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Abstract: In trauma patients, shock-induced endotheliopathy (SHINE) is associated with a poor
prognosis. We have previously identified four metabolic phenotypes in a small cohort of trauma
patients (N = 20) and displayed the intracellular metabolic profile of the endothelial cell by inte-
grating quantified plasma metabolomic profiles into a genome-scale metabolic model (iEC-GEM). A
retrospective observational study of 99 trauma patients admitted to a Level 1 Trauma Center. Mass
spectrometry was conducted on admission samples of plasma metabolites. Quantified metabolites
were analyzed by computational network analysis of the iEC-GEM. Four plasma metabolic pheno-
types (A–D) were identified, of which phenotype D was associated with an increased injury severity
score (p < 0.001); 90% (91.6%) of the patients who died within 72 h possessed this phenotype. The
inferred EC metabolic patterns were found to be different between phenotype A and D. Phenotype D
was unable to maintain adequate redox homeostasis. We confirm that trauma patients presented four
metabolic phenotypes at admission. Phenotype D was associated with increased mortality. Different
EC metabolic patterns were identified between phenotypes A and D, and the inability to maintain
adequate redox balance may be linked to the high mortality.

Keywords: trauma; metabolomics; endotheliopathy; systems biology; genome-scale metabolic model;
tricarboxylic acid cycle

1. Introduction

Trauma is a leading cause of death, and in the United States accounts for more than
79,000 deaths annually [1,2], more deaths than HIV, tuberculosis, and malaria combined [3].
The poor prognosis of trauma patients is associated with activation and dysfunction
of the endothelial cell (EC) membrane by over-activation of the sympathetic nervous
system releasing toxic levels of catecholamines, entitled shock-induced endotheliopathy
(SHINE) [4]. SHINE results in extravasation and increased tissue pressure, microvascular
thrombus formation leading to impaired oxygen delivery, multiple organ failure, and
ultimately death [5–8].
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Investigating the pathophysiological metabolic mechanism of EC in SHINE in vivo is
not feasible since microvascular biopsy of EC in patients undergoing an acute critical state
is difficult, if not impossible. Therefore, a biologically-validated, genome-scale metabolic
model of the endothelial cell (EC-GEM) has been developed to circumvent this constraint [9].
EC-GEM is based on the high impact the EC metabolism has on plasma metabolic changes
since the vascular compartment consists of more than 1 trillion EC in constant contact
with the circulating blood [10]. Also, the link between the blood and the endothelium has
been described as a single, dynamic organ system, rather than two separate systems [11].
This supports that metabolic changes in the plasma indicate the metabolic state of the
EC. The intracellular endothelial metabolic pathways in SHINE have been inferred by
integrating plasma metabolites from 20 trauma patients into EC-GEM [12]. Four metabolic
phenotypes with differences in the intracellular response to SHINE were identified. Notably,
there were different fluxes in the production of acetyl-CoA with an energetic shift from
glycolysis towards β-oxidation observed in one of the phenotypes, labeled D. Phenotype D
was characterized by hyperglycemia, increased epinephrine levels, and severe endothelial
glycocalyx shedding [5,13].

Here, we investigated the inferred intracellular endothelial metabolism in a larger
cohort of trauma patients to evaluate whether the four identified metabolic phenotypes
were associated with 30-day mortality.

2. Results
2.1. Four Phenotypes in Trauma Patients

The 95 trauma patients’ metabolic profiles revealed four plasma metabolic clusters;
phenotypes A, B, C, and D, identified by a hierarchical clustering dendrogram (Figure 1a).
Phenotype D had its own branch in the dendrogram, whereas phenotype C shared a
top branch with phenotypes A and B but was further divided into its own branch next
to phenotype D. Phenotypes A and B shared two branches at the dendrogram. The
top-10 variables of importance in the PLS-DA plot used to best discriminate between
the phenotypes were: succinic, palmitic, oleic, malic, α-linolenic docosatetraenoic, and
docosapentaenoic acids, linoleate, propionyl carnitine, and lactate (Figure 1b). The top
metabolite to discriminate between the four phenotypes, succinic acid, was notably elevated
in phenotype D compared to the other phenotypes (p < 0.001).

