies according to: (if 70% of MAP occurs in winter 

then Pthreshold = 2*MAT, if 70% of MAP occurs in summer then Pthreshold = 2*MAT+28, otherwise Pthreshold = 2*MAT 

+ 14). Summer (winter) is defined as the warmer (cooler) six-month period of ONDJFM and AMJJAS. 

From Peel et al., 2007  
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al., 2006), for both the Representative Concentration Pathway (RCP) RCP4.5 and RCP8.5 

scenarios (van Vuuren et al., 2011).  

Figure 3-4 shows an example of the global annual KG classifications for the years 1951 and 

2099 produced in Eythorsson et al. (2019). The results show a general trend across the globe 

where warmer climate classes migrate to higher latitudes, replacing the colder climate 

classes. Nowhere is this warming trend as apparent as in the Arctic and continental sub-

Arctic where climate classes associated with warm and hot summers are expected to replace 

cold summer and polar climates over large areas. This migration of warmer climate classes 

into high latitude areas was found to be more rapid and widespread under RCP85 as 

compared to RCP45. However, under RCP45 the coverage of the currently most common 

climate class in the Arctic (Cold climate with cold summers and no dry season, Dfc) is 

expected to decrease by about 40% by the year 2100.  

 

Figure 3-4 Examples of annual Köppen-Geiger (KG) classification maps for year 1951 (upper) and 

2099 given the RCP45 emission scenario (lower). 

The Köppen-Geiger classifications projected in Eythorsson et al. (2019), can be explored in 

more detail in an online app developed by the first author. The app, available through the 

following url: https://dareyt.users.earthengine.app/view/koppengeiger2 presents an 

https://dareyt.users.earthengine.app/view/koppengeiger2
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interactive map of the global KG classifications for the periods 1950-1960 and 2090-2100 

under both the RCP4.5 and the RCP8.5 emission scenarios based on the ensemble average 

of the 21 CMIP5 GCMs in the NASA NEX GDDP database. The application allows the user 

to compare side by side how local climates are expected to change over the period 1950-

2100 depending on future emission scenarios.  

Figure 3-5 shows a screenshot of the KG classification app developed by the author. The 

KG classification for the period 1950-1960 are shown on the leftmost pane, the middle pane 

shows the KG classifications for the period 2090-2100 under the RCP45 emission scenario 

and the rightmost pane shows the classifications for the period 2090-2100 under the RCP85 

emission scenario.  

 

Figure 3-5 Snapshot of the KG classification app developed from the results of Eythorsson et al., (2019).  

In Eythorsson et al., (2019) climate change over an area was estimated as a change in KG 

classification over that area due to a change in local temperature and precipitation patterns 

over time, given the RCP45 emission scenario. Figure 3-6 shows the proportional coverage 

of the Polar climate classes (ET and EF) and the four tertiary subgroups of the Cold climate 

classes, Warm summer (Dsb, Dwb, Dfb), Hot summer (Dsa, Dwa, Dfa), Cold summer (Dsc, 

Dwc, Dfc) and Very cold winter (Dsd, Dwd, Dfd), across the Arctic for each year in the 

period 1950-2100 with a 15 year rolling average. The most common climate classes in the 

Arctic, covering about 50% of its area at present, are the cold climate classes with cold 

summers (Dfc, Dsc and Dwc). Climate classes associated with very cold winters (Dwd and 

Dsd) and polar climates (ET and EF) are expected to decrease in coverage steadily 

throughout the study period. Climate classes associated with warm (Dfb, Dsb and Dwb) and 

hot summers (Dfa, Dsa and Dwa) were shown to increase in their coverage throughout the 

period, with a notable acceleration in the rate of increase after the turn of the 21st century. 

The results of Eythorsson et al., (2019), showed that during the period 1950-2020 cold 

summer classes are rapidly replacing polar (ET and EF) and very cold winter (Dwd and Dsd) 

climate classes, with cold summer classes reaching a peak coverage around year 2020, 

whereas in the latter part of the study period (2020-2100) classes with warm (Dfb, Dwb and 

Dsb) and hot summers (Dfa, Dwa and Dsa) were projected to advance further north into the 

Arctic, resulting in net decline in the coverage of the cold summer climate classes.  
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Figure 3-6 Proportional areal coverage of the most common groups of KG classes in the Arctic, below 

500 m.a.s.l., for the period 1950-2100. A 15-year rolling mean is shown as a solid line (from Eythorsson 

et al., 2019) 

Table 3-4 shows the proportional areal coverage of the Polar and Cold Climate classes within 

the Arctic and the changes in that proportional coverage between the periods 1951-1960 and 

2090-2099. The results show that over the study period the coverage of the most common 

Arctic climate class in the beginning of the period, cold climate with cold summers and no 

dry season (Dfc) is expected to decrease by 41% while the second most common class, Polar 

tundra (ET) is expected to decrease by 34%. The results showed that as these colder climate 

classes recede further north, climate classes associated with warm and hot summers are 

expected to expand in coverage by 185% and 733% respectively, under the RCP45 scenario.  

Table 3-4 Proportional coverage of Polar and Cold climate classes within the Arctic AMAP boundary 

and the changes between the periods 1951-1960 and 2090-2099 (from Eythorsson et al., 2019). 

   1951-1960 2090-2099 Net Change 

 Polar 26.4% 17.3% -35% 

 Polar Frost (EF) 0.4% 0.1% -86% 

 Polar Tundra (ET) 26.0% 17.2% -34% 

C
o

ld
 C

li
m

at
e 

Very Cold Winters 15.9% 3.1% -80% 

Dry Winters (Dwd) 4.3% 0.1% -97% 

Dry Summers (Dsd) 11.5% 3.0% -74% 

Cold Summers 49.1% 43.8% -11% 

No Dry Season (Dfc) 30.4% 18.0% -41% 

Dry Winters (Dwc) 2.9% 1.8% -36% 

Dry Summers (Dsc) 15.8% 23.9% 51% 

Warm Summers 6.6% 18.7% 185% 

No Dry Season (Dfb) 4.3% 12.9% 197% 

Dry Winters (Dwb) 0.2% 1.2% 518% 
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Dry Summers (Dsb) 2.1% 4.6% 126% 

Hot Summers 2.0% 16.9% 733% 

No Dry Season (Dfa) 0.9% 7.6% 770% 

Dry Winters (Dwa) 0.5% 1.1% 125% 

Dry Summers (Dsa) 0.7% 8.3% 1099% 
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3.4 Comparing trends in climate classifications 

and Snow Cover - an Arctic case study 

Eythorsson et al., (2019), compared the changes in KG climate classifications with changes 

in the local Snow Cover Frequency (SCF), as estimated from the MOD10A1.005 dataset, 

described in Section 4.2, within 10 selected study areas in the Arctic. Figure 3-7 shows the 

location of the study areas which were selected as they have been defined by the Arctic 

Monitoring and Assessment Program (AMAP) as specific pollution prevention areas, 

because they are considered to be especially vulnerable to human development and climate 

change (AMAP, 2015). The study areas were restricted to the Arctic lowlands, under 500 

m.a.s.l., as these are the areas which are most important for human development in the 

region. Figure 3-7 also shows the Arctic area, as delineated by AMAP, with a red dotted 

line. 

 
Figure 3-7 The Arctic area (AMAP, 2015) and the 10 pollution prevention areas in the Arctic which were 

selected for comparing changes in the snow and climate domains (from Eythorsson et al., 2019) 
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Figure 3-8 shows the annual SCF and the proportional coverage of the two most common 

KG classes in each of the study areas shown in Figure 3-7, for the period 2001-2016. The 

trends were estimated using least square linear regression and the significance of the slope 

of the proportional coverage of the KG classes was estimated using the non-parametric Sen’s 

estimator of slope and Mann-Kendall methods.  

 

The results showed evidence for statistically significant changes (α = 0.05) to one or both 

main KG climate classes in seven of the ten study areas over the period 2001-2016. In all 

these cases there had occurred a warming trend, which was observed as either a statistically 

significant decrease in a colder climate class or an increase in a warmer climate class, or 

both. When compared to the changes in SCF in these same areas three distinct patterns were 

revealed: (i) in the northernmost areas of the Arctic (Canadian Arctic Archipelago, Svalbard 

& East Greenland, Taymir Peninsula & Norilsk Area) no significant trends were observed 

in the KG climate classifications as well as the smallest changes to the SCF, (ii) in the study 

areas closer to the Atlantic Ocean (Baffin Iceland & West Greenland, Kola Peninsula & 

Northern Fennoscandia, Novay Zemlya & Kara and Pechora Areas) significant warming 

trends were observed over the same period that the SCF had decreased significantly in many 

areas, and (iii) in the study areas closer to the Pacific Ocean (Lower Mackenzie river and 

delta area, Northern Alaska, Chuckotsky peninsula, Lena river delta) significant warming 

trends were observed over the same period that the SCF had increased.  

 
Figure 3-8 Snow Cover Frequency (SCF) and proportional coverage of the two most common KG 

classes in each study area over the period 2001-2016 (from Eythorsson et al., 2019). 

Table 3-5 shows the estimated changes in the coverage of the two main KG classifications 

in each of the 10 areas studied in Eythorsson et al. (2019), over the period 2001-2016 and 

the percentage of the study areas which are below 500 m a.s.l. where a statistically significant 

SCF trend was observed. The results presented in Table 3-5 show a statistically significant 

trend in one or both most common climate classes in seven of the ten study areas considered. 

These same areas had proportionally the largest areas where the SCF had experienced a 

statistically significant change in the local SCF (4.8 – 13.6% at α = 0.05). 
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Table 3-5 Changes in coverage of the two main KG classes in the period 2001-2016 and the percentage of study areas below 500 m.a.s.l. showing a significant SCF 

trend. Significant results at the α = 0.05 confidence level are in bold. (From Eythorsson et al., 2019) 

 
1st KG Class 2nd KG class 

SCF significant area [%] 

(%pos. / %neg.) 

