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Graphs, permutations and topological groups
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Abstract. Various connections between the theory of permutation groups and the theory
of topological groups are described. These connections are applied in permutation group
theory and in the structure theory of topological groups.
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Introduction

The aim of this paper is to discuss various links between permutation groups,
graphs and topological groups. The action of a group on a set can be used to
define a topology on the group, called the permutation topology. The earliest
references for this topology are the paper [46] by Maurer and the paper [38] by
Karrass and Solitar. This topology opens up the possibility of applying concepts
and results from the theory of topological groups in permutation group theory.
One can also go the other way and apply ideas from permutation group theory
to problems about topological groups. In particular, some simple constructions of
graphs, that are commonly used in permutation group theory, can be applied.

In the first section we discuss the languages we use, when working with graphs
and permutation groups.

In Section 2 we look at the definition of the permutation topology and consider
applications of the theory of topological groups to questions about permutation
groups. The main result in this section is a theorem of Schlichting from [62].
This is a theorem about permutation groups, but Schlichting’s proof uses notions
from functional analysis and result of Iwasawa [37] about topological groups. Here
we present a proof using concepts from permutation group theory and Iwasawa’s
Theorem.

In the third and fourth sections we discuss applications of techniques and ideas
from permutation groups theory and graph theory to the theory of topological
groups.

In Section 3 Willis’ structure theory of totally disconnected locally compact
groups is in the limelight. Willis’ paper [76] helped spark a new interest in totally
disconnected locally compact groups. Later work by Willis and others has shown
that the concepts of the theory have many applications and are open to various
interpretations. Most of the material in this section comes from the paper [50],
where the basics of Willis’ theory are given a graph theoretic interpretation.

http://arxiv.org/abs/1008.3062v2
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In the fourth and last section we discuss an analogue of a Cayley graph, called
a rough Cayley graph, that one can construct for a compactly generated, totally
disconnected, group. The rough Cayley graph is defined in Section 4.1. In that
section, it is also shown that this graph is a quasi-isometry invariant of the group.
In the latter parts of Section 4, it is shown how one uses rough Cayley graphs, by
developing an analogue of the theory of ends of groups and the theory of groups
with polynomial growth.

There are various other topics, that should be discussed in a survey like this.
The study of random walks on groups and graphs is another place where graphs,
permutations and topological groups meet. The book by Woess [84] is an excellent
introduction to this field. Another meeting place for graphs, permutations and
topological groups is the theory of groups acting on trees. In particular, one could
mention the theory of harmonic analysis and representation theory of groups acting
on trees, see the book by Figà-Talamanca and Nebbia [27] and the theory of tree
lattices, see the book by Bass and Lubotzky [4]. Then there is the topic of generic
elements and subgroups, see the papers [7, 8] by Bhattacharjee and the paper [2] by
Abert and Glasner. And then I have not even mentioned the manifold appearances
of our trio of graphs, permutations and topology in model theory. Describing all
these topics would have meant a book length paper.

1. Languages for graphs and permutation groups

1.1. A language for graphs. We will discuss both undirected graphs, or just
graphs, and directed graphs, called in this paper digraphs.

Our undirected graphs are without loops and multiple edges. Thus one can
think of a (undirected) graph Γ as an ordered pair (V Γ, EΓ) where V Γ is a set and
EΓ is a set of two element subsets of V Γ. The elements of V Γ are called vertices
and the elements of EΓ are called edges.

Vertices α and β in a graph Γ are said to be neighbours, or adjacent, if {α, β}
is an edge in Γ. The valency of a vertex is the number of its neighbours. A graph,
all of whose vertices have finite valency, is called locally finite. For vertices α and β
of the graph, a walk of length n from α to β is a sequence α = α0, α1, . . . , αn = β
of vertices, such that αi and αi+1 are adjacent for i = 0, 1, . . . , n − 1. A walk,
all of whose vertices are distinct, is called a path. A ray in a graph is a sequence
α0, α1, . . . of distinct vertices such that αi is adjacent to αi+1 for all i. A graph is
connected if for any two vertices α and β there is a walk from α to β. Let d(α, β)
denote the length of a shortest walk from a vertex α to a vertex β. For a connected
graph, the function d is a metric on its set of vertices. Let A be a set of vertices of
Γ. The subgraph of Γ spanned by A is the graph whose vertex set is A, and whose
edge set is the set of all edges in Γ whose end vertices are both in A. We say that
a set of vertices A is connected, if the subgraph spanned by A is connected. The
connected components (or just components) of a graph are the maximal connected
sets of vertices.

We define a digraph Γ to be a pair (V Γ, EΓ) where V Γ is a set and EΓ is a set of
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ordered pairs of distinct elements of V Γ, i.e. EΓ ⊆ (V Γ×V Γ)\ {(α, α) | α ∈ V Γ}.
An edge (α, β) may be thought of as an “arrow” starting in α and ending in β.
The in-valency of a vertex α in Γ is the number of edges of the type (β, α) (number
of edges going “in to” α) and the out-valency of a vertex α is the number of edges
(α, β) that go “out of” α. A digraph is said to be locally finite if every vertex has
finite in- and out-valencies.

One can “forget” the directions of edges in Γ and define an undirected graph
Γ with the same vertex set and two vertices α and β adjacent if and only if (α, β)
or (β, α) is an edge in the digraph Γ.

A walk in a digraph Γ is a sequence α0, . . . , αn such that (αi, αi+1) or (αi+1, αi)
is an edge in Γ for i = 0, . . . , n − 1. (That is to say, α0, . . . , αn is a walk in the
undirected graph Γ associated to Γ.) An arc, more specifically an n-arc, is a
sequence α0, . . . , αn of distinct vertices such that (αi, αi+1) is an edge in Γ for
i = 0, . . . , n − 1. Arcs are sometimes referred to as directed paths. The set of
descendants of a vertex α is defined as the set

desc(α) = {β ∈ V Γ | there exists an arc from α to β}.

The set desck(α) is defined as the set of all vertices β such that the shortest arc
from α to β has length k. The set of ancestors of a vertex α, denoted anc(α), is
defined as the set of all vertices β such that α ∈ desc(β), i.e. β ∈ anc(α) if and
only if there exists an arc from β to α.

Finally, we review the definition of a Cayley graph of a group. Let G be a group
and S a subset of G. The (undirected) Cayley graph Cay(G,S) of G with respect
to S has G as the vertex set and {g, h} is an edge if h = gs or h = gs−1 for some s
in S. The Cayley graph Cay(G,S) is connected if and only if S generates G. The
left regular action of G on itself gives a transitive action of G as a group of graph
automorphisms on Cay(G,S).

It is common to define the Cayley graph of a group G with respect to a subset
S of G as the digraph with vertex set G and set of directed edges the collection
of all ordered pairs (g, gs) for g in G and s in S. In these notes, however, it is
convenient to think of Cayley graphs as being undirected.

1.2. A language for permutation groups. In this section G is a group acting
on a set Ω. The image of a point α ∈ Ω under an element g ∈ G will be written
gα. The group of all permutations of a set Ω is called the symmetric group on Ω
and is denoted by Sym(Ω).

The action of G on Ω induces a natural homomorphisms G→ Sym(Ω). If this
homomorphism is injective, then the group G is said to act faithfully on Ω. A
group G which acts faithfully on a set Ω can be regarded as a subgroup of Sym(Ω),
and then we say that G is a permutation group on Ω.

An action is said to be transitive, if for every two points α, β ∈ Ω there is some
element g ∈ G such that gα = β. For a point α ∈ Ω, the subgroup

Gα = {g ∈ G | gα = α}
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is called the stabilizer in G of the point α. The pointwise stabilizer G(∆) of a subset
∆ of Ω is defined as the subgroup of all the elements in G that fix every element
of ∆, that is,

G(∆) = {g ∈ G | gδ = δ for every δ ∈ ∆} =
⋂

δ∈∆

Gδ.

The setwise stabilizer G{∆} of ∆ is defined as the subgroup consisting of all ele-
ments of G that leave ∆ invariant, that is,

G{∆} = {g ∈ G | g∆ = ∆}.

The G-orbit, or, simpler orbit, of a point α is the set {gα | g ∈ G}.
Suppose U is a subgroup of G. The group G acts on the set G/U of right cosets

of U , and this action is transitive. The image of a coset hU under an element g ∈ G
is (gh)U . Conversely, if G acts transitively Ω and α is a point in Ω, then Ω can
be identified with G/Gα. Here “identified” means that there is a bijective map
θ : Ω → G/Gα such that for every ω ∈ Ω and every element g ∈ G we have
θ(gω) = gθ(ω).

The orbits of stabilizers of points in Ω are called suborbits, that is, the suborbits
are sets of the form Gαβ where α, β ∈ Ω. Orbits of G on the set of ordered pairs
of elements from Ω are called orbitals. When G is transitive on Ω one can, for
a fixed point α ∈ Ω, identify the suborbits of Gα with the orbitals: the suborbit
Gαβ is identified with the orbital G(α, β). The number of elements in a suborbit
Gαβ, often called the length of the suborbit, is given by the index |Gα : Gα ∩Gβ |.
The number of elements in the orbit Uβ of a subgroup U is equal to the index
|U : U ∩Gβ |.

Next, we define a digraph, whose vertex set is Ω and whose edge set is the
union of G-orbitals, and call it the directed orbital graph of the action. The action
of G on its vertex set Ω induces an action of G as a group of automorphisms on
the directed orbital graph Γ, because if (α, β) is an edge in Γ then (gα, gβ) is in
the same orbital as (α, β) and therefore also an edge in Γ. Similarly, we define the
undirected orbital graph of a G-action on a set Ω as a graph whose vertex set is Ω
and whose edge set is the union of G-orbits on the set of two element subsets of Ω.

A block of imprimitivity for G is a subset ∆ of Ω such that for every g ∈ G,
either g∆ = ∆ or ∆ ∩ (g∆) = ∅. The existence of a non-trivial proper block of
imprimitivity ∆ (non-trivial means that |∆| > 1 and proper means that ∆ 6= Ω) is
equivalent to the existence of a non-trivial proper G-invariant equivalence relation
∼ on Ω. If there is no non-trivial proper G-invariant equivalence relation on Ω
we say that G acts primitively on Ω. In most books on permutation groups it is
shown that, if G acts transitively on Ω then G acts primitively on Ω if and only if
Gα is a maximal subgroup of G for every α ∈ Ω. Part of the proof of this fact is to
show that if Gα < H < G then Hα is a non-trivial proper block of imprimitivity.
A further useful fact is that if N is a normal subgroup of G, then the orbits of N
on Ω are blocks of imprimitivity for G.

Recent books covering this material are [9], [12] and [18].
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2. The permutation topology

2.1. Definition of the permutation topology. Let G be a group acting on a
set Ω. The action can be used to introduce a topology on G. The topology of a
topological group is completely determined by a neighbourhood basis of the identity
element. The permutation topology on G is defined by choosing as a neighbourhood
basis of the identity the family of pointwise stabilizers of finite subsets of Ω, i.e. a
neighbourhood basis of the identity is given by the family of subgroups

{G(Φ) | Φ is a finite subset of Ω}.

A sequence (gi) of elements in G has an element g ∈ G as a limit if and only if
for every α ∈ Ω there is a number N (depending on α) such that gnα = gα for
every n ≥ N . There are other ways to define the permutation topology. Think of
Ω as having the discrete topology and elements of G as maps Ω → Ω. Then the
permutation topology is equal to the topology of pointwise convergence, and it is
also the same as the compact-open topology.

The basic idea is that two permutations g and h are “close” to each other if
they agree on “many” points. If the set Ω is countable, then the permutation
topology can be defined by a metric, here is one way to do that.

Enumerate the points in Ω as α1, α2, . . .. Take two elements g, h ∈ G. Let n be
the smallest number such that gαn 6= hαn or g−1αn 6= h−1αn. Set d(g, h) = 1/2n.
Then d is a metric on G that induces the permutation topology.

From the definition of the permutation topology we can immediately charac-
terize open subgroups in G:

A subgroup of G is open if and only if it contains the pointwise stabilizer of
some finite set of points.

