European Fitness Landscape in Children and Adolescents: updated reference values, fitness maps, and country rankings based on nearly 8 million data points from 34 countries gathered by the FitBack network

Francisco B Ortega ${ }^{1,2,3}$, Bojan Leskošek ${ }^{4}$, Rok Blagus ${ }^{4,5}$, Jose J. Gil-Cosano ${ }^{1}$, Jarek Mäestu ${ }^{6}$, Grant Tomkinson ${ }^{7,8}$, Jonatan R. Ruiz ${ }^{1,3,9}$, Evelin Mäestu ${ }^{6}$, Gregor Starc ${ }^{4}$, Ivana Milanovic ${ }^{10}$, Tuija H. Tammelin ${ }^{11}$, Maroje Sorić ${ }^{4,12}$, Claude Scheuer ${ }^{13,14}$, Attilio Carraro ${ }^{15}$, Mónika Kaj ${ }^{16}$, Tamás Csányi ${ }^{16,17,18}$, Luis B. Sardinha ${ }^{19}$, Matthieu Lenoir ${ }^{20}$, Arunas Emeljanovas ${ }^{21}$, Brigita Mieziene ${ }^{21}$, Labros S. Sidossis ${ }^{22}$, Maret Pihu ${ }^{23}$, Nicola Lovecchio ${ }^{24,25}$, Kenn Konstabel ${ }^{26,27}$,
 Seryozha Gontarev ${ }^{35}$, José Castro-Piñero ${ }^{36,37}$, Jérémy Vanhelst ${ }^{38}$, Brendan O’Keeffe ${ }^{39}$, Oscar L. Veiga ${ }^{40}$, Thordis Gisladottir ${ }^{41}$, Gavin Sandercock ${ }^{42}$, Marjeta Misigoj-Durakovic ${ }^{12}$, Claudia Niessner ${ }^{43}$ Eva-Maria Riso ${ }^{23}$, Stevo Popovic ${ }^{44,45}$, Saima Kuu ${ }^{46}$, Mai Chinapaw ${ }^{47}$, Iván Clavel ${ }^{48,49}$, Idoia Labayen ${ }^{50}$, Janusz Dobosz ${ }^{51}$, Dario Colella ${ }^{52}$, Susi Kriemler ${ }^{53}$, Sanja Salaj ${ }^{12}$, Maria Jose Noriega ${ }^{54}$, Klaus Bös ${ }^{55}$, Mairena Sánchez-López ${ }^{56,57}$, Timo A. Lakka ${ }^{58,59,60}$, Garden Tabacchi ${ }^{61}$, Dario Novak ${ }^{12}$, Wolfgang Ahrens ${ }^{62}$, Niels Wedderkopp ${ }^{63}$, and Gregor Jurak ${ }^{4}$, and the FitBack, HELENA and IDEFICS consortia.
${ }^{1}$ PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain.
${ }^{2}$ Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
${ }^{3}$ Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
${ }^{4}$ Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia.
${ }^{5}$ Institute for Biostatistics and Medical Informatics, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; and Faculty of Mathematics, Natural Sciences and Information technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia.
${ }^{6}$ Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, Tartu, Estonia.
${ }^{7}$ Department of Education, Health and Behavior Studies, University of North Dakota, Grand Forks, North Dakota, United States.
${ }^{8}$ Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia.
${ }^{9}$ Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.
${ }^{10}$ University of Belgrade, Faculty of sport and physical education, Belgrade, Serbia.
11 JAMK University of Applied Sciences, School of Health and Social Studies, LIKES, Jyväskylä, Finland.
${ }^{12}$ University of Zagreb, The Faculty of Kinesiology, Zagreb, Croatia.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
${ }^{13}$ European Physical Education Association.
${ }^{14}$ Department of Education and Social Work, University of Luxembourg.
${ }^{15}$ Faculty of Education, Free University of Bozen-Bolzano, Italy.
${ }^{16}$ Hungarian School Sport Federation, Hungary.
${ }^{17}$ Department of Physical Education, Faculty of Primary and Pre-School Education, ELTE, Eötvös Loránd University, Hungary.
${ }^{18}$ Institute of Teacher Education, Hungarian University of Sports Science, Hungary.
${ }^{19}$ Exercise and Health Laboratory, CIPER, Faculty of Human Kinetics, University of Lisbon, Lisbon, 1499-002 Cruz-Quebrada, Portugal". Please change to: Exercise and Health Laboratory, CIPER, Faculty of Human Kinetics, Universidade de Lisboa, Lisbon, 1499-002 Cruz-Quebrada, Portugal.
${ }^{20}$ Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University.
${ }^{21}$ Lithuanian Sports University, Department of Physical and Social Education.
${ }^{22}$ Mediterranean Lifestyle Medicine Institute and Department of Kinesiology and Health, Rutgers University, USA.
${ }^{23}$ Institute of Sport Sciences and Physiotherapy, University of Tartu, Tartu, Estonia.
${ }^{24}$ Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy.
${ }^{25}$ Confederation of Italian Associations of Physical Education Teacher (Capdi \& LSM), Venezia, Italy.
${ }^{26}$ Department of Chronic Diseases, National Institute for Health Development, Tallinn, Estonia.
${ }^{27}$ Institute of Psychology, University of Tartu, Tartu, Estonia.
${ }^{28}$ Harokopio University, Department of Nutrition and Dietetics, Athens, Greece.
${ }^{29}$ National and Kapodistrian University of Athens, Department of Physical Education and Sport Science, Athens, Greece.
${ }^{30}$ Faculty of Sports Studies, Masaryk University, Brno, Czech Republic.
${ }^{31}$ Recruitment and Examination (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic.
${ }^{32}$ Division of Sport, Physical Activity and Health, University of Education Upper Austria, Linz, Austria.
${ }^{33}$ Institute of Active Lifestyle, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic.
${ }^{34}$ Department of Physical Education and Sport, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic.
${ }^{35}$ Faculty of Physical Education, Sport, and Health. Ss. Cyril and Methodius University. Skopje, R. N. Macedonia.
${ }^{36}$ GALENO Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Puerto Real, Cadiz, Spain.
${ }^{37}$ Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, University of Cadiz, Cádiz, Spain.
${ }^{38}$ Univ. Lille, Inserm, CHU Lille, U1286-INFINITE - Institute for Translational Research in Inflammation, and CIC 1403 - Clinical Investigation Center, F-59000, Lille, France.
${ }^{39}$ Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.
${ }^{40}$ EstiLIFE Research Group. Department of Physical Education, Sport and Human Movement. Faculty of Teaching Training and Education. Autonomus University of Madrid. Madrid, Spain.
${ }^{41}$ Center of Sport and Health Sciences, School of Education, University of Iceland, Reykjavik Iceland.
${ }^{42}$ School of Sport Rehabilitation and Exercise Science, University of Essex, Colchester, UK.
${ }^{43}$ Institute for Sport and Sport Science, Karlsruhe Institute of Technolgy, Germany.
${ }^{44}$ University of Montenegro, Faculty for Sport and Physical Education, Niksic, Montenegro.
${ }^{45}$ Western Balkan Sport Innovation Lab, Podgorica, Montenegro.
${ }^{46}$ Tallinn University, School of Natural Sciences and Health, Estonia.
47 Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Public and Occupational Health, Amsterdam Public Health Research Institute, de Boelelaan 1117, 1081 BT Amsterdam, The Netherlands.
${ }^{48}$ Galician Sport Foundation, General Sport Secretariat, Galician Government, Santiago de Compostela, Spain.

49 Performance and Health Group. Faculty of Sport Sciences and Physical Education, Department of Physical Education and Sports, University of A Coruña. A Coruña, Spain.
${ }^{50}$ Research Institute for Innovation \& Sustainable Food Chain Development, Department of Health Sciences, Public University of Navarra, Pamplona, Spain.
${ }^{51}$ Józef Piłsudski University of Physical Education in Warsaw, Poland.
${ }^{52}$ Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
53 Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.
${ }^{54}$ Department of Physiology \& Pharmacology University of Cantabria, Cantabria, Spain.
${ }^{55}$ Institute for Sport and Sport Science, Karlsruhe Institute of Technology, Germany.
${ }^{56}$ Universidad de Castilla-La Mancha, Health and Social Research Center, Cuenca, Spain.
${ }^{57}$ Universidad de Castilla-La Mancha, School of Education, Ciudad Real, Spain.
${ }^{58}$ Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland.
${ }^{59}$ Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland.
${ }^{60}$ Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland.
${ }^{61}$ Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy.
${ }^{62}$ Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany.
${ }^{63}$ The Pediatric Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

Correspondence to:

Francisco B. Ortega, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Carretera de Alfacar s/n 18071 Granada, Spain. E-mail: ortegaf@ugr.es
medRxiv preprint doi: https://doi.org/10.1101/2022.06.09.22275139; this version posted June 13, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

Gregor Jurak, Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia. E-mail: Gregor.Jurak@fsp.uni-lj.si

Abstract

Objectives: (1) To develop reference values for health-related fitness European children and adolescents aged 6-18 years that are the foundation for the web-based, open-access and multilanguage fitness platform (FitBack); (2) To provide comparisons across European countries.

Methods: This study builds on a previous large fitness reference study in European youth by: (1) widening the age demographic, (2) identifying the most recent and representative country-level data, and (3) including national data from existing fitness surveillance and monitoring systems. We used the ALPHA test battery as it comprises tests with the highest test-retest reliability, criterion/construct validity, and health-related predictive validity: the $20-\mathrm{m}$ shuttle run (cardiorespiratory fitness); handgrip strength and standing long jump (muscular strength); and body height, body mass, body mass index, and waist circumference (anthropometry). Percentile values were obtained using the GAMLSS method.

Results: A total of 7,966,693 data points from 34 countries (106 datasets) were used to develop sex- and age-specific percentile values. In addition, country-level rankings based on mean percentiles are provided for each fitness test, as well as an overall fitness ranking. Finally, an interactive fitness platform, including individual and group reporting, and European fitness maps, is provided and freely available at www.fitbackeurope.eu.

Conclusions: This study discusses the major implications of fitness assessment in youth from a health, educational and sport perspective, and how the FitBack reference values and interactive web-based platform contribute to it. Fitness testing can be conducted in school and/or sport settings, and the interpreted results be integrated in the healthcare systems across Europe.

What is already known on this topic

- Fitness testing in youth is important from a health, educational and sport point of view.
- The EU-funded ALPHA project reviewed the existing evidence and proposed a selection of field-based fitness tests that showed the highest test-retest reliability, criterion/construct validity, and health-related predictive validity among available tests.

What this study adds

- The FitBack project provides the most up-to-date and geographically diverse reference fitness values for 6-to 18-year-old Europeans.
- This study introduces the first web-based, open-access, and multi-lingual fitness reporting platform (FitBack) providing interactive information and visual mapping of the European fitness landscape.

How this study might affect research, practice, or policy

- From a health perspective, very low fitness levels are a non-invasive indicator of poor health at both the individual and group level (e.g., school, region), which have utility for health screening and may guide public health policy. There are already examples of regional and national fitness testing systems that are integrated into the healthcare systems.
- From an educational perspective, fitness testing is part of the school curriculum in many countries, and the FitBack platform offers physical education teachers an easy-to-use tool for interpreting fitness test results by sex and age.
- From a sport perspective, these reference values can help identify young individuals who are talented in specific fitness components.

INTRODUCTION

Robust and consistent evidence supports that physical fitness is a powerful marker of health in children and adolescents [1,2]. Among the different fitness components, cardiorespiratory fitness (CRF, used in the literature and this article interchangeably with aerobic fitness) and muscular strength (used in the literature and this article interchangeably with muscular fitness) have shown the strongest and most consistent health-related associations, and are therefore considered to be health-related [3,4]. Other fitness components include muscular endurance, flexibility, motor fitness, and body composition/anthropometry (height, body mass, body mass index (BMI), and waist circumference). Recently, data from large registries have added compelling evidence linking both CRF and muscular strength in late adolescence with all-cause mortality and cardiovascular- and cancer-specific mortality in later life [5-8]. In addition, these two fitness components predict severe, chronic, and irreversible all-cause disease 30 years later as indicated by granted disability pensions [9-12], and also specifically cardiovascular, musculoskeletal, neurological, and psychiatric diseases granted by a disability pension [9-12]. Particularly, CRF is the most well-studied and strongest predictor of future health. Indeed, a position stand from the American Heart Association has highlighted the clinical value of CRF in youth and recommended that it be regularly assessed [13].

In addition to the well-documented associations between fitness and physical/mental health among youth [1-4,14], emerging evidence supports that better fitness is related to better cognition, academic performance, and healthier structural and functional brain outcomes [1529]. For example, recent observations from the ActiveBrains project have shown that whole brain size, as well as total gray and white matter volumes, is larger in fit compared to unfit children with overweight/obesity [30]. This is important because brain size is positively associated with intelligence [31].

This evidence begs the question: what are the best methods to assess health-related fitness among children and adolescents? The EU-funded ALPHA project was designed to answer this question. By conducting a set of systematic reviews [2,32,33] and methodological papers, the ALPHA consortium aimed to identify which field-based fitness tests demonstrated the highest test-retest reliability, criterion/construct validity, and health-related predictive validity (see ALPHA summary article [34]). Anthropometry and body composition were tightly linked to fitness performance and health, and were therefore considered as fitness components in the ALPHA project. The final output of the project was the ALPHA-fitness test battery for children and adolescents, which in its High-Priority version (a shorter, more suitable version for school-based use) recommended using: the $20-\mathrm{m}$ shuttle run test for assessing CRF; the handgrip and standing long jump tests for assessing muscular strength and power; and BMI and waist circumference as indicators of total and central obesity. A year later and after following a similar systematic review process, the U.S. Institute of Medicine (now the National Academy of Medicine) recommended these tests for the assessment of youth physical fitness [35,36], strengthening the recommendation of using these selected tests.

The EU-funded the FitBack consortium (www.fitbackeurope.eu) titled the European Network for the Support of Development of Systems for Monitoring Physical Fitness of Children and Adolescents. The major goal of the network is to take an important step toward the implementation of fitness surveillance and monitoring across Europe as an educational tool for
physical literacy[37]. Physical literacy can be defined as 'the motivation, confidence, physical competence, knowledge and understanding to value, and take responsibility for, maintaining purposeful physical pursuits/activities throughout the life-course"[38]. In this context, fitness testing should be much more than just 'one more school assessment'. Schools are in a unique position to positively affect the physical activity and physical fitness levels of their students not only in the short term, but also by instilling values and skills that will help children throughout their lives.