2.2. Clinical Characteristics of the Four Phenotypes

The clinical characteristics of the four phenotypes are presented in Table 1 and the
survival curve in Figure 2. The patients belonging to phenotype D were seriously injured
(higher ISS), received more transfusions, were more shocked, and had a higher mortality
rate than patients from the other phenotypes.

Table 1. Demographics, admission vitals, transfusion, and outcome for 95 critically ill trauma patients.

Phenotype D Phenotype C Phenotype B Phenotype A

(n = 21) (n = 24) (n = 17) (n = 33) p-Value

Demography

Age Years 43.0 [28.0, 50.0] 36.0 [30.0, 46.0] 45.0 [37.0, 54.0] 50.0 [41.0, 60.0] 0.021

Sex Male
(%) 19 (90.5%) 15 (62.5%) 13 (76.5%) 23 (69.7%) 0.176

Race Race
[n (%)]

White = 4 (19.0%)
African American = 7

(33.3%)
Hispanic = 7 (33.3%)

Asian = 0 (0%)
Other = 3 (14.3%)

White = 8 (33.3%)
African American = 7

(29.2%)
Hispanic = 6 (25.0%)

Asian = 0 (0%)
Other = 3 (12.5%)

White = 5 (29.4%)
African American = 1

(5.9%)
Hispanic = 7 (41.2%)

Asian = 2 (11.8%)
Other = 2 (11.8%)

White = 20 (60.6%)
African American =

10 (30.3%)
Hispanic = 2 (6.1%)

Asian = 0 (0%)
Other = 1 (3.0%)

0.004
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Table 1. Cont.

Phenotype D Phenotype C Phenotype B Phenotype A

(n = 21) (n = 24) (n = 17) (n = 33) p-Value

BMI Score 26.7 [25.0, 30.1] 27.1 [24.8, 28.8] 29.5 [28.1, 33.7] 26.8 [24.7, 31.3] 0.229

Injury type and
severity

ISS Score 34.0 [25.0, 45.0] 25.0 [9.75, 29.0] 25.0 [22.0, 29.0] 21.0 [9.00, 25.0] <0.001

AIS Head Score 0 [0, 0] 0 [0, 0] 0 [0, 0] 0 [0, 0] 0.175

AIS Face Score 0 [0, 0] 0 [0, 0] 0 [0, 1] 0 [0, 0] 0.027

AIS Thorax Score 3.00 [3.00, 4.00] 1.50 [0, 3.00] 2.00 [0, 3.00] 0 [0, 3.00] 0.010

AIS Abdomen Score 4.00 [3.00, 4.00] 0 [0, 2.25] 0 [0, 2.00] 0 [0, 2.00] 0.001

AIS Extremity Score 3.00 [0, 4.00] 2.50 [0, 3.00] 0 [0, 2.00] 0 [0, 0] 0.011

AIS External Score 1.00 [1.00, 1.00] 1.00 [0.750, 2.75] 1.00 [0, 5.00] 1.00 [0, 2.00] 0.835

GCS Score 3.00 [3.00, 13.0] 14.5 [3.00, 15.0] 15.0 [3.00, 15.0] 15.0 [7.00, 15.0] 0.028

Admission median
blood pressure

SBP mmHg 98.0 [84.0, 114] 111 [102, 140] 119 [102, 132] 132 [118, 142 <0.001

Heart rate Bpm 112 [98.0, 120] 101 [92.0, 111] 93.0 [84.0, 109] 96.0 [73.5, 115] 0.171

Blood variables

Base excess mEq/L −13.0 [−16.0, −9.00] −6.00 [−8.25, −2.00] −3.00 [−8.00, −2.00] −5.00 [−7.00, −2.00] <0.001

Lactate mg/dL 9.80 [6.85, 12.9] 3.70 [2.75, 4.45] 3.70 [3.10, 5.70] 2.30 [1.60, 3.55] <0.001

Glucose mg/dL 229 [199, 324] 145 [119, 165] 173 [145, 213] 134 [115, 196] <0.001

Transfusions
pre-hospital

Transfused
pre-hospital?

Yes
[n (%)] 6 (28.6%) 2 (8.3%) 3 (17.6%) 8 (24.2%) 0.329

if yes:

RBC Units 0.500 [0, 1.00] 0.500 [0.250, 0.750] 0 [0, 0.500] 1.00 [1.00, 1.50] 0.056

Plasma Units 1.00 [1.00, 1.00] 0.500 [0.250, 0.750] 1.00 [0.500, 1.00] 1.00 [0.750, 1.25] 0.704

Whole blood Units 0 [0, 0] 0.500 [0.250, 0.750] 0 [0, 0.500] 0 [0, 0] 0.336

Transfusions after
admission

Transfused within 4
h?