Various properties of the action of G on Ω are reflected by properties of this
topology on G.

The permutation topology on G is Hausdorff if and only if the action of G on Ω
is faithful. Moreover, G is totally disconnected if and only if the action is faithful.

Remark. In general we do not assume that our topological groups are Hausdorff,
but note that totally disconnected groups are always Hausdorff.

We say that a group G acting on Ω is a closed if it is image in Sym(Ω) is a
closed subgroup, where Sym(Ω) has the permutation topology. Closed permutation
groups can be characterized in the following way, see [11, Section 2.4].

Proposition 2.1. A permutation group G on a set Ω is closed if and only if G is
the full automorphism group of some first order structure on Ω.

A first order structure on Ω is a collection of:

• constants that belong to Ω,

• functions defined on Ω and taking their values in Ω,
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• relations defined on Ω.

It is easy to show that the automorphism group of such a structure is closed. To
prove the converse, one uses the concept of the canonical relational structure on Ω
such that for n = 1, 2, . . . we get one n-ary relation for each orbit of G on n-tuples
of Ω. If G is a closed permutation group on Ω, then G is the full automorphism
group of this structure.

For those actions that are not faithful, we say that G is closed in the permu-
tation topology if the image of G in Sym(Ω) under the natural homomorphism is
closed. This condition is equivalent to the condition that stabilizers of points are
closed subgroups of G.

Compactness (note that in this work the term compact does not include the
Hausdorff condition) has a natural interpretation in the permutation topology. A
subset of a topological space is said to be relatively compact if it has compact clo-
sure. The following lemma slightly generalizes a result by Woess for automorphism
groups of locally finite connected graphs, and the proof is the same as Woess’ proof.

Lemma 2.2. ([83, Lemma 1 and Lemma 2]) Let G be a group acting transitively
on a set Ω and endow G with the permutation topology. Assume that G is closed
in the permutation topology and that all suborbits are finite.

(i) The stabilizer Gα of a point α ∈ Ω is compact.

(ii) A subset A of G is relatively compact in G if and only if the set Aα is finite
for every α in Ω.

Furthermore, if A is a subset of G and Aα is finite for some α ∈ Ω then Aα is
finite for every α in Ω.

Proof. (i) Let K denote the kernel of the action of G on Ω. Every open neigh-
bourhood of the identity will contain K and thus K is compact. Because Gα is
closed we see that K ∩ Gα is compact. In order to show that Gα is compact it
is thus enough to show that Gα/(K ∩ Gα) is compact. The group Gα/(K ∩ Gα)
acts faithfully on Ω and the quotient topology on Gα/(K ∩Gα) is the same as the
permutation topology induced by the action on Ω. We may thus assume that Gα

acts faithfully on Ω.

Let (Ωi)i∈I denote the family ofGα-orbits on Ω. LetHi denote the permutation
group induced by Gα on Ωi. Since, each Ωi is finite, then each groupHi is finite and
discrete in permutation topology. Set H =

∏
i∈I Hi, the full Cartesian product.

Note that Ω is the disjoint union of the Ωi’s and that H has a natural action on
Ω. The permutation topology on H induced by the action on Ω is the same as the
product topology. Thinking of Gα and H as subgroups of Sym(Ω) we see that Gα

is a closed subgroup of the compact subgroup H and is thus compact.

(ii) Suppose that A−, the closure of A in G, is compact. Then for a point α ∈ Ω
there is a finite open covering of A− by sets of the type gGα; that is to say, we can
find g1, . . . , gn ∈ G such that A− ⊆

⋃n
i=1 giGα. Then Aα ⊆ {g1α, . . . , gnα}.

Conversely, suppose that Aα = {α1, . . . , αn}. Let gi be an element in A such
that giα = αi. Then A ⊆

⋃n
i=1 giGα. The latter set is compact, so the closure of

A is compact.
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Lemma 2.2 implies that if G is a closed transitive permutation group on a
countable set Ω such that all suborbits are finite then G, with the permutation
topology, is a locally compact, totally disconnected group. In particular, the au-
tomorphism group of a locally finite, transitive graph is a locally compact, totally
disconnected group.

A subgroup H in a topological group G is said to be cocompact if G/H is
a compact space. This concept has also a natural interpretation in terms of the
permutation topology.

Lemma 2.3. ([55, Proposition 1], cf. [50, Lemma 7.5]) Let G be a group acting
transitively on a set Ω. Assume that G is closed in the permutation topology and
all suborbits are finite. Then a subgroup H of G is cocompact if and only if H has
finitely many orbits on Ω.

Proof. Suppose first that H is cocompact. This means that both the spaces of
right and left cosets of H in G are compact. Let X denote the set of right cosets
of H in G. The quotient map π : G→ X is open. The family of cosets {gGα}g∈G

is an open covering of G and hence {π(gGα)}g∈G is an open covering of X . Since
X is compact, there is a finite subcovering π(g1Gα), . . . , π(gnGα) of X . Then
G = Hg1Gα ∪ . . . ∪HgnGα and therefore Ω = H(g1α) ∪ . . . ∪H(gnα).

Conversely, suppose that H has only finitely many orbits on Ω, say there are
elements g1, . . . , gn such that Ω = H(g1α)∪ . . .∪H(gnα). Then G = Hg1Gα∪ . . .∪
HgnGα and X = π(g1Gα) ∪ . . . ∪ π(gnGα). Each of the sets π(g1Gα) is compact.
Hence X , the set of right cosets of H in G, is compact, because it is a union of
finitely many compact sets.

Ideas from permutation group theory and the permutation topology can be
applied to the study of a topological group G. For an open subgroup U we set Ω =
G/U , the space of left cosets. The stabilizers inG of points in Ω are conjugates of U ,
and thus also open subgroups of G. The stabilizer of a finite set Φ = {α1, . . . , αn}
of points is just the intersection of the open subgroups Gα1

, . . . , Gαn
and is thus

open in G. From this we see that the permutation topology coming from the action
of G on Ω is contained in the topology on G. If the topological group G is assumed
to be a totally disconnected and locally compact, then we can choose U to be a
compact open subgroup of G (by a theorem of van Dantzig [14]). In particular,
the stabilizers in G of points in Ω are all compact (they are conjugates of U). The
second part of Lemma 2.2 above also holds for the action of G on Ω, so a subset A
of G has compact closure if and only if Aα is finite for every α ∈ Ω. This implies
that |Gαβ| <∞ for all points α and β in Ω. This is because |Gαβ| = |Gα : Gα∩Gβ |
and this index is finite because Gα∩Gβ is an open subgroup of the compact group
Gα.

2.2. Suborbits and the modular function. In this section the general as-
sumption will be that G is a closed permutation group acting on a set Ω and that
all suborbits of the group G are finite.
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Under the above assumptions the group G is a locally compact, totally discon-
nected group. In this section we want to interpret the modular function on G in
terms of the action of G on Ω. The connection between suborbits and the modular
function can be seen from the following argument due to Schlichting [61], see also
[70].

Let µ be a right Haar-measure on G. Define the modular function ∆ so that if
A is a measurable set then µ(gA) = ∆(g)µ(A).

Lemma 2.4. ([61, Lemma 1], cf. [70, Theorem 1])) Let G be a closed, transitive
permutation group on a set Ω. Assume furthermore that all suborbits of G are
finite. Let ∆ denote the modular function on G. If h is an element in G with
hα = β then

∆(h) =
|Gβα|

|Gαβ|
=

|Gα : Gα ∩ h−1Gαh|

|Gα : Gα ∩ hGαh−1|
.

Proof. Then, with µ denoting the right Haar-measure on G,

| Gβα | =| Gβ : Gα ∩Gβ |

= µ(Gβ)/µ(Gα ∩Gβ)

= µ(hGαh
−1)/µ(Gα ∩Gβ)

= ∆(h)µ(Gα)/µ(Gα ∩Gβ)

= ∆(h) | Gα : Gα ∩Gβ |

= ∆(h) | Gαβ | .

And we see that ∆(h) = |Gβα|/|Gαβ|.

Remark. Let G be a locally compact, Hausdorff group with modular function
∆. Assume G acts transitvely on a set Ω such that the stabilizers of points are
compact open subgroups of G. The calculation in the proof of Lemma 2.4 is also
valid in this case and thus the conclusion in Lemma 2.4 holds also.

For an orbital A = G(α, β) we define the paired orbital as the orbital A∗ =
G(β, α). This pairing of orbitals also gives us a pairing of suborbits, where the
suborbit Gαβ is paired to a suborbit Gαγ where γ is a point in Ω such that (α, γ)
is in G(β, α). Denote by Γ the directed orbital graph for the orbital G(α, β). The
size of the suborbit Gαβ is the out-valency of Γ and the size of the paired suborbit
Gαγ is the in-valency of Γ. Using Lemma 2.4, we obtain the following proposition.

Proposition 2.5. ([70, Theorem 1]) Let G be a closed, transitive permutation
group on a set Ω. Assume that all suborbits of G are finite. Then the lengths of
paired suborbits are always equal if and only if G is unimodular.

Using that the modular function is a homomorphism, we obtain the following.
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Corollary 2.6. Let G be a closed, transitive permutation group on a set Ω. Let
K = ker(∆). Then

(a) If α ∈ Ω then Gα ≤ K.
(b) Let G′ be the derived group of G. Then G′ ≤ K.
(c) If g is an torsion element of G then g ∈ K.

Proof. Follows directly from the definitions and the fact that G/K is isomorphic
to a multiplicative subgroup of the positive real numbers.

Corollary 2.7. Let G be a closed, transitive permutation group on a set Ω. As-
sume that all suborbits of G are finite. If G is also primitive, then paired suborbits
have equal length.

Proof. Let K = ker(∆). Then, because G is primitive and K is normal in G, we
know that either K = {e} or K is transitive. If K = {e} then G is abelian and
must in fact be trivial. If K is transitive then the result of Lemma 2.4 implies that
lengths of paired suborbits are equal.

For a long time it was an open question, posed by Peter M. Neumann, whether
one could have a group acting primitively on a set Ω with a finite suborbit paired
to an infinite one. Such examples were constructed by David M. Evans in [26].

Consider a connected graph Γ and assume that G is a closed subgroup of Aut(Γ)
that acts transitively on Γ and that all suborbits are finite. For convenience we
think of each undirected edge {α, β} in Γ as consisting of two directed edges (α, β)
and (β, α). Each directed edge e = (α, β) will be labeled by a number

∆e =
|Gβα|

|Gαβ|
.

Observe that ∆(α,β) = ∆−1
(β,α). Furthermore, note that if g is an element of G

such that gα = β and e = (α, β) then ∆(g) = ∆e. Suppose g is an element of
G and gα = γ and that there is a vertex β in X such that (α, β) and (β, γ) are
edges in X . Find elements g1 and g2 in G such that g1α = β and g2β = γ. Then
gα = g2g1β and from the formula above for the modular function we can deduce
that ∆(g) = ∆(g2g1). We also find that

∆(g) = ∆(g2g1) = ∆(g2)∆(g1) = ∆(β,γ)∆(α,β).

This can be extended to directed walks of arbitrary length, so that if gα = β then
we take a directed walk from α to β, enumerate the edges in the walk as e1, . . . , ek
and then

∆(g) = ∆e1 · · ·∆ek .

Hence the labeled graph completely describes the modular function on G. This
idea can be found in the paper [3] by Bass and Kulkarni.



10 Rögnvaldur G. Möller

Suppose now not only that all the suborbits of G are finite but also that there
is a finite upper bound m on their length. In that case, Lemma 2.4 implies that
the image of the modular function is a bounded set. The image of the modular
function is a bounded subgroup of the multiplicative group of positive real numbers
and is thus the trivial subgroup. Hence G is unimodular. We have deduced the
following unpublished result of Praeger.

Corollary 2.8. Let G be a closed, transitive permutation group on a set Ω such
that all suborbits of G are finite. If there is a finite bound on the length of suborbits,
then paired suborbits have equal length.

The next result, also due to Praeger [59], uses the modular function to infer
information about graph structure. The directed integer graph Z has the set of
integers as a vertex set and the edge set is the set of all ordered pairs (n, n+ 1).

