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a b s t r a c t 

This study aimed to apply empirical data to assess wind energy production at the Búrfell site in Iceland based on 
the E44 turbine model. The empirical data are 5 years of recordings at the site location by the Iceland Metrological 
office. The wind speed data are measured at a 10 m height from 2017 to 2021. There are two E44 wind turbines 
test installed on the site. In the previous studies, the wind farm capacity and Levelized cost of energy (LCOE) were 
reported without investigating the wake loss model and its impacts on LCOE and have an estimation applied. The 
previous research was based on the two installed wind turbines at the site, which are located in a straight line 
and perpendicular to the prevailing wind speed. This study applies the Jensen-Katic model to investigate wake 
loss. Downwind and crosswind ten-rotor diameters and five-rotor diameters are calculated respectively as the 
best options. Afterward, an appropriate number of wind turbines is suggested for 80MW production. In addition, 
this study’s optimum capacity factor (CF) is 26.08%, which was reported at 37.9% - 38.38% before. On average, 
the turbines produce less than 30% of their rated power, which has been reported at 38.15% in prior studies. 
This study presents the LCOE as equal to 0.0659 USD/kWh, which is less than 0.0703 USD/kWh in the previous 
studies and the LCOE reported by the 2020 LCOE European report. The obtained LCOE in this study is based 
on the weighted average cost of capital in the energy project by Landsvirkjun, the national power company of 
Iceland. The obtained result from the model used, which matched the empirical measurements, displays Iceland’s 
best rank for wind energy LCOE metric among European countries. The proposed method provides a vision to 
use the wake loss model output in deep learning training to predict power production, leading to a sustainable 
and reliable power grid. 
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. Introduction 

Iceland is the most sustainable energy country in the world, prof-
ting from geothermal energy and hydropower. Moreover, Iceland has
n extraordinary wind energy source ( Nawri et al., 2014 ) which will be
he next alternative resource ( Ragnarsson et al., 2015 ). There is ongo-
ng practical research for wind production by Landsvirkjun, the national
ower company of Iceland, and universities. In a particular location
alled Búrfell, which has extreme wind potential and a nonlimited open
rea to construct a wind farm, two E44 wind turbines test have been in-
talled ( Ragnarsson et al., 2015 ). In prior studies, the recorded data from
he mentioned site was employed to report the LCOE ( Ragnarsson et al.,
015 ; Samuel et al., 2015 ); however, there was no technical aspect of
he wind farm layout based on the wake loss model. 

In research focusing on a single wind turbine performance, the cal-
ulation will provide the outcome for the highest-rated power, which
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auses considerable error in LCOE. Moreover, the single-performance
ind turbine leads to incorrect downwind and crosswind distances,
hich will calculate the number of turbines in the wrong direction for
 specific production. Ragnarsson et al. ( Ragnarsson et al., 2015 ) have
pecified LCOE for the Búrfell site with these assumptions: seven-rotor
iameter downwind and four-rotor diameter crosswind. But there has
ot been a consideration of the wake loss effect, which considerably
mpacts the LCOE and financial aspects. 