Yes
[n (%)] 19 (90.5%) 13 (54.2%) 8 (47.1%) 15 (45.5%) 0.007

if yes:

RBC Units 12.0 [5.00, 32.0] 2.00 [1.00, 5.00] 1.50 [0.750, 2.25] 2.00 [2.00, 3.50] <0.001

Plasma Units 14.0 [4.00, 32.0] 4.00 [1.00, 8.00] 1.00 [1.00, 2.25] 3.00 [1.00, 4.00] <0.001

Platelets Units 12.0 [0, 21.0] 0 [0, 6.00] 0 [0, 0] 0 [0, 0] 0.007

Transfused within 24
h?

Yes
[n (%)] 19 (90.5%) 16 (66.7%) 11 (64.7%) 21 (63.6%) 0.156

if yes:

RBC Units 14.0 [5.00, 35.0] 2.00 [0, 5.75] 1.00 [0, 2.00] 2.00 [0, 3.00] <0.001

Plasma Units 17.0 [4.50, 35.0] 5.00 [1.75, 10.3] 2.00 [1.00, 4.00] 4.00 [1.00, 9.00] 0.001

Platelets Units 12.0 [0, 24.0] 0 [0, 1.50] 0 [0, 0] 0 [0, 0] 0.003

Outcome

Mortality (<24 h) n (%) 11 (52.4%) 0 (0%) 0 (0%) 1 (3.0%) <0.001

Mortality (<72 h) n (%) 12 (57.1%) 0 (0%) 0 (0%) 1 (3.0%) <0.001

Mortality (<30 days) n (%) 16 (76.2%) 4 (16.7%) 5 (29.4%) 10 (30.3%) <0.001

Median (IQR) or n (%). Calculation of the p-value on phenotype D compared to the other phenotypes.
p-values ≤ 0.050 are shown in bold. BMI, body mass index; AIS, abbreviated injury score; GCS, Glasgow
coma score; SBP, systolic blood pressure; RBC; red blood cells.
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Figure 1. Plasma metabolites in trauma patients demonstrated four shock-induced endotheliopa-
thy phenotypes: A, B, C, and D. (a) Heatmap combined with a dendrogram analysis using cluster
algorithm for 54 quantified metabolites from plasma demonstrated four shock-induced endotheliopa-
thy phenotypes: A, B, C, and D. (b) Partial Least-Squares Discriminant Analysis (PLS-DA) identifying
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Mortality (< 24 h) n(%) 11 (52.4%)  0 (0%) 0 (0%) 1 (3.0%) <0.001 
Mortality (< 72 h) n(%) 12 (57.1%) 0 (0%) 0 (0%) 1 (3.0%) <0.001 

Mortality ( < 30 days) n(%) 16 (76.2%) 4 (16.7%) 5 (29.4%) 10 (30.3%) <0.001 
Median (IQR) or n (%). Calculation of the p-value on phenotype D compared to the other pheno-
types. p-values ≤ 0.050 are shown in bold. BMI, body mass index; AIS, abbreviated injury score; GCS, 
Glasgow coma score; SBP, systolic blood pressure; RBC; red blood cells.

Figure 2. Shock-induced endotheliopathy phenotypes mortality survival curve for 95 critically ill 
trauma patients. Survival curves of phenotypes A, B, C, and D. 

2.3. Catecholamine and Endothelial Biomarkers 
Phenotype D had higher levels of both epinephrine (p < 0.001) and norepinephrine (p 

< 0.001) compared to other members of the trauma cohort (Table 2). Phenotype D also had 
increased syndecan-1 levels (p < 0.001) and suffered from a higher proportion of EoT (p = 
0.004). 

Table 2. Enzyme-linked immunosorbent assay measurement for 95 critically ill trauma patients.

