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Preface 

 

The results described in this volume have been obtained within the research and 
development project named DEEP-EST, which stands for Dynamical Exascale Entry 
Platform – Extreme Scale Technologies. DEEP-EST is the third member of the DEEP 
family, initiated and coordinated by the Jülich Supercomputing Centre (JSC) at 
Forschungszentrum Jülich and financially supported by the European Commission 
through the FP7 and H2020 funding frameworks. The first DEEP project started at the 
end of 2011, was followed in 2013 by DEEP-ER (which stands for DEEP – Extended 
Reach), and then in 2017 by DEEP-EST.  

It was mid of 2005, when the JSC began to realize its dual supercomputing strategy, 
with the purpose to allow for the coordinated operation of a general-purpose cluster 
and a highly scalable supercomputer. The first incarnation of the dual strategy came 
as an Intel cluster with Mellanox networking running ParaStation as the operating 
system, joined by a highly scalable IBM Blue Gene/P system. This combination 
enjoyed position 10 and position 2 on the Top500-list in June 2009 and November 
2009, respectively. Scientifically, the dual strategy was driven by the insight that the 
class of highly scalable problems could be computed in a particularly cost-effective and 
energy-efficient manner on systems optimized for this purpose, such as BlueGene 
machines, and that for the class of complex and data-intensive problems, the then-
emerging line of cluster computers was particularly well suited. Already then, many 
fields and research projects in computational science relied on both technologies 
simultaneously for simulation and data analysis, including, in particular, access to the 
same external data store. 

Around 2010, we at JSC and our cluster partners started to think about how we could 
take the Jülich dual concept with its autonomous supercomputers, so far connected 
only by the shared data storage, into the future, especially also because an increasing 
gap between general purpose clusters and highly-scalable systems was emerging. In 
parallel, the first heterogeneous node designs appeared, consisting of CPUs and 
accelerators, which were of interest as possible processors for future highly scalable 
systems, but as far as graphics cards (GPU) were concerned, they could only be used 
as coprocessors, since CPUs and GPUs are statically assigned to each other. We 
realized that it would be much more beneficial to take the accelerators apart from the 
node as an autonomous unit and flexibly assign them to the CPUs. We made these 
ideas the basis of the proposal for the first DEEP project, which was approved and 
launched end of 2011.  
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As part of DEEP, our first cluster-booster prototype was built with an Intel Xeon-based 
general-purpose cluster running on a Mellanox network, connected through a specific 
network interface with the EXTOLL network of a 384-node system of Intel Xeon Phi 
processors (KNC); the latter we referred to as the "booster." In parallel, the full software 
stack was developed around the ParaStation cluster middleware that eventually led to 
the ParaStation Modulo system we enjoy today, and quite a few initial application use-
cases were adapted and tested. In the follow-up DEEP-ER project, we continued work 
on the DEEP pilot architecture and its environment, focusing in particular on improving 
input-output and resilience capabilities.  

Building on these successful results, the DEEP-EST project that ran from 2017 to 2021 
generalized the Cluster-Booster concept in order to address the requirements of a 
wider variety of applications. The resulting Modular Supercomputing Architecture 
(MSA) developed in DEEP-EST is designed to meet the requirements of both large-
scale simulations traditionally run on HPC systems and data-intensive workloads from 
the field of artificial intelligence like deep learning.  

Within the DEEP-EST project, a hardware prototype with three computing modules, a 
Cluster Module, a Booster Module, and a Data Analytics Module, were designed, built 
and put into operation. What is more, the MSA software stack and programming 
environment was enhanced to support the latest GPU and FPGA acceleration 
technologies and to enable a more dynamical resource allocation. These 
developments were driven by the codesign input from the six application-development 
teams participating in the project.  

Indeed, the experience of the application-development teams in adapting their codes 
to the DEEP-EST MSA system is among the most significant results of the project. 
Their experience is collected and summarized in this volume, which describes in its 
various chapters the applications used, the code-adaptations required for the MSA, the 
results of benchmarking campaigns on the DEEP-EST hardware prototype, and the 
lessons learned by each team throughout the process. In addition, the final chapter 
compiles best practices considered to be useful for future users of the DEEP-EST 
prototype in particular, and for users of any upcoming modular supercomputer in 
general. In fact, we believe that much of the lessons learned in this volume are 
applicable to all heterogeneous supercomputers, even if they are arranged in an old-
fashioned monolithic fashion.  

This book is intended for computer scientists at any stage of their careers who aspire 
to use large modular and/or heterogeneous supercomputers. The book is laid out as a 
sequence of independent chapters, one per application area, which do not necessarily 
have to be read one after the other. However, it is highly recommended to read Chapter 
one first, as it serves as an introduction and describes the hardware and software 
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stacks developed in the DEEP-EST project, which are used by all applications in the 
remaining chapters of this book.  

The leadership of DEEP-EST owes a great debt of gratitude to all partners and 
members of the project, both those who are co-authors in some chapters of this book 
and those who are not explicitly mentioned here but who have participated and shown 
great commitment to the development of the project's various hardware and software 
solutions.  

Above all, our thanks also go to the European Commission, which has supported us 
so much over the past 10 years and continues to do so in the follow-up project DEEP-
SEA, the fourth member of the DEEP project family, together with many member 
states. We are particularly thankful for the guidance and support of the Project Officer 
responsible for the DEEP-EST project, Juan Pelegrín, and the external reviewers 
Anne-Claire Mireille Fouilloux, Maria Ángeles González Navarro, and John Barr. Their 
suggestions and their encouragement led to the publication of this book.  

 

Jülich, October 2021 

Prof. Dr. Dr. Thomas Lippert 

Director of the Jülich Supercomputing Centre 
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1 The DEEP-EST project 
Estela Suarez(1), Anke Kreuzer(1), Norbert Eicker(1,2), Thomas Lippert(1,3) 

(1) Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Leo Brandt 
Strasse, 52428 Jülich, Germany 

(2) Fakultät für Mathematik und Naturwissenschaften, Bergische Universität 
Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany 

(3) Goethe-Universität Frankfurt, Frankfurt Institute for Advanced Studies (FIAS).  
Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany 

e.suarez@fz-juelich.de 

 

1.1 Introduction 

DEEP-EST (standing for Dynamical Exascale Entry Platform – Extreme Scale 
Technologies) is a research and development project funded by the European 
Commission through the Horizon 2020 framework program. It has run for 45 months 
from June 2017 until March 2021 under the coordination of Forschungszentrum Jülich 
(FZJ) and with the participation of 16 institutions from 9 European countries (see Figure 
1.1).  

 

Forschungszentrum Jülich GmbH 
(coord.) 
ParTec Cluster Competence Centre 
GmbH 
Intel Deutschland GmbH 
Bayerische Akademie der 
Wissenschaften 
Barcelona Supercomputing Center 
Megware Computer Vertrieb und Service 
GmbH 
Ruprecht-Karls-Universität Heidelberg 
EXTOLL GmbH 
The University of Edinburgh 
Fraunhofer Gesellschaft zur Förderung 
der Angewandten Forschungs e.V. 
Katholieke Universiteit Leuven 
Stichting Astron, Netherlands Institute 
For Radio Astronomy 
Association National Centre For 
Supercomputing Applications 
Norges Miljo-Og Biovitenskaplige 
Universitet 
Haskoli Islands 
European Organisation for Nuclear 
Research 

Figure 1.1: The DEEP-EST consortium 
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DEEP-EST is, after its predecessors DEEP and DEEP-ER, the third member in the 
DEEP project series1 funded by the European Commission and driven by a stringent 
codesign spirit, in which hardware-, software-, and application developers work tightly 
together to develop holistic solutions to today’s HPC challenges. A new breed of HPC 
systems is needed to support the computation and data processing requirements of 
both traditional high performance computing (HPC) and emerging high performance 
data analytics (HPDA) workloads. To do so, DEEP-EST implements the Modular 
Supercomputing Architecture (MSA), a novel system-level design to integrate 
heterogeneous resources and match the requirements of a wide spectrum of 
application fields, ranging from computationally intensive high-scaling simulation codes 
to data-intensive artificial intelligence workflows. 

 

1.2 Modular Supercomputing Architecture (MSA) 
The Cluster-Booster concept first implemented by DEEP broke with the traditional 
system architecture approach (based on replicating many identical compute nodes, 
possibly integrating heterogeneous processing resources within each node) by 
integrating heterogeneous computing resources in a modular way at the system level2. 
More precisely, it connected a standard HPC cluster based on general-purpose 
processors with a cluster of many-core processors or accelerators (the “booster”) by 
way of a highly efficient and high-speed network. No constraints are put on the 
combination of Cluster and Booster nodes that an application may select, and 
resources might be reserved dynamically.  

The Modular Supercomputer Architecture (MSA)3 introduced in DEEP EST takes the 
Cluster-Booster architecture to the next step generalizing the concept to fulfil the 
requirements of a wider variety of applications from HPC and HPDA domains (see 
Figure 1.2). In the MSA several modules – each one tuned to best match the needs of 
a certain class of algorithms – are connected to each other at the system level to create 
a single heterogeneous system. Each module is a parallel, clustered system of 
potentially large size. A federated network connects the module-specific interconnects, 

                                             
1 www.deep-projects.eu  
2 N. Eicker, Th. Lippert, Th. Moschny, and E. Suarez, The DEEP Project - An alternative approach to 

heterogeneous cluster-computing in the many-core era, Concurrency and computation: Practice and 
Experience, Vol. 28, p. 2394–-2411 (2016), doi = 10.1002/cpe.3562. http://juser.fz-
juelich.de/record/203150/files/concurrency-paper.pdf  

3 E. Suarez, N. Eicker, Th. Lippert, "Modular Supercomputing Architecture: from idea to production", 
Chapter 9 in Contemporary High Performance Computing: from Petascale toward Exascale, Volume 
3, pp 223-251, Ed. Jeffrey S. Vetter, CRC Press. (2019) https://juser.fz-juelich.de/record/862856  
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while an optimised resource manager enables assembling arbitrary combinations of 
these resources according to the application workload requirements. This has two 
important effects: Firstly, each application can run on a near-optimal combination of 
resources and achieve excellent performance. Secondly, all the resources can be put 
to good use by combining the set of applications in a complementary way, increasing 
throughput and efficiency of use for the whole system. 

 

  
Figure 1.2: The DEEP-EST prototype. Left: Architecture scheme. Right: picture at JSC’s 

computer room 

 

1.3 Hardware 
The DEEP-EST hardware prototype (Figure 1.2) has been defined in close co-design 
cooperation between applications, system software and system component architects. 
It includes three computing modules and two storage modules. The modules are 
connected through a high-speed network and, most importantly, operated with a 
uniform system software and programming environment. This enables applications to 
be distributed over several modules, running each part of its code on the best-suited 
hardware.  

The computational core of the DEEP-EST system is given by the general purpose 
Cluster Module (CM), the Extreme Scale Booster (ESB), and the Data Analytics 
Module (DAM). Their main characteristics are given in Table 1.1. The following 
subsections give an overview on the different components. More details can be found 
in the DEEP-EST Wiki4.   

                                             
4 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/System_overview  
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DEEP-EST system CM ESB DAM 

Usage and design 
target 

Applications and 
code parts requiring 
high single-thread 
performance and a 
modest amount of 

memory, which 
typically show 

moderate scalability. 
General purpose 
performance and 
energy efficiency 

are essential for the 
CM. 

Compute 
intensive 

applications and 
code parts with 
regular control 

and data 
structures, 

showing high 
parallel scalability. 
Energy efficiency, 

balanced 
architecture, 

packaging and 
hardware 

scalability are also 
important aspects 
in the ESB design. 

Data-intensive 
analytics and 

machine learning 
applications and 

code parts requiring 
large memory 
capacity, data 

streaming, bit- or 
small datatype 

processing. 
Flexibility, non-

volatile memory and 
different acceleration 
capabilities are key 

features of the DAM. 

Node count 50 75 16 

CPU type 
CPU codename 

Cores @frequency 

Intel Xeon 6146 
Skylake 

12 @3.2 GHz 

Intel Xeon 4215 
Cascade Lake 
8 @2.5 GHz 

Intel Xeon 8260M 
Cascade Lake 
24 @2.4 GHz 

Accelerators per 
node n.a. 1× NVIDIA V100 

GPU 
1× NVIDIA V100 GPU 

1× Intel Stratix10 FGPA 

DDR4 capacity 
HBM capacity 

NVMe 
Node max. mem BW 

192 GB 
n.a. 
n.a. 

256 GB/s 

48 GB 
32 GB (GPU) 

n.a. 
900 GB/s (GPU) 

384GB+32GB(FPGA) 
32 GB (GPU) 

3 TB Intel Optane 
900 GB/s (GPU) 

Storage 1x 512 GB NVMe 
SSD 

1x 512 GB NVMe 
SSD 

2x 1.5 TB NVMe 
SSD 

Network technology 
 

Network Topology 

EDR-IB (100 Gb/s) 
 

Fat-tree 

EDR-IB (100 
Gb/s) 

 
Tree 

EDR-IB (100 Gb/s) 
Ethernet (40 Gb/s) 

Tree 

Power /node 
Cooling 

500 W 
warm-water 

500 W 
warm-water 

1600 W 
air 

Integration 1× Rack MEGWARE 
SlideSX-LC ColdCon 

3× Rack 
MEGWARE 
SlideSX-LC 

ColdCon 
1× Rack MEGWARE 

Table 1.1: Main hardware features of the DEEP-EST modular prototype, in its final 
configuration5. 

                                             
5 During the project lifetime the DAM and one ESB partition featured an EXTOLL Fabri3 interconnect. 

For better user-experience and easier long-term maintenance in mind, after the end of the DEEP-
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1.3.1 The Cluster Module (CM) 

The CM is a general purpose HPC cluster with 50 nodes, each with two Intel® Xeon® 
Scalable (“Skylake” generation) Gold CPUs, 192 GB RAM and one 400 GB NVMe 
SSD. The nodes are interconnected by an InfiniBand EDR fabric with 100 Gbit/s 
bandwidth. The CPUs have relatively few cores (12 each) with a high clock frequency 
of 3.2 GHz. This module provides reliable performance and universal applicability with 
high single-thread performance, supporting highly complex and dynamic control flow 
HPC workloads. That means that application (parts) that do not fit well to the other 
more specialized modules (ESB or DAM) should be executed on the CM. 

 
Figure 1.3: Architecture of the CM node 

 

1.3.2 The Extreme Scale Booster (ESB) 

The ESB targets the needs of highly scalable (parts of) applications and workloads and 
is the largest module in the DEEP-EST prototype. With its 75 nodes, each containing 
one Intel Xeon Scalable (“Cascade Lake” generation) Silver CPU, one NVIDIA® Tesla® 
V100 GPU, 48 GB of RAM, and one 512 GB SSD, the ESB is a highly scalable system, 
and provides very high computational throughput for applications with very wide 
parallelism and suitable control structures. Achieving high energy efficiency is a key 
objective of the system integration. The ESB nodes are thus designed for GPGPU 

                                             
EST project it was decided to reconfigure the prototype with a uniform, InfiniBand-only interconnect 
across all modules. Since this book targets future users of this MSA platform, this final configuration 
is the one described in this table and taken into account across the full volume.  
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centric computing, with the vast majority of compute operations running on the high-
end GPGPU, and the Xeon CPU controlling I/O and network communication (including 
MPI), as well as managing the GPGPU device attached via a 16-lane PCIe generation 
3 link. It targets highly scalable (data, thread and task parallel) HPC applications (or 
parts thereof) and workloads. The nodes are interconnected via InfiniBand EDR 
providing a 100 Gbit/s bandwidth. 

 
Figure 1.4: Architecture of the ESB node 

 

 

1.3.3 The Data Analytics Module (DAM) 

The DAM is a specifically designed cluster for high-performance data analytics (HPDA) 
and artificial intelligence (AI) workloads. It is composed of 16 nodes, each with two 
Intel Xeon Scalable (“Cascade Lake” generation) Platinum CPUs, one NVIDIA Tesla 
V100 GPU, one Intel® Stratix® 10 FPGA and 384 GB RAM plus 3 TB of Intel® Optane 
Persistent Memory. The module uses two interconnects in parallel: 100 Gbit/s 
InfiniBand and 40 Gbit/s Ethernet. In contrast to the ESB, each DAM nodes provides 
a duo of high-end CPUs, plus one high-end GPGPU and FPGA accelerator each. It is 
designed for applications that share the computation load between CPUs and 
accelerators, require large main memory, or can profit from using an FPGA. 
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Figure 1.5: Architecture of the DAM 

 

1.3.4 The Scalable Storage and Service Module (SSSM) 

The SSSM provides storage capacity based on conventional spinning-disks and uses 
a parallel file system (BeeGFS). It provides storage capacity for the workloads while 
they are running on the DEEP-EST prototype. It is not included in any backup scheme. 
The SSSM is accessible under /work. For more information on the storage and file 
system see Chapter 8, Section 8.6. 

 

1.3.5 The All-Flash Storage Module (AFSM) 

The AFSM complements the SSSM and is based on modern PCIe3 NVMe SSD 
storage devices to provide scalable, high-performance global I/O and storage 
capabilities and better match the computational power of the DEEP-EST Prototype 
modules for data- and storage-intensive applications and workloads. On the ASFM, 
the BeeGFS global parallel file system is used to make 1.8 PB of data storage capacity 
available, supported by two Metadata servers and six volume data server systems 
which are interconnected by a 100 Gbps EDR-InfiniBand fabric. The AFSM is 
integrated into the DEEP-EST EDR fabric topology of the CM, ESB and DAM. 
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1.4 Software 
The DEEP-EST software architecture (see Figure 1.6) was designed in the early 
stages of the project taking careful account of the requirements determined from the 
co-design applications. The languages, programming and parallelization paradigms, 
libraries, and needed tools were integrated in the stack, and platform adaptations were 
identified and implemented wherever needed.  

The lower layers of the software stack have been adapted to provide the best support 
for the underlying hardware, while hiding these modifications from the end user by 
keeping the higher-level layers of the stack in APIs familiar to users. For example, low-
level interconnect management features were developed and integrated with MPI, but 
without changing the MPI calls that are directly used by the application developers.  

 
Figure 1.6: Software stack in the DEEP-EST project 

The MSA software stack enables application developers to map the intrinsic scalability 
patterns of their applications and workflows onto the hardware: highly parallel code 
parts run on the large-scale, energy-efficient Booster, while less scalable code parts 
can profit from the high single-thread performance of the Cluster, or from the high 
memory capacity of the Data Analytics Module. Users can freely decide how many 
nodes to use in each module, so that the highest application efficiency and system 
usage can be achieved6. 

                                             
6 A. Kreuzer, J. Amaya, N. Eicker, E. Suarez, Application performance on a Cluster-Booster system, 

2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 
HCW (20th International Heterogeneity in Computing Workshop), Vancouver (2018), p: 69 - 78. [doi: 
10.1109/IPDPSW.2018.00019] https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8425386  
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1.4.1 Resource management and scheduling 

Resource management and job scheduling play a pivotal role for the success of the 
overall MSA. Existing job schedulers guarantee efficient use of monolithic 
supercomputers. However, the MSA requires capabilities to manage heterogeneous 
resources, to enable co-scheduling of resource sets across modules, and to handle 
dynamically varying resource-profiles. For this reason, the resource management and 
scheduling software packages psslurm and Slurm7 have been widely extended to 
enable an optimal utilization of the heterogeneous resources in a modular 
supercomputer. These extensions include the ability to dynamically allocate nodes in 
all compute modules, as well as global resources. Also, better support for the  Multiple-
Program Multiple-Data (MPMD) programming paradigm has been implemented, which 
is needed for heterogeneous jobs running different executables on different parts of 
the job allocation. Furthermore, a new switch ( delay) and a clause ( module list) 
have been implemented in Slurm: the former enables workflows consisting of jobs with 
data dependencies to overlap the executions of their different steps, so that data can 
be transferred directly between them without writing and then again reading them from 
the file system; the latter provides in order of preference the list of modules on which 
the job-steps can run, giving the scheduler more flexibility in the allocation of resources, 
depending on the demand in the given point on time. 

A user may need to pre-process data before running a long simulation, then perform 
data-reduction, and ultimately visualize the final result. Running these codes on 
different modules consists simply on indicating to the scheduler on which nodes to 
execute each step. Data is typically transferred between the jobs of a workflow via the 
file-system, which means that data is written onto the external storage in one step, and 
then re-read in the next workflow-step. Taking into account the time and power 
consumed in such write-read operations, this approach is not necessarily the fastest 
and certainly not the most energy efficient. Because of that, the DEEP-EST project has 
investigated the potential implementation and benefits of directly transferring data 
between workflow steps via MPI.  

Workflows running on a modular system architecture can benefit from dynamic 
scheduling support. Workload trace files including the different project features and 
specific metrics for workflow analysis were generated and analysed, thus comparing 
results from modular and homogeneous systems8. Special attention was put on 

                                             
7 Slurm. https://slurm.schedmd.com/documentation.html  
8 M. D'Amico and J. C. Gonzalez, Energy hardware and workload aware job scheduling towards 

interconnected HPC environments, IEEE Transactions on Parallel and Distributed Systems, doi: 
10.1109/TPDS.2021.3090334. https://arxiv.org/abs/2106.12007  
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evaluating the scheduling features developed within DEEP-EST: module flexibility and 
workflow dependencies. The system configuration chosen for the scheduling modelling 
was based on the characteristics of the DEEP-EST prototype and the workload-mix 
reproduced elements of project’s applications. The analysis showed that the new 
scheduling features provide benefits for application workflows without penalizing 
traditional jobs.  

1.4.2 Programming Environment 

The DEEP-EST programming environment has been designed to provide all the 
functionality required by the co-design applications in the most user-friendly possible 
manner. The hardware complexity of the MSA is abstracted behind the interfaces and 
parallel programming paradigms that have become the de-facto standard in HPC: MPI 
and OpenMP. Specific implementations of these standards have been extended to 
achieve the maximum application performance on the hardware components 
constituting the DEEP-EST prototype. MPI and OpenMP are complemented by parallel 
programming tools supporting acceleration devices (CUDA, OpenACC, OpenCL) and 
by frameworks for machine learning and deep learning applications (TensorFlow, 
PyTorch, Keras, Horovod, etc.).  

The MSA programming paradigm is based on MPI, in particular using the 
ParaStation MPI implementation9,10. In DEEP-EST, ParaStation has been made 
network topology aware at different levels of the software stack. Besides providing 
means and extensions for MPI applications to adapt their program flow by creating 
communicators reflecting the modular architecture, collective MPI operations have 
been optimised for modular systems and, in particular, those using the latest 
generation GPUs. For example, ParaStation MPI has been extended with CUDA 
awareness features to improve both productivity and performance of hybrid MPI codes.  

The OmpSs-2 programming model11, spearhead of the OpenMP standard and 
developed by BSC, has been enhanced in the areas of tasking, programmability, 
support for hardware accelerators, and support for distributed shared memory systems 
using MPI. A new scheduler-design and dependency system has improved the 
performance and scalability of the OmpSs-2 runtime on many-core processors. In 

                                             
9 ParaStation Modulo. https://par-tec.com/software/  
10 S. Pickartz, Virtualization as an enabler for dynamic resource allocation in HPC, Dissertation, RWTH 

AachenUniversity, Aachen, 2019. https://doi.org/10.18154/RWTH-2019-02208. 
11 F. Sainz, J. Bellón, V. Beltran, and J. Labarta, "Collective Offload for Heterogeneous Clusters", 2015 

IEEE 22nd International Conference on High Performance Computing (HiPC), p. 376-385 (2015) 
[doi = {10.1109/HiPC.2015.20}].  https://www.bsc.es/printpdf/research-and-
development/publications/collective-offload-heterogeneous-clusters  
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addition, a new lightweight instrumentation plugin has been created to analyse 
OmpSs-2 applications, and the taskloop directive has been extended to support data 
dependencies. To ease the programming of accelerators, experimental support for 
OpenACC and array reductions for CUDA have been integrated into the main OmpSs-
2 distribution. Also, the TAMPI library has been extended to support MPI RMA by 
supporting one-sided operations. Many of the new OmpSs features developed in the 
context of the DEEP-EST project have been already presented to the OpenMP 
committee for a future inclusion into the OpenMP standard.  

Data analytics/machine learning components and frameworks required by the DEEP-
EST applications and early access users have been installed and regularly updated on 
the hardware prototype. Also, the Intel oneAPI implementation has been installed and 
experiments were done to test its use for programming GPGPU and FPGA 
accelerators. It is worth mentioning that, in the same manner as it is done on the JSC 
production machines, the full DEEP-EST software stack has been integrated on 
EasyBuild, which is used for the maintenance and regular software updates on the 
prototype. 

1.4.3 I/O and resiliency 

DEEP-EST has also addressed the topics of I/O and resiliency. The efficient 
management of data between different modules poses a great challenge for I/O 
systems, such as BeeGFS and SIONlib, which leverage new non-volatile memory 
technologies to cope with this new scenario. Moreover, traditional check-pointing 
libraries (e.g. FTI or SCR) have been enhanced with new features and a simpler 
interface to deal with new application requirements. 

The European BeeGFS parallel file system, developed by FHG-ITWM, has been 
enhanced with new features to support storage pools and various storage hardware. 
BeeOND has also been re-implemented and integrated into the SLURM job manager, 
allowing system users to create a temporary BeeGFS file system on their allocated 
nodes with the options that suits their jobs best. Furthermore, the time series-based 
monitoring solution for BeeGFS (beegfs-mon) has been implemented, released, and 
integrated into the DCBD monitoring system. Users can now investigate  the current 
and past status of the file system using Grafana panels. JUELICH’s SIONlib library has 
been extended with a new MSA-aware algorithm for the selection of collector 
processes for collective I/O. The algorithm is portable and relies on platform specific 
plug-ins to identify processes, which run on parts of the system that are well suited for 
the role of I/O collector. In reaction to the GPU-based ESB concept, SIONlib’s read 
and write functions have been made CUDA aware. They now allow the user to pass 
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input and output buffers that reside on a CUDA device and transparently handle the 
transfer of data in that case. 

To improve resiliency, incremental checkpoint (iCP) and differential checkpointing 
(dCP) features have been implemented in the FTI library. A theoretical model has been 
created that accurately predicts the overhead reduction for dCP depending on 
performance characteristics of the architecture and shows a linear dependency 
between the reduction of overhead and the data reduction factor. This approach 
introduces the advantage that the checkpoint data of former checkpoints is preserved 
inside the checkpoint file. Furthermore, an HDF5 interface has been developed inside 
FTI, which enables writing with all processes into one shared file.  

1.4.4 Benchmarking, performance analysis, modelling and monitoring 
tools 

A benchmark suite composed of a wide range of synthetic benchmarks and selected 
applications has been integrated in the JUBE benchmarking environment and has 
periodically run on the DEEP-EST prototype to measure its performance and identify 
potential variations. A visualization environment for the results was put in place to ease 
the interpretation of data, automatic emails were sent when something was not 
working, and automatic backups of the benchmarking results were implemented. For 
instance, thanks to these benchmarking activities, drawbacks with the initial BeeGFS 
file system configuration were identified and the sweet-spot for its configuration was 
found. The benchmarks were also used to assess the performance of the DEEP-EST 
prototype in detail.  

Traces of application workloads were used to conduct efficiency analysis and project 
the performance of the applications at large scale. With this analysis, low parallel 
efficiency was identified and communicated to the application developers, which could 
identify and address its sources. Projection data allowed to predict the performance of 
the applications improved within DEEP-EST. Furthermore, the Extrae instrumentation 
software tools from BSC were extended in order to properly instrument CUDA codes. 

Last, but not least, new system-monitoring capabilities have been created. The DCDB 
and Wintermute frameworks from BADW-LRZ have been further developed to reach 
a production-ready state within the project, and all components and plug-ins required 
for the DEEP-EST prototype have been designed and implemented. In addition to all 
data supplied natively by DCDB, the sensors exposed by BeeGFS covering file system 
activity have been integrated. The collection of all this wide variety of system-
monitoring information, is accessible to users and operators through the user-friendly 
visualization tool Grafana. Furthermore, the monitoring tools have been integrated with 
the resource manager to enable energy-saving scheduling mechanisms. With the 
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DEEP-EST monitoring infrastructure, full control over the system utilization has been 
provided, opening opportunities for optimised operation policies. The power 
consumption of an application running on an HPC system depends on the amount of 
resources that it uses, and the model in which these resources are run, cooled, and 
operated. For this reason, an energy-model has been developed to evaluate the 
energy used by applications on each of the modules of the DEEP-EST prototype, 
assuming different operational frequencies and configurations.  

1.5 Co-design Applications 
For the DEEP-EST project several important and ambitious scientific codes from the 
HPC and HPDA area have been selected as the DEEP-EST co-design applications. 
Most of the codes combine HPC computation with advanced data processing and 
analytics. Thus, they do consist of multiple parts with different resource requirements 
and are eminently suitable to assess the potential of the MSA and the DEEP-EST 
prototype. The applications belong to six scientific fields: 

 Neuroscience: In DEEP-EST, three applications were used to simulate 
functional models of brain structure. The NEST simulator investigates the 
dynamics of brain-scale neuronal network models. It does so at the level of 
resolution of neurons and synapses, where neurons are brain cells connected 
to each other by synapses. NEST is combined with two types of in situ analysis: 
computation of electrical local field potentials using the Arbor and HybridLFPy 
packages, and statistical analysis of spike activity using the Elephant package. 

 Molecular Dynamics (MD): A MD simulation generally tracks the trajectories of 
many particles evolving over time. It solves differential equations of motion in 
time steps. GROMACS is one of the world's best MD software packages. It is a 
toolbox allowing users to prepare the structure that they want to simulate, run 
the simulation and analyse the results at the end. 

 Radio Astronomy: In DEEP-EST, two parts of the imaging pipeline of the LOFAR 
radio telescopes were studied: the correlator and the imager. The correlator 
combines the data from all receivers and operates on streaming data, normally 
in real time. First it performs filtering, then corrections, and finally correlates the 
data from multiple receivers. The imager creates sky images partitioning 
incoming data in small blocks that are convolved and gridded onto small 
subgrids. These subgrids are fast Fourier transformed and then added to a large 
grid, which is finally inversely FFTed to a sky image. 

 Space Weather: The space weather workflow consists of three applications: 
DLMOS, xPic and GMM. DLMOS is a Deep Learning Model of the Solar Wind 
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to forecast the plasma conditions at the orbit of the Earth from images of the 
Sun. The particle-in-cell code xPic consists of a field solver that calculates in a 
Cartesian grid the Maxwell equations of electromagnetism, and a particle solver 
calculating the motion of billions of charged particles using Newton’s equations 
of motion. The large data volume generated by xPic’s particle solver, is analysed 
with the machine learning model GMM. 

 Data Analytics in Earth Science: In DEEP-EST, three applications are used: 
NextDBSCAN, NextSVM and Deep Learning (DL) frameworks. NextDBSCAN 
is a new parallel DBSCAN algorithm used for density-based clustering of large 
three-dimensional point-clouds. NextSVM is a new parallel Support Vector 
Machine (SVM) used for supervised learning classification tasks with labelled 
datasets (such as remote sensing images). The TensorFlow framework with the 
Keras extension is used for computer vision. 

 High Energy Physics: CMSSW is the software framework for the Compact Muon 
Solenoid (CMS) Experiment at CERN. In DEEP-EST, two workflows were used: 
CMS Reconstruction and CMS Classification. The former takes the raw data 
coming out of the CMS detector and builds high level physics objects, which are 
then used for the physics analysis. The CMS Classification takes the 
reconstructed quantities as input and tries to identify the type of collision event. 
This is an analytics type of workflow that involves the use of Deep Learning for 
the purpose of classification. 

The above mentioned applications have been analysed in detail to find out e.g. how to 
best map them to the modules of the DEEP-EST prototype, potentially splitting the 
application into separate parts (e.g. HPC computation and data analytics). Based on 
the codes requirements, co-design input was provided through a detailed 
questionnaire covering, amongst other, aspects such as: primary metric for success 
(e.g., throughput, accuracy, etc.); programming languages and parallelism paradigms 
used; rate, type, and volume of inter-process communication; computation-to-
communication balance; and I/O requirements (see deliverable D1.1). Later in the 
project, while the DEEP-EST prototype and its SW were in development, in depth co-
design discussions took place around specific design questions, e.g., preferred 
configuration of the DCPMM non-volatile memory; preferred network topology; kind of 
collective operations between MSA modules, etc. 

In parallel to this co-design feedback, the application codes were adapted to the target 
hardware, ported to the actual DEEP-EST prototype and its software environment, and 
then optimised. The results of all these experiences are reported in Chapters 2 to 7 of 
this book. 
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1.6 Summary and outlook 

The DEEP-EST project has developed the Modular Supercomputing Architecture 
(MSA) deploying a hardware prototype and implementing its software stack following 
the codesign input of six application development teams.  

From the data centre operator’s point of view, the MSA has several advantages. First 
of all, the better and more efficient system utilisation made possible by the MSA will 
immediately benefit the data centre operator, leading to a higher ROI (return on 
investment). To maximise this effect, it is secondly possible to optimise the system 
configuration, i.e. the number and characteristics of modules to the best match of the 
specific requirements of the centre and its application portfolio and mix. Additionally, 
maintenance of individual modules is possible without disturbing the rest of the system, 
reducing the overall down-times of the machine. Furthermore, the long-term 
sustainability is improved: new modules can be added to an existing system and old 
ones substituted at different points in time, keeping the rest of the system and its 
central resources (e.g. storage) for a much longer lifetime. At some point this might 
require bridging between older and newer network generations. Finally, procurement 
processes, which typically depend on different funding sources (e.g. regional, national, 
project-bound, etc.) can be split and handled individually for the independent modules 
in an easier way. 

From the user’s perspective, DEEP-EST provides a very flexible architecture that can 
match the requirements of very diverse classes of applications, making use of the 
modules according to their respective needs. The six HPC and HPDA applications in 
DEEP-EST have tested a variety of different scenarios. Monolithic applications may 
well use only one of the modules, but more complex, multi-physics or multi-scale 
applications distribute their code-constituents among several modules of the system 
and achieve better scalability and efficiency. This also offers the opportunity for more 
complex workflows or to conduct simulation and data analysis/visualisation 
concurrently, with the high-speed connection between different modules facilitating 
necessary data transfers.  

Following the success of the DEEP project series, the Modular Supercomputing 
Architecture is already being applied in production systems. The JUWELS Booster12 
– as of May 2021 the fastest computer in Europe – builds up together with the JUWELS 
Cluster a Petascale-level modular system. Also, the recently installed EuroHPC 

                                             
12 https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html  
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Petascale system MeluXina is modular13, and more supercomputers in Europe and 
worldwide have been announced to follow the same philosophy14,15. 

The implementation of MSA in large-scale production systems is not the end of its 
development roadmap, which continues in various upcoming EuroHPC JU projects. 
The software environment for MSA-platforms will be enhanced within the SEA-
projects, which started in April 2021: DEEP-SEA is the direct continuation of the 
software efforts in DEEP-EST and aims at easing application porting to MSA systems 
and making their programming environment more dynamic by leveraging more 
malleability and composability16, IO-SEA will improve the IO-capabilities of MSA 
systems with a novel data management and storage platform based on object store 
support, hierarchical storage management (HSM) and intelligent data placement17; 
RED-SEA finally will develop next generation European network technologies with 
better capabilities for intra- and inter-module communication18. Furthermore, at least 
two of the three pilot projects selected for funding within the EuroHPC-2020-01 call19 
will apply a MSA approach: the EUPEX project will build a modular pilot system 
integrating European technologies (including the EPI general purpose processor, 
ParaStation Modulo, etc.), while the HPCQS project will integrate a Quantum Module 
into an existing MSA system20.  

With this elaborated development roadmap, the Modular Supercomputing Architecture 
and the overall results of the DEEP-EST project are in the best possible position to be 
part of the first European Exascale platforms. 
  

                                             
13 https://eurohpc-ju.europa.eu/news/meluxina-live-eurohpc-ju-supercomputer-luxembourg-operational  
14 Slide 40 in https://www.r-ccs.riken.jp/R-CCS-Symposium/2019/slides/Wang.pdf 
15 https://www.hpcwire.com/2021/02/25/japan-to-debut-integrated-fujitsu-hpc-ai-supercomputer-this-spring/ 
16 https://cordis.europa.eu/project/id/955606  
17 https://cordis.europa.eu/project/id/955606  
18 https://cordis.europa.eu/project/id/955776  
19 https://eurohpc-ju.europa.eu/calls/advanced-pilots-towards-european-exascale-supercomputers-pilot-

quantum-simulator 
20 The EUPEX and HPCQS projects are in the GA-preparation phase at the time of writing. 
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2.1 Introduction 
The long-term goal of the neuroscience work in DEEP-EST is to provide an optimised 
setup for the integrated simulation and analysis of large-scale brain activity21. Such in 
situ analysis is essential to facilitate the interactive investigations of brain dynamics, 
where scientists can observe network activity while a simulation is running and interact 
with it to ensure that dynamics stay within relevant regimes. In DEEP-EST, our focus 
was on simulations of functional models of brain structure using the NEST simulator22 
combined with two types of in situ analysis: computation of electrical local field 
potentials using the Arbor23 and HybridLFPy packages24 on the one side, and statistical 
analysis of spike activity using the Elephant package25 on the other. 

2.2 Application structure 

2.2.1 NEST 

NEST is a simulation code for the investigation of the dynamics of brain-scale neuronal 
network models, as for example the recently published multi-area model26. NEST 
operates on the level of resolution of neurons and synapses, where neurons are brain 
cells connected to each other by synapses. 

The simulator considers brain tissue as an abstract assembly of nodes (neurons) and 
connections (synapses) or, in other words, a directed graph. The neurons in these 
simulations are point neurons, i.e. the state of a node changes according to a set of 

                                             
21 Suarez, E. et al. (2021), „Modular Supercomputing for Neuroscience“, Lecture Notes in Computer 

Science, 2019 BrainComp Conference, Cetraro, Italy Springer International Publishing, 
10.1007/978-3-030-82427-3_5 

22 http://www.nest-simulator.org/ 
23 Akar, NA (2018) arXiv:1901.07454 [q-bio.NC] 
24 Hagen E et al. (2016) Cerebral Cortex, 26(12) pp. 4461–4496.  
25 http://elephant.readthedocs.io/ 
26 Schmidt M et al. (2018) Brain Struct Funct 223: 1409.  
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ordinary differential equations (ODE), without taking into account the complete 
morphology of the cell. 

The interaction between nodes is mediated by stereotyped events in the form of 
delayed delta pulses. These so-called action potentials (or spikes) are emitted by the 
nodes (neuronal activity) and propagated along the connections. The interaction 
strength (synaptic weight) can either be static or dynamic (synaptic plasticity) and 
depends on the activity of the two neurons joined by the connection. 

NEST does not implement a specific network model but provides the user with a range 
of neuron and synapse models and efficient routines to connect them to complex 
networks with on the order of ten thousand incoming and outgoing connections for 
each neuron. Concrete network models and the corresponding simulation experiments 
are specified by model description scripts. These scripts are written either in NEST’s 
built-in simulation language SLI (based on PostScript) or using the Cython-based 
Python interface PyNEST27,28, with PyNEST being the default interface. 

A published example of a large-scale network model is the multi-area model26, which 
was relevant also in the context of the DEEP-EST project. It is the first multi-scale 
model of vision related brain areas and comprises approximately 4 million neurons and 
6000 incoming synapses per neuron, where neurons emit on average 14.6 spikes/s. 
Each individual area is represented by a modified version of the Potjans-Diesmann 
model29, a microcircuit model corresponding to a cortical network under a surface of 1 
mm2. The microcircuits representing the areas differ in neuron numbers and 
connection probabilities. The minimal synaptic transmission delay in the network is 
0.1 ms biological time, i.e., the time simulated in the biological system. This requires 
frequent MPI communication of spikes (every 0.1 ms biological time). In terms of 
wallclock time, MPI communication occurs at approximately 10–30 ms intervals, 
depending on the activity level in the neuronal network. Due to long transients in the 
network dynamics the model needs to be simulated for 100 s biological time. 

The NEST code base is open source and under continuous development in order to 
enable the investigation of novel models and theories in Computational Neuroscience 
on the one hand, and to meet the requirements of new computer hardware on the other 
hand. Since release 2.16, the NEST 5th generation simulation kernel (5G)30 is included, 
which achieves excellent scaling with respect to memory usage and good scaling with 
respect to runtime on the largest supercomputers currently available for academic 

                                             
27 Eppler, JM et al. (2008) Front. Neuroinform. 2:12.  
28 Zaytsev YV and Morrison A (2014) Front. Neuroinform. 8:23.  
29 Potjans TC and Diesmann M (2014) Cereb. Cortex 24, 785–806.  
30 Jordan J et al. (2018) Front. Neuroinform. 12:2.  
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research. The key step from the previous kernel used in NEST releases 2.6.0–2.14.0 
to the 5G kernel is a new connectivity representation and spike exchange scheme 
using directed communication based on MPI_Alltoall(). 

2.2.2 Arbor/HybridLFPy 

Arbor simulates compartmental neuron models. This means that the spatial structure 
of each neuron is represented as a spherical cell body (soma), to which an arbitrary 
number of dendritic trees are attached. Each dendritic tree consists of segments, i.e. 
tubes or cables, of a given length and radius; in the simulation, each segment is 
represented by a configurable number of compartments. Each segment is either 
connected to one other segment at each of its ends (linear cable) or to several 
segments at its far end (branching point; far end: end pointing away from the soma). 
Electric currents flow along the cables formed by the dendritic tree. This current flow is 
described by ordinary differential equations, with one set of equations for each 
compartment, coupled to neighbouring compartments. The main task of Arbor is to 
solve the resulting system of ODEs; this task is highly amenable to vectorisation. In 
addition, Arbor also transmits spikes between neurons via synapses; this mechanism 
is of lesser importance for our purposes because HybridLFPy is based on simulating 
the dynamics of disconnected compartmental neurons based on spike input generated 
by NEST. 

HybridLFPy computes mesoscopic electrical brain signals, called local field potentials 
(LFPs) based on the network dynamics simulated using NEST. Specifically, spike 
trains generated by neurons in a NEST simulation, using highly connected point 
neurons are fed into detailed models of unconnected neurons simulated using Arbor 
to compute the electrical currents passing through the cell membrane at different 
locations. From these currents, HybridLFPy then computes the LFP at different 
locations in a piece of brain tissue using electrostatic principles.  

2.2.3 Elephant (ASSET) 

Elephant is a pure Python library for the statistical analysis of spike activity of neurons. 
It can be installed using standard Python distribution tools. Elephant implements a wide 
and growing range of analysis methods. We focus mainly on the calculation of cross-
correlations between spike trains and the detection of repeated patterns of spike 
activity across groups of neurons, so-called synfire chains. 

Cross-correlations are detected using standard approaches, either implemented 
directly in Python or using NumPy convolution algorithms. Except for possible thread-
parallelisation provided by the NumPy convolution implementation, cross-correlation 
algorithms are purely serial at present. 
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Detection of synfire chains uses the ASSET algorithm31 in an optimised version32, 
replacing the non-optimised version currently included in the release version of 
Elephant. The optimised algorithm uses MPI4Py for parallelisation. 

2.3 Application mapping 

Traditionally, NEST simulations have two distinct phases: a network construction 
(build) phase and a simulation phase. The key part of the build phase is the 
construction of network connectivity, i.e., building in largely random order a hierarchical 
data structure representing connections between neurons; each connection is 
represented only on the thread managing the connection’s target neuron. 

During the simulation phase, differential equations for the individual neurons are 
updated and spikes emitted according to a threshold criterion. Information on emitted 
spikes is exchanged between MPI processes and threads in steps of the minimal 
synaptic delay in the network, which is the maximum interval permitted by causality. 
Spikes are delivered to target neurons in parallel, each virtual process being 
responsible for delivery to the set of neurons it manages. This delivery process entails 
essentially random accesses to the connectivity data structure. 

For the fifth generation (5G) kernel, we distinguish a third phase, called initialization 
phase, which comprises all necessary initialization processes at the beginning of a 
NEST simulation before the actual simulation takes place. In the NEST 5G kernel 
(NEST release 2.16), connectivity information, which is available only on the 
postsynaptic side after the build phase, needs to be transferred to the presynaptic side 
in order to enable directed communication of spikes during simulation. The transfer of 
connectivity data involves at least one round of MPI_Alltoall() communication, which 
makes the initialization phase a non-negligible component. 

In the benchmarks hpc_benchmark.sli and hpc_mam_benchmark.sli, build phase and 
initialization phase take up a significant amount of the total runtime as the neuronal 
networks are simulated only for one second of biological time. In simulations of the 
multi-area model, build phase and initialization phase require only a small fraction of 
the total runtime as the network is simulated for 100 s of biological time. 

To enable the interaction of NEST with Arbor/HybridLFPy (see Figure 2.1), a small 
fraction of the connectivity details of the multi-area network, which is available after the 
build phase of NEST, needs to be communicated, where HybridLFPy maps the 
connectivity to the detailed neuron models. 

                                             
31 Torre E et al. (2016) PLoS Comput Biol 12(7): e1004939. 
32 Canova C et al. (2017) ASSET for JULIA: executing massive parallel spike correlation analysis on a 

KNL cluster. Poster presented at HBP Summit 2017. 
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Figure 2.1: Schematic workflow of NEST and Arbor/HybridLFPY in the MSA 

During the simulation phase NEST needs to communicate spikes from a fraction of the 
neurons of the multi-area model to Arbor or Elephant. Communication takes place 
frequently and is coordinated by the MUSIC library (see Figure 2.1 and Figure 2.2). 
We estimate that the total amount of data that needs to be communicated from CM to 
ESB or DAM in each communication round is negligible (about 1 kB if we assume 
communication every 0.1 ms of simulated time). 