Area Name 
Change 2001-

2016 [%] 

MK 

 p-value 
Sen’s slope Name 

Change 2001-

2016 [%] 

MK 

p-value 
Sen’s slope α = 0.05 α = 0.01 

Arctic AMAP area 
Cold summer no 

dry season (Dfc) 
-7.7% 0.255 inSign Tundra (ET) -5.99% 0.025 Sign 

3.6 

(+0.8/-2.8) 

0.9 

(+0.2/-0.7) 

Chukotsky Peninsula 
Cold summer no 

dry season (Dfc) 
-21.60% 0.72 inSign Tundra (ET) -77.00% 0.0006 Sign 

11.5 

(+11.4/-0.07) 

3.7 

(+3.7/-0.0)  

Lena River Delta 
Cold summer very 

cold winter (Dfd) 
-25.30% 0.006 Sign 

Cold/dry summers 

(Dsc) 
490.50% 0.005 Sign 

13.6 

(+12.9/-0.7) 

6.4 

(+6.2/-0.2)  

Taymir Peninsula, Norilsk Area 
Cold summer no 

dry season (Dfc) 
0.70% 0.881 inSign 

Dry summer very 

cold Winter (Dsd) 
13.30% 0.805 inSign 

1.8 

(+1.4/-0.4) 

0.4 

(+0.3/-0.1)  

Novaya Zemiya, Kara & Pechora 

Seas, Mouth of Pechora River 

Cold summer no 

dry season (Dfc) 
-30.20% 0.009 Sign 

Warm summer no 

dry season (Dfb) 
198.60% 0.006 Sign 

4.8 

(+0.5/-4.3) 

1.6 

(+0.1/-1.5)  

Kola Peninsula & Northern 

Fennoscandia 

Warm summer no 

dry season (Dfb) 
29.60% 0.009 Sign 

Cold summer no 

dry season (Dfc) 
-62.20% 0.003 Sign 

9.1 

(+2.3/-6.8) 

3.6 

(+0.7/-0.29)  

Svalbard and Eastern Greenland 
Warm summer no 

dry season (Dfb) 
-3.40% 0.52 inSign Tundra (ET) -1.30% 0.21 inSign 

1.2 

(+0.6/-1.6) 

0.9 

(+0.2/-0.7)  

Baffin Island and West Greenland 

Area 
Tundra (ET) -7.00% 0.025 Sign 

Cold summer no 

dry season (Dfc) 
5.00% 0.042 Sign 

7.8 

(+3.1/-4.7) 

3.0 

(+1.1/-1.9)  

Canadian Arctic Archipelago & 

Arctic Islands 
Tundra (ET) -8.10% 0.255 inSign 

Cold/dry summers 

(Dsc) 
6.50% 0.22 inSign 

1.3 

(+0.08/-1.2) 

0.5 

(+0.2/-0.3) 

Lower Mackenzie River and Delta 

area 

Cold/dry summers 

(Dsc) 
-11.29% 0.21 inSign 

Dry/hot summers 

(Dsa) 
32.78% 0.02 Sign 

11.3 

(+10.7/-0.6) 

4.5 

(+4.3/-0.2) 

Northern Alaska and North slope 

area 

Cold/dry summers 

(Dsc) 
4.03% 0.45 inSign 

Dry/hot summers 

(Dsa) 
84% 0.006 Sign 

11.1 

(+11.05/-0.05) 

4.3 

(+4.3/-0.0) 
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The warming trend observed across the Arctic in Eythorsson et al., (2019), is unsurprising 

as there is a consensus that the Arctic is warming at an amplified rate as compared to the 

global average. A phenomenon known as polar amplification which has been documented 

in present and historical periods of rapid climate change (J. Cohen et al., 2014; Serreze & 

Barry, 2011; Serreze & Francis, 2006). However, the observed regional differences in how 

snow resources respond to this warming are notable, and important for local hydrological 

and ecological adaptation strategies in these areas. In the northernmost areas (i) the local 

temperature has indeed risen; however, this rise has not resulted in a change in climate 

classification. Since there has not been any notable change in the general climatology of 

these regions, they are not expected to have undergone major snow hydrological changes. In 

the regions closer to the Atlantic Ocean (ii) cold climates are replacing polar climate and 

warm and hot summer climates are replacing cold summer climates within the Cold climate 

group, in line with this shift toward warmer climates the local SCF has decreased in large 

areas. In the study areas closer to the Pacific Ocean (iii) the same climate warming trends 

are observed as in ii), however, this rise in temperature has been accompanied with a larger 

increase in precipitation, as sea ice concentrations in these areas has decreased significantly 

in recent years, increasing local evaporation- and, subsequently, precipitation rates 

(Maslanik et al., 2011; Serreze & Stroeve, 2015), which is likely to increase both the 

frequency and volume of snowfall.  
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3.5 Projecting changes to NH snow resources 

under different climate change scenarios 

The conclusions of Eythorsson et al., (2019) showed that significant changes were estimated 

to have occurred in the climate and snow regimes in the Arctic over the last decades. To 

understand how snow resources will continue to be impacted by a changing climate, future 

snow conditions must be simulated based on current best estimates of future climate 

conditions. As demonstrated by Eythorsson et al., (2018) seasonal ablation behavior in areas 

with abundant snow and ice resources can be predicted reasonably well a few months in 

advanced based on the initial conditions of the surrounding hydro-climatological system and 

as discussed in Section 2.3 of this dissertation, reliable shorter term forecasts can be 

produced based on initial state variables and meteorological forecasts. However, to simulate 

large scale snow response to climate change over a longer time frame, snow conditions 

should be simulated based on the results of scientifically accepted climate model results. 

Thus, in order to achieve Objective 3 of this dissertation, snow conditions were simulated 

based on the CMIP5 GCM ensemble for the time period 1950-2100 in a 0.2-degree 

horizontal resolution, using the Snow17 conceptual snow model which has been used by the 

National Weather Service River Forecast System (NWSRFS) since the 1970’s (E. Anderson, 

2006). The results of which are presented in this subsection and Eythorsson et al., (2023b). 

3.5.1  Methods 

As discussed in Section 2.3 of this dissertation there exists a wide selection of snow models 

which have been developed for a range of applications. In Eythorsson et al. (2023b) the 

Snow17 model (Anderson, 2006) was selected since: it has low input data requirements 

(temperature and precipitation); it has an extensive record of operational use with the 

National Weather Service River Forecast System (NWSRS); it provides estimates of many 

key snow variables which are empirically approximated; and it has been applied to several 

regional studies on climate change impacts to snow resources (e.g. Miller et al., 2011; Notaro 

et al., 2014).  

The Snow17 model is a conceptual snow accumulation and snow melt model simulates the 

most relevant processes that occur within a snowpack, including heat storage, water 

retention, transmission of liquid water and snow melt. The model simulates these key 

processes based on a temperature index approach and the only data inputs required are 

temperature and precipitation. The Snow17 model simulates the snowpack as a single layer 

and can be applied to point measurements or in a distributed grid. The outputs of the Snow17 

model are the Snow Water Equivalent (SWE) of stored snow and the outflow (precipitation 

runoff and snowmelt) in each grid point for each time step with which the model is run. 

Tools and datasets 

In Eythorsson et al. (2023b), Google Earth Engine (GEE) (Gorelick et al., 2016) was used 

to access the data used in the study, to perform the model simulations as well as to perform 

all spatio-temporal and statistical analysis of the results. ArcMap 10.7.1 was used to produce 

the illustrations of the results presented in the Article and this section. Table 3-6 summarizes 

the datasets used in Eythorsson et al. (2023b). 
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Table 3-6 Datasets used for snow modelling and parameter estimation and model evaluation (from 

Eythorsson et al. 2023b) 

Dataset Description Purpose Reference 
MOD10A1 

v006 
MODIS/Terra snow cover product. Model evaluation 

(D. K. Hall, Salomonson, 
& Riggs, 2016) 

GLDAS-2 Global daily hydro- meteorological data 
- Model evaluation 
- Model forcing 
- Parameter estimation 

(Rodell et al., 2004) 

NASA NEX-
GDDP 

Ensemble of 21 daily downscaled and bias 
corrected GCMs from the CMIP5 project. 

Model forcing (Thrasher et al., 2006) 

GTOPO30 Global Digital Elevation Map (DEM) Parameter estimation (LP-DAAC, 2004) 

GLCF Global Land Cover Data Parameter estimation (Sexton et al., 2013) 

WGS43261 Arctic permafrost map Parameter estimation (Brown et al., 2002) 

Parameter estimation 

The Snow17 model requires eleven model parameters to operate. These model parameters 

must be specified by the user of the model and if the model is run in a distributed fashion, 

the model parameters must be evaluated in each grid cell to which the model is applied. In 

Eythorsson et al., (2023b), model parameters were determined based on previously 

published guidelines for the Snow17 model depending on local conditions, as estimated from 

global hydro-climatological datasets. The following are descriptions of the Snow17 model 

parameters along with the methodology applied to parameter estimation for each. The 

parameter values and source methodology used for the parameter estimation in Eythorsson 

et al. (2023b) are summarized in Table 3-7.  