Theorem 2.9. ([59]) Let Γ be an infinite, connected, vertex and edge transitive
directed graph with finite but unequal in- and out-valence. Then there is a graph
epimorphism ϕ from Γ to the directed integer graph Z. For each i ∈ Z, the inverse
image ϕ−1(i) is infinite.

Proof. Write G = Aut(Γ). Let q = d−/d+ where d+ is the out-valence of Γ and d−

is the in-valence of Γ. Consider an edge (α, β) in Γ. Because G acts transitively
on the edges of Γ we can conclude that |Gαβ| = d+ and |Gβα| = d− and hence if
gα = β then ∆(g) = d−/d+. Using the graph Γ to calculate the modular function
in a similar way as described above we conclude that for every element g ∈ G there
is an integer i such that ∆(g) = qi. Hence, if K denotes the kernel of the modular
function then G/K = Z. Fix a vertex α0 in Γ and define a map ϕ : V Γ → Z so
that ϕ(β) = i if there is an element g in G such that gα0 = β and ∆(g) = qi. It is
clear that the choice of g is immaterial. From the way one uses Γ to calculate the
modular function we see that if (α, β) is an edge in Γ then ϕ(β) = ϕ(α) + 1 which
implies that ϕ is a homomorphism from Γ to the directed integer graph.

Assume now, seeking contradiction, that ϕ−1(i) is finite for some i. Note that
the fibers of ϕ are just the orbits of the kernel of the modular homomorphism and
are thus blocks of imprimitivity for G. Hence, all the fibers of ϕ have the same
cardinality, say k. The number of edges going out of ϕ−1(0) is d+k and the number
of edges going into ϕ−1(1) is d−k. But, both these numbers should be equal to the
number of edges going from ϕ−1(0) to ϕ−1(1) and because we are assuming that
d− 6= d+ we have a contradiction.

(A similar proof of Praegers result is in a paper by Evans [25].)

Remark. In the next section highly arc transitive digraphs are discussed. A di-
graph Γ satisfying the conditions in Theorem 2.9 need not be highly arc transitive,
but it is easy to show that if d+ and d− are coprime, then Γ must be highly arc
transitive.

The next result we discuss, is a remarkable theorem of Schlichting [62].



Graphs, permutations, and topological groups 11

Theorem 2.10. ([62]) Let G be a group acting transitively on a set Ω. Then there
is a finite bound on the sizes of suborbits of G if and only if there is a G-invariant
equivalence relation ∼ on Ω with finite classes, such that the stabilizers of points
in the action of G on Ω/ ∼ are finite.

While this is a theorem about permutation groups, Schlichting’s proof utilizes
various concepts from functional analysis and a theorem of Iwasawa [37, Theo-
rem 1]. Later Theorem 2.10 was rediscovered by Bergman and Lenstra [10], who
gave a group theoretical/combinatorial proof.

The theorem of Iwasawa that Schlichting uses in his proof of Theorem 2.10 is
about the relationship between the classes [IN] and [SIN] of topological groups.

Definition 2.11. A locally compact group is said to be in the class [IN] if there is
a compact neighbourhood K of the identity (i.e. K contains an open set containing
the identity) that is invariant under conjugation by elements in G.

A locally compact group is said to be in the class [SIN] if every neighbourhood
of the identity contains a compact neighbourhoodK of the identity that is invariant
under conjugation by elements in G.

Let us start by relating these two properties to the permutation topology.

Proposition 2.12. Let G be a transitive permutation group on a set Ω and assume
that all suborbits are finite. Then G with the permutation topology is in the class
[IN] if and only if there is a finite bound on the sizes of suborbits.

Proof. First assume that G is in the class [IN]. Suppose α, β ∈ Ω. We want to
find a constant upper bound, independent of α and β, for the size of the suborbit
Gαβ. Let K be a compact neighbourhood of the identity that is invariant under
conjugation. Since K contains an open neighbourhood of the identity we can find
a finite set Φ such that G(Φ) ⊆ K. Choose a point γ in Ω. Because K is compact,
|Kγ| = m < ∞. Let k be an upper bound for the indices |Gδ : G(Φ)| ≤ k with
δ ∈ Φ. Find an element f ∈ G such that fβ = γ and set α′ = fα. Whence
|Gαβ| = |Gα′γ|. Then we find an element h such that α′ ∈ hΦ. Note that
G(hΦ) = hG(Φ)h

−1. Since K is invariant under conjugation and G(Φ) ⊆ K, we
conclude that G(hΦ) ⊆ K. Therefore |G(hΦ)α| ≤ |Kα| = m. We also know that
|Gα′ : G(hΦ)| ≤ k and thus |Gαβ| = |Gα′γ| ≤ k|G(hΦ)γ| ≤ km. Hence km is an
upper bound for the size of suborbits of G.

Conversely, assume that there is an upper bound m on the sizes of suborbits.
For a finite subset Φ of Ω we let m(Φ) denote the size of the largest orbit of G(Φ).
We choose a finite subset Φ such that m0 = m(Φ) is as small as possible. Define
A =

⋃
g∈G gG(Φ)g

−1. Clearly, the set A is open and invariant under conjugation
by elements of G. We claim that A is relatively compact. By Lemma 2.2(ii),
we only need to show that Aα is finite for some α ∈ Ω. Choose α ∈ Ω such
that |G(Φ)α| = m(Φ). For this α we will show that |Aα| ≤ m. Arguing by
contradiction, suppose |Aα| ≥ n > m(Φ). Take f1, . . . , fn ∈ A such that the
elements f1α, . . . , fnα are all distinct. Since f1, . . . , fn ∈ A =

⋃
g∈G gG(Φ)g

−1,

we can find elements g1, . . . , gn ∈ G such that fi ∈ giG(Φ)g
−1
i = G(giΦ). Write
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Φi = giΦ and set E = {f1α, . . . , fnα} ∪ Φ1 ∪ · · · ∪ Φn. Then m(E) = m0. Let
∆ denote a G(E)-orbit of size m0. Note that ∆ is also a G(Φi)-orbit. Choose an
element δ ∈ ∆. There is for each i = 1, . . . , n an element hi ∈ G(E) such that

hiδ = fiδ and therefore h−1
i fi ∈ Gδ. But h

−1
i fiα = fiα and we can conclude that

|Gδα| ≥ n > m contrary to assumptions. (The above argument is related to the
proof of Theorem 2.10 by Bergmann and Lenstra [10], but this version is from a
lecture course given by Peter M. Neumann in Oxford 1988–1989.)

Proposition 2.13. Let G be a transitive permutation group on a set Ω and assume
that all suborbits are finite. Then G with the permutation topology is in the class
[SIN] if and only G is discrete (i.e. the stabilizers of points are finite).

Proof. It is obvious that if G is discrete then G is in [SIN].
Let us now assume that G is in [SIN]. Then, if α denotes a point in Ω, the open

subgroup Gα contains a compact neighbourhood K of the identity that is invariant
under conjugation. Then for g ∈ G we see that K = gKg−1 ⊆ gGαg

−1 = Ggα

and thus K ⊆
⋂

g∈G gGαg
−1 =

⋂
g∈GGgα. Because G is assumed to be transitive

we conclude that K fixes every point of Ω. But we are also assuming that G acts
faithfully on Ω so K = {e} and G is discrete.

The theorem of Iwasawa mentioned above says that if a locally compact group
is in the class [IN] then there is a compact normal subgroup N such that G/N is
in the class [SIN].

Proof. (Theorem 2.10) Assume that there is a finite upper bound on the sizes of
suborbits of G. By Proposition 2.12 the group G is in the class [IN]. Iwasawa’s
Theorem gives us a compact, normal subgroup N of G such that G/N is in [SIN].
The orbits of the normal subgroup N are the classes of a G-invariant equivalence
relation ∼ on Ω and because N is compact these classes are all finite. The group
H = G/N certainly is in [SIN], but it is not certain that H acts faithfully on
Ω′ = Ω/ ∼ so we can not apply Proposition 2.13 directly. Note that if α ∈
Ω′ then Hα is an open subgroup of H . Since H is in [SIN] there is a compact
invariant neighbourhood neighbourhood K contained in Hα. As in the proof of
Proposition 2.13 we conclude that K is contained in the kernel of the action of H
on Ω′. Thus the kernel N ′ of the action of H on Ω′ is an open subgroup of H .
The group H/N ′ can be regarded as a permutation group on Ω′. From this we
conclude that the permutation topology on H/N ′ is discrete, which implies that
the stabilizer in H/N ′ of a point α ∈ Ω′ must be finite.

The proof of the other direction is left to the reader.

Schlichting’s Theorem implies the following general result about totally discon-
nected, locally compact groups.
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Corollary 2.14. Let G be a totally disconnected locally compact group.
(i) The group G has a compact open normal subgroup if and only if there is a

compact open subgroup U and a number mU such that |U : U ∩ gUg−1| ≤ mU for
all g ∈ G.

(ii) If there is such a number mU for one compact open subgroup U then there
is a number mV for any compact open subgroup V such that |V : V ∩gV g−1| ≤ mV

for all g ∈ G.

Proof. (i) If G contains a compact open normal subgroup N , then we can take
U = N and mN = 1.

Conversely, assume that U is a compact open subgroup and there is a number
mU such that |U : U ∩ gUg−1| ≤ mU for all g ∈ G. Put Ω = G/U . Take a point
α in Ω such that U = Gα. Note that if g ∈ G and β = gα then |Gαβ| = |Gα :
Gα∩Gβ | = |U : U ∩gUg−1| ≤ mU . Thus there is a finite upper bound on the sizes
of suborbits and we can apply Schlichting’s Theorem, which provides us with a
G-invariant equivalence relation ∼ on Ω with finite classes such that the stabilizer
of a ∼-class acts like a finite group on Ω′ = Ω/ ∼. This in turn implies that N ,
the kernel of the action of G on Ω′, is a open normal subgroup of G. If α ∈ Ω then
Nα is contained in the ∼-class of α and thus Nα is finite. Therefore N is also
compact.

(ii) From the proof of statement (i) we get the existence of a compact open
normal subgroup N . Consider the action of G on the set Ω = G/V . The orbits of
N on Ω are all finite and give us the equivalence classes of a G-invariant equivalence
relation ∼. Let k be the number of element in a ∼-class. The group G acts on
Ω′ = Ω/ ∼ and the stabilizers of points in Ω′ act like finite groups on Ω′. Thus the
sizes of suborbits in the action ofG on Ω′ are bounded above by some number l. Let
α̃ denote the ∼-class of an element α ∈ Ω. For elements α and β in Ω we see that
|Gαβ| ≤ |Gα̃β| ≤ k|Gα̃β̃| = kl. From this it follows that |V : V ∩gV g−1| ≤ kl.

2.3. The theorems of Trofimov. As already mentioned, the automorphism
group of a locally finite, connected graph with the permutation topology is locally
compact and totally disconnected. In this section we will discuss three theorems
of Trofimov (see [68], [69], [71]). The conclusions in them all resemble the conclu-
sion in Schlichting’s Theorem, but none of the theorems is proved by referring to
Schlichting’s Theorem. We start with the earliest of these three theorems. First,
we explain the terminology used.

An automorphism g of a connected graph Γ is said to be bounded if there is a
constant c such that dΓ(α, gα) ≤ c for all vertices α in Γ.

Theorem 2.15. ([68]) Let Γ be a locally finite, transitive graph and B(Γ) be the
subgroup of bounded automorphisms. The following assertions are equivalent:

(i) The subgroup B(Γ) is transitive.
(ii) There is an equivalence relation ∼ with finite equivalence classes on the

vertex set of Γ such that B(Γ) acts on Γ like a finitely generated free abelian group.

In a connected graph Γ we define the ball of radius n with center in a vertex α
as the set Bn(α) = {β ∈ V Γ | d(α, β) ≤ n}. The bounded automorphisms of Γ are
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related to topological properties of Aut(Γ) via the following result of Woess. With
a later application in mind, Woess’ result is stated for metric spaces rather than
just graphs. A (closed) ball of radius r with center α in a metric space X as the
set Br(α) = {β ∈ X | dX(α, β) ≤ r}. An isometry g of a metric space X is said to
be bounded if there is a constant c such that dX(α, gα) ≤ c for all points α in X .
Recall also that an element g in a topological group G is called an FC−-element if
the conjugacy class of g has compact closure.