Six well-known wake loss models are applied in wind farm layout:
enson-Katic, Larsen, Frandsen, Gaussian-Bastankah, Porté-Agel (BPA),
aussian-Xia and Archer (XA), and Geometric ( Cristina et al., 2018 ).
ansen-Katic model ( Jensen, 1983 ; Katic et al., 1987 ) is built based on
wo principal assumptions; first, the cross-stream integral of the veloc-
ty deficit is preserved because the wake expands linearly downstream
f the wind turbine, and second, the velocity deficit is only a function
f the distance x downstream of the turbine. Larsen ( Larsen, 1988 ) has
@hi.is (M. Riedel) . 
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eveloped an analytical wake loss model using self-similarity and assum-
ng that the wake region behind a wind turbine is defined via Prandtl
urbulent boundary layers equations ( Cristina et al., 2018 ). The Frand-
en model ( Frandsen et al., 2006 ) applies the momentum equation to a
ontrol volume by assuming self-similarity ( Cristina et al., 2018 ). The
randsen model, similar to the Jensen model, also assumes that the ve-
ocity deficit is only a function of distance x downstream of the turbine
nd that wind speed has a constant profile. The Frandsen module is
ecommended for small and large regular wind farms with rectangular
hapes and spacing between turbines equal in both directions and lower
han 10-rotor diameters ( Cristina et al., 2018 , Renkema, 2007 ). Gaus-
ian is a category in wake loss models based on the assumption that
he wind speed deficit 𝛿 follows a Gaussian distribution; thus, it is a
unction of both axial distance x and radial distance r ( Cristina et al.,
018 , Majid and Fernando, 2014 , Xie and Archer, 2015 ). Two models
ere developed based on Gaussian distribution: BPA ( Majid and Fer-
ando, 2014 ) and XA ( Xie and Archer, 2015 ). The BPA model is an
xplicit dependency on y and z, where y and z are the spanwise and ver-
ical coordinates, respectively; the formation is such that it is effectively
xis-symmetric. The XA wake loss model was inspired by the Gaussian
lume model used in air pollution studies to simulate the evolution of a
lume of inert pollutants from a stationary elevated stack. The XA model
s the only wake loss model that is genuinely dependent on z and y as
t predicts a wake that is not axis-symmetric or conical but ellipsoidal,
hich is a more realistic approximation, in particular in the presence of
ind shear ( Xie et al., 2017 ). A specific equation gives the wind speed
eficit in the BPA and XA models. The geometric model ( Ghaisas and
rcher, 2016 ) is a hybrid wake loss model that estimates the relative
ower generated by any downstream turbine with respect to the power
enerated by the front-row turbines. It does not simulate the physical
rocess occurring in wakes. 

Among all described wake loss models, the literature well addressed
he Jensen-Katic, and the XA models are generally recommended be-
ause of their consistently strong performance for all directions and all
arms ( Cristina et al., 2018 ). The Jensen-Katic is recommended for lay-
ut optimization with annual energy production because of satisfied per-
ormance in the correlation coefficient ( Cristina et al., 2018 ). The liter-
ture mentions that the XA is suitable for the wake loss model along the
irection of alignment ( Cristina et al., 2018 ). The subject of this study is
o apply a wake loss model for annual energy production and contrasts
he model output with actual recorded data from test turbines. Hence,
ased on the mentioned studies, the Jensen-Katic model is used. There-
ore, the model is employed to calculate the LCOE of the wind farm
ite to evaluate and correct previous reports, which did not consider the
ake loss issue in the production and LCOE. 

Furthermore, it must be noted that recently deep learning presents a
trong capability in wind speed forecasting ( Gu and Li, 2022 ), which is
n context to essential for power producers to respond and cover the elec-
ricity demand. In deep learning, it is vital to have enough datasets avail-
ble for a reliable prediction. Usually, the training dataset obtains from
n-site measurements or computational fluid dynamics (CFD), which are
ostly and have many constraints. The proposed model in this study pro-
ides an output dataset in the kind of velocity and power applicable for
raining data in deep learning and is possible to implement without the
ecessity of in-site measurement or costly CFD simulation. 

This study is done to supplement the wake loss model and farm lay-
ut to the previous reports ( Ragnarsson et al., 2015 ; Samuel et al., 2015 ),
nd it has corrected the rated power of the E44 turbine and the LCOE
n the mentioned site location. We used the Jensen-Katic model for the
ind farm layout with the technical specifications of turbine E44, which

his turbine was selected by Landsvirkjun, the national power company
f Iceland. Landsvirkjun has installed two turbines E44 in the desired
ind farm location for research and development. 

Although, in a recent study Enercon E44 was the best option tech-
ically and financially ( Samuel et al., 2015 ) instead of Enercon E82,
hich was suggested in 2012 and 2015 ( Ragnarsson et al., 2015 ;
2 
elgason, 2012 ). Hence this paper is organized as follows. The applied
ethod is introduced in Section 2 . The results and discussion are pro-

ided in Section 3 , and the conclusion is presented in Section 4 . 

. Methodology 

.1. Burfell site and measured data 

Búrfell site is located south of Iceland (see Fig. 1 ). Two wind turbines
f Enercon E44 900 KW have been installed at the site. In this study,
ind speed data gathered from the Icelandic Meteorological Office were
ind speed data measured at a 10 m height in the years 2017–202l
 Data bank of Meteorological Office of Iceland, 2022 ); the measurement
as conducted by using a “Young Wind Monitor ”, which is a wind speed

ensor with four blade helicoid propellers. 