The final output of the FitBack project has been the development of a web-based, open-access, and multi-language fitness platform, which allows the results of fitness testing to be automatically and interactively interpreted based on sex- and age-specific reference values, and is supported by user-friendly visual feedback and tips for improvement. For this purpose, we gathered available fitness data on European children and adolescents, accumulating 8 million data points to create reference values for European children and adolescents aged 6 to 18 years.

The aim of this article is to present the most comprehensive and up-to-date health-related fitness reference values for European children and adolescents. Additionally, we provide European fitness maps for the main health-related fitness components. Since pediatric obesity is being comprehensively monitored by other organizations (e.g., World Obesity Federation www.worldobesity.org/, WHO-Europe www.euro.who.int/en/health-topics/disease-prevention/nutrition/activities/who-european-childhood-obesity-surveillance-initiative-cosi), the focus of this article is mainly on CRF and muscular strength. Nonetheless, we also provide reference values and European maps for anthropometric measures (body height, body mass, BMI, and waist circumference) as online supplementary material.

METHODS

Data search and pooling

A systematic review of existing data sets including fitness tests in children and adolescents was previously performed by Tomkinson et al. and details of the search have been published [39]. These data were included in the FitBack dataset, with Monte Carlo simulation used to produce pseudodata (from reported means and SDs) when raw data were unavailable. In addition to this, the authors of the FitBack network conducted a narrative search based on fitness terms to identify new datasets not included in the Tomkinson et al. review [39]. For inclusion, valid data on sex, age and at least one of the ALPHA fitness tests (High-Priority version) was required. In the previous study by Tomkinson et al., the age range was 9 -to 17 -year-olds, whereas in this study we widened the age demographic to include 6-to 18-year-olds. It is important to note that our search strategy was fitness focused, and specific searches on adiposity, BMI, or waist circumference were not conducted for pragmatic reasons (e.g., the very large number of studies including these key words). Therefore, it is possible that we missed relevant anthropometryspecific datasets. This, together with the fact that other organizations are comprehensively monitoring pediatric obesity, is the reason why we primarily focused on CRF and muscular strength, and reported results for anthropometric measures (body height, body mass, BMI, and waist circumference) as online supplementary material.

The FitBack network involved many experienced researchers working in pediatric fitness across Europe, which helped to identify unpublished fitness datasets that were pooled with the gathered data. Moreover, massive data from existing surveillance systems in Europe were also included. Further, we excluded older datasets if a more recent and more representative dataset was available for certain countries. The ambition was to use the most recent available data for each country, which in some cases was a single large dataset, while in others was the accumulation of several studies or datasets covering different geographical regions within a country. Sources used for generating the reference values are available on the FitBack website (www.fitbackeurope.eu/en-us/fitness-map/sources) as well as in Online Supplementary Table 1. The entire Fitback procedures for pooling together existing fitness data were evaluated and approved by the Ethics Committee in Sports Science at the University of Ljubljana, Slovenia (the University coordinator the FitBack project).

Physical fitness measures

The FitBack dataset was compiled for studies that used the ALPHA fitness test battery [2,3234], since these tests have shown to be feasible, reliable, valid, and scalable for children and adolescents. Moreover, some of them are used in well-established European national fitness surveillance and monitoring systems, like SLOfit [40], NETFIT [41], and Fitescoula [42]. Specifically, CRF was assessed using the $20-\mathrm{m}$ shuttle run test [43]. The number of completed stages was used as an indicator of CRF. However, different studies had expressed the result of the $20-\mathrm{m}$ shuttle run test in other units, such as completed laps (shuttles) or speed at the last completed stage, and there are at least three known protocols/versions of this test [44]. All data were converted and harmonized into completed stages according to the original Léger's protocol [43], as described elsewhere [44]. Muscular strength was assessed by the handgrip strength (i.e., upper-limb muscular strength) and standing long jump tests (i.e., lower-limb muscular strength). Total and abdominal adiposity were assessed by BMI and waist circumference, respectively, following standardized procedures. For handgrip, most studies collected data from both hands,
with the average of the maxima for both hands used in our analyses. Two studies had handgrip strength data only for the dominant hand, which is known to be systematically higher compared to the non-dominant hand. Exploratory analyses on Spanish data in children [45] showed a 0.6 kg mean difference between hands and thus, we applied a -0.3 kg correction factor to these two studies to estimate the average score.

Statistical analysis

We applied different cleansing procedures to the data. First, data were trimmed to remove values outside the probable lower and upper limits. The limits were defined based on authors' experiences working with previous large datasets. The limits used were: $20-\mathrm{m}$ shuttle run ($0-21$ stages), handgrip strength ($0-80 \mathrm{~kg}$), standing long jump ($15-330 \mathrm{~cm}$), body height ($80-220 \mathrm{~cm}$), body mass ($0-200 \mathrm{~kg}$), BMI ($7-60 \mathrm{~kg} / \mathrm{m}^{2}$), and waist circumference ($40-130 \mathrm{~cm}$). Second, outliers were identified and removed as follows. For each fitness measure, herein referred to as the test, a multivariate regression model including the test as the dependent variable and age (modelled as a cubic spline with 5 degrees of freedom), sex, and their interaction as independent variables was fitted. Studentized residuals were obtained and then 0.01% subjects with the smallest and largest studentized residuals were removed from further analysis. Weights were computed via iterative post-stratification (aka iterative proportional fitting) [46] to match the sample joint distributions by age, sex, and country to population data. Country-specific population values were obtained from EUROSTAT. The sample weights were trimmed to avoid excessively large sampling variances [46].

Centile curves and reference values were developed using Generalized Additive Models for Location, Scale and Shape (GAMLSS) [47]. Several continuous (Box-Cox Cole and Green (BCCG), Box-Cox power exponential - BCPE, Box-Cox- t - BCT, generalized inverse Gaussian) distributions were fitted to the data, optimizing the degrees of freedom (DF) for P-splines fit for all parameters of the respective distributions using Schwarz Bayesian criterion (SBC); appropriate link functions were used for the parameters. BCCG is routinely used in the Lambda Mu Sigma (LMS) method [48]. BCPE and BCT are extensions of LMS adding an extra parameter, v, to allow modelling (positive or negative) kurtosis (with $v=2 \mathrm{BCPE}$ and BCCG (LMS) coincide). In all the models $\lambda=1 / 3$ and $\lambda=1 / 2$ were used for the power transformation of age. Separate analyses were performed for boys and girls. The final model for each test and sex was determined by using SBC. The analysis was performed using R language for statistical computing (R version 3.6.3) [49]; GAMLSS were fitted using R package GAMLSS [50]; poststratification weights were obtained using R package survey [50]. The best fitting model for each test is presented in Online Supplementary Table 2.

RESULTS

After cleaning and removing outliers, 7,966,693 data points were available, including: 1,026,077 for the $20-\mathrm{m}$ shuttle run; 787,966 for handgrip strength, $1,345,159$ for standing long jump, $1,466,821$ for body height, $1,466,295$ for body mass, $1,464,795$ for BMI, and 409,580 for waist circumference. These data came from 106 datasets representing 34 European countries, on children and adolescents aged 6 to 18 years. We originally aimed to collect data as recent as possible to obtain up-to-date reference values, preferably since 2000. Most (69\%) datasets (representing 95% of all data points) were collected post-2000, however, pre-2000 data were included when post-2000 were unavailable at the country level. Using these data, we developed CRF and muscular strength reference values (Tables 1 to 3) and corresponding percentile curves (Figure 1). Reference values for body height, body mass, BMI, and waist circumference are presented in Online Supplementary Tables 3 to 6, and Online Supplementary Figures 1 and 2. Percentile curves for CRF and muscular strength are higher for boys compared to girls across all ages, with differences increasing with age. The age-related increase in fitness-performance tends to stabilize from age 14 to 15 years onwards. Variation between the fittest (e.g., percentiles $90-99$) and least fit (e.g., percentiles $1-10$) is larger for boys compared to girls, particularly for the $20-\mathrm{m}$ shuttle run and handgrip strength tests.

Mean country-level percentiles and rankings are shown in Table 4. Country-level rankings based on mean percentiles are provided for each fitness test, as well as an average estimate for each fitness component (CRF, muscular strength) and the overall European fitness ranking. The top- 5 most aerobically fit countries were Iceland, Norway, Slovenia, Denmark, and Finland, and the top-5 physically strong countries were Denmark, Czech Republic, The Netherlands (only one muscular strength test available), Slovenia, and Finland. Online Supplementary Tables 7 and 8 show the corresponding country-level mean percentile and ranking positions for body height, body mass, BMI, and waist circumference.

Country comparisons according to mean percentiles are also graphically represented in Figure 2, with European fitness maps for each test shown separately. The traffic light color code was used to represent country-specific percentile ranks, with red indicating lower fitness levels, yellow indicating intermediate fitness levels, and green indicating higher fitness levels. The corresponding European maps for BMI and waist circumference are presented as Online Supplementary Figure 3. These maps are available in an interactive mode at the FitBack web platform (www.fitbackeurope.eu/en-us/fitness-map) for boys and girls, together and separately. Visual inspection of the fitness maps shows that Southern European countries and the UK generally performed the worst. The correlation between country-level CRF and muscular strength rankings was moderate ($\mathrm{r}=0.59$) and is graphically represented in Figure 3. Shaded areas represent those countries ranked in the top-10 for CRF, muscular strength, or both.

DISCUSSION

Summary of findings

This article provides the most up-to-date and comprehensive reference values for the healthrelated fitness of European children and adolescents aged 6-18 years. We also provided countrylevel mean percentiles for each fitness component. Our overall country-level fitness rankings suggest that Northern (Denmark, Finland, Iceland, and Norway) and Central European countries (Slovenia, Czech Republic, and Slovakia) have the fittest children and adolescents, while Southern European countries (Spain, Italy, and Greece) and the UK are comparatively less fit. Interestingly, we observed a moderate positive correlation between country-level CRF and muscular strength, indicating that despite being different fitness components, children with higher CRF levels generally had higher muscular strength levels. A major contribution of our study is that it comes together with the FitBack web platform (www.fitbackeurope.eu), which is free, multilingual (English, Spanish, French, German, and Italian), and ready to be used by researchers and practitioners in physical education, sport and health, as well as by policy makers across Europe. The FitBack platform provides individual and group-based fitness reports supported by educational materials for implementation of fitness monitoring to support fitness education (i.e., to help understand why fitness and fitness testing are important, how to interpret fitness test results, how to set exercise goals, how to improve fitness levels, etc.) and improve physical literacy, as well as interactive European fitness maps based on our reference values. To date, the best available fitness reference values for a large sample of European children and adolescents were those published by Tomkinson et al. in 2018 [39]. Our study updates such work, by expanding the Tomkinson et al. data set [39] and updating the CRF and muscular strength reference values with more recent and representative data for each country.

Usefulness and practical implications of fitness testing and monitoring

Our reference values, when integrated into the interactive FitBack web platform, have practical utility and implications. First, fitness testing and monitoring is extremely important from a public health and clinical point of view, as recently acknowledged by the American Heart Association [13], and others [51]. Measuring cardiometabolic risk factors from blood samples is invasive and ethically questionable for youth at the population level. Likewise, mental and cognitive health assessments are often complex, sensitive and time consuming. Since physical fitness has repeatedly and consistently been shown to be a powerful marker of physical, mental, and cognitive health in youth, fitness testing and monitoring will provide valuable insight into the health status of youth at individual and group levels. However, clinicians may not have the time, resources, facilities, or expertise to conduct fitness testing (e.g. the 20 m shuttle run test) in clinical settings. Therefore, we believe that the most feasible alternative and future goal is that population-level fitness testing be conducted in schools, with test results and interpretation incorporated into the healthcare system databases and forming part of an individual's medical records that can be viewed by pediatricians and school doctors/nurses. Such practice has been implemented at the regional level in Galicia, Spain [52], and at the national level in Slovenia [40] and Finland [53]. In addition, our article and the interactive FitBack website provide a valuable and cost-effective solution for establishing fitness monitoring at the school, community, regional and national level. For instance, policy makers at education, sport, and health institutions can obtain valuable information about regional differences or temporal trends by monitoring fitness levels over time and use these reference values and the FitBack tool for proper sex- and agespecific interpretation.

In fact, fitness monitoring could flag a sudden decline in fitness, and therefore health, due to unique/unexpected situations, such as COVID-19 pandemic-related lockdowns and the substantial, rapid declines in youth fitness levels reported in countries with fitness surveillance systems [54,55]. Thus, timely interventions for specific target groups can be implemented.

Second, fitness monitoring is part of physical education curricula in many European countries, but most European physical education teachers do not currently have access to an easy-to-use and automatic tool for interpreting sex- and age-specific fitness test results. With our article and the FitBack platform, we aimed to contribute to an extensive implementation of fitness monitoring across European schools. In this context, the FitBack platform also provides information to avoid undesirable practices, such as grading students based on their fitness levels and fitness competitions among students, by using fitness testing as an educational tool to facilitate learning and understanding about fitness and its importance to health and sport, and setting individual goals for improvement. Such an approach to fitness testing should help improve physical literacy among European youth. Enhancing physical fitness through goal setting and an appropriate physical activity program, and tracking changes through fitness monitoring, may improve students' physical literacy journey. Those with better fitness education may be more attuned with their body and what is required to function well, and may be able to foster lifelong physical activity habits.

Third, our reference values can be used for sport/athletic profiling and monitoring, as well as talent identification and development [42,56]. Youth who have fitness levels above the $90^{\text {th }}$ percentiles may be considered talented in certain fitness components and sports participation could be promoted to them and their family. Likewise, changes in fitness levels in response to a lifestyle intervention could be tracked against our sex- and age-specific percentile bands to identify expected, better than expected, or worse than expected developmental changes.