Lemma 2.16. (Cf. [83, Lemma 4]) Suppose G is a topological group acting transi-
tively by isometries on a metric space X. Assume furthermore that the stabilizer in
G of a point in X is a compact open subgroup and that for every value of n the ball
Bn(α) is finite. An element g ∈ G is bounded if and only if g is an FC−-element
of G.

Proof. Suppose g ∈ G acts as a bounded isometry on X . Find a number M
such that d(gα, α) ≤ M for every α ∈ X . For h ∈ G, write gh = hgh−1. Set
gG = {gh | h ∈ G}. It is clear that d(ghα, α) = d(gh−1α, h−1α) ≤ M for every
α ∈ X . We see that the set gGα is finite and by Lemma 2.2(ii) the conjugacy class
gG has compact closure.

Conversely, suppose that the conjugacy class gG has compact closure. Then,
for every α ∈ X the set gGα is finite. Take a number M such that d(ghα, α) ≤M
for every h ∈ G. Take some β ∈ X . Choose h ∈ G so that β = h−1α. Then
d(gβ, β) = d(gh−1α, h−1α) = d(ghα, α) ≤ M . So g acts on Γ as a bounded
automorphism.

This connection with topological notions can be used to give a short proof of
Theorem 2.15, where only elementary results from the theory of topological groups
are used, see [49].

A locally finite graph Γ is said to have polynomial growth if the number of
vertices of Γ in Bn(α) is bounded above by a polynomial in n. It is easy to
see that this property does not depend on the choice of the vertex α. A finitely
generated group G is said to have polynomial growth if its Cayley graph with
respect to a finite generating set has polynomial growth (the choice of generating
sets is immaterial, since having polynomial growth is a quasi-isometry invariant).

The second theorem of Trofimov related to Schlichting’s Theorem is the follow-
ing:

Theorem 2.17. ([69, Theorem 2]) Suppose Γ is a connected, locally finite graph
with polynomial growth, and G is a group that acts transitively on Γ. Then there
is a G-invariant equivalence relation ∼ with finite classes on the vertex set of Γ
such that the quotient of G by the kernel of the induced action on Γ/ ∼ is a finitely
generated, virtually nilpotent group with finite stabilizers for vertices of Γ/ ∼.

It should be noted that Trofimov proves an even stronger result [69, Theorem 1],
since he shows that it is possible to find an equivalence relation ∼ as described in
Theorem 2.17 such that the stabilizer of a vertex in Aut(Γ/ ∼) is finite.
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The theorem of Trofimov can be seen as a graph theoretical version of Gro-
mov’s celebrated theorem characterizing finitely generated groups with polynomial
growth, see [30]. Indeed, Trofimov uses Gromov’s Theorem in his proof. A version
of Gromov’s theorem for topological groups has been proved by Losert in [42].
Woess in [83] used Losert’s version of Gromov’s Theorem from [42] to give a short
proof of Theorem 2.17.

We will be returning to polynomial growth and Trofimov’s result in Section 4.4.

There is a third theorem of Trofimov’s with a similar feel to it as the two
theorems stated above. This theorem involves the concept of an o-automorphisms
of a graph. An automorphism g of a connected graph Γ is called an o-automorphism
if

max{d(β, gβ) | β ∈ V Γ, d(α, β) ≤ n} = o(n),

where α is a fixed vertex. It is easy to show that this property does not depend
on the choice of the vertex α. It is also easy to prove that the o-automorphisms
form a normal subgroup of Aut(Γ).

Theorem 2.18. ([71, Corollary 1]) Suppose Γ is a connected, locally finite graph
and G is a group that acts transitively on Γ. Then the following are equivalent:

(i) G ≤ o(Aut(Γ))

(ii) There is a G-invariant equivalence relation ∼ on the vertex set of Γ such
that the equivalence classes of ∼ are finite and if K denotes the kernel of the action
of G on the equivalence classes then G/K is a finitely generated nilpotent group
acting regularly on Γ/ ∼.

Trofimov’s proofs of these three theorems are long and difficult. The proofs
mentioned above of the first two theorems, are short, but admittedly, in the proof
of Theorem 2.17 the results from the theory of topological groups used are highly
non-trivial. It would be interesting to find a topological interpretation of the
concept of an o-automorphism. Possibly that could lead to a shorter proof of
Theorem 2.18.

3. The scale function and tidy subgroups

The theory of locally compact groups is the part of the theory of topological
groups that has widest appeal and most applications in other branches of mathe-
matics. When looking at locally compact groups there are the connected groups
on one end of the spectrum and the totally disconnected groups on the other end.

The fundamental result in the theory of locally compact totally disconnected
groups is the theorem of van Dantzig [14] that such a group must always contain
a compact open subgroup. A big step towards a general theory was taken in the
paper [76] by Willis. The fundamental concepts of Willis’s theory are the scale
function and tidy subgroups.



16 Rögnvaldur G. Möller

Definition 3.1. Let G be a locally compact totally disconnected group and x an
element in G. For a compact open subgroup U in G define

U+ =
∞⋂

i=0

xiUx−i and U− =
∞⋂

i=0

x−iUxi.

Say U is tidy for g if
(TA) U = U+U− = U−U+

and
(TB) U++ =

⋃∞
i=0 x

iU+x
−i and U−− =

⋃∞
i=0 x

−iU−x
i are both closed in G.

Let G be a locally compact totally disconnected group. The scale function on
G is defined as

s(x) = min{|U : U ∩ x−1Ux| : U a compact open subgroup of G}.

The connection between the scale function and tidy subgroups is described in
the following theorem due to Willis.

Theorem 3.2. ([79, Theorem 3.1]) Let G be a totally disconnected, locally compact
group and g ∈ G. Then s(g) = |U : U ∩ g−1Ug| if and only if U is tidy for g.

Remark. Instead of stating our results for totally disconnected, locally compact
groups, we could phrase our results for locally compact groups, that contain a
compact, open subgroup.

Now on to something completely different.

3.1. Highly arc transitive digraphs.

Definition 3.3. A digraph Γ is called s-arc transitive if the automorphism group
acts transitively on the set of s-arcs. If Γ is s-arc transitive for all numbers s ≥ 0
then Γ is said to be highly arc transitive.

We also say that a group G ≤ Aut(Γ) acts highly arc transitively on Γ if G acts
transitively on the s-arcs in Γ for all s.

The definition of highly arc transitive digraphs occurs first in the paper [13]
by Cameron, Praeger and Wormald. Similar conditions, both for directed and
undirected graphs, have been studied by various authors in various contexts.

Let us start by looking at several examples.

Examples. (i) Let Γ be a directed tree with constant in- and out-valencies.
Clearly Γ is highly arc transitive.

(ii) Let Γ be a digraph with the set Q of rational numbers as a vertex set and
(α, β) an edge in Γ if and only if α > β. Again it is clear that Γ is a highly arc
transitive digraph.

(iii) (Cf. [50, Example 1]) Let T1 denote the regular directed tree in which every
vertex has in-valency 1 and out-valency q. Let L = . . . , α−1, α0, α1, α2, . . . be a
directed line in T1. Define

H = {h ∈ Aut(T1) | there is a number i such that hαi = αi}.
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If h ∈ H and h fixes some αi then h also fixes all vertices αj with j < i. One
can also see that the orbits of H are infinite and each orbit contains precisely one
vertex from L. The orbits of H are called horocycles. The horocycles could also
be defined without reference to the automorphism group. Then we could define
two vertices α and β to be in the same horocycle if there is a number n such that
the unique path in Γ from α to β starts by going backwards along n arcs and then
going forward along n arcs. Let Ci denote the horocycle containing αi.

For each i ∈ Z take r − 1 copies S1
i , . . . , S

r−1
i of T1 and let ψj

i : Sj
i → T1 be

an isomorphism. The preimage of the horocycle Ci is a horocycle Bj
i in Sj

i . When

restricted, ψj
i defines an isomorphism between the digraphs spanned by desc(Bj

i )

and desc(Ci). Use this partial isomorphism to identify the vertices in desc(Bj
i )

with the vertices in desc(Ci). Do this for every i and you get a new digraph T2.
The digraph T2 is far from being a tree, but if α is a vertex in T2 then the digraph
spanned by desc(α) is a rooted infinite directed q-ary tree. The vertices in T2 that
did belong to T1 now all have out-valency equal to q, and in-valency equal to r.
Look at the part of Sj

i that did not get identified with vertices in T1. This part
is a union of horocycles, at each horocycle in it we glue r − 1 new copies of T1 in
the same fashion. Do this for each i and each horocycle in Sj

i , not belonging to
T1, and get a digraph T3. Continuing in the same fashion we construct a sequence
T1 ⊆ T2 ⊆ T3 ⊆ . . . of digraphs. In the end we get a digraph DL(q, r) =

⋃
Ti. In

this digraph every vertex has in-valency equal to r and out-valency equal to q. If
α is a vertex in DL(q, r), then the subdigraph spanned by desc(α) is an infinite
rooted directed q-ary tree and the subgraph spanned by anc(α) is a rooted tree,
such that all edges are directed towards the root and the in-valency of every vertex
is r and the out-valency is 1. Clearly DL(q, r) is highly arc transitive.

The digraphs DL(q, r) are a directed versions of the Diestel-Leader graphs
(defined in [17]) that have been studied by various authors. Woess [83] asked if
every locally finite transitive graph is quasi-isometric to some Cayley graph. It
was conjectured by Diestel and Leader that if q 6= r then the graph DL(q, r) is not
quasi-isometric to any Cayley graph. This conjecture was proved by Eskin, Fisher
and Whyte in [23].

An optimist would hope to find a general classification of locally finite, highly
arc transitive graphs, but it seems very implausible that any such classifications is
possible. But, there is a particular class of highly arc transitive digraphs where one
can give a precise description of their structure. Surprisingly enough this particular
class can be used to probe the secrets of Willis’ theory.

First, we state two simple lemmata from the paper [13] by Cameron, Praeger
and Wormald. We prove the second one, because it is natural to apply the permu-
tation topology on Aut(Γ) in the proof.

Lemma 3.4. ([13, Proposition 3.10]) Let Γ be a connected, highly arc transitive
digraph with finite out-valency. Suppose Γ is not a directed cycle. If α and β are
vertices in Γ and there is a directed path of length n from α to β, then every directed
path from from α to β has length n. Furthermore, Γ has no directed cycles.
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Lemma 3.5. Let Γ be a locally finite, highly arc transitive digraph. Take two
directed lines L1 = . . . , α−1, α0, α1, α2 . . . and L2 = . . . , β−1, β0, β1, β2 . . . in Γ
then there is a an automorphism g of Γ such that gαi = βi for all i.

Proof. Write G = Aut(Γ) and note that G is locally compact. Using the property
that Γ is highly arc transitive, we can find an element gi ∈ Aut(Γ) such that
giαj = βj for all j ∈ {−i, . . . , i}. The sequence (gi)i∈N is contained in the set
g1Gα0

, which is compact in the permutation topology on Aut(Γ). Hence this
sequence has a convergent subsequence that converges to an element g in Aut(Γ)
which has the desired property.

Proposition 3.6. ([51, Lemma 3]) Let Γ be a locally finite, highly arc transitive
digraph and L a directed line in Γ. Then the subdigraph ΓL spanned by desc(L), is
highly arc transitive and has more than one end.

Proof. Write L = . . . , α−1, α0, α1, α2 . . .. Consider s-arcs β0, . . . , βs and γ0, . . . , γs
in ΓL. The vertices β0 and γ0 will have a common ancestor αi0 on the line L.
Now we can extend the s-arcs to infinite lines Lβ = . . . , β−1, β0, β1, β2 . . . and
Lγ = . . . , γ−1, γ0, γ1, γ2 . . . that both contain the directed ray . . . , αi0−2, αi0−1, αi0 .
Then we can find an element g ∈ G such that gβi = γi for all i and because g
maps the ray . . . , αi0−1, αi0 into L we can see that g(desc(L)) = desc(L), i.e. the
subdigraph ΓL is invariant under g. Whereupon we conclude that ΓL is highly arc
transitive.