 
Figure 2.2: Schematic workflow of NEST and Elephant (ASSET) in the MSA 

NEST (on CM) and Arbor/HybridLFPy (on ESB) start to run at the same time. While 
NEST constructs neurons and connections, Arbor instantiates neuron models. After 
the build phase of NEST, detailed connectivity information about the multi-area 
network is available. HybridLFPy requires part of this connectivity data in order to map 
the incoming connections of selected point-neurons simulated in NEST to their 
compartmental counterparts simulated in Arbor. Based on that, Arbor can build 
connections to the neuronal compartments. 

After the communication of connectivity data from CM to ESB, NEST enters the 
initialization phase, which does not necessarily end at the same time as the Arbor build 
phase. The simulation phases of both NEST and Arbor follow, where Arbor relies on 
frequent spike input from NEST. 

During the simultaneous simulation phases of NEST and Arbor, full network activity of 
the multi-area model is simulated in NEST and spikes from the previously selected 
fraction of the network are frequently communicated to Arbor running on the ESB using 
the MPI-based MUSIC library. The spatially detailed (compartmental) neuron models 
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simulated in Arbor consume the spikes according to the mapping created by 
HybridLFPy. 

Locally on the ESB HybridLFPy requires frequent information about ionic currents into 
and out of the neuronal compartments simulated in Arbor in order to predict the LFP 
signals and their development over time. 

Elephant is fed with spikes from selected populations of the multi-area model using the 
MUSIC library to coordinate MPI communication (see Figure 2.2). Therefore, NEST 
(on CM) and the Python script that applies the necessary Elephant functions to the 
incoming spike trains (on DAM) start to run at the same time but the Python script 
needs to wait with the analysis until NEST reaches the simulation phase and produces 
spikes. 

We expect that in simulations of the multi-area model this initial idle time of Elephant 
will be irrelevant as neither build nor initialization time, but the actual simulation time, 
dominates the total runtime of NEST. 

The simulation of the multi-area model with NEST is run on the CM using a hybrid 
parallelisation scheme combining MPI and OpenMP threads. CM is optimal for NEST, 
because NEST's irregular memory access patterns perform optimally on CPUs with 
large, low-latency RAM and because NEST does not benefit from vectorisation.  

Selected neurons of the multi-area network are simulated in greater detail with Arbor 
running on the ESB, because Arbor requires considerably more compute power 
relative to memory, since Arbor simulation does not require full network connectivity 
information. Arbor benefits significantly from vectorisation using AVX2, AVX512, and 
GPGPUs; it uses hybrid parallelisation combining MPI and C++11 threads or Intel TBB.  

Analysis of spike trains recorded from selected populations of the multi-area model is 
carried out by Elephant, which runs on the DAM. 

2.4 Porting experience 
Porting the code to the different DEEP-EST modules has been straightforward for all 
three applications (NEST to the CM, Arbor to the ESB, and Elephant to the DAM).
There were, in particular, no issues with porting Arbor to the ESB as GPU support was 
already in place.  

To use the workflows described above, we needed to implement communication back 
ends in Arbor and NEST. We had suggested earlier to use the MUSIC library for the 
communication within the NEST-Arbor coupling. More careful analysis of the 
interaction between NEST and MUSIC as part of this project revealed that use of 
MUSIC for MPI communication between NEST and Arbor would impose frequent 
synchronisation of threads in MPI-OpenMP hybrid NEST simulations. To avoid this, we 
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decided to implement NEST-Arbor coupling directly via MPI instead of using MUSIC 
as an intermediary. The mapping of neuron identities between NEST and Arbor, which 
MUSIC would have provided, was ensured through proper simulator scripting. 

NEST, Arbor and Elephant could be installed and run out-of-the box using standard 
compiler and build tools available after we had familiarized ourselves with the software 
environment on the DEEP-EST system, with an effort off less than 0.5 Person Month 
(PM). Basic interfacing NEST and Elephant via MUSIC including minor bug fixes took 
also about 0.5 PM. The NEST-Arbor interface was implemented in collaboration with 
the Arbor development team; NMBU contributed roughly half of the effort (3 PM). 

2.5 Scalability 
Both NEST and Arbor have already been shown to scale well on modern 
supercomputers33,34 (Figure 2.3 and Figure 2.4). With the 5th generation simulation 
kernel, the communication scheme for the exchange of spikes between MPI processes 
was changed from Allgather() to Alltoall(), allowing each MPI process to send 
spikes only to the MPI processes that host the targets. To this end, the connection 
infrastructure of NEST was redesigned. Arbor has been developed considering support 
for GPUs and explicit vectorization from the very outset. 

 

 
Figure 2.3: Simulation time for NEST running the HPC benchmark33 on JUQUEEN; shown for 

previous kernel (4g) and new kernel with optimizations for small-scale to medium-scale regime 
(5g-sort) and without the optimizations (5g-nosort). Adapted from Figure 7C in33) 

 

                                             
33 Jordan, J. et al. (2018) doi:10.3389/fninf.2018.00002 
34 Akar, N. A. et al (2019) doi: 10.1109/EMPDP.2019.8671560 
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Figure 2.4: Performance of Arbor (based on 34): Single node wall time of Arbor running on Piz 

Daint multicore, GPU and Tave KNL 

The new NEST kernel shows good weak-scaling behaviour on modern 
supercomputers (5g-nosort, Figure 2.3, adapted from Figure 7C in Jordan et al. 
201833). We go from 32 MPI processes to about 32,000 MPI process, while increasing 
the problem size therefore in weak scaling by a factor of 1000, and keep the runtime 
nearly constant. For large numbers of MPI processes, the 5g kernel shows much better 
scaling behaviour and a decrease in runtime by more than 55% for simulations on the 
full JUQUEEN35 system compared to the previous kernel (4g). The S-shaped trend of 
the simulation time observed for the new NEST kernel (5g-sort) can be explained as 
follows: For a smaller number of MPI processes, an additional reduction in memory 
usage is achieved by optimizations for the small-scale to medium-scale regime 
(compare 5g-sort: small-scale optimizations enabled to 5g-nosort: small-scale 
optimizations disabled). The optimizations exploit the lesser degree of distribution of 
each neuron’s outgoing connections across processes in the regime up to few 
thousands of MPI processes,33). As gradually the optimizations get less effective with 
increasing numbers of MPI processes, due to an increasing degree of distribution of 
connections across processes, simulation times also increase. Note that this effect on 
scalability in the small-scale to medium-scale regime can be observed in all scaling 
measurements for NEST shown in this deliverable as in all cases the optimizations 

                                             
35 M. Stephan, J. Docter, JUQUEEN: IBM Blue Gene/Q Supercomputer System at Jülich 

Supercomputing Centre, Journal of large-scale research facilities, 1, A1 (2015) 
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were enabled (5g-sort). In the large-scale regime the outgoing connections of each 
neuron are fully distributed such that the optimizations for the small-scale to medium-
scale regime no longer play a role. The simulation time increases slowly in this large-
scale regime. 

Arbor’s single node performance has been analysed using a randomly connected 
network benchmark employing CSCS’ Piz Daint multicore, GPU and KNL clusters. For 
more than 4000 cells the GPU is utilized enough to run the benchmark more efficiently 
in terms of the wall time than on multicore or KNL (Figure 2.4; based on Akar et al. 
201834), Table 3 and Fig 4).  

 

 
Figure 2.5: Time-to-solution for NEST running the HPC benchmark on the CM: Simulation time 

and contribution of MPI communication 

 

Within this document we show some results obtained on the DEEP-EST system. 
Figure 2.5 shows a weak scaling of the HPC benchmark using NEST on the Cluster 
Module (CM) (1 MPI process per node and 24 threads per MPI process). Figure 2.6 
shows the corresponding parallel efficiency. The benchmark network model includes 
plastic synapses, which need to be updated whenever they transmit a neuronal signal 
thereby causing workload in addition to neuronal updates. The minimum simulation 
time (among at least 5 repetitions) and the time spent communicating spikes across 
MPI processes vs. number of compute nodes is shown for a test case with 1000 and 
5000 neurons per thread and 11,250 synapses per neuron36.  

                                             
36 Benchmarks simulated with NEST@da46542 (with timers and optimization for small-scale regime)” 

for 1000 and 5000 neurons per thread 
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Figure 2.6: Parallel efficiency for NEST running the HPC benchmark on the CM  

 

Figure 2.7 shows the mean simulation time for the 5000 neurons case but with 
subtracted communication time, which allows for a comparison with measurements 
obtained using the NEST dry-run mode. A dry-run simulation is carried out by one MPI 
process emulating the input from other MPI processes, which enables predictions for 
large-scale simulations. For all simulation time plots lower is better. As NEST 
optimizations for the small-scale and medium-scale regime were enabled, we observe 
the typical increase in simulation time described above (c.f. 5g-sort, Figure 2.3), for 
node counts of 64 and above. 

 
Figure 2.7: Simulation time for NEST running the HPC benchmark on the CM: Dry-run 

prediction (excluding communication time)  
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Figure 2.8: Simulation time for NEST running the MAM benchmark on the CM  

 

Figure 2.8 shows a strong scaling of the multi-area model (MAM) benchmark using 
NEST on the CM (1 MPI process per node and 24 threads per MPI process). Figure 
2.9 shows the corresponding parallel efficiency. We have developed the MAM 
benchmark in this project to provide a scalable benchmark network model with easily 
controllable parameters and stable dynamics that captures the main performance-
relevant features of the multi-area model37 such as short synaptic transmission delays 
requiring frequent communication. The benchmark network model consists of 4 million 
neurons and 5,625 synapses per neuron, where all synapses are static (no additional 
workload due to synaptic plasticity). The simulations scale well between 8 and 16 MPI 
processes, but communication time dominates the simulation time at 32 MPI 
processes. This is due to more frequent communication and less workload compared 
to the NEST HPC benchmark. The effect of the NEST optimizations for the small-scale 
and medium-scale regime also plays a role but cannot be distinguished from the other 
factors. 

 

 

 

                                             
37 Schmidt, M. et al (2018) doi. org/10.1371/journal.pcbi.1006359   
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Figure 2.9: Parallel efficiency for NEST running the MAM benchmark on the CM  

 

 

 
Figure 2.10: Weak scaling time-to-solution for the combined NEST and Arbor simulations  
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Figure 2.11: Weak scaling parallel efficiency for the Nest - Arbor coupling  

Figure 2.10 and Figure 2.11 show the weak scaling behaviour of combined NEST-
Arbor simulations38. In the smallest case (1 node), NEST simulates 120,000 point 
neurons while Arbor simulates 1% of this number, i.e., 1,200 compartmental neuron, 
each on a single compute node. The neuron numbers are scaled linearly with the 
number of compute nodes. We consider two different configurations: NEST running on 
the CM and Arbor on the ESB (grey) and NEST and Arbor both running on the CM 
(green). On the ESB, Arbor uses the GPU on each node, while on the CM Arbor runs 
24 threads per node using AVX512. For comparison, we also show the simulation 
times for the NEST part only (dotted green) and the Arbor part only (dotted blue). Note 
that for ESB-only and CM-only cases experiments were limited to 16 nodes for each 
of the programs due to the limited number of nodes.  

The underlying Arbor simulations scale perfectly on the ESB when run alone (dotted 
blue), while the simulation time for pure NEST simulations on the CM (dotted green) 
scales reasonably well. The combined NEST-Arbor simulation run on CM and ESB 
(grey) requires essentially the same time as the NEST simulation alone, indicating that 
the MSA allows us to extend the NEST simulation to a co-simulation without runtime 
penalty. Executing NEST and Arbor on the CM only leads to increased runtimes 
(green), indicating the benefit of combining CM and ESB. We also find that co-
simulation on CM and ESB reduces energy consumption, see Figure 2.15.  

                                             
38 NEST@abc4e0b78 
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Figure 2.12: Weak scaling of NEST simulation on CM feeding Elephant weak/ensemble-scaling: 

HPC Benchmark using NEST on CM and analyses with Elephant running on DAM  

 

 
Figure 2.13: Parallel efficiency for the weak scaling NEST + Elephant run  

Figure 2.12 shows an example of a NEST simulation running on the CM and sending 
data for analysis in Elephant on the DAM via MUSIC39. Figure 2.13 shows the parallel 
efficiency. Simulation time and parallel efficiency are shown as function of number of 
CM nodes used and network size scales linearly with the number of nodes, with 24 
MPI processes running on each node (to accommodate MUSICs proper support for 

                                             
39 NEST@7616f3eb with bugfix; Elephant v 0.1.0 under Python 3.6.8; MUSIC@8c6b77a57 with path for 

ParaStationMPI. 
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threading; approximately 940 neurons per process). The analysis is performed on a 
single DAM node running two Python processes: one performing ASSET analysis 
exploiting the GPU and the other performing cross-correlation analysis. Comparison of 
simulation without spike transfer to the DAM (orange) and simulation with analysis on 
the DAM (purple) shows that the overhead for analysis is small (approximately 10%) 
and that, while not perfect, simulation time is roughly in agreement with a weak scaling 
regime. 

2.5.1 Our path to Exascale 

Above we discussed to what extent the applications can scale at the moment. The 
following subsections will outline our path to Exascale 

2.5.1.1 What are the limitations – Can they be fixed? 

The most visible performance limitation in our work is the relatively poor weak-scaling 
performance of NEST on the CM for large numbers of neurons as shown in Figure 2.5, 
which also affects the run time of co-simulations running NEST on the CM and Arbor 
on the ESB as shown in Figure 2.10. In part, this weak scaling is a consequence of the 
optimisations for small to medium scale simulations of the NEST 5g kernel, which 
exploit the lesser degree of distribution of each neuron’s outgoing connections across 
MPI processes in this regime. As the number of processes increases the exploitation 
potential decreases rendering the optimisations less and less effective. The 
optimisations reduce the total simulation times in this regime but due to the gradual 
decrease in effectiveness distort the observed scaling behaviour on smaller systems 
such as the existing CM; scaling behaviour of large-scale simulations is not affected 
by this. Further optimisation will focus on simulation on Exascale systems with an aim 
at reducing overall communication requirements by introducing support for local 
connectivity: in real neuronal circuits, a large fraction of the connections are local, but 
this locality is not yet exploited in NEST or Arbor to minimize communication. 

2.5.1.2 How to use future Exascale systems 

Exascale computers will be required to allow full-scale simulations of models of primate 
brains at the resolution of individual neurons. Only Exascale systems will provide the 
memory necessary to represent the connectivity in networks at the scale of entire 
brains, the computing power needed to advance the dynamics of neurons, and the 
interconnects to facilitate signal exchange between neurons. Using a network with 
highly simplified structure, we demonstrated the feasibility of simulating networks on 
the size of a cat brain on a major Petascale computer (K, JUQUEEN40). Since then, 

                                             
40 Kunkel, S. et al. (2014) doi: 10.3389/fninf.2014.00078 
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we have made important steps in resource efficient dry-run benchmarking41,42 and 
directed communication33. Dedicated efforts as part of the DEEP-EST project have 
reduced spike-delivery times43, addressing a key performance bottleneck. Parallel 
activities in the EC ICT Flagship Human Brain Project44 focused on reducing the times 
required to construct networks with realistic complexity in parallel and to further 
optimise communication schemes for Exascale systems. This work will be pursued in 
collaboration with Japanese colleagues, which will allow actual experiments on the 
largest available pre-Exascale system, Fugaku, later in 2021. 

2.5.1.3 Where did the DEEP-EST project help on the way to Exascale? 

Comprehensive performance profiling allowed us to identify crucial performance 
bottlenecks in spiking network simulations. Network models with realistic degree 
(in/out-degree of O(104) per neuron) and complexity characteristic of brain networks 
are represented in the simulator as large adjacency lists which are traversed in random 
order due to the stochastic activity in network models. This leads to unpredictable 
memory access patterns and thus inefficient caching. As part of our activities in the 
DEEP-EST project, we were able to develop new spike-delivery techniques improving 
caching performance and thus overall simulation performance43. The success of the 
new spike-delivery algorithm was rather unexpected as the memory bottleneck 
imposed by local spike routing has long been considered insuperable in neuronal 
network simulation technology. The techniques are not specific to the NEST simulator 
for which we have developed them, but are applicable to other simulators for pulse-
coupled networks with high connection degrees as well. We consider this a generally 
useful contribution to large-scale network simulation. 

Beyond this surprising success and the resulting benefit for the NEST users, our work 
contributes indirectly to the development of neuromorphic systems. The technology for 
simulations of spiking neuronal networks on conventional computer architectures 
informs and inspires the design of neuromorphic systems, and it constitutes an 
important reference benchmark for such systems regarding accuracy, energy 
consumption and speed. Mitigating the von Neumann bottleneck in spiking network 
simulations on conventional architectures by latency-hiding techniques challenges 
neuromorphic systems. The effective use of such techniques indicates that the 
memory bottleneck can likely be overcome by many-core systems as naturally each 
core needs to oversee a decreasing amount of memory. 

                                             
41 Kunkel, S., and Scheck, W. (2017) doi: 10.3389/fninf.2017.00040  
42 Kunkel, S., and Scheck, W. In preparation. 
43 Pronold, J. et al. In preparation. 
44 https://www.humanbrainproject.eu, Specific Grant Agreements 2 (2018–2020) and 3 (2020–2023). 
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2.6 Energy consumption 

 
Figure 2.14: Total energy consumption for NEST running the HPC benchmark on CM for two 

different network sizes  

 

Figure 2.14 shows the total energy consumption from the benchmark runs shown in 
Figure 2.5 and Figure 2.15 shows the total energy consumption for the NEST-Arbor 
co-simulations shown in Figure 2.10. While timings shown in Figure 2.5 and Figure 
2.10 show the actual simulation time (propagation of network state), the total energy 
consumption includes the time required for network construction and initialization 
before the simulation. 

For the pure NEST simulation on the CM we observe linear scaling as expected up to 
32 nodes followed by a noticeably superlinear increase when simulating on 45 nodes. 
For the co-simulation, scaling is nearly perfectly linear when combining up to 32 nodes 
each on CM and ESB. Co-simulations on the CM alone were only performed up to 
16+16 nodes, the limit set by the DEEP-EST system size at present, with higher energy 
consumption when using only the CM, especially for 16+16 nodes case. This indicates 
energy efficiency gains from the modular system architecture. 
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Figure 2.15: Total energy consumption for NEST and Arbor co-simulation running on CM and 
ESB (grey) and on the CM alone (green). The number of nodes is per simulator, i.e., 16 nodes 

means NEST running on 16 nodes (always CM) and Arbor running on 16 different nodes (either 
ESB or CM)  

 

2.7 Performance comparison 
After over three years of development, this subsection compares our current 
application status with their status at the start of the DEEP-EST project. 

2.7.1 New spike-delivery algorithm 

 
Figure 2.16: Simulation time reduction for new spike-delivery algorithms  
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Figure 2.17: Optimisation factor gained by the new spike delivery  

 

Sparse connectivity combined with irregular spiking activity leads to a practically 
random memory-access pattern during spike delivery. Seemingly this is a worst-case 
situation for the von Neumann architecture, where for any computation the content of 
a respective memory unit needs to be transported to the central processing unit and 
the result needs to be transported back. In weak-scaling spike delivery dominates the 
simulation time33. To overcome the memory bottleneck, we have rearranged the 
elementary algorithmic steps required to deliver the incoming, essentially random spike 
data to the process-local targets, such that they can be more efficiently processed by 
conventional computer hardware. The redesign also includes common latency-hiding 
techniques such as software prefetching and software pipelining. Figure 2.16 shows a 
significant reduction in simulation time as a result of new algorithms for spike-delivery 
in NEST, when comparing the HPC benchmark (2 MPI process per node with 12 
threads per process and 1000 or 5000 neurons per thread) and the same case with 
the new spike-delivery enabled45. Figure 2.17 shows the optimisation factor gained by 
employing the new spike delivery. Note that in this version of the HPC benchmark all 
synapses were static (no additional workload due to synaptic plasticity), which allowed 
us to better expose the memory bottleneck. 

 

                                             
45 Optimized spike delivery: HPC-Benchmark simulated with NEST@8f1b08c (with timers and 

optimization for small-scale regime); reference data simulated with NEST@8897668. 
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2.8 Conclusion 
Running brain-model simulations on Exascale computers to explore brain dynamics at 
the scale of full brains is a major challenge in computational neuroscience and in 
simulation technology. The focus put in the DEEP-EST project on improving 
application scaling and performance has allowed us to test new techniques and to 
understand factors affecting performance of simulators, especially NEST, even better. 
This has driven the development of more efficient spike-delivery techniques and the 
development of an advanced dry-run mode. The latter allows benchmarking of large 
parallel simulations on a small subset of the relevant system and presents an approach 
also viable for other, comparable tools. 

In situ processing of spike data generated by large-scale brain simulations will be 
essential as networks are scaled up, since storing a raw spike during simulation and 
re-loading it for analysis becomes infeasible. Coupling NEST-Arbor and NEST-
Elephant enables combining on the one hand simulations at different levels of 
description and on the other hand simulations and analysis. Our work in the DEEP-
EST project in this area has shown that a hybrid approach of distributing different parts 
of a workflow across different modules of a MSA clearly holds potential. 
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3.1 Introduction 
GROMACS46,47,48,49,50,51,52 is one of the fastest molecular dynamics simulators in the 
world. It is used mainly for soft matter molecular dynamics (MD) simulations with 
implementation in life sciences. GROMACS tracks the trajectories of a system of 
particles (atoms) that evolves in time by solving differential equations of motion at each 
time step. The coordinates and velocities of the particles are calculated by using their 
values from the previous time frame. In each time step, it calculates the forces acting 
on each atom, which is indeed the most time-consuming operation. From the 
computational point of view, the force acting on a particle is a result of a summation 
over: 

                                             
46 H. J. C. Berendsen, D. van der Spoel and R. van Drunen, “GROMACS: A message-
passing parallel molecular dynamics implementation,” In Computer Physics 
Communications, ISSN 0010-4655, DOI: 10.1016/0010-4655(95)00042-E, vol. 91, no. 
1-3, pp. 43-56, 1995. 
47 E. Lindahl, B. Hess, D. van der Spoel and J. Mol, “GROMACS 3.0: a package for molecular simulation 

and trajectory analysis,” Molecular modeling annual, DOI: 10.1007/s008940100045,  vol. 7, no. 8, 
pp. 306-3017, 2001. 

48 D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C. Berendsen, “GROMACS: 
Fast, flexible, and free,” Journal of Computational Chemistry, DOI: 10.1002/jcc.20291, vol. 26, no. 
16, p. 1701–1718, 2005. 

49 B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl , “GROMACS 4:  Algorithms for Highly Efficient, 
Load-Balanced, and Scalable Molecular Simulation,” Journal of Chemical Theory and Computation, 
DOI: 10.1021/ct700301q, vol. 4, no. 3, p. 435–447, 2008. 

50 S. Pronk, S. Páll , R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. 
Kasson, D. van der Spoel, B. Hess and E. Lindahl, “GROMACS 4.5: a high-throughput and highly 
parallel open source molecular simulation toolkit,” Bioinformatics, 
https://doi.org/10.1093/bioinformatics/btt055, vol. 29, no. 7, pp. 845-854, 2013. 

51 S. Páll , M. J. Abraham, C. Kutzner, B. Hess and E. Lindahl, “Tackling Exascale Software Challenges 
in Molecular Dynamics Simulations with GROMACS,” Markidis S., Laure E. (eds) Solving Software 
Challenges for Exascale. EASC 2014. Lecture Notes in Computer Science, pp. pp 3-27, 2015 

52 M. J. Abraham, T. Murtola, R. Schulz , S. Páll , J. C. Smith, B. Hess and E. Lindahl, “GROMACS: 
High performance molecular simulations through multi-level parallelism from laptops to 
supercomputers,” SoftwareX, DOI: 10.1016/j.softx.2015.06.001, Vols. 1-2, pp. 19-25, 2015. 
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 pairs of particles connected by “bonds” – bonded interactions,
 pairs of particles satisfying some distance criteria – short-range non-bonded 

interactions,
 long-range corrections including calculations where data of all the simulated 

particles are needed – long-range interactions. 

Usually, pairs of atoms are defined in a predefined cut-off radius calculating short-
range interactions53, while the long-range interactions are calculated using Fast Fourier 
Transform (FFT) based algorithms. 

3.2 Application structure 

GROMACS can run on almost every modern computing architecture54. The simulation 
program uses multi-level parallelism to utilize the computational power offered (see 
Figure 3.1). By means of domain decomposition, the calculations are spread along the 
distributed memory computational resources – compute nodes. On the domain 
decomposition level, MPI is used. At MPI rank level, a shared memory model is 
implemented with both OpenMP and GPU accelerators. Finally, SIMD registers are 
used to vectorise the calculations in each CPU core. 

 
Figure 3.1: Multi-level parallelism in GROMACS.54  

The Particle-mesh Ewald (PME) algorithm uses FFT to solve long-range electrostatic 
contributions to real-space direct Coulomb sums. The reader should consider the fact 
that the specific implementation involving All-to-All MPI communications causes the 
performance scalability to drop. The latter can be solved by overlapping real-space 
calculations and Fourier-space calculations. In GROMACS the MPI ranks are divided 
into two groups: one for real-space calculations (PP nodes) and the rest being 
dedicated to PME calculations (PME nodes). 

                                             
53 Computer Physics Communications 184 (2013) 2641–2650 
54 Abraham, et al. (2015) SoftwareX 1-2 19-25. 
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Figure 3.2: GROMACS flowchart for a typical simulation step for both particle and PME 

nodes.55 

As shown in Figure 3.2, the resulting flowchart in an MD step can be described in the 
following manner. Each PP node has a corresponding PME node. At the beginning of 
the time step, each PP node sends coordinates and charges to its corresponding PME 
node and once the PME calculations are completed, each PME node sends the 

                                             
55 B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl. GROMACS 4:  Algorithms for Highly Efficient, Load-

Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and Computation 4, 435-
447 (2008) 
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resulting forces back to the corresponding PP node. Meanwhile, all collective 
communications proceed only between PME nodes as well as only between PP nodes 
and overlapping the FFT All-to-All communications (exchanged between PME nodes 
only) with real-space calculations. Consequently, one must optimise the number of PP 
and PME nodes in such a way that PME nodes need to send the forces that they have 
calculated in the exact moment when the PP nodes need Fourier-space forces, 
energies, etc. The GROMACS tool called tune_pme enables users to scan different 
combinations and start the simulation with an optimal PP/PME nodes ratio whilst the 
mdrun simulator further tunes the PME mesh and cut-off radius at the beginning of the 
MD simulation run. It should be noted that one can choose to execute bonded, non-
bonded and long-range interactions on CPU or GPU devices. 

3.3 Application mapping 
How GROMACS is mapped to the Modular Supercomputing Architecture (MSA) 
depends on the simulation problem size and aims at optimizing the computational load. 
There are three computationally expensive components of the force to be calculated, 
namely bonded interactions, short-range non-bonded interactions, and long-range 
interactions (the same applies to the neighbour list construction, but this is not done 
every time step), and each of them can be run either on a CPU or on a GPU 
accelerator. 

3.3.1 MD simulations of less than 104 particles (CM) 

MD simulations of few tens of thousands of particles, e.g. many simulations of small 
peptide monomers in aqueous solution, should run efficiently on one node in the CM. 
In this case calculation time is comparable with communication time (computing node-
to-computing node or host-to-device communications of small data buffers) and the 
performance scalability is limited. The overall flowchart of one MD integration step is 
show in Figure 3.3. 

 
Figure 3.3: Schematic workflow of MD simulations with less than  particles in the MSA 
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3.3.2 MD simulations with number of particles of the order of 105 
(ESB/DAM) 

The ESB and DAM offer better performance for MD simulations consisting of hundreds 
of thousands of atoms (Figure 3.4), where particle-particle interactions are calculated 
on the GPU accelerators, while long-range electrostatic interactions run on the CPUs. 

 
Figure 3.4: Schematic workflow of MD simulations with  particles in the MSA   

3.3.3 MD simulations of millions of particles (ESB-CM) 

MD simulations of large macromolecules and their complexes at reasonable time 
scales56 demand computational resources with good enough performance scalability. 
When simulating the time evolution of systems consisting of more than several millions 
of particles, one should use thousands of cores/MPI ranks in the CM or tens/hundreds 
of nodes with GPU accelerators (like those in DAM). In the first case, the performance 
scalability saturates due to the enormous number of MPI process. In the second case, 
pair interactions go on the GPU accelerators while PME ranks run either on the CPUs 
or on a single GPU (GROMACS does not support PME calculations over multiple 
GPUs due to need for multiple GPU-to-CPU and vice versa data transfers for 3D FFT 
implementation). Single GPU performance is insufficient for PME calculations to 
deliver long-range forces to the PP nodes at the required speed, and would introduce 
imbalance causing performance scalability degradation. Moreover, for larger atomic 
systems PME calculations should be conducted on as few nodes as possible to 
minimise the time spent on All-to-All MPI communications. Therefore, the PME part of 
the simulation should run on nodes with powerful CPUs and good inter-node network, 
namely the CM. GPUs are very suitable for doing PP calculations, as mentioned above, 

                                             
56 Curr Opin Struct Biol. 2015 Apr; 31: 64–74 
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so the MSA offers good resource utilization and management when running very large 
MD simulations with GROMACS in ESB-CM configuration (see Figure 3.5). Both 
modules will communicate through the network. 

 

 
Figure 3.5: Schematic workflow of MD simulations with millions of particles in the MSA  

  

3.3.4 MD simulations with big volumes (several million nm³) 

Two different offload modes were investigated: 

Run PME on ESB and PP on CM: The option to run PME on ESB and PP on CM is 
not supported natively in GROMACS; it only includes a single-node GPU 
implementation of PME. This option was implemented and tested but the alternative 
FMM option (see below) delivered better performance and efficiency. 

Replace PME with FMM running on ESB or CM: The primary limiting factor in the PME 
method is that it utilizes a uniform mesh on the problem domain and the spacing of the 
mesh is a function of the cut-off radius at fixed accuracy. Solving for big volumes – in 
the order of several million nm3, where the mesh size becomes larger than e.g. 
1,000x1,000x1,000 – quickly becomes inefficient or even impossible. The Fast 
Multipole Method (FMM)57 is gaining significant attention in the MD community lately, 
namely because of its O(N) complexity compared with the O(N*logN) complexity of 
PME-style methods. Due to its large multiplicative constant, it usually fails to achieve 
the execution times of PME-style methods on CPUs. However, the GPUs utilized in 
ESB promise to reduce by an order of magnitude the calculation times, and thus make 
the FMM method competitive. Additionally, the boundary element method (BEM) 

                                             
57 Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational 

Physics Vol. 60, pp. 187–207. 
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formulation of the continuum electrostatic model58, local alternative charge 
distributions treatment with minimal overhead, and -dynamics module59 have been 
applied. The result is a GPU-accelerated fast multipole method for GROMACS60 61. In 
DEEP-EST we also include a multiple-GPU FMM implementation that runs on the ESB, 
and an FMM implementation for multiple-CPUs that can run on the CM. The respective 
application partitioning is depicted in Figure 3.6.   

 
Figure 3.6: Schematic workflow of MD simulations with very big volumes in the MSA   

 

3.4 Porting experience 
The MSA can be utilized in ways not yet supported by the native GROMACS 
implementation, such as using the ESB to run PME calculations while CM runs PP 
calculation. Additionally, the computing power offered by the ESB can be harnessed 
for an efficient implementation of the FMM, which for certain MD simulation volumes 
can prove beneficial over PME. The SPPEXA project62 already released a GROMACS 

                                             
58 Rio Yokota, Tsuyoshi Hamada, Jaydeep P. Bardhan, Matthew G. Knepley, Lorena A. Barba: 

Biomolecular Electrostatics Simulation by an FMM-based BEM on 512 GPUs. CoRR abs/1007.4591 
(2010) 

59 Kohnke B. et al. (2020) GROMEX: A Scalable and Versatile Fast Multipole Method for Biomolecular 
Simulation. In: Bungartz HJ., Reiz S., Uekermann B., Neumann P., Nagel W. (eds) Software for 
Exascale Computing - SPPEXA 2016-2019. Lecture Notes in Computational Science and 
Engineering, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-030-47956-5_17 

60 http://www.sppexa.de  
61 Kohnke, B., Kutzner, C., & Grubmüller, H. (2020). A GPU-accelerated fast multipole method for 

GROMACS: Performance and accuracy. Journal of Chemical Theory and Computation, 16(11), 
6938-6949. doi:10.1021/acs.jctc.0c00744. 

62 http://www.sppexa.de/  
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version with a single-GPU implementation of FMM. In DEEP-EST we investigated the 
possibility of utilizing multi-GPU FMM for larger simulation volumes. 

In order to study the scalability and performance of different approaches for long-range 
electrostatics treatment in the context of MSA, and to enable flexibility according to 
users’ needs, we linked GROMACS with the standalone IRIS electrostatics library63. 
This non-invasive approach allows us to experiment with, and provide the user with 
solutions targeting MSA, while at the same time keeping the original optimized and 
certified GROMACS codes mostly intact. The newly developed features are available 
for GROMACS users by linking GROMACS to IRIS with minimal interventions. 

Development of the IRIS library started in the PRACE-5IP64 projects, with the main 
goal to provide MD code developers with an offloading of long-range electrostatic 
calculation to a dedicated group of MPI ranks in the manner that it is done in 
GROMACS. Such separation of short- and long-range interactions allows for better 
scalability of the MD application. Initially IRIS included a CPU-only version of the P3M65 
algorithm with 3D domain decomposition. It is similar to the SPME implementation in 
GROMACS, up to a slightly different Green function and interpolation scheme. In 
DEEP-EST we implemented the following changes to IRIS: 

 1D and 2D domain decomposition of the mesh, which greatly increases the 
overall performance and scalability compared to the already existing 3D version;

 Port to CUDA to support execution of the long-range contribution on multiple 
ESB nodes; 

 Parallel CPU and parallel GPU versions of the FMM method, which allows 
running either on the CM or on the ESB.  

The main challenges faced during the implementation of the aforementioned changes 
are related to: 

 The unavoidable collective communication pattern inherent in the nature of the 
long-range electrostatic interaction;

 Memory transfers between the host and the device for the GPU versions of P3M 
and FMM. 

Both these issues lead to poor scalability, since the time spent waiting for their 
completion cannot be reduced. In order to mitigate their impact, we used the following 
techniques: 

                                             
63 https://github.com/vpavlov/iris  
64 https://cordis.europa.eu/project/id/730913  
65 Roger W. Hockney; James W. Eastwood (1988). "Particle-Particle-Particle-Mesh (P3M) Algorithms". 

Computer simulation using particles. CRC Press. pp. 267–304. ISBN 9780852743928. 
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 Overlap the collective communication with computation where possible by using 
CUDA asynchronous kernel execution and memory transfers;

 Utilising the CUDA-aware MPI implementation on the ESB to optimize the data 
transfer between GPU memory on different ESB nodes. 

The implementation of the required changes consists of roughly 15,000 lines of code 
and together with testing and bug fixing it took about 7 PM.  

3.5 Scalability 

We measured the time to solution (T1), the time spent in MPI calls (T2), the time in 
GPU kernels (TG), the number of MPI messages, the volume of the exchanged data 
and the total duration of the MPI call of one and the same type. Based on these 
measurements, we estimated the load balance as: 

    / %,  

where N is the number of MPI ranks, 1  is the time to solution, and 2  is the time 
spent in MPI calls by MPI rank p. MAX() takes the maximum value among the all MPI 
ranks. 

Dedicated test runs were performed to measure the performance scalability and 
parameters listed in the tables below for MD simulations of different size conducted on 
different number of codes in a single module – ESB, CM and multiple modules – 
ESB+CM. GROMACS performance was estimated based on 10,000 MD steps long 
runs, while the communications’ profiling was done for 1,000 MD steps.  

3.5.1 ESB Scalability results 

Strong scaling 

The timing data and calculated values of the parameters defined in the beginning of 
the section are shown in Table 3.1, Table 3.2, Table 3.3 and Table 3.4 for MD 
simulations with 1.25M, 20M, 40M and 80M atoms, respectively. The data for single 
nodes are not included due to the different computation model involved: on a single 
node all calculations are done in the GPU. When multiple nodes are used for a parallel 
simulation, particle-to-particle calculations run on the GPU, while the CPUs do PME 
calculations, using 8 MPI ranks per node and 1 OpenMP thread per MPI rank. The 
performance data are plotted in Figure 3.7 with the parallel efficiency shown in Figure 
3.8. For MD simulations performance is measured as the amount of simulated time 
(nanoseconds) that can be calculated in one day (higher is better). 
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Figure 3.7: GROMACS strong scaling performance on ESB for MD simulations of different size   

 

 

 
Figure 3.8: GROMACS parallel efficiency (strong scaling) on ESB for MD simulations of 

different size   
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# nodes 2 4 8 16 32 64 

T1: Time to solution 
[s] 

22.4 12.8 7.4 5.2 4.1 3.7 

T2: Time spent in 
MPI [s] 

4.3 3.3 2.2 2.0 2.0 2.2 

TG: Time in GPU 
kernels [s] 

22.4 12.8 7.4 5.2 4.1 3.7 

Load balance [%] 93 94 93 86 85 77 

# MPI messages 
[count] 

451,779 897,767 
1,796,20

1 
3,837,83

9 
8,309,98

7 
27,067,9

19 

MPI data volume 
[GByte] 

98 135 89 133 194 262 

Most important MPI 
operation 

MPI_Sen
drecv 

MPI_Sen
drecv 

MPI_Sen
drecv 

MPI_Sen
drecv 

MPI_Sen
drecv 

MPI 
Sendrec

v 

Most important MPI 
operation [%]  

76 82 80 77 73 69 

2nd most important 
MPI operation 

MPI_Allt
oall 

MPI_Allt
oall 

MPI_Allt
oall 

MPI_Allt
oall 

MPI_Allt
oall 

MPI_Allt
oall 

2nd most important 
MPI operation [%]  

23 16 19 22 26 28 

3rd most important 
MPI operation 

MPI_Rec
v 

MPI_Rec
v 

MPI_Rec
v 

MPI_Rec
v 

MPI_Rec
v 

MPI_Rec
v 

3rd most important 
MPI operation [%]  

0.7 1.3 0.4 0.5 0.5 1.9 

Table 3.1: GROMCAS strong scaling measurements for the Bombinin test case with 1.25M 
atoms 

As seen in the Table 3.1, the scalability of the MD simulation with 1.25M atoms 
saturates at 32 nodes, when the communication time becomes roughly equal to the 
computation time and even longer than computation time – for 64 nodes. For all other 
simulations, the computations takes longer than the communications and the load 
balance is above 93%. The most important MPI communication call is MPI_Sendrecv, 
taking more than 69% of the time spent in the MPI calls in all cases. The second most 
important MPI communication call is MPI_Alltoall, which takes almost all the rest 
of the MPI time, while the third most important MPI communication call takes less than 
4% of the MPI time. 
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# nodes 2 4 8 16 32 64 

T1: Time to 
solution [s] 

352 177 91 47 27 16 

T2: Time spent in 
MPI [s] 

58 30 19 10 7 6 

TG: Time in GPU 
kernels [s] 

352 177 91 47 27 16 

Load balance [%] 98 97 96 96 94 94 

# MPI messages 
[count] 

426,039 876,291 
1,703,47

5 
3,545,93

6 
7,144,54

8 
24,431,2

96 

MPI data volume 
[GByte] 

1025 1299 1622 2156 2876 3561 

Most important 
MPI operation 

MPI_Sen
drecv 

MPI_Sen
drecv 

MPI_Sen
drecv 

MPI_Sen
drecv 

MPI_Sen
drecv 

MPI_Sen
drecv 

Most important 
MPI operation [%]  

80 73 66 62 62 60 

2nd most important 
MPI operation 

MPI_Allt
oall 

MPI_Allt
oall 

MPI_Allt
oall 

MPI_Allt
oall 

MPI_Allt
oall 

MPI_Allt
oall 

2nd most important 
MPI operation [%]  

19 24 31 37 36 35 

3rd most important 
MPI operation 

MPI_Rec
v 

MPI_Rec
v 

MPI_Rec
v 

MPI_Rec
v 

MPI_Rec
v 

MPI_Rec
v 

3rd most important 
MPI operation [%]  

0.9 1.9 2.1 0.4 0.6 2.4 

Table 3.2: GROMACS strong scaling measurements for the Bombinin test case with 20M atoms  

 

# nodes 4 8 16 32 64 

T1: Time to 
solution [s] 

262 178 92 49 28 

T2: Time spent in 
MPI [s] 

69 31 20 12 9 

TG: Time in GPU 
kernels [s] 

262 1782 922 492 282 

Load balance [%] 96 98 93 95 94 
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# MPI messages 
[count] 

824,046 1,723,736 3,323,946 7,198,028 14,259,647 

MPI data volume 
[GByte] 

2081 2599 3270 4273 5761 

Most important 
MPI operation 

MPI_Sendr
ecv 

MPI_Sendr
ecv 

MPI_Sendr
ecv 

MPI_Sendr
ecv 

MPI_Sendr
ecv 

Most important 
MPI operation [%]  

76 62 60 53 52 

2nd most 
important MPI 
operation 

MPI_Alltoall MPI_Alltoall MPI_Alltoall MPI_Alltoall MPI_Alltoall 

[%]  21 35 38 46 46 

3rd most 
important MPI 
operation 

MPI_Recv MPI_Recv MPI_Recv MPI_Bcast MPI_Recv 

[%]  1.9 1.5 1.8 0.5 0.7 

Table 3.3: GROMACS strong scaling measurements for the Bombinin test case with 40M atoms  

  

# nodes 4 8 16 32 64 

T1: Time to 
solution [s] 

752 376 188 95 51 

T2: Time spent in 
MPI [s] 

156 87 46 22 13 

TG: Time in GPU 
kernels [s] 

752 376 188 95 51 

Load balance [%] 94 96 97 96 96 

# MPI messages 
[count] 

854,543 1,635,915 3,380,131 6,683,527 14,329,559 

MPI data volume 
[GByte] 

3564 4256 5275 6536 8552 

Most important 
MPI operation 

MPI_Sendr
ecv 

MPI_Sendr
ecv 

MPI_Sendr
ecv 

MPI_Sendr
ecv 

MPI_Alltoall 

Most important 
MPI operation [%]  

77 77 59 52 52 
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2nd most 
important MPI 
operation 

MPI_Alltoall MPI_Alltoall MPI_Alltoall MPI_Alltoall 
MPI_Sendr

ecv 

2nd most 
important MPI 
operation [%]  

19 21 39 46 47 

3rd most 
important MPI 
operation 

MPI_Recv MPI_Recv MPI_Recv MPI_Recv MPI_Bcast 

3rd most 
important MPI 
operation [%]  

4.1 1.5 1.3 1.0 0.6 

Table 3.4: GROMACS strong scaling measurements for the Bombinin test case with 80M atoms   

The strong scalability gets better when increasing the problem size as seen in Table 
3.3 and Table 3.4 for MD simulation with 40M and 80M atoms, respectively. The 
parallel efficiency is close to the ideal one as show in Figure 3.8. This trend holds until 
the duration of the PME calculations running on the CPUs of the ESB nodes would not 
exceed the duration of the PP calculations running on the GPUs of the ESB. Such a 
condition ensures overlapping communications in the PME part (on the CPUs) with the 
particle-to-particle calculation (on the GPUs). 

 

 

Weak scaling 

Figure 3.9 and Figure 3.10 show the weak scalability of the application for the 
evaluated simulations. In this scenario the volume of work per node is kept constant 
by running the 2.5M system on 2 nodes, the 5M system on 4 nodes, the 10M system 
on 8 nodes, the 20M system on 16 nodes, the 40M system on 32 nodes, and the 80M 
system on 64 nodes. As visible from Table 3.2 and Table 3.4, the MPI_Alltoall 
share of the total communication time rises from 37% on 16 nodes to 52% on 64 nodes, 
which limits the weak scalability when increasing the number of nodes. 
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Figure 3.9: GROMACS weak scaling performance on the ESB   

 

 
Figure 3.10: GROMACS weak scaling parallel efficiency on the ESB   
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3.5.2 CM Scalability results 

Strong scaling 

The strong scaling performance of MD simulations with 2.5M, 20M, and 80M atoms 
when running GROMACS on the CM is shown in Figure 3.11 and the corresponding 
parallel efficiency is shown in Figure 3.12. For these experiments 24 MPI ranks (18 for 
PP and 6 for PME calculations) per node and 2 OpenMP threads per MPI rank were 
used. The MD simulations with numbers of atoms between 300k and 2M show good 
scalability; bigger simulations presented worse strong scalability due to the limiting 
effect of collective communications between the PME ranks. Overall, the single-
module MD simulations on both CM and ESB show good scalability for the entire range 
of simulation sizes up to several millions of atoms. 

