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Magnetoresistance and Spin-Orbit interaction in Complex 2DEG
Systems: A Study of Shubnikov-de Haas Oscillations

Hamed Gramizadeh

March 31, 2023
Abstract

Magnetoresistance oscillations, also known as Shubnikov-de Haas (SdH) oscil-
lations, is a well-known phenomena that results from the quantization of electron
orbits in the presence of a magnetic field. These oscillations have been extensively
studied and are a valuable experimental tool for extracting electronic charge densi-
ties and spin-orbit interaction (SOI) couplings, such as Rashba and Dresselhaus cou-
plings. Although 2DEGs with large Rashba, Dresselhaus, and g-factors are available,
the current theoretical picture of explaining SdH behavior is not able to account for
all those factors. Our findings show that by using a Poisson summation formula, we
can analyze magneto-oscillations in 2DEGS systems with Rashba, Dresselhaus, and
Zeeman couplings. The Poisson summation formula naturally separates the magne-
tooscillations into fast and slow componentswhich facilitates the analysis of the spin-
orbit contribution. In this Ph.D. thesis, we investigate magnetooscillations in com-
plex 2DEGs using both analytical and numerical methods thus providing a unique
and comprehensive approach. Using the analytical approach, we identified a new
condition for the vanishing of spin-orbit-related beatings. With numerical method,
we are abled to extract both SOI couplings from the SdH oscillations independently
of their Zeeman strength and electrical charge density. Additionally, we found that
the behavior of SdH oscillations in such systems can be greatly influenced by the an-
gle at which the in-plane magnetic field is tilted. This research contributes to the
ongoing process of the development of novel spintronic devices.
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Chapter 1

Introduction

1.1 Background

A two-dimensional electron gas (2DEG) is a quantum model of electrons that are
confined to move in two dimensions, typically at the interface between two semi-
conducting materials. In this state, the electrons are free to move only in the plane
parallel to the interface, while their motion perpendicular to the interface is con-
fined by the potential barrier formed by the surrounding materials. 2DEG exhibits
a number of unique and interesting electronic properties, such as high mobility and
magnetoresistance oscillations [1]. These properties have led to the development of
a wide range of electronic and photonic devices, including field-effect transistors,
high-electron-mobility transistors [2]. The properties of 2DEG are highly dependent
on the materials used to create the interface, as well as the applied electric and mag-
netic fields [3], [4]. Understanding the behavior of 2DEG is therefore of great interest
to researchers in the fields of condensed matter physics, material science, and elec-
tronics. A two-dimensional electron gas that forms at the interface between zinc-
blende semiconductors or insulators such as InAs/AlGaAs/GaAs heterojunction to
produce the confinement in z direction [5]–[7]. The most commonly encountered
2DEG is the layer of electrons found in zinc-blende semiconductor field-effect tran-
sistors. It is an important building block in modern electronics, and it has a wide
range of applications including field effect transistors, sensors, and quantum com-
puting devices [8], [9]. The 2DEG can also be created by sandwiching a thin layer
of semiconductor material between two insulating layers, known as a heterostruc-
ture. When an external voltage is applied to the heterostructure, it creates an electric
field that can attract the electrons from the semiconductor material toward the insu-
lating layer. The electrons are confined to move in the plane of the semiconductor
layer due to the presence of the insulating layers, creating a 2DEG [10]. One of the
key properties of the 2DEG system is its energy spectrum, which describes the al-
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lowed energies that the electrons can possess. The presence of external fields such
as a magnetic field or a gate voltage can alter the energy spectrum which is one of
the key properties investigated in this thesis. The 2DEG has a number of interest-
ing physical phenomena that arise due to its confined geometry and the presence of
external electric or magnetic fields [11] such as the Shubnikov-de Haas effect that is
a phenomenon where the resistance oscillates as a function of magnetic field. The
origin of these oscillations is the quantized energy levels of the 2DEG. Other phe-
nomena such as electron interference, where the wave-like nature of electrons that
can lead to interference effects, which can be observed in 2DEG systems [12]. The
2DEG system has a wide range of applications in modern electronics. The exhibition
of the physical phenomena due to its confined geometry and the presence of external
fields, and is an active area of research in the fields of condensed matter physics and
material science, solid state physics and etc.