Phenotype D Phenotype C Phenotype B Phenotype A 
ELISA (n = 21) (n = 24) (n = 17) (n= 33) p-Value 

Epinephrine pg/mL 2240 [1110, 4320] 230 [99.4, 710] 262 [211, 363] 271 [63.1, 426] <0.001 
Norepinephrine pg/mL 3460 [1920, 13,100] 741 [427, 1400] 1180 [492, 3000] 1180 [604, 1680] <0.001 

sTM  ng/mL 7.06 [6.01, 11.2] 5.93 [5.01, 7.09] 6.32 [5.15, 10.5] 6.46 [5.15, 9.28] 0.291 
Syndecan-1  ng/mL 190 [120, 198] 42.3 [24.5, 120] 49.5 [37.2, 166] 34.4 [22.5, 101] <0.001 

EoT  
Yes 

[n (%)] 
19 (90.5%) 13 (54.2%) 10 (58.8%) 16 (48.5%) 0.016 

Medians (IQR) or n (%). Calculation of the p-value is on phenotype D compared to the other pheno-
types. p-values ≤ 0.050 are shown in bold. sTM; soluble thrombomodulin, EoT; endotheliopathy of 
trauma. 
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Figure 2. Shock-induced endotheliopathy phenotypes mortality survival curve for 95 critically ill
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2.3. Catecholamine and Endothelial Biomarkers

Phenotype D had higher levels of both epinephrine (p < 0.001) and norepinephrine
(p < 0.001) compared to other members of the trauma cohort (Table 2). Phenotype D
also had increased syndecan-1 levels (p < 0.001) and suffered from a higher proportion of
EoT (p = 0.004).

Table 2. Enzyme-linked immunosorbent assay measurement for 95 critically ill trauma patients.

Phenotype D Phenotype C Phenotype B Phenotype A

ELISA (n = 21) (n = 24) (n = 17) (n = 33) p-Value

Epinephrine pg/mL 2240 [1110, 4320] 230 [99.4, 710] 262 [211, 363] 271 [63.1, 426] <0.001

Norepinephrine pg/mL 3460 [1920,
13,100] 741 [427, 1400] 1180 [492, 3000] 1180 [604, 1680] <0.001

sTM ng/mL 7.06 [6.01, 11.2] 5.93 [5.01, 7.09] 6.32 [5.15, 10.5] 6.46 [5.15, 9.28] 0.291

Syndecan-1 ng/mL 190 [120, 198] 42.3 [24.5, 120] 49.5 [37.2, 166] 34.4 [22.5, 101] <0.001

EoT Yes [n (%)] 19 (90.5%) 13 (54.2%) 10 (58.8%) 16 (48.5%) 0.016

Medians (IQR) or n (%). Calculation of the p-value is on phenotype D compared to the other phenotypes.
p-values ≤ 0.050 are shown in bold. sTM; soluble thrombomodulin, EoT; endotheliopathy of trauma.

2.4. Endothelial Cell Metabolism in the Four Metabolic Phenotypes

Four GEMs representative of phenotypes (A–D) were reconstructed to investigate
the inferred intracellular endothelial metabolism; 190 metabolic function activities were
analyzed, and the results were combined into a heatmap (Figure 3). The heatmap dis-
played three cluster activities; cluster1 included Adenosine triphosphate (ATP) generation
from glucose, i.e., combined glycolysis and tricarboxylic acid cycle (TCA) generation from
glucose; cluster2 included amino acid degradation, lipids synthesis of arachidonate, palmi-
toleate, bile acid synthesis, O-glycan metabolism, and mitochondrial Nicotinamide adenine
dinucleotide + hydrogen (NADH) generation; cluster3 included synthesis of malonyl-
CoA, gluconeogenesis from amino acids, ATP generation from glycolysis, oxidation in the
TCA cycle, and redox thioredoxin reductase activity (results from the metabolic function
activities are presented in Table S1, see Supplementary Materials).
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Figure 3. Calculation of the intracellular cellular activities in phenotypes A, B, C, and D. Heatmap
displays the intracellular activity in phenotypes A–D using GEMs representing each phenotype.
Note: 190 cellular metabolic tasks were analyzed by GEM EC (iEC3006). All the fluxes are normalized
by row, and scaled between −1.5 and 1.5. dendrogram using the Euclidian distance measure and the
complete cluster algorithm to combine different cellular activities.
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Both phenotypes A and D were correlated in cluster1 and displayed upregulation.
However, Phenotype A and D were anticorrelated in cluster2 and cluster3, were phenotype
A was downregulated in cluster2 activity and upregulated in cluster3 activity. Pheno-
types B and C had intracellular metabolic activity levels between those of phenotypes A
and D (Figure 3).