Limitation and strengths

While the FitBack network gathered 8 million data points for the development of new healthrelated reference values, the included data are not representative of all European youth. Some countries such as Slovenia, Hungary, and Portugal (www.fitbackeurope.eu/en-us/monitoring-fitness/best-practice) have established fitness monitoring systems that cover all school-age youth. Other countries such as Greece [57] and Poland [58] have conducted nationally-representative fitness testing at particular points in time, while most European countries do not have nationallyrepresentative fitness data available. This implies that our country-level comparisons should be taken cautiously given that not all data are representative of their source populations. Our ambition was to identify the best available and most recent data (using the ALPHA fitness tests) for each country to update existing CRF and muscular strength reference values, and to strengthen the evidence supporting the FitBack platform. Important contributions from our study and the FitBack network include: (1) increased awareness around the importance of fitness surveillance and monitoring, (2) the identification of countries that have access to large fitness databases, and (3) to facilitate fitness testing and interpretation through the FitBack platform, which we hope will improve the amount, quality, and availability of future fitness data. Unfortunately, included fitness data were collected at different times and temporal trends in fitness may have biased our results. To minimize the potential for bias, old data collected in 1980s were excluded from our analyses, with 95% of our data points collected since 2000 (see

Online Supplementary Table 1). Only harmonized cross-country testing at the same time will provide the most accurate comparisons. While not nationally representative, the HELENA study collected harmonized fitness data in 2005-08 across 10 European cities, and the results suggested that adolescents living in Southern Europe (Spain, Italy, Greece) had lower levels of CRF and muscular strength, as well as more total and central adiposity, than their peers living in Central-Northern Europe [59]. These findings are consistent with the FitBack results hereby presented, and are in line with previous reports[60,61]. Another limitation of our study is the protocol variation across studies. In order to improve this moving forward, we recommend researchers use the ALPHA fitness test battery manuals of operations and explanatory videos that are freely available (http://profith.ugr.es/alpha-children available in English and Spanish), and which have been incorporated into the FitBack platform (www.fitbackeurope.eu/en-us/make-report/about-testing). Finally, while we obtained data from 77% (34/44) of European countries (https://www.schengenvisainfo.com/countries-in-europe/), additional data are required from the remaining countries to paint a complete European fitness picture.

Conclusion

There is overwhelming evidence supporting the importance of fitness testing from a health, educational, and sport point of view. Further, the EU-funded ALPHA project identified the most reliable and valid fitness tests, providing the methods (manuals of operations, videos) needed to evaluate youth health-related fitness levels in a standardized manner across Europe. Now, the FitBack project provides the scientific and practitioner communities with the steps needed for the implementation of youth-based fitness assessment and interpretation in school or sporting settings across Europe. Our sex- and age-specific reference values have practical implications and are the foundation of the FitBack platform for interactive individual and group-based interpretation of fitness levels. These reference values should be revisited in the future as more countries introduce national surveillance systems to reflect the updated fitness levels of European youth. The FitBack network, therefore, welcomes new members and is searching for missing and new fitness data.

Funding: This research was co-funded by the Erasmus+ Sport Programme of the European Union within the project FitBack No 613010-EPP-1-2019-1-SI-SPO-SCP and Slovenian Research Agency within the Research programme Bio-psycho-social context of kinesiology No P5-0142. FBO, JJGC, JRR and IL are supported by the University of Granada, Plan Propio de Investigación, Visiting Scholar grants and Excellence actions: Units of Excellence; Unit of Excellence on Exercise, Nutrition and Health (UCEENS) and by the Junta de Andalucía, Consejería de Conocimiento, Investigación y Universidades and ERDF (SOMM17/6107/UGR).

Acknowledgements: The authors acknowledge the support of all FitBack network members who provided data on physical fitness of children and adolescents (see: www.fitbackeurope.eu/en-us/fitness-map/sources) including large EU-funded consortium projects such as HELENA and IDEFICS. We thank D. Mayorga-Vega for his assistance on obtaining the fitness data from Poland.

Conflicts of Interest: The authors declare no conflict of interest.

REFERENCES

1 Ortega FB, Ruiz JR, Castillo MJ, et al. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes 2008;32:1-11. doi:10.1038/sj.ijo. 0803774
2 Ruiz JRR, Castro-Piñero J, Artero EGG, et al. Predictive validity of health-related fitness in youth: a systematic review. Br J Sports Med 2009;43:909-23. doi:bjsm.2008.056499 [pii]10.1136/bjsm.2008.056499 [doi]
3 García-Hermoso A, Ramírez-Campillo R, Izquierdo M. Is Muscular Fitness Associated with Future Health Benefits in Children and Adolescents? A Systematic Review and Meta-Analysis of Longitudinal Studies. Sport Med 2019;49:1079-94. doi:10.1007/s40279-019-01098-6
4 Garciá-Hermoso A, Ramírez-Vélez R, Garciá-Alonso Y, et al. Association of Cardiorespiratory Fitness Levels during Youth with Health Risk Later in Life: A Systematic Review and Meta-analysis. JAMA Pediatr 2020;174:952-60.
doi:10.1001/jamapediatrics.2020.2400
5 Högström G, Ohlsson H, Crump C, et al. Aerobic fitness in late adolescence and the risk of cancer and cancer-associated mortality in adulthood: A prospective nationwide study of 1.2 million Swedish men. Cancer Epidemiol 2019;59:58-63.
doi:10.1016/j.canep.2019.01.012
6 Crump C, Sundquist J, Winkleby MA, et al. Interactive Effects of Aerobic Fitness, Strength, and Obesity on Mortality in Men. Am J Prev Med 2017;52:353-61. doi:10.1016/j.amepre.2016.10.002
7 Ballin M, Nordström A, Nordström P. Cardiovascular Disease and All-Cause Mortality in Male Twins With Discordant Cardiorespiratory Fitness: A Nationwide Cohort Study. Am J Epidemiol 2020;189:1114-23. doi:10.1093/aje/kwaa060
8 Ortega FBB, Silventoinen K, Tynelius P, et al. Muscular strength in male adolescents and premature death: cohort study of one million participants. BMJ 2012;345:e7279. doi:10.1136/bmj.e7279
9 Henriksson P, Henriksson H, Tynelius P, et al. Fitness and Body Mass Index During Adolescence and Disability Later in Life: A Cohort Study. Ann Intern Med 2019;170:2309. doi:10.7326/M18-1861

10 Henriksson H, Henriksson P, Tynelius P, et al. Muscular weakness in adolescence is associated with disability 30 years later: a population-based cohort study of 1.2 million men. Br J Sports Med 2018;53:bjsports-2017-098723. doi:10.1136/bjsports-2017-098723
11 Henriksson P, Shiroma EJ, Henriksson H, et al. Fit for life? Low cardiorespiratory fitness in adolescence is associated with a higher burden of future disability. Br J Sports Med 2021;55:128-9. doi:10.1136/bjsports-2020-102605
12 Henriksson H, Henriksson P, Tynelius P, et al. Cardiorespiratory fitness, muscular strength, and obesity in adolescence and later chronic disability due to cardiovascular disease: a cohort study of 1 million men. Eur Heart J 2019;41:1-9. doi:10.1093/eurheartj/ehz774
13 Raghuveer G, Hartz J, Lubans DR, et al. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement from the American Heart Association. Circulation 2020;:E101-18. doi:10.1161/CIR.0000000000000866
14 Cadenas-Sanchez C, Mena-Molina A, Torres-Lopez L V., et al. Healthier Minds in Fitter Bodies: A Systematic Review and Meta-Analysis of the Association between Physical

Fitness and Mental Health in Youth. Sports Med 2021;51:2571-605. doi:10.1007/s40279-021-01520-y
15 Chaddock-Heyman L, Erickson KI, Holtrop JL, et al. Aerobic fitness is associated with greater white matter integrity in children. Front Hum Neurosci 2014;8:1-7.
doi:10.3389/fnhum. 2014.00584
16 Raine LB, Lee HK, Saliba BJ, et al. The influence of childhood aerobic fitness on learning and memory. PLoS One 2013;8:e72666. doi:10.1371/journal.pone. 0072666
17 Ortega FBFB, Campos D, Cadenas-Sanchez C, et al. Physical fitness and shapes of subcortical brain structures in children. Br J Nutr 2019;122:S49-58.
doi:10.1017/S0007114516001239
18 Esteban-Cornejo I, Stillman CM, Rodriguez-Ayllon M, et al. Physical fitness, hippocampal functional connectivity and academic performance in children with overweight/obesity: The ActiveBrains project. Brain Behav Immun 2021;91:284-95. doi:10.1016/j.bbi.2020.10.006
19 Esteban-Cornejo I, Cadenas-Sánchez C, Contreras-Rodriguez O, et al. A whole brain volumetric approach in overweight/obese children: Examining the association with different physical fitness components and academic performance. The ActiveBrains project. Neuroimage 2017;159:346-54. doi:10.1016/j.neuroimage.2017.08.011
20 Esteban-Cornejo I, Mora-Gonzalez J, Cadenas-Sanchez C, et al. Fitness, cortical thickness and surface area in overweight/obese children: The mediating role of body composition and relationship with intelligence. Neuroimage 2019;186:771-81.
doi:10.1016/j.neuroimage.2018.11.047
21 Rodriguez-Ayllon M, Esteban-Cornejo I, Verdejo-Román J, et al. Physical fitness and white matter microstructure in children with overweight or obesity: the ActiveBrains project. Sci Rep 2020;10:12469. doi:10.1038/s41598-020-67996-2
22 Chaddock L, Erickson KI, Prakash RS, et al. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res 2010;1358:172-83. doi:10.1016/j.brainres.2010.08.049
23 Voss MW, Heo S, Prakash RS, et al. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention. Hum Brain Mapp 2013;34:2972-85. doi:10.1002/hbm. 22119
Chaddock L, Erickson KI, Prakash RS, et al. Basal ganglia volume is associated with aerobic fitness in preadolescent children. Dev Neurosci 2010;32:249-56.
doi:10.1159/000316648
25 Chaddock L, Pontifex MB, Hillman CH, et al. A review of the relation of aerobic fitness and physical activity to brain structure and function in children. J Int Neuropsychol Soc 2011;17:975-85. doi:10.1017/s1355617711000567
26 Chaddock L, Hillman CH, Pontifex MB, et al. Childhood aerobic fitness predicts cognitive performance one year later. J Sports Sci 2012;30:421-30.
doi:10.1080/02640414.2011.647706
27 Chaddock-Heyman L, Erickson KI, Kienzler C, et al. The role of aerobic fitness in cortical thickness and mathematics achievement in preadolescent children. PLoS One 2015;10:e0134115. doi:10.1371/journal.pone. 0134115
28 Mora-Gonzalez J, Esteban-Cornejo I, Cadenas-Sanchez C, et al. Fitness, physical activity, working memory, and neuroelectric activity in children with overweight/obesity. Scand J Med Sci Sport 2019;29. doi:10.1111/sms. 13456

30 Cadenas \square Sanchez C, Migueles JH, Erickson KI, et al. Do fitter kids have bigger brains? Scand J Med Sci Sports 2020;30:2498-502. doi:10.1111/sms. 13824
31 Pietschnig J, Penke L, Wicherts JM, et al. Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neurosci Biobehav Rev 2015;57:411-32. doi:10.1016/j.neubiorev.2015.09.017
32 Castro-Piñero J, Artero EGG, España-Romero V, et al. Criterion-related validity of fieldbased fitness tests in youth: a systematic review. Br J Sports Med 2010;44:934-43. doi:bjsm. 2009.058321 [pii]10.1136/bjsm.2009.058321 [doi]
33 Artero EGG, Espana-Romero V, Castro-Pinero J, et al. Reliability of field-based fitness tests in youth. Int J Sports Med 2011;32:159-69. doi:10.1055/s-0030-1268488
34 Ruiz JRJR, Castro-Piñero J, España-Romero V, et al. Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br J Sports Med 2011;45:518-24. doi:bjsm.2010.075341 [pii]10.1136/bjsm.2010.075341 [doi]
35 Ortega FB, Ruiz JR. Fitness in Youth: Methodological Issues and Understanding of Its Clinical Value. Am J Lifestyle Med 2015;9. doi:10.1177/1559827615598531

Tomkinson GR, Carver KD, Atkinson F, et al. European normative values for physical fitness in children and adolescents aged 9-17 years: results from 2779165 Eurofit performances representing 30 countries. Br J Sports Med 2018;52:1445-14563. doi:10.1136/bjsports-2017-098253
40 Jurak G, Leskošek B, Kovač M, et al. SLOfit surveillance system of somatic and motor development of children and adolescents: upgrading the Slovenian Sports Educational Chart. Acta Univ Carolinae Kinanthropologica 2020;56:28-40.
41 Csányi T, Finn KJ, Welk GJ, et al. Overview of the Hungarian National Youth Fitness Study. Res Q Exerc Sport 2015;86 Suppl 1:S3-12. doi:10.1080/02701367.2015.1042823
42 Henriques-Neto D, Hetherington-Rauth M, Magalhães JP, et al. Physical fitness tests as an indicator of potential athletes in a large sample of youth. Clin Physiol Funct Imaging Published Online First: December 2021. doi:10.1111/cpf. 12735
43 Léger LA, Mercier D, Gadoury C, et al. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci 1988;6:93-101. doi:10.1080/02640418808729800
44 Tomkinson GR, Lang JJ, Tremblay MS, et al. International normative 20 m shuttle run values from 1142026 children and youth representing 50 countries. Br J Sports Med 2017;51. doi:10.1136/bjsports-2016-095987
45 Esteban-Cornejo I, Tejero-Gonzalez CM, Martinez-Gomez D, et al. Independent and combined influence of the components of physical fitness on academic performance in youth. J Pediatr 2014;165:306-312.e2. doi:10.1016/j.jpeds.2014.04.044
Valkenborghs SR, Noetel M, Hillman CHCH, et al. The Impact of Physical Activity on Brain Structure and Function in Youth: A Systematic Review. Pediatrics 2019;144. doi:10.1542/peds.2018-4032

IOM (Institute of Medicine). Fitness measures and health outcomes in youth. Washington, DC: : The National Academies Press 2012.
Whitehead M. The concept of physical literacy. Eur J Phys Educ 2001;6:127-38. Association International Physical Literacy. WHAT IS PHYSICAL LITERACY. 2014.https://physicalliteracy.ca/ physical-literacy/
(with discussion). J R Stat Soc Ser C (Applied Stat 2005;54:507-54. doi:10.1111/j.14679876.2005.00510.x

Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 1992;11:1305-19.
49 R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. 2019.https://www.r-project.org/
50 Stasinopoulos DM, Rigby RA. Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw 2008;23:1-46.
51 Lang JJ, Wolfe Phillips E, Orpana HM, et al. Field-based measurement of cardiorespiratory fitness to evaluate physical activity interventions. Bull World Health Organ 2018;96:794-6. doi:10.2471/BLT.18.213728
52 Iglesias-Soler E, Rúa-Alonso M, Rial-Vázquez J, et al. Percentiles and Principal Component Analysis of Physical Fitness From a Big Sample of Children and Adolescents Aged 6-18 Years: The DAFIS Project. Front Psychol 2021;12. doi:10.3389/fpsyg.2021.627834
53 The Finnish National Board of Education. Move! - monitoring system for physical functional capacity. 2021.www.oph.fi/en/move (accessed 12 May 2022).
54 Jurak G, Morrison SA, Kovač M, et al. A COVID-19 Crisis in Child Physical Fitness: Creating a Barometric Tool of Public Health Engagement for the Republic of Slovenia. Front Public Heal 2021;9:1-7. doi:10.3389/fpubh.2021.644235
55 Jarnig G, Jaunig J, Van Poppel MNM. Association of COVID-19 Mitigation Measures with Changes in Cardiorespiratory Fitness and Body Mass Index among Children Aged 7 to 10 Years in Austria. JAMA Netw Open 2021;4:1-12.
doi:10.1001/jamanetworkopen.2021.21675
56 Rongen F, McKenna J, Cobley S, et al. Are youth sport talent identification and development systems necessary and healthy? Sport Med - Open 2018;4:2-5. doi:10.1186/s40798-018-0135-2
57 Tambalis KD, Panagiotakos DB, Psarra G, et al. Physical fitness normative values for 6-18-year-old Greek boys and girls, using the empirical distribution and the lambda, mu, and sigma statistical method. Eur J Sport Sci 2016;16:736-46.
doi:10.1080/17461391.2015.1088577
58 Dobosz J, Mayorga-Vega D, Viciana J. Percentile values of physical fitness levels among polish children aged 7 to 19 years - a population-based study. Cent Eur J Public Health 2015;23:340-51. doi:10.21101/cejph.a4153
59 Ortega FBB, Ruiz JRR, Labayen I, et al. Health Inequalities in Urban Adolescents: Role of Physical Activity, Diet, and Genetics. Pediatrics 2014;133. doi:10.1542/peds.20131665
60 Tomkinson GR, Olds TS, Borms J. Who are the Eurofittest? Med Sport Sci 2007;50:10428.

61 Lang JJ, Tremblay MS, Léger L, et al. International variability in 20 m shuttle run performance in children and youth: Who are the fittest from a 50-country comparison? A systematic literature review with pooling of aggregate results. Br J Sports Med 2018;52:276. doi:10.1136/bjsports-2016-096224

Table 1. Reference values (centiles) for cardiorespiratory fitness as assessed by the 20-m shuttle run test (expressed in completed stages as a decimal) in European children and adolescents ($\mathrm{N}=1,063,591$)

$\begin{aligned} & \hline \text { Girls } \\ & \text { Age (yr.) } \end{aligned}$	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
6.0-6.9 yrs	0.6	0.8	0.9	1.1	1.4	1.6	1.8	2.1	2.4	2.8	3.4	4.1	5.5
7.0-7.9 yrs	0.6	0.8	1.0	1.3	1.5	1.8	2.1	2.4	2.7	3.2	3.9	4.6	6.1
$8.0-8.9 \mathrm{yrs}$	0.5	0.9	1.1	1.5	1.8	2.1	2.4	2.8	3.2	3.7	4.5	5.3	6.9
$9.0-9.9 \mathrm{yrs}$	0.5	1.0	1.3	1.7	2.1	2.5	2.9	3.3	3.7	4.4	5.3	6.1	7.9
10.0-10.9 yrs	0.5	1.1	1.4	2.0	2.4	2.8	3.3	3.7	4.3	4.9	5.9	6.9	8.7
$11.0-11.9 \mathrm{yrs}$	0.6	1.2	1.6	2.2	2.7	3.1	3.6	4.1	4.6	5.3	6.4	7.3	9.2
12.0-12.9 yrs	0.7	1.4	1.8	2.4	2.9	3.4	3.8	4.3	4.9	5.6	6.6	7.5	9.3
13.0-13.9 yrs	0.8	1.4	1.9	2.5	3.0	3.4	3.9	4.4	4.9	5.6	6.6	7.5	9.3
14.0-14.9 yrs	0.8	1.5	1.9	2.5	3.0	3.5	3.9	4.4	5.0	5.6	6.6	7.5	9.3
$15.0-15.9 \mathrm{yrs}$	0.8	1.5	1.9	2.5	3.0	3.5	3.9	4.4	5.0	5.6	6.6	7.5	9.3
16.0-16.9 yrs	0.7	1.4	1.9	2.5	3.0	3.5	3.9	4.4	4.9	5.6	6.6	7.4	9.2
$17.0-17.9 \mathrm{yrs}$	0.7	1.4	1.9	2.5	3.0	3.4	3.8	4.3	4.8	5.5	6.4	7.3	9.0
18.0-18.9 yrs	0.7	1.4	1.8	2.4	2.9	3.3	3.8	4.2	4.7	5.4	6.3	7.1	8.8
Boys Age (yr.)	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
6.0-6.9 yrs	0.6	0.8	0.9	1.2	1.4	1.7	2.0	2.4	2.9	3.4	4.2	5.0	6.4
7.0-7.9 yrs	0.6	0.9	1.1	1.4	1.7	2.1	2.5	2.9	3.4	4.0	4.9	5.7	7.2
$8.0-8.9 \mathrm{yrs}$	0.6	1.0	1.2	1.7	2.1	2.5	3.0	3.5	4.1	4.8	5.8	6.7	8.2
$9.0-9.9 \mathrm{yrs}$	0.6	1.1	1.5	2.0	2.6	3.1	3.6	4.2	4.9	5.7	6.8	7.7	9.4
10.0-10.9 yrs	0.6	1.3	1.7	2.4	3.0	3.6	4.2	4.8	5.5	6.4	7.5	8.5	10.2
11.0-11.9 yrs	0.7	1.4	2.0	2.7	3.4	4.0	4.6	5.3	6.0	6.8	8.0	9.0	10.7
12.0-12.9 yrs	0.8	1.6	2.2	3.1	3.8	4.4	5.0	5.7	6.4	7.3	8.5	9.4	11.1
$13.0-13.9 \mathrm{yrs}$	0.9	1.9	2.6	3.5	4.2	4.9	5.5	6.2	7.0	7.8	9.0	9.9	11.7
$14.0-14.9 \mathrm{yrs}$	1.0	2.2	2.9	3.9	4.7	5.4	6.1	6.8	7.5	8.4	9.6	10.5	12.3
$15.0-15.9 \mathrm{yrs}$	1.1	2.4	3.2	4.3	5.1	5.8	6.5	7.2	7.9	8.8	10.0	11.0	12.8
16.0-16.9 yrs	1.1	2.5	3.4	4.4	5.2	6.0	6.7	7.3	8.1	8.9	10.1	11.1	12.8
17.0-17.9 yrs	1.1	2.5	3.4	4.5	5.3	6.0	6.6	7.3	8.0	8.8	10.0	10.9	12.6
18.0-18.9 yrs	1.0	2.5	3.3	4.4	5.2	5.9	6.5	7.2	7.8	8.6	9.7	10.6	12.2

Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population. Age at the midpoint of each interval was selected to provide percentiles. For instance, for the interval 6.0-6.9, data presented were those corresponding to an exact age of a 6.5 -year-old child. P10 indicates $10^{\text {th }}$ percentile; other percentiles are abbreviated accordingly. Data sources are available at: www.fitbackeurope.eu/en-us/fitness-map/sources

Table 2. Reference values (centiles) for muscular strength as assessed by the handgrip strength test (expressed in kg, average of the maxima for both hands) in European children and adolescents ($\mathrm{N}=827,585$)

$\begin{aligned} & \text { Girls } \\ & \text { Age (yr.) } \\ & \hline \end{aligned}$	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
6.0-6.9 yrs	4.2	5.6	6.3	7.2	7.8	8.3	8.8	9.3	9.9	10.7	11.8	12.9	15.5
7.0-7.9 yrs	4.7	6.4	7.3	8.4	9.1	9.7	10.4	11.0	11.7	12.6	13.9	15.3	18.4
$8.0-8.9 \mathrm{yrs}$	5.2	7.4	8.5	9.8	10.7	11.4	12.2	13.0	13.8	14.9	16.6	18.1	21.9
$9.0-9.9 \mathrm{yrs}$	5.8	8.4	9.7	11.3	12.3	13.3	14.1	15.1	16.1	17.3	19.3	21.1	25.6
$10.0-10.9 \mathrm{yrs}$	6.7	9.7	11.3	13.0	14.3	15.3	16.3	17.4	18.5	20.0	22.2	24.3	29.3
$11.0-11.9 \mathrm{yrs}$	8.0	11.6	13.3	15.3	16.8	18.0	19.1	20.3	21.6	23.2	25.7	28.1	33.7
$12.0-12.9 \mathrm{yrs}$	9.5	13.6	15.5	17.8	19.3	20.7	21.9	23.2	24.6	26.4	29.1	31.6	37.8
$13.0-13.9 \mathrm{yrs}$	11.1	15.5	17.7	20.0	21.7	23.1	24.5	25.8	27.3	29.2	32.0	34.7	41.1
$14.0-14.9 \mathrm{yrs}$	12.4	17.1	19.3	21.8	23.5	25.0	26.4	27.8	29.3	31.2	34.1	36.9	43.4
$15.0-15.9 \mathrm{yrs}$	13.1	18.0	20.2	22.8	24.6	26.0	27.4	28.8	30.4	32.3	35.2	38.0	44.6
$16.0-16.9 \mathrm{yrs}$	13.4	18.4	20.8	23.4	25.1	26.6	28.0	29.4	31.0	32.9	35.8	38.6	45.2
$17.0-17.9 \mathrm{yrs}$	13.7	18.9	21.3	23.9	25.7	27.2	28.6	30.0	31.5	33.4	36.3	39.1	45.7
18.0-18.9 yrs	14.3	19.6	22.0	24.6	26.4	27.9	29.2	30.6	32.2	34.1	37.0	39.7	46.3
Boys Age (yr.)	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
6.0-6.9 yrs	4.8	6.4	7.1	8.0	8.7	9.2	9.8	10.3	11.0	11.7	13.0	14.1	17.1
7.0-7.9 yrs	5.5	7.3	8.3	9.4	10.2	10.9	11.5	12.2	13.0	13.9	15.4	16.8	20.3
$8.0-8.9 \mathrm{yrs}$	6.2	8.5	9.6	10.9	11.9	12.7	13.5	14.3	15.3	16.4	18.2	19.9	24.0
$9.0-9.9 \mathrm{yrs}$	7.0	9.5	10.8	12.4	13.5	14.5	15.4	16.4	17.5	18.8	20.9	22.8	27.4
$10.0-10.9 \mathrm{yrs}$	7.8	10.7	12.1	13.9	15.2	16.3	17.4	18.5	19.7	21.3	23.6	25.8	30.9
$11.0-11.9 \mathrm{yrs}$	8.9	12.2	13.9	15.9	17.4	18.7	20.0	21.2	22.7	24.4	27.1	29.6	35.3
$12.0-12.9 \mathrm{yrs}$	10.2	14.1	16.1	18.5	20.3	21.8	23.3	24.8	26.5	28.5	31.7	34.6	41.1
$13.0-13.9 \mathrm{yrs}$	12.2	16.9	19.3	22.2	24.4	26.2	28.0	29.8	31.8	34.3	38.0	41.4	49.0
$14.0-14.9 \mathrm{yrs}$	14.9	20.3	23.2	26.7	29.2	31.4	33.5	35.6	37.9	40.8	45.1	49.0	57.4
$15.0-15.9 \mathrm{yrs}$	17.7	23.8	27.0	30.9	33.6	36.0	38.3	40.6	43.2	46.3	50.9	55.0	63.7
$16.0-16.9 \mathrm{yrs}$	20.2	26.7	30.1	34.1	37.0	39.5	41.9	44.3	46.9	50.1	54.8	58.9	67.6
$17.0-17.9 \mathrm{yrs}$	22.4	29.1	32.6	36.7	39.7	42.2	44.6	47.0	49.7	52.9	57.5	61.6	70.0
$18.0-18.9$ yrs	24.4	31.2	34.8	39.0	42.0	44.5	46.9	49.4	52.0	55.2	59.7	63.7	71.9

Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population. Age at the midpoint of each interval was selected to provide percentiles. For instance, for the interval 6.0-6.9, data presented were those corresponding to an exact age of a 6.5 -year-old child. P10 indicates $10^{\text {th }}$ percentile; other percentiles are abbreviated accordingly. Data sources are available at: www.fitbackeurope.eu/en-us/fitness-map/sources.