,2. Logarithmic wind profile (log law) 

The wind measurement is taken at the height of 10 m; however, the
ub height of an E44 turbine is 55m ( Enercon ). Hence, the logarith-
ic wind profile (log law) in Eq. 1 is applied to scale the wind speed

 Manwell et al., 2004 ; Hansen, 2019 ): 

 ( 𝑦 ) = 

𝑈 

∗ 

𝐾 𝑣 

𝑙𝑛 

( 

𝑦 

𝑦 0 

) 

(1)

here 𝑈 

∗ is defined as the friction velocity, 𝑦 0 is the surface roughness
ength, which characterizes the roughness of the ground terrain and 𝑦 is
he desired height, 𝐾 𝑣 = 0.4 is von Karman’s constant. 

The log law equation can be used to estimate wind speed from
 reference height to another level using the following relationship
 Manwell et al., 2004 ; Hansen, 2019 ): 

𝑈 ℎ 

𝑈 𝑚 

= 

ln 
(
𝑦 ℎ 

𝑦 0 

)

ln 
(
𝑦 𝑚 

𝑦 0 

) (2) 

here 𝑦 ℎ is the hub height, 𝑦 𝑚 is measurement height, 𝑦 0 is the sur-
ace roughness length. The log law is a method for modeling the ver-
ical wind speed profile, and it was developed for flat and homoge-
ous terrain ( Manwell et al., 2004 ). Regarding Búrfell, from visiting
nd Landsverkjun data ( Burfellslundur ), the terrain is a sand surface
see Fig. 2 ); however, the surface is covered by snow in the wintertime.
rom the roughness length ( Hansen, 2019 ; Troen and Petersen, 1989 ),
e applied the terrain as land with a closed appearance 𝑦 0 = 0 . 1 𝑚 to be
ble to cover both terrain surfaces. The results show that this terrain op-
ion is appropriate and provides the wind speed profile and, thus, power
utput E44 wind turbine, which matches the experiment measurement
t the site. Besides the corresponding result, from ( Gu and Li, 2022 ) the
and with few trees matches the site condition in actual view with simi-
ar terrain roughness to the selected one. From Eq. 2 , the scale factor is
btained and leads to the value of the mean wind speed 𝑈̄ and standard
eviation 𝜎𝑈 of the wind speed. 

,3. Weibull distribution and wind rose 

Statistical analysis can be used to determine a given site’s wind
nergy potential and estimate the wind energy output at this site. If
he projection of measured data from one coordinate to another is re-
uired or only summary data are available, then analytical representa-
ion for the probability distribution of wind speed has distinct advan-
ages ( Manwell et al., 2004 ). 

Generally, two probability distributions are used in wind data anal-
sis: Rayleigh and Weibull. The Rayleigh probability density function
ses one parameter, the mean wind speed. The Weibull distribution
unction is based on two parameters and thus can better represent a
ider variety of wind regimes ( Manwell et al., 2004 ). In this study, we
pplied the Weibull probability density function. 
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Fig. 1. Location of the Búrfell site in Iceland, Latitude: 64° 7 ′ 39 ”, Longi- 
tude: -19° 43 ′ 43.6" coordinates at a geographic coordinate system from 

the Icelandic Metrological Office ( The wind power ). 

Fig. 2. A landscape of Búrfell wind park, two E44 turbines are seen in this picture ( Rúnar et al., 2016 ). 
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Determination of the Weibull probability density function requires
 knowledge of two parameters: 𝑘 , a shape factor, and 𝑐, a scale factor.
oth these parameters are a function of 𝑈̄ is the mean wind speed from
he scaled data, and 𝜎𝑈 is the corresponding standard deviation. The
amma function, Γ, is used to find the constant c. The Weibull probabil-
ty density function is given by ( Manwell et al., 2004 ): 

 ( 𝑈 ) = 

(
𝑘 

𝑐 

)(
𝑈 

𝑐 

)𝑘 −1 
𝑒𝑥𝑝 

[ 
− 

(
𝑈 

𝑐 

)𝑘 ] 
(3)

here based on the empirical method (Justus, 1978) ( Manwell et al.,
004 ) k calculated as follows: 

 = 

( 

𝜎𝑈 

𝑈̄ 

) −1 . 086 
(4)

nd thus, c can be calculated via Eq. 5 : 

 = 

𝑈̄ 

Γ
(
1 + 

1 
𝑘 

) (5)

s a recap, the gamma function is, Γ( 𝑥 ) = 

∞
∫
0 
𝑒 − 𝑡 𝑡 𝑥 −1 𝑑𝑡 . 