Table 3-7 Snow17 parameters, description, value ranges and estimation methodology (from 

Eythorsson et al. 2023b) 

Parameter Description Range Units Methodology 

GCF Gauge under-catch factor 1.0 - Andersson, (2006) 

MFMAX Maximum Melt Factor 0.7 – 2.4 mm/°C*6h Mizukami & Koren, (2008) 

MFMIN Minimum Melt Factor 0.001 – 1.5 mm/°C*6h Mizukami & Koren, (2008) 

UADJ Average wind during rain on snow 0.02 – 0.4 mm/mb Andersson, (2006) 

PXTEMP Temperature determining rain/snow -1 – 3 °C Andersson, (2006) 

MBASE Base temp. where melt occurs 0 °C Andersson, (2006) 

NMF Maximum negative melt factor 0.05 – 0.3 mm/°C*6h Andersson, (2002) 

TIPM Antecedent temperature index 0.05 – 0.2 - Andersson, (2002) 

PLWHC Liquid water holding capacity 0.02 – 0.3 % Andersson, (2002) 

DAYGM Constant basal melt rate 0 – 0.3 mm/day Andersson, (2006) 

Gauge Catch Factor (GCF) 

The GCF corrects the amount of new snow recorded for each time step to account for gage 

catch deficiency, blowing snow across areal divides and sublimation. The forcing datasets 

that were used in this project do not suffer from gage catch deficiencies since the GLDAS 

precipitation is estimated from satellite observations (Matthew Rodell et al., 2004) and the 

NASA-NEX GDDP dataset is downscaled and bias corrected using the GMFD dataset which 

has been corrected for gauge undercatch errors (Sheffield et al., 2006). Also, when 

simulation across long time periods with multiple snow fall events, gage catch efficiencies 

can be assumed to cancel out (E. Anderson, 2006). When simulation snow cover across large 

areas, the amount of snow transferred across areal divides can be assumed to be negligible 

(Anderson, 2002). The GCF was therefore set to be 1 globally in Eythorsson et al., (2023b). 
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Maximum Melt Factor (MFMAX) 

The Snow17 model uses a melt factor to estimate the amount of surface snowmelt that occurs 

based on air temperature, precipitation volume and precipitation temperature (Anderson, 

2006). The melt factor oscillates sinusoidally between a maximum value, MFMAX, which 

occurs at the summer solstice (21st of June) and a minimum value, MFMIN, which occurs at 

the winter solstice (21st of December). MFMAX was estimated for each model grid cell 

based on the average surface energy balance in that grid cell, as proposed by Mizukami & 

Koren, (2008), as described by Equation 3.5.1 : 

𝑀𝐹𝑀𝐴𝑋 =
1.03 ∗ (1 − 𝑔) ∗ 𝑅𝐷𝐵 + 2.04 + 0.42 ∗ 𝑢

2(𝑅 + 1)
 

(3.5.1) 

Where g is the percent forest cover in each grid cell, RDB is the ratio between solar insolation 

at ground level with topography and without topography, R is the ratio between solar 

insolation in the winter and in the summer and u is the wind speed at 10m above the surface. 

The percent forest cover in each grid cell, g, was estimated based on the tree canopy cover 

dataset from the Global Land Cover Facility (GLCF) (Sexton et al., 2013).  In Eythorsson et 

al., (2023b), RDB was estimated in a distributed grid using the methods of McCune & Keon, 

(2002) and elevation data from the Global Digital Elevation Map (GTOPO30) dataset (LP-

DAAC, 2004). To estimate R, the average winter and summer solar insolation were 

estimated in a distributed grid as the net average incident shortwave radiation in winter 

(December-February) and summer (June-August) from the GLDAS dataset (Matthew 

Rodell et al., 2004) for the period 1950-1999. The average wind speed, u, was estimated in 

a distributed grid as the mean wind speed in June from the GLDAS dataset for the period 

1950-1999. 

Minimum Melt Factor (MFMIN) 

MFMIN occurs on the winter solstice and represents the smallest value of the melt factor in 

each grid cell over the year as it occurs at a time with the lowest amount of surface radiation. 

In Eythorsson et al., (2023b), MFMIN was estimated in a distributed grid based on the local 

Surface Energy Balance (SEB) according to the methods proposed by Mizukami & Koren, 

(2008), as described by Equation 3.5.2: 

𝑀𝐹𝑀𝐼𝑁 = 𝑅 ∗ 𝑀𝐹𝑀𝐴𝑋 (3.5.2) 

Where R is the ratio between solar insolation in the winter and in the summer, which 

estimated as the ratio between the net average incident shortwave radiation in winter 

(December-Feb) and summer (June-August) from the GLDAS dataset for the period 1950-

1999. 

Snow cover Index (SI) 

SI is a model parameter which describes the mean areal Snow Water Equivalent (SWE) 

above which there is always 100% areal snow cover. In Eythorsson et al., (2023b), the SI 

parameter was set at 999 mm globally based on the guidelines presented in Anderson, 

(2002). As the model resolution is course enough that a range of topography can reasonably 

be expected in each grid cell the SI parameter was not distributed spatially. 

Areal Depletion Curve (ADC) 
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The ADC is a curve that defines the areal extent of snow cover as a function of how much 

of the original snow remains after significant bare ground has opened after a melt event and 

thus implicitly accounts for the reduction in areal melt rates as less area is covered by snow. 

In Eythorsson et al., (2023b) the ADC was varied linearly between 0-1 based on the ratio of 

the SWE state variable at each model timestep in each grid cell and SI according to the 

guidelines in Andersson., (2006) as described by Equation 3.5.3: 

𝐴𝐷𝐶 = 𝑀𝐴𝑋 (1,
𝑆𝑊𝐸

𝑆𝐼
) 

(3.5.3) 

Adjusted wind speed (UADJ) 

UADJ describes the average wind function during rain on snow events and is used in the 

model to estimate the sensible and latent heat transfer components of the snowpack SEB. In 

Eythorsson et al., (2023b) UADJ was estimated in a distributed grid based on the guidelines 

presented in Andersson., 2002, as described by Equation 3.5.4: 

𝑈𝐴𝐷𝐽 = 0.002 ∗ 𝑢1 (3.5.4) 

Where u1 is the six-hour wind travel in km, one meter above the snow surface. In Eythorsson 

et al., (2023b), UADJ was estimated as the average wind speed from the GLDAS wind field 

for the period 1950-1999. 

Precipitation Partition (PXTEMP) 

The portion of precipitation that falls as snow vs. rain is described by the model parameter 

PXTEMP. The form of precipitation varies based on air temperature and below a set value, 

PXTEMP1, all precipitation falls as snow and above a set value, PXTEMP2, all precipitation 

falls as rain. In Eythorsson et al., (2023b) PXTEMP1 was set to -1°C and PXTEMP2 was 

set to 3°C globally and between these values the PXTEMP parameter was varied linearly, 

based on the guidelines presented in Anderson, (2006).  

Melting Point Temperature (MBASE) 

MBASE is to determine the temperature gradient for non-rain melt computations and 

represents the temperature at which snow begins to melt. In Eythorsson et al., (2023b) the 

MBASE parameter was set to 0°C globally, based on the guidelines presented in Anderson, 

(2006) 

Negative Melt Factor (NMF) 

The negative melt factor is used in the Snow17 model to determine the energy exchange at 

the snow-air boundary when melt is not occurring, and it has the same seasonal variation as 

the non-rain melt factor. Andersson, 2002, recommends a maximum NMF range of 0.05 to 

0.30, where lower NMF values are associated with areas where the average snow density is 

less than 0.3 g/ml and higher values associated with areas where snow density is generally 

higher than 0.5 g/ml. In Eythorsson et al., (2023b), snow density was estimated in a 

distributed grid from the snow depth and snow water equivalent from GLDAS-2 for the 

period 1950-1999. For areas with low snow densities (<0.3 g/ml) NMF was set to 0.05, 

where snow density was high (>0.5 g/ml) NMF was set to 0.3, and linearly interpolated 

between these values elsewhere. 

Antecedent Temperature Index (TIPM) 
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TIPM is an antecedent index of snow pack temperatures near the surface. Anderson, (2002) 

recommends TIPM values of 0.05 for areas with generally deep snowpack (greater than 3 

feet maximum depth) and values of 0.2 for areas with shallow snowpack (less than 1 foot). 

In Eythorsson et al., (2023b) the mean annual maximum snow depth was calculated in a 

distributed grid from the GLDAS-2 dataset for the period 1950-1999. For areas with deep 

snowpack (> 3 ft) TIPM was set to 0.05, for areas with shallow snowpack (< 1 ft) TIPM was 

set to 0.2 and for areas with medium snowpack (1ft < & < 3ft) TIPM was interpolated 

linearly. 

Physical Liquid Water Holding Capacity (PLWHC) 

PLWHC is given as the decimal fraction of ice in the snow. Anderson, (2002) recommends 

PLWHC values between 0.02 and 0.05 with the lower values associated with areas with deep 

snow cover. In Eythorsson et al., (2023b) the mean annual maximum snow depth was 

estimated in a distributed grid from GLDAS for the period 1950-1999. For areas with deep 

snowpack (> 3 ft) PLWHC was set to 0.02, for areas with shallow snowpack (< 1 ft) PLWHC 

was set to 0.05 and for medium snowpack (1ft < & < 3ft) PLWHC was interpolated linearly 

between these values. 

Basal Melt Rate (DAYGM) 

DAYGM describes the constant daily amount of melt at the ground snow interface 

(mm/day). Anderson, (2002) recommends DAYGM values between 0 for generally frozen 

soils to 0.3 in areas with intermittent snow cover or temperate climates. In Eythorsson et al., 

(2023b) frozen soils were identified using the NH permafrost map from the National Snow 

and Ice Data Center (Brown et al., 2002). In areas with continuous permafrost DAYGM was 

set to 0.0, in areas with discontinuous permafrost DAYGM was set to 0.1, in isolated patches 

of permafrost DAYGM was set to 0.2 and in other areas DAYGM was set to 0.3. 

Model Evaluation  

In Eythorsson et al., (2023b) the Snow17 model results were evaluated based on distributed 

historical data on the Northern Hemisphere (NH) Snow Water Equivalent (SWE) and Snow-

Covered Area (SCA). The model was run with two different forcing datasets for evaluation 

purposes: i) NASA NEX-GDDP and ii) GLDAS-2. The simulated snow conditions were 

compared to a) SCA from the MODIS/TERRA snow cover dataset (MOD10A1.v006).  b) 

SCA calculated from the GLDAS-2 dataset and c) SWE from the GLDAS-2 dataset. The 

model was evaluated for the period of the 2004 water year. This year was selected as it is in 

the overlap between the data availability of MODIS/TERRA (2001- 2020), GLDAS-2 

(1948-2010) and historic GDDP data (1950-2006) and it had an average SWE across the NH 

within that period of overlap. 

The model was forced with both the NASA NEX-GDDP dataset and the GLDAS-2 

dataset for the historical period to i) compare the accuracy of snow conditions simulated 

using bias corrected GCM results and simulations based on an assimilated data product that 

incorporates satellite- and ground based observational data with land surface modelling and 

data assimilation techniques and ii) to assess the NASA-NEX GDDP  results in light of the 

model’s capability to replicate the GLDAS-2 SWE field, using forcing data from that same 

dataset. 