 

 
Figure 3.11: GROMACS strong scaling performance on the CM for MD simulations of different 

size   
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Figure 3.12: GROMACS strong scaling parallel efficiency on the CM for MD simulations of 

different size  

 

3.5.3 ESB+CM Scalability results 

 

Strong scaling GROMACS with PME 

 
Figure 3.13: GROMACS strong scaling performance in Cluster-Booster configuration on the 

ESB (PP) and the CM (PME) for MD simulations of different size  
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Figure 3.14: GROMACS strong scaling parallel efficiency in Cluster-Booster configuration on 

the ESB (PP) and the CM (PME) for MD simulations of different size  

 

As discussed above, MD simulations in Cluster-Booster configuration run the particle-
to-particle (PP) calculations on the ESB and long-range electrostatics calculations with 
PME method on the CM. The optimal performance was reached with a 1:1 ratio of ESB 
nodes to CM nodes. The GROMACS performance of MD simulations with 1.25M, 
2.5M, 5M, 10M, 20M, 40M, 80M atoms is plotted in Figure 3.13 and the corresponding 
parallel efficiency in Figure 3.14. Detailed comparison of the corresponding 
performance of the ESB-only runs (plotted in Figure 3.7) showed performance gain of 
between 10% and 40% as depicted in Figure 3.15. The relative performance gain was 
calculated according to the following formula:     100%, 
where RPG denotes the Relative Performance Gain,  the performance in 
Cluster-Booster configuration, and   the performance on the ESB module. 
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Figure 3.15: Relative performance gain of GROMACS in Cluster-Booster configuration to single 

module configuration (ESB) for MD simulations with different size  

 

Weak scaling GROMACS with FMM 

In most cases, PME outperforms FMM, while the latter starts to become beneficial for 
large volumes of the simulation box. However, GROMACS has an intrinsic hard limit 
for the input number of atoms in a system (~100 million). For dense systems such as 
the ones used in life sciences research this limit is reached at approximately ~1 Million 
nm3 (Mnm3) volumes. In order to perform weak scalability of FMM for much larger 
volumes, a sparse system needs to be taken as a test case. To evaluate the weak 
scalability of the newly implemented multi-GPU FMM method integrated with 
GROMACS, a starting aerosol problem containing 75 droplets of water66 (217,326 
atoms) in a simulation box of volume ~5 Mnm3 is n-folded up to 32 times. The largest 
problem obtained in this way contains 6,954,432 atoms in a simulation box with a 
volume of ~160 Mnm3. The problem is simulated for 200 MD steps on increasing 
numbers of ESB nodes. The number of MPI tasks on the CM is determined in order to 
minimize energy usage while keeping the performance balance between the ESB and 
CM. The amount of CM nodes needed is reduced because they do not need to 
calculate the pair-wise Coulomb interactions, which are already included in the FMM 
algorithm. The execution becomes therefore generally faster. Table 3.5 shows the 
obtained measurements. 

                                             
66 https://www.mpibpc.mpg.de/17532883/03_aerosol.tgz  
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# nodes CM module 1 1 1 2 3 3 

# nodes ESB module 1 2 4 8 16 32 

Full System 

T1: Time to solution [s] 11 16 35 11 18 39 

T2: Time spent in MPI [s] 4.3 8.0 13.4 3.8 8.7 16.2 

Load balance [%] 69 52 62 69 62 62 

# MPI messages 4,672 12,843 16,162 97,064 
289,52

4 
532,02

8 

MPI data volume [GByte] 1.5 4.0 11.4 20.8 47.3 120.5 

Module CM 

T1: Runtime on Module CM [s] 11 16 35 11 18 39 

T2: Time spent in MPI [s] 4.3 9.9 19.8 4.6 10.6 23.5 

# MPI messages CM 1,686 5,144 5,212 31,436 55,411 82,498 

MPI data volume [GB] 0.02 0.09 0.18 0.47 1.15 1.58 

Load balance [%] 95 96 96 81 95 89 

Module ESB 

T1: Runtime on Module ESB 
[s] 

11 16 35 11 18 39 

T2: Time spent in MPI [s] 0.2 0.3 0.5 0.7 0.8 1.7 

T_GPU: Time spent in GPU 
kernels [s] 

8 14 31 8 15 34 

# MPI messages ESB 200 1,000 1,000 1,000 1,000 1,000 

MPI data volume [GB] 0.0 1.0 5.4 8.7 23.0 72.0 

Load balance [%] 100.00 99.99 99.91 99.59 99.68 99.32 

Inter-modular communication 

MPI data transfer time [s] 0.2 0.1 0.3 0.1 0.3 0.5 

# of MPI messages 2,786 6,699 9,950 64,628 
232,94

2 
448,53

0 

MPI data volume [GB] 1.5 2.9 5.9 11.6 23.2 46.9 

Most important MPI operation 
MPI_R

ecv 
MPI_R

ecv 
MPI_W

aitall 
MPI_W

aitall 
MPI_W

aitall 
MPI_W

aitall 
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Most important MPI operation 
[%] 

59 72 61 70 74 59 

2nd most important MPI 
operation 

MPI_W
aitall 

MPI_W
aitall 

MPI_R
ecv 

MPI_R
ecv 

MPI_R
ecv 

MPI_R
ecv 

2nd most important MPI 
operation [%] 

38 24 37 25 22 36 

3rd most important MPI 
operation 

MPI_Is
end 

MPI_Is
end 

MPI_Is
end 

MPI_Is
end 

MPI_Is
end 

MPI_Is
end 

3rd most important MPI 
operation [%] 

1.8 3.0 2.1 3.5 3.0 3.5 

Table 3.5: GROMACS + IRIS/FMM weak scaling measurements for the aerosol test case  

 

Figure 3.16 shows the time to solution for the different cases. A distinctive pattern is 
observed, which at first might lead to the conclusion that this method does not scale at 
all. However, it is misleading to perform a weak scaling test of the FMM method by 
doubling the number of processors and problem size; instead, weak scaling should be 
performed by multiplying the number of processors and problem size by 8 each time. 

 
Figure 3.16: GROMACS + IRIS/FMM weak scaling time to solution (11 MD steps). Tree depth for 

1-, 2- and 4- ESB node cases is 4, while for 8-, 16- and 32- ESB node cases is increased to 5  
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The FMM method relies on dividing the domain into an oct-tree up to certain 
configurable depth. Each cell in the tree (except for the leaf nodes) has exactly 8 
children. From algorithmic point of view, it is not beneficial to increase the depth unless 
there are 8 times more processors. This is why the tree depth for the 1-, 2- and 4-ESB 
node cases is kept constant (depth 4) and for the 8-, 16- and 32-ESB node cases it is 
increased to 5. By doubling the simulation system size but keeping the depth constant, 
we end up with leaf cells containing twice the number of atoms compared with the 
previous case, which inevitably leads to increased simulation time. However, 
comparing the cases 1-node to 8-node, as well as 2-node to 16-node and 8-node to 
32-node, we can see the true weak scalability, as depicted on Figure 3.17. The obvious 
result from these measurements is that weak scalability for larger number of nodes is 
preserved, if the depth is increased each time that the number of nodes grows by 8×. 

 

 
Figure 3.17: GROMACS + IRIS/FMM weak scalability, comparing 8- to 1- ESB nodes, 16- to 2- 

ESB nodes and 32- to 4- ESB nodes  

 

Strong scaling FMM (Standalone IRIS/FMM) 

The sparse aerosol system used for the weak scalability tests cannot be used to 
measure accurately the strong scalability of the FMM method, since there is large load 
imbalance due to its inhomogeneity. This load imbalance becomes even larger with 
increasing number of processors, which hinders the scalability. A dense problem is 
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more suitable for strong scalability tests. Moreover, there are previous results67 
showing strong scalability of standalone multi-GPU FMM implementation for a problem 
consisting of 100M particles. To this end, the test case chosen for strong scalability 
tests of the FMM method consists of 100M atoms worth of water molecules in 1 Mnm3 
simulation box. Due to the hard limit for the input size in GROMACS such a system 
cannot be fully simulated. Instead, only the FMM part as implemented in the IRIS library 
was run on the ESB nodes. The results obtained this way show the strong scaling 
potential of the developed FMM code itself.  

The problem is simulated for 11 MD steps on increasing number of ESB nodes. The 
CM nodes are used only to load the input data and send it through to the ESB nodes 
for calculation, thus better representing the situation in an eventual full-simulation 
scenario. One MPI CM rank corresponds to 1 ESB node. Table 3.6 shows the results. 
Note that the data for the CM nodes is not representative because of the above 
comment. 

 

# nodes CM module 1 1 1 1 1 2 

# nodes ESB module 1 2 4 8 16 32 

Full system 

T1: Time to solution [s] 2,204 1,137 564 287 149 77 

T2: Time spent in MPI [s] 1,096 579 289 144 73 38 

Load balance [%] 51 52 52 51 52 55 

# MPI messages 145 255 519 1,572 5,796 22,692 

MPI data volume [GByte] 36 42 48 57 65 78 

Module CM 

T1: Runtime on Module CM [s] 2,204 1,137 564 287 149 78 

T2: Time spent in MPI [s] 2,144 1,127 557 285 143 72 

# MPI messages CM 0 0 0 0 0 0 

MPI data volume [GB] 0 0 0 0 0 0 

Load balance [%] 100.0 99.8 99.5 98.5 97.1 99.2 

Module ESB 

                                             
67 Rio Yokota, Tsuyoshi Hamada, Jaydeep P. Bardhan, Matthew G. Knepley, Lorena A. Barba: 

Biomolecular Electrostatics Simulation by an FMM-based BEM on 512 GPUs. CoRR abs/1007.4591 
(2010) 
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T1: Runtime on Module ESB [s] 2,204 1,137 564 287 149 78 

T2: Time spent in MPI [s] 49 31 22 3 3 3 

T_GPU: Time spent in GPU 
kernels [s] 

2,120 1,113 532 275 143 71 

# MPI messages ESB 11 55 55 55 55 55 

MPI data volume [GB] 
4.10E-

07 
5.3 12 20 29 41 

Load balance [%] 100 99.8 99.6 99.2 98.5 97.3 

Inter-modular communication 

MPI data transfer time [s] 6.1 3.6 1.7 0.7 0.3 0.2 

# of MPI messages 134 200 464 1,517 5,741 22,637 

MPI data volume [GB] 36.3 36.3 36.3 36.3 36.3 36.3 

Most important MPI operation 
MPI_R

ecv 
MPI_R

ecv 
MPI_R

ecv 
MPI_R

ecv 
MPI_R

ecv 
MPI_R

ecv 

Most important MPI operation 
[%] 

78 69 75 63 66 57 

2nd most important MPI 
operation 

MPI_
Wait 

MPI_
Wait 

MPI_
Wait 

MPI_
Wait 

MPI_
Wait 

MPI_
Wait 

2nd most important MPI 
operation [%] 

20 30 22 33 30 36 

3rd most important MPI 
operation 

MPI_Ip
robe 

MPI_Is
end 

MPI_Is
end 

MPI_Is
end 

MPI_Is
end 

MPI_Is
end 

3rd most important MPI 
operation [%] 

1.9 0.9 2.0 3.4 4.7 6.3 

Table 3.6: Standalone IRIS/FMM strong scaling measurements for the 100M test case  

 

The presented data shows that the strong scalability of the multi-GPU FMM code has 
a nearly perfect parallel efficiency (see Figure 3.19). The time spent in GPU kernels 
also scales near ideally and dominates the execution time, as shown in Figure 3.18. 
The communication between ESB ranks is completely overlapped by the calculations 
on the GPU kernels (more specifically P2P self-interactions) and does not contribute 
to the total step time. Moreover, the MPI time is less than 4% of the total execution 
time. 
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Figure 3.18: Standalone IRIS/FMM time to solution for the GPU kernels and the complete ESB 
step. GPU kernels time is shown in blue, while all the rest of the activities (data preparation, 

CPU activities, data transfer) is shown in orange  

 

 

 
Figure 3.19: Standalone IRIS/FMM parallel efficiency for the GPU kernels (shown in orange) and 

the complete ESB step (shown in grey)  
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3.5.4 Our path to Exascale 

In order to extrapolate towards Exascale we need to look at the details of the 
computation load and communication patterns of a single MD step and assess their 
inherent scalability. 

3.5.4.1 P3M/PME 

The PME/P3M MD step consists of the following components: 

 Receive input data;
 Particle to Mesh; 
 Halo exchange; 
 Forward 3D FFT, including remap;
 Calculate reciprocal space electrostatic energy; 
 3x Backward 3D FFT, including remap;
 Mesh to Particle; 
 Send output results.

The Receive input data and Send output results component involves asynchronous 
point-to-point communication only (non-blocking send to blocking receive) and its 
duration depends on the amount of data transferred and the latency and throughput of 
the network. 

The Particle to Mesh and Mesh to Particle components perform only computations. 
Their complexity depends on the number of atoms per rank and size of the computation 
mesh. Both strong and weak scaling should not be limited. 

The Halo exchange involves point-to-point communication only and the amount of 
data to be transferred depends on the accuracy defined by the user. In the strong 
scaling case, the scalability is limited by the interconnecting network bandwidth.  

There are two main subcomponents in the 3D FFT, namely 2D or 1D FFT local 
calculations and collective communications to remap the mesh to prepare it for the FFT 
in the remaining dimension(s). All ranks are involved in the collective communications 
and they are the main source of scalability saturation in both strong and weak scaling 
cases, while the FFT calculations do not influence the performance scalability. 
Moreover, the duration of the collective all-to-all communication heavily depends on 
the size of the computational mesh, the whole span of which needs to be exchanged, 
and this greatly influences weak scalability. 
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3.5.4.2 FMM 

The FMM MD step consists of the following components: 

 Receive input data;
 Local tree construction; 
 Exchange of the Local Essential Tree; 
 Dual tree traversal; 
 Send output results. 

The Receive input data and Send output results components involve asynchronous 
point-to-point communication only (non-blocking send to blocking receive) and their 
duration depends on the amount of data transferred and the latency and throughput of 
the network. 

For the strong scaling case the amount of data transferred to a single MPI task is 
reduced as the number of ranks is increased. For the weak scaling case the amount 
of data transferred to a single MPI rank is constant. The total amount of data is 
increased, along with the number of messages. In both cases the scalability of the 
component is limited mainly by the latency and throughput of the network. 

The Local tree construction component involves only computation and all steps are 
of O(N) complexity. Both strong and weak scaling should not be limited. 

The Exchange of the Local essential tree component involves two all-to-all 
communications: one for exchanging the P2P halo atoms and one for exchanging the 
cells needed by other processors to perform M2L kernels. These exchanges are 
overlapped with the P2P in-cell interactions computed on the GPU. The solver can be 
optimally parametrized by the user so that this communication is completely hidden. 
For the CPU implementation however, this is the main bottleneck of the method. 

This component also involves additional calculations for reconstructing the non-local 
part of the tree shared by all nodes. For both strong and weak scaling, the additional 
calculations in the local essential tree stays generally of the same order and does not 
scale, but their duration can be made relatively small if the performance of the 
CPU/GPU is high enough. Thus, the scalability is limited by the single node FPU 
performance. 

The Dual tree traversal component involves only computation and all steps involved 
are of O(N) complexity. Both strong and weak scaling should not be limited. 
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3.5.4.3 What are the limitations? – Can they be fixed? 

For MD simulations as a whole, the main scalability limiting factor is the number of 
atoms per MPI rank. When the number of atoms per node (CPU only) goes below 
roughly 1,000, the communication starts dominating. 

The main limitation of the PME method is its weak scalability when the problem volume 
approaches millions of nm3 in realistic scenarios with Fourier spacing not exceeding 
2.2 ; in this case the all-to-all MPI communications necessary for the 3D FFT become 
a severe limiting factor. This limitation cannot be fixed since it is an inherent 
characteristic of the method and these communications cannot be overlapped with 
meaningful computation. This is the main reason for developing the multi-GPU FMM 
code as part of this project. Apart from that limitation, PME shows good strong 
scalability and excellent performance for most MD simulations required in life sciences 
nowadays and can be used exceptionally well in ensemble simulations. 

FMM provides a viable alternative for large problems68 and enables simulations that 
are not feasible with PME nowadays. Its strong scalability is limited by the computation 
vs. data transfer ratio, and specifically in the GPU case by the computation vs. memory 
transfer ratio. For the hardware used in the ESB nodes this happens when the single 
step wall-clock time starts approaching ~100ms (3.5 ns/day at 4 fs MD time step). 

Another important factor that limits both the strong and weak scalability in MD 
simulations, regardless of the method used, is load imbalance due to problem 
inhomogeneity. In GROMACS there is a dynamic load-balancer that aims to mitigate 
this problem by rescaling the local domains. 

3.5.4.4 How to use future Exascale systems 

According to the application's present status, the Exascale performance could be 
reached either by a combination of ensemble and strong scaling, or by weak scaling. 

In drug design, they investigate the interaction of a particular protein with many ligands, 
which results in running many MD simulations to solve drug candidate discovery. The 
strong scaling limit of the single MD simulation determines the number of nodes per 
MD simulation, and the number of simultaneously running simulations depends on the 
available resources. The I/O operations per MD simulation, namely writing trajectories, 
are done once per second on average, so they are not expected to play a limiting role. 

Large MD simulations are used in molecular biology, polymer science, material 
science, etc. Such MD simulations include increasingly larger space volumes with 

                                             
68 Tchipev N, Seckler S, Heinen M, et al. The International Journal of High Performance Computing 

Applications. 2019;33(5):838-854. doi:10.1177/1094342018819741 
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number of particles in the order of hundreds of millions or even billions69. In such cases, 
the number of particles per node is kept optimal, and the MD simulation is run on the 
corresponding number of nodes (increasing the number of nodes). Such large 
volumetric problems can be solved using the FMM and having in mind that its strong 
scalability starts deteriorating when the wall-clock time of the single step starts 
approaching ~100 ms on current hardware. We can therefore conclude that it can 
become possible to simulate a problem involving billions of particles on pre-Exascale 
and Exascale systems with at least 5 ns/day performance (at 4 fs/step). 

3.5.4.5 Where did the DEEP-EST project help on the way to Exascale? 

The MSA idea behind the DEEP-EST project allows MD simulation packages to run 
algorithmically different parts of the problem on more appropriate computing 
architecture to optimize the price/performance ratio of the computation. It adds 
versatility and allows choosing the right combination of nodes depending on the 
simulation size in order to achieve the best performance with as little energy as 
possible. This would be impossible in a homogenous system with a unique type of 
nodes. 

The multi-GPU FMM implementation, which enables the computation of very large 
problems, further benefits from the MSA idea by utilizing the low-performance CPUs 
of the ESB nodes to do the FMM-related housekeeping tasks, like dual-tree traversal, 
LET construction and communications. In the meantime, the high-performance CPUs 
of the CM nodes are busy with bonded interactions and Van der Waals computations. 
Moreover, there is flexibility to tune the number of CM nodes against ESB nodes for 
better load balance. Keeping the particle-to-particle ranks and the FMM ranks on 
separate modules allows the user to bundle the particle-to-particle ranks on a smaller 
number of CM nodes, thus reducing the network load by keeping most of the 
interactions in memory. 

3.6 Energy consumption 
The energy consumption was measured for runs shown in Section 3.5. Here, only the 
data for MD simulations of 2.5M, 20M and 80M atoms are presented to illustrate the 
energy consumption for medium, big and large simulations. The data collected for 
10,000 MD steps runs on the CM, ESB and Booster-Cluster configuration (ESB+CM) 
for different MD simulations sizes are plotted in Figure 3.20, Figure 3.21, and Figure 
3.22 for 2.5M, 20M and 80M atoms, respectively. In ESB+CM configuration the number 

                                             
69 Jung, J., Nishima, W., Daniels, M., Bascom, et al. J. Comput. Chem. 2019, 40, 1919– 1930. DOI: 

10.1002/jcc.25840 
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of ESB nodes equals the number of CM nodes and the sum of both kinds of nodes is 
plotted. Long-range electrostatics was calculated with PME.  

These plots show that the ESB consumes the lowest amount of energy for all runs, 
while the CM has about 4 times greater consumption on average. The ESB-only and 
ESB+CM configurations show relatively good and constant behaviour in the strong 
scaling scenario for 20M and 80M MD simulations. 

 

 
Figure 3.20: Total energy consumption of 2.5M atoms GROMACS MD simulation for 10,000 MD 

steps  
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Figure 3.21: Total energy consumption of 20M atoms GROMACS MD simulation for 10,000 MD 

steps  

 

 
Figure 3.22: Total energy consumption of 80M atoms GROMACS MD simulation for 10,000 MD 

steps  
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3.7 Performance comparison 
This sections gives an overview on the energy/performance ratio and the comparison 
of the old and new algorithms. 

3.7.1 Energy/Performance ratio 

The Energy vs. Performance ratio is measured in MJ/ns (MegaJoule/nanosecond) and 
estimates the energy spent to simulate one nanosecond of time evolution. Energy vs. 
Performance of the CM, ESB and ESB+CM configuration for different MD simulation 
sizes are plotted in Figure 3.23, Figure 3.24, and Figure 3.25 for 2.5M, 20M and 80M 
atoms, respectively. In Cluster-Booster configuration the number of ESB nodes equals 
the number of CM nodes and the total number of nodes is plotted. Long-range 
electrostatics was calculated with PME.  

The ESB has the best Energy vs. Performance ratio and stays constant in the strong 
scaling scenario for MD simulations with more than 2.5M atoms, as it does the Cluster-
Booster configuration. The increase in the performance of ESB+CM configuration 
shown in Figure 3.15 comes at the expense of higher energy consumption. 

 

 
Figure 3.23: Energy vs. Performance ratio of 2.5M atoms GROMACS MD simulation  
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Figure 3.24: Energy vs. Performance ratio of 20M atoms GROMACS MD simulation  

 

 
Figure 3.25: Energy vs. Performance ratio of 80M atoms GROMACS MD simulation  

3.7.2 Performance of the newly implemented algorithms 

Direct performance comparison between the existing PME method and the newly 
implemented multi-GPU FMM is impractical since these methods have a non-
overlapping domain of application. PME method outperforms FMM for all problems 
where it is applicable. On the other hand, FMM enables solving MD problems with very 
large volumes and number of particles which PME simply cannot handle within 
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reasonable timeframes. We expect such large problems to be solved on pre-Exascale 
and Exascale systems using FMM, while PME is used for ensemble simulations. 

 

3.8 Conclusion 
The DEEP-EST project provided means to further enhance the capabilities of MD 
software. In computer-aided drug design or life sciences on the MSA one can optimize 
the price vs. performance ratio by choosing the appropriate configuration of nodes for 
each particular task. For example, MD simulations of several thousand atoms should 
run on the CM, while the ESB is beneficial for MD simulations of millions of atoms. In 
certain cases, the Cluster-Booster configuration shows up to 30% better performance 
than using ESB nodes only, albite at higher energy cost. The applicability of such trade-
off can be considered by the user when the time to solution is more important than the 
price of the solution itself. 

The multi-GPU FMM developed as part of this project is to the best of our knowledge 
the first such implementation integrated with GROMACS, while a single-GPU version 
had been developed as part of the SPPEXA project70. This new functionality that allows 
the utilization of FMM on large number of GPUs opens new possibilities for GROMACS 
to perform very large simulations in fields like material science, polymer science, 
molecular biology, nanostructures and condensed systems. Results obtained for the 
MSA architecture show good promise that by using the newly implemented multi-GPU 
FMM such large simulations consisting of billions of particles may be run at reasonable 
performance. Future work for this implementation includes overcoming the hard limit 
on the size of the MD simulation and further optimization of the code both in terms of 
performance and capabilities. For biological systems in life science research the 
existing PME method already provides excellent performance on the MSA. The 
software and hardware work together to establish GROMACS as an even more 
versatile tool, applicable in a wide range of fields, strongly competing with non-
European tools already existing in these areas. 

In summary, the MSA employed in the project is suitable for a wide range of 
applications in the MD domain. Together with the modular hardware architecture, the 
additions implemented in the application provide extra flexibility to the end-users for 
selecting the optimal hardware and software configuration depending on their 
simulation needs. 

 

                                             
70 J. Chem. Theory Comput. 2020, 16, 11, 6938–6949 
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4.1 Introduction 

Within DEEP-EST, parts of the imaging pipeline of a radio telescope were studied. This 
is a collection of applications that transforms raw telescope data into calibrated sky 
images. Figure 4.1 depicts this pipeline. On the left, the signals from antennas in the 
field are digitised and locally combined. The data are sent over Wide-Area Network 
links to a central location, where the correlator application filters and combines all data 
in real time, and writes its output to disk. After the observation has finished, bad data 
(due to interference) are detected and removed, and the remaining data are calibrated 
to create an image. During the DEEP-EST project the focus has been on the two 
computationally most intensive applications in this pipeline: the correlator and the 
imager. The correlator's main task is to combine the data from all receivers, and the 
imager's main task is to create sky images. 

 
Figure 4.1: Workflow of the imaging pipeline  

Both applications are highly optimised for GPUs and CPUs and run much faster on 
GPUs, for various reasons. The imager performs a large number of sine/cosine 
operations, for which there is efficient hardware support on GPUs but not on CPUs. 
The newly developed GPU correlator takes advantage of the tensor cores of the latest 
GPU generation. Tensor cores are special-purpose hardware, which achieve an 
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exceptionally high performance when executing matrix multiplications at mixed-
precision, e.g. 71 TFLOP/s on correlations. Hence, both applications are tens of times 
faster on GPUs than on CPUs, and this affects the way we will use them on the DEEP-
EST MSA. 

The imager was also ported to FPGAs. FPGAs used to be programmed in Hardware 
Description Languages like VHDL and Verilog, which is difficult, time consuming and 
error prone, and not feasible for complex applications like the imager. New FPGA 
technologies (the OpenCL high-level programming language, hard Floating-Point 
Units, and tight integration with CPU cores) have changed this: they should reduce the 
programming effort of “simple” tasks like a correlator, and should allow complex 
applications like the imager. We explored Intel's OpenCL/FPGA technology to allow 
comparisons with GPUs (with respect to performance, energy efficiency, and 
programming effort), and to bring these technologies into radio astronomy. 

4.2 The GPU Correlator 

4.2.1 Application structure 

4.2.1.1 The correlator pipeline 

The correlator combines telescope data and performs signal-processing tasks. The 
finite impulse response (FIR) filter and FFT blocks transform a wide frequency band 
into narrow frequency channels. The delay compensation block applies phase 
corrections to the data that are necessary to follow a source on the sky. The bandpass 
correction applies an amplitude correction to the data, correcting errors made by 
another filter near the receivers. The correlate block itself multiplies the data from each 
pair of receivers, and integrates the products over short periods of time (typically 
around one second). Especially for a large number of receivers, the correlate block is 
computationally the most expensive block. 

The focus in DEEP-EST was put mostly on improving the performance of the 
correlation operation. The other operations can be improved when NVIDIA's cuFFTDx 
library becomes available. As this library will perform FFTs directly on the GPU (unlike 
cuFFT, which initiates FFTs from the CPU), the first four operations can then be 
collapsed into one single GPU kernel instead of four kernels, so that only one pass 
over the data is made, reducing memory bandwidth use. Unfortunately, a pre-release 
version of cuFFTDx did not compute correct results, so that the integration of cuFFTDx 
has to be postponed to after the DEEP-EST project. Below, we only report on the 
correlation operation, which is, especially for large numbers of receivers, the most time-
consuming operation anyway. 
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The correlator combines the data from all receivers by multiplying samples from each 
pair of receivers and integrating the products over time (typically a second). More 
specifically, for each frequency channel and each integration period, a matrix with 
observed, filtered samples S is multiplied by its own Hermitian: V  . Hence, the 
output V is also Hermitian, and only the upper- or lower-diagonal triangle needs to be 
computed and stored, as the output matrix is symmetrical in the diagonal (apart from 
a minus sign). The BLAS function CHERK computes either side of the diagonal, but 
stores the output data in a rectangular matrix, wasting GPU memory and PCIe/network 
bandwidth. Thus, instead of using BLAS, the correlator implements the matrix 
multiplication itself and stores the data in a triangular data structure. 

4.2.1.2 The Tensor-Core Correlator 

The correlator uses new GPU tensor core technology to significantly improve 
performance71. Tensor cores are limited-precision matrix-matrix multiplication units 
designed to speed up deep learning (training and inference), but ASTRON uses them 
for signal-processing operations that can be expressed as matrix multiplication, such 
as a correlator or beam-former. For signal processing, the 32-bit precision provided by 
regular GPU cores is overkill, as Analog-to-Digital Converters near the receivers 
typically have an accuracy of 4 to 14 bits. Hence, the limited precision of tensor cores 
does not affect the correctness of the computed results. 

The three major implementation challenges were the following: First, tensor cores only 
operate on real-valued data while the correlator works with complex-valued data. In 
particular, negating and swizzling real and imaginary parts, which is necessary to 
perform a complex multiplication, is performed by regular GPU cores because tensor 
cores cannot do so. Second, the output data structure is a triangular data structure, 
which is not supported by the tensor core API. Hardware-dependent tricks (with a 
portable but slower fallback solution) were necessary to write output data quickly. 
Third, the tensor cores compute so quickly that it is difficult to provide them fast enough 
with input data. Efficient caching at all levels in the memory hierarchy, as well as 
coalesced memory accesses, were necessary to keep the tensor cores busy. 

The correlator is implemented as a library, to simplify its use in the pipelines of various 
radio telescopes. Major facilities like the Canadian CHIME and South-African MeerKAT 
(an SKA precursor) already included the tensor-core correlator library in the processing 
pipelines that they develop for their correlator upgrades. ASTRON will use the library 
for their AARTFAAC correlator upgrade (a LOFAR derivative).  

                                             
71 John W. Romein.  The Tensor-Core Correlator.  Astronomy & Astrophysics, 2021, to appear. 
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4.2.2 Application mapping 

Due to the high data rates between the pipeline components of the correlator (in excess 
of PCIe bandwidth limits), it is not reasonable to separate the operations and run them 
on different DEEP-EST modules. All operations are performed consecutively on the 
GPUs of the DAM or ESB (see Figure 4.2). 

 
Figure 4.2: Schematic workflow of the correlator in the MSA  

 

4.2.3 Performance comparison 

 

Figure 4.3: Performance of the tensor-core correlator and a legacy GPU correlator on a V100 
GPU, as function of the number of receivers, for various precisions of the input data  

Figure 4.3 shows the enormous performance benefits of using tensor cores, which 
depends on the required precision. If the telescope observes with 16-bit samples, the 
tensor-core correlator performs up to 5.4 times better than the legacy code that runs 
on regular GPU cores of the NVIDIA V100, at 32-bit precision. The results are obtained 
on an NVIDIA V100 GPU in a DAM node. The tensor-core correlator is benchmarked 
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against xGPU72, commonly considered to be the most efficient correlator library for 
regular GPU cores. xGPU supports 8-bit and 32-bit input data. The ripples in each of 
the curves are due to the fact that, depending on the number of receivers, the work 
cannot always be distributed optimally over the GPU cores or tensor cores. 

 

Figure 4.4: Performance of the tensor-core correlator and a legacy GPU correlator on an A100 
GPU, as function of the number of receivers, for various precisions of the input data  

Many telescopes observe with 8-bit or even 4-bit samples though, and these precisions 
are not naturally supported by the first-generation tensor cores of the V100. Support 
for 8-bit, 4-bit, and 1-bit was added later in the second-generation tensor cores of 
Turing GPUs and third-generation tensor cores of Ampere GPUs, which provide even 
higher performance. ASTRON further developed the tensor-core correlator to also 
support 8-bit and 4-bit correlations on the newer GPUs. Figure 4.4 shows performance 
results obtained on a recently introduced Ampere A100 (PCIe) GPU, the successor to 
the V100 GPU. The figure not only shows order-of-magnitude performance 
improvements for 16-bit, 8-bit, and 4-bit correlations, but it also shows that the 
performance gap between tensor cores and regular GPU cores has widened. Thus, 
the use of tensor-core technology, which ASTRON started exploring on the DEEP-EST 
system, will become even more important in future systems. 

                                             
72 M.A. Clark, P.C. La Plante, and L.J. Greenhill, "Accelerating Radio Astronomy Cross-Correlation with 

Graphics Processing units", [arXiv:1107.4264 [astro-ph]]. 
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4.2.4 Energy consumption 

 
Figure 4.5: Energy efficiency of the GPU correlator on a V100  

Figure 4.5 shows that the use of tensor cores is also beneficial to obtain high energy 
efficiency: in typical use cases, the tensor-core correlator is over 5 times more energy 
efficient than a GPU correlator that runs on regular GPU cores. The energy efficiency 
was measured on a V100 GPU in a DAM node. The reported energy efficiency is for 
the GPU only; system-level measurements are reported in Section 4.2.6. The tensor-
core correlator library can accurately measure the GPU's energy use through NVIDIA's 
NVML library. 

The tensor-core correlator is actually limited by the maximum amount of power that the 
GPU may consume: the GPU's clock frequency is lowered so that the energy use 
remains below 250W. Even though its power use is high, the energy efficiency is very 
good, because it performs a very high amount of computations per Joule. Since the 
correlator drives the GPUs in the ESB to its maximum heat production, this application 
was used in DEEP-EST also to test a cooling-control plugin developed within the 
project73. 

 

                                             
73 Moschny, et al. (2021) D5.5 – Software Support Report 
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Figure 4.6: Energy efficiency of the tensor-core correlator and a legacy GPU correlator on an 
A100 GPU, as function of the number of receivers, for various precisions of the input data  

Figure 4.6 shows the energy efficiency for the A100 GPU. Yet another leap in energy 
efficiency is made compared to the V100. On 8-bit and 4-bit input, the energy efficiency 
exceeds 1012 operations per Joule, a new milestone. 

4.2.5 Porting experience 

Roughly 35% (about 12 PM) of the ASTRON effort was used to develop and optimize 
the tensor-core correlator. The library was developed from scratch in CUDA, so no 
additional effort was needed to port the software to the DEEP-EST DAM and ESB 
nodes. The performance-critical part is only 589 lines of CUDA code, but it is highly 
complex due to the use of low-level tensor-core intrinsics. 

4.2.6 Scalability 

The correlator is parallelised over multiple nodes using independent processes, hence 
the correlator is trivially parallel. Older correlators (such as the LOFAR correlator) used 
to be MPI programs that performed (real-time) any-to-any transposes of input data 
across all correlator machines, but newer instruments (e.g., AARTFAAC) perform this 
transpose outside the correlator, on the way between the receivers and the correlator 
nodes on packet-switching Ethernet switches. This saves on network hardware costs 
and simplifies the correlator application. 
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Figure 4.7: Strong scaling results for the tensor-core correlator: runtimes for the GPU 

correlator on the DAM and ESB, as well as the legacy CPU correlator on the CM  

 

 
Figure 4.8: Strong scaling results for the tensor-core correlator: parallel efficiency for the GPU 

correlator on the DAM and ESB, as well as the legacy CPU correlator on the CM  

Figure 4.7 shows scaling results from the tensor-core correlator on the DAM and ESB 
nodes. For comparison, we also included scaling results obtained when running on the 
CM a slightly modified version of the legacy CPU correlator that was developed for 
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Xeon and Xeon Phi processors in the predecessor DEEP-ER project. The legacy CPU 
correlator uses AVX512 intrinsics to achieve optimal CPU performance. For all 
performance measurements same input data (a large amount) is processed, hence the 
results are strong scaling results. The single and dual-node measurements of the CPU 
correlator are omitted, as their runtimes exceed the 20-hour time limit imposed by 
Slurm. 

As both the tensor-core correlator and the CPU correlator processes run independently 
from each other, the performance scales almost perfectly, as displayed by the parallel 
efficiency plot in Figure 4.8. The performance on the DAM and ESB is nearly identical, 
because both modules use GPUs of the same type. ASTRON did notice some variation 
in GPU speed (up to 8% on the ESB and 3.4% on the DAM), probably caused by 
different thermal conditions, as all GPUs run as fast as they can within their 250W 
power limit; the obtained speed depends on the GPU temperature. The graph also 
shows that the tensor-core correlator processes the same amount of data 19 times 
faster than the CPU correlator. This atypically high factor is due to the use of tensor 
cores in the GPU correlator. 

Note that in real telescope systems, the correlator is a real-time application that 
processes streaming data, and only needs to keep up with the incoming data streams. 
In practice, the correlator GPU hardware will be over-dimensioned so that it can 
process data faster than the data flows in, frequently stalling the GPUs as they wait for 
new data to arrive. 

 
Figure 4.9: Strong scaling results for the tensor-core correlator: energy use of the GPU 

correlator on the DAM and ESB, as well as the legacy CPU correlator on the CM  
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Figure 4.9 shows the total energy used by the above-mentioned scaling benchmarks. 
The total energy consumption is independent of the number of nodes used. The DAM 
nodes are far less energy efficient than the ESB nodes, due to the presence of 
(unused) hardware (such as an FPGA, DCPMM DIMMs, powerful CPUs etc.) and of a 
less energy-efficient air-based cooling mechanism (the ESB is water cooled). The GPU 
correlator on the ESB is 22 times more energy efficient than the legacy CPU correlator 
on the CM. Again, this atypically high difference is due to the use of tensor cores. 

4.2.6.1 Our path to Exascale 

The use of tensor cores resulted in a giant leap in computational performance and 
energy efficiency, although an Exascale correlator would still need a MegaWatt for the 
computations alone. The remaining challenge is the part that we moved outside the 
correlator application and did not investigate within this project: the data exchange 
between the receivers and the correlator on packet-switching Ethernet switches. At 
least in theory, such switching systems can be built arbitrarily large by using multiple 
layers of switches. 

The increasing correlator input data rates constitute another challenge. Current 
instruments typically use UDP/IP (unreliable datagram packets) to send data from the 
FPGAs near the receivers to the (central) correlator, possibly over dedicated Wide-
Area Network links. As we move to the 100+ Gb/s era, the current practice to receive 
these packets through the kernel stack is no longer sustainable because the system 
call overhead becomes prohibitively high. ASTRON and its partners currently 
investigate how to use RoCE (RDMA over Converged Ethernet) to stream packets 
directly from remote FPGAs into a GPU correlator, without operating system 
involvement in the critical path. This is not trivial, because RoCE is a much more 
complex protocol than plain UDP, while the sending side of the protocol should be 
simple enough to be implemented on FPGAs. 

4.2.7 Conclusion 

The use of tensor-core technology will have a disruptive impact on correlators (and 
beam formers) of (near-)future instruments, due to their order-of-magnitude increase 
in performance and significant energy efficiency compared to the use of regular GPU 
cores. DEEP-EST provided the means to explore this technology. 
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4.3 The GPU Imager 

4.3.1 Application structure 

ASTRON also worked on a relatively new imaging application that creates sky images 
from calibrated correlations (visibilities) produced by the correlator. Unlike traditional 
methods that create the image almost fully in the Fourier domain, the new method 
performs the gridding step (explained below) in the image domain. This way, 
corrections for direction-dependent effects (e.g., caused by ionospheric disturbance) 
can be applied efficiently, which improves the image quality, especially when observing 
at low radio frequencies. 

In the past years, the imager has become a mature application and is able to generate 
sky images for various radio telescopes worldwide. As shown during the project, the 
application runs much more efficiently on GPUs than on CPUs, because it performs 
many sine/cosine operations, which are expensive on CPUs and essentially free on 
(NVIDIA) GPUs. 
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Figure 4.10: The mockup imager  

Imaging is an iterative process, consisting of three main steps: 1) gridding, 2) 
deconvolution, and 3) degridding (see Figure 4.10). Gridding and degridding are the 
computationally most expensive steps. Hence, they are the focus of this study. In the 
gridding step, visibilities (measured correlations) are gridded onto a regular grid. The 
deconvolution step is used to detect sources in the image, and these are added to a 
model image. In the degridding step, visibilities are computed taking an image as input. 
By subtracting the model visibilities from the measured visibilities, faint sources 
become visible. Thus in each iteration the model of the sky is refined by adding 
increasingly fainter sources. This process is repeated until the sky model has 
converged. 

The GPU imager comprises of two main components: IDG (Image-Domain Gridding) 
and WSClean. IDG provides gridding and degridding routines, and WSClean provides 
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deconvolution data handling (visibility input, image output). ASTRON created a mock-
up imager around IDG gridding and degridding that emulates the full imager. The 
mock-up imager is an MPI application that distributes the input data (visibilities) over 
the nodes. Every node processes a block of data (a number of visibilities, say for an 
hour of observation) and creates a partial image. These images need to be combined 
(added together) to attain high signal-to-noise, such that deconvolution can detect faint 
sources in the image. The image combination step is implemented as a parallel 
reduction. The deconvolution step is not part of the mock-up imager. Every now and 
then (say every hour of processing), a checkpoint is made, see Section 4.3.4 for 
details. The next step is to distribute the model image to all compute nodes such that 
they can proceed with degridding. 

4.3.2 Application mapping 

For two reasons, the imager should run on the DAM: the presence of accelerators and 
the large amount of available memory. As the gridder performs many sine/cosine 
operations, it should definitely run on GPUs or FPGAs. 

The subgrids can be Fourier transformed efficiently on the GPU as well. Addition of the 
FFTed subgrids to the grid can be done either on the GPU or host CPU of the DAM; in 
our experience, it is somewhat more efficient to perform it on the GPU. The best place 
to perform the final inverse FFT of the grid is not yet determined: it seems to depend 
on the image size and on the efficiency of the FFT library for a particular architecture. 
The best place can be the GPU, FPGA, or CPU of the DAM, or even one of the other 
DEEP-EST modules. 

Another reason to run the imager on the DAM is the presence of 3D XPoint DIMM 
modules, which may be used to save huge sky images that do not entirely fit in DRAM. 
In this case, the DRAM transparently caches the “hot” parts of the grid that are stored 
in the larger-capacity 3D XPoint DIMMs. On top of that, the even smaller GPU device 
memory will be used to transparently cache the “really hot” parts of the grid, using 
NVIDIA's Unified Memory technology. The imager is a particularly interesting 
application to demonstrate the usefulness of transparent caching (both 3D XPoint and 
Unified Memory) as the access pattern to the grid becomes complex (but with sufficient 
locality). 

For low-resolution images, which require less memory, the GPU imager can also run 
on the ESB. 

4.3.3 Porting experience 

The mock-up imager can run on the GPUs of the DAM or ESB, as well as on the CPUs 
of the CM. ASTRON expected the GPU imager to run on the DAM or ESB GPUs with 
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no or little additional effort, as the application was already tested on a number of other 
GPU-based systems, for small and medium-sized images. However, the imager 
initially performed sub-optimally on these small and medium-sized images, while on 
large images, the application simply hung. These problems were solved by making 
changes to the application and by using an updated cuFFT library. 

Roughly 15% of the ASTRON effort (6 PMs) was spent on the GPU imager. 

4.3.4 Checkpointing 

The input for an imaging cycle consists of two data products: measured visibilities (i.e., 
calibrated correlations) and model visibilities. The model visibilities are created by 
running degridding on the model image, after which these model visibilities are 
subtracted from the measured visibilities. In case of a crash, the measured visibilities 
can easily be recovered as these are typically read-only. To restore the model 
visibilities, the model image is needed. When the mock-up imager recovers from a 
crash, the model image is loaded from the checkpoint and distributed to the compute 
nodes, after which imaging proceeds as normal. 

At first, ASTRON considered using the OpenCHK checkpointing library. This library is 
pragma-based and requires only a few additional lines of code. However, it requires a 
different compiler and compilation flow, which was found to be incompatible with IDG. 
It turned out to be easier to implement checkpointing using the FTI (Fault Tolerant 
Interface) library, which is internally used by OpenCHK as well. 

4.3.5 High-resolution imaging 

There is a direct relation between the resolution of a sky image and the geographical 
distance between the two outermost receivers used in an observation. With the 
expansion of LOFAR stations all across Europe, there is a need to create increasingly 
higher-resolution images of tens of thousands of pixels high and wide, consuming 
hundreds of Gigabytes per image. Through the DEEP-EST project, ASTRON studied 
and handled the issues of creating such large images. 

For wide-field imaging, baselines (receiver pairs) cannot be assumed to be in one 
plane, due to the curvature of the earth. Similarly, for wide fields of view, the sky cannot 
be approximated as a flat plane. Together, these effects must be corrected for and 
require large convolution kernels (W-kernels) during gridding and degridding. Gridding 
the longest baselines becomes computationally very expensive then. A technique 
called W-stacking alleviates this by effectively gridding onto multiple grids (one for each 
so-called W-layer). Short baselines are gridded onto the lowest W-layer, while the 
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longest baselines are gridded on the highest W-layer. This technique, however, 
requires a lot of memory, as the image that is being constructed consists of many 
layers. 

The original plan was to explore the use of DCPMM memory in the DAM nodes to store 
the W-layers. However, recently, we started realizing that an algorithmic change would 
significantly reduce the memory footprint to create an image. This technique, called W-
tiling, requires the use of only one grid (one W-layer), and a cache of so-called W-tiles. 
A W-tile represents a small part of a W-layer, and an algorithm maps the subgrids to 
W-tiles. Some additional computations are needed to ‘project’ a W-tile onto the one W-
layer, but for large images, W-tiling strongly relaxes the need for impractically large 
amounts of memory, and hence we consider it a good trade-off. Therefore, there is no 
need to use DCPMM anymore. 

The first implementation of W-tiling is a hybrid (CPU + GPU) imaging mode where 
gridding takes place on the GPU and W-tiling takes place on the CPU. In the second 
implementation of W-tiling, most of the W-tiling operations are performed on the GPU. 
As with gridding, where a phase shift is applied to place a visibility on a subgrid, a 
phase shift is applied to place a subgrid onto a W-tile and to project a W-tile to the W-
layer (the “w=0 plane”). Since these phase shifts involve many sine/cosine 
computations, W-tiling runs much faster on the GPU compared to running it on the 
CPU. 