1.2 Spintronics

Spintronics, short for spin-based electronics, is an established field of research that
aims to exploit the spin of electrons as a fundamental property for information pro-
cessing and storage. In traditional electronics, information is processed and stored
using the charge of electrons. However, in spintronics, the spin of electrons is used as
an additional degree of freedom to carry andmanipulate information [13]. Spintron-
ics is an active and interdisciplinary field of research that spans materials science,
condensed matter physics, and electrical engineering. In spintronics, researchers
investigate the properties of materials that exhibit spin-dependent transport, spin-
orbit coupling, and other spin-related phenomena. They develop and optimize de-
vices that use thesematerials to perform tasks such asmagnetic sensing, data storage,
and information processing [14], [15]. One of the key advantages of spintronics over
traditional electronics is its potential for reduced power consumption and increased
processing speed. Spintronics devices can operate at lower voltages and currents than
their electronic counterparts, making them ideal for use in energy-efficient applica-
tions. Furthermore, the use of spin allows for faster switching speeds and higher
storage densities, enabling the development of new technologies such as magnetic
random access memory. Spintronics is an exciting and rapidly developing field with
the potential to revolutionize electronics and information technology. Ongoing re-
search is expected to lead to the development of newmaterials, devices, and applica-
tions, with the ultimate goal of creating a new generation of spin-based technologies
that are faster, more energy-efficient, and more versatile than traditional electronic
devices[14]. Some spintronics devices use spin-orbit couplings as a key ingredient
which we investigate in this thesis.
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1.3 Model Hamiltonian

The model Hamiltonian for 2DEG can be constructed by:

𝐻 = 1
2𝑚 [(𝑝𝑥 +

𝑒𝐵𝑦
2 )2 + (𝑝𝑦 −

𝑒𝐵𝑥
2 )2] , (1.1)

where 𝑚 is the effective mass, 𝑝𝑥,𝑦 are the momentum operators, 𝑒 is the electric
charge and 𝐵 is the magnetic field. The vector potential 𝐴 gives the magnetic field
B through the equation 𝐵 = ▿ × 𝐴. Here we use the symmetric gauge 𝐴𝑥 = −𝑒𝐵𝑦

2
and 𝐴𝑦 = + 𝑒𝐵𝑥

2
. Introducing the operator 𝜋𝑥,𝑦 = 𝑝𝑥,𝑦 ± 𝑒𝐴𝑥,𝑦 we can rewrite the

Hamiltonian:

𝐻 = 1
2𝑚 (𝜋𝑥 + 𝑖𝜋𝑦)(𝜋𝑥 − 𝑖𝜋𝑦) + 𝑖[𝜋𝑥, 𝜋𝑦], (1.2)

from this point, we defined ladder operators 𝑎 and 𝑎† as fulfill the [𝑎, 𝑎†] = 1.

𝑎† = 1
√
2𝑒ℏ𝐵

(𝜋𝑥 + 𝑖𝜋𝑦) (1.3)

𝑎 = 1
√
2𝑒ℏ𝐵

(𝜋𝑥 − 𝑖𝜋𝑦) (1.4)

which leads us to a famous relation of the Hamiltonian expression that describes the
so-called Landau levels:

𝐻 = ℏ𝜔𝑐(𝑎†𝑎 +
1
2) (1.5)

where 𝜔𝑐 =
𝑒𝐵
𝑚
is the cyclotron frequency of the Landau levels. The symmetrical

gauge is preferred over the Landau gauge for this specific purpose due to its conve-
nience for mathematical calculations [13].

1.3.1 Zeeman coupling

Magnetic moments associated with electron spin are either parallel or antiparallel to
themagnetic field. The orientation of thismomentumchanges the energy of the state
by ± 1

2
𝑔𝜇𝐵|𝐵|, where 𝜇𝐵 =

𝑒ℎ
2𝑚0

is the Bohr Magneton. This energy shift is known as
the Zeeman splitting. The one-half factor comes from the spin which carries angular
momentum ℏ

2
. Thus, the Zeeman coupling describes the splitting of the energy levels

of a system in the presence of an externalmagnetic field. The Zeeman effect is named
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afterDutch physicist Pieter Zeeman [16], whofirst observed the effect in the emission
spectra of excited particles. It can be described by adding 1

2
𝑔𝜇𝐵|𝐵|𝜎𝑧 where 𝜎𝑧 is the

Pauli matrice in the Hamiltonian. The impact of the Zeeman effect on the energy
spectrum of a 2DEG system depends on the strength and orientation of the magnetic
field, and it has applications in the field of spintronics and quantum information and
could affect the transport properties of the 2DEG system. The form of Zeeman added
to 2DEG comes as:

𝐻 = ℏ𝜔𝑐(𝑎†𝑎 +
1
2) +

1
2𝑔𝜇𝐵𝐵𝜎𝑧 (1.6)

The 𝑔−factor is approximately 2 for a free electron and in the case of (InAs) is 𝑔 =
−12 [17], [18]. Evenwith this enhancement InAs quantumwells typically havemajor
𝑔−factors compared to other common materials such as GaAs.