The correlation between the simulated and observed daily SWE and SCA was 

estimated by calculating the Pearson’s Correlation coefficient, R, for all combinations of 
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simulations and observations. The ratio between the root mean square error and the standard 

deviation (RSR) was also calculated for all combinations of simulations and observations 

for both SWE and SCA. Simulations were considered satisfactory if  RSR < 0.7 as suggested 

by Moriasi et al., (2007). 

Snow Projections 

In Eythorsson et al., (2023b) the Snow17 model was run in GEE to simulate daily snow 

conditions across the Northern Hemisphere (NH) over the period 1950-2100 in a 0.2° 

horizontal resolution. The model was forced with daily temperature and precipitation data 

from the ensemble of the 21 downscale and bias corrected GCM results from the CMIP5 

study, as contained in the NASA-NEX GDDP dataset. The model was initialized at the 

beginning of each water year during the study period so that it would not store water between 

years. 

3.5.2 Results 

Model Evaluation 

The model was evaluated based on both Snow Cover Frequency (SCF) and Snow Water 

Equivalent (SWE) for the 2004 water year. The model was run with input data from both the 

NASA NEX-GDDP   and the GLDAS-2 datasets, the runs are referred to as (GDDPsim) and 

(GLDASsim), respectively. Simulated SWE values were compared to GLDAS-2 SWE data 

(GLDAShist) and simulated SCA was compared to SCA estimated from both 

MODIS/TERRA data (MODobs) and GLDAS-2 (GLDAShist).  

Figure 3-9 shows the Snow Cover Frequency (SCF) for the 2004 water year as estimated by: 

i) GDDPsim ii) GLDASsim iii) GLDAShist and iv) MODobs  

 

Figure 3-9 Snow Cover Frequency (SCF) for the 2004 water year, i) as simulated using the ensemble 

average of the NASA NEX-GDDP dataset (GDDPsim), ii) as simulated using GLDAS-2 data (GLDASsim), 

iii) as observed in the GLDAS-2 data (GLDAShist) and iv) as observed by MODIS/TERRA (MODobs) 

(from Eythorsson et al. 2023b) 

Figure 3-9 shows similar snow cover patterns across the four SCF estimates. However, there 

are a few minor discrepancies: In GDDPsim (i) there is a lack of snow cover in north-eastern 

Alaska due to minimal precipitation in this area, this is also visible in GLDASsim (ii), though 

less pronounced. The largest SCF values were observed in GLDAShist (iii), which especially 

showed a higher SCF on the Tibetan plateau. In general, MODobs (iv) was more consistent 

with the simulated SCF than GLDAShist.  

Figure 3-10 shows the mean annual SWE for the 2004 water year as estimated by: i) 

GDDPsim: ii) GLDASsim iii) GLDAShist. Note that the GLDAShist shows the full depth of the 
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Greenland glacier and thus the SWE data are not comparable there. As depicted in Figure 3-

10 there were similar SWE patterns between the three SWE estimates. The highest values 

were consistently observed in Southern Greenland as well as in coastal regions around the 

Northern Atlantic Ocean and the pacific northwest in Northern America. The results show 

that GLDAShist has generally lower SWE values as compared to both GLDASsim and 

GDDPsim. This may not be surprising as studies have shown that the GLDAS-2 snow field 

has a negative bias as compared to most other global SWE products (Mudryk et al., 2015).  

 

Figure 3-10 Mean annual SWE for the 2004 water year, i) as simulated using the ensemble average of 

the NASA NEX-GDDP dataset (GDDPsim), ii) as simulated using the GLDAS-2 dataset (GLDASsim) and 

iii) as observed in the GLDAS-2 dataset (GLDAShist) (from Eythorsson et al., 2023b).  

Figure 3-11 shows the correlation between simulated and observed daily SCA for the 2004 

water year, as estimated by Pearson’s Correlation coefficient, R, for the correlations between 

i) GDDPsim and GLDAShist ii) GDDPsim and MODobs iii) GDDPsim and GLDASsim iv) 

GLDASsim and MODobs v) GLDASsim and GLDAShist and vi) GLDAShist and MODobs. 

 

Figure 3-11 Pearson’s Correlation, R, for daily SCA values over the 2004 water year as estimated 

between: i) GDDPsim and GLDAShist ii) GDDPsim and MODobs iii) GDDPsim and GLDASsim iv) GLDASsim 

and MODobs SCA v) GLDASsim and GLDAShist  and vi) GLDAShist and MODobs. 
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The results in Figure 3-11 indicate that the lowest correlations were observed between the 

two observed data products, MODobs and GLDAShist (vi). Generally, lower correlations were 

observed for the comparison between GLDASsim and observations (v and iv) than for the 

comparison between GDDPsim and observed values (i and ii). The highest correlations were 

observed between the two simulated products (iii)). Consistently in all estimations, the 

lowest correlations are observed in areas close to the southern edge of the snow boundary, 

where freeze and thaw cycles are frequent. This is unsurprising as these areas have the most 

complex snow cover dynamics. 

Figure 3-12 shows the correlation between simulated and observed daily SWE for the 2004 

water year, as estimated by Pearson’s Correlation coefficient, R, for the correlations between 

i) GDDPsim and GLDAShist ii) GDDPsim and GLDASsim and iii) GLDASsim and GLDAShist. 

 

Figure 3-12 Pearson’s Correlation, R, for daily SWE values during the 2004 water year as estimated 

between i) GDDPsim and GLDAShist ii) GDDPsim and GLDASsim and iii) GLDASsim and GLDAShist 

Figure 3-12 shows that the highest correlations were observed between the two simulated 

products (Fig 5-i)). The results showed that the highest inconsistencies between simulated 

and observed SWE are: on the Tibetan Plateau, the north Shore of Alaska and the Canadian 

Arctic Archipelago as well as in areas close to the southern edge of the snow boundary, 

where freeze and thaw cycles are frequent. These areas have in common that the average 

annual SWE is low and as is the absolute volume of precipitation that falls as snow.   

The correlation between GLDASsim and GLDAShist was notably lower than the correlation 

between the GDDPsim and GLDAShist as Figure 3-12 shows. 

The model evaluation showed that the model produced similar SCA and SWE patterns as 

those observed by MODIS/Terra and GLDAS-2 snow cover data, as illustrated in Figure 3-9 

and Figure 3-10. The correlations between simulated and observed daily SWE and SCA 
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values are high in most regions of the NH as depicted in Figure 3-11 and Figure 3-12. This 

suggests that the model provides as good an estimate of NH SCA and SWE as do either of 

the observed products. In terms of the evaluation metric RSR, the model provided 

satisfactory results when compared to SWE and SCA observations. Thus, the model is 

expected to provide a reasonable estimate of future snow conditions when forced with 

climate projections. 

Projecting future snow conditions 

The average annual number of Snow-Covered Days (SCD) was calculated for the first and 

last quarter centuries of the dataset, the 3rd quarter of the 20th century 1950-1975 and the 4th 

quarter of the 21st century 2075-2100, respectively.  

Figure 3-13 shows i) the mean SCD for 1950-1975 ii) the percentage change in SCD between 

2075-2100 and 1950-1975 under RCP45 and iii) same as ii) but for RCP85. 

 

Figure 3-13 i) Mean number of Snow-Covered Days (SCD) for the period 1950-1975, ii) percentage 

change in SCD between 2075-2100 and 1950-1975 under RCP45 and iii) same as ii) but for RCP85 (from 

Eythorsson et al., 2023b). 

The results shown in Figure 3-13 indicate that the frequency of snow cover is expected to 

decrease during the present century, across the NH. The only areas that show an increasing 

SCD are on the border of the Tibetan Plateau and the Gobi Desert. Snow cover is expected 

to disappear almost completely in many mid-latitude areas at the periphery of the current 

seasonal snow extent. Large regions in Central Europe, Northern Middle East, Northern 

China as well as in the Northern part of the conterminous USA are expected to be mostly 

snow free throughout the year by the end of the present century. Even in the northern Arctic 

SCD is expected to decrease by up to 25% given a “business-as-usual” emission scenario 

(RCP85).  

The average annual Snow Water Equivalent (SWE) was calculated for the first and last 

quarter centuries of the dataset, respectively. Figure 3-14 shows i) the mean winter (SWE) 
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for 1950-1975, ii) the percentage change in SWE between 2075-2100 and 1950-1975 under 

RCP45 and iii) same as ii) but for RCP85. 

 

 

Figure 3-14 1 Snow Water Equivalent (SWE) for the period 1950-1975, ii) percentage change in SWE 

between 2075-2100 and 1950-1975 under RCP45 and iii) same as ii) but for RCP85 (from Eythorsson et 

al., 2023b). 

Figure 3-14 shows that the mean winter SWE is expected to decrease in mid latitude areas 

of the NH during the present century. At higher latitudes however SWE is expected to 

increase, in some cases by more than 100%. The biggest relative increase in SWE is expected 

to occur in the high Arctic areas around the Bering strait, eastern Siberia and the north-

western coast of North America as well as in the western Tibetan Plateau. These increases 

are more pronounced under a “business-as-usual” emission scenario (RCP85) than under a 

scenario where global radiative forcing due to anthropogenic GHG emissions is expected to 

stabilize around mid-century (RCP45). The decreasing SWE at lower latitudes is likewise 

expected to be more pronounced given RCP85 compared to RCP45. 

Figure 3-15 shows the simulated NH average 1st April SWE over the period 1950-2100 (left 

panel) and the NH average annual SCF over the same period (right panel). The results show 

that under the RCP85 scenario SCF is expected to decrease nearly linearly throughout the 

present century, whereas given RCP45 the SCF is expected to stabilize at about 85% of 

1950-1975 levels by the end of the 21st century. 1st April SWE is expected to increase 

slightly in the beginning of the period and then start to decline by about 2020, back to 1950-

1975 levels under RCP45 and to 10% under those levels under RCP85. 
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Figure 3-15 Annual Snow Cover Frequency (SCF) (right) and 1st of April Snow Water Equivalent (SWE) 

across the NH (left). The shaded areas represent the upper and lower quantiles of the ensemble 

simulations, and the solid line a 10-year moving average. (From Eythorsson et al., 2023b). 

Figure 3-15 also shows that the frequency of snow cover is expected to decrease significantly 

throughout the 21st century given both emission scenarios. Figure 3-14 shows that most of 

this decrease will occur at lower latitudes where seasonal snow cover become less frequent. 