Figure 4.11 shows the runtime for both W-tiling implementations. The runtime 
comprises two parts: the dark bar represents the time spent in gridding, the lighter part 
the time spent in flushing the W-tiles (constructing the image). For v1, the runtime 
becomes prohibitive for grids larger than about 28,000×28,000 pixels. The latest 
implementation (v2) scales to much larger images.  
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Figure 4.11: Comparison of runtime for the two w-tiling implementations  

The method has been demonstrated to work for much larger grids (up to more than 
100,000×100,000 pixels) as well, but in these cases the throughput becomes bound 
by the limited bandwidth of PCIe: the GPU spends a few hundred milliseconds in 
gridding (at over 10 TFLOP/s), after which several seconds are spent copying W-Tiles 
to the host (either explicitly, or by Unified Memory page migrations). 

 
Figure 4.12: Comparison of throughput for the two w-tiling implementations  
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Figure 4.12 shows the throughput achieved by the two W-Tiling implementations. As 
explained above, the runtime for the CPU-only implementation (v1) becomes 
prohibitive for grid sizes larger than 28,000×28,000 and we therefore omit throughput 
results for larger grid sizes. For these cases, throughput is well below 1 million 
visibilities/s. The achieved throughput for the GPU- accelerated implementation (v2) 
also goes down as the grid size increases, but it attains much higher overall 
throughput. 

Imaging is a lot more challenging for large images, which is reflected in the reduced 
throughput. Still and most importantly, DEEP-EST enabled ASTRON to speed up IDG 
such that large images (32,000×32,000 pixels) are now feasible. 

4.3.6 Scalability 

ASTRON evaluated the scalability of the mock-up imager on the ESB (with GPUs, see 
Figure 4.13) and on the CM (CPU-only, see Figure 4.14). To this end, a simulated 
dataset for a 12-hour observation was used, based on all of the proposed SKA1 Low 
station coordinates. 

On the CM, the runtime of the imager is dominated by the gridding and degridding 
times. The overall runtime is inversely proportional to the number of nodes used. The 
time spent in communication (the grid-reduce and grid-broadcast) is negligible. 

As explained before, IDG runs much more efficiently on GPUs than on CPUs, which is 
also reflected in about a 20-fold reduction in runtime. GPUs are much faster because 
they compute sine/cosine operations very efficiently in hardware, while on CPUs, we 
have to resort to library functions to compute sine/cosine in software. Even though 
these libraries (e.g., Intel MKL) are highly optimized, the CPU spends 80% of the time 
computing sines and cosines. On GPUs, where gridding and degridding run so fast, 
the time spent in communication becomes noticeable, especially when more than 8 
nodes are used. 
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Figure 4.13: Runtime distribution of the mockup imager on the ESB  

 

 

 

Figure 4.14: Runtime distribution of the mockup imager on the CM  
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4.3.6.1 Our path to Exascale 

In its basic form, the imager is trivially parallel, as different frequency bands are 
processed independently by independent processes. Hence, the mock-up imager will 
scale perfectly. Even in the case that the work for one frequency band is distributed 
over multiple nodes, good scalability is achieved, as shown in Section 4.3.6. 

When scaling to thousands of nodes, there is no need to run the imager as a single 
MPI application across all nodes: visibilities from different frequency bands can be 
imaged independently by multiple (groups of) imaging processes. The frequency-
dependent images still need to be merged to a final image, but this is not in the critical 
path. 

That is not to say that the whole imaging processing pipeline, which contains several 
other applications, is ready for Exascale yet: the imager itself, which used to be the 
slowest processing step (as it is the computationally most expensive step) has become 
so fast now that it reveals several new bottlenecks. Due to the amount of work involved, 
it was not possible to remove all new bottlenecks within the scope of the DEEP-EST 
project. 

Creating very large sky images (e.g. 100,000×100,000 pixels in size) remains 
challenging. Unlike on POWER8/NVLink-based systems, a PCIe-based connection to 
the CPU provides too little bandwidth to keep the GPU busy. The new W-tiling 
implementation alleviates, but does not resolve this bottleneck. 

Faster links between GPUs and (host) memory (e.g., CXL, NVLink) will increase the 
imaging throughput. Alternatively, using many small GPUs may be better than using 
fewer big GPUs, to take advantage of the larger total PCIe bandwidth. Moreover, small 
GPUs typically consume less power. 

DEEP-EST provided the means to create sky images at much higher resolutions than 
before, which are required by future Exascale instruments like the SKA, but also 
current ones such as LOFAR, which is now also capable of creating sky images of 
30,000×30,000 pixels in size. 
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4.3.7 Performance and energy comparison 

A comparison of the runtime and energy consumption for the mock-up imager on CM 
and ESB is shown in Figure 4.15 and Figure 4.16, respectively. Unsurprisingly, the 
ESB is much more (energy) efficient. 

 
Figure 4.15: Performance comparison of the mockup imager on the CM and ESB  

 

 
Figure 4.16: Energy consumption comparison for the mockup imager on the CM and ESB  
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4.3.8 Conclusion 

IDG runs highly efficient on GPUs thanks to their native support for sine/cosine 
operations. Now that the GPU kernels (such as the gridder and degridder) run so fast, 
every operation in the imager that does not run on the GPU tends to become a 
bottleneck. ASTRON explored a new technique, called W-tiling, that significantly 
reduces the amount of memory used to create (very) large sky images, at the expense 
of a minor increase in computations. By implementing W-tiling on the GPU, image 
creation of up to ~30,000×30,000 pixels in size has become practical and fast, so that 
the painstaking effort of stitching hundreds of facets together belongs to the past. The 
biggest bottleneck remaining is the fairly limited bandwidth between the host DRAM 
and GPU memory. Similarly, the mock-up imager becomes bound by the network 
bandwidth between the compute nodes, especially when IDG is used with GPU 
acceleration. Future algorithmic improvements on deconvolution may help to reduce 
the amount of communication between nodes, and therefore help to improve 
scalability. All in all, DEEP-EST enabled us to improve the overall performance of the 
imager and brings us a big step closer to Exascale imaging. 

4.4 The FPGA Imager 

4.4.1 Application Overview 

A mock-up imager able to run of FPGAs and performing only the most compute-
intensive tasks of the full imaging pipeline (described in more detail in Section 4.3.1) 
has also been developed. Figure 4.17 shows these tasks: gridding visibilities onto 
32×32 subgrids, a correction for direction-dependent and other effects, and a 2D FFT 
over each subgrid. The optional addition to W-tiles and associated corrections were 
not implemented on the FPGA, as these algorithmic improvements were explored in 
the GPU imager during the final months of the DEEP-EST project and there was no 
time left to implement and optimize them on the FPGA. The FPGA does not have 
sufficient on-board DDR4 memory to store the full (Fourier-transformed) image, thus 
the next two steps, accumulation into the full grid and the final inverse FFT over the 
full grid, cannot be performed on the FPGA. Instead, the Fourier-transformed subgrids 
are transferred back to the CPU for further processing. 

 
Figure 4.17: Schematic workflow of the FPGA Imager in the MSA  
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4.4.2 Porting experience 

The Intel OpenCL/FPGA toolkit was used to implement the FPGA imager, before 
oneAPI became available. Originally, the imager was developed for the (mid-range) 
Arria 10 FPGA, as (high-end) Stratix 10 boards were not available at the start of this 
project. The performance obtained on the Arria 10 was fair: much better than CPUs, 
but not as good as GPUs. A paper comparing CPU, GPU, and FPGA imaging with 
respect to architectures, programming models, optimizations, performance, energy 
efficiency, and programming effort received the Euro-Par'19 best paper award74. 

As soon as the Stratix 10 FPGA boards were installed in the DAM nodes, ASTRON 
started porting the Arria 10 imager to the Stratix 10. The Stratix 10 is not only larger 
and theoretically able to run at higher clock speeds, but it is also characterized by an 
on-chip interconnect that is architecturally different from the interconnect in an Arria 10. 
As a result, Intel advises to not use blocking channels (FIFOs, an OpenCL extension), 
because this reduces the maximum clock speed at which an FPGA application runs 
on a Stratix 10. And indeed, the original imager was initially very slow, both because 
of excessive resource usage and because of a low clock at which the application ran. 

ASTRON already foresaw that the port to the DAM FPGA would be a major effort. 
Essentially, the OpenCL code was fully re-implemented. The original code consists of 
hundreds of small (partly replicated) OpenCL kernels connected by blocking channels 
(FIFOs); the new imager consists of one single, highly complex OpenCL kernel that 
performs all operations and essentially fills the whole FPGA. Both the single-kernel 
and many-kernel imagers were optimized further, in order to find out which one would 
be the better approach. Many Stratix 10 specific optimizations were necessary, such 
as avoiding the use of double-pumped memory (i.e., memory that transfers two words 
per cycle per port), limiting the use of memory to only one read location and one write 
location. In many cases this made the code more complex. Another important Stratix 
10 specific optimization is to write code in such a way that it allows the compiler to 
enable hyper-optimized handshaking; this increases the clock speed at which the 
design will run. Furthermore, many optimizations were implemented that reduced the 
resource usage other than multipliers (one does want to use as many multipliers as 
possible: the more multipliers are used, the more simultaneous computations can be 
performed). Reducing resources makes it easier to fit the design onto the FPGA. 

                                             
74 Bram Veenboer and John W. Romein. Radio-Astronomical Imaging: FPGAs vs GPUs. Euro-Par'19, 

Göttingen, Germany, August 2019 
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The sine/cosine operations are implemented using a lookup table. A lookup table is 
less accurate than the compiler-built-in sine and cosine operations, but sufficiently 
accurate for this application. The lookup tables do not require the use of multipliers, 
which can be used to perform more gridding (and other) operations instead. However, 
the table uses a large amount of internal memory (16% of the total available memory 
blocks), because the compiler (automatically) replicates the table 320 times to provide 
enough memory bandwidth for 320 simultaneous sine and cosine operations per cycle. 
The table is compressed, meaning that for each table entry (a pair of single-precision 
floating point numbers), 13 of the 64 bits are always the same and are not stored in 
memory. 

Although both FPGA imagers were eventually successfully implemented and 
optimized, there were many workarounds for compiler issues necessary. Some issues 
were obvious compiler bugs (e.g., a crash when compiling legal program code), but 
most cases were on code constructs that were not well handled or optimized by the 
compiler (e.g., a sharp increase in memory use when shrinking the width of a table 
from 60 to 51 bits). Yet in other cases, the compiler could not be blamed; some 
constructs cannot be handled efficiently in any way by an FPGA. Finding solutions for 
all issues turned out to be a very time-consuming effort, especially when it requires the 
synthesis of a full FPGA design, which can take a full day, even on a fast computer. 
Several compiler bugs were reported to Intel and were fixed or will be fixed in 
subsequent compiler releases. Over the years, the tools improved significantly, but it 
takes a long time for them to reach full matureness. 

Roughly half of ASTRON’s effort (about 18 PM) in DEEP-EST was spent on 
implementing the FPGA imager. The many-kernel imager consists of 835 lines of 
performance-critical OpenCL code, the single-kernel imager about 560 lines, not 
counting the generated sine/cosine lookup tables. Thousands of small modifications to 
these programs were made to minimize resource usage, identify and reduce idle times, 
optimize clock frequency, and work around compiler issues. 

As we implemented and optimized Image-Domain Gridding for CPUs, FPGA, and 
GPUs, we found differences and similarities with respect to architecture, programming 
model, necessary optimizations, performance, energy efficiency, and implementation 
effort. We discuss them in the sections below. 
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4.4.3 Performance 

 
Figure 4.18: Performance of the FPGA imager on the Stratix 10  

Figure 4.18 shows the performance of the FPGA imager on the Stratix 10 FPGA board 
in a DAM node, as a function of the number of multipliers used. The FPGA hardware 
has a peak clock frequency of 800 MHz, which translates to the “peak hardware 
performance” line in the figure. However, the OpenCL board support package does not 
run at more than 401 MHz, limiting any OpenCL program to at most 50% of the 
theoretical performance, as reflected by the “peak OpenCL performance” line in the 
figure. Two other curves show the performance of the multi-kernel imager and the 
single-kernel imager, respectively. The performance is reported in terms of floating-
point operations per second, where only all multiplications, additions, and subtractions 
are counted, not the sine/cosine lookups. Each measured value in the figure is the 
result of a series of compilations over a large number (50–200) of random seeds, and 
the performance of the design that runs at the highest clock speed is reported in the 
figure. 

Figure 4.18 tells that the performance is a factor of three from the advertised hardware 
peak performance. Eventually, the single-kernel imager is slightly faster than the many-
kernel imager. On a full design where almost all multipliers are used, the logic use of 
the many-kernel imager is so high that the design is difficult to place and route; if the 
placement succeeds at all, the frequency at which the design runs is no more than 
236 MHz. The single-kernel imager runs at 289 MHz for a full design. 
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4.4.4 Energy consumption 

 
Figure 4.19: Energy efficiency of the FPGA imager on the Stratix 10 FPGA  

The Stratix 10 FPGA board can measure its own power use. Figure 4.19 shows the 
energy efficiency for the multi-kernel and single-kernel imagers. Unsurprisingly, a full 
design is more energy efficient than a partially-used FPGA. The maximum energy 
efficiency is 22.7 GigaFlops/Joule. The section below discusses how this compares to 
other devices. 

4.4.5 A comparison between CPU, GPU, and FPGA imaging 

 
Figure 4.20: A comparison of imaging performance on a CPU in a CM node, a GPU in an ESB 

node, and an FPGA in a DAM node  
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As ASTRON has optimized CPU, GPU, and FPGA implementations for the 
computationally most intensive parts of the full imaging application, the performance 
and energy efficiency of these processors could be compared. Figure 4.20 shows the 
performance in TeraFlops (so higher is better) counting only the multiplications, 
additions, and subtractions, not the sine and cosine computations or lookups. Section 
4.3 already showed a huge performance advantage for GPUs over CPUs for sky-image 
creation. Figure 4.20 shows that the FPGA is somewhere in between. The FPGA 
computes much faster than the CPU, mostly because the FPGA performs the 
sine/cosine lookups much more efficiently than the CPU performs these operations. 
ASTRON also tried the lookup-table approach on a CPU, but this did not improve 
performance. The FPGA does not perform as well as the GPU. This was expected, as 
the FPGA has a lower peak performance (9.2 vs. 14 TFLOPS), but the GPU imager 
runs at 68% of the GPU peak performance, while the FPGA imager runs at 33% of the 
FPGA peak performance. For the FPGA, the maximum clock rate at which the imager 
runs, is too low to compete with GPUs. 

 

Figure 4.21: A comparison of imaging energy efficiency on a CPU in a CM node, a GPU in an 
ESB node, and an FPGA in a DAM node  

Another (and arguably fairer) way to compare these processors is to analyze their 
energy efficiency. Figure 4.21 shows the energy efficiency in terms of visibilities per 
second (GigaFlops/Joule, higher is better). For a fair comparison, only the GPU or 
FPGA device power is measured, not the total system power, as the DAM contains 
many unused components that draw power and are not used for this comparison. For 
the CPU measurements, the processor and DRAM power are measured. The figure 
shows that the energy efficiency of the FPGA is an order of magnitude higher than the 
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energy efficiency of the CPU, but still somewhat lower than the energy efficiency of the 
GPU. 

4.4.6 FPGA vs GPU: Lessons learned 

The GPU imager was implemented in both CUDA and OpenCL and the FPGA imager 
only in OpenCL. Even though the GPU and FPGA imagers share a common 
programming language, hardly any code reuse was possible. This is mostly due to the 
different programming models: with FPGAs, one builds a dataflow pipeline, while GPU 
code executes instructions. On the FPGA, the programmer has to think about how to 
divide the resources (multipliers, memory blocks, logic, etc.) over the pipeline 
components, so that every cycle all multipliers perform a useful computation. At the 
same time, the use of other resources (such as logic and memory blocks) should be 
reduced, while bottlenecks, underutilization, stalls, and constructs that lead to a low 
clock speed should be avoided. For the imager, this pipeline is complex, and consists 
of many subpipelines. The speed at which data flows through each of the subpipelines 
had to be managed carefully. Data should not flow too slowly through any of the 
subpipelines, or that subpipeline becomes an overall bottleneck. Nor is there any point 
in making data flow too quickly, because that wastes resources. 

There are more differences. On an FPGA, the programmer constructs local memory in 
some optimal way, while local memory on a GPU has a fixed, banked configuration 
that the programmer uses. On FPGAs, non-performance-critical operations, such as 
initialization routines, can consume many resources, while on GPUs, performance-
insensitive operations are not an issue. On FPGAs, it is also much more important to 
think about timing (e.g., to avoid pipeline stalls), but being forced to think about it leads 
to high efficiency: 96.3% of all multipliers/adders perform a useful operation 96% of the 
time. 

FPGAs have typically less memory bandwidth than GPUs, but we found that with the 
FPGA dataflow model, where all kernels are concurrently active, it is less tempting to 
store intermediate results off-chip than with GPUs, where kernels are executed one 
after another. In fact, our FPGA designs use DDR4 memory only for input and output 
data; we would not have used the DDR4 memory at all if the OpenCL Board-Support 
Package would have implemented the PCIe I/O channel extension. In contrast, the 
cuFFT GPU library even requires data to be in off-chip memory. 

Both FPGAs and GPUs obtain parallelism through kernel replication and vectorization; 
FPGAs also by pipelining and loop unrolling. This is another reason why FPGA and 
GPU programs look different. 
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Surprisingly, many optimizations for FPGAs and GPUs are similar, at least at a high 
level. Maximizing FPU utilization, data reuse through caching, memory coalescing, 
memory latency hiding, and FPU latency hiding are necessary optimizations on both 
architectures. For example, an optimization that we implemented to reduce local 
memory bandwidth usage on the FPGA also turned out to improve performance on the 
GPU, but somehow, we did not think about this GPU optimization before we 
implemented the FPGA variant. However, optimizations such as latency hiding are 
much more explicit in FPGA code than in GPU code, as the GPU model implicitly hides 
latencies by having many simultaneously instructions in flight. On top of that, 
architecture-specific optimizations are possible (e.g., the sine/cosine lookup table). 

Overall, we found it more difficult to implement and optimize for an FPGA than for a 
GPU, mostly because it is difficult to efficiently distribute the FPGA resources over the 
kernels in a complex dataflow pipeline. Even so, we consider the availability of a high-
level programming language and hard FPUs on FPGAs an enormous step forward. 
The OpenCL FPGA tools have considerably improved during the past few years, but 
have not yet reached the maturity level of the GPU tools, which is quite natural, as the 
GPU tools have had much more time to mature. 

4.4.7 Conclusion 

Despite the amount of programming effort that is put into the FPGA imager, the 
performance is still not as good as we hoped for, but the energy efficiency is fair. The 
attempt to avoid blocking memory channels, which are known to limit performance on 
the Stratix 10, resulted in a new program code in which the whole application is 
implemented as a single, complex OpenCL kernel that fills the entire FPGA. Eventually, 
the single-kernel imager performs slightly better, but it took a lot of time to implement 
and optimize the program code. Successive compiler releases managed to recognize 
some of the complex structures better and better, but it remains difficult for a compiler 
to efficiently translate such a highly complex kernel. 

The FPGA imager is much more (energy) efficient than the CPU imager, mostly 
because of the CPU's poor support for vectorised sine/cosine computations. However, 
there is not a single aspect (performance, energy efficiency, programming effort, 
flexibility, compilation time) where the FPGA surpasses GPUs. Typical FPGA 
advantages over GPUs, such as strict real-time behaviour, low latency, integrated 100 
Gigabit/s Ethernet interfaces, and the ability to interface with other electronics like 
Analog-to-Digital converters, are not advantages from which the imaging application 
could profit. 

On the other hand, the experience that was obtained with the OpenCL/FPGA toolkit 
has been very useful. ASTRON now uses this experience for other applications where 
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FPGAs are indispensable. Eventually, the use of a high-level programming language 
will significantly reduce programming effort compared to traditional hardware 
description languages like VHDL. 
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5.1 Introduction 
The applications implemented by KU Leuven during the DEEP-EST project are used 
to study the Space Weather system connecting the Sun to the magnetosphere of our 
planet. There are three main applications in the system: 

 DLMOS (Deep Learning Modelling of the Solar wind): used to forecast the solar 
wind conditions in front of the Earth from images of the Sun. 

 xPic (extended Particle-in-cell): a first-principles plasma physics code used to 
study the plasma environment in the solar wind and the magnetosphere. 

 GMM (Gaussian Mixture Model): a machine learning algorithm that analyses 
velocity distributions functions extracted from particle information generated in 
the xPic code. 

 

5.2 Application structure 

5.2.1 DLMOS 

The DLMOS model is coded in Python. Multiple frameworks are available to code 
Machine Learning (ML) models. The efforts will concentrate on using PyTorch. As with 
another ML algorithm, DLMOS needs to be deployed in two modes: training and 
scoring (also called inference). The first mode takes large amounts of input data and 
trains the model. The second mode uses the trained model to predict a singular input 
sequence. While scoring a Deep Learning (DL) model can be generally performed 
quickly in regular CPU architectures, training the model requires important resources 
in disk access, memory size and computing power.  
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Figure 5.1: Training mode of the DLMOS model  

Figure 5.1 shows the general structure of a ML algorithm. It consists of two main parts: 
1) a data pre-processing pipeline, and 2) a Neural Network (NN). For high performance 
of the ML model, the input data of the NN has to be as clean and homogeneous as 
possible. So during the development of a ML project, most of the time is spent testing 
different methods to clean the raw input data. The pre-processing pipeline is the final 
result of this process. 

5.2.2 xPic 

This Particle-in-Cell code has been partitioned into two solvers: 

 Field solver: a numerical algorithm that solves Maxwell’s equations for 
electromagnetism in a 3D Cartesian grid. The solver uses an iterative Krylov 
subspace method to solve a large system of linear equations. This method 
requires the computation of a residual every Krylov iteration. Global 
communications are required to keep track of such residual, and neighbor 
communications are required to compute the derivatives of the source terms of 
the linear system. Parallelism is obtained by domain decomposition. 

 Particle solver: uses Newton’s equations of motion to compute the movement 
of billions of charged particles, which integrate the system. Collisions and other 
particle-particle interactions are not computed (their interaction is mediated 
through the electromagnetic fields). All particles are independent of each other. 
The particle solver is also parallelised by domain decomposition, so 
communications are required to move particles from one domain to the 
neighbouring domain when they cross boundaries. In addition to the movement 
of particles, the particle solver also performs the calculation of particle statistics 
called moment gathering. In this last step particle properties are projected on 
the 3D grid of the code and transmitted to the field solver. 
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The field solver and the particle solver are inter-dependent and require constant 
exchange of information. However, they show different numerical strategies that can 
be mapped to different hardware architectures. 

5.2.3 GMM 

The GMM analysis runs “on the fly”. The execution frequency depends on the particular 
simulation tested, but it is not performed at every xPic iteration. In a normal simulation, 
field and particle I/O is performed every few hundred iterations. GMM analysis will be 
executed at every few I/O calls (once every few thousand iterations). The Space 
Weather application allows to test the execution of consecutive jobs in the DEEP-EST 
system, the execution of concurrent jobs in different modules, and the new deferred 
job launch from SLURM. 

5.3 Application mapping 

5.3.1 DLMOS 

The DLMOS application from KU Leuven is characterized by a heavy and continuous 
movement of data from hard disk to processor memory. Therefore, it requires good 
data movement management between the different levels of computer memory. 

This application also uses large amounts of data to train a deep neural network. This 
process is based on the constant use of tensor operations (matrix and vector 
multiplications) that can benefit from relatively weak computing units with large number 
of threads and vectorisation. These operations are also relatively fast, so the memory 
bandwidth needs to be high. A more quantitative description of the requirements is not 
yet available. 

These are the reasons why the DLMOS application would benefit from the large 
number of cores and higher memory bandwidth proposed for the DAM. 

5.3.1.1 DLMOS-DPP 

The data pre-processing procedure is not based on highly parallel and multi-threaded, 
vectorisable, tensor operations. It requires high performance per core and high 
memory capacity. It also requires the full I/O infrastructure to move the data from disk 
to processor. Data pre-processing can be implemented on accelerator cards and can 
also take advantage of the host processors of accelerator nodes (like the DAM nodes). 

It would be possible to deploy the DLMOS-DPP sub-package to the CM where both 
memory and sequential performance is higher. The final decision on the correct 
mapping of the DLMOS-DPP (DAM or CM) will need to be done on the prototype 
modules. 
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As it is today, it is more convenient to maintain the multiple elements of the application 
as close as possible in hardware, using the same module for the DLMOS-DPP and the 
DLMOS-Training sub-packages. 

DLMOS-DPP will take advantage of the different levels of data storage of the DEEP-
EST system, moving data from the Internet to the SSSM, local disk, memory, and the 
processor. This package will generate new enhanced data that need to move in the 
opposite direction, up to the SSSM. 

DLMOS-DPP can run continuously, processing new data, for multiple applications of 
multiple data-sets. It does not depend on the results of any other components of the 
DLMOS package. Parallelism can be achieved by processing multiple inputs at the 
same time. No data communications are required in this package. 

The pre-processing also involves downloading of data to a local storage space, 
detecting anomalies, normalizing the data, and selecting and building the training data-
sets for the DLMOS-Training sub-package. 

5.3.1.2 DLMOS-Training 

Training is based on highly parallel multi-threaded vectorisable tensor operations that 
can be deployed on accelerator cards. These operations also require a constant 
stream of data, thus taking advantage of high bandwidth memory. 

For these reasons the DLMOS-Training sub-package will be mapped to the DAM 
(although it could be potentially translated to the GPUs in the ESB). 

This python code takes the processed data from the DLMOS-DPP, stored in the SSSM, 
and performs the training process of the DLMOS Neural Network Models (DLMOS-
NNMs). The architecture of the DLMOS-NNMs is not yet defined and will be tested 
during this project. 

Parallelism of the DLMOS-Training will be achieved in three different ways: 

 Model parallelism: Different accelerators will train different NNMs for the same 
training data, selecting and cross-breeding the best performing models and 
achieving good convergence to a satisfactory result. 

 Data parallelism: A single data-set can be divided in multiple smaller data-sets 
that can be used to train a model in independent accelerators. 

 Graph parallelism: A single ML model is divided in multiple sub-tasks that can 
be mapped to different accelerators, requiring continuous data exchanges. 

The DLMOS-Training sub-package implements python algorithms for methods 1 and 
2, but method 3 is implemented in an ML framework (e.g. TensorFlow, Keras, 
PyTorch). For methods 1 and 2, network latency and bandwidth are not a constraint. 
The amount of data transferred between nodes is very low in all methods. While 
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method 1 does not require frequent MPI communication, method 2 can demand 
frequent ALL_REDUCE operations. 

Method 3 is very restrictive and requires constant data movement of small amounts of 
data. Parallel efficiency is achieved by the framework’s particular communication 
algorithm, which is not based on MPI. TensorFlow has shown in recent tests low 
parallel efficiency using multiple GPU node systems. We studied the use of other 
frameworks such as PyTorch and MXNet as potential replacements of TensorFlow and 
chose a combination of PyTorch and mpi4py. 

5.3.1.3 DLMOS-Inference 

This procedure is computationally similar to the DLMOS-Training sub-package but 
requires only one input (instead of hundreds of thousands) and produces only one 
output. The full procedure is extremely fast and does not require special hardware 
components. The sub-package is mapped to the ESB. The code takes inputs from two 
different sources: the SSSM, where recent input data and NNMs have been stored by 
the DLMOS-DPP. 

The DLMOS-Inference code is mapped to the ESB, because it is also the current 
module used for I/O in the xPic code. The inference process is very fast and requires 
minimum resources, so it is not necessary to use the DAM for this procedure. 

DLMOS-Inference will generate the output that will be stored in local disk and used by 
the xPic initialization tool to create the initial and boundary conditions of the code. 

5.3.2 xPic 

The code xPic will be run in Cluster-Booster configuration, i.e. using the CM and the 
ESB. All I/O is performed from the ESB. 

5.3.2.1 xPic initialisation 

Data from the DLMOS-Inference is read and interpreted by a python script that belongs 
to the xPic code. The script creates the initialization files for the code. It writes one field 
file (up to 1 GB of data for the largest cases) and, if it is possible, it creates a particle 
file (up to half a TB for the largest cases). The files are written on the SSSM and later 
read in parallel from all the allocated ESB nodes at the beginning of the xPic run. 

5.3.2.2 xPic particle solver 

The particle solver of xPic performs very fast calculations on a very large number of 
independent particles. The data of each particle is stored in aligned vectors in memory. 
Such vectors contain information about the particle location, velocity and charge. 
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Memory aligned temporal vectors are used to store the projected values of the electric 
and magnetic fields on the particles. 

All vectors are fitted in the accelerator memory, aligned and ready for SIMD vector 
operations. The main operations performed are multiplications and additions. All these 
conditions demand a system which is highly parallel and independent, and benefit from 
a large number of cores with access to very high memory bandwidth. Following our 
past developments in the DEEP and DEEP-ER projects we decided to map the particle 
solver to the ESB. 

The SLURM batch script calls the executable of xPic, pinning it to the allocated 
processors of the ESB and the CM. The executable splits the main communicator into 
two parts, each corresponding to the field (CM) and particle (ESB) solvers. Following 
the ESB architecture, each node runs a single MPI process connected to the 
accelerator. Each MPI process in the particle solver is connected to an MPI process of 
the field solver in the CM. 

5.3.2.3 xPic field solver 

The field solver requires the resolution of an iterative linear system. It also performs 
finite-element differential operations on a Cartesian grid. The differential operations 
communicate data between neighbouring processors and the iterative method does 
the global gathering of a residual value (the difference of the result between two 
iterations). These procedures are complex and require high performance in a single 
thread. Memory access is not necessarily cache optimised. The two communication 
patterns stress the system in different ways, but the amount of data transferred 
between processors in relatively low. The field solver of xPic is mapped to the CM to 
take advantage of the higher per-thread performance. 

The field solver runs with its own global communicator on the CM. The field solver does 
not perform any type of I/O. Communication between the field and the particle solver 
is performed using a point-to-point MPI intercommunication. This intercommunication 
is less frequent than the communication inside each one of the solvers. The message 
size is about ten times the size of the Cartesian grid in each MPI process. For a typical 
run of 10×10×10 cells per MPI process, the message size between the CM and ESB 
modules is around 80 KB. 

5.3.3 GMM 

A second ML model, the GMM, is used to discover new information hidden in hundreds 
of GB of particle data. It allows to discover the real velocity distribution of particles in 
the plasma, as a combination of a few Gaussian distributions, instead of considering a 
single Maxwellian distribution. The difference between these two representations allow 
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to uncover critical zones in the plasma and to correct real energy miscalculations. The 
analysis of particle data from the xPic particle solver with GMM runs on the DAM. 

The use of GMM is a gold mine of information for a plasma scientist. Each particle 
output from the xPic code can carry up to a few Terabytes of information, so storing a 
few time steps for later analysis is impossible. On-the-fly analysis of particle information 
using GMM is a major advantage in the discovery of new plasma physics.  

5.3.4 Space Weather workflow 

First, in the DLMOS workflow, solar images and solar wind information is downloaded 
and pre-processed using a Data Pre-Processing (DPP) tool. These large datasets are 
used to train a Neural Network that is capable of predicting the solar wind properties 
from images of the Sun. The training phase of DLMOS is performed in the DAM. A 
second independent phase of the application, the Inference, uses the trained model to 
infer a single solar wind condition from a single solar image. This inference can be 
performed in the ESB before the initialization of an xPic job. Following this inference 
the initial conditions required by the xPic code are generated. The code xPic is then 
executed concurrently in the ESB and the CM modules. Every few hundred iterations, 
detailed particle data is transferred to the GMM for analysis. The GMM is executed in 
the DAM while the xPic code runs. Figure 5.2 shows this workflow. 

 

 
Figure 5.2: Schematic workflow of DLMOS + xPic + GMM in the MSA  
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5.4 Porting experience 

5.4.1 Porting of DLMOS 

The code DLMOS has been developed during the DEEP-EST project. It has been 
created and tested on the local laptops and workstations of KU Leuven, and porting 
them to the DEEP-EST system only required the use of the appropriate python 
software packages. We rely on the competence of the Jülich Supercomputing Centre 
(JSC) to compile the compute critical packages of the system, including PyTorch and 
mpi4py, but we require additional packages that cannot be fully compiled from source 
in each cluster. The DLMOS code uses packages like SunPy, AstroPy, scikit-learn, 
Pandas, among others. These, and other dependent packages, are installed using 
“conda install” or “pip install”. It would be extremely cumbersome if each one of them 
had to be installed by the system administrators. 

An alternative is to use containers. With Singularity we can package and deploy our 
software without worrying about the installation and compilation of all our required 
packages. We keep outside the container the python packages that are critical for the 
execution in the MSA, including PyTorch, mpi4py and TensorFlow. 

This approach limits the complexity of porting the code to the MSA. The DLMOS 
application is independent from the other two applications and does not require special 
data transfers.  

Porting the code to the DEEP-EST system only required the intervention of the JSC 
team in the installation of the critical Python packages. Secondary packages were 
installed in the user home directory as part of their virtual environment. We estimate 
that the porting effort took about one working day.  

5.4.2 Porting of GMM 

The second ML application of KU Leuven is GMM. This software has already been 
used to study the complexity of plasma flows in the magnetosphere of our planet. The 
results have already been published in an international peer-reviewed journal75. The 
model uses mainly a customized version of the scikit-learn package. This customized 
version includes new functions that add features to scikit-learn. These python scripts 
do not need to be compiled, and run on top of the existing installed packages. 

                                             
75 Dupuis et al (2020): https://doi.org/10.3847/1538-4357/ab5524    
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The GMM application performs the characterization of particle velocity distributions in 
different regions of space. The code is embarrassingly parallel. It subdivides the 
physical space in multiple sub-domains and each one of them is processed in parallel 
by a different process running on the DAM. 

We have ported the GMM algorithm to use PyTorch for the computations, following the 
developments of external authors. Our plan was to use the GPU offloading capabilities 
of PyTorch to maximally utilize the DAM. However, the advanced features that we 
included in the scikit-learn version could not be added in time to the PyTorch version. 
These functionalities are critical for our application and include a full correlation matrix 
and a point weighting for each plasma particle. For this report we will be using the 
GMM version developed with scikit-learn. 

Porting the code required the intervention of the JSC team. To allow a connection with 
the code xPic, the mpi4py python script must be installed using the same software 
stack used by xPic, including the same version of ParaStation MPI. The estimated 
porting time was one working day. 

5.4.3 Porting of xPic 

5.4.3.1 Initial XeonPhi version 

The code xPic was already ported to the Cluster-Booster system in the DEEP-ER 
project. Three different levels of parallelization were used: 1) MPI parallelism for inter-
node communications, 2) OpenMP multithreading for intra-node computation and 
memory sharing, and 3) SIMD vectorization to take advantage of Intel vector registers 
in the Xeon processor line. 

In addition, to make a good use of the cache hierarchy we implemented tiling of the 
particle solver deployed in the Booster module. The size of the tiles has an important 
effect on the cache accesses, in particular for the moment gathering in the particle 
solver. This three levels of parallelism and four levels of memory management were 
specially designed to work on Intel Xeon Phi processors. 

Memory management is a critical component of Intel processors. In particular the 
allocation of aligned vectors and registers for the vectorization of operations. These 
fine-grained implementation details are less relevant today as compilers have 
implemented more and more optimization procedures. However, the code sections 
dedicated to memory handling become irrelevant when new architectures are used to 
run the codes. In our case the use of GPUs required KU Leuven to restructure large 
parts of the code. 
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5.4.3.2 GPU version 

For the ESB of the DEEP-EST MSA we needed to re-orient the parallel structure and 
memory strategy in order to take advantage of the GPU accelerators. At that point, we 
made an strategic decision: we cannot depend any longer on a single technology that 
can disappear in the future. The discontinuation of the Xeon Phi processor line was a 
strong reminder that other proprietary technologies create dependencies that can have 
a very strong effect on our productivity. There is no perfect scaling that will recover the 
months of lost simulations due to a forced change in the basic structure of the code 
provoked by a change in the hardware architecture. This is why at KU Leuven we 
strongly feel that the path towards Exascale must include decoupling the hardware and 
the software development. A clear example of the need for vendor-agnostic 
programming approaches is the recently announced European LUMI supercomputer. 
This EuroHPC JU project is based on AMD technology, including GPU and Data 
Analytics partitions based on AMD GPUs. 

For these reasons we decided not to use CUDA when porting the particle solver to 
GPUs. We opted for the most recent possible versions of OpenMP to offload 
computations to the GPU of the ESB (or the DAM if needed). This required a close 
collaboration with the JSC support team to compile a full stack based on GCC 10.2.0, 
compatible with parts of the OpenMP 5.0 standard. This was a delicate procedure as 
the full stack had to be updated, including the compilation of cross compilers with 
support to NVPTX, the use of updated glibc and binutils, and the recompilation of all 
the libraries in the stack. The full procedure was not straightforward and might require 
updates when new versions of the GCC compiler are available. 

Among all the compilers GCC presented the closest compatibility with the OpenMP 5.0 
standard and with the stack libraries. However, we are aware that the performances of 
offloaded code to the GPUs with OpenMP 5.0 and GCC is not the best in published 
tests. Right now we are focusing our efforts on the deployment of a code that can be 
easily transported to a different system without major headaches. Performance 
optimizations will be carried on in future projects (e.g. the DEEP-SEA project). 

The method used to port the code to the GPU architecture is detailed in the Best 
Practice Guide, section 8.4.3.4 of this volume (OpenMP 5.0). The main changes 
performed are the following: 

 Replace the existing OpenMP SIMD pragmas with a generic macro-defined 
pragma. This macro definition changes depending on the type of offloading 
device used. For GPUs the pre-compiler imposes a target section, while for 
CPUs it imposes a SIMD for loop section. 
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 Memory transfers from/to host and device are performed using the OpenMP 
map-directives of the Cartesian fields used by the particle solver. These include 
the electric and magnetic fields (to), and the particle moments (from).  

 Particle initialization and transport is performed only in the device. Information 
about the position, charge, and velocity of the particles is maintained only in the 
device memory. 

 Particle memory allocation is performed by a wrapper routine that selects the 
memory allocator between malloc (CPU) and omp_target_alloc (GPU). 

 All pointers to particle information are carefully identified as is_device_ptr 
in the target directive sections. 

 The sorting algorithm used to arrange and select particles for communications 
had to be re-written from scratch to compensate the limitations of the OpenMP 
offloading system. The sorting algorithm has been decomposed and reduced to 
basic for loops with auxiliary vectors. It currently still requires the use of a 
serialized section that hinders its scalability. This serial section will need to be 
re-worked in a future version of the code. We believe that sorting algorithms that 
use the OpenMP offloading to the GPU will be a major requirement in future 
developments for KU Leuven and for other application developers. 

 The moment gathering algorithm of the code also needed a major restructure. 
The previous version of the code included sections that where tailored for the 
vector registers of the Intel processors. These algorithms could not work under 
the GPU architecture. Major changes, simplifications and testing under CPU 
and GPU architectures implied a large number of bugs and memory leaks that 
required repairs. This is the single largest change in the code. 

 The previously existing parallelism layers are maintained, but in the case of 
GPU offloading we limit the number of OpenMP threads to 1 per each MPI 
process in the particle solver, in order to use only 1 GPU per MPI process. We 
also limit the number of blocks to 1. This means that each MPI process will count 
only 1 OpenMP thread, with only one block. The CPU version of the code can 
make use of more complex combinations to take advantage of memory cache 
in Xeon processors. In the future we will work on the use of multiple threads per 
MPI process to deploy on more than one GPU per MPI. 

 GPUDirect communications are used to move particles between subdomains 
located in different GPUs. We have added a new communication buffer in the 
particle solver to define specific memory locations in the GPU devices, required 
by the CUDA-aware MPI layer. 
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Random number generators and sorting could be wrapped in functions that call 
standard C or CUDA routines. This shows interoperability between OpenMP and 
CUDA runtime libraries. However, for the current version of the code we have used the 
standard C library implementations of all mathematical functions. For scientific codes 
the correct generation of random numbers is a major issue that requires more careful 
developments in the future. In particular for MSA systems, where CPUs, GPUs, 
multiple nodes, and multiple modules are involved, the generation of random numbers 
will require much more attention. 

We estimate the total personnel effort of the changes and adaptation of the code to 
roughly 4 PM, where the typical ratio of development time to bug correction time is in 
the order of 3:1, i.e. one day of developments lead to 3 days of corrections, testing and 
optimizations.  

 

5.5 Scalability 

5.5.1 Scalability of GMM 

The code has been executed in the DAM of the DEEP-EST system, using the results 
of a previously executed simulation. A list of 384 particle files were available for 
processing, each one corresponding to a subdomain of the simulated 2D box. The files 
were written independently by each process of a parallel execution that ran on a NASA 
supercomputer using 16 nodes with 24 cores each, which by coincidence has the same 
core distribution per node as the CM of the DEEP-EST system. 

We performed a weak scaling test, where a single processor reads and processes a 
single file. We use 48 threads per node and scale the execution from 1 to 8 nodes, for 
a total of 384 threads in the largest execution, which processes the full dataset. 
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Figure 5.3: GMM weak scaling performance on the DAM 

Figure 5.3 shows the runtime of the GMM in the DAM. We have extracted three timers 
from the script: 1) I/O (not shown in the figure), 2) GMM execution, and 3) MPI 
communications. The code uses MPI at the end of the execution to collect in a single 
node all the results and produce the final output figures. The I/O time was negligible 
for all the runs, in the order of milliseconds. The points in the figure correspond to the 
average value extracted from all the runs. 

 
Figure 5.4: GMM weak scaling parallel efficiency on the DAM  
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It is clear from Figure 5.3 and Figure 5.4 that the GMM execution presents an almost 
perfect weak scaling efficiency with very small variability (i.e. good load-balancing). 
However, the very rudimentary MPI communications implemented present a major 
bottleneck in the code. When the number of MPI processes exceeds 144, the 
communication time becomes equal to the processing time. 

We are satisfied with the performances of the machine learning algorithm, but we will 
work on the parallelization of the final I/O to avoid this critical bottleneck. Such work 
will take place after the end of DEEP-EST in the frame of the DEEP-SEA project. 

5.5.2 Scalability of the particle mover of xPic 

In this section we will focus specifically on the scalability of the particle mover on the 
ESB. To isolate the particle mover and test the basic functionalities of the newly 
improved code, we turn off the moment gathering in the particle solver and the field 
solver entirely. We execute the code on the ESB exclusively. With this setup the 
particles will still move following the Newton equations of motion in a constant 
electromagnetic field that does not change. 

The tests show the scalability of the particle mover and the performances of the GPU 
under low and high memory loads. Figure 5.5 and Figure 5.6 present the parallel 
efficiency of the xPic code for a strong scaling case. The memory occupancy of the 
strong scaling tests changes from 31 GB per GPU (1 node) to 0.5 GB per GPU (32 
ESB nodes). Such a decrease in the use of GPU resources (memory and computing) 
has an impact on the efficiency of the code. Moving from 8 to 16 ESB nodes we can 
see a strong drop in Figure 5.6. This is a trend that continues when using 32 nodes. 

 

Figure 5.5: Strong scaling time-to-solution of the xPic particle mover on the ESB  
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Figure 5.6: Strong scaling parallel efficiency of the xPic particle mover on the ESB 

This shows that it is extremely important to occupy as much memory as possible in the 
GPU to take advantage of the fast calculations on the simple operations used in xPic, 
and to minimize memory management overheads. The NVIDIA V100 GPUs used in 
the ESB have a capacity of 32 GB that we can fill with half a billion particles. 

One of the priorities for KU Leuven is to demonstrate a good weak scaling of the code. 
Figure 5.8 and Figure 5.8 present the results of a weak scaling test performed from 1 
to 32 nodes on the ESB. The figures show that the particle mover keeps a constant, 
nearly perfect scalability, but has a small performance-drop moving from one to 
multiple nodes. We think that GPUDirect communications between GPU nodes can 
account for this initial loss in performance. 
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Figure 5.7: Weak scaling performance of the xPic particle mover on the ESB 

 

 
Figure 5.8: Weak scaling parallel efficiency of the xPic particle mover on the ESB  

5.5.3 Testing of the number of tasks per node in the ESB 

For the results in this section we have activated all the phases of the xPic code: the 
field solver, the particle mover, and the moment gathering. We have executed the code 
in what we call the “MONO” mode (from the word monolithic). In this mode the code is 
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executed using a classical monolithic architecture where all the phases of the code run 
in the same node.  

The MONO mode can be run in any of the modules of the DEEP-EST system. When 
executed in the CM, the code runs each one of the compute phases in the CPU, 
including the two phases of the particle solver. When the code is run with the MONO 
mode in the ESB or the DAM, the particle solver offloads its compute intensive parts 
to the GPU in the corresponding node. A single ESB or DAM node contains a single 
GPU. However, when multiple MPI processes are launched in the same node, each 
one makes use of the same GPU. This action is possible thanks to the Multi-Process 
Service (MPS) of the NVIDIA V100 cards: the GPU can hold multiple concurrent tasks. 
It is then possible to launch an 8 MPI process job in a single ESB node with one MPI 
process per core, while these 8 processes share the single GPU available in the node. 
This means that we either: a) use a single core per node attached to a single GPU to 
maximize its performance, or b) use all the CPU cores of the node, each one sharing 
the GPU and using 1/8th of its memory and computing capacity. 