Eqs. 3 - 5 are used in this study to obtain the Weibull probability den-
ity function, which is presented in the result section. The wind rose is
3 
pplied in this study to find the prevailing wind speed direction. The
ind direction is sorted into 12 bins ranging from 0 to 360 degrees: 30
egrees per bin and the probability of each bin is calculated. 

.4. Wind farm configuration and wake loss model 

Landsvirkjun, the National power company of Iceland, has consid-
red and suggested three areas called plans 1, 2, and 3 ( Rúnar et al.,
016 ). These areas have distinct spaces varied from 33 to 40 km 

2 . The
lans investigation has included the technical, capacity, financial and
nvironmental assessment. In this study, we apply area plan 1, which has
4 km 

2 (see Fig. 3 ). First, the long edge of the area is orientated along the
revailing wind speed direction, which will be represented in the results
ection. Second, the site has overlap space covered with two other plans,
hich makes this study result applicable in the two plans to extend the
ownwind distance, undoubtedly leading to increased power rate and
educed wake loss. However, the selected area must meet other require-
ents, particularly environment assessment, which is not the subject of

his study. 
The area approximately has a rectangular shape. The site’s dimen-

ions have about 10 km long edge and a 3.4 km short edge, which is
 fair assumption to apply the Jensen-Katic wake loss model. It must
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Fig. 3. The area for the Búrfell wind farm is called plane 1. 
The three area options suggested by Landsvirkjun feasibility 
study vary from 33 to 40 km 

2 of space. In this study, we 
apply plane 1, which has a 34 km 

2 area ( Rúnar et al., 2016 ). 

Fig. 4. Draft of the configuration of the wind farm. Note only a limited 
portion of the farm is displayed 
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Fig. 5. Schematic view of the Jesen-Katic wake loss model. Where U 0 is the 
initial free stream velocity, D the turbine diameter, U X the velocity at a dis- 
tance X, D X , wake diameter at a distance X, and q the wake decay constant 
( Manwell et al., 2004 ). 
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f  

t  
e noted that the area is nonlimited by obstacles, and this assumption
rovides us with the downwind and crosswind along the long and short
dges, respectively. 

The wind farm is set up in a rectangular pattern primary assump-
ion, as Fig. 4 depicts. The literature has reported that the wind farm
onfiguration with 8–10 rotor diameters, D, in the downwind direction
nd 5 rotor diameters in the crosswind direction results in array losses
elow 10% ( Manwell et al., 2004 ). Therefore, a crosswind spacing of 5D
s chosen, but the analysis based on the Jensen-Katic wake loss model
as taken five downwind spacing: 8D, 8.5D, 9D, 9.5D, and 10D, and op-
imal spacing is determined. The rotor diameter of the E44 turbine is 44
 ( Enercon ), the crosswind spacing is thus 220 m, and the downwind

anges from 352 m to 440 m. 
In this study, we employed the Jensen-Katic wake loss model. Based

n this model, the diameter of the wake grows linearly with distance
rom the rotor, see Fig. 5 . The local velocity deficit, 𝛿, at a distance 𝑋
rom the rotor is described with the following equation ( Manwell et al.,
004 ; Hansen, 2019 ): 

= 1 − 

𝑈 𝑋 

𝑈 0 
= 

1 − 

√
1 − 𝐶 𝑇 (

1 + 2 𝑞 𝑋 
𝐷 

)2 (6)

here q is the decay constant, 𝐶 𝑇 is the trust coefficient, which can be
erived from the axial induction factor as follows: 

 = 

1 
2 

(
1 − 

√
1 − 𝐶 𝑇 

)
(7)
o  

4 
This study has taken 𝑎 = 1∕3 ( Manwell et al., 2004 ), which result-
ng in 𝐶 𝑇 = 0 . 89 . Wake decay constant, q, is a function of numerous
actors, including ambient turbulence intensity, turbine-induced turbu-
ence, and atmospheric stability. Katic notes that q = 0.11 is appropriate
or the downstream turbine ( Manwell et al., 2004 ). 