Figure 3-15 shows that this decrease in SCD is already underway, which is in an agreement 

with several earlier studies which have found decreasing snow cover in the NH in recent 

decades (Darri Eythorsson et al., 2019; Hori et al., 2017; Yunlong et al., 2018). Figure 3-15 

also shows that despite decreasing SCF the NH 1st April SWE is expected to increase over 

the 21st century. Figure 3-14 shows that this increase is driven by increasing SWE in the 

Arctic, whereas at lower latitudes, SWE is decreasing.  

This increase in snow in the high arctic is attributed to increasing precipitation, which in turn 

stems from decreasing sea-ice concentrations in the Arctic Ocean, which brings more 

atmospheric moisture to these areas. The increasing SWE at high latitudes is consistent with 

prior findings (e.g. Kopec et al., 2016; Singarayer et al., 2006). The results of this study show 

that under RCP45, increased precipitation in high latitude areas will result in an increasing 

1st April SWE throughout the 21st century, whereas under RCP85 the NH 1st April SWE will 

peak in second half of the century as the declining snowpack at lower latitudes overtakes the 

increasing arctic SWE. This pattern of decreasing SWE at lower latitudes and increasing 

SWE in the Arctic has been observed in previous studies (e.g. Wang et al., 2018). 

Eythorsson et al. (2023b) calculated the relative change in both SWE and SCD (in %) 

between 1950-1975 and 2075-2100 in some of the largest snow-impacted watersheds of the 

NH. Figure 3-16 shows the study basins, color coded by the change on 1st April SWE. Blue 

colored basins showed more than 10% increase in SWE, red colored basins showed more 

than 10% decrease in SWE while grey basins showed less than 10% change in SWE, under 

the RCP45 emission scenario. 
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Figure 3-16 Changes to 1st April SWE in the study basins selected in Eythorsson et al., (2023b). Blue 

basins showed more than 10% increase in SWE, red basins showed more than 10% decrease in SWE 

while grey basins showed less than 10% change in SWE, under the RCP45 emission scenario (from 

Eythorsson et al., 2023b). 

Table 3-8 shows the relative average change in SWE and SCD between 1950-1975 and 

2075-2100 in the river basins selected in Eythorsson et al. (2023b). The basins where mean 

winter SWE is expected to increase by more than 10% under RCP45 are colored blue, 

likewise the basins where SWE is expected to decrease by more than 10% are colored red, 

basins where SWE is expected to change by less than 10% are colored grey. 

Table 3-8 Relative change in SWE and SCD (in %) between 1950-1975 and 2075-2100 in the study basins. 

Basins colored blue have more than 10% increase in mean winter SWE over the period, red colored 

basins showed more than 10% decrease in SWE and grey colored basins had less than 10% change in 

SWE, under the RCP45 emission scenario (from Eythorsson et al., 2023b). 

Basin 
RCP45 RCP85 

Δ SWE [%] Δ SCD [%] Δ SWE [%] Δ SCD [%] 

Indigirka 56.7 -6.4 97.3 -10.9 

Kolyma 46.5 -6.5 74.1 -11.4 

Lena 31.8 -7.2 52.5 -12.5 

Yukon 33.4 -14.0 48.4 -20.9 

Ob 28.4 -9.2 18.7 -19.2 

Yenisey 26.4 -7.8 42.0 -14.7 

Mackenzie 12.3 -9.0 14.3 -16.2 

Volga 2.5 -15.9 -9.8 -30.2 

Dalälven -3.9 -15.6 -22.6 -33.4 

Fraser -4.9 -20.2 -29.1 -36.6 

Saskatchewan-Nelson 0.5 -12.9 -12.6 -23.6 

Indus -4.0 -14.6 -7.1 -23.1 

Mekong -8.0 -5.0 -11.8 -9.5 

Ganges-Brahmaputra -15.7 -12.9 -20.8 -18.7 
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St. Lawrence -19.8 -20.9 -44.0 -43.7 

Amur -25.8 -20.0 -42.9 -26.4 

Don -24.1 -21.7 -61.6 -48.1 

Dnieper -34.7 -25.9 -84.0 -68.5 

Yangtze -27.0 -21.3 -31.4 -26.3 

Seine -46.8 -45.8 -46.9 -45.9 

Colorado -43.0 -40.7 -53.2 -51.3 

Columbia -55.9 -53.5 -73.2 -72.4 

Mississippi -58.4 -48.7 -73.4 -66.4 

Rhone -76.8 -70.6 -81.4 -76.9 

Danube -78.8 -67.5 -92.8 -89.0 

Rhine -94.3 -91.2 -97.5 -97.0 

Vistula -81.3 -58.7 -99.0 -96.2 

Oder -95.9 -90.9 -99.5 -99.0 

Elbe -92.0 -81.6 -99.8 -99.0 

 

Figure 3-16 shows that all study basins flowing to the Arctic Ocean are expected to 

experience a more than 10% increase in mean winter SWE whereas in lower latitude basins 

SWE are mostly expected to decrease. This decrease is most pronounced in mid-latitude 

rivers of central Europe (Elbe, Oder, Rhone, Vistula, Danube and Dneiper) and North 

America (Mississippi, Columbia, and Colorado). Basins of the Himalaya region are expected 

to experience both decreasing SCD and SWE, however, not as pronounced as in the central 

European and North American basins.  

Table 3-8 shows that in all basins the SCD is expected to decrease during the study period, 

under both emission scenarios. The decrease is greater under the RCP85 scenario than under 

RCP45, with some basins expected to experience an almost complete loss of snow cover 

given the business-as-usual (RCP85) scenario. Table 3-8 shows that despite decreasing SCD 

the 1st of April SWE is expected to increase in all the northernmost basins. This is attributed 

to increasing precipitation, as these historically arid areas receive more atmospheric moisture 

as sea ice cover decreases and more open water is exposed (eg. Kopec et al., 2016; 

Singarayer et al., 2006).  

The declining snow pack in the basins in the subarctic North America has been well 

documented (e.g. Kang et al., 2016; Mote et al., 2005). A recent study showed that across 

the conterminous United States both SWE and SCD decreased significantly over the period 

1982-2016 (Zeng et al., 2018) which is consistent with the results of this study. Previous 

studies on snow resources in the Himalaya region have shown decreasing frequency of snow 

cover as well as decreasing snow storage and snow melt runoff (Maurer et al., 2019; Stigter 

et al., 2017), which are consistent with the findings of the present study. A recent study of 

in-situ snow depth measurements found that the mean snow depth had decreased by 12% 

per decade over the period 1951-2017 (Fontrodona Bach et al., 2018). The increasing 

snowfall in Northern Eurasia has also been studied, and has been shown to have decreased 

the length of the growing season (Vaganov et al., 1999). In the Arctic region, the results of 

this study are consistent with prior studies which have found increasing snow cover (e.g. 

Cohen et al., 2012; Eythorsson et al., 2019) and snow storage (Callaghan et al., 2011) in 

recent decades. The findings presented in Eythorsson et al. (2023b) show that these observed 
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trends, decreasing snow resources at lower latitudes while increasing in the Arctic, will 

continue at a steady or increasing pace, at least for the next few decades.  
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3.6 Analyzing historical and predicted snow 

cover and climate trends – a case study for 

Iceland 

Snow and ice are key components of the Icelandic ecology and hydro-climatology. 

Understanding how these resources are likely to respond to local climate changes is among 

the most important questions facing water resources managers and other natural resources 

planners in Iceland. Icelandic snow resources are highly sensitive to changes in the local 

climate as has been demonstrated (e.g. Bjornsson & Palsson, 2008; Eythorsson et al., 2018). 

In many of the cold regions of the Northern Hemisphere (NH) snow resources have 

undergone significant changes in recent decades, due to climate trends which are expected 

to continue throughout the 21st century at least, e.g., as shown in Eythorsson et al., (2019). 

Furthermore, Eythorsson et al., (2023b), showed that NH snow resources are generally 

expected to undergo significant further changes under all plausible emissions scenarios. 

Although these trends do have grave global implications in a myriad of ways, the practical 

adaptation to them must occur on a local scale. Thus, considering the aim of this dissertation, 

the trends in the climate and snow regimes were analyzed in terms of a local context with a 

case study for Iceland. The results of which are presented in this subsection and published 

in Eythorsson et al., (2023a).  

3.6.1  Historical Snow Cover Trends 

In situ observations 

The Icelandic Meteorological Office (IMO) collects most in-situ meteorological 

observations in Iceland. Part of IMO routine measurements are daily manual observations 

of snow cover at 9am. The locations of these observation sites are shown in Figure 3-17. The 

figure notably shows how sparse these observational sites are, especially in the central 

highlands where most of the countries snow resources are located. Data were acquired from 

the IMO from a total of 266 manned sites over the period 1930-2021. Data includes 

observations of local snow depth (SND), Snow Cover (SNC), precipitation (R), precipitation 

class (RTEG), and a visual estimate of surrounding mountain snow cover (SNCM) (Icelandic 

Meterologocial Office, 2021). Snow depth, in cm, is measured for all days with snow 

covered ground at the monitoring site. SNC and SNCM are visually classified as: 0 = no 

snow, 2 = patchy snow cover, 4 = fully covered ground. (Icelandic Meterologocial Office, 

2008). Gunnarsson et al. (2019), compared the IMO snow cover data to the MODIS snow 

cover products and observed a good agreement between the two datasets.  
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Figure 3-17 Topographical map of Iceland and the locations of the Icelandic Meteorological Office 

(IMO) observation stations where snow data recorded (from Eythorsson et al., 2023a) 

The annual SCF was calculated for all stations by summing the number of snow-covered 

days and dividing by the number of observations for each year. The significance of the 

trendline in SCF over time was assessed for all stations which had more than 10 years of 

observations within the data period (2000-2016) using the non-parametric Mann-Kendall 

hypothesis test. The null hypothesis H0 was that there is no trend in the data and the 

alternative hypotheses are that there is a statistically significant increase (H1) or decrease 

(H2) in the SCF.  