Phenotype A had a 13-fold higher rate of ATP generation from glycolysis (Figure 4a),
10-fold higher synthesis of methylglyoxal (Figure 4b), 4-fold higher lactate conversion from
glucose (Figure 4c), 1.4-fold synthesis of ribose-5-phosphate (pentose pyruvate pathway),
and a 10.5-fold higher rate of Acetoacetate synthesis (Figure 4d) compared to phenotype D.
Conversely, phenotype D had increased catabolism of all amino acids (not shown), 3.9-fold
increased palmitoleate synthesis (Figure 4e), and an 8.5-fold decrease in the synthesis of
malonyl-CoA (Figure 4f).
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Figure 4. Cellular activity leading to ATP generation. (a) ATP generation from glycolysis
(b) Methylglyoxal synthesis (c) Lactate synthesis (d) Acetoacetate synthesis (e) Palmitoleate synthesis
(f) Malonyl-CoA synthesis. Note: 6 out of the 190 metabolic cellular tasks are displayed in boxplots.
The flux size is given in mmol per gDW per h.

When focusing on the TCA-cycle contribution of NADH towards the electrochemical
gradient in the mitochondria for ATP-generation, phenotype D had a 1.6-fold increase
compared to phenotype A (Figure 5). However, phenotype A had 8.7-fold-increased
thioredoxin reductase activity relative to phenotype D (Figure 5.
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Figure 5. Activity in the electron transport chain (ECT) within the four phenotypes. Note: 2 out
of the 190 metabolic cellular tasks are displayed in boxplots. The flux size is given in mmol per
gDW per h.

3. Discussion

This study confirmed four extracellular metabolic phenotypes (A, B, C, and D) mani-
fested in patients on arrival at the trauma center, with D associated with injury severity
and a comatose state. Thus, phenotype D encompassed 92% of the patients who died
within 72 h and had an increased 30-day mortality rate compared to the other three. With
regard to the endothelial cell (EC) intracellular metabolic activities phenotypes A and D
demonstrated different patterns of cluster 2 and 3, whereas phenotypes B and C had more
comparable metabolic profiles.

Phenotype D displayed an extracellular metabolic profile with a distinct branch on the
metabolic dendrogram, whereas phenotypes A, B, and C were connected. The principal
metabolite distinguishing the four phenotypes was succinic acid, which was elevated in
plasma within phenotype D compared to the other phenotypes. Succinic acid has been
reported in a cohort of 95 severe trauma patients to be higher in patients who died [14].
Further, the characteristics of phenotype D with enhanced succinic acid levels in plasma,
high catecholamine levels, and coupled with glycocalyx shedding, e.g., high levels of
syndecan-1, are inline with previous findings [12].

The inferred intracellular metabolic fluxes showed different changes in the EC between
phenotypes A and D in cluster 2 and 3 of the investigated metabolic function activities. Both
phenotypes had comparable overall glycolytic ATP production (i.e., combined glycolysis
and TCA cycle generation of ATP from glucose). However, Phenotype A had increased
anaerobic glycolysis, a general characteristic of healthy EC [15,16]. Glycolysis also results
in synthesizing glycolic side branches, and in line with phenotype A’s profile, the increased
rate in the pentose phosphate pathway leads to nucleotide synthesis and, thereby, sustains
the production of macromolecules. Furthermore, glycolysis increases lactate production,
which operates as a signaling molecule promoting angiogenesis and cellular adaptation to
acidosis [17–20]. The increased glycolysis and cellular adaptation to an acidic environment
and nucleotide synthesis are known as the Warburg effect that was firstly described in
cancer cells [21,22]. Despite the beneficial efficacy of producing ATP by glycolysis, an
extreme glycolytic turnover result in the production of methylglyoxal; this highly reactive
dicarbonyl compound plays a crucial role in advanced glycation end products (AGEs), and
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its production leads to glycosylation of lipids and proteins. Elevated levels of AGEs are
reported after trauma [23] and have been shown to increase EC permeability to macro-
molecules and further increase cellular reactive oxygen species production leading to
cellular stress [24].