Let β′ be a vertex in ΓL. Since inΓL
(β′) is finite, there clearly is a number

i such that inΓL
(β′) ⊆ desc(αi). Let k be the length of a directed path from

αi to β′ (by Lemma 3.4 all directed paths from αi to β′ have the same length).
Making use of arc transitivity we conclude that if β ∈ desck(α0), then there is
an element g ∈ Aut(ΓL) such that g(αi) = α0 and g(β′) = β. Therefore we see
that if (γ, β) is an arc in ΓL (i.e. γ ∈ inF (β)) then γ ∈ desc(α0). More precisely,
γ ∈ desck−1(α0). This is so because, if α0, γ1, . . . , γl, γ is a directed path from α0

to γ then α0, γ1, . . . , γl, γ, β is a directed path from α0 to α and thus has length k.
Set A =

⋃
i≥k desci(α0) and A∗ = V F \ A. Suppose (γ, β) is an arc from A∗

to A. Now β ∈ descl(α0) for some l ≥ k. Then γ ∈ descl−1(α0), by the choice of
k. Obviously l = k and (γ, β) is an arrow from desck−1(α0) to desck(α0).

A priori, there is also the possibility that some arc (β, γ) in F goes from A to
A∗. But on closer look, this is impossible, because then β would be in descl(α0)
for some l ≥ k and thus γ ∈ descl+1(α0) ⊆ A, and therefore γ ∈ A, contradicting
the assumption that γ ∈ A∗.

The only arcs between A and A∗ are going from desck−1(α0) to desck(α0). The
set of such arcs is clearly finite (because desck−1(α0) is finite and the out-valency
of vertices in Γ is finite), and by removing them, we split Γ up into components.
The two sets {. . . , α0, α1, . . . , αk−1} and {αk, αk+1, . . .} will belong to different
components, so we have at least two infinite components. Hence Γ has more than
one end.

The structure of digraphs like ΓL in the above proposition is described in the
following theorem.
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Theorem 3.7. ([51, Theorem 1]) Let Γ be a locally finite, highly arc transitive
digraph. Suppose that there is a line L = . . . , α−1, α0, α1, . . . such that V Γ =
desc(L).

Then there exists a surjective homomorphism φ : Γ → T where T is a directed
tree with in-valency 1 and finite out-valency. The automorphism group of Γ has
a natural action on T as a group of automorphisms such that φ(gα) = gφ(α) for
every g ∈ Aut(Γ) and every vertex α in Γ. This action of Aut(Γ) on T is highly
arc transitive. Furthermore, the fibers φ−1(α), α ∈ V T , are finite and all have the
same number of elements.

Let α be a vertex in a highly arc transitive digraph Γ and denote with ck the
number of vertices in desck(α). Cameron, Praeger and Wormald in [13, Defini-

tion 3.5] define the out-spread of a vertex in Γ as lim supk→∞ c
1/k
k . One can define

the in-spread of a highly arc transitive digraph in a similar way. Theorem 3.7
implies the following

Theorem 3.8. ([51, Theorem 2]) The out-spread of a locally finite, highly arc
transitive digraph is an integer.

The in-spread can be used to characterize the highly arc transitive digraphs
treated in Theorem 3.7.

Theorem 3.9. ([45, Theorem 2.6]) Let Γ be a locally finite, highly arc transitive
digraph. The in-spread of Γ is 1 if and only if there is a line L in Γ such that
desc(L) = V Γ.

3.2. Tidy subgroups and highly arc transitive digraphs. Now we turn
our attention back to totally disconnected, locally compact groups. The following
notation will be used extensively in what follows. Let G be a totally disconnected,
locally compact group and x a fixed element in G. Take a compact open subgroup
U . We set Ω = G/U and let α0 denote the point in Ω that has U as stabilizer.
Then define a digraph Γ = ΓU that has Ω as a vertex set and edge set G(α0, xα0)
– the G-orbit of the ordered pair (α0, xα0). Note that Γ need not be connected.
For an integer i set αi = xiα0. The vertices αi form a line L in Γ. Observe that
xiUx−i is the stabilizer of αi in G and U+ is the stabilizer of the vertices α0, α1, . . .
and U− is the stabilizer of the vertices α0, α−1, . . ..

Proposition 3.10. (Cf. [50, Theorem 2.1]) The subgroup U satisfies condition
(TA) in Definition 3.1 if and only if G acts highly arc transitively on the digraph
Γ.

Proof. Let us start by looking at what happens when the digraph Γ is highly arc
transitive. Let g ∈ U = Gα0

. Since G is assumed to act highly arc transitively on
Γ and G is a closed in the permutation topology we deduce from Lemma 3.5 that
G acts transitively on the set of lines in Γ. For i ≥ 1 we set βi = gαi and let L1

denote the line . . . , α−1, α0, β1, β2, . . .. We find an element g− that moves the line
L to the line L1 such that g−αi = αi for i ≤ 0 and g−αi = βi for i ≥ 1. Note that
g− ∈ U−. Set g+ = g−1

− g and note that g+ fixes all the vertices α0, α1, . . . and thus
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g+ ∈ U+. Therefore g ∈ U−U+. From this we deduce that U satisfies condition
TA.

Conversely, assume that U satisfies condition TA. Take a vertex β in out(α0).
Then there must be an element g ∈ U such that gα1 = β. Write g = g−g+ ∈ U−U+

and we see that g−α1 = β. Thus U− acts transitively on out(α0). Now we use
induction over s to show that G acts transitively on the set of s-arcs. Suppose we
are given an (s + 1)-arc β0, . . . , βs, βs+1. Use the induction hypothesis to find an
element h ∈ G such that hα0 = βs, hα−1 = βs−1, . . . , hα−s = β0. Then by the
above, hU+h

−1 acts transitively on out(hα0) = out(βs). We pick an element h′

from hU+h
−1 such that h′(hα1) = βs+1. Now we have found an element h′h that

moves the (s + 1)-arc α0, . . . , αs, αs+1 to the (s + 1)-arc β0, . . . , βs, βs+1 and can
conclude that G acts transitively on the (s + 1)-arcs in Γ and also that G acts
highly arc transitively on Γ.

Condition (TB) can also be translated in to a condition about the graph Γ
defined at the start of the section. We use the following lemma.

Lemma 3.11. ([76, Lemma 3]) Let G be a totally disconnected, locally compact
group and x ∈ G. Suppose that U is a compact, open subgroup of G that satisfies
condition (TA). Then

(a) U++ is closed if and only if U++ ∩ U = U+.

(b) U++ is closed if and only if U−− is closed.

In our setting U++ is the set of all elements g in G such that there exists a
number k such that g fixes αk, αk+1, . . .. The condition that U++ ∩ U = U+ says
that an element in G that fixes α0 and also αk, αk+1, . . . for some k ≥ 0 must also
fix α1, . . . , αk−1. If we assume that G acts highly arc transitively on Γ then this
implies that α0, . . . , αk is the unique path in Γ from α0 to αk and we conclude that
the subgraph spanned by desc(α0) is a tree.

On the other hand, if the subgraph spanned by desc(α0) is a tree then clearly
a group element that fixes α0 and αk must fix α1, . . . , αk−1 since these vertices lie
on the directed path from α0 to αk. Hence U++ ∩ U = U+. Thus we have shown
the following result.

Proposition 3.12. Suppose U satisfies condition (TA). Then U satisfies condition
(TB) if and only if the subgraph spanned by desc(α0) is a tree.

Putting these observation together as a theorem we get.

Theorem 3.13. (Cf. [50, Theorem 3.4]) Let G be a totally disconnected, locally
compact group and U a compact, open subgroup. Let x be an element in G and
define a graph Γ such that the vertex set is G/U and the edge set is G(α0, xα0)
where α0 is the vertex in Γ such that U = Gα. Suppose furthermore that the orbit
of α0 under x is infinite. Then U is tidy for x if and only if G acts highly arc
transitively on Γ and the subgraph spanned by desc(α0) is a tree.
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3.3. Using the connection. In this section G denotes a totally disconnected,
locally compact group. From the definition of tidy subgroup it is far from obvious
that there always is a compact, open subgroup of G that is tidy for a given element
x in G. Our first task is thus to construct a compact, open subgroup U that is
tidy for x.

First, the case where x is periodic (i.e. the subgroup generated by x is relatively
compact). Let U be a compact, open subgroup. Put Ω = G/U . Let α be a point
in Ω such that Gα = U . Define A as the closure (in the given topology on G) of
the subgroup generated by x. By assumption A is compact. Since the permutation
topology induced by the action of G on Ω is contained in the original topology on
G we conclude that A is also compact in the permutation topology. Hence, by
Lemma 2.2(ii), all the orbits of the subgroup generated by x are finite. So there
is a number N such that xNα = α and, therefore, xN ∈ Gα = U . The subgroup
U ∩ xUx−1 ∩ · · · ∩ xN−1Ux−(N−1) is compact and open and normalized by x and
thus tidy for x. Hence we will assume in what follows that x is not periodic.

Let V be some compact, open subgroup of G. Construct a graph Γ = ΓV as
done at the start of the last section. From the proof of Proposition 3.10 we see that
G acts highly arc transitively on Γ if and only if V− acts transitively on out(α0).
Look at the group Vn =

⋂n
i=0 x

−iV xi = Gα0,α−1,...,α−n
. We claim that there is a

number n such that Vnα1 = V−α1. Otherwise one could find an element gi ∈ Vi for
each i such that giα1 6∈ V−α1. The sequence (gi)i∈N has a convergent subsequence
converging to an element g and clearly this element is in V−, but gα1 6∈ V−α1, so
we have reached a contradiction. Now set W = Vn. Note that W+ = V+. We
can use a similar argument as in the first part of Proposition 3.10 to show that W
satisfies condition (TA). Using this compact, open subgroup W to get a compact,
open subgroup that also satisfies condition (TB) is more involved, and the details
will be left out. By finding a compact, open subgroup W satisfying (TA), we have
ensured that G acts highly arc transitively on the digraph ΓW . What is missing is
condition (TB), which would mean that the subgraph spanned by the descendants
of a vertex is a tree. To achieve that, Theorem 3.7 is used to produce a highly arc
transitive digraph, wherein the graph spanned by the descendants of a vertex is a
tree. This will then prove the following theorem of Willis.

Theorem 3.14. ([76, Theorem 1], see also [50, Theorem 4.1]) Let G be a to-
tally disconnected, locally compact group and x an element of G. Then there is a
compact, open subgroup U of G that is tidy for x.

Now we have ensured that there is something to talk about. We next use
digraphs to deduce further facts about tidy subgroups and the scale function.
First, we use Lemma 2.4 to deduce the following.

Theorem 3.15. ([76, Corollary 1]) Let G be a totally disconnected, locally compact
group. Denote by ∆ the modular function on G and by s the scale function on G.
Then, for every x ∈ G,

∆(x) =
s(x)

s(x−1)
.



22 Rögnvaldur G. Möller

Proof. Let U1 and U2 be compact open subgroups of G such that

|U1 : U1 ∩ x
−1U1x| = s(x) and |U2 : U2 ∩ xU2x

−1| = s(x−1).

Note that

|U1 : U1 ∩ xU1x
−1| ≥ s(x−1) and |U2 : U2 ∩ x

−1U2x| ≥ s(x).

Now we use the Remark following Lemma 2.4 and get

s(x)

s(x−1)
≥

|U1 : U1 ∩ x−1U1x|

|U1 : U1 ∩ xU1x−1|
= ∆(x) =

|U2 : U2 ∩ x−1U2x|

|U2 : U2 ∩ xU2x−1|
≥

s(x)

s(x−1)
.

Hence ∆(x) = s(x)/s(x−1).

This also implies the following corollary.

Corollary 3.16. ([79, Corollary 3.11]) Let x be an element of a totally discon-
nected, locally compact group G, and U a compact, open subgroup of G. Then
|U : U ∩ x−1Ux| = s(x) if and only if |U : U ∩ xUx−1| = s(x−1).