Table 3. Reference values (centiles) for muscular strength as assessed by the standing long jump test (expressed in cm) in European children and adolescents ($\mathrm{N}=1,384,856$)

Girls Age (yr.)	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
6.0-6.9 yrs	47.4	63.3	71.1	80.2	86.5	91.9	96.8	$\begin{array}{r} 101 . \\ 6 \end{array}$	$\begin{array}{r} 106 . \\ 9 \end{array}$	$\begin{array}{r} 113 . \\ 0 \end{array}$	$\begin{array}{r} 121 . \\ 5 \end{array}$	$\begin{array}{r} 128 . \\ 8 \end{array}$	$\begin{array}{r} 143 . \\ 0 \end{array}$
7.0-7.9 yrs	55.1	71.1	79.0	88.3	94.8	$\begin{array}{r} 100 . \\ 3 \end{array}$	105.	$110 .$	$\begin{array}{r} 116 . \\ 0 \end{array}$	$\begin{array}{r} 122 . \\ 5 \end{array}$	$\begin{array}{r} 131 . \\ 6 \end{array}$	$\begin{array}{r} 139 . \\ 3 \end{array}$	$\begin{array}{r} 154 . \\ 6 \end{array}$
8.0-8.9 yrs	63.1	79.1	87.2	96.7	$\begin{array}{r} 103 . \\ 4 \end{array}$	$\begin{array}{r} 109 . \\ 0 \end{array}$	$\begin{array}{r} 114 . \\ 3 \end{array}$	$\begin{array}{r} 119 . \\ 5 \end{array}$	$\begin{array}{r} 125 . \\ 2 \end{array}$	$\begin{array}{r} 131 . \\ 9 \end{array}$	$\begin{array}{r} 141 . \\ 4 \end{array}$	$\begin{array}{r} 149 . \\ 6 \end{array}$	$165 .$
9.0-9.9 yrs	70.8	87.0	95.1	$\begin{array}{r} 104 . \\ 8 \end{array}$	$\begin{array}{r} 111 . \\ 6 \end{array}$	$\begin{array}{r} 117 . \\ 3 \end{array}$	$\begin{array}{r} 122 . \\ 7 \end{array}$	128	$\begin{array}{r} 134 . \\ 0 \end{array}$	$\begin{array}{r} 140 . \\ 9 \end{array}$	$\begin{array}{r} 150 . \\ 8 \end{array}$	$\begin{array}{r} 159 . \\ 2 \end{array}$	$\begin{array}{r} 176 . \\ 3 \end{array}$
10.0-10.9 yrs	77.2	93.8	$\begin{array}{r} 102 . \\ 3 \end{array}$	$\begin{array}{r} 112 . \\ 2 \end{array}$	$\begin{array}{r} 119 . \\ 2 \end{array}$	$\begin{array}{r} 125 \\ 2 \end{array}$	$\begin{array}{r} 130 . \\ 8 \end{array}$	$\begin{array}{r} 136 . \\ 4 \end{array}$	$\begin{array}{r} 142 . \\ 5 \end{array}$	$\begin{array}{r} 149 . \\ 7 \end{array}$	$\begin{array}{r} 160 . \\ 0 \end{array}$	$\begin{array}{r} 168 . \\ 9 \end{array}$	$\begin{array}{r} 186 . \\ 8 \end{array}$
11.0-11.9 y	82.9	$\begin{array}{r} 100 . \\ 6 \end{array}$	$\begin{array}{r} 109 . \\ 6 \end{array}$	$\begin{array}{r} 120 . \\ 1 \end{array}$	$\begin{array}{r} 127 . \\ 6 \end{array}$	$\begin{array}{r} 133 . \\ 9 \end{array}$	$\begin{array}{r} 139 . \\ 9 \end{array}$	$\begin{array}{r} 145 . \\ 8 \end{array}$	$\begin{array}{r} 152 . \\ 3 \end{array}$	$\begin{array}{r} 159 . \\ 9 \end{array}$	$\begin{array}{r} 170 . \\ 9 \end{array}$	$\begin{array}{r} 180 . \\ 4 \end{array}$	$\begin{array}{r} 199 . \\ 6 \end{array}$
12.0-12.9 yrs	87.3	$\begin{array}{r} 106 . \\ 2 \end{array}$	$115 .$	$\begin{array}{r} 126 . \\ 9 \end{array}$	$\begin{array}{r} 134 . \\ 8 \end{array}$	$\begin{array}{r} 141 . \\ 6 \end{array}$	$\begin{array}{r} 147 . \\ 8 \end{array}$	$\begin{array}{r} 154 . \\ 1 \end{array}$	$\begin{array}{r} 161 . \\ 0 \end{array}$	$\begin{array}{r} 169 . \\ \hline \end{array}$	$180 .$	190.	$\begin{array}{r} 211 . \\ 1 \end{array}$
13.0-13.9 yrs	90.2	$\begin{array}{r} 110 . \\ 1 \end{array}$	$\begin{array}{r} 120 . \\ 1 \end{array}$	$\begin{array}{r} 131 . \\ 9 \end{array}$	$\begin{array}{r} 140 . \\ 2 \end{array}$	$\begin{array}{r} 147 . \\ 2 \end{array}$	153. 7	$\begin{array}{r} 160 . \\ 3 \end{array}$	$\begin{array}{r} 167 . \\ 4 \end{array}$	$\begin{array}{r} 175 . \\ 8 \end{array}$	$\begin{array}{r} 187 . \\ 9 \end{array}$	198.	$\begin{array}{r} 219 . \\ \hline \end{array}$
14.0-14.9 yrs	91.1	$\begin{array}{r} 112 . \\ 0 \end{array}$	$\begin{array}{r} 122 . \\ 3 \end{array}$	$\begin{array}{r} 134 . \\ 4 \end{array}$	$\begin{array}{r} 142 . \\ 9 \end{array}$	$\begin{array}{r} 150 \\ 1 \end{array}$	$\begin{array}{r} 156 . \\ 8 \end{array}$	$\begin{array}{r} 163 . \\ 5 \end{array}$	$\begin{array}{r} 170 . \\ 8 \end{array}$	$179 .$	$\begin{array}{r} 191 . \\ 6 \end{array}$	202.	$\begin{array}{r} 223 . \\ 5 \end{array}$
$15.0-15.9$ yrs	90.7	$\begin{array}{r} 112 . \\ 0 \end{array}$	$\begin{array}{r} 122 . \\ 5 \end{array}$	$\begin{array}{r} 134 . \\ 8 \end{array}$	143.	$\begin{array}{r} 150 \\ 5 \end{array}$	157.	$\begin{array}{r} 163 . \\ 9 \end{array}$	$\begin{array}{r} 171 . \\ 2 \end{array}$	179 7	$191 .$	202.	223. 4
16.0-16.9 yrs	89.7	$\begin{array}{r} 111 . \end{array}$	$\begin{array}{r} 121 . \\ 9 \end{array}$	$\begin{array}{r} 134 . \\ 2 \end{array}$	$\begin{array}{r} 142 . \\ 7 \end{array}$	$\begin{array}{r} 149 . \\ 8 \end{array}$	$\begin{array}{r} 156 . \\ 5 \end{array}$	$163 .$	$\begin{array}{r} 170 . \\ 2 \end{array}$	$\begin{array}{r} 178 . \\ 6 \end{array}$	$\begin{array}{r} 190 \\ 5 \\ 5 \end{array}$	200 7	221. 3
17.0-17.9 yrs	89.9	$\begin{array}{r} 111 . \\ 8 \end{array}$	$\begin{array}{r} 122 . \\ 4 \end{array}$	$\begin{array}{r} 134 . \\ 7 \end{array}$	$\begin{array}{r} 143 . \\ 1 \end{array}$	$\begin{array}{r} 150 \\ 3 \end{array}$	$\begin{array}{r} 156 . \\ 8 \end{array}$	$\begin{array}{r} 163 . \\ 3 \end{array}$	$\begin{array}{r} 170 . \\ 3 \end{array}$	$\begin{array}{r} 178 . \\ 6 \end{array}$	$\begin{array}{r} 190 . \\ 3 \end{array}$	$\begin{array}{r} 200 . \\ 3 \end{array}$	220 3
18.0-18.9 yrs	91.1	$\begin{array}{r} 113 . \\ 3 \end{array}$	$\begin{array}{r} 124 . \\ 0 \end{array}$	$\begin{array}{r} 136 . \\ 2 \end{array}$	$\begin{array}{r} 144 . \\ 6 \end{array}$	$\begin{array}{r} 151 . \\ 6 \end{array}$	158	$\begin{array}{r} 164 . \\ 6 \end{array}$	$\begin{array}{r} 171 . \\ 5 \end{array}$	$\begin{array}{r} 179 . \\ 6 \end{array}$	$\begin{array}{r} 191 . \\ 0 \end{array}$	$\begin{array}{r} 200 . \\ 8 \end{array}$	220.

$\begin{aligned} & \hline \text { Boys } \\ & \text { Age (yr.) } \\ & \hline \end{aligned}$	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
$6.0-6.9 \mathrm{yrs}$	51.6	69.3	77.8	87.4	94.1	99.6	$\begin{array}{r} 104 . \\ 6 \end{array}$	$\begin{array}{r} 109 . \\ 6 \end{array}$	$\begin{array}{r} 114 . \\ 9 \end{array}$	$\begin{array}{r} 121 . \\ 1 \end{array}$	$\begin{array}{r} 129 . \\ 7 \end{array}$	$\begin{array}{r} 137 . \\ 0 \end{array}$	$\begin{array}{r} 151 . \\ 2 \end{array}$
7.0-7.9 yrs	60.0	78.2	87.0	96.9	$\begin{array}{r} 103 . \\ 8 \end{array}$	$\begin{array}{r} 109 . \\ 5 \end{array}$	$114 .$	$\begin{array}{r} 119 . \\ 9 \end{array}$	$\begin{array}{r} 125 \\ 5 \end{array}$	$\begin{array}{r} 131 . \\ 9 \end{array}$	141	$\begin{array}{r} 148 . \\ 8 \end{array}$	$\begin{array}{r} 164 . \\ 0 \end{array}$
$8.0-8.9 \mathrm{yrs}$	68.2	86.9	95.9	$\begin{array}{r} 106 . \\ 1 \end{array}$	113.	$119 .$	$\begin{array}{r} 124 . \\ 6 \end{array}$	$\begin{array}{r} 130 . \\ 0 \end{array}$	$\begin{array}{r} 135 . \\ 7 \end{array}$	$\begin{array}{r} 142 . \\ 5 \end{array}$	$\begin{array}{r} 152 . \\ \hline \end{array}$	$\begin{array}{r} 160 . \\ 2 \end{array}$	$\begin{array}{r} 176 . \\ 5 \end{array}$
9.0-9.9 yrs	75.5	94.7	$\begin{array}{r} 103 . \\ \hline \end{array}$	$\begin{array}{r} 114 . \\ 4 \end{array}$	$\begin{array}{r} 121 . \\ 7 \end{array}$	$\begin{array}{r} 127 . \\ 8 \end{array}$	$\begin{array}{r} 133 . \\ 4 \end{array}$	$\begin{array}{r} 139 . \\ 0 \end{array}$	$\begin{array}{r} 145 . \\ 0 \end{array}$	$\begin{array}{r} 152 . \\ 0 \end{array}$	$\begin{array}{r} 162 . \\ 0 \end{array}$	$\begin{array}{r} 170 \\ 5 \end{array}$	$\begin{array}{r} 187 . \\ 6 \end{array}$
10.0-10.9 yrs	81.2	$\begin{array}{r} 101 . \\ 1 \end{array}$	$\begin{array}{r} 110 \\ 7 \end{array}$	$\begin{array}{r} 121 . \\ 5 \end{array}$	$\begin{array}{r} 129 . \\ 1 \end{array}$	$\begin{array}{r} 135 . \\ 3 \end{array}$	$\begin{array}{r} 141 . \\ 1 \end{array}$	$\begin{array}{r} 146 . \\ 9 \end{array}$	$\begin{array}{r} 153 . \\ 1 \end{array}$	$\begin{array}{r} 160 . \\ 4 \end{array}$	$\begin{array}{r} 170 . \\ 7 \end{array}$	179.	$\begin{array}{r} 197 . \\ 5 \end{array}$
11.0-11.9 yrs	86.4	$\begin{array}{r} 107 . \\ 5 \end{array}$	$\begin{array}{r} 117 . \\ 6 \end{array}$	$\begin{array}{r} 129 . \\ 0 \end{array}$	$\begin{array}{r} 136 . \\ 9 \end{array}$	$\begin{array}{r} 143 . \\ 5 \end{array}$	$\begin{array}{r} 149 . \\ 5 \end{array}$	$\begin{array}{r} 155 . \\ 6 \end{array}$	$\begin{array}{r} 162 . \\ 0 \end{array}$	$\begin{array}{r} 169 . \\ 7 \end{array}$	$\begin{array}{r} 180 . \\ 5 \end{array}$	$\begin{array}{r} 189 . \\ 8 \end{array}$	$\begin{array}{r} 208 . \\ 8 \end{array}$
12.0-12.9 yrs	92.2	115	$\begin{array}{r} 125 . \\ 9 \end{array}$	$138 .$	$\begin{array}{r} 146 . \\ 4 \end{array}$	$\begin{array}{r} 153 . \\ 4 \end{array}$	$\begin{array}{r} 159 . \\ 8 \end{array}$	$\begin{array}{r} 166 . \\ 2 \end{array}$	$\begin{array}{r} 173 . \\ 0 \end{array}$	181. 1	$\begin{array}{r} 192 . \\ 5 \end{array}$	$\begin{array}{r} 202 . \\ \hline \end{array}$	$\begin{array}{r} 222 . \\ 5 \end{array}$
13.0-13.9 yrs	99.8	$\begin{array}{r} 125 . \\ 0 \end{array}$	$\begin{array}{r} 136 . \\ 8 \end{array}$	$\begin{array}{r} 150 . \\ 0 \end{array}$	$\begin{array}{r} 159 . \\ 0 \end{array}$	$\begin{array}{r} 166 . \\ 5 \end{array}$	$\begin{array}{r} 173 . \\ 3 \end{array}$	$\begin{array}{r} 180 \\ 1 \end{array}$	$187 .$ 4	$\begin{array}{r} 196 . \\ 0 . \end{array}$	$208 .$	218. 7	240
14.0-14.9 yrs	$107 .$	$\begin{array}{r} 135 . \\ 4 \end{array}$	$\begin{array}{r} 148 . \\ 0 \end{array}$	$162 .$	$\begin{array}{r} 171 . \\ 7 \end{array}$	$\begin{array}{r} 179 . \\ 6 \end{array}$	$\begin{array}{r} 186 . \\ 9 \end{array}$	$\begin{array}{r} 194 . \\ 0 \end{array}$	$\begin{array}{r} 201 . \\ 7 \end{array}$	$\begin{array}{r} 210 . \\ 7 \end{array}$	$\begin{array}{r} 223 . \\ 4 \end{array}$	$\begin{array}{r} 234 . \\ \hline \end{array}$	$\begin{array}{r} 256 . \\ 8 \end{array}$
15.0-15.9 yrs	$114 .$	$\begin{array}{r} 143 . \\ 6 \end{array}$	$\begin{array}{r} 156 . \\ 9 \end{array}$	$\begin{array}{r} 171 . \\ 5 \end{array}$	$\begin{array}{r} 181 . \\ 4 \end{array}$	$\begin{array}{r} 189 . \\ 6 \end{array}$	$\begin{array}{r} 197 . \\ 0 \end{array}$	$\begin{array}{r} 204 . \\ 4 \end{array}$	$\begin{array}{r} 212 . \\ 2 \end{array}$	221.	$\begin{array}{r} 234 . \\ \hline \end{array}$	245 5	268. 3
16.0-16.9 yrs	118.	149.	162.	177.	187.	195.	203.	210.	218.	227.	240.	251.	274.