Notably, phenotype D had increased amino acid catabolism, which feeds metabo-
lites into the TCA, together with increased palmitoleate synthesis, which β-oxidation can
fragment to generate acetyl-CoA for entering the TCA cycle. The β-oxidation in the mi-
tochondria depends on the carnitine palmitoyltransferase transporter for entering fatty
acid and is inhibited by malonyl-CoA [25]. In phenotype D, the synthesis of malonyl-CoA
was downregulated compared to phenotype A, causing increased β-oxidation. Increased
amino acid catabolism and β-oxidation result in high levels of mitochondrial acetyl-CoA
and turnover of TCA, thereby generating ATP. Phenotype D’s high levels of circulating
catecholamines further damage the endothelial membrane as indicated by syndecan-1 in
plasma, which might also contribute to β-oxidation. Phenotype D demonstrated increased
ISS compared to the other phenotypes. However, it remains unclear whether the increased
amino acid catabolism and β-oxidation towards acetyl-CoA observed in phenotype D is
provoked by the trauma or whether it could be genetically determined.

Phenotype D appeared to shift all the generated acetyl-CoA to the TCA cycle, as
evidenced by high NADH production. The high NADH generation contributes to high H+
levels and, combined with the reduced thioredoxin reductase activity in phenotype D might
lead to pronounced oxidative stress. Increased oxidative stress initiates the peroxidation
of fatty acids in the cell membrane, including the mitochondrial membrane [26]. Once
initiated, lipid peroxidation initiates a chain reaction of oxidation of the surrounding unsat-
urated fatty acids leading to membrane disintegration, a central feature of SHINE [27]. Fur-
thermore, mitochondrial membrane damage increases the initiation of new chain reactions
by free radicals, provoking intracellular membrane damage in phenotype D. Conversely,
phenotype A, with high ATP generation from glycolysis, showed increased formation of
acetoacetate from Acetyl-CoA, indicating a higher production of Acetyl-CoA than the TCA
turnover demands.

This study had important limitations. First and foremost, we used a limited number
of metabolites in plasma to parameterize the EC GEMs and, consequently the results of the
intracellular analyses are inferred and need experimental confirmation, i.e., under patho-
physiological shock conditions. Further, despite iEC3006 being the most comprehensive
GEM of the endothelial cell, expansion of the metabolic coverage to focus on membrane
lipids and glycan metabolism is required. Also, we hypothesize that the changes observed
in plasma were mainly from the EC since 1 trillion EC are in contact with the circulat-
ing blood. We cannot, however, deduct the contribution of metabolites in plasma from
other sources, e.g., the liver, muscles, and lipocytes. In addition, we did not have access
to pharmacological data prior to admission to the trauma center, which might affect the
comatose state of phenotype D. Further, we did not have data on the patients’ genetic
variation, e.g., SNP to be integrated into a GEM-based analysis [28] and were, therefore,
unable to investigate whether the observed phenotypes reflect a continuum of the shock
severity or whether they were genetically determined. Lastly, we only had a 30-day follow-
up on mortality.

In conclusion, we confirm that trauma patients appear to have a minimum of four
plasma metabolic phenotypes (A–D). Phenotype D was associated with increased mortality
and had increased trauma severity scores, but it remains unclear whether increased trauma
shock severity drives phenotype D or whether it is genetically determined. The inferred
EC intracellular metabolism found two different metabolic patterns between phenotype A
and D. Phenotype A produces ATP mainly from anaerobic glycolysis, whereas phenotype
D uses catabolism of amino acid combined with β-oxidation of fatty acid towards the TCA,
leading to high NADH turnover; this may increase oxidative stress that could be linked to
increased mortality.
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4. Materials and Methods
4.1. Setting and Patients

This prospective observational cohort included critically ill adult (≥18 years) trauma
patients admitted directly from the scene of injury to the Red Duke Trauma Institute at
Memorial Hermann Hospital, Houston, TX between March 2013 and February 2018. The
McGovern Medical School approved the study at the UTHealth institutional review board
(HSC-GEN-12-0059), and the study was in line with the Declaration of Helsinki.

Blood samples were collected immediately upon patient arrival by on-call research
assistants. Informed consent was obtained either from the patient or, if the patient was
unconscious, from a legally authorized representative within 72 h after enrollment. A
waiver of consent was granted if the patient was discharged or died within 24 h. If consent
could not be obtained, the patient was excluded from the study and their blood samples
were destroyed.