To test the MPS of the NVIDIA V100 cards we tested the number of concurrent tasks 
that can be executed in a GPU. We performed a weak scaling test with a fixed number 
of 16 ESB nodes, this time changing the number of MPI processes per node, from 1 
to 16. For this weak scaling test we used a number of particles that could be fitted in 
the GPU memory. 

In this test we perform a basic neutral plasma simulation that solves the transport of 
particles immersed in an electromagnetic field. The simulation is 2D and the total 
number of cells used for each case is shown in Table 5.1. The total number of particles 
per task in each node is equal to 1,572,864. The largest of the simulations listed in the 
table contains a total of 402,653,184 particles, corresponding to 64 particles per cell 
for each one of the two particle species used, multiplied by the total number of cells 
listed in the last row of the table. 

# nodes # task/node # cellx # celly # total cells Total (sec) 

16 1 384 512 196,608 137,442 

16 2 768 512 393,216 143,21 

16 4 768 1024 786,432 157,467 

16 8 1536 1024 1,572,864 194,166 

16 16 1536 2048 3,145,728 433,753 

Table 5.1: Experiment setup for testing the number of tasks per node  
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Figure 5.9 and Figure 5.10 show the weak scaling efficiency of the field solver in the 
CPU when testing the number of tasks per node and Figure 5.11 and Figure 5.12 show 
the strong scale efficiency of the particle solver when testing the fraction of GPUs used 
per task. There is a reason for the appearance of these plots: a single ESB node is 
composed of an 8-core CPU and a single V100 GPU. Going from 1 task to 2 tasks per 
node means that the field solver will be using double amount of CPU cores, while the 
particle solver will be using only 0.5 GPUs per task. For this particular reason the 
efficiency of the two solvers has to be computed using a different metric. 

 

Figure 5.9: Tasks per node test for the xPic field solver – time-to-solution  

 
Figure 5.10: Tasks per node test for the xPic field solver - parallel efficiency 
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In this case the field solver shows a clear degradation of its scalability. We are still 
investigating the reason for such poor performances in the CPU side. This behaviour 
has been observed in other runs. The field solver relies on the parallel algorithms of 
the library PETSc. It is possible that the amount of cells used per task (12,000 cells) is 
too large for the solver to handle it efficiently. In different runs with a smaller number 
of cells per task we have noticed that PETSc switches to a different numerical solver 
that converges faster. 

 

Figure 5.11: Fraction of the GPU used per task for the xPic particle solver - time-to-solution 

 

 
Figure 5.12: Fraction of the GPU used per task for the xPic particle solver - parallel efficiency 
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On the other hand, the particle solver presents a nearly ideal parallel efficiency. This 
shows that the MPS of the Nvidia GPU has no problem handling multiple simultaneous 
tasks. Every time the number of tasks doubled, the runtime of the particle solver 
halved. 

5.5.4 Testing the number of particles per cell 

One of the main features of the xPic application is using accelerator nodes to execute 
the particle solver. The advantage of our application is that we can fill the accelerator 
with operations by increasing the number of particles used. Figure 5.13 shows a run of 
the xPic code using a 2D setup with 1,536×1,024 = 1,572,864 cells and two particle 
species. The number of particles per cell and per species was increased from 64 to 
128 and finally 256 (×2 due to the number of species). Inspired from the results of the 
previous section we use a total of 8 tasks per ESB node. This means that each task 
working on the particle solver has a maximum memory capacity of 4 GB (8 tasks × 
4 GB = 32 GB of memory onboard the GPU). 

 

Figure 5.13: Increasing number of particles per cell  

This figure shows that the particle solver scales almost perfectly with the number of 
particles. This also means that the GPU and its MPS makes very good use of the 
available resources when the GPU memory is full, as well as when only a fraction of 
the accelerator is used. Because the execution of the field solver does not depend on 
the number of particles, it shows a constant runtime for each one of the jobs above, 
i.e. the total runtime decreases when it is normalized by the number of particles. 
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In the next sections we will perform similar runs in the “MULTI” module mode, 
executing xPic across Cluster and Booster. We had to make a compromise between 
the performances of the code and the available number of resources. Each MPI 
process in the field solver can be executed in a single CPU core. This means that there 
is a total of 1,200 available cores for the particle solver, while the number of maximum 
GPUs available for the particle solver in a single MLA module is 50 (ESB nodes in the 
IB network). Using a distribution of 8 tasks per ESB node we can extend the available 
resources, dividing each GPU in eight tasks. We will be able to couple 400 CM cores 
with 400 ESB tasks, for a maximum run of 8 CM nodes coupled with 50 ESB nodes. 

5.5.5 xPic weak scaling on the CM and on the ESB 

We have performed a weak scaling test of the full code in the MONO mode using only 
the ESB nodes (Figure 5.14). Figure 5.15 shows the parallel efficiency of the code from 
1 to 32 ESB nodes, where each one of the phases has been normalized to one. The 
setup of this test is the same as the one presented in the previous section. For these 
jobs each node has been divided in 8 tasks (MPI processes) and the number of 
particles per cell is set to 256. 

 
Figure 5.14: Weak scaling time-to-solution of xPic on the ESB 
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Figure 5.15: Weak scaling parallel efficiency of xPic on the ESB 

These runs show again an almost perfect scalability of the particle solver. Both the 
particle mover and the moment gathering have an almost perfect parallel efficiency. 
Only the field solver struggles to maintain its scalability using the CPUs of the ESB 
nodes, as previously shown in the tests in Figure 5.9. The field solver efficiency drops 
to 62% at 32 ESB nodes. 

 
Figure 5.16: Weak scaling time-to-solution of xPic on the CM 

 



5. Space weather with DLMOS, xPic and GMM 

 131 DEEP-EST 

 
Figure 5.17: Weak scaling parallel efficiency of xPic on the CM 

Figure 5.16 and Figure 5.17 show the same test, this time executed in the CM. In this 
test the field solver also shows a degradation in parallel efficiency, down to 55% at 32 
nodes. At the same time the particle mover shows a reduction to 73% at 32 nodes, but 
the moment gathering execution fluctuates with a minimal efficiency of 86% at 8 nodes 
and a maximum of 99% at 32 nodes. These two figures show that an execution of the 
particle solver on the ESB accelerators allows to reach an almost perfect code-
scalability, compared with the results obtained in the CPU runs. It also shows that the 
field solver requires a more careful optimization. 

5.5.6 xPic weak scaling on CM+ESB 

We have ported the code xPic to the Cluster-Booster (CN+ESB) mode, which we also 
call the „MODULAR“ mode. Both the MONO and the MODULAR versions of the code 
cohabitate in the same sources. They share the most important segments of the code, 
but have a critical difference: the transfer of information between the field solver and 
the particle solver is done using MPI communications, and each one of the two solvers 
is executed as an independent application. 

The selection of the MODULAR version of xPic is performed during compile time. A 
CMake option turns ON/OFF the declaration of a compile-time variable that selects the 
pieces of code that need to be compiled. The particle solver can then be compiled with 
or without GPU offloading. This means that we can perform tests of the performances 
of the MODULAR version in a CN-CN arrangement, using the CN both for the field and 
the particle solver. 
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In this section we report the performances of the MODULAR xPic using the CN-ESB 
arrangement, with all the nodes using the same InfiniBand network. 

For this test we have used a 2D plasma simulation with 256 particles per cell. Every 
time we double the number of nodes in our tests we try to increase the number of cells 
in the simulation by two. However, scaling-up the problem in this manner is not 
straightforward. First, to avoid doubling the size of communications in only one 
dimension, we enlarge the simulation domain every time in both dimensions. Second, 
the number of cells in each dimension must be divisible by the number of processors 
automatically assigned by the MPI cartesian communicators. Finally, we need to 
maintain a total number of cells per process as close as possible for each one of the 
runs. 

Following these requirements we performed a first run, where the total number of cells 
per MPI process is approximatively 16,330. In this first run we tried to use the largest 
possible number of nodes in the CM. The runs use 1 to 16 CM nodes, with a total of 
24 MPI process per node (1 per core). On the particle solver side, in order to 
reciprocate the very large number of MPI processes, we launch from 3 to 48 nodes, 
each one with 8 MPI processes per node. This run creates a very intense load in the 
ESB, and stresses the MPS of the NVIDIA V100 cards. 

 
Figure 5.18: Weak scaling time-to-solution of the MODULAR xPic run with 8 tasks per GPU 

Figure 5.18 shows the total runtime of the code. It shows that most of the execution 
time is spent in the moment gathering phase of the code. The particle solver, which 
includes the mover and the moment gathering, shows an almost ideal weak scale 
efficiency (Figure 5.19). The field solver on the other hand shows an increase of 34% 
in the execution time, moving from 1 to 8 CM nodes. 
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Figure 5.19: Weak scaling parallel efficiency of the MODULAR xPic run with 8 tasks per GPU  

We performed a second test to verify the performances of the code when only one MPI 
process is assigned to each ESB node, i.e. we do not make use of the MPS of the 
GPU card. In this case the maximum number of MPI processes executed is 48 (the 
maximum allocation of ESB nodes was 48). We maintain the total number of cells per 
task in the order of 16,330, as in the previous test. Figure 5.20 shows the runtime of 
the code as a function of the number of ESB nodes. 

 
Figure 5.20: Weak scaling time-to-solution of the MODULAR xPic run with 1 task per GPU  

As we expected, the particle solver is clearly accelerated by the use of the full GPU for 
each MPI task, instead of using only 1/8th. The particle solver presents again an almost 
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ideal weak scaling efficiency, while the field solver once again shows difficulties to 
sustain an efficient scalability (Figure 5.21). The execution time of the field solver 
increases by 45% from the smaller to the largest simulation. Notice, however, that only 
one CM node was used for this test, employing a range of 1 to 24 cores of the CM 
node. 

 
Figure 5.21: Weak scaling parallel efficiency of the MODULAR xPic run with 1 task per GPU  

We decided to stress the system slightly further. We use exactly the same number of 
nodes and processes as in the previous test, but we dramatically increase the number 
of cells in each process. This allows us to fill the memory of the GPU cards and to 
increase the computation-to-communication ratio of the field solver. In this test we are 
still using only one CM node and up to 24 ESB nodes as in the previous case, but we 
charge each MPI process with a mean of 132,700 cells, a problem 8 times larger than 
before. 

Figure 5.22 and Figure 5.23 show that the particle solver presents a clear parallel 
efficiency that is not matched by the field solver. The larger computing load also shows 
that the field solver does not scale as well as the particle solver and a larger portion of 
time is dedicated to this phase, in comparison to the previous test with lighter 
computing loads. 
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Figure 5.22: Weak scaling time-to-solution of the MODULAR xPic run (heavy load) with 1 task 

per GPU  

We are convinced that the particle solver, the section of the code that required most 
changes during the DEEP-EST project, presents a parallelization strategy that is 
optimal in its current state. We have made last-minute corrections to some of the code-
sections of the particle mover that included serial code, but we are aware that there 
are still some sections that can be further improved. The field solver on the other hand, 
requires a re-evaluation of our scaling strategy. We will evaluate the reasons why the 
PETSc algorithms do not scale as expected. Such evaluation is part of our future work.  

 
Figure 5.23: Weak scaling parallel efficiency of the MODULAR xPic run (heavy load) with 1 task 

per GPU  
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5.5.7 Our path to Exascale 

5.5.7.1 What are the limitations? – Can they be fixed? 

There are three factors that are currently limiting our ability to obtain better 
performances and reach scalability towards Exascale: 

 First, the field solver presents deficiencies in its scalability. We are currently 
using the code at an inflection point of the library: smaller matrices could allow 
to switch the code into a faster and simpler model, at the expense of usability 
(large simulation runs require large matrices). On the other hand PETSc shows 
better scalability performances when the matrices solved are larger and the 
code spends more time performing computations and less time performing 
communications. This means that the subdomains have to be larger, containing 
many more cells, in order to gain in efficiency, 

 This brings the second issue: we are currently coupling one MPI process in the 
CN with one MPI process in the ESB. The interface between the particle solver 
and the field solver uses MPI communications and a vector copy that maps 1-
to-1 each side of the code. We believe that the next important step in the 
development of our code is to map one MPI process in the CN with multiple MPI 
processes (or a single process connected to multiple GPUs) in the ESB. With 
the good efficiency presented by the particle solver and a better ratio between 
CPUs and GPUs we expect to gain in scalability. 

 Finally, the particle solver still contains segments that perform poorly when 
offloaded to the GPU. In particular the particle sorting and the moment gathering 
contain serialized segments that require more attention. We also need to 
explore the possibility of using in parallel the CPU and the GPU in the ESB 
nodes simultaneously. Some authors have described good performance by 
overlapping these two processors at the expense of data transfers between the 
Host (CPU in the ESB node) and the Device (GPU in the ESB node). 

A more detailed analysis of all the different code phases is under investigation. We will 
continue the optimization and development of the application codes from KU Leuven 
in the future. 

5.5.7.2 How to use future Exascale systems 

There is a clear difference on the computational needs of the field solver of xPic and 
the particle solver. We believe that the Cluster-Booster division of work for this 
particular code is extremely important. Our goal is to perform simulations that minimize 
the noise. This is accomplished by increasing the number of particles in the simulation. 
Our goal is to reach up to 10,000 particles per cell in the future, while we currently use 
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256 particles in the tests performed above. This means that the stress of the system 
will be put in the accelerated section of the code. 

We are planning to maintain the development of the Cluster-Booster model of xPic, but 
we think that our future code will make use of very large number of ESB nodes and a 
very small number of CN nodes. We will connect 1-to-many nodes between the CN 
and the ESB in future systems in order to increase the number of particles per cell. 

5.5.7.3 Where did the DEEP-EST project help on the way to Exascale? 

Until the beginning of the DEEP-EST project we were reluctant to use the GPU 
architectures with the CUDA language. We have been careful of not blocking our 
developments and become dependent on only one architecture. This is the reason 
behind our support for Intel Xeon Phi architecture that promised acceleration under the 
same software stack and hardware architecture as ordinary CPUs. It is obvious that 
such approach has changed since the beginning of this project, and the discontinuation 
of the Xeon Phi accelerators played a big role in our decision making. 

However we were still reluctant to be forced to use a closed and proprietary language 
as CUDA. The advent of OpenMP 4.5/5.0 was a perfect opportunity for us. The 
knowledge we gathered in previous projects on the use of OpenMP has been very 
valuable here. Thanks to the help of the consortium we were able to port the code xPic 
to the GPUs of the ESB and the DAM, without making use of CUDA. This has been a 
very arduous process because compilers are still in the process of implementation of 
the newest OpenMP standards. We are persuaded that in the near future, compiler 
developers will be able to integrate OpenMP interfaces that can compete with native 
CUDA codes. 

Without the help of the DEEP-EST consortium it would have been impossible to set 
up, deploy, and test this new software development approach. We are also looking 
forward to test our new code in systems that use AMD GPUs instead of NVIDIA GPUs. 
Computer centres financed by EuroHPC have invested in the purchase of large-scale 
AMD GPU clusters. OpenMP is the main method of porting proposed by these new 
computing systems, and the DEEP-EST project has enabled us to prepare port our 
code to this offload environment. 

We have also relied on the competence of our partners to deploy libraries for parallel 
computing, I/O and machine learning. This has allowed us to port our ML codes and 
be ready for future large scale HPDA calls in European centres. 
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5.6 Energy consumption 

We recovered the energy consumption for each one of the runs performed in the 
previous section from the DEEP-EST energy measurement database (DCDB76). We 
present in this section the energy consumption per node, calculating the total energy 
as a sum of multiple measurements of the instantaneous consumption every 10 
seconds. Jobs that run during a short period produce data with larger error bars. All 
energies reported in the figures bellow are given in Megajoules (MJ). 

Figure 5.24 shows the energy measurements obtained for the strong scaling tests in 
the ESB. As the work per node decreases, the time to solution is shorter and as a 
consequence the energy consumption per node is reduced. In this figure we plot the 
total energy consumed by all the nodes in each job. Under ideal conditions the energy 
consumed should remain equal throughout all the executions. We notice that for 8 
nodes and above the energy consumption increases rapidly. As mentioned in the 
previous section, for more than 8 nodes the problem analysed here is too small and 
the GPU is launched with a very small load of work. This figure shows that the GPU is 
not used efficiently in this particular case for jobs with more than 8 nodes. 

 

 
Figure 5.24: Total energy consumed for strong scaling test case 

 

                                             
76 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/Energy#UsingDCDB  
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Figure 5.25: Energy consumption per node for the weak scaling test  

Figure 5.25 shows the energy consumption per node for the weak scaling tests. In this 
case we would expect to have a constant energy consumption per node. However, this 
figure shows an increase when the problem is larger. We are recurrently investigating 
the causes and possible correctives for the strong increase of 20% from 1 to 32 nodes. 

We have also gathered the energy consumption for a MODULAR run of the code xPic. 
The energy measurements presented here correspond to the simulation described in 
Figure 5.18 in Section 5.5.6. This test corresponds also to a weak scaling test. Figure 
5.26 shows the total energy consumption in MJ for the CM and the ESB nodes. The 
measurements have not been scaled or normalized. 

 
Figure 5.26: Total energy consumption for the MODULAR xPic run  
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Let us remember that this run was performed using one node in the CM for every 3 
ESB nodes, and each ESB node was launched with 8 tasks per GPU. On average, the 
total consumption of energy was 24% higher in all the ESB nodes as it was in all the 
CN nodes. This is a very balanced use of resources. 

When we perform a normalization by the number of nodes for each one of the runs 
(Figure 5.27), it is possible to observe the weak scaling efficiency of the energy 
consumption. It is also clear that each one of the ESB node consumes only 40% of the 
energy consumed by the CN nodes. The ratio of 1:3 nodes between the CN and the 
ESB is energetically balanced. 

 
Figure 5.27: Energy consumption per node for the MODULAR xPic run  

 

5.7 Performance comparison 

5.7.1 Performance comparisons for the particle mover of xPic 

Figure 5.28 shows a comparison between the runtimes for the particle mover deployed 
in the CPUs of the CM and on the GPUs of the ESB. The figure shows the strong 
scaling tests described in the previous sections. While there is a clear under-use of the 
ESB for runs with more than 16 nodes, the ESB performs almost at all times one order 
of magnitude better than the CPUs of the CM. 
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Figure 5.28: Runtime comparison (strong scaling) of the particle mover on CPUs (CM) and 

GPUs (ESB)  

This performance comparison is more obvious in the weak scaling test (Section 5.7.2). 
The weak scaling bellow shows that the execution in the ESB and the CM presents 
good scalability, with runs on the GPU performing almost 10 times better than in the 
CPUs of the CM. 

5.7.2 Weak scaling comparison between CM and ESB 

It is difficult to perform a fair comparison between CPUs and GPUs. The main concern 
is the selection of what to compare: should we compare CPU core vs GPU SMD? Or 
is the unit of comparison the node? Here we compare the runtimes obtained during the 
weak scaling tests performed in Section 5.5.5. The code xPic was executed in the 
MONO mode, with all the phases of the code residing in the same module. In the 
figures bellow, the x axis represents the number of nodes used in the CN and in the 
ESB. The y axis represents the runtime per CPU core and the runtime per GPU. Our 
goal here is not to infer that one architecture is better that the other. We are simply 
collecting information on the current performances of the code under the basic 
computing units available to the users: the CPU core and the GPU card. 

In Figure 5.29 we plot the total runtime in minutes for the jobs performed in the ESB 
(GPU) and we compare them to the execution time on the CM (CPUs). As discussed 
in previous sections each GPU is shared between 8 tasks, i.e. each task has only 
access to 1/8th of the GPU. In a similar way on CPU core has access to only 1/24th of 
the computing power of the full CN node. These runtimes take into account the 



Porting applications to a Modular Supercomputer 

DEEP-EST 142  

execution of the field solver in the corresponding CPU of each node. The field solver 
has shown bad scalability, contrary to the particle solver that features almost a perfect 
scalability. The field solver accounts for around 80% of the execution time on the CM, 
and for 30% of the time on the ESB. 

 

Figure 5.29: xPic runtime comparison on CM and ESB 

In this figure each CPU core runs two to three times slower than the GPU. However, 
each CPU chip outperforms the execution time of a single GPU node. Notice that the 
CPU that manages the GPU in the ESB nodes is less powerful than the CPU processor 
in the CM nodes. The field solver is executed in these less powerful processors and 
accounts for at least 20% of the total execution time. While a single node of the CM 
advances the field solver in 35 seconds, the same procedure requires 130 seconds in 
the CPUs of a single ESB node. 

5.8 Conclusion 

As application developers for scientific software, we are constantly at the edge of new 
algorithm implementations. For the past few years this meant that we had to adapt our 
codes to different architectures: classical x86 processors, many-core architectures, 
and multi-core architectures. Each one of these hardware requires the developer to 
learn about the architecture itself and about the libraries and programming languages 
specific to each one of them. Now a new generation of processors (AMD, ARM, …) 
and a new generation of accelerators (AMD GPUs, NEC vector cards, NVIDIA GPUs, 
…) suggests that we need to adapt, once again all our codes to remain competitive. 
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We have been reluctant to use CUDA to offload computing to the GPUs. We do not 
want to become dependent on a single, non-European, company, which requires the 
use of proprietary compilers and libraries. The emergence of ROCm from AMD 
demonstrates that the community is eager to move forward with open source driven 
tools. For this reason, we favour the support and the use of OpenMP as an alternative 
for computing offloading to any accelerator. The EuroHPC JU program has also seen 
that companies like AMD are producing very competitive products, and it has invested 
a significant budget in the installation of pre-exascale centers based on AMD 
technology. This is an additional reason for us to stay away from pure CUDA 
implementations of our codes. 

We showed in the previous sections the performances of the codes of our Space 
Weather application. For the past year and a half we focused our attention on the use 
of OpenMP to port the massively scalable particle solver of the xPic code. It consists 
of two phases: particle mover and moment gathering. We showed that the particle 
solver has an almost ideal performance when it is executed in the CM alone, in the 
ESB alone, and as part of the Cluster-Booster MODULAR mode, in which the field 
solver is executed in the CM and the particle solver is executed in the ESB. 

We showed that the Multi-Process Service (MPS) of the NVIDIA cards can be safely 
used by application developers without compromising performances. In the MPS 
multiple tasks (kernels) can be executed concurrently in the same GPU accelerator. 
For our largest test we have used 24 ESB nodes with 8 MPI processes per GPU, while 
simultaneously launching 16 nodes with 24 MPI process per node in the CM. We are 
satisfied with the scalability efficiency of the particle solver, even as we know that some 
serial zones remain to be improved. 

This good particle solver scalability was possible to detect and to improve thanks to 
the work done in the DEEP-EST project. KU Leuven has been able to track and 
improve segments of code which were previously identified as problematic. However, 
during our tests we have noticed that the performance issues have shifted towards the 
field solver running in the CM nodes. We will continue to perform improvements in the 
future. 

We have used the resources of the DAM to test the scalability of the machine learning 
code GMM. We showed that the algorithm itself presents an almost ideal weak scaling, 
but the code uses MPI communications to gather the final results in a single process. 
Adding more and more nodes renders the MPI communications prevalent and hinders 
the scalability of the code. We are working on the parallelisation of the I/O in order to 
avoid such costly communications. Our current tests show that we can perform the 
machine learning analysis of the xPic particles in only a few seconds per subdomain. 
We are planning to launch very complex simulations with on-the-fly analysis of the 
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particles with the GMM algorithm at a cadence equal to the I/O of the code xPic itself. 
This is an extremely useful development: we do not need to save the very large particle 
files at every output iteration, we just perform the analysis on-the-fly and retain only 
the high level data analysis results from our machine learning models. 

In our road towards Exascale, we believe in the continuous development of the code 
xPic and coupling its execution with multiple on-the-fly machine learning analysis tools. 
We have already applied for a pilot program with the LUMI supercomputer centre 
where the Cluster-Booster architecture will be deployed using AMD CPUs and GPUs. 
We are also very happy that the energy consumption of our CPU and GPU computing 
loads is equal across the modules, i.e. our code presents a good energy balance. 
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6.1 Introduction 
The University of Iceland (UoI) explored the possibilities of combining machine learning 
methods with the MSA offered by the DEEP-EST system.this aim, UoI selected three 
machine learning methods and tailored their implementations for the DEEP-EST 
system. These three applications are:  

 NextDBSCAN, a new parallel DBSCAN algorithm used for non-approximate and 
approximate density-based clustering of arbitrary datasets, such as large three-
dimensional point-clouds generated via LiDAR scans. Note that NextDBSCAN 
supersedes HPDBSCAN, which was used at the start of the project, as 
HPDBSCAN proved unsuitable for GPU platforms and Exascale systems due 
to critical inherent scaling issues. Therefore, we started from scratch and 
developed NextDBSCAN, a DBSCAN algorithm which exhibits good scaling 
properties irrespective of the input dataset and parameters. We believe that our 
implementation of NextDBSCAN can be employed by future Exascale HPC 
systems, especially if it is optimized further for such systems. We substantiate 
our claim in the following subsections. We have also released the application 
as a Free- and Open-Source Software (FOSS) to the general public via a Github 
repository77. 

 NextSVM, a new parallel Support Vector Machine (SVM) for supervised learning 
classification tasks using labelled datasets (such as remote sensing images with 
ground-truth). Similar to NextDBSCAN, NextSVM supersedes PiSVM, which 
was used initially but proved unusable as its performance scaling plateaus after 
only a few nodes. NextSVM, however, scales much better and supports the 
usage of GPU accelerators. Through the DEEP-EST project, we have managed 
to improve especially the model training performance and scalability towards 
Exascale, which we illustrate and discuss in the following subsections. We also 

                                             
77 https://github.com/ernire/nextdbscan-exa  
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provide NextSVM as a FOSS repository for the public and machine learning 
communities78. 

 Deep Learning, via TensorFlow and the Keras extension, for computer vision 
(including remote sensing images), using Convolutional Neural Networks 
(CNNs). For scalability across multiple nodes, the Horovod framework is used 
to run TensorFlow/Keras in a distributed fashion. 

 

6.2 Application structure 

6.2.1 NextBSCAN 

For clustering, the new parallel NextDBSCAN algorithm is used. The core partitions 
are those related to the pre-processing of the input data, the actual clustering algorithm 
(i.e. local clustering and global merge) and storing its results. The data selection 
partition, used for further data analysis and processing, is optional and is only used if 
there is further data study. The individual partitions of NextDBSCAN are described in 
the following sub-sections. 

6.2.1.1 Data processing 

In this phase, the point-cloud dataset is spatially divided using a hyper-grid overlay of 
different size and/or offsets. The point-cloud dataset is then divided equally among the 
processes and each point is sorted into its respective cell. Afterwards, the sorted list is 
stored, and a heuristic is applied to attempt to load-balance the data-grid by dividing it 
into chunks that fit in RAM, i.e. the total number of executions (and the cell span of 
each) is determined so that the whole grid can be processed without overwhelming the 
available hardware resources. The heuristic attempts in particular to divide the dataset 
into equally sized execution tasks with respect to the number of point comparisons. 

After the data has been divided, each chunk is processed further, resulting in smaller 
chunks, which can then be finally processed by a local DBSCAN implementation. 

6.2.1.2 Data chunk pre-processing 

Upon execution, the chunk which is being processed is divided into further smaller 
chunks equal to the number of MPI processes, where a similar load-balancing heuristic 
to the one described in the section above, i.e. the hyper-grid cells are divided among 
processes, tries to keep the number of point comparisons for each process as close 
as possible. 

                                             
78 https://github.com/ernire/next-svm  



6. Earth Science with NextDBSCAN, NextSVM and Deep Learning 

 147 DEEP-EST 

6.2.1.3 Local parallel DBSCAN 

Each MPI process performs a local DBSCAN clustering on its assigned cells, using 
OpenMP for shared memory parallelism. Hence, clusters that span different MPI 
processes are not yet detected in this step and, as a consequence, a merging 
approach is performed in the next step. 

6.2.1.4 Merge clusters 

After clustering, the locally obtained cluster labels are exchanged among the MPI 
processes to make sure that clusters spanning over multiple cells receive the same 
unique global cluster label. This is done with selected rules in the algorithm. 

6.2.1.5 Results and resiliency 

The old HPDBSCAN was not particularly robust as it did not include any measures to 
increase the application’s resiliency. This was not really necessary because the limit 
on the size of the point-cloud datasets also limited the execution time to such a degree 
that a system failure would never be very cost intensive. For larger datasets such as 
those expected in the Exascale era, this must be improved. 

We therefore apply a simple but effective measure to add resiliency to the 
NextDBSCAN application by storing calculated cluster labels to the persistent memory, 
taking advantage of the inherent compartmentalization of the computation offered by 
the dataset hyper-grid overlay. This allows the execution to restart using the most 
recently stored data. In effect, we are adding checkpointing to the application. 

6.2.1.6 Data selection 

When applying Level of Detail (LoD) or continuous Level of Importance (cLoI) studies, 
it is possible to modify the point-cloud, e.g. zoom in/out, and perform clustering on sub-
set selections of the original dataset, possibly using a new hyper-grid overlay. This in 
turn may result in various clusters in memory on different datasets that may be often 
re-read depending on zoom levels. Therefore, it makes sense to store clustered 
datasets of sub-sets into persistent memory for further iterations of LoD/cLoI studies. 

6.2.2 NextSVM 

This second machine learning application performs classification of data using the 
parallel SVM implementation called NextSVM. It can be divided into four partitions 
described in the following subsections. 

6.2.2.1 I/O 

For training, the feature engineered labelled HDF5 input dataset is read in parallel by 
numerous processes. The input dataset has been feature engineered to increase the 
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likelihood that the model converges, and to reduce the overall computation time by 
skipping features that have otherwise little or no effect on the training process. 
Therefore, feature engineering is usually performed with the goal of increasing the 
accuracy. But as different feature engineering techniques are usually applied, the input 
datasets may in fact change from time to time even though the raw data is the same. 

6.2.2.2 Training 

NextSVM training is performed iteratively on the non-linear input data, processing one 
sample at a time using sequential minimal optimisation (SMO), but using the so-called 
“kernel-trick” to linearly separate the data in a higher dimension space. The aim is to 
construct a model which can be used for classification with a high accuracy. This phase 
is computationally expensive, generally requiring very many samples to be able to 
achieve good classification accuracy. 

6.2.2.3 Validation 

Validation is a process in machine learning for model selection that in turn is not only 
related to the right model (e.g. SVM, neural network, Random Forest, etc.) but also 
their parameters. We are using a non-linear SVM with RBF (Radial Basis Function) 
kernels (having a kernel parameter gamma) and soft margins (i.e. allowed cost of error 
parameter), therefore an exhaustive search must be made, e.g. using a 10-fold cross-
validation, to determine those input training parameters that give the best training 
results. This is typically performed via a grid search over the parameters and is a 
process that is embarrassingly parallel, i.e. parallelises nicely: depending on the 
number of parameters, the overall computing time could be quite significant, but the 
different runs do not require interaction between them. 

6.2.2.4 Inference 

Model inferencing in NextSVM is an embarrassingly parallel operation that performs 
predictions using an otherwise unseen labelled dataset, which can be used to 
determine a model’s accuracy. Furthermore, when a model exhibits good accuracy, it 
can then finally be used for making classifications on new unseen datasets. 

6.2.3 Deep learning 

The third machine learning application does classification using deep learning. It uses 
partly the same dataset as the SVM application for supervised learning to allow for a 
comparative study of the different classification approaches. For unsupervised 
learning, however, different multi-spectral datasets are explored. The application uses 
state-of-the-art deep learning for image pattern recognition, namely Convolutional 
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Neural Networks (CNNs), that are known for detecting spatial properties in data. The 
partitions of the deep learning chain are described in the following sub-sections. 

6.2.3.1 I/O 

As mentioned above, the application can, in principal, process and classify the same 
input datasets as the SVM application. However, it uses the raw, non-feature-
engineered datasets whilst SVM uses a processed, feature-engineered version of it. 
The reason is that 'feature learning' is an intrinsic part of deep neural networks in 
general and CNN in particular. In the future, other datasets will be used, e.g. to support 
Sentinel satellite data provided by the European Copernicus remote sensing 
programme. This dataset offers enormous volume, with over 23 Terabytes of new data 
per day, and requires Exascale computing when performing land cover analysis at 
large scale over time. 

6.2.3.2 Training 

Training is performed using CNNs since we are mostly handling remote sensing image 
input data for which CNNs perform best. Additionally, Stochastic Gradient Descent 
(SDG) and back-propagation are used as standard techniques employed during the 
training phase. Due to the multi-spectral nature of the input datasets, a 3D CNN is 
used, which is a special form of regular CNNs that can better take advantage of the 
multiple input data dimensions (2D spatial data with multiple spectra).  

6.2.3.3 Inference 

The trained models acquired in the previous partition are evaluated by measuring their 
prediction accuracy on previously unseen, but labelled input data and thus inferring 
their suitability for further training. Finally, the trained models can be used for making 
classifications on new (and even unlabelled) datasets. 

6.2.3.4 Transfer learning 

After a neural network model has been trained and tested, that model can be re-used, 
even in parallel by multiple users, as a foundation for additional training on other 
datasets using transfer learning techniques. The simplest technique involves making 
an incision in the neural network next to the output layer and adding more layers in-
between, prior to fresh training. There are also known existing pre-trained neural 
networks (e.g. OverFeat) that make sense to have available in the persistent memory 
for different application use cases. Each network mostly consists of a matrix of weights 
in multiple dimensions (i.e. for each layer), but memory-footprint can nonetheless be 
significant when deep learning architectures are used. 
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6.3 Application mapping 

For each of the three applications, we selected multiple mappings to the MSA of the 
DEEP-EST system, as it was not clear in advance which path would offer each 
application the greatest benefits. 

While the initial assumption was that NextDBSCAN benefits from a hybrid usage of 
CPU and GPU and therefore would use either CM together with ESB or CM together 
with DAM, the NextDBSCAN algorithm, data structure, and implementation has since 
then been improved so that NextDBSCAN runs fastest when using solely CPUs or 
solely GPUs. Measurements (see Sections 6.5 and 6.6) have shown that it depends 
on the dataset and the DBSCAN clustering parameters whether using CPU or GPU is 
preferable (a hybrid approach suffers from a data transmission overhead), although 
the GPU provides a clear benefit for the vast majority of examined cases. However, 
NextDBSCAN can run on the CPUs of CM or DAM (benefiting from the huge RAM in 
the DAM) or on the GPUs of ESB or DAM. Depending on the actual use case, only one 
MSA module might therefore be used, but to give an idea of a more complex workflow 
and mapping to the MSA, Figure 6.1 shows an example where a grid parameter search 
is performed in parallel on all MSA modules, i.e., doing DBSCAN clustering with 
different values for its two parameters to find out which parameter combination yields 
best clustering results. By analysing the dataset (e.g. point density), it is first 
determined which parameter combination is best executed on which MSA module and 
after that, all available CPUs and GPUs of the MSA modules can be used for the 
embarrassingly parallel computation using the different parameters on the same 
dataset (“ensemble scaling”). Optionally (dashed lines in Figure 6.1), it is possible to 
re-run the clustering with a narrowed down dataset selection or a different parameter 
range selection. 

 
Figure 6.1: Schematic workflow of a grid-search using NextDBSCAN in the MSA  

In addition, the MSA usage of NextSVM has been adjusted while implementing 
NextSVM. For model inference (i.e. testing the trained model), only a few GPUs and 
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not a lot of RAM are needed; hence, the DAM (i.e. fewer GPUs) or the ESB (i.e. smaller 
RAM) can be used. Figure 6.2 depicts in the upper part a mapping where model 
training is performed using the many CPUs of the CM and model inference is then 
done using the ESB’s GPUs and the model is locally stored in the ESB. The lower part 
depicts model training using the many GPUs of the ESB and then model inference on 
the DAM using also DAM’s DCPMM for model storage. (These stored models can then 
be re-used for additional training via transfer learning and/or further inference.) An 
alternative, CPU-based mapping has been described in a research paper79. 

 
Figure 6.2: Two different schematic workflows of NextSVM in the MSA  

UoI’s Deep Learning application also explores two different MSA mappings to support 
performance comparisons: both mappings use the same MSA modules, namely the 
ESB and DAM (see Figure 6.3). The main difference between these “mirrored” 
mappings lies in which MSA module trains the neural networks, and which infers their 
quality. After training, the obtained models are stored at two locations, where one 
supplies the inference with input data and the other is enhanced by metadata and can 
be used for any subsequent training, e.g. transfer learning. 

                                             
79   Ernir Erlingsson, Gabriele Cavallaro, Morris Riedel, Helmut Neukirchen. Scaling Support Vector 

Machines Towards Exascale Computing for Classification of Large-Scale High-Resolution Remote 
Sensing Images. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2018. 
DOI: 10.1109/IGARSS.2018.8517378 IEEE 2018. 
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Figure 6.3: Two different schematic workflows of deep learning application in the MSA 

Benefits of using of the NAM prototype has been investigated and published in 
research papers80, 81. 

6.4 Porting experience 
At the start of the DEEP-EST project, we expected the porting procedure for our 
applications to be straightforward. However, this assumption proved false as we 
discovered a critical scaling problem with our initial Support Vector Machine application 
(PiSVM), which is explained in Section 6.7. Furthermore, we found that our initial 
density-based clustering application (HPDBSCAN) was inherently incompatible with 
the use of GPUs, as it was per-design unable to exploit the parallelism offered by 
accelerators. Therefore, our porting efforts revolved mostly around re-designing these 
applications from the ground-up, thereby producing NextSVM and NextDBSCAN, to 
provide necessary compatibility with distributed memory GPUs and the MSA. Our deep 
learning application implementation, however, was virtually unaffected by the project’s 

                                             
80  Ernir Erlingsson, Gabriele Cavallaro, Morris Riedel, Helmut Neukirchen. Scalable Workflows for 

Remote Sensing Data Processing with the DEEP-EST Modular Supercomputing Architecture. IEEE 
International Geoscience and Remote Sensing Symposium (IGARSS) 2019, DOI: 
10.1109/IGARSS.2019.8898487, IEEE 2019. 

81 Ernir Erlingsson, Gabriele Cavallaro, Andreas Galonska, Morris Riedel, Helmut Neukirchen. Modular 
Supercomputing Design supporting Machine Learning Applications. International Convention on 
Information and Communication Technology, Electronics and Microelectronics (MIPRO 2018), DOI: 
10.23919/MIPRO.2018.8400031, IEEE 2018. 
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focus shift towards GPUs, due to its high-level implementation in TensorFlow and 
Keras that anyway supports CPUs and accelerators. 
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Figure 6.4: An algorithmic flowchart of NextDBSCAN and its numerous versions (OpenMP, 

CUDA, MPI) 

Codebase fragmentation was one of our key concerns as we had to develop multiple 
application versions to support both CPUs and GPUs. This increases the development 
time, source code size, and the risk of human errors, which could endanger the quality 
of the application and its performance results, e.g., when the CPU and GPU versions 
produce different results due to an error in one of them, or both. To mitigate this 
problem, we decided to create a single cross-platform version of our application, which 
can exploit the project’s CPUs and GPUs (see Figure 6.4 for a single flowchart of 
NextDBSCAN supporting MPI, OpenMP, and CUDA). To this effect, we developed a 
library (called Magma) that mimics the C++ standard library blueprint, and 
subsequently wrote both NextDBSCAN and NextSVM with it. The main benefit of the 
library is that it takes care of linking the source code to either the C++ STL (in case of 
CPU) or CUDA Thrust (in case of GPU) libraries, as depicted in Figure 6.5. 

 
Figure 6.5: Magma Library Schematic Overview  
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Technically, Magma is a C++ header library that makes extensive use of C++ 
templates to offer compile-time polymorphism for increased usability at the expense of 
a small compile-time overhead. Specific compiler flags dictate which header files are 
used, and therefore which internal libraries are used. Currently our Magma library 
encapsulates the C++ STL, OpenMP 4.5+, and CUDA Thrust 9+. However, it can be 
expanded to cover more software libraries as there is nothing in its inherent design that 
limits the number of supported internal libraries. The Magma library is available to all 
as FOSS via a public GitHub repository82. 

 
Figure 6.6: An example of the usage of a Magma library for each-loop, taken from NextDBSCAN 

source code using C++ pass-by-value lambdas  

By developing NextDBSCAN and NextSVM using the Magma library we could 
construct a single code-base for each application while still supporting the C++ STL, 
OpenMP and CUDA (via Thrust). The source code is identical for both the CPU and 
GPU platform with the exception of the necessary host and/or device annotations 
which CUDA requires to specify the execution target, as is outlined in Figure 6.6. C++ 
functors and/or lambdas can be used to specify kernels with or without parameters, 
which are copied to the kernel (or passed by value). This greatly facilitated the 
development of our applications by allowing us to target multiple platforms, while 
simultaneously maintaining a single, compact, code-base accompanied with unit tests. 
The reusable Magma library is ~2000 lines of code. NextDBSCAN is ~1500 lines, 
NextSVM is ~1000 lines, and our deep learning scripts ~500 lines of high-level 
Keras/TensorFlow code (which does not use Magma). The majority of our PMs went 
into the software development of our applications and the Magma library, following an 
iterative development process including in each iteration analysis, design, 
development, and testing. New versions were conceptualised and often scrapped 
when they proved inadequate. It is difficult to quantify the time spent directly on porting 
to the DEEP-EST MSA as it was one part of a bigger scope of developing 
NextDBSCAN and NextSVM from scratch, independently from the MSA. However, we 
estimate that a quarter of our development process can be attributed to MSA porting, 
as part of analysis, design and testing. However, developing an application from 

                                             
82 https://github.com/ernire/magma 



6. Earth Science with NextDBSCAN, NextSVM and Deep Learning 

 155 DEEP-EST 

scratch is not the same as porting exiting applications with good scalability onto the 
MSA. We believe that with the knowledge we now possess, we could retrofit any such 
an application onto the MSA in a matter of weeks, followed by an arbitrary amount of 
time for optimisations. 

6.5 Scalability 
 We examined the scalability of our three applications with numerous modular 
benchmarks and present the highlights of our findings in this section. In Subsection 
7.3.1., we also outline the path of our applications towards Exascale. Note that we use 
the term parallel efficiency according to standard practice, i.e. the speedup of the 
respective number of nodes when compared to using a single node, divided by the 
respective number of nodes. For our experiments, we used different dataset suites with 
multiple input parameters, where applicable, and re-ran each experiment three times, 
reporting the median of the measured results to remove the effect of outliers. We 
applied NextDBSCAN on large LiDAR point-cloud datasets, i.e. the Dutch AHN383 and 
Bremen84 datasets. For NextSVM, we employed the Rome85 and Indian Pines86 
datasets with their accompanying classification maps. Finally, we trained neural 
networks with deep learning using Sentinel-2 imagery tiles87. 

Figure 6.7 depicts NextDBSCAN’s strong scaling properties when measuring the time-
to-solution (TTS). We observe that for an equal number of nodes, the ESB significantly 
outperforms the CM (GPU vs. CPU), consistently reporting ~50x faster time-to-solution 
(TTS). These results were consistent for all experiments with big data. However, for 
smaller datasets the runtime difference between the modules shrunk as a function of 
its size, as the amount of parallel computations simply are not enough to sustain its 
scalability with GPUs, and the application’s serial processing overhead becomes more 
and more dominant. 

NextDBSCAN’s parallel efficiency is depicted in Figure 6.8. On the CM, it remains 
relatively high for this strong scaling case, but drops more quickly on the ESB. We 
examined the cause and determined that most of it stems from each ESB node 
spending much less time doing computations compared with its CM counterpart, but a 
near equal amount performing MPI communications. Therefore, the MPI 
communication’s latency and inherent scalability affects the parallel efficiency to a 

                                             
83 https://downloads.pdok.nl/ahn3-downloadpage/ 
84 http://doi.org/10.23728/b2share.7f0c22ba9a5a44ca83cdf4fb304ce44e 
85 https://b2share.eudat.eu/records/daf6c389e54340b4b1416cf874251e77 
86 https://b2share.eudat.eu/records/8d1fbbba69944fc5a5ae01d1c141c37a 
87 https://scihub.copernicus.eu/ 
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higher degree on the ESB. By increasing the problem size, the ESB’s parallel efficiency 
remains higher as the computational load grows then faster than the distributed 
communication. However, for our comparison, we already selected the largest possible 
problem size that a single CM node can solve within a reasonable time duration. 

 
Figure 6.7: NextDBSCAN’s time-to-solution, measuring strong scaling on CM (CPU) and ESB 

(GPU)  

 
Figure 6.8: NextDBSCAN’s parallel efficiency, measuring strong scaling on the CM (CPU) and 

ESB (GPU) 

By using a heterogeneous approach, as is depicted in Figure 6.1, we were able to 
slightly improve the ensemble TTS performance of a typical grid-search, which 
executes a shared-memory version of NextDBSCAN concurrently on multiple nodes, 
using a different pair of parameters. Figure 6.9 shows the aggregated runtime values 
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using six different epsilon values, where each value represents eight different minPoint 
values, i.e. each column represent the total runtime of eight different doubling 
parameter pairs which share the same epsilon. The GPU performed better for most, 
but not all, parameter pairs, which leads to the optimal performance of the total 
aggregate being a heterogeneous combination using both CM and ESB. 