Tidy subgroups are related to the scale function as described in Theorem 3.2.
The proof of Theorem 3.2 is involved, and we will only have a look at the proof
that compact, open subgroup U such that s(x) = |U : U ∩ x−1Ux| must be tidy.

Consider a compact, open subgroup U , a fixed element x ∈ G, and the digraph
Γ defined above. By the above, when trying to minimize |U : U ∩ x−1Ux| in order
to find s(x), we could equally try to minimize |U : U ∩ xUx−1|. The latter index
is just the out-valency in the digraph ΓU . When constructing a tidy subgroup for
x, we start with an arbitrary compact, open subgroup V and next find a compact,
open subgroup V satisfying (TA). The out-valency in ΓV is at most the out-valency
of ΓU . In the second step, we ensure that condition (TB) is satisfied, and in the
process the out-valency does not increase. Thus we can be sure that if U minimizes
|U : U ∩ xUx−1| then U must be tidy for x.

Again we look at a compact open subgroup U and the graph Γ as above. Note
that Uαn = |U : U ∩ xnUx−n|. If Γ is highly arc transitive, then this is precisely
the number bn of vertices β such that there is a directed path of length n from α0

to β. The out-valency d+ of Γ is equal to |U : U ∩xUx−1|. The subgraph spanned
by desc(α0) is a tree if and only if bn = dn+ = |U : U ∩ xUx−1|n for all natural
numbers n. But U is tidy if an only if Γ is highly arc transitive and the subgraph
spanned by desc(α0) is a tree. Thus we derive the following result.

Theorem 3.17. ([50, Corollary 3.5]) Let G be a totally disconnected, locally com-
pact group and x an element in G. Then a compact, open subgroup U is tidy for
x if and only if

|U : U ∩ xnUx−n| = |U : U ∩ xUx−1|n

for all n ≥ 1.
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Corollary 3.18. Let G be a totally disconnected locally compact group and x an
element in G. Then s(xn) = s(x)n.

Proof. Let U be a compact, open subgroup of G that is tidy for x. It is easy to
check that if a subgroup U is tidy for x then U is also tidy for xn for every integer
n. Hence

s(xn) = |U : U ∩ x−nUxn| = |U : U ∩ x−1Ux|n = s(x)n.

If Γ is highly arc transitive, the index |U : U ∩ x−nUxn| is the number of
vertices β such that α0 is in descn(β). This observation suggests that we compare
the scale function and the in-spread of the associated digraph Γ. The following
theorem describes their relationship.

Theorem 3.19. ([50, Theorem 7.7]) Let G be a totally disconnected, locally com-
pact group and x an element of G. If V is some compact, open subgroup of G,
then

s(x) = lim
n→∞

|V : V ∩ x−nV xn|1/n.

For a different formulation and a proof see [6, Lemma 4]. This line of thought
also gives us information about the case s(x) = 1.

Theorem 3.20. ([50, Corollary 7.8]) Let G be a totally disconnected, locally com-
pact group and x an element of G such that s(x) = 1. If V is some compact, open
subgroup of G, then there is a constant C such that |V : V ∩ x−nV xn| ≤ C for all
n ≥ 0.

These two results can also be formulated as results about permutation groups.

Theorem 3.21. Let G be a group acting transitively on a set Ω. Assume that
all suborbits of G are finite. Let x be an element in G and α0 a point in Ω. Set
αi = xiα0. Then either there is a constant C such that |Gα0

αn| ≤ C for all n or
the numbers |Gα0

αn| grow exponentially with n and limn→∞ |Gα0
αn|1/n = s for

some integer s.

Remark. In [72] Trofimov studies generalized x-tracks, which are similar to
the directed line ..., α−1, α0, α1, α2, ... that is fundamental to the graph-theoretical
interpretation of Willis’ theory in [50]. Theorem 3.21 is clearly related to [72,
Theorem 4.1, part 3].

The final illustration of the uses of graphs in Willis’ structure theory is a proof
of the following theorem.

Theorem 3.22. ([77, Theorem 2]) Let G be a totally disconnected, locally compact
group. The set P (G) of periodic elements in G is closed. (An element x ∈ G is
periodic if and only if 〈x〉 is compact.)
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Proof. The trick is to use the fact that that a connected infinite and locally finite
highly arc transitive digraph has no directed cycles, see Lemma 3.4.

Suppose x is not periodic, but is in the closure of P (G). Let U be a compact,
open subgroup of G, that is tidy for x. Define a digraph Γ as at the start of
Section 3.2. If x is not periodic, then the orbit of α0 under x is infinite, and the
connected component of Γ that contains α0 is infinite. (It must contain the line
. . . , α−1, α0, α1, α2, . . ..) The set xU is an open neighbourhood of x, and must
therefore contain some periodic element g. The fact that g ∈ xU = xGα0

implies
gα0 = xα0 = α1. The element g is periodic, hence the orbit of α0 under g is
finite, and therefore there is an integer n such that gn(α0) = α0. The sequence
α0, α1 = gα0, β2 = g2α0, . . . , βn = gnα0 = α0 is a directed cycle in Γ. This
contradicts Lemma 3.4 mentioned above. Hence we conclude that it is impossible
that the closure of P (G) contains any elements that are not periodic. Thus P (G)
is closed.

4. Rough Cayley graphs

Most of the material in this section is taken from a paper by Krön and Möller [40].
Let G be a compactly generated, totally disconnected, locally compact group. In
[40] the authors construct a locally finite, connected graph with a transitive G-
action, whose vertex stabilizers are compact, open subgroups of G. This graph is
called a rough Cayley graph of G. As demonstrated in [40], and summarized in this
section, a rough Cayley graph can be used to study compactly generated, locally
compact groups in a similar way as an ordinary Cayley graph is used to study a
finitely generated group. In this article, we illustrate this approach, by using rough
Cayley graphs to generalize the concept of ends of groups and to study compactly
generated, locally compact groups of polynomial growth.

Below, we explain how to construct a rough Cayley graph and it is also shown
that any two rough Cayley graphs for a given group are quasi-isometric. The
applications of the rough Cayley graph to the theory of ends of groups and to
groups of polynomial growth are only sketched; details can be found in [40], where
tools from [19] and [15] are used extensively.

4.1. Definition of a rough Cayley graph.

Definition 4.1. ([40, Definition 2.1]) Let G be a topological group. A connected
graph Γ is said to be a rough Cayley graph of G if G acts transitively on Γ and the
stabilizers of vertices are compact, open subgroups of G.

In this section we show that if G is a compactly generated locally compact
group that contains a compact open subgroup then G has a locally finite rough
Cayley graph and any two rough Cayley graphs are quasi-isometric to each other.
The approach here is different from the approach in [40].

Let G be a compactly generated topological group. For a compact generating
set S we form the Cayley graph Γ = Cay(G,S) of G with respect to S. The vertex
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set of Γ is equal to G and thus carries a topology. The compactness of S and the
continuity of multiplication in G implies that if A is a relatively compact set of
vertices in Γ then the neighbourhood of A in Γ is contained in the set A · S and is
thus relatively compact also. This can be used to prove that a set A of vertices in
Γ is relatively compact if and only if it has finite diameter in the graph metric on
Γ, see [1, 2.3 Heine-Borel-Eigenschaft].

Definition 4.2. Let G be a group acting transitively on a connected graph Γ.
Suppose U is a subgroup of G that contains the stabilizer of some vertex α. The
orbit Uα is a block of imprimitivity. Let ΓU denote the quotient graph with respect
to the G-congruence whose classes are the translates under G of the set Uα.

Lemma 4.3. Let G be a compactly generated topological group. Suppose S is a
compact generating set and U is a compact open subgroup of G. Then the graph
Cay(G,S)U is locally finite.

Proof. The neighbourhood of a coset gU in Γ is compact and can thus be covered
by finitely many right cosets of U . Whence ΓU is locally finite.

Lemma 4.3 shows that every compactly generated group G that has a compact,
open subgroup U , has a locally finite rough Cayley graph, namely, Cay(G,S)U .

The proof of a result of Sabidussi [60, Theorem 2], restated below in our own
terminology, can be used to show that every locally finite rough Cayley graph for
a compactly generated group with a compact, open subgroup can be obtained in
this fashion.

Theorem 4.4. (Cf. [60, Theorem 2]) Let Γ be a connected graph and G a transitive
subgroup of Aut(Γ). Then there is a set S of generators of G such that Γ ∼=
Cay(G,S)U where U is the stabilizer in G of some vertex in Γ.

In our setting we are thinking of a topological group G acting on a locally finite
rough Cayley graph Γ such that stabilizers of vertices are compact open subgroups
but the action is not necessarily faithfully. Take a vertex α in Γ and let U denote
the stabilizer in G of α. Looking at Sabidussi’s proof of his theorem we deduce
that if S is the union of U and all elements h in G such that α and hα are adjacent
in Γ then Γ ∼= Cay(G,S)U . Note also that the orbit Sα consists precisely of α
and all its neighbours. The graph Γ is by assumption locally finite so S is a finite
union of cosets of U and thus compact.

The influential concept of quasi-isometry was introduced by Gromov [31] and
has been widely used since.

Definition 4.5. Two metric spaces (X, dX) and (Y, dY ) are said to be quasi-
isometric if there is a map ϕ : X → Y and constants a ≥ 1 and b ≥ 0 such that
for all points x1 and x2 in X

a−1dX(x1, x2)− a−1b ≤ dY (ϕ(x1), ϕ(x2)) ≤ adX(x1, x2) + ab,
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and for all points y ∈ Y we have

dY (y, ϕ(X)) ≤ b.

A map ϕ between two metric spaces satisfying the above conditions is called a
quasi-isometry.

Two connected graphs X and Y are called quasi-isometric if (V X, dX) and
(V Y, dY ) are quasi-isometric. Being quasi-isometric is an equivalence relation on
the class of metric spaces.

Theorem 4.6. Let G be a compactly generated group. Assume that G admits a
rough Cayley graph. All rough Cayley graphs for G are quasi-isometric.

The first step in the proof of Theorem 4.6 is the following Lemma. The
proof of the Lemma depends on the Heine-Borel Eigenschaft, [1, 2.3 Heine-Borel-
Eigenschaft], mentioned in the paragraph preceding Definition 4.2.

Lemma 4.7. (i) Let G be a compactly generated topological group. Suppose S1

and S2 are compact generating sets for G. Then the Cayley-graphs Cay(G,S1) and
Cay(G,S2) are quasi-isometric.

(ii) Suppose S is a compact generating set and U is a compact subgroup of G.
Then the graphs Cay(G,S) and Cay(G,S)U are quasi-isometric.

Proof. (i) There is a constant C, such that the elements in S1 can be expressed
as words of length ≤ C in the elements in S2 and vice versa. For each element of
S1 respectively S2 fix a word in S2 respectively S1 with this property. Using these
correspondences, words in S1 and S2 may be expressed as words in the other set,
that are at most C times longer. This shows that the identity map on G extends
to quasi-isometries Cay(G,S1) → Cay(G,S2) and Cay(G,S2) → Cay(G,S1) that
are inverse to each other.

(ii) By part (i) we know that Cay(G,S) and Cay(G,S∪U) are quasi-isometric.
Thus we may assume that S contains U . Under this assumption, each of the right
cosets of U has therefore diameter 1. The quotient graph Cay(G,S)U is obtained
by contracting each of these cosets. Clearly this operation preserves quasi-isometry
and the claim follows.

Proof. (Theorem 4.6) Suppose Γ1 and Γ2 are rough Cayley graphs of G. Then
we can find compact generating sets S1 and S2 and compact, open subgroups U1

and U2 such that Γ1 = Cay(G,S1)U1
and Γ2 = Cay(G,S2)U2

. By part (ii) of
Lemma 4.7, Γ1 is quasi-isometric to Cay(G,S1), which in turn is quasi-isometric
to Cay(G,S2) by part (i) of Lemma 4.7, which is again quasi-isometric to Γ2 =
Cay(G,S2)U2

by part (ii) of the same result.