Figure 3-18 (left panel) shows the average temperature and precipitation in Iceland over the 

period 1950-2021 as estimated from the ensemble average of the GDDP dataset and the 

average of an ensemble of long-term IMO station observations (Icelandic Meterological 

Office, 2023). The figure shows similar trends and averages in temperature and precipitation 

from both data sources. Figure 3-18 (center panel) shows the annual average SCF for all 

IMO monitoring stations for the period 1930-2021, calculated for local (circles) and 

mountain (triangles) snow cover based both on just observations of fully snow-covered 

ground (SNC or SNCM = 4) and including patchy snow cover (SNC or SNCM ≥ 2), the in-

situ data is shown with a 10-year rolling average and a linear trendline. The figure shows the 

average annual SCF estimated from the MODIS TERRA/AQUA snow cover products (black 

markers) for observations above (stars) and below (crosses) 500 m a.s.l. Figure 3-18 (right 

panel) shows the average annual snow depth (SND) of all IMO monitoring stations for the 

period 1930-2021 along with a linear trendline. Note that most IMO stations are in the 

lowlands, which on average see less snow cover than the interior highlands, where the most 

snow is. 
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Figure 3-18 Left panel: Average annual temperature and precipitation in Iceland over the period 1950-

2021 as estimated by the ensemble average of the 21 GCM‘s in the NASA NEX-GDDP dataset and the 

IMO.  Center panel: Annual average SCF for all IMO monitoring stations for the period 1930-2021,  

calculated for local (circles) and mountain (triangles) snow cover for observations of fully snow covered 

ground, SNC or SNCM = 4 (blue) and including patchy snow cover, SNC or SNCM ≥ 2 (red), the average 

annual SCF estimated from the MODIS TERRA/AQUA snow cover products (black markers) is shown 

for observations above (stars) and below (crosses) 500 m a.s.l. Right panel: average annual snow depth 

of all IMO monitoring stations. (from Eythorsson et al., 2023a) 

MODIS snow cover  

Annual Snow Cover Frequency (SCF) was calculated with 500 m x 500 m resolution for 

Iceland based on the MOD10A1.005 MODIS/TERRA snow cover daily product (Dorothy 

K Hall, Riggs, & Salomonson, 2006) using the methods described in Eythorsson et al., 

(2019). The MOD10A1.005 dataset was remapped to provide a binary classification for valid 

observations. Observations with zenith angles > 25° were excluded to decrease the 

panoramic bow tie effect which is a panoramic distortion known to cause systematic errors 

in snow mapping (Souri & Azizi, 2013). Invalid observations due to cloud cover or polar 

night, for example, were masked by giving them a null value. The number of days a pixel is 

covered with snow was counted and divided by the number of valid observations of that 

pixel, per year. On average 60 valid observations/year per pixel were observed. The annual 

SCF was calculated for the period where MODIS observations are available (water years 

2001-2016). The trend of annual SCF values in each pixel over the period was estimated by 

linear regression and Sen’s estimator of slope methods. The statistical significance of the 

observed trend was assessed using both the non-parametric Sen’s estimator of slope 

methods.  

Figure 3-19 shows the trend in annual SCF over Iceland as estimated from MODIS 

observations (left) and areas where the trendline is statistically significant (α = 0.05) for both 

MODIS and in situ observations (SNC = 4) (right). Blue regions and markers show areas 

where the SCF had increased significantly, and the red areas with decreasing SCF. 
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Figure 3-19 Left panel: trend in annual SCF over Iceland as estimated from MODIS. Right panel: 

areas where the trendline is statistically significant (α = 0.05) for both MODIS and in situ observations 

(SNC = 4). 2019 outlines of glaciers and the ice divides of their major outlet glaciers are shown with 

black lines (RGI Consortium, 2019). (from Eythorsson et al., 2023a) 

Figure 3-19 show that many areas in Iceland have experienced a significant change in the 

local SCF, both as estimated from MODIS data and from manned snow cover observations 

over the period 2001-2021. Most of these areas have experienced an increase in SCF, 

especially the eastern highlands and the mountainous regions of Northern and Northwestern 

Iceland. A few small areas showed a statistically significant decrease in the local SCF over 

the period, these areas are located either in lowland areas or at the termini of the major outlet 

glaciers in Iceland, whose recession in recent years has been well documented 

(Aðalgeirsdóttir et al., 2020; Hauser & Schmitt, 2021).  

Table 3-9 shows the statistical significance of the linear snow trends, estimated using the 

Mann-Kendall trend test, for both the period of historical records (1930-2021) and the 

MODIS period (2001-2021), of p values. Statistically significant trendlines at the α = 0.05 

level are shown in bold 

Table 3-9 Statistical significance of the linear snow trends, estimated using the Mann-Kendall (MK) 

trend test, for both the period of historical records (1930-2021) and the MODIS period (2001-2021), of 

p values Statistically significant trendlines at the α = 0.05 level shown in bold. 

 Trend [% per year] p-value 

 1930-2021 2001-2021 1930-2021 2001-2021 

SCFM (SNCM > 2) 0.15 0.43 1.2 * 10-6 0.02 

SCFM (SNCM = 4) 0.038 0.21 0.2 0.07 

SCF (SNC > 2) 0.15 0.37 1.8 * 10-6 0.01 

SCF (SNC = 4) 0.076 0.19 0.7 * 10-3 0.06 

SND 0.081 0.30 1.54 * 10-5 0.002 

MODIS below 500 m a.s.l. - 0.29 - 0.04 

MODIS above 500 m a.s.l. - 0.24 - 0.11 

MODIS all elevations - 0.26 - 0.04 

The results in Table 3-9 shows that the increasing SCF and SND trend shown in Figure 3-18 

is statistically significant over the period 1930-2021 for all SCF estimates except for 

observations of SNCM = 4, fully snow-covered mountains. Over the MODIS period 2001-
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2021 the trend is significant for all metrics except for observations of fully snow-covered 

mountains and for MODIS observations above 500 m a.s.l. 

SCF in areas of recent land surface changes. 

The annual SCF values were extracted for three locations in Iceland where land surface 

changes had physically impacted the local SCF during the MODIS period. The locations 

selected were: (a) Holuhraun volcano, which erupted in the winter of 2014; (b) the Hálslón 

area, where a major storage reservoir was commissioned in 2007 and an ice-covered lake 

replaced a deep canyon; and (c) Eystri Hagafellsjökull, where the glacier terminus has 

receded in recent years. The locations of these areas are shown in Figure 3-20.  

 

Figure 3-20 Time series of annual SCF in locations where known land surface changes have taken place 

over the period of MODIS observations (2000-2016)  

The results shown in Figure 3-20 show a clear change in the time series of SCF around the 

time where the land surface changes describe above took place. To test whether the change 

observed in the SCF times series was statistically significant a Mann-Whitney-Wilcoxon 

(MWW) hypothesis test on two sample means, before and after the land surface changes. 

The null hypothesis was that the means of the two series are the same: H0: µ1 = µ2 and the 

alternative hypothesis was that the means are not the same: H1: µ1 ≠ µ2. 

Table 3-10 shows the results of the hypothesis tests. The results show that for all three 

locations the null hypothesis was rejected.  Hence, the SCF record captures physical land 

surface changes that occurred during the period and the timing of these changes can be 

identified by the MWW test. We also note that, like the Hálslón reservoir, all other 

hydropower reservoirs constructed during the MODIS era, Sporðöldulón, Ufsarlón and 

Kelduárlón, could be clearly identified from the SCF maps.  

Table 3-10 Results of Mann-Whitney-Wilcoxon (MWW) on two sample means, before and after known 

land surface changes in three locations in Iceland 

Location: Time of change MWW 
p-value 

SCF trend 

Holuhraun 2014 0.017 Significant decrease 
Hálslón 2007 0.00025 Significant increase 
Eystri Hagafellsjokull 2008 0.00031 Significant decrease 
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3.6.2  Estimating and Projecting Climate Classifications 

Köppen-Geiger climate classifications were calculated for Iceland in a 0.2-degree horizontal 

resolution using the methods described in Section 3.3 and published in Eythorsson et al., 

2019. Climate classifications were assigned to each pixel based on the classification criteria 

outlined by Kottek et al. (2006) and Peel et al. (2007), as summarized in Table 3-3. The 

classification scheme contains five main classes, each with two levels of subclasses, in total 

30 climate classes. As example, an area that has the main class D – Cold, second subclass w 

– dry winter and the third subclass a – hot summer would have the code Dwa. 

The Icelandic climate was classified for each year in the period 1950-2100. We used the 

ensemble average of the NASA NEX dataset for both historical and predicted future climate 

conditions. The dataset contains an ensemble of 21 Global Circulation Models (GCM’s) 

used in the CMIP5 model intercomparison project of the International Panel on Climate 

Change (IPCC) (Taylor et al., 2012). The climate classifications were calculated for the 

Representative Concentration Pathway (RCP) - RCP 4.5 as a more conservative prediction 

of future climate change. RCP 4.5 is a stabilization scenario where total radiative forcing is 

stabilized before 2100 by employment of a range of technologies and strategies for reducing 

greenhouse gas emissions, whereas RCP 8.5 is characterized by increasing greenhouse gas 

emissions over time and is representative for scenarios in the literature leading to high 

greenhouse gas concentration levels (van Vuuren et al., 2011). The proportion of each 

climate class was calculated for each year in four elevation bands Coastline (0-100 m a.s.l.), 

Lowland (100-500 m a.s.l.), Highland (500-1000 m. a.s.l.) and Glaciers/Mountains (1000 + 

m a.s.l.). A high resolution (20x20m) digital elevation model (DEM) from the National Land 

Survey of Iceland was used to calculate the elevation bands. 

Figure 3-21 shows examples of the KG classification maps projected for Iceland in 0.2-

degree horizontal resolution for the years 1951 and 2099. The four most common KG classes 

in Iceland in both periods were: ET – Polar Tundra, Dfc – Cold climate with cold summers 

and no dry season, Dfb – Cold climate with warm summer and no dry season, and Dsc – 

Cold climate with cold summers and dry summers. 
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Figure 3-21 Examples of annual KG classification maps calculated for Iceland in the study for the years 1951 

(upper) and 2099 (lower)  

The results show that between 1950 and 2099 the polar tundra climate (ET) that initially 

covered a significant portion of the highlands will mostly disappear, except at the 

Vatnajökull Glacier. The ET is replaced by a cold climate with the cold summer classes Dfc 

and Dsc. A warm summer climate (Dfb), that in the first period was mostly limited to small 

areas in the southern lowlands on each side of the Myrdalsjökull Glacier, will by the end of 

the period have spread almost around the entire country and stretched far into the highlands. 