 
Figure 6.9: Grid-search runtimes aggregated for each epsilon value, which doubles every 

iteration  

Figure 6.10 illustrates our main finding when using NextVSVM, measuring the time-to-
solution for model training. We observe that when running NextSVM on a single-
module the ESB starts with a faster baseline performance but then drops behind the 
CM after only 16 nodes. Here, we are implicitly comparing CPUs vs. GPUs, as 
NextSVM is in this scenario only using the GPU on the ESB. NextSVM, however, uses 
a Sequential Minimization Optimizer (SMO) solver that enforces a strong serial order 
of computations for a small part of the iterative algorithm. This part is bound by single 
core performance, which forms a severe bottleneck for NextSVM running exclusively 
on the GPU. The best time-to-solution performance was achieved by using both the 
CPU and GPU on the ESB module, as depicted by the light blue line, despite having 
higher offloading costs, as data is transferred more frequently between the GPU and 
CPU memories. Overall, 99% of the execution takes place on the GPU, but the 
remaining 1% CPU-time is critical to better maintain the speedup curve, as we can 
observe in the figure. Although the CM offers CPUs with a stronger single-core 
performance than the ESB, we still attained the best results using only the latter, as 
the gain with stronger cores did not overcome the cost of transmission at each iteration, 
mainly due to the very low number of necessary computations. 
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Figure 6.10: NextSVM’s strong-scaling time-to-solution, measured on the CM and the ESB, 

where the former uses CPUs and the latter solely GPUs 

Figure 6.11 shows the parallel efficiency of the two NextSVM versions that exhibit the 
best scaling properties, i.e., running on the CM, or ESB using both CPU and GPU. As 
the figure illustrates, the application running on the CM maintains its scalability better 
than the ESB. The main cause of this discrepancy is due to the offloading cost, as data 
is transferred to and from the GPU, which has a fixed size irrespective of the number 
of nodes, a consequence of the SMO solver algorithm employed by NextSVM (see 
also later discussion on fixing limitations). 

 
Figure 6.11: NextSVM parallel efficiency while performing strong scaling on the CM and the 

best ESB scaling with CPU + GPU 
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Finally, Figure 6.12 and Figure 6.13 depict the strong scalability on the ESB module 
while training a neural network with satellite imagery, using Keras/TensorFlow and the 
Horovod framework, for distributed computing. The first figure shows the effect of 
modifying the image size for each training batch, i.e. it is possible to cause some 
variations to the scalability curve by loading different batch sizes at once (using HDF5). 
However, when scaling up the number of nodes this variance will decrease over time, 
as is illustrated by the parallel efficiency. Overall, our experiments with parameters and 
I/O configurations had an insignificant effect on the training performance and 
scalability. Additionally, Horovod’s scalability was worse than what we anticipated, 
making us doubt its suitability as a deep learning vehicle for satellite imagery on 
Exascale systems (see also later discussion on fixing limitations). 

 

 
Figure 6.12: Deep Learning w/ Horovod strong-scaling time-to-solution using different training 

batch sizes 
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Figure 6.13: Deep Learning w/ Horovod parallel efficiency using different training batch sizes 

6.5.1 Our path to Exascale 

In summary, we achieved the above results in the following manner: 

 We redesigned and reconstructed the MPI communication of our DBSCAN and 
SVM applications, optimizing them for Exascale HPC systems. We abandoned 
the master-slave paradigm such as was employed by PiSVM (where a single 
node controls the execution process and collects all the data) and replaced it 
with MPI collectives where each node’s role is identical. We achieved the best 
results by limiting our applications to in-place MPI_Allgather and 
MPI_Allreduce communication, as much as possible. 

o For NextDBSCAN, we inferred that our initial usage of MPI_Alltoallv 
would scale significantly worse than using in-place MPI_Allgather 
with a fixed buffer size, i.e., using buffer padding where necessary. This 
was due to internal processing of the send and receive count buffers, 
which increase linearly with the number of nodes, coupled with the 
overhead of each node communicating its buffer size. 

o For NextSVM, we completely re-designed the communication strategy 
towards MPI collectives instead of point-to-point transmissions, using in-
place MPI_Allgather with a fixed buffer size.  

 By minimizing the number of memory allocations, we were able to significantly 
improve the shared-memory parallel efficiency of our applications. This was 
especially effective for NextDBSCAN where we managed to replace all 
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intermediate dynamic buffers with a single fixed buffer allocated at the start of 
the execution. 

 Using the GPU accelerators, we were able to greatly reduce the time-to-solution 
(TTS) for our applications, with an even lower cost of energy, as depicted in 
Figure 6.14 and Figure 6.15. 

6.5.1.1 What are the limitations? – Can they be fixed? 

 NextDBSCAN is ready to be applied to Exascale systems without special 
limitations. The only requirement is that the aggregated memory is sufficiently 
large to store the input dataset. To the best of our knowledge, NextDBSCAN is 
the first non-approximate DBSCAN application that is a viable candidate, and 
the first to support distributed GPUs. 

 NextSVM can also be applied to Exascale systems, but has limited usability as 
it currently only supports a single linear kernel and does not include the option 
of cross-validation. Note that our scalability results are kernel agnostic. To fix 
this, more development time is needed, and it is our hope that our public 
repository can attract additional open-source developers. 

 Deep Learning model training with satellite imagery and Horovod failed to meet 
our expectations. There is no easy fix, as Horovod would have to be probably 
partially re-written to meet the demands of Exascale systems. Given the rapid 
progress of multiple deep learning libraries and frameworks these past years, it 
is not unlikely that another solution, better suitable for Exascale systems, is 
nascent. 

6.5.1.2 How to use future Exascale systems 

 NextDBSCAN can be used as-is for both CPU and GPU clusters. Its source 
code is compartmentalized to facilitate its usage for heterogeneous systems. 
However, our evaluation in DEEP-EST indicates that an arbitrarily sized and 
homogenous GPU cluster should be used for fastest results. 

 NextSVM can also be used as-is for both CPU and GPU clusters using standard 
compilers and software stacks. However, according to the scalability results 
presented in Subsection 6.5, it is only realistically applied at a large scale to 
CPUs, not GPUs.  

 Our research indicates that deep learning with Horovod is not a good fit for 
Exascale systems. However, its development continues and future versions, or 
other uses, could provide a more realistic option. 
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6.5.1.3 Where did the DEEP-EST project help on the way to Exascale? 

The DEEP-EST project was instrumental in enabling us to improve our applications, 
both their performance and usability.  

 The access to state-of-the-art hardware and software resources was critical to 
the development and optimization of our applications. 

 The tools and workshops provided by BSC, combined with expert help from the 
consortium (in particular JSC, BSC, EPCC, and Intel), gave us the insight we 
needed to make critical decisions to improve the scalability and usability of our 
applications. Tracing and profiling with Extrae and Paraver, respectfully, 
visualized the scalability problems of PiSVM, as outlined in previous 
deliverables, which prompted the development of NextSVM to supersede it.  

 The shift towards GPUs helped us improving scalability of our applications as it 
revealed bottlenecks which were more difficult to detect with the same number 
of CPU nodes. As an example, we discovered that we had underestimated the 
scalability impact of some short sequential code areas in NextDBSCAN. The 
strong single-core performance of the CPU coupled with the small number of 
nodes (relative to Exascale) had obscured the fact, but with GPU parallelism the 
adverse impact of the sequential code areas became apparent and after careful 
improvements we managed to eliminate them from the source code. 

 The DEEP-EST MSA provided us with the modules we needed to study our 
applications across different CPUs, interconnects, and accelerators, which 
strengthened our performance claims. Additionally, it allowed us to design novel 
workflows across different hardware platforms. 

6.6 Energy consumption 
The total energy consumption was measured using the resources at our disposal in 
the DEEP-EST project. Figure 6.14 illustrates the aggregate energy consumption of 
NextDBSCAN, measured alongside strong scaling benchmarks depicted in Figure 6.7. 
Note that NextDBSCAN on the ESB runs near-exclusively on the GPU, using CUDA-
aware MPI, requiring the CPU only for file system I/O. We observe that the difference 
between the CM and ESB module’s energy consumption is similar to the runtime 
results. However, the difference is slightly larger for the energy consumption, as the 
ESB uses up to 60× less energy than the CM; i.e. for 32 nodes: 327k vs 18M (Joule), 
respectively. As the difference increases slightly with the number of nodes, it can be 
expected that the difference will be even greater for a higher number of nodes, 
although this hypothesis should be validated on larger systems than the DEEP-EST 
system. 
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Figure 6.14: NextDBSCAN energy consumption using CM (CPU) and ESB (GPUs) 

The total energy consumption of NextSVM is depicted in Figure 6.15. There is some 
correlation to the runtime of Figure 6.10: we can observe that the energy consumption 
increases for both the CPU and GPU as its scalability starts to flatten. We also note 
that the ESB’s energy consumption increases faster than the CM, also corresponding 
to Figure 6.10. Additionally, we can see yet again that the runtime with GPUs requires 
less energy than using CPUs, however, this should flip when using more nodes, as the 
GPU runtime will scale progressively worse. 

 
Figure 6.15: NextSVM energy consumption using CM and ESB (GPUs) 
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6.7 Performance comparison 
After over three years of development, this subsection compares our current 
application status with their status at the start of the DEEP-EST project. Most of our 
effort has been spent on developing NextDBSCAN and NextSVM, which have already 
been outlined in previous sections. Their effectiveness is best demonstrated by 
comparing them to their predecessors, HPDBSCAN and PiSVM respectively. One of 
the greatest weaknesses of our initial applications was their surprising lack of 
scalability, as shown in Figure 6.16, which can in turn be compared to Figure 6.8 and 
Figure 6.11 to see the effect that DEEP-EST has had on our DBSCAN and SVM 
applications. 

 
Figure 6.16: Strong scaling parallel efficiency for HPDBSCAN and PiSVM 

For PiSVM the parallel efficiency was consistent for model training, mostly irrespective 
of the dataset used. After studying the application and its underlying algorithms, we 
found that the problem is caused by a poor distributed communication strategy in 
combination with too few computations being performed at each iteration. These 
problems had not yet surfaced, as no large scale performance measurements had 
been performed on the application for several years, and slower CPUs managed to 
mask the problem sufficiently by spending a larger portion of the total runtime doing 
computations, and less doing communication. PiSVM uses the well-known sequential 
minimal optimisation (SMO) solver, which solves the quadratic programming (QP) 
problem. The QP problem arises during the training of support vector machines by 
breaking the problem down to its smallest possible sub-problems which involves 
optimizing a sequence of pairs of Lagrange multipliers from the problem’s dual form 
expression. This solver is the backbone of most SVM application produced in the last 



6. Earth Science with NextDBSCAN, NextSVM and Deep Learning 

 165 DEEP-EST 

two decades, where the computation is parallelised by distributing necessary 
computations to optimize one pair of Lagrange multipliers among the computational 
nodes being employed. Therefore, the amount of computation which can be achieved 
from a single pair of Langrangian is limited. 

For HPDBSCAN, the parallel efficiency is more mixed, ranging from good to poor, 
depending on the dataset and input parameters but always degrading fairly rapidly in 
scalability with an increase in node cardinality. We analysed its code and could 
determine that the problem occurs in a grid-based data structure which is tightly 
integrated in the application, using it with heuristics both for data redistribution and 
thread load-balancing. However, this structure always leads to an imbalance, 
especially in datasets of high-dimensionality and/or when using a large number of 
nodes. Additionally, we found that HPDBSCAN’s overall usability is limited by design, 
as it employs a tessellation indexing structure whose range is limited to 64-bit integers, 
i.e. the total number of possible cells cannot exceed the maximum value of an unsigned 
64-bit integer. Although this is a large number, it is easily exceeded for even low 
dimensional datasets with a low epsilon input parameter.  

The Deep Learning application with Horovod is a new application in the form of a high-
level Keras/TensorFlow script, and could therefore not be compared to a previously 
developed application, as we could do with our DBSCAN and SVM applications. 

 

6.8 Conclusion 
Work in the DEEP-EST project took a very different path than originally anticipated. 
Instead of spending most of our effort tailoring already proven applications to the 
project’s MSA platform, their intrinsic scalability and portability limitations led to the 
necessity to scrap most of them and start from scratch. However, our new applications, 
NextDBSCAN and NextSVM respectively, are much stronger than the previous 
applications. We discovered new algorithmic approaches to enhance the scalability of 
our algorithms and their baseline performance, consistently outperforming the best 
available algorithms that are freely available to perform the same task.  

To our knowledge, NextDBSCAN is the first non-approximate DBSCAN clustering 
algorithm supporting distributed GPU computing. Furthermore, it also exhibits good 
scaling properties, as we have shown in previous sections. Our research indicates that 
NextDBSCAN is a candidate application for Exascale systems, using both CPUs and 
GPUs. With NextSVM, we managed to refit the old and proven SMO solver to parallel 
systems, with good scaling using CPUs, and show that there is potential to use GPUs 
to accelerate even via a heterogeneous approach.  
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Our results using the Horovod framework with TensorFlow on DEEP-EST are 
underwhelming and demonstrate that more work must be done in order for it to reach 
Exascale system potential. Additionally, the landscape of deep learning is still changing 
rapidly and it is difficult to predict which deep learning library will be utilized on future 
Exascale systems.  

Overall, the GPU accelerator was a key component on our path towards Exascale: all 
our applications gained a significant performance benefit by employing it, also in terms 
of less energy used. Last but not least, we also published numerous research articles 
to further research in HPC and machine learning, with some of our greatest algorithmic 
findings, namely NextDBSCAN and NextSVM, still pending publication. 
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7.1 Introduction 
The Compact Muon Solenoid (CMS) detector located at the Large Hadron Collider 
from CERN is a general-purpose particle detector consisting of several components: 
tracker, electromagnetic and hadronic calorimeters, magnet and muon systems. Each 
component (usually addressable as sub-detectors) accomplishes a different task. For 
instance, tracker (both Pixel and Strip parts) is the closest sub-detector to the 
interaction point and responsible for identifying the trajectories of charged particles. 
Calorimeters measure energy depositions of the particles passing through. 

Two different applications were evaluated on the DEEP-EST Modular Supercomputer 
Architecture (MSA): CMS event reconstruction and CMS event classification. CMS 
event reconstruction refers to the Compact Muon Solenoid Software framework 
(CMSSW) data processing pipeline aiming to reconstruct a full LHC collision event. 
CMS event classification is an analytics workflow, which aims to train several Machine 
Learning (ML) models and perform a multi-event classification 

7.2 Application structure 

7.2.1 CMS event reconstruction 

The process of reconstruction consists of three consecutively applied stages: 
digitization, local and global reconstruction. Each stage has a mix of GPU and CPU 
based algorithms. 

7.2.1.1 Digitization 

Upon recording the response of the CMS detector, physics data is packed in a highly 
efficient binary format that requires unpacking before it can be dealt with. The actual 
content of this format is the raw electrical signals that correspond to the amount of 
digitized charge. Digitization is the first phase in the reconstruction chain. 
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7.2.1.2 Local reconstruction 

In order to perform physics analysis, it is necessary to reconstruct the actual physical 
quantities of interest. Therefore, digitized signals are converted (or reconstructed) into 
physical quantities such as energy, time and position. This conversion is performed on 
a per sub-detector base. 

Local reconstruction applies to a particular component of the CMS detector (sub-
detector). For instance, a hadronic calorimeter contains thousands of channels and 
energy deposition, within each is computed a sophisticated regression procedure. 
Regression algorithms are typically implemented using third party libraries (e.g. Eigen) 
which incorporate optimised linear algebra routines. However, certain functionality has 
to be manually ported to CUDA/OpenCL in order to preserve the algorithm itself and 
utilize the heterogeneous resources provided with the MSA. 

7.2.1.3 Global reconstruction 

Global reconstruction is the process of combining information from several 
components of the CMS detector in order to build high-level physics objects such as 
electrons, photons, jets, etc. 

This operation drastically improves the precision of the measurements of properties of 
high-level objects. 

7.2.2 CMS event classification 

A typical Machine Learning (ML) pipeline consists of three phases: feature 
engineering, model training (including cross-validation) and evaluation (inference). 

7.2.2.1 Feature engineering 

In a typical ML application, input data does not correspond one-to-one to the model’s 
input. Therefore, a certain transformation algorithm has to be applied in order to 
prepare the input in a certain format. Apache Spark is used to perform Extracting 
Transforming and Loading (ETL) operations. The transformation involves taking 
collections of various particles (photons, electrons, etc.) and building an abstract two-
dimensional image representing an event. 

7.2.2.2 Model training 

The model training phase is usually the most time-consuming part of the analytics 
workflow. At the current stage, GPUs provide the highest performance. 
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7.2.2.3 Model evaluation 

Upon completing the training phase and finding the appropriate hyper parameters, 
inference is performed. The input data needs to be split at the previous stage so that 
a classifier does not see the data on which the inference is to be performed. The goal 
is to find the model giving the highest classification accuracy. 

7.3 Application mapping 

CMS event reconstruction workflow is a completely data parallel workload, where each 
event is independent, therefore the distribution of processing across MSA is quite 
trivial, i.e., there is no communication. Each node processes a completely different set 
of events and produces output data products. Within the DEEP-EST project, several 
time consuming parts of CMSSW (i.e. Hadron and Electromagnetic calorimeters) were 
identified and ported to utilize NVIDIA GPUs. Figure 7.1 below provides a basic 
overview of the distribution strategy. The idea is to use all the available resources and 
if possible the more performant one, i.e. if both CPUs and GPUs are available, the 
latter are chosen to run the codes parts that support them. It is important to note that 
overall adapting CMSSW to heterogeneous computer architectures is an ongoing 
activity.  

 
Figure 7.1: Schematic workflow of the CMS event reconstruction in the MSA  

 

CMS event classification workflow (Figure 7.2) is a distributed deep learning training 
workflow that utilizes PyTorch for the training part. The distribution is implemented 
using the NNLO package88, which uses MPI to communicate the weights. Furthermore, 
it also incorporates the use of Horovod for the purpose of distribution and 
communication to enhance the more basic Master-Worker approach implemented in 
NNLO package. More specifically, the model tested out on the DEEP-EST prototype 

                                             
88 https://github.com/vlimant/NNLO 
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is called JEDI-net, which stands for Jet Identification algorithm based on interaction 
networks. Jets are typically thought of as collimated cascades of particles which are 
abundant in hadron collisions, such as proton-proton collisions at LHC. Within the CMS 
event classification, we employed the JEDI-net neural network, which is trained to 
identify different types of such jet clusters. 

 
Figure 7.2: Schematic workflow of the CMS event classification in the MSA 

 

7.4 Porting experience 
For the CMS event reconstruction, the main porting effort was adapting the CMSSW 
framework to run on GPUs and optimizing selected time-consuming workflows to 
NVIDIA V100 in particular. At the start of the project, CMSSW contained CPU-based 
algorithms only, and there was minimum machinery available that had to be 
implemented in order to optimize it for heterogeneous resources (e.g., minimize host-
device transfers, minimize device memory allocations, etc…). Furthermore, since 
CMSSW is a framework by itself, it already had certain intrinsic architectural choices 
and it was important to evolve without breaking the existing infrastructure.  

The algorithms to be ported were those on the most time-consuming parts of the code. 
Figure 7.3 shows a breakdown of how much time is spent in a particular algorithmic 
part. Hadron and Electromagnetic calorimeters (labelled HCAL local reconstruction 
and ECAL local reconstruction in the figure) are two similar parts of the reconstruction 
that constitute around 24% of the total. The core parts of both algorithms were 
mathematically identical and employed Fast NNLS for the purpose of energy 
regression, although there was still quite a large amount of source code porting that 
completely differs for respective calorimeters. Therefore, these calorimeters were 
selected for porting and optimization to CUDA. 
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Figure 7.3: Time spent in different algorithmic parts of CMSSW  

Before describing the necessary changes and efforts, we outline the problems faced. 
There are two main issues. First, the pure size and complexity of the source codebase. 
It is, of course, possible to use isolated small mockups, but then transferring the results 
to the CMS experiment and its community would be very difficult. The initial code for 
either Hcal or Ecal calorimeters amounted to O(10K) lines each. Even if isolated 
computational parts produce the largest impact, it is crucial to stress the importance of 
integration for software in the scale of CMSSW. Second, the existing software stack 
was written years ago (HEP experiments tend to last decades) and there was limited 
documentation about the actual algorithms and time vs. space complexities. In other 
words, the algorithms first had to be reverse engineered in order to deduce all of the 
available parallelism, which is quite an important aspect when dealing with GPUs.  

The efforts required to port CPU-based source code to CUDA vary depending on the 
nature of the algorithms. For instance, if there are for-loops with large independent 
computations per iteration (i.e. data parallel), this trivially maps to CUDA kernel 
invocations, provided that all the code inside of this for-loop is supported by CUDA 
(e.g., the C++ version matters) or can be made supportable (e.g. mark functions as 
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either constexpr or __device__). This was actually the case with Hcal and Ecal 
source codes. However, the problem with this approach is that, although trivial to port, 
it might not lead to the desired performance (e.g., because memory was not aligned to 
suit GPUs) and the optimizations needed quickly became a full code-rewrite. 
Nevertheless, we believe that such a simple approach is a very good starting point, 
especially for people who are not experienced with CUDA and NVIDIA GPUs. 

Therefore, here we outline the steps performed to arrive at an implementation that 
proved to be a good starting point for further optimizations: 

1) Profile/Trace CPU code to identify hot spots. 
2) In parallel with 1) deduce (reverse engineer) the algorithm and identify all the 

available parallelism. This also requires reasoning about how to align data in 
memory to better utilize GPU’s compute units. 

3) Typically, as the result of identifying the available parallelism, it will be apparent 
how many kernels are required and what the dependencies are between them. 

4) Implement the required kernels for the GPUs. 

Once point 4) is completed and implementations of separate kernels are available, it 
is crucial to evaluate these unoptimised versions to make sure that results (in the case 
of CMS event reconstruction it is physics quantities like energy) are validated with 
respect to what was obtained using CPU-based reconstruction algorithms. This allows 
to debug the ports early on before starting the optimization, which very often requires 
rewriting some compute-heavy routines, e.g., various mathematical operations. At this 
point, it is important to add that both CMS Hcal and Ecal CPU-based algorithms 
employed the Eigen library for the linear algebra computations. Although Eigen does 
feature some CUDA support, it did not cover the routines that were used in our 
algorithms. Therefore, we extended the functionality that was required to make the 
code work on GPUs (a very similar procedure was later applied to enable using Eigen 
from within Intel oneAPI kernels and is described below).  

Once we verified that results of CPU vs. GPU reconstruction either match or are within 
certain precision (note that results of floating point computations on CPU and GPU can 
differ: they should not differ dramatically, but differences at certain tiny precision could 
be expected and were observed), we employed NVIDIA profiling tools, NVIDIA Nsight 
Systems and Nsight Compute. The first one, Nsight Systems, gives an overall system 
level view of what runs on a single node and identifies kernels that are the most time-
consuming and therefore would be the first ones to undergo further optimization. For 
the purpose of kernel-level optimization we employed NVIDIA Nsight Compute. The 
most time-consuming kernel (originally ~90% of the total time) was the kernel 
responsible for the actual Fast NNLS energy regression. There are many potential 
approaches with regard to what to look for and how during the optimization. It is also 
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important to consider the amount of resources to be utilized during the execution – in 
other words, we could give more GPU resources to a kernel, but given that we run 
multiple streams (multiple events are reconstructed and run the same kernels but on 
different data), the overall performance would not go up, just the performance per 
single kernel/stream. Therefore, for the purpose of optimization, we tried to keep the 
amount of resources used per kernel fixed and minimize the runtime of this kernel 
when running a single CUDA stream. One of the first things we did was to rewrite the 
majority of Eigen operations, which were generating quite large stack frames. Also, 
given that Eigen is a header-only template-heavy library, it featured quite deep function 
call stacks. This made it very difficult to use the sampling-based features of Nsight 
Compute, which can help navigate to lines of code sampled more often and identify 
reasons for pipeline stalls, e.g., due to memory dependencies. Another important 
optimization was to not just use shared memory, but rather reuse it for different stages 
of the kernel execution, reducing the stack frame size of the kernel. All of that allowed, 
in turn, to reduce the number of registers used per thread, which is really important for 
parallelism of warps (more warps could be running on a given streaming 
multiprocessors (SM). 

Before moving forward to describe the experience with our second application, we 
would like to outline our experience with Intel oneAPI as an approach for portability, 
which is based on the SYCL C++ language extension. First, a few words about why 
one would need such a layer, using the CMSSW framework as an example for this 
discussion. Consider that we rewrote and optimized substantial amount of C++ to 
CUDA (O(10K) lines of code). For the CERN/CMS collaboration, this essentially 
implies that these parts can only be run on nodes equipped with NVIDIA GPUs – in 
other words we are stuck with the choice of the vendor (critical for large collaborations 
such as LHC experiments). Of course, within the project we are optimizing for the given 
DEEP-EST prototype, but CMS will always strive to exploit as many compute 
resources as possible, therefore locking into a single vendor is not optimal, especially 
considering that there will be machines with AMD and Intel GPUs in the future. Another 
aspect is that given large source bases, rewriting parts for different accelerators could 
take months, which implies a lengthy development process, sometimes requiring some 
reengineering effort as some accelerators might not expose the same primitives. 
Overall, portability frameworks should prove useful in particular for large-scale 
scientific software development targeted to run on accelerators, provided the 
performance drop is minimal when using a portability framework with respect to using 
the native toolchain. 

For the purpose of performing a minimal evaluation of Intel oneAPI, we used a 
standalone electromagnetic calorimeter reconstruction implementation that does not 
require the CMSSW framework and was ported from plain C++ to CUDA in the 
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beginning of the project. In short, it was a rather easy process to turn a CUDA-based 
implementation into oneAPI-compatible one. Here are the steps performed: 

1. Employ the Intel DPC++ Compatibility Tool to transform our CUDA-based 
implementation into DPC++ compliant; 

2. Fix all the issues raised by the Compatibility Tool; 
3. Fix all the issues that come up during the compilation/linkage stages. 

The very first step is probably the easiest one here, basically we just need to run a 
single command with all the initial host/device sources, and the Compatibility Tool will 
produce new sources that are now based on oneAPI. This conversion takes care of 
things like device memory buffers, allocations and transfers. CUDA streams and kernel 
invocations are mapped to the usage of queues and command groups. In terms of 
error handling, CUDA uses C style by reporting errors through error codes, whereas 
oneAPI is more C++ like and uses exceptions. The conversion between both is 
automatically handled by the tool as well, and step 2 above essentially refers to fixing 
whatever the compatibility tool was not able to convert. Kernels that use certain 
features specific to NVIDIA GPUs, for instance Tensor Cores, must be reimplemented. 
This is actually an important point overall and will require further investigation. For our 
small standalone evaluation we did not observe any difficulties after the conversion – 
the code was converted almost to 100% and required minimal changes. The third step 
was a bit more involved for us and should be of interest to other developers. Our 
implementation makes significant use of Eigen’s primitives and therefore it is important 
that Eigen’s routines work inside of the kernel and are supported. We found a couple 
of things that had to be adapted; first, Eigen is a header-only template-heavy library, 
therefore it utilizes advanced features of C++ templates and also makes heavy use of 
macros to configure the compilation process. When compiling things with DPC++, 
similar to when using the NVCC compiler, there are essentially two modes of 
compilation: kernel and host modes. The idea is that pre-processor directives will be 
configured differently based on the mode. The host mode in Eigen is for regular CPU 
execution and kernel mode is what sits inside of our oneAPI kernels. The main issue 
overall is that there is a set of restrictions applied to the code that goes into the kernel 
part, which can be cumbersome to fix when trying to use functionality from some library 
in your kernels. For the case of Eigen, one of the most difficult features to resolve, we 
had to disable dynamic stack allocation explicitly and also make sure that inline 
assembly instructions are not added, not even in comments. For the most part, we 
utilized the Ahead Of Time (AOT) compilation flow of Intel oneAPI toolchain. One of 
the minor drawbacks of the kernel mode compilation is quite poor error reporting: just 
reporting the error without explicitly stating parts of the code causing it makes it really 
difficult to debug, especially if trying to port a library one is not the author of. 
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In terms of results, we compared an implementation that is pure C++ based with one 
that is oneAPI based. For the purpose of evaluation, we just used a Virtual Machine 
(VM) from CERN’s cloud. We have been able to reproduce exactly the same physics 
results (energy) and performance-wise the two versions were comparable, considering 
that oneAPI was able to utilize the multi-core VM and the plain C++ was written having 
single thread execution in mind. 

For the CMS event classification, there was minimal porting effort as it is mostly an 
ML-based workload and does not require changing a lot of application logic in the code, 
compared to the CMS event reconstruction workload, where we had to produce O(20K) 
lines of code from scratch in order to have CMSSW-compliant implementations. 
However, here emphasis is more on the system integration and on the proper 
installation and configuration of the required software. For instance, Horovod requires 
a multithread aware version of MPI, which might be unavailable by default. 
Furthermore, the usage of the underlying communication method is quite important, 
i.e. using RDMA versus TCP for MPI. In other words, proper usage of the system is 
crucial for workloads that perform Deep Learning and similar activities, and a lot of time 
can be spent identifying why certain things do not perform as expected even if the 
actual porting of the code was trivial.  

Overall, approximately 24 PMs were spent doing the actual development, porting, 
testing, validation for both of the applications combined. In terms of the sheer code 
size, around 20K lines of code were developed just for CMS Hcal and Ecal Local 
Reconstruction as the final footprint, not including the iterations involving the 
optimizations. These numbers do not include scripting side code for the purpose of 
analysis and benchmarking of applications.

7.5 Scalability 
As it has already been emphasized, the CMS event reconstruction is a data parallel 
workload. As a consequence, there is no real communication across compute nodes. 
Therefore, the critical metric for this application is weak scaling because our goal is to 
use as many resources as we can get on the system without degrading the 
performance per unit. In addition, the CMSSW data processing constantly requires 
getting more and more input data (when running in production), by reading either from 
shared storage or from a remote location, and also produces output. This input/output 
data flow is where the bottlenecks for scalability are lying at the moment, and this is 
currently being investigated outside the DEEP-EST project. 

Figure 7.4 shows how, by using all three types of compute nodes (CM, ESB, and DAM) 
and almost all of the corresponding nodes, the throughput increases. This figure does 
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not demonstrate the scalability, but it allows to view how adding more nodes does 
increase throughput and also dissects the contributions of different types of nodes. 

 
Figure 7.4: CMS reconstruction using the whole DEEP-EST system  

For the purpose of demonstrating weak scaling for the CMS Event Reconstruction 
workflow, we essentially tried loading as many available nodes as possible, in the 
expectation that performance per node does not degrade. Throughout all the 
measurements we used the BeeGFS shared storage system for storing/ingesting input 
data. Figure 7.5 shows the distribution of throughput when employing all the CM nodes. 
As we can see, there are very few outliers and for the most part performance per node 
is quite stable. 

 
Figure 7.5: Throughput distribution by node  
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CMS Event classification is a typical distributed ML training workflow with a strong 
scaling objective. Figure 7.6 shows the execution time as a function of the nodes used 
for training. The training was performed using the ESB nodes. The most important 
outcome of these measurements is the fact that this distributed training workload 
shows good strong scaling features when using more and more nodes. In particular 
this is important when we compare running training on ESB to other systems that 
contain special NVIDIA Inter-GPU links and other optimizations. Employing the ESB 
we can scale up quite flexibly the number of nodes available for training. 

 
Figure 7.6: Training time for CMS event classification on the ESB 

 

 
Figure 7.7: Parallel efficiency for CMS event classification on the ESB  
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7.5.1 Our path to Exascale 

Overall, we think that it is important to understand first what the future is going to look 
like before addressing our path towards that future. For LHC, the CMS experiment and 
HEP in general, the future will bring significantly more data and more complex structure 
of collision events, both of which in turn mean that physicists have to find more efficient 
ways of handling these massive amounts of information. To quantify this, more data 
means processing O(500PB) by the CMS experiment per year. These numbers are 
obtained using the existing production level workflows. 

Within the DEEP-EST project we tackled the very first part of this journey – making our 
software more efficient by using heterogeneous resources available (or soon to be 
available) at HPC facilities. Our contributions have been integrated into the CMS 
Experiment’s framework and will be used in production starting with this year’s 
production campaign. It is crucial to note that these algorithms are not just running at 
an HPC centre in an offline manner (where someone launches jobs and collects 
results), but are also used at CMS experiment’s online farm during the data-taking, in 
order to identify events of interest for the future physics analysis, which means that 
they must be robust, performant, and error-free all the time. Heterogeneous resource 
utilization is one of the key features for any scientific software when targeting Exascale 
as it allows us to make the code more efficient. For CMS, it means higher throughput 
per single node. 

For the purpose of data processing, all large scale LHC experiments, CMS included, 
utilize the world-wide distributed computing grid, which allows us to perform data 
processing across many different computing sites. The reason for this distribution is 
that a single site would not be able to cope with requirements imposed by HEP 
workflows. Furthermore, by dividing the processing infrastructure into multiple sites, 
the movement of data has to be properly handled. This problem of having to move 
around O(500PB) data per year is one of the central challenges of the path to Exascale 
for the CMS experiment. 

7.5.1.1 What are the limitations? – Can they be fixed? 

From the perspective of an LHC (or probably even High Luminosity LHC) experiment, 
it is not a question of limitations, but rather a question of what has to be developed in 
order to unleash the full scientific potential of the upgraded detectors when moving to 
High Luminosity LHC. As was mentioned for the CMS event reconstruction workflow, 
it is necessary to keep ingesting data and also storing the output data products, which 
means that I/O subsystem could be seen as a limitation at Exascale. Therefore, here 
are two important areas of work that are currently being investigated by the whole HEP 
community: 
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 At Exascale it is important to consume computing resources without degrading 
the performance per node. There could be two potential limitations in here: the 
network and the storage itself. For instance, there could be too many clients 
trying to do I/O from the shared storage system. It is true that data could be pre-
staged to the compute nodes first and then processed, but again the limit on the 
network could be reached with the huge number of nodes at Exascale. On the 
other hand, there are new types of shared storage systems (e.g., object storage) 
that are significantly more robust for applications that heavily utilize the I/O 
subsystem. To run production-type of workflows these “limitations” need to be 
further tested and resolved. 

 The previous point covered the network and storage that are fully internal to an 
HPC facility. The next item to consider is the external connection of an HPC 
facility. Considering that HEP experiments cannot store all of their data at an 
HPC site, it is crucial that there are efficient means of enabling data flow to/from 
such HPC centres. There are two main reasons why all of the data cannot be 
preserved at an HPC site. First, there will be as much as O(500PB) for a single 
experiment. Second, HEP collaborations by themselves are quite large entities 
and data collected is one of their main products, therefore storage and 
preservation of this information is of crucial importance to HEP. Delegating this 
responsibility will not be feasible. Overall, this means that it will be necessary to 
find efficient ways to enable dynamic and scalable flow of data to/from HPC 
centres. Such a system would need to be capable of: 

o Overlapping processing with bringing in more data; 
o Talking to the outside world: request more data, inform of what is missing, 

etc.; 
o Being aware of what is running, which data can be purged, what has to 

be requested and brought in or taken out. 

Overall, this requires having a system in place that runs at an HPC site and handles 
the external data flow activity. 

7.5.1.2 How to use future Exascale systems 

Overall, the way for HEP community to exploit Exascale systems is by maximising the 
efficiency every available compute node. Having in mind that our target is weak scaling, 
we have to stay efficient when scaling out. This is mainly achieved by embracing the 
usage of accelerators and software reengineering, which has been successfully done 
within the DEEP-EST project for the CMS experiment’s workflows. 

Another important aspect to stress is data. We will not have less data in the future, only 
more. And this applies to many other data driven sciences, not just HEP (e.g., SKA, 
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see Section 4 of this volume). The network bandwidth, although increasing as well, will 
not keep up with the pace of data volumes. This is in particular crucial for the large 
scale experiments that cannot store their data at an HPC site. The dynamic component 
that is responsible for bringing data in and taking processed output outside of an HPC 
centre in a scalable fashion will play an important role for such applications. We would 
also like to note that this is an area of work for HPC centres as well, as they are aware 
of the shifting requirements of the applications that would like to utilize their facilities. 

7.5.1.3 Where did the DEEP-EST project help on the way to Exascale? 

Within the DEEP-EST project, one of the more crucial development contributions 
overall was the porting of 20-25% of CMS High Level Trigger (HLT) to utilize NVIDIA 
V100 GPUs. There are several reasons why this contribution is important: 

 The algorithm implementations developed in DEEP-EST will be running in 
data-taking production for the CMS experiment starting this year. They are 
not just performant, but they reproduce physics results with good precision, 
therefore having no effect on downstream physics performance. 

 The very positive experience serves as motivation for other members of the 
CMS collaboration to join the effort of code modernization and porting to 
heterogeneous architectures. In parallel to the CMS Hcal/Ecal ports, the 
software from another detector was ported by other members of the CMS 
collaboration, which allowed developers to interact and discuss ideas for 
implementations and optimizations. 

 Finally, developed functionality will not just be running for the CMS HLT, but 
also for offline production workflows, which will be utilizing HPC resources. 
Through this effort, we increased the efficiency (i.e. throughput) of our 
applications when targeting future Exascale systems. 

Given that HEP community traditionally did not use HPC machines for reconstruction 
workflows, this work allowed to gain overall confidence that we can run efficiently these 
data-driven types of workflows on such large machines, not just simulation workloads 
that do not really require any input data. Another aspect is the ability to test out our 
production workflows when running on larger node counts using a prototype system, 
not a production one – we are able to tweak things, test, change, and do it again, which 
is quite important during the development life cycle. This applies to data analytics type 
of workflows even more, as these require tweaking the configuration to find the 
appropriate parameters on a given system. 
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7.6 Energy consumption 
Energy consumption is an important metric in particular when thinking of Exascale 
workflows. It is clear that in order to be sustainable, we cannot just think of performance 
without addressing the issue of power consumption, as well as costs associated with 
resource utilization. For HEP production types of workflows, with a weak scaling 
objective, it is important to be as efficient as possible per node, given the tendency to 
consume as many resources as there are available. This is where software 
reengineering potentially helps not only performance but also energy efficiency. 

All the energy utilization metrics were collected using various DEEP-EST prototype 
sensors, which allow for frequent probing of quantities, which in turn enables fine-
grained downstream analysis. Figure 7.8 shows the total energy consumed when 
running the full CMS Event Reconstruction workflow on CM nodes (green) and ESB 
nodes (blue) as a function of the number of nodes used for the reconstruction. 

 

 
Figure 7.8: Total energy consumption running for the CMS Event Reconstruction 

 

Figure 7.9 in turn shows the same values but averaged over the number of nodes. 
Given that we are after stable resource utilization when scaling out the number of 
nodes, here we observe a slight increase when going to 32 and 49 nodes on the CM. 
This is not too dramatic and could be a result of the outliers observed in Figure 7.5. 
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Figure 7.9: Average energy consumption for the CMS Event Reconstruction 

When employing NVIDIA GPUs for the CMS Event Reconstruction, the ESB shows 
nearly perfect linear scaling in total energy when scaling out the data processing from 
1 node to 48 (blue line in Figure 7.8). The averaged energy utilization per node, which 
is the more relevant metric for the workload that aims to scale weakly, is shown in the 
blue line in Figure 7.9. Overall, here we observe stable resource utilization per node 
when scaling out our production workload to many nodes equipped with NVIDIA V100 
GPUs. 

7.7 Performance comparison 

7.7.1 CPU vs GPU 

For the purpose of performance comparison we were trying to evaluate the maximum 
throughput, defined in terms of events per second that could be achieved either on 
CPU or GPU. Although the CMS software framework by itself is multi-threaded, the 
original CPU-based algorithm implementations are single threaded (i.e. task-based 
parallelism), therefore they basically scale with the number of available cores (provided 
there are no other limitations). However, for the case of a GPU-based implementation 
it is not so straightforward and we essentially are trying to push as many concurrent 
events into a single card as possible until we reach a limit. Figure 7.10 shows the result 
of comparing the CMS Ecal Local Reconstruction using NVIDIA V100 vs. using 2-
socket Intel Xeon Gold 6148 (32 cores total). The reason for comparing against this 
particular model of the CPU is that most of the comparisons which we make when 
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targeting heterogeneous hardware architecture are done against models similar to the 
ones currently employed at CMS High Level Trigger (HLT). Here we observe a factor 
of 3-4× speedup with respect to the CPU version. 

 
Figure 7.10: CPU vs GPU for CMS Ecal Reconstruction 

Similarly, for Hadron calorimeter reconstruction, Figure 7.11 displays the comparison 
of throughput when running the CMS Hcal Local Reconstruction on NVIDIA V100 GPU 
vs 2-socket Intel Xeon Gold 6148 (32 cores in total). Here we observe factors of 7-8× 
speedup when comparing to the baseline CPU version. This could come as a surprise, 
given that we indicated that the Hcal and Ecal algorithms share the same core routines. 
However, as mentioned above the core routines, although crucial, are not the only 
element needed for these algorithms to run successfully within the CMSSW 
framework. Furthermore, most of the optimizations were first tested using Hcal 
workflow and then applied to Ecal, which means that Hcal was more heavily optimized. 
Also the percentage of time spent in different kernels is slightly different for Hcal and 
Ecal. All this leads to slightly different speed up factors. 

 
Figure 7.11: CPU vs GPU for Hcal Reconstruction 
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Finally, one of the more interesting things to test was to use the full CMS HLT workload 
on each type of the nodes available on the DEEP-EST prototype. This workflow 
consists of running O(1000) algorithms including Ecal and Hcal. We used the CMS 
Open Dataset for the purpose of these measurements. Figure 7.12 shows the 
throughput (events per second) when running CMS event reconstruction on different 
types of nodes on the DEEP-EST MSA and also either CPU only or combining CPU 
and GPUs. 

 

 
Figure 7.12: Throughput per node type on the DEEP-EST MSA 

 

We have used CPU-only configuration on the CM nodes, but when we targeted either 
ESB or DAM we could employ both CPU-only and CPU+GPU configurations. With 
CPU+GPU configurations we achieved 50% speed up in throughput from a single 
node. This result is quite important to justify the advantage of porting your software to 
heterogeneous hardware, keeping in mind that not all algorithms do benefit from being 
ported to accelerators. 
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7.8 Conclusion 
The work carried out in the DEEP-EST project paves the way for the High Energy 
Physics community to successfully exploit the future Exascale HPC systems for both 
production data processing workloads, and for analytics driven applications requiring 
usage of Deep Learning techniques. It is a highly non-trivial task to take such a large 
software stack such as CMSSW and be able to efficiently run, measure and understand 
the results when employing high node counts at an HPC site. Although we did not 
tackle issues related to the I/O subsystem, experience gained within the project about 
what worked well and which components are going to be required for a successful 
utilization of large Exascale machines is invaluable for our further investigations. 

Experience gained within the project has been conveyed to other members of the CMS 
collaboration working on porting scientific software to heterogeneous platforms. In 
particular, the knowledge about NVIDIA Profiling tools, Nsight Systems and Compute, 
allowed us to optimize CMS Hcal and Ecal Local Reconstruction GPU implementations 
and to achieve significant speedups (3-4× for Ecal and 7-8× for Hcal) with respect to 
the CPU-based implementations. 

Finally, the developed algorithmic implementations have successfully been integrated 
into the CMS software framework. Physics validation has been performed and GPU-
based algorithms will be exploited during the upcoming data-taking campaign of the 
CMS Experiment at LHC. 
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8.1 Introduction 
The DEEP-EST system implements the Modular Supercomputing Architecture (MSA) 
which has evolved within the DEEP project family over several years90. One of the 
most important advantages of the MSA is its flexibility: MSA systems can target a wide 
range of applications with widely different characteristics and system requirements. 
This guide shows how to port applications to the DEEP-EST system (described in 
Chapter 1 of this volume) and gives advice on how to get good performance out of it. 
Each kind of application (as with the different co-design applications within the DEEP-
EST project) may have different ways to use the DEEP-EST system.  

In this document, several use cases will be explained, and advice will be given about 
how an application can benefit most from the system architecture. Examples of the 
improvements that could be achieved for demonstrator applications will be shown. This 
guide is structured in the following way: 

                                             
89 Now at scapos AG, Germany. 
90 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Tutorial1/MSA_Idea  
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 First in Section 8.2 we describe how to analyse an application and figure out 
which modules to use in Sections 8.2 and 8.3. 

 Once this decision is taken, Section 8.4 focus on the real porting work (mostly 
porting to GPU, plus a short introduction on the FPGA porting). 

 The next topic is how to partition the application code to enable it to run across 
multiple modules. This is covered by Section 8.5. 

 Section 8.6 describes several different file systems which are provided in the 
DEEP-EST system. 

 Section 8.7 covers certain additional features provided on the DEEP-EST 
system. 

Last, but not least, Section 8.8 summarizes the most important lessons learned by the 
application developers in the DEEP-EST project, which refer to their experience 
adapting the codes to MSA, but also more in general when preparing them to exploit 
heterogeneous computing at the Exascale era. 

8.2 Analysis 

The three DEEP-EST prototype modules were designed to fit the needs of different 
kinds of applications. The ESB has the highest node count and is equipped with 
GPGPU accelerators coupled to relatively weak CPUs in the interest of energy 
efficiency. Highly scalable applications or codes with data and control structures suited 
to GPGPU computation can run perfectly on the ESB, yet it is essential that the 
computation happens exclusively on the GPGPU, and that all data structures do fit 
within the 32 GB of GPGPU high-bandwidth memory. Codes or code parts that require 
high amounts of memory, for example, should run on the DAM with 384 GB DRAM and 
3 TB Persistent Memory attached to each node. There are also different ways to 
distribute the code parts depending on the individual application. There might even be 
applications using only one module, with the choice of the module depending, among 
others, on the problem size. Applications which combine parts best suited for different 
modules have the option of running simultaneously across multiple modules, while 
other codes with a workflow structure will run different steps on different modules, for 
instance as a job chain.  