	6	1	8	7	7	9	4	8	6	8	7	8	4
	122.	153.	167.	182.	192.	200.	207.	215.	222.	231.	244.	255.	277.
$17.0-17.9$ yrs	1	4	2	2	2	4	8	1	8	8	5	4	6
	125.	157.	170.	185.	195.	203.	210.	218.	225.	234.	246.	257.	279.
$18.0-18.9$ yrs	4	1	9	8	6	7	9	0	6	4	8	4	0

Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population. Age at the midpoint of each interval was selected to provide percentiles. For instance, for the interval 6.0-6.9, data presented were those corresponding to an exact age of a 6.5 -year-old child. P10 indicates $10^{\text {th }}$ percentile; other percentiles are abbreviated accordingly. Data sources are available at: www.fitbackeurope.eu/en-us/fitness-map/sources.

Table 4. Mean percentile and ranking position of each country according to the pooled EU reference values.

[^0] codes were used to abbreviate the full country names https://en.wikipedia.org/wiki/List_of_UNDP_country_codes as follows: ALB, Albania;

AUS, Austria; BEL, Belgium; BIH, Bosnia and Herzegovina; BUL, Bulgaria; CRO, Croatia; CYP, Cyprus; CZE, Czech Republic; DEN, Denmark; EST, Estonia; FIN, Finland; FRA, France; GER, Germany; GRE, Greece; HUN, Hungary; ISL, Iceland; IRE, Ireland; ITA, Italy; KOS, Kosovo; LAT, Latvia; LIT, Lithuania; LUX, Luxembourg; NET, Netherlands; MCD, North Macedonia; NOR, Norway; POL, Poland; POR, Portugal; SRB, Serbia; SLO, Slovakia; SVN, Slovenia; SPA, Spain; SWE, Sweden; SWI, Switzerland; UK, United Kingdom.
For each fitness test, the countries were sorted according to their rank position in the Both (girls and boys) column. The ranking for muscular strength was computed as the average of the country ranking position in handgrip and standing long jump tests, while ranking for cardiorespiratory fitness directly reflects the country ranking position in the $20-\mathrm{m}$ shuttle run test. Sex- and-age-specific percentile values were calculated using available country-level data and were averaged across sexes and ages to obtain the mean percentile for each country compared to the EU reference values. Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population. Not all countries have representative data and therefore caution should be paid when interpreting country comparisons presented this study and in the platform. Data sources are available at: www.fitbackeurope.eu/en-us/fitness-map/sources.
medRxiv preprint doi: https://doi.org/10.1101/2022.06.09.22275139; this version posted June 13, 2022. The copyright holder for this preprint

Figure 1. Percentile curves for cardiorespiratory and muscular strength tests among European children and adolescents.

Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population. Data sources are available at: https://www.fitbackeurope.eu/en-us/fitness-map/sources.

Figure 2. European fitness maps for cardiorespiratory and muscular strength in children and adolescents.
Sex- and- age-specific percentile values were calculated using available country-level data and were averaged across sexes and ages to obtain the mean percentile for each country compared to the EU reference values. Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population.

Separate European fitness maps for girls and boys for these tests (as well as those for the obesity markers of body mass index and waist circumference) are available at: www.fitbackeurope.eu/en-us/fitness-map. The website map is interactive so that detailed information for each country is shown with the mouseover function.

Not all countries have representative data and therefore caution should be paid when interpreting country comparisons presented this study and in the platform. Data sources are available at: www.fitbackeurope.eu/en-us/fitness-map/sources.

Country average ranking in Strength vs. Cardiorespiratory fitness
(lower scores indicate higher position in the ranking)

Figure 3. Country average ranking in muscular strength and cardiorespiratory fitness in European children and adolescents. HGS indicates handgrip strength test; SLJ, standing long jump test; 20mSRT, 20-m shuttle run test.

The ranking for muscular strength was computed as the average of the country ranking position in handgrip and standing long jump tests, while ranking for cardiorespiratory fitness directly reflects the country ranking position in the $20-\mathrm{m}$ shuttle run test.
Gray shaded areas indicate countries ranked in the top-10 for either muscular strength, cardiorespiratory fitness, or both.
This figure was created based on the data presented in Table 4. Four countries (Albania, Bulgaria, Luxembourg, and The Netherlands) were not included since they had in either missing muscular strength or cardiorespiratory fitness data. Not all countries have representative data and therefore caution should be paid when interpreting country comparisons presented this study and in the platform. Data sources are available at: www.fitbackeurope.eu/en-us/fitness-map/sources.
medRxiv preprint doi: https://doi.org/10.1101/2022.06.09.22275139; this version posted June 13, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

ONLINE SUPPLEMENTARY MATERIAL

Online Supplementary Table 1. Summary of the sources used for generating the FitBack reference values and centiles.

Denmark	1996-97	39.6\%	16-18			9,342			Nielsen \& Andersen, 2003*
Estonia	2017	47.0\%	13-14			142	155	158	Sepp et al. 2017
Estonia	2018-	49.9\%	8-11	212			215		10.23736/S0022-4707.20.10550-4
Estonia	2016-	51.7\%	7-9	256	256	222	226	226	Riso et al. 2019
Estonia	2016	50.9\%	8-9	145	146	136	137	137	Reisberg et al. 2020
Estonia	2018-	56.4\%	13-17	413	413	413	413	413	Galan-Lopez et al. 2019
Estonia	2017	51.5\%	12-18	3,052		3,056	3,103		$\underline{\text { https://www.sportest.eu/ }}$
Estonia	2007-08	47.5\%	6-9			725	745	745	De Miguel-Etayo et al. 2014
Finland	2013	47.6\%	9-15	970	970				Joensuu et al. 2020
Finland	2007-09	51.3\%	9-11	374	374		374		Lintu et al. 2015
Finland	1995	46.6\%	13-16	1,109		1,109	1,019		Telama et al. 2002*
France	2006-08	42.2\%	12-17	307	308	258	304	306	Ortega et al. 2011
France	2009-13	49.8\%	9-16	9,669		10,862			Vanhelst et al. 2016
France	2010-18	51.0\%	6-18	31,748			31,748		Vanhelst et al. 2020
France	1997	50.7\%	12-15	507		507	507	507	Baquet et al. 2001*
Germany	2006-08	58.9\%	12-18	495	473	392	433	445	Ortega et al. 2011
Germany	2009-12	50.0\%	6-18	3,039	3,023		3,043		Niessner et al. 2020
Germany	2007-08	48.3\%	6-10			638	944	952	De Miguel-Etayo et al. 2014
Germany	1994-95	51.0\%	13-16	977		977	863		Telama et al. 2002*
Greece	2014	51.5\%	6-18	306,217	304,619	176,844	256,026		Tambalis et al. 2015
Greece	2006-08	48.6\%	12-18	369	366	346	359	361	Ortega et al. 2011
Hungary	2006-08	49.5\%	13-17	397	393	393	394	395	Ortega et al. 2011
Hungary	2013	51.1\%	10-18	580,056		574,375	581,464	591,669	Csányi et al. 2014
Hungary	2007-08	49.6\%	6-10			548	1,230	1,228	De Miguel-Etayo et al. 2014
Hungary	1994-95	48.7\%	13-16	439		439	434		Telama et al. 2002*
Iceland	2017	54.0\%	12-16	387	387	387	387	387	Galan-Lopez et al. 2018
Iceland	1998	51.8\%	10-16			6,130	6,202		Gunnarsson \& Sigríksson 1999*
Ireland	2018-19	49.9\%	12-16	1,147		1,002	1,158	1,149	O'Keeffe et al. 2020
Italy	2006-08	38.8\%	13-18	321	320	263	266	268	Ortega et al. 2011
Italy	2001-02	55.2\%	6-18	4,456					Lovecchio \& Zago, 2019

[^1]

North Macedonia	2012	51.1\%	10-15					6,156	Gontarev \& Ruzdija, 2014*
Norway	2004	51.9\%	14-16	2,604		2,305	2,490		Haugen et al. 2013*
Poland	2009-10	51.7\%	6-18	47,404		45,925	47,326	47,061	Dobosz et al. 2015
Portugal	2008	48.4\%	10-18	22,004	21,982	22,004			Santos et al. 2014
Portugal	2018	48.6\%	10-18	8,700	8,635	8,289	7,714	7,198	Unpublished data
Serbia	2012-13	48.1\%	9-18	20,677		18,778	20,341		Milanovic et al. 2019
Slovakia	1993	49.9\%	15-15	689		689	689	689	Belej et al.1995*
Slovakia	1996	52.0\%	12-15	368		287	323	329	Kasa \& Majherová, 1997 *
Slovakia	1993-95	0.0\%	16-16	95		111	95		Kyselovicová O. 2000*
Slovakia	1993	59.7\%	10-18	3,630		3,630	3,630	3,630	Moravec et al. 1996*
Slovakia	2014-15	51.9\%	10-12	426			426		Krska et al. 2015*
Slovenia	2013-14	50.6\%	6-18	4,745	4,688	4,598	4,670	4,673	Morrison et al. 2021
Slovenia	2018	50.9\%	6-18	210,037			206,804		Sorić et al. 2020
Spain	2006-08	48.2\%	12-17	413	414	308	397	398	Ortega et al. 2011
Spain	2012-20	49.5\%	6-18	14,645	13,952	13,450	14,129	14,155	Iglesias-Soler et al. 2021
Spain	2018	49.4\%	9-11	173	173	171	171	173	Cadenas-Sánchez et al. 2021
Spain	2017	48.1\%	9-12	558	557	551	554	555	Martínez-Vizcaíno et al. 2022
Spain	2013-14	46.5\%	6-7	518	519	522	519		Martínez-Vizcaíno et al. 2020
Spain	2010	50.5\%	8-12	1,122		1,061	1,116	1,118	Torrijos-Niño et al. 2014
Spain	2019	52.0\%	8-16	284	284	284	289	289	Medrano et al. 2020
Spain	2010-11	51.5\%	10-18	905	774	889	879		Unpublished data
Spain	2011-12	51.9\%	6-18	2,179	2,178	2,128	2,172	2,173	Castro-Piñero et al., 2014
Spain	2000-02	48.4\%	12-18	2,474	2,468	2,087	2,431	2,427	Ortega et al. 2005
Spain	2007-08	47.9\%	6-10			38	689	712	De Miguel-Etayo et al. 2014
Sweden	2006-08	39.8\%	12-18	361	356	255	306	310	Ortega et al. 2011
Sweden	2007-08	48.8\%	6-10			677	750	659	De Miguel-Etayo et al. 2014
Sweden	2001	51.6\%	11-17	1,726				1,739	Örjan et al. 2005 *
Switzerland	2004	48.3\%	6-13	496	491	501			Meyer et al. 2014
Switzerland	1996-97	49.5\%	10-18			2,959	2,982		Cauderay et al. 2000 *
Switzerland	2005	47.9\%	12-12	265		265			$\underline{\text { Shmid et al. } 2007}$

[^2]| United Kingdom | $2006-10$ | 53.4% | $9-18$ | 9,642 | 9,619 | 9,162 | 9,397 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| United Kingdom | $1999-10$ | 51.0% | $10-11$ | | | 27,954 | |
| Sandercock et al. 2012 | | | | | | | |
| United Kingdom | $2000-03$ | 46.5% | $10-13$ | 13,152 | | 3,466 | 13,152 |
| United Kingdom | $2009-10$ | 51.3% | $10-12$ | | 821 | 829 | 824 |

20 mSRT indicates the $20-\mathrm{m}$ shuttle run test; HGS, handgrip strength; SLJ, standing long jump; BMI, body mass index; WC, waist circumference
*Pseudodata generated from Tomkinson et al. [39].

Online Supplementary Table 2. Generalized Additive Model for Location, Scale and Shape (GAMLSS) models used to calculate the physical fitness smoothed percentiles.

Test	Sex	Distribution	n	λ	μ	σ	ν	τ	SBC
20mSRT	Girls	BCPE	516811	$1 / 3$	6.16	5.30	3.94	3.39	99786154
20mSRT	Boys	BCPE	546274	$1 / 2$	6.67	5.68	4.13	3.43	123204436
HGS	Girls	BCT	404897	$1 / 2$	8.26	5.01	2.94	2.66	158351826
HGS	Boys	BCT	422230	$1 / 2$	8.32	5.22	3.05	2.41	181302718
SLJ	Girls	BCT	677639	$1 / 2$	9.60	5.42	2.84	2.19	269865621
SLJ	Boys	BCT	706134	$1 / 2$	9.97	5.42	2.77	2.30	286593503
BH	Girls	BCT	717911	$1 / 2$	15.37	5.54	2.10	2.17	211746507
BH	Boys	BCT	741823	$1 / 2$	15.28	5.61	2.12	2.12	229117658
BM	Girls	BCT	717526	$1 / 2$	9.66	5.52	2.88	2.13	225657454
BM	Boys	BCPE	741678	$1 / 2$	9.61	5.61	2.95	3.73	245281509
BMI	Girls	BCT	716750	$1 / 2$	10.54	5.57	2.69	2.08	160587571
BMI	Boys	BCT	740973	$1 / 2$	10.69	5.63	2.71	2.06	170674420
WC	Girls	BCPE	197832	$1 / 2$	10.62	5.20	2.38	3.37	150768194
WC	Boys	BCPE	205870	$1 / 2$	10.75	5.15	2.37	3.43	159088298

20mSRT indicates $20-\mathrm{m}$ shuttle run test; HGS, handgrip strength; SLJ, standing long jump; BH, body height; BM, body mass; BMI, body mass index; WC, waist circumference; BCT, Box-Cox t distribution; BCPE, Box-Cox power exponential; SBC, Schwarz Bayesian criterion. Parameters of the fitted distribution are lambda (λ), mu (μ), sigma (σ), nu (v) and tau (τ)

Online Supplementary Table 3. Reference values (centiles) for body height (cm) in European children and adolescents ($\mathrm{N}=1,466,821$)