4.2. Patient Selection

Patients were randomly selected for enrollment retrospectively based on the Injury
Severity Score (ISS) from a biorepository of more than 6500 patients requiring the highest
level of trauma activation. In total, 20 trauma patients with minor and moderate trauma
injuries (ISS < 16), 40 trauma patients with serious trauma injury (ISS 16–25), and 39 trauma
patients with severe trauma (ISS > 25) were included. The criteria for exclusion were
moderate to severe traumatic brain injury, defined as an anatomical injury score for the
head > 2, as traumatic brain injury patients have been shown to have a different metabolic
profile compared to non-traumatic brain injury trauma patients [29]. The research assistants
recorded clinical data in the repository upon admission to the trauma bay or extracted it
from medical records and the trauma registry.

4.3. Healthy Volunteers

We included 20 healthy volunteers from Denmark to calculate normal plasma metabolic
variance to incorporate metabolic patient data into EC-GEM [12]. This was approved by
the Regional Ethics Committee (H-4-2009-139) and the Danish Data Protection Agency and
was in line with the Declaration of Helsinki.

4.4. Analysis of Clinical Characteristics

Statistical analysis was performed using RStudio (version 3.6.3), IBM SPSS statistics
(version 25) and MetaboAnalyst (version 5.0). Descriptive patient data are presented
as medians with interquartile ranges (IQR) or as a percentage (%). Non-parametric sta-
tistical tests (Kruskal-Wallis and Pearson Chi-Square tests) evaluated unpaired group
differences as appropriate. A Kaplan-Meier curve displays the survival probability of the
different groups.

4.5. Sample Preparation

Blood samples were obtained upon hospital admission into 3.2% citrated tubes. Tubes
were immediately centrifugated twice at 1800×g for 10 min at 5 ◦C to separate plasma.
Plasma was aliquoted and frozen at −80 ◦C for later analysis.

4.6. Enzyme-Linked Immunosorbent Assay (ELISA)

The soluble biomarkers of sympathoadrenal activation (epinephrine and norepinephrine),
endothelial glycocalyx (syndecan-1) [30], and endothelial cell soluble thrombomodulin (sTM)
[31–33] were measured by enzyme-linked immunosorbent assay. Endotheliopathy of Trauma
(EoT) was defined by a level of Syndecan-1 ≥ 40 ng/mL [34]. The following manufacturers
were used: Epinephrine and norepinephrine (2-CAT ELISA, Labor Diagnostica Nord GmbH
Co. & KG, Nordhorn, Germany), Syndecan-1 and sTM (Nordic Biosite, Copenhagen,
Denmark).
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4.7. Mass Spectrometry Analysis

Based on literature and prior work on critical animal models (rats and swine) and
critically ill patients, we selected 62 metabolites to be quantified (Table S2) [12,35–38].

Ultra-high performance liquid chromatography-mass spectrometry was run on a
Vanquish system (Thermo Fisher Scientific, San Jose, CA, USA) with a Q Exactive mass
spectrometer (HF Hybrid Quadrupole-Orbitrap, Thermo Fisher Scientific, San Jose, CA,
USA) [39]. Electrospray ionization (ESI) was performed in negative and positive ion-
ization modes. A QC sample was analyzed in MS/MS mode to identify compounds.
The UPLC was performed using a slightly modified version of the protocol described by
Catalin et al. [40]; we used chloroform to stop the derivatization reaction. Peak areas were
extracted using Compound Discoverer 2.0 (Thermo Fisher Scientific).

Gas Chromatography-Mass Spectrometry (7890B, Agilent) coupled with a quadrupole
mass spectrometry detector (5977B, Agilent) and controlled by ChemStation (Agilent)
was used to detect amino and non-amino organic acids. Raw data were converted to
netCDF format using Chemstation (Agilent) before being imported and processed in
Matlab R2018b (Mathworks, Inc., Natrick, MA, US) using the PARADISe software [41]. The
mass spectrometry analysis was run by MS-Omics (https://www.msomics.com/, accessed
on 7 November 2022).

4.8. Analysis of Mass Spectrometry Data

Eight metabolites had an undetectable value in more than 30% of the samples and were
consequently excluded from further analysis (Table S2). For the remaining 54 metabolites,
less than 2% of the values were missing. Missing values were imputed using the Missforest
package [42] in R, which applies a random forest approach to impute values, minimally
altering the statistical characteristics of the metabolite.