A detailed analysis of the code is essential to get to know which parts of the code can 
benefit from which parts of the architecture. Without this it is not possible to get all the 
benefits out of the DEEP-EST system. Here are some recommended profiling tools (all 
available on the DEEP-EST system): 
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 Intel VTune Amplifier 91 
 Intel Vector Advisor 92 
 JSC Scalasca 93 
 BSC Extrae/Paraver (for basic instruction please see Section 8.2.1) 94 95 

These tools will help determining which are the most time-consuming parts, whether 
the application is compute, memory or bandwidth bound, and how well balanced the 
application is. With this insight the developer can decide how to map the application to 
the MSA: for example, time consuming parallel code parts, should exploit the scalable 
GPU nodes on the ESB, whereas code parts that need a large amount of (fast) memory 
should use the DAM with Intel Persistent Memory.  

8.2.1 Performance analysis tools, Extrae, Paraver & Dimemas (BSC) 

Extrae is a dynamic instrumentation package to trace programs. It generates trace 
files that can be later visualized with Paraver. To use Extrae on the DEEP-EST system 
load first a compiler and the MPI distribution that you want to use, e.g. GCC and 
ParaStationMPI, and then load the Extrae module:  

 

ml GCC 

ml ParaStationMPI 

ml Extrae 

 

8.2.1.1 Using Extrae in 3 steps 

8.2.1.1.1 Adapt the job script to use Extrae 

The job script needs to be adapted in three aspects (Figure 8.1):  

 Load the above mentioned modules 
 Specify the name for the output traces (optionally) 
 Run with Extrae 

                                             
91 https://software.intel.com/content/www/us/en/develop/download/intel-vtune-amplifier-2019-help.html  
92 https://software.intel.com/content/www/us/en/develop/articles/quick-analysis-of-vectorization-using-

intel-advisor-2019.html  
93 https://apps.fz-juelich.de/scalasca/releases/scalasca/2.5/docs/UserGuide.pdf  
94 https://tools.bsc.es/doc/html/extrae   
95 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Tutorial2  
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Figure 8.1: Job script with Extrae 

The trace.sh wrapper loads Extrae. The user needs to select the proper tracing 
library depending on their application type (MPI, OpenMP, CUDA, hybrid, etc.) and 
language (C, Fortran). The available libraries can be found under 
$EBROOTEXTRAE/lib. 

 
Figure 8.2: trace.sh to extract traces with Extrae 

8.2.1.1.2 Extrae XML configuration 

Within the trace.sh file you have to specify the XML file containing your Extrae 
configuration. In Figure 8.2 it is called extrae.xml. Here you can configure what will be 
traced, e.g. if you want to trace the MPI calls and the call-stack the file should look like 
this: 
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There are several other options which can all be found in the Extrae documentation96. 

8.2.1.1.3 Run it 

Now you can submit your job as usual: 

sbatch job.slurm 

Please note: Always run your job from the /work directory not from $HOME! 

Once the job finishes you will have the trace (3 files): 

 lulesh2.0_27p.pcf 
 lulesh2.0_27p.prv 
 lulesh2.0_27p.row 

8.2.1.2 First steps of analysis 

To analyse the traces first copy them to your local computer and then load them with 
Paraver. Several guided demos are included with Paraver, which walk the users 
through the first steps of analysis with real applications examples. These are available 
for download clicking on Help  Tutorials  Download and install tutorials. Following 
the tutorials is as easy as clicking on the hyperlinks which open pre-generated example 
traces and different analysis views.  

For new users it is recommended to start with Tutorial 1 which explains basic control 
and navigation with the tool; and Tutorials 4 & 5 which show two examples of complete 
analyses with pre-generated traces from real applications. More advanced users will 
find Tutorial 3 interesting as it describes an analysis methodology that focuses on 
detecting work and performance imbalances. If the users already have a trace of their 
own application and load it on Paraver, the tutorials can be likewise applied on their 
traces, and the analysis views will be computed on the users' application. For more 
information on how to analyse the traces and using Paraver, we refer to the Tutorial95.  

                                             
96 https://tools.bsc.es/doc/html/extrae   
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8.2.1.3 Simulations with Dimemas 

Dimemas is a simulator that reconstructs the time behaviour of a parallel application 
on a machine modelled by a set of performance parameters. Performance experiments 
can be done easily changing the target architecture by modifying network and CPU 
parameters. For communications, a linear performance model is used, but some non-
linear effects such as network conflicts are taken into account. The simulator allows 
specifying different task-to-node mappings. 

This simulator is useful to predict the behaviour of applications on non-existent 
machines, perform parametric sweeps (e.g., mass-evaluate different BW and 
latencies), and conduct ‘what if’ analyses to answer questions like: “Does the 
application have load balanced and dependence problems?”, “Would we benefit from 
grouping messages?”, “Is bandwidth the problem?”, “Is network contention the 
problem?”. 

Dimemas generates Paraver trace files enabling the user to conveniently examine any 
performance problems indicated by a simulator run. The Paraver Tutorial 2 contains 
an introduction to the use of Dimemas with an example and guidelines to get started 
with this tool. For more information on the architecture and use of the simulator, the 
user may refer to the tool website97.  
  

                                             
97 https://tools.bsc.es/Dimemas  
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8.3 MSA Usage Models 

Within the DEEP-EST project we identified 6 different usage models for our 
applications, which can be sorted into two different categories: Single and multi-module 
usage. In each category we have three different usage models (see Figure 8.3). 

Your
application

Profile your
application

Decide on usage model
based on the profiling

Multi Module usageSingle Module usage

Always use the
same module

Used module
depends on
problem size

Used module
depends on

module availability
Job chain

Use multiple
modules

simultaneously

Combination of running
jobs simultaneously and

a job chain  
Figure 8.3: Different usage models on the MSA 

 

8.3.1 Single module usage 

Always use the same module: Examples for this usage model are NEST, or the 
GPU/FPGA Imager.  

 NEST needs strong CPUs and cannot take advantage of GPGPU accelerators 
so it can either use the CM or DAM. Since NEST does not makes use of GPUs, 
FGPAs, or a huge amount of memory, the DAM nodes are somewhat over 
dimensioned. The CM is therefore the best suited for executing NEST.  

 The GPGPU and FGPA Imagers used in radio astronomy need to run on the 
DAM. For the FPGA imager this is obvious since only the DAM nodes are 
equipped with FPGA accelerator. The GPU imager needs a huge amount of 
memory, thus running on the GPUs in the ESB nodes is not an option. 

Used module depends on use case: This is the case in the single module version of 
GROMACS. The CM is used for small size problems, whereas the GPUs on the ESB 
are needed for the larger use cases. GROMACS could also use the GPUs on the DAM 
but the ESB is a better choice because the code does not need much memory and is 
scalable over many nodes. 
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Used module depends on module availability: Finally, there are applications, such 
as the CMS Reconstruction, which can run on all the modules. The CMS 
Reconstruction has a CPU version for the CM and a GPU version for ESB and DAM. 
Since the execution runs in all nodes independently it can just utilize any kind of nodes 
that are available at any given time. 

 

8.3.2 Multi module usage 

Job chain: An example for the “Job chain” model are the coupled versions of NEST 
plus Arbor (Figure 8.4) and NEST plus Elephant (Figure 8.5). NEST first runs on the 
CM (as explained in Section 8.3.1) and after that Arbor starts to work on the output 
from NEST using the GPUs of the ESB. Similarly, Elephant starts the data analysis on 
the output from NEST on the DAM. 

 
Figure 8.4: NEST plus Arbor workflow 

 

 
Figure 8.5: NEST plus Elephant workflow 
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Use multiple modules simultaneously: A good example for this fifth usage model is 
the xPic and GMM combination: xPic’s particle solver runs on the GPUs of the ESB 
and its field solver runs on the CPUs of the CM, while GMM runs on the DAM. Particle 
and field solvers from xPic run simultaneously and exchange data during runtime. The 
data produced by the particle solver is analysed by GMM on the DAM nodes (Figure 
8.6). 

 
Figure 8.6: xPic plus GMM workflow 

 

Another example is GROMACS in the offload version. It simultaneously uses the CM 
and the ESB within one job (Figure 8.7). 

 

 
Figure 8.7: GROMACS workflow for the offload version 
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Combination of job chain and jobs running simultaneously: An example of this 
last usage model is the workflow of DLMOS (DAM)  xPic (CM+ESB)  GMM (DAM). 
The ML codes DLMOS and GMM will run on the DAM and between these two jobs 
xPic will run on CM+ESB (Figure 8.8).  

 

 
Figure 8.8: Workflow of DLMOS plus xPic plus GMM 

 

 

8.4 Porting 

The DEEP-EST system provides the GCC (8.3.0, 9.3.0, 10.2.0), Intel (2019.5.281) and 
NVHPC (20.9, experimental) compilers for C, C++ and Fortran. There are also different 
MPI versions available (ParaStationMPI, Intel MPI and OpenMPI), but it is 
recommended to use ParaStationMPI because it enables all the MSA features on the 
system. If the code needs specific software packages, it should be checked if they are 
provided on the DEEP-EST system. Detailed information on all available packages and 
the module environment used on the system can be found in the DEEP-EST Wiki98. 
Jobs can be submitted to the job queue for all compute modules (CM, ESB, DAM) via 
the Slurm resource manager. 

                                             
98 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Information_on_software  



8. Best Practices Guide 

 197 DEEP-EST 

8.4.1 The resource manager 

Slurm supports both interactive and batch jobs (scripts submitted into the system). This 
is an example on how to allocate an interactive session on the CM (-p dp-cn) with 
4 nodes (-N 4) and 2 tasks per node (-n 8) for 30 minutes (-t 00:30:00): 

srun -p dp-cn -N 4 -n 8 -t 00:30:00 --pty /bin/bash –i 

The following example shows a job script for submitting a batch job using the same 
parameters (number of nodes, runtime etc.) as before: 

 
Figure 8.9: Job script example 

For more details (all available partitions, srun and sbatch options and useful Slurm 
commands) refer to the batch system section in the DEEP-EST Wiki 99. 

8.4.2 Code porting and optimisation on the CM 

Porting the codes to the CM should be straightforward since the CM is equipped with 
standard, general purpose CPUs and every code targeting multi-core CPUs should 
work.  

8.4.3 Code porting and optimisation on the ESB 

The ESB is equipped with NVIDIA Tesla V100 GPUs. The code parts that were 
identified to be compute intensive and can be parallelized should be ported to the 
GPUs. If serial code parts are just included to manage the GPU computation, they do 
not need a high computing capacity, and can fit all application data into the 32 GB high-
bandwidth GPGPU memory, using only ESB nodes with its comparatively weak CPUs 
is sufficient. If the serial code parts need stronger CPUs, the developer should strongly 
consider dividing the code onto CM (strong CPU) and ESB (GPU). The DAM would 
also be an option for strong CPU plus GPGPU runs, but because there are only 16 
nodes, running on the CM plus ESB (see Section 8.5) makes more sense to scale the 
application.  

                                             
99 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Batch_system  
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Porting code to the GPU can be done with different programming models. On the 
DEEP-EST system we support the following: CUDA, OpenACC, OmpSs, and 
OpenMP5.0. Below we give some introductory information on how to use these 
programming models. For more details we refer to the specific user guides and 
documentation, since detailed explanations of the programming models and their 
usage would go far beyond the scope of this document. 

8.4.3.1 Using CUDA 

Since the GPGPUs in the DEEP-EST system are NVIDIA GPGPUs, using CUDA is 
likely the way to get the maximum performance out of the code. However, it should be 
kept in mind that CUDA code is not the best option for non-NVIDIA GPUs. In addition, 
a lot of effort may be required to port an application to CUDA if one has to start from 
scratch. As an example, we will use a simple vector addition (see Figure 8.10). 

First, the computations that should run on the GPGPU have to be turned into CUDA 
kernels. For this the __global__ keyword has to be added to the affected functions. 
If the Host device needs the results from the GPU, it must be ensured that the host 
waits for the GPGPU to finish the calculations. For this the function 
cudaDeviceSynchronize()can be used.  

In addition, one has to manage memory and potentially data placement. With the 
available Unified Memory, a memory space can be allocated and then be used by the 
CPU as well as by the GPU, so that the data does not need to be transferred manually 
anymore. To allocate and later free Unified Memory, two functions need to be called 
(as replacement for ‘malloc’ and ‘free’): cudaMallocManaged(…) and 
cudaFree(…) 

 

Now the code is ready to run on the GPU, so finally the kernel can be launched with 
vectoradd<<<x, y>>>(n, a, b).  
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Figure 8.10: C++ version of the vector addition 

Figure 8.11 shows a code including the above changes. Although these changes make 
the code run on the GPU, there is plenty of room for optimization, so the basic code 
should then be analysed with a profiler, e.g. nvprof, to get an idea of what to optimize. 
There are plenty of tutorials, guides and courses on how to write and/or optimize CUDA 
codes: here are just a few examples100 101 102.  

                                             
100 https://developer.nvidia.com/blog/even-easier-introduction-cuda/  
101 https://fz-juelich.de/SharedDocs/Termine/IAS/JSC/EN/courses/2020/ptc-gpu-cuda-2020.html  
102 https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html  
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It should be noted that for certain codes, manually managing the location of data 
objects (on host or GPU memory) can extract more performance than relying on the 
Unified Memory mechanisms; this is akin to cache optimizations on traditional CPU 
systems. For the ESB, it is critical to ensure that all application data objects are located 
in GPU memory. 

 
Figure 8.11: Vector addition example in the CUDA version 
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8.4.3.1.1 The new Magma library 

Within the DEEP-EST project, UoI faced the concern of having to significantly refactor 
their codebase, so that they could develop multiple application versions supporting 
both CPUs and GPUs. To mitigate this problem, they developed a library (called 
“Magma”) that mimics the C++ standard library blueprint. The library takes care of 
linking the source code to either the C++ STL (in case of CPU) or CUDA Thrust (in 
case of GPGPU) libraries. 

The Magma library is available to all as free-open-source-software via a public GitHub 
repository103 and its functionality is detailed in Section 6.4 of this book. 

 
Figure 8.12: Example of a for-each loop with Magma 

Figure 8.12 shows an example on how the Magma library is used in the NextDBSCAN 
application of UoI. The source code is identical for both the CPU and GPGPU platform 
with the exception of the necessary host and/or device annotations which CUDA 
requires to specify the execution target. 

8.4.3.2 Using OpenACC 

Another option to offload code to the GPUs is using OpenACC via the NVIDIA NVHPC 
compiler. OpenACC is a directive-based performance-portable parallel programming 
model. With OpenACC applications can be ported to a wide variety of heterogeneous 
HPC hardware platforms and architectures with significantly less programming effort 
than required for a low level model such as CUDA. Programming with OpenACC 
should happen in 4 steps: 

1. Identify parallelism (already done in Section 8.2) 
2. Parallelize code parts with OpenACC 
3. Express data locality 
4. Optimize performance 

After the analysis phase described in Section 8.2, it is known which code parts should 
be parallelized on the GPU. These code parts will be put within a pragma region as 
shown in Figure 8.13 for a small Jacobi iteration. The two nested inner loops (over i 

                                             
103 https://github.com/ernire/magma/tree/master 
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and j) can be parallelized. The kernels directive tells the compiler to analyse the code 
and look for parallel loops in the specified region. In this case, the compiler identifies 
two regions of code to generate an accelerator kernel. The compiler also analyses 
which arrays are used in the calculation and generates code to move A and Anew into 
GPU memory. The compiler even detects that it needs to perform a max reduction on 
the error variable. 

The next step is to express the data locality. Sometimes not everything needs to be 
copied on and from the device. With the data pragma the relevant data locations can 
be specified. The copy clause in the data pragma tells the compiler that it should copy 
the A array to and from the device as it enters and exits the region, respectively. Since 
the Anew array is only used within the convergence loop, the create clause is used to 
request the compiler to create temporary space on the device, since we do not care 
about the initial or final values of that array. 

 
Figure 8.13: Jacobi example in the OpenACC version 
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In following references the reader can find more detailed guides and courses to get 
started with OpenACC104,105,106. 

For the ESB, data objects have to stay in GPGPU memory as long as possible, so the 
programmer should radically limit copying between CPU and GPGPU as long as it is 
not strictly necessary for code correctness.  

 

8.4.3.3 Using OmpSs-2 

The OmpSs-2 task-based programming model supports message-passing libraries 
(MPI) and improved GPU programming of the MSA. 

Herein we will cover the well-known N-Body benchmark, which numerically 
approximates the evolution of a system of bodies in which each body continuously 
interacts with every other body. A familiar example is an astrophysical simulation in 
which each body represents a galaxy or an individual star and all bodies attract each 
other through gravitational force. 

In the benchmark presented here the particle space is divided into smaller blocks. 
Similarly, MPI processes are also divided into two groups: CPU processes and GPU 
processes. Firstly, GPU processes are responsible for computing the forces between 
each pair of blocks of particles; secondly, these forces are sent to CPU processes, 
where each process updates its blocks of particles using the received forces. The 
blocks of particles and forces are equally distributed amongst each MPI process within 
each group. Thus, each MPI process is in charge of computing the forces or updating 
the particles of a consecutive chunk of blocks. 

                                             
104 https://developer.nvidia.com/blog/getting-started-openacc/  
105https://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/DE/Kurse/2020/ptc-gpu-openacc-

2020.html?nn=2320772  
106 https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf  
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Figure 8.14: NBody solver 

The computation pattern in the code (Figure 8.14) is repeated during multiple time 
steps. The communication pattern during each time step consists of GPGPU 
processes, which exchange their particles with each other in a circular manner in order 
to compute the forces between their own particles against those from other GPGPUs. 
For the purpose of simplifying this pattern, this benchmark uses a different MPI 
communicator for the circular exchange. Once a GPU process finishes the 
computation of its forces, it sends the forces to the corresponding CPU process(es) 
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and then it receives the updated particles. MPI sends/receives are performed 
separately on each block. 

The actual GPGPU computation takes place within the function calculate_forces. 
A closer look to this function in Figure 8.15 reveals that the programmer has indeed 
the choice of using either the CPU or the GPU version of this function. 

 
Figure 8.15: Calculate_forces function 

The code part in Figure 8.16 shows the CPU version of the kernel associated to the 
computation of forces inside a block. It is worth noting that the programmer is 
responsible for annotating this function with OmpSs-2 pragmas in order to convert this 
kernel into a regular task, to be later executed in parallel by the CPU. 

 
Figure 8.16: CPU kernel 
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More interesting is to see which modifications are now necessary to convert the 
previous, original CPU code into its equivalent GPU code and, at the same time, render 
it compatible with OmpSs-2. In Figure 8.17 we add the CUDA kernel declaration in the 
header file kernel.h. It is important to highlight that the programmer is responsible 
for annotating this CUDA kernel as if it were a regular (i.e., CPU) function that can later 
be invoked by the OmpSs-2 runtime. Note, for instance, that now it is necessary to 
indicate the clauses device and ndrange. It can be readily seen that this procedure 
eases the development of GPU programming and is rendered possible thanks to the 
OmpSs-2 runtime, which takes care of data movements and correct synchronization 
between the host (CPU) and device (GPU) tasks and kernels following a true data-flow 
execution model. 

 
Figure 8.17: CUDA header file defining OmpSs-2 tasks for GPU 

Finally, the code in Figure 8.18 shows the calculate_force_block_cuda CUDA 
C kernel from the N-Body application. This kernel is almost identical to the CPU kernel 
illustrated in Figure 8.16. It is important to point out that the CUDA kernel code is 
located in a different file that is separately compiled by the CUDA C compiler. For 
completeness, the definition of the forces_block_t has been added to highlight that 
it is a struct of static arrays, thus suitable for host–device data movement. Data 
movement makes use of the CUDA unified memory. The OmpSs-2 runtime has been 
extended to explicitly manage data transfers, so that unified memory is no longer a 
hard requirement. 
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Figure 8.18: CUDA kernel 

8.4.3.4 Using OpenMP 5.0 

GPGPU (or more generally, accelerator) offloading was introduced into the OpenMP 
standard with version 4.5 and enhanced functionality is provided with OpenMP 5.0. 
Like OpenACC and OmpSs, OpenMP relies on using directives and supports Fortran, 
C and C++. The fork-join model used by OpenMP 5.0 is similar to OpenACC, but 
OpenACC is more descriptive and OpenMP 5.0 is more prescriptive. 

This section shows multiple steps to transform a basic “SAXPY” code into a fully 
functional OpenMP 5.0 application. It covers the most common and useful approaches 
to offload a computationally intensive loop to the GPU accelerators in the ESB and 
DAM modules of the DEEP-EST system. 

The basic code contains two for loops, one for the initialization of the values and a 
second for the main operations. In this example we have wrapped the main for loop 
in a function in order to show how such externally defined methods can be called from 
within OpenMP sections. All vectors are allocated dynamically. 

Porting the SAXPY code to the GPU using OpenMP 4.5/5.0 requires the addition of 
only one line of code (see Figure 8.19). This new line performs the memory transfers 
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between Host and Device and divides the computation of the for loop among the 
different threads in the GPU. 

Figure 8.19: Example for OpenMP 5.0 offload 

Here we explain each one of the terms in the pragma call: 

 #pragma omp: signals to the compiler that the following code section will be 
processed by OpenMP. 

 target: tells the compiler that the following section of code will be executed on 
the GPU. This is equivalent to the definition of a kernel function around the for 
loop as shown in the CUDA code in Figure 8.11. 

 teams: instructs the main thread in the Device to spawn multiple, isolated, 
threads associated with the different processor blocks (SMs) in the GPU. 

 distribute: instructs the GPU to decompose the loop iterations and assign 
different chunks to the different teams requested. 

 parallel: instructs each team master thread to spawn a group of threads for 
each team. 

 for: distribute the loop iterations in each teams’ chunk across the threads in 
the team. 

 map(to:…): perform a data transfer of the listed vectors from the Host to the 
Device on entering the OpenMP section. 
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 map(from:…): perform a data transfer of the listed vectors from the Device to 
the Hoist on exiting the OpenMP section. 

There are several metadirectives, declare target, macro defined directives, and device 
allocations, which will be explained below. 

8.4.3.4.1 Declare target 

In the previous section one single for loop was offloaded to the accelerator, but in 
most useful cases the programmer wants to offload more complex code, usually 
encapsulated in functions (or kernels). Functions that can be called from within an 
accelerated target region must be defined by opening and closing declare 
target pragmas, as shown in Figure 8.20. 

 
Figure 8.20: OpenMP 5.0 offload: Declare target example 

With this change, it is possible to offload the saxpy function to the accelerator in any 
location of the code. The function must only be called from within a target region (in 
the snippet above the scope of the target region contains only one line). The offloading 
line used in Figure 8.19 has been divided here in two parts: 1) the target teams 
pragma that spawns a set of master teams in the accelerator and performs all memory 
transfers to the device, and 2) the distribute parallel for pragma, called from 
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within the accelerator in the saxpy function, that segments the for loop and 
distributes it among the teams and the corresponding threads. 

8.4.3.4.2 Declare target + declare variant 

 
Figure 8.21: OpenMP 5.0 offload: Declare target + declare variant example 

If the programmer wants to use the saxpy function both in the host (CPU) and the 
device (accelerator), it is possible to create alternative kernels of the function with their 
respective OpenMP pragmas. Figure 8.21 shows that in the main code the function is 
called, first in the Host (without target pragma) and once in the Device (inside a 
target pragma). Two different versions of the routine are activated for each case. 
The declare variant call instructs the compiler to look for an alternative version of 
the code following the match conditions. In this case, if the function is called within a 
target region, the variant gpu_saxpy function is called. 

This division of work is interesting for applications that want to perform the same 
procedure both on the Host and on the Device. This could allow workload balancing 



8. Best Practices Guide 

 211 DEEP-EST 

between CPU and Accelerator, maximizing the use of the available computational 
resources. 

8.4.3.4.3 Macros 

 
Figure 8.22: OpenMP 5.0 offload: Example for Macro usage 

The problem with the use of the declare variant clause is that important parts of 
the code need to be duplicated. This is a potential source of bugs and can complicate 
its maintenance. To avoid code duplication the OpenMP pragmas can be surrounded 
by macros defined by the user. In Figure 8.22 the Host and Device versions of the 
saxpy function have been separated by the use of the compile-time variable __GPU__. 
At compile-time it is possible to generate one version with offloading or a different 
version without offloading. This approach also allows the inclusion of details of the 
architecture. For example, the programmer can define the flags __INTELCPU__, 
__AMDCPU__, __AMDGPU__, __NVIDIAGPU__, corresponding to the four most 
common hardware architectures today. Each one will encompass a different OpenMP 
pragma line before the for loop in the saxpy code. 

8.4.3.4.4 Metadirectives 

 
Figure 8.23: OpenMP 5.0 offload: Metadirectives example 



Porting applications to a Modular Supercomputer 

DEEP-EST 212  

The previous approach is very useful but can become cumbersome and it almost feels 
like OpenMP should support such a use case scenario. The OpenMP 5.0 standard 
does provide an alternative called metadirectives. Instead of using compilation macros 
the metadirective is built using the following schema: 

#pragma omp metadirective \ 

 when (<condition> : teams distribute parallel for) \ 

 default (parallel for simd) 

This structure allows the programmer to get rid of macro definitions and uses 
<conditions> to choose one OpenMP line instead of the default OpenMP line. In 
Figure 8.23 the condition selects the outcome of the metadirective based on the 
type of hardware architecture in which the loop is running.  

This is a very handy option but presents two drawbacks: 1) it currently allows only two 
options, the one selected by the <condition> and the default, and 2) it is not 
currently supported by most compilers, including LLVM (March 2021). 

8.4.3.4.5 Macro defined directives 

 
Figure 8.24: OpenMP 5.0 offload: macro defined directives example 

A workaround to avoid code duplication and simplify its main structure, without using 
metadirectives, is to define the OpenMP lines with a global macro that can then be 
referenced inside the code as shown in Figure 8.24. This approach makes the code 
much cleaner but requires the programmer to specify all the possible OpenMP calls at 
the beginning of the code. This could lead to a large number of macros that can be 
included in a separate file. Although this approach can complicate the maintenance of 
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the code, the final result is much cleaner and easier to follow for non-experts in 
OpenMP. 

 

8.4.3.4.6 Device allocation 

 
Figure 8.25: OpenMP 5.0 offload: Device allocation example 
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One of the most important optimizations in OpenMP, and in general for any code that 
uses offloading, is to minimize the transfers of information between the Host and the 
Device. Up until now we have used the map(…) clause. This performs a memory 
transfer between the CPU and the Accelerator. To avoid such transfer, the programmer 
can allocate memory directly on the Accelerator with the API functions 
omp_target_alloc() and omp_target_free(). These two functions work in 
almost the same way as C/C++ malloc() and free() functions, but require also the 
number of the target accelerator device. The memory allocation function returns a 
pointer that is associated with memory in the accelerator. Any access to this pointer 
from code outside a target region will produce a memory access error. 

In the initialization and in the saxpy functions shown in Figure 8.25, the pointer 
corresponding to the dynamically allocated accelerator memory is identified by the 
clause is_device_ptr(…). The allocation functions must be called at any point 
outside the target region, but the pointers must only be referenced inside them. 

In this snippet we show how the saxpy function receives the addresses of the two 
dynamically allocated accelerator vectors and returns the result by memory transfer to 
the Host device using the map(from:…) clause. This version of the saxpy test results 
in the best performance. It is also the cleanest version and the easiest to maintain. We 
recommend other programmers to understand the sections above, but to use the 
pattern presented in this section as a starting point of their code porting procedure.  

 

8.4.4 Code porting and optimisation on the DAM 

The DAM nodes are equipped with two different kinds of accelerators: NVIDIA Tesla 
V100 GPUs and Intel Stratix10 FPGAs. Section 8.4.3 already covers porting to GPUs. 
This section will have a look at the FPGAs. 

8.4.4.1 oneAPI 

Intel oneAPI107 is an open, unified programming model. It is used to simplify 
programming across CPUs, GPUs, FPGAs and other accelerators. On the DEEP-EST 
system oneAPI is interesting for either working on FPGAs or CPUs. Information on 
how to work with it on FPGAs can be found here108. Section 7.4 of this book explains 
how to use it for GPU portable programming. 

                                             
107 https://software.intel.com/content/www/us/en/develop/tools/oneapi.html  
108 https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html  
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8.4.4.2 OpenCL 

OpenCL is an industry standard for programming systems that contain several 
heterogeneous devices and memory spaces. Like CUDA, the standard uses a kernel 
language to specify optimized code parts that run on accelerators like GPGPUs or 
FPGAs, an API to define and direct code parts to be run on a specific device, and an 
API to manage the (usually disjoint) memory spaces of devices and transfer data 
between them. OpenCL is used in non-HPC applications, such as heterogeneous 
embedded or mobile systems, and it has emerged as the method of choice to program 
FPGAs if the significant additional effort to develop RTL or VHDL code is seen as not 
worth the potential performance gain. 

OpenCL for Intel CPUs and the FPGAs of the DAM module is provided by the Intel® 
FPGA SDK for OpenCL™ 109, which is currently in version 20.4, complemented by a 
BSP (board support package) matching the installed Stratix 10 devices. Figure 8.26 
shows an example of an OpenCL kernel to compute and print out the Fibonacci 
numbers on the FPGA. A very detailed programming guide with information on how to 
build and optimize your OpenCL kernels, how to adapt your host program, and how to 
compile the code, can be found here110. 

 
Figure 8.26: Fibonacci OpenCL kernel 

OpenCL is also supported on a range of GPUs, including the NVIDIA Tesla V100.  

 

8.4.5 Data Analytics & Machine Learning frameworks 

The DEEP-EST system also provides specific frameworks targeting Data Analytics and 
Machine Learning applications:  

                                             
109https://www.intel.de/content/www/de/de/programmable/products/design-software/embedded-

software-developers/opencl/support.html  
110 https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html  
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 TensorFlow: an end-to-end platform that makes it easy for developers to build 
and deploy ML models.111 On the DEEP-EST system TensorFlow versions 2.2 
and 1.13.1 based on Python 3.6.8 are deployed. 

 PyTorch: a Python package that provides two high-level features: Tensor 
computation (like NumPy) with GPU acceleration and Deep Neural Networks 
built on a tape-based autograd system112. On the DEEP-EST system PyTorch 
versions 1.1.0 and 1.4.0 based on GCC are deployed. 

 Horovod: a distributed deep learning training framework for TensorFlow, Keras, 
PyTorch, etc.113. On the DEEP-EST system Horovod version 0.16.2 based on 
GCC and ParaStationMPI is deployed. 

These frameworks can be used on either CPUs or GPUs, so in theory they can run on 
all three compute modules. But since for data analytics (in most cases) a large amount 
of memory is necessary, the DAM would in general be the best suited module. 

For trained networks there is the option of generating an interoperable ONNX114 
version which can be used for inference on many platforms including accelerators, 
which do not support the full-blown neural network development platforms listed above. 
This is a potential migration path to the FPGA accelerators of the DAM nodes, should 
users be interested in performing inference there.  

 

8.5 Use of multiple modules 

To run an application on multiple modules, it has to be partitioned: the code parts 
optimized for the different modules need to be separated and communication between 
the different parts has to be coded (preferably using MPI or files). As shown in Figure 
8.3 there are three ways of using multiple modules: running on multiple modules at the 
same time (multi-module jobs), running consecutively on different modules (job chains 
and workflows), or a combination of both. 

There might be jobs that need more than one module either at the same time or 
consecutively. In both cases one has to first divide the code in the parts for each 
module, and then make sure that both parts can communicate if necessary (either with 
MPI or through the file system). 

                                             
111 https://www.tensorflow.org/tutorials?hl=en  
112 https://github.com/pytorch/pytorch; the term refers to reverse-mode automatic differentiation. 
113 https://github.com/horovod/horovod#usage  
114 https://onnx.ai/, term refers to Open Neural Network Exchange 
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8.5.1 Running on Multiple Modules at the Same Time – Multi-Module 
Jobs 

The Slurm resource manager supports allocating heterogeneous jobs (using more than 
one module). Figure 8.27 shows an example how to allocate one node on the CM and 
one node on the DAM and executing the hostname command on both.  

 
Figure 8.27: Srun command to allocate a heterogeneous job 

Heterogeneous jobs can also be launched in a batch script using the packjob 
keyword. For information on functionalities regarding heterogeneous jobs in Slurm 
please see the DEEP-EST Wiki115. 

8.5.1.1 Using MPI 

After an MPI application has started its processes as shown above, they can determine 
their module affiliation and thus coordinate their work accordingly. For this purpose, 
the processes can query on which module they are currently running by looking it up 
as a Module ID in the MPI_INFO_ENV object, which is provided by the MPI standard 
for environmental adaptations (see Figure 8.28). 

This assignment between ID and modules is not fixed, but can be set by the user 
according to the needs of the application by using the environment variable 
PSP_MSA_MODULE_ID. However, if the user does not set such a module affiliation, the 
assignment of the IDs is performed automatically according to the order of the modules 
in the srun call: the first module gets ID 0, the second module ID 1, and so forth. 
Hence, it is the user’s responsibility to match the respective srun call with an 
appropriate evaluation of the queried module IDs at application level. 

                                             
115https://deeptrac.zam.kfa-

juelich.de:8443/trac/wiki/Public/User_Guide/Batch_system#HeterogeneousjobswithMPIcommunic
ationacrossmodules  
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Figure 8.28: MPI standard 

8.5.1.2 Topology-aware MPI Communicator Creation 

In addition to querying explicitly for the module affiliation, it is possible to split the 
MPI_COMM_WORLD communicator into sub-communicators reflecting the module 
affinity of processes by using the new communicator spilt type 
MPIX_COMM_TYPE_MODULE. However, please note that this split type is an extension 
in ParaStationMPI and that it is hence not part of the official MPI standard! One may 
use the macro MPIX_TOPOLOGY_AWARENESS to test whether this feature is available 
or not: 

 
Figure 8.29: MPI_Comm_split_type 

Please also note that to use these extensions, the so-called Topology Awareness of 
ParaStationMPI must be enabled, which has to be done at compile time of the MPI 
library by using the configure switch --with-topology-awareness, plus explicitly 
setting the environment variable PSP_MSA_AWARENSS=1 for the MPI sessions. 
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8.5.1.3 Using MSA-aware Patterns for Collectives 

When topology awareness is enabled for ParaStationMPI, locality information as well 
as module affiliations can be taken into account by collective MPI operations for 
choosing optimized communication patterns, for example, for global reduction 
algorithms. In doing so, the locality awareness can be two-fold: (1) with respect to intra-
node vs. inter-node communication (SMP awareness), and (2) with respect to inter-
module vs. intra-module communication (MSA awareness). The following environment 
variables can be used for enabling these different degrees of topology awareness: 

 PSP_SMP_AWARENESS=1 – Generally, take locality information into account, 
e.g. for a meaningful use of MPI_Win_allocate_shared. This feature is 
enabled by default.

 PSP_MSA_AWARENESS=1 – Generally activate the consideration of modular 
topologies. This feature is not enabled by default (see also Section 8.5.1.2).

 PSP_SMP_AWARE_COLLOPS=1 – Enable the use of MPICH’s SMP-aware 
collectives. This feature is disabled by default and requires SMP awareness in 
general (see above).

 PSP_MSA_AWARE_COLLOPS=0|1|2 – Select the feature level for MSA-aware 
collectives:

 0 – Disable MSA awareness for collective MPI operations.
 1 – Enable MSA awareness for collective MPI operations. This feature is 

enabled by default if PSP_MSA_AWARENESS=1 is set.
 2 – Apply MSA awareness recursively in multi-level topologies. For MSA 

plus SMP awareness, this requires that also PSP_SMP_AWARENESS=1 is 
enabled.

The benefits of these different feature levels will depend on the patterns and settings 
of the applications. Therefore, at this point the user is advised to test the different 
options and check for which setting the application achieves the best performance. 
Moreover, it has to be emphasized that only a suitable subset of the MPI collectives 
actually do provide topology awareness. These are: MPI_Barrier, MPI_Bcast, 
MPI_Reduce, MPI_Allreduce and MPI_Scan, as well as their respective non-
blocking counterparts. 

8.5.1.4 Realizing Workflows on MPI Level 

To pass data between workflow steps, the DEEP-EST project supports different 
approaches – for instance, using fast local storage, and/or using the global parallel file 
system. In this subsection, a further approach will briefly be introduced: the use of the 
standardized MPI_Comm_connect/accept API for passing data directly via MPI 
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messages between workflow steps. According to this approach, the preceding step of 
a workflow application opens a so-called port and forwards this port information to the 
subsequent step, which then in turn can connect to it so that both MPI sessions can 
communicate directly via an inter-communicator. A good approach for passing the port 
information is the use of a small file, where the preceding workflow step puts the port 
name when the end of this phase is reached. The next workflow step can wait for this 
file to be created and then connect to receive the data directly via MPI communication, 
which avoids the considerable overhead of storing and retrieving volume data via a 
storage device. The two functions in Figure 8.30 show draft code for realizing this 
between two steps of a workflow. 

 
Figure 8.30: MPI_comm_accept and MPI_comm_connect 
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How such steps of a workflow can be orchestrated at job level is described in the 
following sections. 

 

8.5.2 Running on Multiple Modules Consecutively – Workflows 

There are two ways of running jobs consecutively on the system: Using the –-delay 
switch (where the jobs can have an overlap, e.g., for data exchange via MPI) or using 
Slurm job dependencies (where jobs start one after another). 

8.5.2.1 --delay switch 

The Slurm version running on the DEEP-EST system allows overlapping jobs inside a 
workflow: with the –-delay n option the start of jobs in a job pack can be delayed by 
n minutes from the start of the first job of the job pack. Figure 8.31 shows a small 
example. 

After submission of this job pack, Slurm divides it into separate jobs, and ensures that 
the delay is respected by using reservations, rather than the usual scheduler. Using 
this approach, the user has to estimate the duration of each sub-job to make a good 
choice of the interval that the jobs will be delayed. As the user-provided delay values 
tend to be not so accurate, we also provide API calls that a job can use to request 
Slurm to change the start times of the remaining jobs in the workflow it belongs to. 

 
Figure 8.31: Example for --delay switch 

 

8.5.2.2 Slurm job dependencies 

With this approach the jobs will not have a guaranteed overlap, yet will still run in a 
specified sequence. Using the Slurm dependencies, jobs can be chained with the 
following script: 
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Figure 8.32: Script for job chains 

Job scripts can then be submitted in the following way: 

./chain_jobs.sh lockfile afterok simple_job.sh 

This creates a chain of jobs with the dependency type afterok. This halts the 
allocation of such jobs until the independent job finishes with success. The currently 
running independent job, when it deems fit, calls an API function to change the 
dependency type of all its dependent jobs to the type after. This enables Slurm to 
consider these jobs for allocation, provided that the resources are available. 

For more details, see the DEEP-EST Wiki116. 

                                             
116 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Batch_system#Workflows  
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8.6 File system and Storage 

A number of different storage locations and file systems are available on the DEEP-
EST system: 

 JSC GPFS file systems, provided via the JUST storage system and mounted on all 
JSC systems. 

 Parallel BeeGFS /work file system, available on all the nodes of the DEEP-EST 
system and hosted on the SSSM module. 

 Parallel BeeOND file systems, created for the lifetime of Slurm jobs on demand and 
using local node storage devices (SSDs or Persistent Memory). 

 Local ext3/ext4 file systems hosted on the CM, DAM and ESB nodes. 

The next subsections will briefly describe each file system. More details can be found 
in the DEEP-EST wiki117. 

8.6.1 Permanent Storage (GPFS) 

In the usage model of JSC, each user has different home directories for each of the 
systems that they are using, so for the DEEP-EST system there will be a directory 
located in  

/p/home/jusers/username/deep  

These home folders have a low space quota and are meant to be used for configuration 
files, ssh keys, etc.  

Data and computational resources are assigned to projects. As a consequence, each 
user can create folders within each of the projects that they are part of. For the DEEP 
project, the project folder is located under  

/p/project/cdeep/username 
Here is where the user should place data. Both /p/home and /p/project are 
provided by the shared GPFS file systems. 

All data stored in the GPFS file system is regularly backed up by JSC. 

8.6.2 Shared Fast Storage (BeeGFS) on SSSM 

The SSSM module hosts a total of 304 TB of storage managed by the BeeGFS parallel 
file system118. The data is stored in two RAID arrays with 24 disks each, using a RAID6 
storage scheme. Four file system data servers provide access to these data, which are 

                                             
117 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Filesystems  
118 https://www.beegfs.io/docs/BeeGFS_Flyer.pdf  
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handled through BeeGFS clients on each of the CM, DAM and ESB nodes via standard 
POSIX I/O interfaces. The SSSM is connected to the rest of the system using 40 Gbit/s 
Ethernet technology, and data are passed on to the InfiniBand fabric via IP gateways. 
Metadata is handled by two additional servers and resides in two SSD RAID arrays.  

Users just have to move data into the /work file system tree to use the SSSM BeeGFS 
– standard POSIX interfaces are supported in all the relevant programming 
frameworks. 

As the name implies, the SSSM is considered a temporary storage device mainly to 
serve data required by applications, which run on the DEEP-EST system. Users are 
free to leave data on that system, but there is no backup and in case of resource 
shortage, data will be deleted. 

8.6.3 Local Storage 

The compute nodes of the different modules expose some local storage devices that 
can be used (via ext3/ext4 file systems) during job execution. On the CM, DAM and 
ESB, local SSDs on each node are available via /scratch directory. It is meant to be 
used instead of /tmp (which should be avoided). Please, consider that /scratch is 
local to each node, hence data in /scratch cannot be shared between nodes. 
Additionally, data in /scratch will be removed once the job is finished. The size of 
/scratch is: 

 CM and ESB nodes: ~380 GB 
 DAM nodes: ~128 GB 

On the DAM nodes there is additional local storage available through NVMe devices 
in:  

 /nvme/scratch: ~1.5 TB (formatted with xfs) 
 /nvme/scratch2: ~1.5 TB (formatted with ext4) 

As for the data in /scratch, the data in the /nvme/scratchX directories will be 
removed at job termination. The DAM nodes furthermore expose some very fast 
persistent memory which can (depending on the operation mode) directly be used by 
applications and is described in Section 8.7.1. 

8.6.4 Local storage – BeeOND 

The Slurm installation on the system provides a new switch --beeond for sbatch / 
srun / salloc commands. When this command is used, Slurm triggers the 
mechanism to start for this job the BeeOND server and clients on each assigned node 
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at allocation time. The server and clients are then properly removed at the end of a job 
and all the data is deleted. 

BeeOND provides the same POSIX interfaces as the standard BeeGFS, but the data 
is actually stored across node-local devices. Depending on the partition size and fabric 
used on the module(s), significantly higher I/O bandwidths are available compared to 
the BeeGFS system on the SSSM. 

In contrast to the use of /scratch devices, the BeeOND data is available to all nodes 
in a job partition, regardless of its physical location.  

8.7 Using DEEP-EST specific features 

8.7.1 Persistent memory 

The Data Analytics Module is composed of 16 nodes with 384 GB RAM plus 3 TB of 
Intel® OptaneTM Persistent Memory. Compared to DRAM, Intel Optane Persistent 
Memory has higher latency and lower bandwidth yet offers much higher affordable 
capacities than DRAM and data persistence. It can be configured in two principal 
modes: Memory Mode and App Direct Mode. 

In Memory Mode no changes to the application are required: the installed DRAM acts 
as a memory cache and the Intel Optane Persistent Memory transparently offers its 
full memory capacity to the OS and to applications. However, memory contents is 
volatile here. In DEEP-EST, the partner ASTRON has made use of this mode for 
applications running on the DAM nodes. No specific changes or adaptations were 
required to the base OS of the DAM or other SW packages -- Memory Mode is enabled 
via UEFI/BIOS settings and requires a node reboot. To get DAM nodes configured for 
Memory Mode, please contact the DEEP-EST support119 to reconfigure some DAM 
nodes and create a reservation for you.  

In App Direct Mode, DRAM and persistent memory are mapped onto separate memory 
address spaces (seen as memory nodes by Linux), and applications have to be 
modified in order to exploit the different characteristics of the two memory technologies. 
Access to the persistent memory occurs through regular load and store operations. 
Intel has released the Open Source Persistent Memory Development Kit (PMDK120) as 
Open Source, and recent Linux distributions do fully support it. 

                                             
119 sup@deep-est.eu 
120 Information about PMDK is available from https://pmem.io/pmdk/, including links to open repositories 

for source code and binaries 
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A special use case of App Direct mode is to map a file system onto a non-volatile 
memory partition; for this, the fs-dax layer provided by PMDK enables file system 
access while avoiding the need to go through a block device chain. For I/O-heavy 
applications, this usage mode can provide significant speed-ups, as for instance 
reported by the NextGenIO project121. The BeeOND parallel file system has been 
adapted to use the persistent memory as a storage target, enabling a job running on n 
DAM nodes to use a transient BeeGFS file system placed onto the n×3 TByte of 
persistent memory at a bandwidth significantly exceeding those achievable for the 
NVMe SSDs. 

App direct mode and PMDK are in principle supported by the current base OS of the 
DAM (CentOS 7), which runs the 3.x Linux kernel. Newer OS versions (such as 
CentOS 8 with kernel 4.x) however provide significantly better performance, and 
experiments were run with a back-ported 4.19 kernel to establish whether the DAM 
nodes would be fully functional with a combination of CentOS 7 and such kernel. 
Therefore, access to BeeOND using the persistent memory will be available once the 
kernel version has been updated accordingly. 