Jensen-Katic wake loss model assumes that the local velocity deficit
or each turbine in a row is calculated independently with Eq. 6 . The
otal deficit for each turbine has been calculated as a sum of squares
f the local deficit upwind to the turbine, which is described with the
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Fig. 6. Schematic drawing of the wake growth 
between turbine rows 
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Table 1 
Mean and standard deviation from wind speed data from 

2017 to 2021, before and after height scaling 

Height, m Mean Velocity, m/s Standard Deviation, m/s 

10 6.80 4.30 
55 9.32 5.89 
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quation below: 
 

1 − 

𝑈 𝑋 

𝑈 0 

) 2 
= 

( 

1 − 

𝑈 𝑋, 1 

𝑈 0 

) 2 
+ 

( 

1 − 

𝑈 𝑋, 2 

𝑈 0 

) 2 
(8)

The total velocity deficit, 𝜉, for the n-th turbine is thus: 

𝑛 = 

√ √ √ √ 

𝑛 ∑
𝑖 =1 
𝛿2 
𝑖 

(9)

nd the velocity at the n-th turbine is given as 𝑈 𝑛 = 𝑈 0 ( 1 − 𝜉𝑛 ) . 
Row independence is determined first by applying the wake model

o the whole wind farm; thus, the wake of one row affects the neigh-
oring row. As previously mentioned, the wake’s diameter, and hence
he radius, expands linearly with distance from the rotor. Since the rows
re spaced 5D apart, the wake from one row will interact with its neigh-
oring rows once the radius of the trailing wake, 𝑅 𝑤 , becomes 4.5D, as
ig. 6 illustrates. The radius of the wake is described with the following
quation: 

 𝑤 = 

𝐷 

2 
+ 𝑞𝑋 (10)

here D is the rotor diameter. 
The average production of turbines in wind farm configuration will

e specified and will use to calculate the capacity factor (CF) via the
ollowing equation ( Manwell et al., 2004 ; Hansen, 2019 ): 

𝐹 = 

𝑃 

𝑃 𝑛𝑎𝑚𝑒 
(11)

here 𝑃 is the average power production, and 𝑃 𝑛𝑎𝑚𝑒 is the nameplate
roduction, which is 900kW for the E44 turbine ( Enercon ). The ratio of
perating time for the turbines is assumed to be 0.97. 

.5. Levelized Cost of Energy (LCOE) 

The Levelized Cost of Energy (LCOE) criterion is defined by the In-
ernational Renewable Energy Agency and is a widely used indicator
or comparing and evaluating energy technologies. The LCOE measure
s defined as the cost value of an energy project at the time of con-
truction divided by the current value of all energy produced during the
roject’s lifetime. LCOE is a helpful tool for comparing different energy
echnologies and assuming 25 years of operation. The equation for LCOE
s ( Manwell et al., 2004 ): 

𝐶𝑂𝐸 = 

∑𝑁 

𝑛 =0 
𝐼 𝑛 + 𝑀 𝑛 + 𝐹 𝑛 

( 1+ 𝑑 ) 𝑛 ∑𝑁 

𝑛 =1 
𝑄 𝑛 

( 1+ 𝑑 ) 𝑛 
(12)

here 𝐼 𝑛 is the initial capital expenditure (ICE), 𝑀 𝑛 is the maintenance
nd operation costs (MOC), 𝐹 𝑛 is fuel costs, which is negligible in this
ase, 𝑑 is the weighted average cost of capital (WACC), and 𝑄 𝑛 is the
otal annual production (TAP) in year n. In the LCOE calculation, energy
roduction in the planned lifetime is crucial, and therefore it is essen-
ial to provide a valid estimation and simulation of the project in energy
roduction. In the wind farm, the wake loss model has a considerable
ffect, and it is essential to assess its effects. In this context, this study
5 
onsidered the LCOE of a wind farm project in the specified site in Ice-
and in the presence of a wake loss model. The examination presents
ifferent results in contrast to previous studies that only considered the
ated power production of a single wind turbine without wake loss. 

. Results 

.1. Wind speed 

Based on log law Eq. 2 , the wind speed scale factor is 1.37 for wind
peed data used in this study, which dictates a 37% increase in veloc-
ty in the turbine E44 hub relative to the measurement height. Table 1
hows the changes in mean and standard deviation, and Fig. 7 displays
he logarithmic wind profile. 