The quantified metabolic data were normalized by log2 transformation and Pareto
scaling to create Principal Component Analysis (PCA), Partial Least-Squares Discriminant
Analysis (PLS-DA), and a heatmap with a hierarchical clustering dendrogram using the
Euclidian distance measure and the complete cluster algorithm. Further, fumaric acid was
removed from the metabolic statistical analysis because it correlated 1:1 with malic acid.

PCA plots were used to detect potential outliers. Four patients were considered
outliers due to a metabolic profile outside of the 95% PCA 1-2 confidence interval (one
patient in the 3-dimensional plot PCA 1-3) (Table S3). Also, the four patients’ metabolic
profiles could not be explained by an extreme clinical presentation and were therefore
removed from further analysis, leaving 95 subjects for the subsequent analysis

4.9. Analysis of Data with iEC3006 Genome-Scale Metabolic Model

The GEM EC (iEC3006) is the most extensive genome-scale metabolic model of
the endothelial cell and includes 2035 genes and 3006 reactions involving a total of
2114 metabolites [43]. Genome-scale metabolic models (GEMs) provide a convenient plat-
form for the integration and analysis of case-specific plasma metabolomics data enabling
to infer the metabolic flux profile associated to a given phenotype.

This study generates GEMs specific to each of the four phenotypes by parameterizing
iEC3006 with each phenotype’s mean patient plasma metabolic profiles by using the
COBRA Toolbox in Matlab R2017b (26). First, constraints on uptake and secretion of
metabolites were determined by the upper and lower quartiles of their respective transport
reaction flux distributions as determined by random sampling flux analysis of the baseline
version of iEC3006.

To determine the normal metabolic variances, we included 20 healthy volunteers.
Mean fold changes (patient phenotype/healthy volunteers) from the plasma metabolomics
data set were applied to the upper and lower quantiles of each transport reaction to
define the uptake and secretion in the patient phenotype models; if necessary, reactions
were relaxed to obtain a feasible model (Tables S4 and S5). Consequently, the phenotype

https://www.msomics.com/
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models were constructed (https://github.com/HHEN0042/Endothelial-cell-phenotypes.
git, accessed on 7 November 2022).

4.10. Validation of GEMs Reconstruction

Cross-validation analysis was performed to evaluate the accuracy of the developed
GEMs of phenotypes A, B, C, and D [44]. Each phenotype GEM model was constructed
where one of each constrained exchange reaction was left out each time, and the corre-
sponding population of possible flux values for each unconstrained exchange reaction was
calculated by applying a sampling analysis. Next, to determine the goodness of pheno-
types model predictions, the population of solutions from the unconstrained models were
compared to each of the initial phenotype GEMs models, i.e., phenotypes A, B, C, and D,
and the significance was calculated by t-test and FDR adjusted.

The validation of GEMs phenotype A, B, C, and D predicted 90.6% of the metabolite
uptake/secretion rates with an associated p-value < 0.05 with high accuracy; R2 equal to
0.999, 0.997, 0.999, and 0.969, respectively (Table S6).

4.11. Inferring Metabolic Task Activity in Trauma Groups via GEMs

We combined GEM-based flux balance analysis manually curated cellular metabolic
tasks to investigate differences within the intracellular metabolism between the pheno-
types [45,46]. In total, 190 metabolic cellular tasks, each describing the synthesis/degradation
of different metabolites from/to different metabolic sources/products, were investigated
(Supplementary Table S7) [46]. As result an optimal flux value indicating the activity
of each metabolic task was calculated for each trauma group. Next, the metabolic task
activities were integrated into a heatmap, normalized by row, and scaled to values between
−1.5 and 1.5, with a dendrogram using the Euclidian distance measure and the complete
cluster algorithm to combine different cellular activities.
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Abbreviations

AGEs Advanced glycation end products
ATP Adenosine triphosphate
EC Endothelial cell
EC-GEM Genome-scale metabolic model of the endothelial cell
EoT EoT Endotheliopathy of Trauma
GEMs Genome-scale metabolic models
ISS Injury Severity Score
NADH Nicotinamide adenine dinucleotide + hydrogen
PCA Principal Component Analysis
PLS-DA Partial Least-Squares Discriminant Analysis
SHINE Shock-induced endotheliopathy
sTM Soluble thrombomodulin
TCA Tricarboxylic acid cycle
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