Suppose G is a locally compact group with a compact, open subgroup. If the
group is compactly generated, Lemma 4.3 gives the existence of a locally finite
rough Cayley graph. Conversely, the existence of a rough Cayley graph implies
that G is compactly generated.
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Proposition 4.8. ([52, Corollary 1]) Suppose that G is a locally compact topo-
logical group and that G acts transitively on a connected, locally finite graph such
that the stabilizers of vertices in G are compact, open subgroups of G. Then G is
compactly generated.

The proof of the proposition is based on the Lemma below.

Lemma 4.9. Let G be a group acting transitively on a connected, locally finite
graph Γ. Then G has a finitely generated, transitive subgroup.

Proof. Fix a reference vertex α. Denote the neighbours of α by β1, . . . , βn. Choose
elements h1, . . . , hn such that hiα = βi. We claim that H = 〈h1, . . . , hn〉 is tran-
sitive on the vertices of Γ. Note that all the vertices in Γ that are adjacent to the
vertex α are in the H-orbit of α. Suppose that β = hα for some h ∈ H . Then
hh1h

−1β, . . . , hhnh
−1β is an enumeration of all the neighbours of β. Whence the

neighbours of β are also contained in the H-orbit of α. Since our graph is assumed
to be connected, we conclude that H acts transitively on the vertices.

Proposition 4.8 follows from Lemma 4.9, because the union of the stabilizer
of a vertex with a finite generating set for a transitive subgroup forms a compact
generating set for G.

The following theorem concludes our basic considerations of rough Cayley
graphs. Its first part is well known.

Theorem 4.10. ([40, Corollary 2.11]) Let G be a compactly generated topological
group that has a compact open subgroup. Assume that H is a cocompact closed
subgroup of G. Then H is compactly generated and if ΓG is a rough Cayley graph
for G and ΓH is a rough Cayley graph for H then ΓG and ΓH are quasi-isometric.

Proof. Let X be a locally finite rough Cayley graph for G. By Lemma 2.3 we
know H acts with finitely many orbits on X . Choose a vertex α in Γ. Then there
is a number k such that every vertex in Γ is in distance at most k from the orbit
Hα. Now form the graph Γ′ which has the same vertex set as Γ but two vertices
being adjacent if and only if their distance in Γ is at most 2k + 1. Note that Γ′ is
also locally finite. Consider the subgraph ∆ of Γ′ spanned by the vertices in Hα.
Suppose α and β are vertices in ∆ and that α = α0, α1, . . . , αn = β is a path in Γ
(and thus also a path in Γ′) from α to β. For each αi choose a vertex βi in Hα
such that dΓ(αi, βi) ≤ k. Then d(βi, βi+1) ≤ 2k + 1 so either βi = βi+1 or βi and
βi+1 are adjacent in Γ′. Whereupon we conclude that ∆ is connected. The action
of H on the connected, locally finite graph ∆ is transitive with compact, open
vertex-stabilizers. Hence ∆ is a rough Cayley graph for H and H is compactly
generated by Proposition 4.8. From the above it is clear that ∆ is quasi-isometric
to Γ. The second part of the theorem follows by Theorem 4.6.

Remark. For the rest of Section 4 we will focus on compactly generated, totally
disconnected, locally compact groups. Corresponding results hold for compactly
generated, locally compact groups that contain a compact, open subgroup.
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4.2. Application to FC−-groups. As mentioned in Section 2.3, an element g
of a topological group G is called a FC−-element if its conjugacy class in G has
compact closure. It is an easy exercise to show that the FC−-elements of G form
a normal subgroup B(G) of G. If G = B(G) then G itself is called a FC−-group.
These concepts have been extensively studied, see for example the paper [32] by
Grosser and Moskowitz and various papers by Wu and his collaborators, e.g. [85]
and [86].

A basic question about the subgroup B(G) is whether it is closed or not. This
question was discussed by Tits in [66], where it proved that B(G) is closed if G is
a connected locally compact group. But, Tits also gives an example of a locally
compact, totally disconnected group where B(G) is not closed. Below is another
example of such a group described by using graphs.

Example. Let Γ denote a directed tree such that each vertex has in-valency 1
and out-valency 2. Choose a directed line . . . , α−1, α0, α1, α2, . . . in Γ. We say that
vertices α and β are in the same horocycle if there is a number n such that the
unique path in Γ from α to β starts by going backwards along n arcs and then going
forward along n arcs. (This concept is also discussed in Section 3.1.) Membership
in the same horocycle is an equivalence relation on vertices. We denote by Ci the
equivalence class of αi. Define H as the subgroup of Aut(Γ) that stabilizes C0.
Let G denote the permutation group that H induces on C0 and endow G with the
permutation topology arising from that action. We think of C0 as a metric space,
the metric being the restriction of the graph metric on Γ. If g is an element of G
that fixes all but finitely many vertices in C0 then by Lemma 2.16 the element g
is an FC−-element of G. It is also clear that if g and h are elements of G, both
with finite support, then there is a conjugate of h whose support is disjoint from
the support of g. Let gi be an element if G with finite support such that there is a
vertex α ∈ C0 such that d(α, giα) = 2i. (We could define gi explicitly by defining
βi+1 as the vertex such that (α−i−2, βi+1) is an arc in Γ and βi+1 6= α−i−1 and then
let g transpose the two outward directed arcs from βi+1.) We may assume that
supp gi ∩ supp gj = ∅ if i 6= j. All the gi’s are contained in B(G) and hi = g1 . . . g1
is also in B(G). Then we define g as the limit of the sequence of the hi’s (gα = hiα
if α is in supphi and gα = α if α is not in the support of any of the hi’s). Clearly
g is not a bounded isometry of C0 and thus g is not in B(G). Hence B(G) is not
closed. Indeed, one can easily show that B(G) is dense in G.

The construction of a rough Cayley graph can be used in the study of FC−-
elements in groups. Trofimov in [70] proved the following.

Theorem 4.11. ([70], cf. [83, Theorem 3]) Let Γ be a vertex transitive, connected,
locally finite graph. The subgroup of bounded automorphisms in Aut(Γ) is closed
in Aut(Γ).

Using a rough Cayley graph for the group and this theorem allows us to prove
the following result.

Theorem 4.12. ([52, Theorem 2]) Let G be a compactly generated totally dis-
connected locally compact group. Then the subgroup of FC−-elements is closed in
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G.

The proof is simple. One constructs a locally finite rough Cayley graph for G.
The action of G on Γ gives a continuous homomorphism G→ Aut(Γ). It is easy to
show that the kernel of this homomorphism is compact and the image is closed in
Aut(Γ) (see [52, Corollary 1]). The subgroup of bounded automorphism in Aut(Γ)
is closed by the theorem of Trofimov above, and the subgroup of FC−-elements is
closed in G, because it is the preimage of the subgroup of bounded automorphisms
in Aut(Γ).

4.3. Rough ends. The space of ends of a connected, locally finite graph Γ is the
boundary of a certain compactification of V Γ, where we think of V Γ as having the
discrete topology. One can think of different ends as representing the ”different
ways of going to infinity” in Γ. Ends of graphs can both be defined by using
topological concepts and by purely graph theoretical means. The graph theoretical
method extends to graphs that are not locally finite, but then the ends do not give
a compactification of the vertex set like in the locally finite case.

Recall that a ray in a graph is a sequence α0, α1, . . . of distinct vertices such
that αi is adjacent to αi+1 for all i. The graph theoretic approach is to define the
ends of a graph Γ as equivalence classes of rays. Two rays are equivalent (i.e. are
in the same end) if there is the third ray that intersects both infinitely often. This
definition goes back to the paper [33] by Halin.

Ends can also be defined with reference to connected components when finite
sets of edges are removed from the graph. For a finite set Φ of edges define CΦ
as the set of connected components of Γ \ Φ. Suppose Φ1 and Φ2 are two finite
sets of edges such that Φ1 ⊆ Φ2. There is a natural map CΦ2

→ CΦ1
that takes a

component c of Γ \ Φ2 to the component of Γ \ Φ1 that contains c. The collection
of all the sets CΦ where Φ ranges over all finite sets of edges in Γ, together with
the connecting natural maps forms an inverse system. The space of ends ΩΓ of
Γ (with the natural topology of the inverse limit) is then defined as the inverse
limit of this system. One could also look at the components of Γ \ Φ where Φ is
a finite set of vertices, but when the graph is locally finite the inverse limits are
homeomorphic. This approach goes back to the thesis of Freudenthal in 1931. In
later works Freudenthal and Hopf built up a theory of ends of spaces, see [28], [29]
and [34].

The graph theoretic approach to ends also leads to a natural definition of a
topology. The co-boundary of a set c ⊆ V Γ is the set of all edges in Γ such that
one of its end vertices is in c and the other is in V Γ \ c. Denote the co-boundary
of c with δc. Suppose |δc| < ∞. One sees that if c contains all but finitely many
vertices from a ray R then c also contains also all but finitely many vertices from
any ray in the same end as R. Thus we can say that the end belongs to c. Define
Ωc as the set of ends that belong to c. The topology on the space of ends has as a
basis the sets Ωc where c ⊂ V Γ and |δc| <∞. The graph Γ \ δc is not connected.
If ω1 and ω2 are two ends of Γ and ω1 belongs to c and ω2 belongs to V Γ \ c then
we can say that δc separates ω1 and ω2.

It is easy to show that a quasi-isometry between two locally finite connected
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graphs induces a homeomorphism between the end spaces of the graphs. In par-
ticular the number of ends is a quasi-isometry invariant.

For a detailed introduction to ends of graphs the reader can consult [48] or [16].

4.3.1. Stallings’ Theorem. For a finitely generated group the number of ends
is defined as the number of ends of a Cayley graph of the group with respect to a
finite generating set. This is well defined, because the number of ends of a space
is invariant under quasi-isometry, as noted above. It can be shown that a finitely
generated group has 0, 1, 2 or ∞ many ends.

Let G be a compactly generated, totally disconnected, locally compact group.
Since G admits a rough Cayley graph Γ, which is unique up to quasi-isometry, we
may define the space of rough ends of G as the space of ends of Γ. The cardinality
of the space of rough ends of G will be called the number of rough ends of G.
These definitions obviously extend the traditional concepts for finitely generated
groups. Because of Lemma 4.9, every compactly generated, totally disconnected,
locally compact group has 0, 1, 2 or ∞ many ends.

A compactly generated, totally disconnected, locally compact group has 0 rough
ends, if and only if it is compact (in particular, a finitely generated group has 0 ends
if and only if it is finite).

Finitely generated groups with precisely two ends are characterized by the
following result, which is a conjunction of results of Hopf and C. T. C. Wall.

Theorem 4.13. ([34, Satz 5] and [73, Lemma 4.1]) Let G be a finitely generated
group. Then the following are equivalent:

(i) G has precisely two ends;
(ii) G has an infinite cyclic subgroup of finite index;
(iii) G has a finite normal subgroup N such that G/N is either isomorphic to

the infinite cyclic group or to the infinite dihedral group.

For compactly generated, totally disconnected, locally compact group we have
the following analogue.

Theorem 4.14. (Cf. [53]) Let G be a compactly generated, totally disconnected,
locally compact group. Suppose that the space of rough ends has precisely two
points. Then G has a compact, open, normal subgroup N such that G/N is either
isomorphic to the infinite cyclic group or to the infinite dihedral group.

Finitely generated groups with more than one end are described in a famous
result of Stallings from 1968.

Theorem 4.15. [65] Suppose G is a finitely generated group with more than one
end. Then G can be written as a non-trivial free product with amalgamation A∗CB
(with A 6= C 6= B) where C is finite, or G can be written as a non-trivial HNN-
extension A ∗C x where C is finite.

The converse also holds, if A ∗C B (with A 6= C 6= B) where C is finite, or G
can be written as a non-trivial HNN-extension A ∗C x where C is finite, then G
has more than one end.
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In 1974 Abels [1] proved an analogue of Stallings’ Theorem for topological
groups. Abels uses similar ideas in his proof as used by Stallings. Essentially the
same result as in [1] is proved in [40], using Dunwoody’s theory of structure trees
(see [19] and [15]) and the Bass-Serre theory of group actions on trees.