$\begin{aligned} & \hline \text { Girls } \\ & \text { Age (yr.) } \\ & \hline \end{aligned}$	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
6.0-6.9 yrs	107.6	111.5	113.4	115.7	117.3	118.7	120.0	121.3	122.7	124.4	127.0	129.2	133.9
7.0-7.9 yrs	112.7	116.9	119.0	121.4	123.2	124.7	126.1	127.5	129.0	130.9	133.5	135.9	140.8
$8.0-8.9 \mathrm{yrs}$	117.5	122.0	124.3	127.0	128.9	130.5	132.1	133.6	135.3	137.3	140.2	142.7	147.9
9.0-9.9 yrs	121.7	126.6	129.1	132.0	134.1	135.9	137.6	139.3	141.1	143.3	146.4	149.1	154.6
10.0-10.9 yrs	125.9	131.2	133.9	137.0	139.3	141.2	143.0	144.8	146.7	149.0	152.4	155.2	161.0
11.0-11.9 yrs	132.4	137.9	140.7	144.0	146.3	148.3	150.2	152.1	154.1	156.5	159.9	162.8	168.7
12.0-12.9 yrs	137.9	143.4	146.1	149.4	151.7	153.7	155.5	157.4	159.4	161.7	165.0	167.9	173.5
13.0-13.9 yrs	143.0	148.2	150.9	154.1	156.3	158.2	159.9	161.7	163.6	165.9	169.0	171.8	177.1
14.0-14.9 yrs	146.1	151.2	153.8	156.8	158.9	160.8	162.5	164.2	166.0	168.1	171.2	173.8	178.8
15.0-15.9 yrs	148.0	152.9	155.4	158.4	160.5	162.3	163.9	165.6	167.4	169.5	172.4	174.9	179.8
16.0-16.9 yrs	148.7	153.5	156.0	158.9	161.0	162.8	164.4	166.0	167.8	169.9	172.8	175.2	179.9
17.0-17.9 yrs	149.2	154.0	156.5	159.4	161.5	163.2	164.8	166.5	168.2	170.2	173.1	175.5	180.1
18.0-18.9 yrs	150.0	154.8	157.2	160.1	162.2	163.9	165.5	167.1	168.8	170.8	173.6	176.0	180.6
$\begin{aligned} & \hline \text { Boys } \\ & \text { Age (yr.) } \\ & \hline \end{aligned}$	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
6.0-6.9 yrs	108.5	112.4	114.4	116.7	118.3	119.7	121.0	122.4	123.8	125.6	128.1	130.4	135.3
$7.0-7.9 \mathrm{yrs}$	113.8	117.9	120.0	122.4	124.2	125.7	127.1	128.5	130.0	131.9	134.6	137.0	141.9
$8.0-8.9$ yrs	118.7	123.1	125.4	128.0	129.9	131.5	133.1	134.6	136.2	138.2	141.1	143.6	148.7
9.0-9.9 yrs	122.8	127.5	129.9	132.8	134.9	136.6	138.3	139.9	141.7	143.8	146.9	149.5	154.8
10.0-10.9 yrs	125.8	131.0	133.6	136.7	138.9	140.8	142.6	144.4	146.3	148.6	151.8	154.6	160.1
11.0-11.9 yrs	130.5	136.2	139.0	142.5	144.9	147.0	148.9	150.9	153.0	155.5	159.0	161.9	167.8
12.0-12.9 yrs	135.0	141.1	144.3	148.0	150.6	152.9	154.9	157.0	159.3	161.9	165.6	168.7	174.9
13.0-13.9 yrs	141.4	147.8	151.1	155.0	157.7	160.0	162.2	164.4	166.7	169.4	173.2	176.4	182.5
14.0-14.9 yrs	148.3	154.7	157.9	161.7	164.4	166.7	168.8	170.9	173.2	175.8	179.5	182.6	188.6
15.0-15.9 yrs	154.0	160.1	163.2	166.8	169.4	171.5	173.6	175.6	177.7	180.2	183.7	186.6	192.1
16.0-16.9 yrs	157.6	163.3	166.3	169.7	172.2	174.2	176.1	178.0	180.0	182.4	185.6	188.3	193.5
17.0-17.9 yrs	159.6	165.2	168.0	171.3	173.7	175.6	177.5	179.3	181.2	183.4	186.6	189.1	194.0
18.0-18.9 yrs	161.0	166.5	169.3	172.5	174.8	176.7	178.5	180.3	182.1	184.3	187.3	189.8	194.5

Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population. Age at the midpoint of each interval was selected to provide percentiles. For instance, for the interval 6.0-6.9, data presented were those corresponding to an exact age of a 6.5 year-old child. P10 indicates $10^{\text {th }}$ percentile; other percentiles are abbreviated accordingly. Data sources are available at: www.fitbackeurope.eu/en-us/fitness-map/sources.

Online Supplementary Table 4. Reference values (centiles) for body mass (kg) in European children and adolescents ($\mathrm{N}=1,466,295$)

Girls Age (yr.)	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
$6.0-6.9 \mathrm{yrs}$	16.3	17.8	18.7	19.9	20.9	21.9	22.8	23.8	25.0	26.6	29.2	31.7	38.0
$7.0-7.9 \mathrm{yrs}$	17.8	19.7	20.8	22.3	23.5	24.6	25.8	27.1	28.6	30.5	33.7	36.8	44.6
$8.0-8.9 \mathrm{yrs}$	19.6	21.9	23.3	25.1	26.6	28.0	29.4	30.9	32.7	35.1	39.0	42.8	52.3
$9.0-9.9 \mathrm{yrs}$	21.5	24.2	25.8	28.0	29.8	31.4	33.1	34.9	37.1	39.9	44.4	49.0	60.2
$10.0-10.9 \mathrm{yrs}$	23.5	26.7	28.6	31.2	33.2	35.1	37.0	39.1	41.6	44.8	50.1	55.3	68.3
$11.0-11.9 \mathrm{yrs}$	26.2	29.9	32.1	35.1	37.4	39.5	41.7	44.1	46.9	50.5	56.4	62.3	77.0
$12.0-12.9 \mathrm{yrs}$	29.6	33.8	36.2	39.4	42.0	44.3	46.6	49.2	52.1	56.0	62.2	68.4	84.0
$13.0-13.9 \mathrm{yrs}$	33.5	38.0	40.5	43.9	46.5	48.9	51.2	53.8	56.8	60.7	66.9	73.2	88.8
$14.0-14.9 \mathrm{yrs}$	36.7	41.4	44.0	47.4	49.9	52.3	54.6	57.1	60.0	63.8	69.9	75.9	91.2
$15.0-15.9 \mathrm{yrs}$	38.9	43.6	46.2	49.5	52.0	54.3	56.5	59.0	61.7	65.4	71.2	77.1	92.4
$16.0-16.9 \mathrm{yrs}$	40.0	44.9	47.5	50.7	53.2	55.4	57.6	59.9	62.6	66.2	72.0	77.9	93.7
17.0-17.9 yrs	40.6	45.5	48.1	51.4	53.8	56.0	58.1	60.4	63.1	66.6	72.5	78.5	95.5
$18.0-18.9$ yrs	40.8	45.9	48.5	51.8	54.2	56.3	58.4	60.7	63.4	66.9	72.8	79.2	97.9
Boys Age (yr.)	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
6.0-6.9 yrs	16.7	18.3	19.2	20.5	21.5	22.4	23.3	24.2	25.4	27.0	29.6	32.3	39.5
$7.0-7.9 \mathrm{yrs}$	18.4	20.3	21.4	22.9	24.1	25.2	26.3	27.5	29.0	30.9	34.1	37.4	45.8
$8.0-8.9 \mathrm{yrs}$	20.3	22.5	23.8	25.6	27.1	28.5	29.8	31.3	33.1	35.5	39.4	43.3	53.1
$9.0-9.9 \mathrm{yrs}$	22.1	24.6	26.2	28.3	30.1	31.7	33.4	35.2	37.3	40.1	44.7	49.3	60.4
$10.0-10.9 \mathrm{yrs}$	23.7	26.7	28.5	31.0	33.0	34.9	36.8	39.0	41.5	44.8	50.1	55.3	68.0
$11.0-11.9 \mathrm{yrs}$	25.8	29.3	31.4	34.3	36.7	38.9	41.1	43.6	46.5	50.3	56.5	62.5	77.0
$12.0-12.9 \mathrm{yrs}$	28.6	32.6	35.0	38.4	41.1	43.6	46.1	48.9	52.1	56.4	63.3	70.1	86.4
$13.0-13.9$ yrs	32.4	37.0	39.8	43.6	46.6	49.3	52.0	55.0	58.5	63.1	70.6	78.0	95.7
$14.0-14.9$ yrs	36.9	42.1	45.3	49.4	52.5	55.4	58.2	61.3	64.9	69.7	77.5	85.1	103.5
$15.0-15.9 \mathrm{yrs}$	41.4	47.0	50.3	54.6	57.8	60.8	63.6	66.6	70.2	75.0	82.8	90.5	109.0
$16.0-16.9$ yrs	44.8	50.6	54.0	58.4	61.7	64.6	67.3	70.3	73.8	78.5	86.2	93.9	112.3
$17.0-17.9 \mathrm{yrs}$	47.1	53.0	56.5	60.8	64.1	67.0	69.7	72.6	76.1	80.7	88.4	95.9	114.3
18.0-18.9 yrs	48.8	54.8	58.2	62.6	65.8	68.7	71.4	74.3	77.7	82.3	89.9	97.5	116.0

Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population. Age at the midpoint of each interval was selected to provide percentiles. For instance, for the interval 6.0-6.9, data presented were those corresponding to an exact age of a 6.5 year-old child. P10 indicates $10^{\text {th }}$ percentile; other percentiles are abbreviated accordingly. Data sources are available at: www.fitbackeurope.eu/en-us/fitness-map/sources.

Online Supplementary Table 5. Reference values (centiles) for body mass index ($\mathrm{kg} / \mathrm{m}^{2}$) in European children and adolescents ($\mathrm{N}=1,464,795$)

Girls Age (yr.)	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
$6.0-6.9$ yrs	12.3	13.2	13.7	14.3	14.9	15.4	15.8	16.4	17.0	17.8	19.1	20.4	23.4
$7.0-7.9$ yrs	12.4	13.3	13.8	14.6	15.2	15.7	16.3	16.8	17.5	18.5	19.9	21.4	25.1
8.0-8.9 yrs	12.6	13.6	14.2	15.0	15.7	16.3	16.9	17.5	18.3	19.4	21.0	22.7	27.0
$9.0-9.9$ yrs	12.9	14.0	14.6	15.5	16.2	16.8	17.5	18.2	19.1	20.2	22.0	23.9	28.7
$10.0-10.9$ yrs	13.1	14.2	14.9	15.9	16.6	17.3	18.0	18.8	19.7	20.9	22.8	24.8	30.0
$11.0-11.9$ yrs	13.4	14.6	15.4	16.3	17.1	17.8	18.5	19.3	20.3	21.5	23.6	25.7	31.3
$12.0-12.9$ yrs	13.9	15.2	15.9	16.9	17.7	18.5	19.2	20.0	21.0	22.3	24.4	26.6	32.3
$13.0-13.9$ yrs	14.6	15.9	16.7	17.7	18.5	19.2	20.0	20.8	21.8	23.1	25.2	27.4	33.2
$14.0-14.9$ yrs	15.2	16.5	17.3	18.3	19.1	19.8	20.6	21.4	22.4	23.6	25.7	27.9	33.8
$15.0-15.9$ yrs	15.5	16.9	17.7	18.7	19.5	20.2	21.0	21.8	22.7	24.0	26.0	28.2	34.1
$16.0-16.9$ yrs	15.8	17.2	18.0	19.0	19.8	20.5	21.2	22.0	22.9	24.2	26.2	28.4	34.5
$17.0-17.9$ yrs	15.9	17.3	18.1	19.1	19.9	20.6	21.3	22.1	23.0	24.3	26.3	28.5	35.0
$18.0-18.9$ yrs	15.9	17.4	18.1	19.1	19.9	20.6	21.3	22.1	23.0	24.2	26.3	28.6	35.4

Boys Age (yr.)	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
6.0-6.9 yrs	12.7	13.5	13.9	14.5	15.0	15.5	15.9	16.4	17.0	17.8	19.1	20.4	23.7
$7.0-7.9 \mathrm{yrs}$	12.7	13.6	14.1	14.7	15.3	15.8	16.3	16.8	17.5	18.4	19.9	21.4	25.4
$8.0-8.9 \mathrm{yrs}$	12.9	13.8	14.4	15.1	15.7	16.3	16.9	17.5	18.2	19.2	20.9	22.7	27.4
9.0-9.9 yrs	13.2	14.2	14.8	15.6	16.2	16.8	17.5	18.2	19.0	20.1	22.0	23.9	29.3
$10.0-10.9 \mathrm{yrs}$	13.4	14.4	15.1	15.	16.6	17.3	18.0	18.7	19.6	20.8	22.9	25.0	31.1
$11.0-11.9 \mathrm{yrs}$	13.6	14.7	15.	16.	17.1	17.8	18.5	19.	20.3	21.6	23.8	26.1	32.7
$12.0-12.9 \mathrm{yrs}$	14.0	15.	15.	16.8	17.6	18.3	19.	19.9	20.9	22.	24.5	26.9	33.8
$13.0-13.9 \mathrm{yrs}$	14.4	15.7	16.4	17.	18.2	19.0	19.7	20.6	21.6	23.0	25.3	27.7	34.5
$14.0-14.9 \mathrm{yrs}$	15.0	16.3	17.0	18.1	18.9	19.6	20.4	21.3	22.3	23.6	25.9	28.3	35.1
$15.0-15.9 \mathrm{yrs}$	15.5	16.9	17.7	18.7	19.5	20.3	21.1	21.9	23.0	24.3	26.6	29.0	35.7
$16.0-16.9 \mathrm{yrs}$	16.0	17.4	18.2	19.3	20.1	20.9	21.7	22.5	23.5	24.9	27.2	29.5	36.2
$17.0-17.9 \mathrm{yrs}$	16.3	17.7	18.6	19.6	20.5	21.3	22.1	22.9	23.9	25.3	27.5	29.9	36.6
18.0-18.9 yrs	16.5	18.0	18.9	20.0	20.8	21.6	22.4	23.2	24.2	25.6	27.8	30.2	37.0

Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population. Age at the midpoint of each interval was selected to provide percentiles. For instance, for the interval 6.0-6.9, data presented were those corresponding to an exact age of a 6.5 year-old child. P10 indicates $10^{\text {th }}$ percentile; other percentiles are abbreviated accordingly. Data sources are available at: www.fitbackeurope.eu/en-us/fitness-map/sources.