8.7.2 SIONlib (MSA features) 

SIONlib122 is an I/O concentrator library which can significantly speed up large-scale 
parallel I/O. It allows users to read and write binary data to/from several thousands of 
processors into one or a small number of physical files. SIONlib provides simplified file 
handling for parallel programs which logically read or write binary data in parallel into 
separate files (task-local files), yet want to avoid the significant management overhead 
caused by having thousands of these files. 

For general information on SIONlib please see the SIONlib documentation123. During 
the DEEP-EST project, three new features were added to the library: MSA aware 
collectives, I/O forwarding, and a CUDA-aware interface. Within this document we will 
concentrate on those three new features. The basics will be explained in the following 
subsections, but there is a more detailed description in the DEEP-EST Wiki124. 

8.7.2.1 MSA aware collectives 

Recent versions of SIONlib allow all parallel processes to take part in the I/O operation 
which enables an exchange of I/O data between the processes, allowing a subset of 

                                             
121 Information about the NEXTGenIO project can be found at http://www.nextgenio.eu/. 
122 https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib   
123 https://apps.fz-juelich.de/jsc/sionlib/docu/current/index.html  
124 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/SIONlib  
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all processes (the collector processes) to perform the transfer of data to the storage 
for all the processes. To achieve the maximum performance benefit, the collector 
processes should be the ones that are placed on parts of the MSA with a high 
bandwidth link to the parallel file system holding the large files created by SIONlib.  

The new feature adds a MSA algorithm for the selection of collector processes. This 
algorithm is portable and relies on platform specific plug-ins which are specified during 
the installation of SIONlib (so this is nothing the user on the DEEP-EST system has to 
worry about). Through these plug-ins processes, which run on parts of the system that 
are well suited for the role of I/O, the collector processes are identified. 

The MSA aware collective I/O has to be enabled when opening a file. This is done 
using in the open function the file_mode argument, which contains a string that 
consists of a comma-separated list of keys and key value pairs. The word collmsa 
must appear in that list to select MSA aware collective I/O, so the open-call should look 
like this: 

sion_paropen_mpi("filename", "...,collmsa,...", ...); 

The next step is to specify the nodes that should be used by setting an environment 
variable. For example, to select nodes from the DAM: 

export SION_MSA_COLLECTOR_HOSTNAME_EREGEX="dp-dam.*" 
 

8.7.2.2 I/O forwarding 

The collective approach mentioned above has some constraints that make it 
inapplicable in certain scenarios: 

 By design, collective I/O operations force application tasks to coordinate. This 
is at odds with SIONlib's world view of separate files per task that can be 
accessed independently. 

 Collector tasks in general have to be application tasks, i.e. they have to run the 
user's application. This can generate conflicts on MSA systems, if the nodes 
that are capable of performing I/O operations efficiently are part of a module 
that the user application does not map well onto. 

The new feature, called I/O forwarding, helps in both scenarios. It works by relaying 
calls to low-level I/O functions (e.g. open, write, stat, etc.) via a remote procedure 
call (RPC) mechanism from a client task (running the user's application) to a server 
task (running a dedicated server program), which then executes the functions on behalf 
of the client. Because the server tasks are dedicated to performing I/O, they can 
dynamically respond to individual requests from client tasks rather than imposing 
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coordination constraints. Also, on MSA systems the server tasks can run on different 
modules than the user application. 

 
Figure 8.33: Sample job script to use I/O forwarding with SIONlib 

To use the I/O forwarding within the application it has to be selected when opening the 
file. This is done by adding the word sionfwd to the file_mode argument of 
SIONlib's open functions: 

sion_paropen_mpi("filename", "...,sionfwd,...", ...); 

Be aware that the server processes are not spawned by MPI, so the server tasks have 
to be launched from the user's job script before the application tasks are launched. A 
typical job script is shown in Figure 8.33. 
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8.7.2.3 CUDA aware interface 

To more closely match the programming interface offered by other libraries (such as 
ParaStationMPI), the SIONlib functions have been made CUDA aware. This means 
that applications are allowed to pass device pointers, which point to device-memory, 
to the various read and write functions of SIONlib without the need to manually copy 
their contents to the host memory. The user may pass the device pointers as the data 
argument to SIONlib's write and read functions. 

8.8 Summary of lessons learned 
The DEEP-EST project has demonstrated the potential of the MSA. The flexibility of 
the MSA concept allows very different usage models, so that a wide range of different 
applications can be addressed. This was shown and evaluated by a selection of large-
scale, real-world applications from research fields relevant for the European research 
arena. Most of the DEEP-EST applications combine HPC computation with advanced 
data processing and analytics and therefore represent the HPC as well as the HPDA 
areas. Thus, they do consist of multiple parts with different resource requirements, 
which is suitable to assess the potential of the MSA and the DEEP-EST system.  

8.8.1 Achievements of each application development team 

During the project lifetime the application teams showed some very promising results 
which made the DEEP-EST project a part on their way towards Exascale: 

 NMBU – Neuroscience: The focus on performance and scalability in the DEEP-
EST project has allowed NMBU to enhance performance of their applications. 
This has driven the development in NEST of the optimised spike-delivery 
algorithm and the advanced dry-run mode. The work in the DEEP-EST project 
on the NEST-Arbor and NEST-Elephant couplings to combine on the one hand 
simulations at different levels of description and on the other hand simulations 
and analysis has shown the potential of distributing different parts of a workflow 
across different modules of a MSA. 

 NCSA – Molecular Dynamics: During the DEEP-EST project NCSA came to 
some very important conclusions: in computer-aided drug design or life sciences 
on the MSA one can optimise the price/performance ratio by choosing the 
appropriate configuration of compute nodes for each particular task. The multi-
GPU FMM was developed as part of this project because FMM starts to become 
beneficial for large volumes of the simulation box (more than the previously used 
PME algorithm). This new functionality allows the utilization of FMM on large 
number of GPUs and opens new possibilities for GROMACS to perform very 
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large simulations in fields like material science, polymer science, molecular 
biology, nanostructures and condensed systems. For biological systems in life 
science research, the existing PME method already provides excellent 
performance on the MSA. 

 ASTRON – Radio Astronomy: During the DEEP-EST project, ASTRON has 
made significant improvements to both of their applications: the Correlator and 
the Imager. The use of tensor-core technology will have a disruptive impact on 
correlators, due to their order-of-magnitude increase in performance and 
significant reduction in energy consumption when compared to the use of 
regular GPU cores. It was also shown that for newer generation GPUs the 
benefit even increases. ASTRON explored a new technique, called W-tiling. 
This significantly reduces the amount of memory used to create (very) large sky 
images, at the expense of a minor increase in computations, so that the 
painstaking effort of stitching hundreds of facets together belongs to the past. 
All in all, the DEEP-EST project enabled ASTRON to improve the overall 
performance of the imager and brings them a big step closer to Exascale 
imaging. Even if the results for the FPGA imager were not as positive as 
originally expected, the experience that was obtained with the OpenCL/FPGA 
toolkit has been very useful. ASTRON now uses this experience for other 
applications where FPGAs are indispensable, such as in the upgrade of the 
LOFAR stations.  

 KU Leuven – Space Weather: very valuable experience has been gained in the 
usage of OpenMP5.0 to offload code to the GPU. As a result the xPic code is 
now accelerated in a portable, vendor-independent manner. KU Leuven showed 
the nearly perfect scalability for the accelerated particle solver and the code was 
also identified as a good candidate for Exascale scalability. On the road towards 
Exascale, KU Leuven believes in the continuous development of the code xPic 
and coupling its execution with multiple on-the-fly machine learning analysis 
tools. KU Leuven has already applied for a pilot program with the LUMI 
supercomputer centre where the Cluster-Booster architecture will be deployed 
using AMD CPUs and GPUs. All developments during the DEEP-EST project 
led to a good energy balance of the code. 

 UoI – Data Analytics in Earth Science: By completely rewriting two of their codes 
(NextDBSCAN and NextSVM) UoI made a huge step towards Exascale. Both 
applications are now much stronger than the previous applications. Research 
within the project indicates that NextDBSCAN is now a good candidate 
application for Exascale systems, using both CPUs and GPUs. The results with 
the Horovod framework for distributed deep learning show that more work must 
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be done in order for it to reach Exascale system potential. Another achievement 
during the DEEP-EST project was the development of the Magma library to 
ease the porting efforts.  

 CERN – High Energy Physics: The DEEP-EST project was an important part 
for the High Energy Physics community on the way towards Exascale HPC 
systems for CMS reconstruction workloads as well as for CMS classification. 
Porting the most time critical parts of the reconstruction to NVIDIA GPUs 
resulted in a significant performance gain. The work done in DEEP-EST has 
already been included in the official CMSSW stack. 

In addition to the evaluation of the MSA concept the DEEP-EST project allowed to gain 
many valuable experiences: 

8.8.2 Portability nearly as important as performance 

In the beginning of the project, and so also during the planning phase of the project, 
the idea was to equip the ESB with many-core CPUs of the Intel Xeon Phi series. After 
a few months within the project it became clear that this would not be possible, so the 
plan changed to using GPUs. This led to some difficulties for some of the applications, 
because they did not have GPU-code available. For example, KU Leuven had only a 
version of xPic optimised for Intel Xeon Phis. Also UoI and CERN had only CPU based 
code (with multi- and many-core versions). Each one of the three application partners 
used a different approach to implement a new GPU version, all of them striving towards 
a portable solution to become vendor independent. 

KU Leuven used the pragma based OpenMP 5.0 offload (Section 5.4.3.2 and Section 
8.4.3.4 of this book). UoI developed Magma, a C++ header library, that makes 
extensive use of C++ templates to offer compile-time polymorphism for increased 
usability at the expense of a small compile-time overhead (Section 6.4), and CERN 
made use of the oneAPI framework as a portability platform (Section 7.4). 

8.8.3 Different code versions for different purposes 

During the project we noticed that for some of the applications it makes sense to have 
different code versions for different purposes: 

 If we take a look at GROMACS from NCSA we see that the non-offload version 
is very efficient for small and medium scale problems, whereas the offload 
version is very efficient for large scale problems, and the version using FFM is 
more efficient for extremely big problems than the PME version.  
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 For NEST from NMBU different optimisations are needed to achieve a good 
performance on runs on a small number of nodes, than when targeting a large 
amount of nodes. 

 

8.8.4 FPGA challenges 

It turned out that programming the FPGAs was more complicated than expected. In 
ASTRON’s case, a complete code restructuring was needed to port the imager from 
one generation of FPGAs (Arria10) to the new one (Stratix10). Compiling FPGA code 
takes a very long time (in ASTRONs case sometimes up to 24 hours) which makes it 
a really time consuming work. A detailed explanation on the experience with the FPGA 
programming is given in Section 4.4.6. Nevertheless the experiences gained are very 
helpful for other applications where FPGAs are indispensable, such as in the upgrade 
of the LOFAR stations 

 

8.8.5 Conclusion 

This report on applications experience clearly shows that the DEEP-EST system is 
flexible enough to accommodate the requirements coming from different problem 
domains. Each co-design application has benefitted from the experience made by 
other applications, as well as from the support from the technical consortium members 
who developed the hardware and software in the project. DEEP-EST has also shown 
that an important investment in effort and time is required to enable highly complex 
HPC applications to run efficiently on the next generation supercomputers, but that 
these efforts definitely do pay off. After over three years of joint work, the DEEP-EST 
applications are better prepared to exploit heterogeneous supercomputers as those 
expected in the Exascale era. 
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9.1 Introduction 
The modular supercomputing architecture (MSA) is a novel approach to implement 
heterogeneous supercomputing125. MSA’s major differentiation to other types of 
approaches is that it defines a new intermediate level in the computer architecture 
hierarchy, which is located between the node- and the system levels. In MSA, subsets 
of nodes are grouped into special "computational modules" according to their common 
characteristics and algorithmic features of the corresponding subtasks. 

For example, CPU-only nodes are put together into a cluster module, GPU accelerated 
nodes into a booster module, or quantum devices constitute a quantum module. A 
Modular Supercomputer is born when these modules, each of which is a high 
performance computer in its own right, are interconnected via a high-speed network, 
and are integrated by a common software stack that allows the dynamical allocation of 
resources from and between all modules. 

This meta-architecture allows to dynamically reserve and allocate hardware resources 
and enables users to select the most suitable mix of resources at each time, respecting 
the characteristics and requirements of their code portions. 

In this chapter, the MSA concept is explained in more detail to dispel some frequent 
misconceptions. For better understanding, MSA is contrasted to the conventional, 
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approach of tightly integrating all possible kinds of compute and memory elements 
within each node, and then replicating this entity several thousand times to build up a 
“monolithic” HPC system. We argue that the two architectural lines are not mutually 
exclusive, but that their combination by “integrating” a tightly integrated module into 
MSA can be beneficial to end users and operators. 

9.2 Partitions vs. modules 
Very diverse application profiles of HPC users, various kinds of processor types, and 
pressure on budgets for both procurement and operational costs have made 
heterogeneity of computers the rule rather than an exception (e.g. 126,127,128). HPC 
providers deploy systems that combine different kinds of CPUs and accelerators (in 
general GPUs), organized in various node configurations. Frequently, supercomputers 
have multiple compute partitions, with different amounts of memory per node, with or 
without accelerators, even with different numbers or generations of GPUs. 

Often the two fundamental questions are raised: when is a heterogeneous computer 
considered to be an MSA system? What is the difference between heterogeneous 
computing and modular supercomputing? The answer to these questions lies more in 
the manner the system can be operated rather than on its specific hardware 
configuration. It is the software stack that “modularizes” a heterogeneous 
supercomputer. 

As a principle, MSA strives for a homogeneous internal configuration within each 
hardware module and achieves global heterogeneity by interconnecting the different 
modules enabling dynamical allocation of compute resources from several modules 
from a given program or workflow. One reason for this approach is that combining too 
many different computing resources within a single node makes it very difficult to share 
them efficiently between users with different requirements for those resources. In 
addition, many programs use only one variant of processors on such a “fat node” in a 
given part of code. All of this results in many elements in the supercomputer being idle 
and potentially continuing to consume power. Such underutilization can be avoided by 
MSA. 

The first MSA system deployed in the DEEP project was a cluster-booster platform 
where the cluster was composed of general-purpose (Intel Xeon) CPUs on an 
InfiniBand network, and the booster consisted of many-core accelerators (host-less 
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Intel Xeon Phi) on an Extoll network129. However, this maximal separation 
(disaggregation) of CPUs and accelerators is one of many potential hardware 
realizations but it is not the defining criterion of the MSA. As a matter of fact, in most 
recent modular supercomputers (e.g. JUWELS130 and MELUXINA131) the booster is a 
GPU-accelerated platform where management-CPUs are used to orchestrate the 
GPUs. Here, the booster node itself obviously is a heterogeneous system, but the 
computational power, to the largest extent, is delivered by the GPUs, while the host-
CPUs clearly play a secondary role in so far as they mainly support the GPUs to fulfil 
their task. 

It is indeed possible to choose a different interconnect technology for each module, as 
was the case in the first DEEP prototype, but this is not a criterion for defining 
modularity. Avoiding gateways and network bridges between modules, as of course 
expected and experienced on physical systems, leads to better performances. For this 
reason, the latest MSA systems use a homogenous interconnect and integrate 
modules in a common fabric. 

Therefore, from the hardware point of view, a supercomputer with two or more 
distinctive partitions can be considered as a modular supercomputer. The decisive 
criterion for modularity is whether users can, at the same time, reserve resources on 
multiple modules and can run their applications across them in a distributed manner, 
performing communication and data transfers between these modules at runtime. 
What is more, modularity allows dynamically changing the size of the partitions on the 
modules according to the needs of the codes at runtime. 

Modularity as operational and usage mode requires a software stack and programming 
environment that supports its requirements. The scheduler and resource manager 
must be aware of the hardware partitions and their features, and provide an interface 
enabling users to define the mix of resources to be employed in each partition. In the 
ideal case, dynamic allocation of the diverse resources is supported, so that each 
compute element is assigned to the job, when the execution of the application phase 
that needs it, starts, and only then. Outside these phases, these computing resources 
are available for other jobs. For example, for applications organized as job chains, 
different time windows can be set up for reserving the individual partitions. These 
features as well as multi-tenant use of partitions are important topics of research for 
the effective realization of modularity.  
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Modularity must also be enabled in the programming environment and the runtime 
system. Sections of the application’s code have to be programmed and compiled to 
run on the hardware of the modules where they shall be executed. The various 
executables must be enabled to communicate with each other (e.g., via MPI or some 
other communication interface). This requires changes at the lower layers of the 
programming models that interface to the different kinds of compute (and possibly 
interconnecting) hardware. All these features were developed and implemented in the 
ParaStation Modulo132,133 software suite in the course of the European DEEP projects. 
Furthermore, profiling and performance analysis tools running on MSA systems must 
be capable of collecting hardware counters across partitions and understand the 
correlation between them for modularity-enabled applications. 

All these software components together have a common goal: enable each part of an 
application to utilize the best suitable selection of resources. This goal, aiming at 
globally maximizing the use of a heterogeneous set of closely interconnected 
supercomputers, is what characterizes a Modular Supercomputer.  

9.3 Data movement 

Dividing computing resources into different modules as strived for in MSA could raise 
concerns about performance degradation in communication and data transfers 
between computing elements that are separated from each other. We have already 
argued in Section 9.2 that such segregation is not necessary in a strict sense when 
one computes in a “modular” manner. Nevertheless, we would like to adduce some 
arguments addressing concerns about data-movement. Such concerns are often 
brought forward to favour monolithic supercomputers that integrate many different 
kinds of compute resources within each node, colloquially called “fat” node. 

Let us first state that in most situations of parallel data processing data movements 
between nodes cannot be avoided. Only so-called embarrassingly parallel problems 
can work entirely without significant inter-node data movement. For the rest, simple to 
sophisticated strategies are used to minimize the surface-to-volume ratio, particularly 
for regular problems. There are data-centric concepts as well to avoid data movement 
– at the expense of more computational operations or increased memory consumption. 
All these strategies must be and indeed are applied within system modules in the MSA. 
Therefore, in the following, we focus on the particular case of inter-module 
communication only. 
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When switching between different accelerator types, the impact of data movement on 
performance depends on the volume and frequency of data exchange. For a given 
application, these factors are correlated with the computational size of the code 
sections involved in the communication:  

i. Small kernels: a typical example is often given by the innermost loop of an 
application, where a small but computationally intensive calculation is repeated 
at high frequency for a given number of iterations. This kind of computation 
requires very small latencies and directly profits from intra-node acceleration. 
Such type of computations are in fact the traditional target of CPU-GPU 
systems, where the main program is executed on the host CPU and the small – 
in the sense that they fit on the GPU memory – but computationally intensive 
kernels are offloaded to the GPU.  

ii. Large code parts: in complex applications, and especially those that simulate 
multi-scale or multi-physics phenomena, code partitioning is done at a much 
coarser level. Different larger portions of the code are responsible for computing 
specific parts of the overall problem. They most of the time communicate 
internally within the respective code part, exchanging information with the rest 
of the code parts relatively infrequently and mainly to share intermediate results 
and to update parameters. As the different code parts might also have very 
different structures and requirements, they might profit from different types of 
hardware. This is where inter-module communication in MSA is required, which 
happens between larger code elements such as (library) functions. Between 
such a coarse-grained code partitions, data movement (off module) involves a 
rather small amount of data to be exchanged compared to module-resident (on-
module) data movement.  

Therefore, intra-node heterogeneity applies to on-node and on-module computation of 
smaller code elements (case (i)), while MSA operates off-module on bigger code-
structures of an application or workflow, i.e., large code elements (case (ii)).  

Increasing the compute-power of a single node by including multiple (heterogeneous) 
accelerators can be very helpful to speed-up the execution of small code kernels. 
However, this makes the supercomputer more imbalanced, and therefore less efficient 
as to running system-wide problems scalably. A very strong pressure is set on the 
system network, which cannot increase the bandwidth between nodes at the same rate 
as the increasing computational power inside the nodes does. In consequence, data 
movement off the node must be avoided, or the advantage gained by the kernel speed-
up may be nullified. 

Furthermore, data movements between different accelerators inside a highly 
heterogeneous node are not necessarily cheap either. They would be if all accelerators 
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could access the same (high-bandwidth) main memory in the node. However, if the 
main memory is standard DDR-RAM it will always be faster to stay within one single 
accelerator’s (HBM) memory. The situation is even worse when PCIe is involved in 
linking the memories of the various accelerators, as is the case today. The 
communication performance between accelerators is then only marginally different 
from off-node communication. All current monolithic heterogeneous HPC systems 
connect their computing elements via PCIe, which requires expensive cross-element 
transfers and leads to a similar impact on data movement as the inter-module 
communication in MSA does. 

The strongest caveat one often hears as to separation of resources in MSA is the 
occurence of increased latency for inter-module communication. This effect certainly 
is most acute when the data have to pass network gateways, i.e., when the modules 
utilize different interconnect technologies and are connected via a network bridge. 
However, in case the same or a fully compatible network technology is used across 
the entire MSA and gateways do not need to be involved, the inter-module 
communication capabilities are indeed comparable in capability and latency to the 
inter-node communication as given within an HPC module.  

But even on a homogeneous network it is obvious that the latency between a CPU on 
the cluster and a GPU on the booster, is slightly higher than if they were located inside 
the same node, where they save the hop over the interconnect. It is for this reason that 
it is not advisable to offload small kernels between modules in MSA. Therefore, as 
already stated, in contrast to offloading small kernels as done on node (see in case 
(i)), in MSA code-partitioning is carried out at a much coarser granularity (see case 
(ii)). Moreover, on these coarse structures, one can benefit from algorithmic methods 
in order to reduce data movement between the MSA modules. For example, when 
running larger code parts on the different modules in parallel, communication between 
the modules is required much less frequently than within the module, dramatically 
reducing the impact of the inter-module latency. Finally, to accelerate small compute 
kernels, MSA can resort to exactly the same strategy as one does on the monolithic 
fat node system (case (i)). MSA can thus take full advantage of the standard strategy 
for accelerating small computational cores, while providing a massive improvement in 
speed when accelerating large compute kernels.  

In conclusion, the communication and data movement strategy of MSA relies on 
executing fine-grained communication within the modules, while only coarse-grained 
state-exchange information is transferred between modules. This allows both the 
individual application kernels within a module to be accelerated on the nodes, and the 
entire application workflow between modules to be boosted via a matching set of 
resources for each large section of code. In contrast, a monolithic system composed 
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of identical nodes each containing a diversity of compute and acceleration resources 
has no means to efficiently accommodate the coarse-grained granularity of case (ii), 
which leads to resource under-utilization. 

9.4 Energy efficiency 

Many strategies are applied today in HPC centres to optimize energy efficiency. They 
comprise the use of low-power computing elements and/or accelerators, shutting-down 
unused resources, holistic system monitoring, optimizing the site-infrastructure and 
system cooling (e.g., through direct liquid cooling), actively re-using waste heat, etc. 
All these approaches can profit from MSA in the same manner as known from any 
other heterogeneous architecture. What is more, MSA operates at a coarse-grained 
scale that naturally matches the sub-second timescales handled by monitoring and 
cooling systems. Heterogeneous System-on-Chip (SoC) approaches – which 
represent the smallest form of intra-node heterogeneity – are governed by much 
smaller spatial-scales and shorter time-scales (micro- to nanoseconds). Holistic 
monitoring starting out from this level would require a vertical integration of monitoring 
capabilities from very deep (SoC-level) up to very high (infrastructure-level). This 
ambition constitutes a complicated technological challenge and may not be feasible 
due to timescales involved differing by orders of magnitude134. 

On top of the general methodology to save energy as mentioned above, MSA can 
increase energy efficiency by applying three additional strategies:  

1.) Targeted hardware scale-out: the dimensions of the individual MSA-modules 
are determined by the requirements of the user-portfolio running on the MSA 
system, as well as by the energy efficiency of its components. For instance, a 
cluster module, where applications in need for high single-thread performance 
run, is composed of relatively power-hungry general purpose CPUs and is 
therefore kept rather small. The booster, on the other hand, which runs highly-
scalable applications (or parts thereof) achieves a very high compute 
performance using more energy-efficient accelerators. In MSA, only this part of 
the system is scaled-out to thousands or tens-of-thousands of nodes, if needed, 
in contrast to fat node systems where complex and expensive fat nodes need 
to be scaled out.  

2.) Tailor system to application needs: by running each part of the user code on 
the kind of node that allows best performance, improved application efficiency 
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and performance is achieved. The speed-up gained by the individual 
applications translates into a shorter execution time, which typically leads to 
lower overall energy consumption.  

3.) Maximize use of resources: MSA enables dynamic scheduling, reservation 
and allocation of resources and makes them available for the job only for the 
relevant time window, while the rest of the time they are free to be used by 
others. This enables more efficient resource sharing, and therefore achieves a 
higher utilization of the individual components, reducing idle time and 
unnecessary energy waste. In contrast, on a monolithic supercomputer with fat 
nodes, all resources of all utilized fat nodes are blocked during a job’s runtime. 
Sharing of nodes is expected to be inefficient due to the impact of jitter effects 
induced by co-utilization135 on such fat nodes. 

As far as system scaling is concerned, one might argue against point (1) that in a 
booster built as a GPU-accelerated system, the necessary amount of (power hungry) 
host-CPUs also grows with system size. This issue is, however, readily avoided by 
choosing a suitable, low-power CPU for the booster, as the CPU only needs to manage 
the GPUs and not to perform relevant application computation. It is expected that the 
market will offer GPU designs with integrated orchestrator CPU cores in the near 
future. This would make GPUs much more independent and allow building a true GPU-
only booster. 

Building “lean” booster nodes employing low-power management-CPUs (or host-less 
GPUs) also addresses point (3), as it minimizes (eventually even down to zero) the 
energy consumption of host CPUs, which are among the very few resources in an MSA 
system that are prone to be idle, since they are less intensively used for application 
computation. 

Here it is worth mentioning that maximum resource utilization (3) is an important 
advantage of MSA compared to monolithic systems based on highly-heterogeneous 
(fat) nodes. An increased intra-node heterogeneity leads to underutilization of 
resources, since for a given job either CPUs or GPUs, but very rarely different 
accelerators, are simultaneously in use. The unused node-elements run idle and 
continue to consume power. Given a broad portfolio of applications, this problem 
cannot simply be overcome by choosing the best-suited accelerator mix for the 
heterogeneous node, as this will always introduce a fixed ratio between CPUs and 
accelerators. This ratio will support only a few applications optimally while others have 
their sweet-spot at higher or lower ratio. MSA, on the other hand, is fully flexible and 
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dynamic in the assignment of resources even during program execution, which is its 
most characteristic new feature of MSA. 

In order to compensate these limitations of fat nodes, some chip-designers propose 
the idea of so-called “dark silicon”. It leverages the concept of integrating an amount 
of computational resources that deliberately would exceed the chip’s actual power 
envelope, while selectively switching some resources on and off when possible. In 
principle, this strategy can be equally applied to heterogeneous chip designs by 
powering off unused accelerators units. However, it is questionable if steering the 
power is possible at such extremely small time-scales (see case (i) in Section 9.3) 
required by the tight integration of accelerators within a chip. More importantly, even if 
the power for the processing elements is switched on only during operation, the 
investment made for the switched-off elements is lost for this idle time. Taking into 
account that during the lifetime of an HPC system, the hardware investment is about 
two thirds of the total cost of ownership, the energy adjustment as just described can 
only partially compensate for the underutilization. We argue that maximizing resource 
utilization by MSA is a fundamentally better approach to increase energy efficiency and 
reduce cost, and increases the total scientific throughput of HPC systems. 

Beyond that, the central assumption behind the dark-silicon strategy is that the cost of 
transistors’ silicon is negligible when compared to the power-consumption of running 
them. Reaching the end of Moore’s law by now and observing the worrying situation of 
the silicon industry since 2020 lets us have serious doubts on this underlying 
assumption of the dark-silicon strategy. 

The challenge of connecting the additional transistors should not be neglected either. 

Highly integrated systems are widely used in the mobile and embedded markets, 
where space and power constraints play a crucial role. Need for high energy efficiency 
together with moderate prices of mass-market components have been arguments for 
applying similar strategies in HPC. However, mobile and embedded markets are 
completely different from the HPC market. In mobile devices, a small number of 
heterogeneous elements (thin cores, fat cores, GPU, memory, flash, modem, AI,…) 
are interconnected via standardized interfaces and integrated on an SoC. Until now, 
HPC has not yet settled on a standard interface for the hardware elements, which limits 
the possible combinations of elements, and the bandwidth demand in between the 
elements is significantly higher than on the mobile devices. The main motivation for a 
SoC in mobile devices is the level of integration and low production costs, rather than 
bandwidth and latency as in HPC. In HPC, high bandwidth and latency requirements 
lead to the use of highly sophisticated interposers. Considering the technological 
challenges and the economic constraints, which these intermediate layers are subject 
to, their feasibility has not really been proven to date. Therefore, the amount of dark 
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silicon elements is limited by both the technology of the interposer and the cost of the 
silicon.  

9.5 System integration 
For more than a decade, standard accelerators have been integrated within fat nodes 
to achieve very high peak performance. The main disadvantages of this approach, i.e., 
underutilization of resources and shared network interfaces, have been discussed 
extensively above. Today, its strongest advantage as to closer integration with the CPU 
resources is still diminished by the lack of a technology, where CPU and accelerators 
have access to shared high-bandwidth memory. Heterogeneous chips (e.g., GPUs 
with integrated CPU cores and dynamical mutual assignment), which are under 
development, promise access to shared high-bandwidth memories. If such chips reach 
the market, they will benefit both monolithic and modular architectures that, for 
example, could build a cheaper and more energy-efficient booster by getting rid of 
management CPUs. 

Interestingly, the MSA technology also enables the coupling of modules that are 
operated by GPUs from different manufacturers, for example. In this case, it is not so 
much about accelerating computations in cluster-booster mode, but rather about 
equipping the overall system with various accelerator technologies. This strategy 
makes it possible, on the one hand, to make the most suitable technology available to 
the user in the workflow and, on the other hand, to still make the entire system 
accessible to applications that have very large memory and computing requirements. 
Such type of HW requirements can currently only be delivered by MSA. 

From a physical system integration perspective, building, maintaining, and operating 
MSA platforms are just as complex as monolithic systems: the single modules itself 
are similar to monolithic systems, they just use slim nodes in contrast to fat complex 
nodes. Interconnecting them is a problem that is solved by using the right system 
software, as proven by JUWELS. MSA-modules can also be adapted over time to meet 
new user requirements by substituting modules or adding new ones when enhanced 
technology emerges. In fact, MSA also opens up opportunities to integrate presumably 
disruptive technologies into HPC systems, such as neuromorphic devices or quantum 
computers. They are still in very early development stages, but have already 
demonstrated impressive performances for some specific applications. 

The inclusion of neuromorphic or quantum modules in the MSA might facilitate their 
adoption by the wider user communities. For example, it has been demonstrated that 
quantum computers are extremely efficient to solve specific kinds of problems such as 
high-dimensional optimization scenarios. While it is very unlikely to see a large-scale 
HPC application executed fully on a quantum computer anytime soon, it seems 
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worthwhile to explore an application running e.g., on the cluster module of an MSA, 
which offloads an optimization problem as part of its code to be solved by a quantum 
module. These types of embedded optimization problems are ideal for MSA, as they 
consist of a well-isolated and large part of the code, with only small amounts of data 
being exchanged between the cluster and the quantum module – which is again ideal 
for a quantum computing system allowing for small data rates only. This coarse-
grained quantum-hybrid strategy allows for the exploration of quantum computing 
especially for applied problems from science and industry already today, in particular 
when a quantum annealer like a D-Wave system is exploited. 

9.6 Application scalability 
Another frequently expressed misconception about MSA is the fear of hindering 
application-scalability by the need to spread the code components across vastly 
different module architectures until all available compute resources are occupied. 
However, for the analysis of the scalability of codes on the MSA, only the booster 
module should be considered. As with Amdahl’s law, the maximum problem size and 
maximum scalability is always given by the highly scalable part of the code that, in 
MSA, runs on the scalable booster. In addition to that, decoupling the less-scalable 
code parts from the high-scaling ones and running them on the cluster improves the 
overall application scalability: the high-scaling part can scale unhindered on the 
booster, while the low-scaling part is speed-up through the high single-thread 
performance of the cluster module. 

On the other hand, a justified criticism of MSA – or rather of the current software 
environment – is that it imposes a relatively high burden on application developers to 
prepare their codes for execution in a multi module mode. First of all, it is emphasized 
that such code-distribution is an opportunity in MSA not a general obligation. To give 
an example, highly scalable applications with an intrinsic monolithic structure (e.g., 
tightly coupled differential operations on regular lattice systems) should never be 
spanned across modules, but rather run entirely within the booster. 

Candidate MSA codes from multiphysics and multiscale applications to be coarse-
grained assigned to modules must undergo a series of analyses and transformations: 
any such application has to be analyzed as to its internal structure and potential 
performance bottlenecks, code parts need to be identified and ported to the given 
module architectures using a suitable programming model (e.g., CUDA or OpenACC 
for GPUs), and scaling studies need to be performed with relevant and suitable use-
cases to find their best modus operandi and the appropriate number of nodes on each 
module. All these steps are summarized in the best practices guide provided as 
Chapter 8 of this book. Many of the adaptations to optimize application performance 



Porting applications to a Modular Supercomputer 

DEEP-EST 244  

on specific modules (e.g., increase vectorisation, keeping data locality, proper 
organisation of data structures, etc.) are necessary on any modern heterogeneous 
compute platform, not only on MSA. The additional MSA-specific considerations are 
those related to the implementation of a coarse-grained code partition. 

The additional effort of porting codes to MSA might scare application developers. While 
so far, only a few applications are enabled to run in multi-module mode, from a user 
and computing centre perspective MSA is even beneficial for single-module 
operations, as the different modules provide a variety of computing resources for a 
diverse application portfolio of an HPC centre, even if each code runs on only one type 
of node. Still, in order to improve user experience and to promote the modularization 
of HPC applications, the MSA software stack is in continuous development in order to 
make the MSA-specific and the more general code porting actions as comfortably as 
possible: this is the goal of the EU-funded DEEP-SEA project, which started in April 
2021 and will run for three years136. It will continue the software development efforts of 
the DEEP project series, which already delivered an MSA-enabled runtime system 
(ParaStation Modulo), as well as a scheduler and a resource manager targeting 
heterogeneity at system level. Advanced features for a better support of compute and 
memory heterogeneity, enhanced malleability and interoperability features, co-
scheduling aspects, and performance portability will be developed in DEEP-SEA.  

9.7 Conclusion 

The goals of MSA are to offer the best system configuration to a portfolio of applications 
with very different profiles and requirements, to assign the best suited hardware 
resources to each of them (and each of their code-parts), and to maximize system 
usage and energy efficiency by enabling an efficient sharing of compute resources 
overall. Most of the reservations for which MSA is often criticized and contrasted with 
other alternative heterogeneous computing approaches have their roots in simple 
misunderstandings about basic MSA principles. 

The MSA is fundamentally different from other heterogeneous computing approaches, 
and in particular from highly integrated monolithic systems, in that system-level 
heterogeneity is achieved by combining a set of (rather) homogeneous computational 
modules, which allows coarse-grained partitioning of application code among these 
modules. Multi-module execution is foreseen mainly for applications with an intrinsic 
multi-physics or multi-scale nature. The associated large code parts run within the 
modules exchanging a limited amount of data between each other at relatively low 
frequency. Performance is therefore not impacted by the slightly increased inter-
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module latency. Intra-node heterogeneity, on the other hand, is suitable for low-
granularity operations, such as the execution of small but computationally intensive 
kernels. Here data is exchanged at a much higher rate and low latency is very crucial 
to achieve performance. 

Because the operational levels of both approaches to heterogeneous computing (MSA 
and highly-integrated node designs) are so different, it suggests itself to combine them. 
Therefore, the MSA welcomes the inclusion of heterogeneous modules, and, in fact, 
current MSA systems do contain them. The combination of different modules with 
diverse node configurations, some homogenous, some heterogeneous, makes MSA 
extremely flexible and adaptable to any application portfolio. Further benefits include 
the possibility to scale out only the most energy-efficient modules of the system, 
keeping the power-hungry modules at a relatively low node count but still available for 
the user codes that require them, and the ability to include modules based on disruptive 
computing technologies such as quantum technologies.  
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List of Acronyms and Abbreviations 

A 
AARTFAAC:  The Amsterdam-ASTRON Radio Transients Facility And 

Analysis Center; a LOFAR-based, all-sky radio telescope 

API: Application Programming Interface 

ASIC: Application Specific Integrated Circuit, Integrated circuit 
customised for a particular use 

ASTRON: Netherlands Institute for Radio Astronomy, Netherlands 

AVX: Advanced Vector Extensions 

AVX-512: Intel 512-bit SIMD instructions 

 

B 
BeeGFS:  The Fraunhofer Parallel Cluster File System (previously acronym 

FhGFS). A high-performance parallel file system. 

BeeOND: BeeGFS-on-demand, parallel storage based on BeeGFS 

BoP: Board of Partners for the DEEP-EST project 

BSC: Barcelona Supercomputing Centre, Spain 

BW: Bandwidth 

 

C 
CERN: European Organisation for Nuclear Research / Organisation 

Européenne pour la Recherche Nucléaire, International 
organisation 

CM: Cluster Module: with its Cluster Nodes (CN) containing high-end 
general-purpose processors and a relatively large amount of 
memory per core 

CMS: Compact Muon Solenoid experiment at CERN’s LHC 

CMSSW: Physical toolset software for the CMS experiment at CERN 

CNN: Convolutional Neural Networks 
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CPU: Central Processing Unit 

 

D 
D: Deliverable, followed by a number, term to designate a 

deliverable (document) in the DEEP-EST project 

DAM: Data Analytics Module: with nodes (DN) based on general-
purpose processors, a huge amount of (non-volatile) memory per 
core, and support for the specific requirements of data-intensive 
applications 

DBSCAN: Density-based Spatial Clustering for Applications with Noise  

DCDB: Data Centre Data Base (a tool developed in DEEP) 

DCPMM: Intel Optane DC Persistent Memory Module, a 

non-volatile/persistent memory in DDR4 DIMM form factor 

DDG: Design and Developer Group of the DEEP-EST project 

DDR: Double Data Rate 

DDR4: Double Data Rate fourth-generation 

DEEP: Dynamical Exascale Entry Platform (project FP7-ICT-287530) 

DEEP-ER: DEEP - Extended Reach (project FP7-ICT-610476) 

DEEP-EST: DEEP - Extreme Scale Technologies 

DIMM: Dual In-line Memory Module  

DL: Deep Learning 

DLMOS: A Deep Learning Model of the Solar Wind to forecast the plasma 
conditions at the orbit of the Earth from images of the Sun 
developed by KU Leuven 

DNN: Deep neural network 

DRAM: Dynamic Random Access Memory. Typically describes any form 
of high capacity volatile memory attached to a CPU 

 

 

E 
EC: European Commission 
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EEP: European Exascale Projects 

ESB: Extreme Scale Booster: with highly energy-efficient many-core 
processors as Booster Nodes (BN), but a reduced amount of 
memory per core at high bandwidth 

EU:  European Union 

Exascale:  Computer systems or Applications, which are able to run with a 
performance above 1018 Floating point operations per second 

EXTOLL: High speed interconnect technology for HPC developed by UHEI 

Extrae: Performance analysis tool developed by BSC 

 

F 
Fabri3: Interconnect technology based on EXTOLL (pron. “Fabri-Cube”) 

FFT: Fast Fourier Transform 

Flop/s: Floating point operation per second 

FP7: European Commission 7th Framework Programme 

FPGA: Field-Programmable Gate Array, Integrated circuit to be 
configured by the customer or designer after manufacturing 

FTI: Fault Tolerant Interface, a checkpoint/restart library 

 

G 
GB/s: Gigabyte per second, 109 Byte transfer rate 

GbE: Gigabit Ethernet, 109 Bit transfer rate 

GFlop/s: Gigaflop, 109 Floating point operations per second 

GFlop/w: Giga (109) Floating point operations per second per Watt, or 
alternatively: Giga Floating point operations per Joule  

GPFS: IBM General Parallel File System 

GPU: Graphics Processing Unit 

GROMACS: A toolbox for molecular dynamics calculations providing a rich set 
of calculation types, preparation and analysis tools 
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H 
H2020: Horizon 2020 

HPC: High Performance Computing 

HPDA: High Performance Data Analytics 

HPDBSCAN: A clustering code formerly used by UoI in the field of Earth 

Science 

 

I 
IB: see InfiniBand 

InfiniBand: A networking communication standard for HPC clusters 

Intel: Intel Germany GmbH, Feldkirchen, Germany 

I/O: Input/Output. May describe the respective logical function of a 
computer system or a certain physical instantiation 

IP: Intellectual Property 

 

J 
JUELICH: Forschungszentrum Jülich GmbH, Jülich, Germany 

 

K 
KNL: Knights Landing, second generation of Intel® Xeon PhiTM 

KU Leuven: Katholieke Universiteit Leuven, Belgium 

 

L 
LHC: Large Hadron Collider (LHC), the world’s most powerful 

accelerator providing research facilities for High Energy Physics 
researchers across the globe 

LOFAR: Low-Frequency Array, an instrument for performing radio 
astronomy built by ASTRON 
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M 
MB: Mega Bytes 

Megware: Megware Computer Vertrieb und Service GmbH, Chemnitz, 
Germany 

ML: Machine Learning 

MPI: Message Passing Interface, API specification typically used in 
parallel programs that allows processes to communicate with one 
another by sending and receiving messages 

MPICH: MPI implementation maintained by Argonne National Laboratory 

MSA: Modular Supercomputer Architecture 

MT: Multi-Threading  

MUSIC: Multisimulation Coordinator (MPI-based library for coupled 
codes) 

 

N 
NCSA: National Centre for Supercomputing Applications, Bulgaria 

NEST: Widely-used, publically available simulation software for spiking 
neural network models developed by NMBU. 

NextDBSCAN: A next generation, accelerator enabled parallel clustering code 
developed by UoI with applications in the field of Earth Science 

NextSVM: A next generation, accelerator enabled parallel classification 
algorithm by UoI with applications in the field of Earth Science 

NMBU: Norwegian University of Life Sciences, Norway 

NN: Neural Network 

NVM: Non-Volatile Memory. Used to describe a physical technology or 
the use of such technology in a non-block-oriented way in a 
computer system 

NVMe: Non-Volatile Memory Express interface and protocol 

 

NVRAM: Non-Volatile Random-Access Memory 
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O 
OmpSs: BSC’s Superscalar (Ss) for OpenMP 

OpenCL: Open Computing Language, framework for writing programs that 
execute across heterogeneous platforms 

OpenMP: Open Multi-Processing, Application programming interface that 
support multiplatform shared memory multiprocessing 

Open MPI: MPI implementation maintained by the Open MPI Project 

OS: Operating System 

 

P 
ParaStation Modulo: Software for cluster management and control developed 

by JUELICH and its linked third party ParTec 

Paraver: Performance analysis tool developed by BSC 

ParTec: ParTec Cluster Competence Center GmbH, Munich, Germany. 
Linked third Party of JUELICH in DEEP-EST 

PCIe: Peripheral Component Interconnect Express; a bus that is often 
used to connect CPUs to GPUs, network devices, etc. 

PCIe3: Peripheral Component Interconnect Express third-generation 

PDU: Power Distribution Unit 

PFlop/s: Petaflop, 1015 Floating point operations per second 

Phi: see Xeon Phi 

piSVM: Parallel classification algorithm formerly used by UoI 

PME: Particle mesh Ewald 

PMT: Project Management Team of the DEEP-EST project 

POSIX: Portable Operating System Interface 

PRACE: Partnership for Advanced Computing in Europe (EU project, 
European HPC infrastructure) 

PSU:  Power Supply Unit 

 

Q 
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R 
RAID: Redundant Array of Inexpensive Disks 

RAM: Random-Access Memory 

RDMA: Remote Direct Memory Access 

RM: Resource Manager 

 

S 
SIMD: Single Instruction Multiple Data 

SIONlib: Parallel I/O library developed by Forschungszentrum Jülich 

SKA: Square Kilometer Array 

Slurm: Job scheduler that will be used and extended in the DEEP-EST 
prototype 

SMP: Symmetric Multi-Processing 

SSD: Solid-State Drives 

SSSM: Scalable Storage Service Module 

SVM: Support Vector Machine 

 

T 
TCP: Transmission Control Protocol; a reliable, stream-based network 

protocol 

TensorFlow: Open-source software library for dataflow programming 

TFlops: Teraflop, 1012 Floating point operations per second 

Tk: Task, Followed by a number, term to designate a Task inside a 
Work Package of the DEEP-EST project 

 

U 
UDP:  User Datagram Protocol; an unreliable, packet-based network 

protocol 
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UEDIN: University of Edinburgh, UK 

UHEI: Ruprecht-Karls-Universitaet Heidelberg, Germany 

UoI: Háskóli Íslands – University of Iceland, Iceland 

V 

W 
WP: Work package 

 

X 
x86: Family of instruction set architectures based on the Intel 8086 

CPU 

Xeon: Non-consumer brand of the Intel®x86 microprocessors (TM)
  

Xeon Phi: Brand name of the Intel®x86 manycore processors (TM) 

xPic: Programming code developed by partner KU Leuven to simulate 
space weather 
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