We used mean velocity and standard deviation from Table 1 , and the
onstants k and c were calculated to equal 1.674 and 10.427, respec-
ively. The achieved Weibull probability distribution curve is presented
n Fig. 8 . Regarding the prevailing wind direction, the wind rose is il-
ustrated in Fig. 9 . For the wind rose, 0 degrees are defined to the east,
nd a counterclockwise is considered positive. The primary wind speed
irection from 5 years of measured data is between 30 and 60 degrees
r Northeast. Búrfell site, based on plan 1 considered and suggested by
ansdvirkjun, has a long edge oriented to the prevailing wind speed di-
ection and a short edge approximately perpendicular to the wind speed
irection. Therefore, the area has a desired condition to specify wind
urbine layout and optimized power production. 

Based on the given wind data, each wind speed is linearly interpo-
ated with the power production data to determine the power produc-
ion of a wind turbine. The power curve for an E44 turbine is applied
see Fig. 10 ) ( Enercon ). For the given wind speed data, the average pro-
uction of an E44 turbine is calculated as 387.3 kW, so to achieve an
nnual average of 80 MW, 206 turbines would be required. But this
stimation is without the wake loss impact, which is highly reduced
roduction when it is taken into effect —the applied method calculated
he average output as 387.3 kW, which means 43.03% capacity factor.
he onsite measurement for two installed turbines, the capacity factor
rom February 2013 to January 2014, has been reported in the range of
7.28%–40.39% ( Ragnarsson et al., 2015 ), which shows that our model
rovides significantly similar CP. 

.2. Wind farm layout 

From Eq. 10 , the critical distance in a downstream direction where
he trailing wake starts interacting with the neighboring rows and makes
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Fig. 7. Logarithmic wind profile considering a sand surface roughness of 0.1 m 

Fig. 8. The Weibull probability distribution for the scaled wind speed 

Fig. 9. The wind rose to display the probability of each wind direction bin 
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6 
o velocity deficit is 1600 m. The calculation from Eq. 6 represents the
elocity deficit of 0.82%, which could be considered negligible, making
t possible to assume the wind turbine rows are independent of each
ther. 

This study looks for a layout design with an optimized distance be-
ween wind turbine rows. Based on the determined assumption for the
ndependent wind turbine rows, the production calculation is applied
o a single row, and thus the number of rows in the defined area will
etermine the possible production. For each row, the power for a given
ind speed is specified via an interpolation function. In each row, the
rst turbine has the maximum possible power rate, but from the second
ind turbine to the end of the row, the power rate of each turbine is
ffected by velocity deficit based on the Jensen-Katic wake loss model
n this study. 

To illustrate a downstream distance variation, we calculated the av-
rage production per turbine in a row, and Table 2 displays the result.
ig. 11 shows how the average power production in a row reduced with
 shorter distance downwind. The results mention layout configuration
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Fig. 10. E44 Turbine power curve ( Enercon ) 

Table 2 
Results from production calculations for each downwind spacing analyzed, showing average and total production per row, number of rows 
and turbines needed, and total production of the windfarm layout 

Downwind 
spacing 

Turbines per 
row 

Average production per 
turbine in a row [kW] 

Total production 
per row [kW] 

Number of rows to 
achieve 80MW 

Total number 
of Turbines 

Total production 
[MW} 

8D 28 200.88 5.62 15 420 84.4 
8.5D 26 210.72 5.48 15 390 82.2 
9D 25 219.18 5.48 15 375 82.2 
9.5D 23 227.60 5.23 16 368 83.8 
10D 22 234.73 5.16 16 352 82.6 

Fig. 11. Mean production of each turbine as a 
function of turbine number, turbine number 1 
being the front wind turbine 

Table 3 
The capacity factor for average production per row 

Downward spacing 8D 8.5D 9D 9.5D 10D 

CF 0.2232 0.2341 0.2435 0.2529 0.2608 
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ith a 10D downwind distance will provide much better power. This
tudy suggested the layout in Table 2 with 80MW production. The capac-
ty factor (CF) corresponding to each investigated layout configuration
s presented in Table 3 . The results for capacity factor show the turbines
roduce less than 30% of their related power on average. Table 4 shows
ow the spatial configuration occupies the available land for the total
roduction of 80MW. 
7 
.3. LCOE for Búfrell layout configurations 