Online Supplementary Table 6. Reference values (centiles) for waist circumference (cm) in European children and adolescents ($\mathrm{N}=409,580$)

$\begin{aligned} & \text { Girls } \\ & \text { Age (yr.) } \\ & \hline \end{aligned}$	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
6.0-6.9 yrs	45.2	47.9	49.5	51.6	53.2	54.7	56.1	57.7	59.4	61.7	65.2	68.5	76.0
7.0-7.9 yrs	46.5	49.4	51.1	53.4	55.2	56.9	58.6	60.5	62.5	65.2	69.3	73.1	81.5
$8.0-8.9 \mathrm{yrs}$	48.0	51.0	52.8	55.3	57.4	59.3	61.3	63.4	65.8	68.8	73.5	77.8	87.2
$9.0-9.9 \mathrm{yrs}$	49.0	52.2	54.1	56.8	59.0	61.0	63.2	65.5	68.2	71.5	76.6	81.3	91.6
$10.0-10.9 \mathrm{yrs}$	50.2	53.4	55.4	58.2	60.5	62.7	64.9	67.4	70.2	73.7	79.1	84.1	95.3
$11.0-11.9 \mathrm{yrs}$	51.6	55.0	57.1	59.9	62.3	64.5	66.8	69.2	72.1	75.7	81.2	86.5	98.3
$12.0-12.9 \mathrm{yrs}$	53.0	56.4	58.5	61.4	63.7	65.8	68.1	70.5	73.2	76.7	82.2	87.5	99.4
$13.0-13.9 \mathrm{yrs}$	54.3	57.7	59.8	62.6	64.8	66.9	69.0	71.3	73.9	77.2	82.5	87.6	99.4
$14.0-14.9 \mathrm{yrs}$	55.5	58.9	61.0	63.7	65.9	67.9	69.8	72.0	74.4	77.6	82.7	87.6	99.2
$15.0-15.9 \mathrm{yrs}$	56.5	59.9	62.0	64.6	66.7	68.6	70.5	72.5	74.9	77.9	82.8	87.6	99.1
16.0-16.9 yrs	57.3	60.8	62.8	65.4	67.5	69.3	71.1	73.1	75.3	78.3	83.2	87.9	99.5
$17.0-17.9 \mathrm{yrs}$	57.8	61.2	63.2	65.8	67.8	69.6	71.4	73.3	75.5	78.5	83.3	88.1	100.0
18.0-18.9 yrs	57.8	61.3	63.3	65.9	67.9	69.6	71.4	73.2	75.4	78.3	83.1	88.0	100.3
$\begin{aligned} & \hline \text { Boys } \\ & \text { Age (yr.) } \\ & \hline \end{aligned}$	P1	P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95	P99
6.0-6.9 yrs	45.9	48.8	50.5	52.6	54.2	55.6	56.9	58.3	59.9	62.1	65.7	69.3	78.3
7.0-7.9 yrs	47.3	50.3	52.1	54.4	56.1	57.7	59.3	61.0	63.0	65.5	69.7	73.7	83.4
$8.0-8.9 \mathrm{yrs}$	49.0	52.1	53.9	56.4	58.4	60.2	62.1	64.1	66.4	69.4	74.2	78.7	89.3
$9.0-9.9 \mathrm{yrs}$	50.4	53.5	55.4	58.0	60.2	62.2	64.3	66.6	69.2	72.6	77.9	82.8	94.3
$10.0-10.9$ yrs	51.6	54.8	56.8	59.6	61.9	64.0	66.3	68.8	71.7	75.3	81.0	86.4	98.8
$11.0-11.9 \mathrm{yrs}$	53.0	56.3	58.4	61.3	63.6	65.9	68.3	70.9	73.9	77.7	83.7	89.4	102.6
$12.0-12.9 \mathrm{yrs}$	54.4	57.8	60.0	62.9	65.3	67.6	69.9	72.5	75.5	79.3	85.3	91.1	104.8
$13.0-13.9 \mathrm{yrs}$	56.2	59.7	61.9	64.8	67.2	69.4	71.7	74.1	77.0	80.7	86.6	92.4	106.1
$14.0-14.9 \mathrm{yrs}$	58.0	61.7	63.9	66.9	69.2	71.3	73.4	75.8	78.5	82.0	87.7	93.3	107.1
$15.0-15.9 \mathrm{yrs}$	59.7	63.5	65.8	68.7	71.0	73.1	75.1	77.2	79.8	83.2	88.7	94.3	108.2
$16.0-16.9$ yrs	61.2	65.2	67.5	70.5	72.7	74.7	76.6	78.7	81.1	84.4	90.0	95.6	110.1
$17.0-17.9 \mathrm{yrs}$	62.1	66.4	68.8	71.8	74.0	75.9	77.7	79.7	82.1	85.3	90.8	96.6	112.0
18.0-18.9 yrs	62.5	66.9	69.3	72.3	74.5	76.4	78.1	80.0	82.3	85.4	90.9	96.8	113.2

Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population. Age at the midpoint of each interval was selected to provide percentiles. For instance, for the interval 6.0-6.9, data presented were those corresponding to an exact age of a 6.5 year-old child. P10 indicates $10^{\text {th }}$ percentile; other percentiles are abbreviated accordingly. Data sources are available at: www.fitbackeurope.eu/en-us/fitness-map/sources.

Online Supplementary Table 7. Mean percentile and ranking position of each country according to the pooled EU reference values for body height and weight.

KOS	742	45.3	27	47.4	25	43.4	28	SLO	5208	44.4	27	43.8	29	44.8	23
SWE	2089	44.0	28	45.6	27	42.5	30	FRA	42623	44.2	28	44.9	27	43.6	27
SWI	762	42.4	29	40.7	30	44.3	27	SWI	762	42.5	29	42.3	30	42.8	29
POR	30740	42.4	30	42.0	29	42.7	29	BUL	497	41.2	30	40.4	31	41.9	30
UK	22969	39.1	31	38.2	31	40.1	31	KOS	742	40.8	31	44.2	28	37.8	31
ALB	2113	21.5	32	22.2	32	21.0	32	ALB	2115	30.0	32	31.2	32	28.9	32
N	1466821							N	466295						

N , sample size and total sample size at the bottom of the table. The 3-digit country codes were used to abbreviate the full country names https://en.wikipedia.org/wiki/List_of_UNDP_country_codes as follows: ALB, Albania; AUS, Austria; BEL, Belgium; BIH, Bosnia and Herzegovina; BUL, Bulgaria; CRO, Croatia; CYP, Cyprus; CZE, Czech Republic; DEN, Denmark; EST, Estonia; FIN, Finland; FRA, France; GER, Germany; GRE, Greece; HUN, Hungary; ISL, Iceland; IRE, Ireland; ITA, Italy; KOS, Kosovo; AT, Latvia; LIT, Lithuania; LUX, Luxembourg; NET, Netherlands; MCD, North Macedonia; MNE, Montenegro; NOR, Norway; POL, Poland; POR, Portugal; SRB, Serbia; SLO, Slovakia; SVN, Slovenia; SPA, Spain; SWE, Sweden; SWI, Switzerland; UK, United Kingdom.
For each test, the countries were sorted according to their rank position in the Both (girls and boys) column. Sex- and- age-specific percentile values were calculated using available country-level data and were averaged across sexes and ages to obtain the mean percentile for each country compared to the EU reference values. Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population.

Online Supplementary Table 8. Mean percentile and ranking position of each country according to the pooled EU reference values for body mass index and waist circumference.

	Body mass index								Waist circumference						
	Both			Girls		Boys				Both		Girls		Boys	
	N	Centile	Rank	Centile	Rank	Centile	Rank		N	Centile	Rank	Centile	Rank	Centile	Rank
MCD	1021	58.3	1	55.1	2	61.4	1	MNE	3914	59.3	1	59.3	1	59.3	1
SPA	26024	56.3	2	56.7	1	56.0	2	GRE	322480	55.8	2	55.6	2	55.9	2
GRE	324462	54.5	3	53.7	5	55.2	3	ITA	1061	52.6	3	48.5	6	55.9	3
CRO	23645	53.3	4	52.6	7	54.1	4	AUS	416	50.6	4	50.1	4	51.2	4
ISL	387	53.2	5	54.1	3	52.3	5	POR	30620	50.6	5	54.1	3	46.9	7
UK	22794	52.1	6	53.8	4	50.5	10	SPA	21356	49.2	6	49.1	5	49.3	5
POR	30707	51.8	7	53.4	6	50.1	13	ISL	387	47.6	7	47.7	8	47.6	6
HUN	601480	51.6	8	51.9	8	51.2	7	SWE	356	44.4	8	47.8	7	39.1	16
SWE	2087	50.4	9	50.6	9	50.3	12	UK	9619	43.7	9	44.2	9	43.3	11
IRE	1147	50.2	10	50.4	10	49.9	15	MCD	1020	42.4	10	39.1	14	45.6	8
AUS	630	50.0	11	49.4	13	50.6	9	EST	815	42.2	11	39.1	13	44.8	9
SVN	214944	49.8	12	49.6	12	50.0	14	CRO	1853	41.7	12	39.0	15	44.7	10
SRB	20677	49.7	13	49.0	14	50.4	11	FIN	1344	40.7	13	41.4	10	40.1	13
ITA	26462	49.7	14	48.6	16	50.7	8	GER	4197	40.7	14	39.5	12	41.8	12
MNE	6550	48.6	15	45.7	21	51.5	6	SVN	4848	39.6	15	39.8	11	39.4	15
BEL	22966	48.5	16	50.1	11	47.0	21	HUN	393	37.9	16	36.4	18	39.5	14
EST	4079	48.3	17	47.8	18	48.8	16	FRA	308	36.5	17	36.4	17	36.5	17
NOR	2604	48.3	18	48.8	15	47.9	18	DEN	1042	35.2	18	37.4	16	32.7	19
GER	5223	47.7	19	47.6	20	47.8	19	BEL	3059	33.7	19	34.4	19	33.1	18
CZE	1634	47.6	20	47.8	19	47.4	20	SWI	492	27.6	20	27.9	20	27.2	20
POL	49510	47.0	21	45.7	23	48.3	17		-	-	-	-	-	-	-
BIH	843	45.8	22	48.0	17	43.8	23		-	-	-	-	-	-	-
FRA	42615	45.3	23	45.7	22	44.8	22		-	-	-	-	-	-	-
FIN	2453	44.0	24	45.7	24	42.1	28		-	-	-	-	-	-	-
ALB	2115	43.9	25	44.8	27	43.1	26		-	-	-	-	-	-	-
SWI	762	43.7	26	45.2	25	42.1	29		-	-	-	-	-	-	-

KOS	742	43.1	27	45.0	26	41.4	30		-	-	-	-	-	-	-
LAT	7743	43.1	28	42.9	28	43.3	25		-	-	-	-	-	-	-
SLO	5208	41.8	29	39.6	32	43.4	24		-	-	-	-	-	-	-
LIT	11743	41.5	30	40.5	30	42.4	27		-	-	-	-	-	-	-
DEN	1041	40.7	31	42.9	29	38.3	32		-	-	-	-	-	-	-
BUL	497	39.7	32	40.3	31	39.1	31		-	-	-	-	-	-	-
N	1464795								409580						

N , sample size and total sample size at the bottom of the table. The 3-digit country codes were used to abbreviate the full country names https://en.wikipedia.org/wiki/List_of_UNDP_country_codes as follows: ALB, Albania; AUS, Austria; BEL, Belgium; BIH, Bosnia and Herzegovina; BUL, Bulgaria; CRO, Croatia; CYP, Cyprus; CZE, Czech Republic; DEN, Denmark; EST, Estonia; FIN, Finland; FRA, France; GER, Germany; GRE, Greece; HUN, Hungary; ISL, Iceland; IRE, Ireland; ITA, Italy; KOS, Kosovo; AT, Latvia; LIT, Lithuania; LUX, Luxembourg; NET, Netherlands; MCD, North Macedonia; MNE, Montenegro; NOR, Norway; POL, Poland; POR, Portugal; SRB, Serbia; SLO, Slovakia; SVN, Slovenia; SPA, Spain; SWE, Sweden; SWI, Switzerland; UK, United Kingdom.
For each test, the countries were sorted according to their rank position in the Both (girls and boys) column. Sex- and- age-specific percentile values were calculated using available country-level data and were averaged across sexes and ages to obtain the mean percentile for each country compared to the EU reference values. Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population.

Online Supplementary Figure 1. Percentile curves for body height and body mass in European children and adolescents.

Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population. Data sources are available at: https://www.fitbackeurope.eu/en-us/fitness-map/sources.

Online Supplementary Figure 2. Percentile curves for body mass index and waist circumference in European children and adolescents.

Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population. Data sources are available at: https://www.fitbackeurope.eu/en-us/fitness-map/sources.

Online Supplementary Figure 3. European maps for body mass index and waist circumference in children and adolescents.
Sex- and- age-specific percentile values were calculated using available country-level data and were averaged across sexes and ages to obtain the mean percentile for each country compared to the EU reference values. Smoothed percentiles were calculated using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method and weights were applied according to country population.
Separate European fitness maps for girls and boys are available at: www.fitbackeurope.eu/en-us/fitness-map. The website map is interactive so that detailed information for each country is shown with the mouseover function.

Not all countries have representative data and therefore caution should be paid when interpreting country comparisons presented this study and in the platform. Data sources are available at: www.fitbackeurope.eu/en-us/fitness-map/sources.

[^0]: MS, muscular strength; CRF, cardiorespiratory fitness; N, sample size and total sample size at the bottom of the table. The 3-digit country

[^1]: medRxiv preprint doi: https://doi.org/10.1101/2022.06.09.22275139; this version posted June 13, 2022. The copyright holder for this preprin
 (which was not certified by peer review) is the authorfunder, who has granted medRxiv a license to display the preprint in perpetuity.
 It is made available under a CC-BY-NC-ND 4.0 International license.

[^2]: medRxiv preprint doi: https://doi.org/10.1101/2022.06.09.22275139; this version posted June 13 , 2022. The copyright holder for this preprin
 (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
 It is made available under a CC-BY-NC-ND 4.0 International license.