1.4 Spin-orbit interaction (SOI)

The spin-orbit interaction is a fundamental phenomenon in quantummechanics that
arises due to the interaction between the electron’s spin and its motion around the
atomic nucleus. This interaction leads to energy level splitting, which is responsible
for several important effects in solid-state physics such as Rashba and Dresselhaus
SOI. We shall deal with the magnetic field first

𝐵 = −𝑣 × ▿⃗𝑉. (1.7)

Which describes the magnetic field when an electron is moving with velocity 𝑣 in
an electric field ▿⃗𝑉 where 𝑉 is a potential. This leads to the Hamiltonian for the
spin-orbit (SO) interaction:

𝐻𝑠𝑜 =
𝑒ℏ

4𝑀2𝑐2
𝜎.(𝑝 × ▿𝑉), (1.8)

where 𝑐 is the speed of light and 𝑝 is the momentum.

1.4.1 Pure Rashba effect (SIA)

The Rashba effect refers to the splitting of the energy spectrum of a two-dimensional
electron gas (2DEG) system in the presence of an external electric field. The Rashba
effect is named after its discoverer, Soviet physicist E.I. Rashba, who first proposed
the effect in a theoretical paper in 1960 [19]., which results in a spin splitting of the
electron states due to the lack of inversion symmetry in some heterostructure that is
known as structural inversion asymmetry (SIA). And has a substantial impact on the
electronic band structure. When an external electric field is applied perpendicular
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to the 2DEG plane, the spin-orbit coupling causes the energy levels of the 2DEG to
split into two branches with different energies [20], [21]. The Rashba effect is impor-
tant because it allows for the manipulation of the electron spin in the 2DEG system
using external electric fields, which has applications in the field of spintronics [22].
The Rashba effect can have significant results on the transport properties of 2DEG
systems such as its electrical conductivity and magnetoresistance[23]. The Hamilto-
nian for the Rashba SOI is defined as

𝐻𝑅 =
𝛼
ℏ (𝜎𝑥𝜋𝑦 − 𝜎𝑦𝜋𝑥), (1.9)

where 𝛼 is the Rashba coupling constant and 𝜋𝑖 , 𝜎𝑖 are the momentum operator and
Pauli’s matrices, respectively, in 𝑖 = 𝑥, 𝑦 direction. The Hamiltonian describes a spin
dependent coupling proportional to the momentum of the electrons, and it leads to a
spin splitting of the energy bands. The aim is to investigate the Rashba Hamiltonian
with Zeeman interaction in the total Hamiltonian, which can be written for nonzero
magnetic field as:

𝐻𝑅 = 𝑎†𝑎 + 1
2 +

∆̃
2 𝜎𝑧 +

𝛼
√
2ℏ𝜔𝑐𝓁𝑐

(𝑎†𝜎− + 𝑎𝜎+) (1.10)

Here we introduced the convention of scaling of all energies in terms of ℏ𝜔𝑐. Here
we will introduce the 𝑁+ operator:

𝑁+ = 𝑎†𝑎 + 𝜎𝑧
2 . (1.11)

Since𝐻𝑅 commutes with 𝑁+:

[𝐻𝑅, 𝑁+] = [𝑎†𝜎− + 𝑎𝜎+, 𝑎†𝑎 +
𝜎𝑧
2 ] = 0, (1.12)

where 𝜎+ = 𝜎𝑥 + 𝑖𝜎𝑦 and 𝜎− = 𝜎𝑥 − 𝑖𝜎𝑦 are defined as creation and annihila-
tion Pauli operators,𝐻𝑅 and𝑁+ share a set of common eigenvectors together which
can be used to diagonalize both operators simultaneously. This property is often
exploited in quantum mechanics to simplify calculations and to identify conserved
quantities[24]. So we can go through the eigenvalues and eigenvectors of 𝑁+ in the
basis |𝑛, 𝑠⟩ since they have common eigenstates and eventually get the spectrum of
energies in this approach. These operators are going to share common eigenbasis for
𝑛 ∈ ℕ the 𝑁+ becomes:

𝑁+|𝑛, ↑⟩ = (𝑛 + 1
2)|𝑛, ↑⟩ (1.13)

𝑁+|𝑛 + 1, ↓⟩ = (𝑛 + 1
2)|𝑛 + 1, ↓⟩. (1.14)
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Hence |𝑛, ↑⟩ and |𝑛+1, ↓⟩ are degenerate with respect to the operator𝑁+ as a conclu-
sion, a linear combination of |𝑛, ↑⟩ and |𝑛 + 1, ↓⟩ is also an eigenstate of the Hamil-
tonian in eq. (1.10), this property abled us to rewrite all the Hamiltonian elements in
the basis of the |𝑛, ↑⟩ and |𝑛+1, ↓⟩ states, in addition to the non-degenerate decoupled
state |0, ↓⟩ which we will describe in the next section.