LCOE is a reliable index to assess an energy project’s feasibility.
ccording to Eq. 12 , gathering financial information regarding the
roject’s construction, commissioning and maintenance are necessary.
he inflation rate is affecting the project cost, which has been taken

nto assessment. Based on the information regarding two E44 wind tur-
ines installed and commissioned, the cost data have been acquired
rom Landsvirkjun. The reported data from 2014 are composed of 2299
SD/kWh for ICE and 0.015 USD/kWh for OPM. To update the project
ost information, we used the inflation rate from Hagstofa Íslands
Statistics Iceland) from 2014 to 2021. The up-to-date project cost for
his evaluation is investigated by ICE = 2800 USD/kWh and OPM = 0.018
SD/kWh ( Ragnarsson et al., 2015 ). The project time life is assumed to
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Table 4 
Land utilization for the different configurations analyzed 

Downwind spacing Number of rows Cross distance [m] The ratio of available land utilized 

8D 15 3300 0.97 
8.5D 15 3300 0.97 
9D 15 3300 1.03 
9.5D 16 3520 1.03 
10D 16 3520 1.03 

Table 5 
Levelized Cost of Energy according to different configurations analyzed 

Option Number of wind turbines TAP[MW] LCOE, d = 6% LCOE, d = 10% 

1 420 84.4 0.0659 USD/kWh 0.0894 USD/kWh 
2 390 82.2 0.0659 USD/kWh 0.0894 USD/kWh 
3 375 82.2 0.0659 USD/kWh 0.0894 USD/kWh 
4 368 83.8 0.0659 USD/kWh 0.0894 USD/kWh 
5 352 82.6 0.0659 USD/kWh 0.0894 USD/kWh 
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e 25 years, and for these 25 upcoming years, the inflation rate will af-
ect the OPM ( Ragnarsson et al., 2015 ). The average of the current eight
ears inflation rate in Iceland was calculated at 2.5%, which is applied
s the annual inflation rate for the following years. The European wind
rojects determine WACC is 10% ( Ragnarsson et al., 2015 ); however,
andsvirkjun in Iceland applies it equal to 6% ( Ragnarsson et al., 2015 ).
o compare this project to the European rate, both WACC is calculated
nd reported in Table 5 . Total annual production is varied depending
n the site configuration, and Table 5 mentions the LCOE of the Búfrell
ite based on suggested layouts. 

This study employed a wake loss model to set up the wind farm
ayout and investigate power production. Previous studies have applied
 few assumptions which have impacted the results severely, and we are
isting literature assumption and their effects: 

• The capacity factor has been used equally to the CP of two E44 wind
turbines installed, but we must notice that the applied CP is without
wake loss effects for a single wind turbine, and it is well known the
wake impacts the CP extensively. 

• The E44 test turbines’ CP measurements are modified and scaled
for an E82 wind turbine. First, it is crucial to notice that E82 has
a larger rotor diameter than E44, which directly affects the wake
loss model and changes in the CP amount. (E82 rotor diameter is
82 m) ( Xie and Archer, 2015 ). Hence, the ICE and OPM for an E44
wind turbine for the test turbine could not be used for the E82 wind
turbine project without an accurate correction factor because E82
has a much higher height (hub height 78 m) than E44, which will
make distinct cost effect. Regarding the OPM, there are similar issues
that must be taken into consideration. 

As mentioned above, having a correct LCOE calculation first must
imulate the wind farm with the effect of the wake loss model. It is
pparent that the rated power of a single wind turbine is far from ac-
ual power production in a wind farm with a number of turbines and
akes loss effects. In this study, the wake loss model application indi-

ates the optimum capacity factor (CF) is 26.08%, which was reported
t 37.9% - 38.38% in the previous study ( Ragnarsson et al., 2015 ).
oreover, the turbines produce less than 30% of their rated power,
hich has been reported at 38.15% in prior studies ( Ragnarsson et al.,
015 ). From a previous study with WACC = 10%, the LCOE is calculated
t 0.0873 USD/kWh. Furthermore, the previous work reported 5% and
0% wake loss impact assumptions taken into consideration without
odeling and simulation; the LCOE will be 0.0907 USD/kWh and USD
.1047 USD/kWh, respectively. With the Jensen-Katic model, which is
 reliable method, current study displays LCOE as 0.0659 USD/kWh.
he impacts of wake loss are considerable and apparent in calculated
haracteristics. 
8 
. Conclusions 