At the middle of the current century temperate climate classes (Cfb, Cfc and Csb) will start 

appearing consistently in coastal areas. This would be the first time that such climate 

classifications would be experienced in Iceland since records began. 

Figure 3-22 shows the proportional coverage of the top climate classes for the period 1951-

2099. The uppermost graph shows the results for the whole of Iceland and the lower graphs 

show the main climate classes within each elevation zone. The results in Figure 3-22 show 

that by the end of the current century the polar tundra climate (Class ET) in Iceland will 

decrease from about 20% coverage in 1950 to about 5%, by the middle of the current century 

and the ET class will disappear altogether in the coastal and lowland regions. Over the same 

period, warm summers (class Dfb) will increase by about the same amount. The net coverage 

of the most common climate class, Dfc, will not change much over the period. However, as 
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seen in Figure 3-21 and Figure 3-22, class Dfc is replaced by class Dfb in coastal areas while 

it replaces class ET in the highlands; thus we expect the spatial distribution of class Dfc to 

change significantly during the period. 

 

Figure 3-22 Time series of the annual proportional coverage of the three main KG Classes in each 

elevation zone in Iceland for the period 1951-2099 (from Eythorsson et al., 2023a). 

3.6.3 Projecting Changes to Snow Resources in Iceland 

Daily snow conditions in Iceland were simulated in 0.2-degree horizontal resolution for the 

period 1950-2100 for each of the 21 downscaled and bias corrected Global Circulation 

Models GCM’s in the NASA NEX-GDDP dataset (Thrasher et al., 2006) using the Snow17 

model for both the RCP45 and RCP85 emission scenarios. The methods used for the snow 

modelling are described in detail in section 3.5.1 and published in Eythorsson et al., (2023a). 
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Figure 3-23 shows on the left the simulated average winter SWE across Iceland for both 

RCP45 (green) and RCP85 (red). Error! Reference source not found. shows on the right 

the simulated average annual SCF across for RCP45 (green) and RCP85 (red). Observations 

from monitoring stations of mountain (crosses) and local (stars) snow cover and MODIS 

observations (triangles) are shown in black. The shaded area represents the upper and lower 

quantiles of the ensemble simulations, and the solid line represents a 10-year moving average 

of the ensemble. 

 

Figure 3-23 Left panel: simulated average winter SWE across Iceland for both RCP45 (green) and 

RCP85 (red). Right panel: simulated average annual SCF across Iceland as projected by RCP45 (green) 

and RCP85 (red). Observations from monitoring stations of mountain (crosses) and local (stars) snow 

cover and MODIS observations (triangles) are shown in black. The shaded area represents the upper 

and lower quantiles of the ensemble simulations, and the solid line shows a 10-year moving average of 

the ensemble. (from Eythorsson et al., 2023a) 

The results in Figure 3-23 shows that both SWE and SCF are expected to decrease in Iceland 

over the course of the 21st century. The decrease is more severe given the RCP85 emission 

scenario as compared to RCP45. The simulated estimates of average annual SCF (right) are 

in line with MODIS observations over the period 2001-2021. In situ observations of local 

and mountain snow cover (SNC or SNCM > 2) fall below and above the simulated averages, 

respectively, as expected. The simulated SWE estimates show a decrease in SWE over the 

period 1950-2100 a trend which grows faster after the 2020s, whereas the observed snow 

depth measurements (shown in Figure 3-18) show a significant increase (p = 1.54 * 10-5) 

over the period 1930-2021. The results presented in Figures 3-18 and 3-23 reveal an 

increasing trend in SCF and SND over a period where both metrics are projected to trend 

downward. The results also illustrate the substantial natural climate variability in Icelandic 

snow conditions.  

The results in Figure 3-18 show a positive trend for temperature and precipitation in Iceland 

over the period 1950-2021. Increasing temperatures result in enhanced snow melt, which is 

apparent in a flat or decreasing SCF in coastal regions (as shown in Figure 3-19Error! 

Reference source not found.), whereas at higher elevation the increased precipitation 

enhances winter snow accumulation leading to higher SCF despite the enhanced melt rates 

during summer. With further climate change less, precipitation will fall as snow at higher 

elevations and both SND and SCF are expected to have decrease across the country by the 

end of the 21st century, as illustrated in Figure 3-23.  
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The results in Figure 3-23 show that there is a large variability in the average SCF from the 

observational IMO stations, shown as blue dots on the figure. The observational data shows 

that the SCF increases with elevation, however there is a large variability between stations 

especially at the lowlands. The figure also shows how few of the observational sites are 

located at high elevation, where most of Iceland’s snow resources are located. 

 

The results shown in Figure 3-23 show that snow resources are projected to diminish in 

Iceland at all elevation zones. These projected changes to Icelandic snow resources are in 

line with previous projections of the future evolution of Icelandic snow cover over the 21st 

century (Johannesson et al., 2007). The observed increase in snow cover, both by remote 

sensing and in situ measurements, over the period 2000-2021 also agree with the results of 

Gunnarsson et al. (2019) which also used satellite remote sensing data to show that there had 

been an increase in snow cover in Iceland for all months except October and November over 

the same period. The results of Eythorsson et al., (2023a) study suggest that the increase in 

snow cover in Iceland, observed both from remotely sensed and in situ data, is associated 

with increased precipitation causing a more frequent and thicker snowpack which persist 

longer, despite enhanced melt rates. 

 

These results deserve further investigation. It should be noted that the MODIS period, 2000-

2021, used to estimate the historical SCF changes in this study is short and trends observed 

during this period could be induced by low frequency cyclical climate patterns, or by a small 

amount of extreme weather events. However, the causes and the impacts of these changes to 

Icelandic snow resources needs to be better understood. Differences in future snowpack 

changes by elevation should be studied to understand the impact on the Icelandic 

hydrological cycle, which will further affect the local ecology, hazard assessments, water 

resources management, and hydropower production in the country. 
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4. Conclusion and future perspectives 

The objective of this dissertation was to investigate from observations the impact of climate 

change on snow conditions that has already occurred and based on the best available 

assumptions on future climate change, to estimate by modelling how snow conditions are 

likely to continue to respond to changing climate forcings in different regions. In this 

dissertation and the scientifical journal articles that have been produced because of this work, 

this objective has been achieved in the following steps:  

Firstly, a novel approach for predicting seasonal snow mass balance in glaciated catchments 

was published in (Eythorsson et al., 2018) and is discussed in detail in section 3.1of this 

dissertation. Secondly, the spatio-temporal changes in the climate and snow regimes were 

estimated globally and compared and analyzed within the context of the Arctic region, the 

results of which have been published in Eythorsson et al., (2019) and are discussed in detail 

in sections 3.2 - 3.4 of this dissertation. Future snow conditions were modelled across the 

Northern Hemisphere (NH) based on the expected changes to the climate regime, given 

different plausible emission scenarios, the results of which are presented in Eythorsson et 

al., (2023b) and are discussed in detail in section 3.5 of this dissertation. Lastly, the observed 

past and projected future changes in the climate and snow regimes are analyzed in a regional 

context for Iceland, the results of which are presented in Eythorsson et al., (2023a) and are 

discussed in detail in section 3.6 of this dissertation.  

4.1 Conclusion 

The main results of this dissertation are the large changes to snow resources, both observed 

and projected, in the NH. These results show that in general snow cover has been decreasing 

significantly, especially at lower latitudes, while some high latitude areas have experienced 

an increase in the frequency of snow cover. These trends were in general projected to 

continue throughout the 21st century with severe implications to societies and ecosystems in 

cold regions. These ongoing changes will affect the habitability of flora and fauna in cold 

regions, straining local ecosystems and inducing species migrations and extinctions. The 

projected changes to snow resources will impact the lifestyles and culture of societies and 

indigenous peoples across the NH providing complex problems and opportunities for water 

resources management and potential energy production in these regions as the local 

hydrological cycle is impacted by changing climate forcings. 

Reliable forecasting of snow resources behavior is a key aspect of water resource 

management in cold regions. The Kárahnjúkar HPP in South-Eastern Iceland (by far the 

largest powerplant in Iceland) receives most of its inflow from the glacial meltwater of the 

Brúarjökull glacier. Several studies have considered the simulation of snow melt behavior 

on Brúarjökull using both empirical and physical approaches. These modelling efforts have 

all focused on the diurnal modelling of snow melt based on environmental input parameters 

that can only be forecast reliably a few days in advance. Eythorsson et al., (2018) showed 
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that the summer mass balance behavior of the Brúarjökull glacier can be predicted 

satisfactorily in the beginning of the melt season, using only the data on initial conditions of 

the hydro-climatological system that are available at that time, using a novel data driven 

modelling approach. These results are important for the water resource managers in glacially 

dominated catchments, like those managing the Kárahnjúkar HPP, as they demonstrate that 

the key source of runoff, glacial summer melt, in these areas can be satisfactorily predicted 

at the beginning of the melt season, 2-3 months in advance.  

While glacial mass balance is a key hydrological parameter in few cold watersheds, water 

resources management in cold areas also require an understanding of seasonal snow cover 

dynamics, and especially at the present time how these dynamics can be expected to respond 

to a changing climate. Eythorsson et al., (2019) used MODIS snow cover data to estimate 

the changes that have occurred to the Snow Cover Frequency (SCF) in 500m horizontal 

resolution globally, during the period 2000-2016 and to identify those areas where the 

changes in SCF over that period have been statistically significant. The study revealed that 

large areas around the southern fringe of the Northern Hemisphere (NH) seasonal snow 

coverage have seen a significant decrease in SCF since the turn of the century. An opposite 

pattern was observed at the northern fringe of the NH seasonal snow coverage, where the 

SCF has increased in many coastal regions around the Arctic Ocean. 