Theorem 4.16. (Cf. [1]) Let G be a compactly generated, totally disconnected,
locally compact group. Suppose that some (equivalently, any) rough Cayley graph
of G has infinitely many ends. Then G = A∗CB (with A 6= C 6= B) or G = A∗C x,
where A and B are open, compactly generated subgroups of G, and C is a compact,
open subgroup.

That it is possible to write G as either a free product with amalgamation G =
A∗C B or an HNN-extension G = A∗C x is often expressed by saying that G splits
over C. Using this expression, Stallings theorem becomes the statement that a
finitely generated group with infinitely many ends splits over a finite subgroup, and
Theorem 4.16 above becomes the statement that a compactly generated, totally
disconnected, locally compact group with more than one end splits over a compact,
open subgroup. If G is totally disconnected, locally compact group with closed,
cocompact subgroup H , then a rough Cayley graphs for G and a rough Cayley
graph for H are quasi-isometric by Theorem 4.10. In particular, G and H have
the same number of rough ends. Hence, Theorem 4.16 has the following corollary.

Corollary 4.17. ([40, Corollary 3.22]) Let G be a totally disconnected, locally
compact group and H a closed, cocompact subgroup. Then G splits over a compact,
open subgroup if and only if H splits over a compact, open subgroup.

4.3.2. Free subgroups. A well known theorem of Gromov (also proved byWoess
[82]) says that a finitely generated group is quasi-isometric to a tree if and only if
it has a finitely generated free subgroup of finite index.

The next theorem provides an analogue of this result for compactly generated,
totally disconnected, locally compact groups.

Theorem 4.18. ([40, Theorem 3.28]) Let G be a compactly generated, totally
disconnected, locally compact group.

(i) Some (hence, every) rough Cayley graph of G is quasi-isometric to a tree if
and only if G has an expression as a fundamental group of a finite graph of groups
such that all the vertex and edge groups are compact open subgroups of G.

(ii) Assume also that the group G is unimodular. Then some (hence, every)
rough Cayley graph of G is quasi-isometric to some tree if and only if G has a
finitely generated free subgroup that is cocompact and discrete.

The proof of Theorem 4.18 uses information about ends, quasi-isometries and
structure trees from [82], [39], [41], [47] and [67]. The essential result used about
graphs quasi-isometric to trees is that a transitive, locally finite, graph is quasi-
isometric to a tree if and only if it has no thick ends (cf. [82] and [41, Theorem 5.5]).
This property can then be used to show that for a locally finite, transitive graph
that is quasi-isometric to a tree one can find a locally finite structure tree on which
the automorphism group of the original graph acts.
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For the proof of existence of a cocompact, discrete, finitely generated, free
subgroup in part (ii) of Theorem 4.18 the theory of tree lattices in [3] is used.

Corollary 4.19. ([40, Corollary 3.29]) Let G be a totally disconnected, locally
compact group. If G has a cocompact, finitely generated, free, discrete subgroup,
then G splits over some compact, open subgroup and G can be written as G = A∗CB
(with A 6= C 6= B) or G = A ∗C x where A,B and C are compact, open subgroups
of G.

The above Corollary implies a special case of a result of Mosher, Sageev and
Whyte [54, Theorem 9].

Corollary 4.20. ([40, Corollary 3.30]) Let G be a totally disconnected, locally
compact group. If G has a cocompact, finitely generated, free, discrete subgroup,
then G has an action on a locally finite tree, such that G fixes neither an edge nor
a vertex.

Consider a finitely generated groupH and a Cayley graph Γ ofH . The action of
H on the Cayley graph gives an embedding of H as a closed, cocompact subgroup
into the totally disconnected, locally compact group G = Aut(Γ). Willis asks in
[80, Section 6] whether various invariants of G can be bounded in terms of H . For
example, he asks if it is possible to deduce that there are only finitely many prime
numbers that occur as factors in s(x) for x ∈ G (the scale function s is discussed
in Section 3). This question is motivated by the following result.

Theorem 4.21. ([78, Theorem 3.4]) Let G be a compactly generated, totally dis-
connected, locally compact group. Then there are finitely many primes p1, p2, . . . , pt
such that the number sG(x) for all elements x ∈ G can be written in the form
sG(x) = ps11 p

s2
2 · · · pstt .

Baumgartner [5] has applied the above mentioned result of Mosher, Sageev
and Whyte to the program suggested by Willis. Baumgartner has also extended
the scope of the program, by considering not only the special type of embedding
G→ Aut(Γ), where Γ is a Cayley graph of H . A topological group G is called an
envelope of a group H , if H embeds as a closed, cocompact subgroup of G.

Theorem 4.22. [5, Corollary 11]) Let H be a virtually free group of rank at
least 2. Then there are finitely many primes p1, p2, . . . , pt such that for all totally
disconnected, locally compact envelopes G of H all elements x ∈ G the number
sG(x) can be written in the form sG(x) = ps11 p

s2
2 · · · pstt .

The following result comes from a totally different direction, but it also indicates
the possible fruitfulness of the study of envelopes and embeddings of a finitely
generated group into automorphism groups of its Cayley graphs.

Theorem 4.23. [53, Theorem 4.1]) Let N be a finitely generated, torsion free,
nilpotent group and Γ a Cayley graph of N with respect to some finite generating
set of N . Put G = Aut(Γ). Then G is discrete in the permutation topology, and
N embeds into G as normal subgroup.

This theorem is proved with the aid of Theorem 2.18.
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4.3.3. Accessibility.

Definition 4.24. A finitely generated group is said to be accessible if it has an
action on a tree T such that:

(i) the number of orbits of G on the edges of T is finite;
(ii) the stabilizers of edges in T are finite subgroups of G;
(iii) every stabilizer of a vertex in T is a finitely generated subgroup of G with

at most one end.

The question by C. T. C. Wall, [74], of whether or not every finitely generated
group is accessible motivated several important developments in combinatorial
group theory, among them Dunwoody’s theory of structure trees. Wall’s question,
after being open for a long time, was settled by examples of finitely generated
groups that are not accessible, which were constructed by Dunwoody [21].

Definition 4.25. ([67, p. 249]) Let Γ be a connected, locally finite graph. If there
is a number k such that any two distinct ends can be separated by removing k or
fewer vertices from Γ then the graph Γ is said to be accessible.

Thomassen and Woess [67, Theorem 1.1] show that a finitely generated group
is accessible if and only if every Cayley graph with respect to a finite generating
set is accessible.

The notion of accessibility can be generalized to compactly generated, totally
disconnected, locally compact groups as follows.

Definition 4.26. A compactly generated, totally disconnected, locally compact
group is said to be accessible if it has an action on a tree T such that:

(i) the number of orbits of G on the edges of T is finite;
(ii) the stabilizers of edges in T are compact, open subgroups of G;
(iii) every stabilizer of a vertex in T is a compactly generated, open subgroup

of G with at most one rough end.

Then one can link accessibility of compactly generated totally disconnected
locally compact groups to rough Cayley graphs in analogues way as Thomassen
and Woess link accessibility of finitely generated groups to Cayley graphs.

Theorem 4.27. ([40, Theorem 3.27]) Let G be a compactly generated, totally
disconnected, locally compact group. Then G is accessible if and only if every
rough Cayley graph of G is accessible.

In fact, the group in Theorem 4.27 is accessible if and only if any of its rough
Cayley graphs is accessible, because the property of a graph being accessible is
invariant under quasi-isometries by [58, Theorem 0.4]. By the same result, a
compactly generated, totally disconnected, locally compact group with a closed,
cocompact, accessible subgroup is itself accessible. Since every finitely presentable
group is accessible by a result of Dunwoody [20], we deduce the following theorem
as a corollary.

Theorem 4.28. Let G be a compactly generated, totally disconnected, locally com-
pact group. If G has a cocompact, finitely presented subgroup then G is accessible.
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4.3.4. Ends of pairs of groups. By Stallings’ Theorem the ends of a finitely
generated group can be used to detect if the group splits over a finite subgroup.
The concept of ends of pairs of groups is an attempt to define a geometric invariant
that can be used to detect splittings of G over subgroups that are not finite. This
concept was first introduced in the papers [35] by Houghton and [63] by Scott. For
a survey of these and related concepts see [75].

Definition 4.29. (Cf. [63, Lemma 1.1]) Let G be a finitely generated group and
C a subgroup of G. Let Γ be a Cayley graph of G with respect to some finite
generating set. The number of ends of the pair (G,C), denoted with e(G,C), is
defined as the number of ends of the quotient graph C\Γ (quotient with respect
to the natural C-action on Γ).

It can be shown that the number of ends of a pair of groups does not depend
on the choice of generating set. While a transitive, locally finite graph has 0, 1,
2 or infinitely many ends, a pair of groups can have any number of ends, see [63,
Example 2.1].

The following conjecture generalizing Stallings’ Theorem is due to Kropholler,
see [57].

Conjecture 4.30. Let G be a finitely generated group and C a subgroup of G. If
G contains a subset A such that

(i) A = CA;
(ii) for every element g ∈ G the symmetric difference of a and Ag is contained

in a finite union of right C cosets;
(iii) neither A nor G \A is contained in any finite union of right C cosets;
(iv) A = AC

then G splits over a subgroup that is commensurable with a subgroup of C. (Con-
ditions (i)-(iii) above are equivalent to e(G,C) ≥ 2.)

Here, two subgroups are are said to be commensurable, if their intersection has
finite index in both subgroups. Furthermore the commensurator of a subgroup C
of G is the set of elements g ∈ G such that C and gCg−1 are commensurable.
The commensurator of a subgroup is itself a subgroup. Kropholler’s conjecture
above has been verified under various additional hypotheses. A sample result is
the following theorem.

Theorem 4.31. ([22, p. 30]) Let G be a finitely generated group and C a finitely
generated subgroup of G. If e(G,C) > 1 and the commensurator of C is the whole
group G then G splits over a subgroup commensurable with C.

This result has also been proved in papers by Niblo [56, cf. Theorem B] and
Scott and Swarup [64, Theorem 3.12].

In [40, Section 3.7] there is further discussion of how the concepts of ends
of pairs of groups, coends and rough ends relate and how these concepts can be
interpreted graph theoretically. Amongst other things these considerations lead to
a prove of Theorem 4.31 above.
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4.4. Polynomial growth. Recall from Section 2.3 that a connected, locally finite
graph is said to have polynomial growth if for every vertex the number of vertices
in distance less than or equal to n grows polynomially with n. A finitely generated
group is said to have polynomial growth if some (hence, every) Cayley graph with
respect to a finite generating set has polynomial growth.

The concept of polynomial growth can be generalized to compactly generated,
locally compact groups.

Definition 4.32. Let G be a locally compact group generated by a compact
symmetric neighbourhood of the identity V . Set V n = {g1g2 · · · gn | gi ∈ V }.
Let µ denote a Haar measure on G. If there are constants c and d such that
µ(V n) ≤ cnd for all natural numbers n, G is said to have polynomial growth.

The following theorem characterizes compactly generated, totally disconnected
groups of polynomial growth in terms of their rough Cayley graphs.

Theorem 4.33. ([40, Theorem 4.4]) Let G be a compactly generated, totally dis-
connected, locally compact group and Γ some rough Cayley graph for G. Then
Γ has polynomial growth if and only if G has polynomial growth (in the sense of
Definition 4.32).

Viewed in this context, Trofimov’s theorem about automorphism groups of
graphs with polynomial growth, Theorem 2.17, can now be seen as a version of
Gromov’s Theorem for compactly generated, totally disconnected, locally compact
groups. As already mentioned, Losert proved a generalization of Gromov’s The-
orem for topological groups in [42] and Woess deduced Trofimov’s theorem from
Lostert’s result in [83]. The following theorem [40, Theorem 4.6] is a combination
of Theorem 4.33 and Trofimov’s theorem, but can also be seen as Corollary to
Losert’s results.

Theorem 4.34. (Cf. Trofimov [69] and Losert [42]) Let G be a compactly gener-
ated, totally disconnected, locally compact group. Then G has polynomial growth if
and only if G has a normal, compact, open subgroup K such that G/K is a finitely
generated almost nilpotent group.
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[33] R. Halin, Über unendliche Wege in Graphen. Math. Ann. 157 (1964), 125–137.
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