In this study, we applied empirical data from wind speed measured
rom 2017 to 2021 at the 10 m height at the Búrfell location, which has
wo E44 turbines installed by Landsvirkjun, the national power com-
any of Iceland. We modified the wind speed profile by log law and
btained the mean velocity and standard deviation at the hub height of
he E44 wind turbine. Weibull probability function and the prevailing
ind speed direction are also specified. Based on the applied method,

he wind power production capacity factor is calculated by the technical
pecification and power curve of the E44 wind turbine. The calculated
F is 43.03% which considerably matches the CF measurement from
wo wind turbines installed at the location from February 2013 to Jan-
ary 2014 in the range of 37.28%–40.39% ( Ragnarsson et al., 2015 ) and
ictates the applied method and the surface roughness selected in this
tudy could be used to design this wind farm. In the context of wind
arm design and wind power production, wake loss is a crucial issue.
revious studies for the nominated location applied an individual power
roduction of an E44 turbine to calculate the wind farm capacity, and
hey assumed the production equal to how many wind turbines with a
ominal power rate. However, wake loss is a critical issue and impacts
he wind production rate. This study applied the Jensen-Katic model to
xamine the wake loss effect on the wind turbine power rate. The result
hows that with a 5D crosswind and 10D downwind design, the wind
arm layout can be an optimized design for power production based on
his study’s modified wind speed profile. The optimized capacity factor
s 26.08% which is lower than CP reported in the previous research at
úrfell without wake loss examination. It leads to different numbers of
ind turbines producing a specified total power production. The inves-

igated site, with plan 1 specification from Landsvirkjun, can produce
0 MW power with 352 of E44 wind turbines and will cover 103% of
he area space with an optimized design. 

With financial data from installed turbines and economic factors,
articularly inflation, the LCOE of a potential wind farm was exam-
ned via this design for 25 years. The results show for optimized de-
ign, if WACC is 10% applied from European projects, the LCOE is
.0894 USD/kWh, and with WACC = 6%, which Landsvirkjun often takes
n Iceland, the LCOE is 0.0659 USD/kWh. The obtained LCOE, in
ontrast to the European report in 2020 with WACC = 10%, is lower
 Ragnarsson et al., 2015 ), and it is displayed that Iceland has excellent
echnical and economic conditions to produce wind power technically
nd economically. However, the WACC of Landsvirkjun is 6%, leading
o a much lower LCOE than the European metric. 

The applied approach in most results matches the empirical mea-
urement, which makes this model applicable to predicting power pro-
uction. This study provided a wind speed profile model analogous to
xperiment measurement. 
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Recently, deep learning has been applied to turbulent flow
assanian et al., 2022 , and the assessment indicates it can predict the
uid flow Hassanian et al., 2022 . Since wind speed is in the range of
urbulent flow Hassanian et al., 2023 , it is a crucial issue that power
roducers must have wind speed forecasting to be able to respond to
he demand for electricity. This topic has been investigated for an ex-
ended period and is still ongoing. The matter in deep learning to have
 reliable prediction is the recorded input data to train the model and
redict. Besides, the period of the recorded data is a practical subject to
ave enough data. Deep learning in wind energy production has been
sed in many studies from in-site measured data, but the wind speed
easurement in every coordinate and condition deals with many con-

traints. 
In this study, the applied wake loss model generated wind speed data

n different coordinates that have been matched the actual data. Hence,
his approach could create a data set with a specific period, employ it
s input data in deep learning, and conduct wind power forecasting for
he power producer. It is not essential to measure the wind speed for
very single turbine or the wind speed at the turbine blade height. The
nly requirement characterization is the average speed in a determined
eight and then using the proposed method to create datasets for a wind
arm as input of deep learning. The planned future study will aim to
nvestigate and present this capability. 

Therefore, it is possible to employ the model to predict the wind
peed via artificial intelligence ( Gu and Li, 2022 ), such as Long short-
erm memory, convolutional neural networks, and Gated Recurrent
nits, which are capable of creating appropriate production for sequen-

ial datasets based on recent applications ( Gu and Li, 2022 ). Truly wind
peed prediction model in wind energy power leads to a sustainable
ower grid that has considerable outcomes in clean, stable, green, and
eliable energy resources. Artificial intelligence has been opened an ex-
iting landscape in wind forecasting, which is a function of training in-
ut datasets; hence study in this area to reinforce the deep learning
raining data from arithmetic models besides practical measurements
nd CFD simulation is essential and effective. 
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