These historical SCF trends in the Arctic were compared to the regional climate change, 

which was estimated as changes to the proportional coverage of Köppen-Geiger (KG) 

Climate classes. The results showed a trend of climate classes associated with warmer 

weather migrating northward, which has persisted to date and was projected to continue at 

least until the end of the present century. This warming was observed in 7 of the 10 Arctic 

study areas considered in Eythorsson et al., (2019) and in Iceland as presented in Eythorsson 

et al., (2023a). The warming trend observed in these regions coincides with changing snow 

dynamics as the largest change to the local SCF in the arctic was seen in these same regions. 

It was only in the northernmost regions of the Arctic were little to no changes to either the 

SCF or the climate classifications was observed. Averaged across the Arctic the SCF was 

observed to have decreased by 9.1 days per decade over the study period, which corresponds 

to previous studies on snow cover in the general area (Hori et al., 2017; Liston & Hiemstra, 

2011; Yunlong et al., 2018).  

As warmer climate classes are expected to migrate ever northward until the end of the present 

century at least, as shown e.g. in Eythorsson et al., (2019) and (Beck et al., 2018), snow 

conditions can be expect to change drastically in regions where winter snow cover has 

historically been an important factor in the local hydro-climatology and ecology. Eythorsson 

et al. (2023b) modelled the evolution of NH snow resources over the period 1950-2100 using 

the Snow17 model forced with the ensemble of the downscaled and bias corrected CMIP5 

projections as contained in the NASA-NEX GDDP dataset, for both the RCP45 and RCP85 

emission scenarios. The simulated snow conditions for the historical period showed a high 

correlation to remotely sensed Snow-Covered Area (SCA) from the MODIS/Terra snow 

cover dataset and to the Snow Water Equivalent (SWE) field from the GLDAS-2 dataset. 

The results from Eythorsson et al., (2023b) showed that NH snow resources are expected to 

undergo considerable changes until the end of the present century. The average SCF in the 

NH was projected to decrease by 12.5% and 23.1% between the periods 1950-1975 and 

2075-2100, under the RCP45 and RCP85 scenarios, respectively. While the frequency of 

snow cover is expected to decrease significantly, the average winter SWE was projected to 
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increase by 3.9% and 2.2% between the same periods under the RCP45 and RCP85 emission 

scenarios, respectively. 

The decrease in NH SCF shown in the results of Eythorsson et al., (2023b) is primarily 

ascribed to a decreasing number of snow-covered days at the southern fringe of the NH 

seasonal snow layer, where some basins may see the loss of almost all their winter SWE 

snow storage under the RCP85 scenario. The SCF was also projected to decrease at higher 

latitudes, albeit significantly less. However, the 1st of April SWE at higher latitudes was 

projected to increase even though the number of days with snow covered ground was 

expected to decrease. In all the largest rivers draining into the Arctic Ocean the contribution 

of snow melt was found to increase significantly and, in some cases, almost double between 

the periods 1950-1975 and 2075-2100.  

The pattern of decreasing SCF in mid latitudes was also observed in Eythorsson et al., (2019) 

based on the MODIS/Terra snow cover product. Thus, the trends that have already been 

observed in these areas can be expected to continue, at an accelerated pace throughout the 

21st century given the RCP85 trajectory or at a slowly declining pace and stabilizing by the 

end of the century given the RCP45 trajectory. Increased snowfall at high latitudes is 

expected due to sea ice decline and increased regional evaporation from the Arctic Ocean 

(Kopec et al., 2016; Singarayer et al., 2006). This was observed as an increase in SCF in 

Eythorsson et al., (2019) over the historical MODIS period (2000-2016) and as an increase 

in the 1st of April SWE in Eythorsson et al., (2023b). The increase in SCF observed in high 

latitudes in Eythorsson et al., (2019) is expected to reverse as these areas continue to warm 

and by the end of the century the SCF will have decreased significantly across the entire NH. 

Collectively, the results of the work presented in this dissertation show that significant 

changes have occurred to snow resources in many regions across the NH as estimated based 

on remotely sensed data from the MODIS/Terra instrument and presented in Eythorsson et 

al., (2019). Snow Cover Frequency (SCF) was shown to have decreased in many mid-

latitude areas whereas around the arctic ocean large areas had seen an increase in the local 

SCF. These changes to have occurred concomitantly with local climate warming, as 

estimated from trends in the coverage of KG climate classes, with only the northernmost 

parts of the Arctic remaining with relatively unchanged climate and snow regimes, as 

presented in Eythorsson et al., (2019). These trends were replicated and shown to continue 

at least until the end of the 21st century by modelling NH snow conditions based on the 

ensemble of downscaled and bias corrected GCM models from the CMIP5 project. The 

model results revealed a trend of decreasing snow cover frequency across the hemisphere 

while snow storage volume was projected to increase around the Arctic, as presented in 

Eythorsson et al., (2023b). The results of both Eythorsson et al., (2019; 2023b) show that the 

NH snow and climate regimes have undergone significant changes and that these changes 

can be expected to continue for the foreseeable future, however, these trends were shown to 

vary significantly depending on region. An analysis of climate and snow changes in 

Icelandic snow resources showed that the Icelandic climate is expected to change 

significantly throughout the present century, over the same period snow resources are 

expected to diminish across the country, as presented in Eythorsson et al., (2023a). Analysis 

of SCF trends estimated from MODIS/Terra snow cover data revealed observable glacial 

ablation around the termini of most Icelandic outlet glaciers, whereas over the same time 

SCF had increased significantly in large areas in the highland. This SCF increase over the 

MODIS period is likely due to decadal scale oscillations in atmospheric and ocean currents 
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in the North Atlantic, which have been shown to significantly affect the seasonal mass 

balance behavior of Icelandic glaciers, as presented in Eythorsson et al., (2018). 

4.2 Future Perspectives 

The results of this dissertation show that snow resources in the Northern Hemisphere have 

and are expected to continue undergoing significant changes. These results are in line with 

the just published 6th Assessment Report (AR6) by the International Panel on Climate 

Change (IPCC) where it states that there is very high confidence that the NH spring snow 

cover has been decreasing since 1978 and that further decrease of the NH seasonal snow 

extent is virtually certain under all plausible emission scenarios (Fox-Kemper et al., 2021). 

These projections have significant consequences for societies and ecosystems in cold 

regions, which require further attention and research to optimize local mitigation and 

adaptation measures in these regions.  

The Snow17 model results which was used in Eythorsson et al., 2023a and Eythorsson et al., 

2023b were calculated in a 0.2-degree horizontal resolution based on the ensemble average 

of the 21 bias corrected and downscaled GCMs from the CMIP5 experiment (Taylor et al., 

2012). In Iceland, where topography can greatly influence local meteorological 

characteristics (e.g. Rögnvaldsson et al., 2007), snow cover estimates would benefit from a 

finer spatial  resolution. The results in Figure 3-23 confirm that many topographical effects 

are smoothed out in the simulated snow cover estimates, as compared to the MODIS snow 

cover products. To improve the understanding of future changes to snow resources in Iceland 

these changes should be modelled at a higher resolution e.g. using regional climate models 

such as the EURO-CORDEX (Jacob et al., 2013).  

The long-term trend in snow cover projected in Eythorsson et al., (2023a) and e.g. in 

(Johannesson et al., 2007) shows a decrease in snow cover across the country, however the 

short term trend observed both through in situ and satellite observations and shows a trend 

of increasing SCF in large parts of the country, as shown by Eythorsson et al., (2023a) and 

Gunnarsson et al., 2019. These results deserve further attention, it is important for water 

resources managers in Iceland to have the best available estimates of future snow resources 

and to understand if and then why these trends differ in the short and the long term. It should 

be investigated whether the short-term increase in SCF is due to short term oscillations in 

the Iceland climate, stemming from variations in oceanic or atmospheric circulation patterns. 

Furthermore, the Icelandic snow resources were simulated based on the ensemble average 

of all the 21 GCMs in the NASA NEX GDDP database. The selection of models into the 

ensemble impacts the accuracy of the results. It is worth analyzing which of the models show 

the highest correlation to Icelandic meteorology and only simulate future snow conditions 

based on those GCMs which show satisfactory simulations of the Icelandic climate.  

 

The results of Eythorsson et al. (2018), showed that the summer mass balance of the 

Brúarjökull could be predicted satisfactorily based on information on the initial conditions 

of the surrounding hydro-climatological system at the beginning of the glacial melt season. 

The model framework developed in Eythorsson et al. (2018), can in essence be applied to 

any type of predictive modelling where there is a statistical relationship between the 

predictor and response variables. Given the promising results from Eythorsson et al. (2018), 

it is worth developing these methods further and apply them to snowmelt, discharge and 
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reservoir inflow forecasting at various temporal scales, for the key glacially dominated 

watersheds in Iceland. This could potentially improve streamflow forecasting in Iceland at 

various lead times, providing valuable information for water resources managers across the 

country. 

 

The results of Eythorsson et al. (2023b), show that snow coverage is expected to decrease 

across the NH between the periods 1950-1975 and 2075-2100. However, the mean winter 

SWE is expected to increase substantially in roughly the same areas which were shown to 

have experienced an increase in SCF over the period 2000-2016 in Eythorsson et al. (2019). 

These results deserve further attention. A regional analysis of future scenarios in snow 

resources should be conducted for the Arctic. Estimates produced by both GCMs as well as 

regional Arctic climate models such as the Regional Arctic System Model (Cassano et al., 

2017; Hamman et al., 2016) should be compared as well as between different snow models. 

Lastly, the effect of increasing SCF in the historically arid regions of the high Arctic on the 

earth’s radiation budget should be considered.  
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Appendix A - Statistical Summer Mass-
Balance Forecast Model with 

Application to Brúarjökull Glacier, 

South East Iceland 

 



102 



103 



104 



105 



106 



107 



108 



109 



110 

 



111 

Appendix B - Arctic Climate and Snow 
Cover Trends – Comparing Global 

Circulation Models with Remote 

Sensing Observations 

 



112 



113 



114 



115 



116 



117 



118 



119 



120 



121 





123 

Appendix C - Observed and Predicted 
Trends in Icelandic Snow Conditions for 

the period 1930-2100 
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Appendix D - Projected Changes to 
Northern Hemisphere Snow Conditions 

over the period 1950-2100, given two 

emission scenarios 
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