1.4.2 Pure Dresselhaus effect (BIA)

Due to inherent crystalline properties, the Dresselhaus effect is a spin-orbit coupling
phenomenon arising in crystalline material with bulk inversion asymmetry (BIA).
In a two-dimensional electron gas (2DEG) system, the Dresselhaus effect can lead to
a spin splitting of the energy bands, which can have important implications for spin-
tronics applications [25]–[27]. The Dresselhaus effect can also occur, for example,
in zincblende crystal structures where the bulk inversion symmetry is broken by the
presence of impurities or defects [28]. The Dresselhaus effect can be mathematically
described by a term in the Hamiltonian that couples the electron spin to its momen-
tum like in the Rashba case. The Dresselhaus spin-orbit Hamiltonian can be written
as:

𝐻𝐷 = 𝛽
ℏ (𝜎𝑥𝜋𝑥 − 𝜎𝑦𝜋𝑦). (1.15)

where 𝛽 is the Dresselhaus coefficient. 𝜋 and 𝜎𝑖 are the momentum and Pauli matri-
ces. For 𝐵 ≠ 0 using the ladder operators. The spin-dependent term that is propor-
tional to the momentum of the electron, and it leads to a spin splitting of the energy
bands. The Dresselhaus Hamiltonian could be written as follows:

𝐻𝐷 = 𝛽
√
2ℏ𝜔𝑐𝓁𝑐

(𝑎†𝜎+ + 𝑎𝜎−). (1.16)

The pureDresselhaus effect can have interesting effects on the transport properties of
2DEG systems. For example, it can lead tomagnetoresistivity, Shubnikov-deHaas os-
cillations where an electric current generates spin splitting of the energy bands. This
effect can be helpful in spintronic applications, such as spin-based logic devices [29].
Here we define operator 𝑁−:

𝑁− = 𝑎†𝑎 − 𝜎𝑧
2 , (1.17)

which commutes with𝐻𝐷 :

[𝐻𝐷 , 𝑁−] = 0. (1.18)
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This implies that in our system, an eigenstate of𝐻𝐷 is also an eigenstate of 𝑁−. The
states |𝑛, ↑⟩ and |𝑛 + 1, ↓⟩ have eigenvalues 𝑛 − 1

2
which makes them degenerate:

𝑁−|𝑛, ↑⟩ = (𝑛 − 1
2)|𝑛, ↑⟩ (1.19)

𝑁−|𝑛 + 1, ↓⟩ = (𝑛 − 1
2)|𝑛 + 1, ↓⟩. (1.20)

Hence |𝑛, ↑⟩ and 𝑛+1, ↓⟩ are degenerate with respect to the operator𝑁− as a conclu-
sion, a linear combination of |𝑛, ↑⟩ and 𝑛+ 1, ↓⟩ is also an eigenstate of the Hamilto-
nian in eq. (1.16), this property allowed us to rewrite all the Hamiltonian elements in
the basis of the |𝑛, ↑⟩ and 𝑛+1, ↓⟩ states in addition to the non-degenerate decoupled
state |0, ↓⟩ in terms of 2 × 2 blocks.

1.4.3 Hamiltonian Diagonalization

The Hamiltonian of a system as a mathematical operator that describes the energy
of that system. To diagonalize the Hamiltonian, it is needed to find a set of basis
states that are eigenstates of the Hamiltonian. The eigenvalues of the Hamiltonian
on this basis are the energy levels of the system. Diagonalization also can be achieved
through the use of unitary transformations, which preserve the inner product of the
states. In some cases, it may not be possible to exactly diagonalize the Hamiltonian.
In these cases, approximate methods such as perturbation theory may be used to
obtain approximate solutions [30]. Starting with the Rashba Hamiltonian

𝐻 = 𝑎†𝑎 + 1
2 +

∆̃
2 𝜎𝑧 +

𝛼
√
2ℏ𝜔𝑐𝓁𝑐

(𝑎†𝜎− + 𝑎𝜎+), (1.21)

where ∆̄ = 1
2
𝑔∗𝑚, we can calculate all the elements in the Hamiltonian and later on

we can find the eigenvalues and eigenvectors on the right spot in the Hamiltonian.
Using the fact that 𝐻 and 𝑁+ share a common eigenstates, we can diagonalize 𝐻 in
a 2 × 2 subspace, {|𝑛, ↑⟩, |𝑛 + 1, ↓⟩} where 𝑛 = 0, 1, 2, 3, ...:

𝐻2×2 = ( ⟨𝑛, ↑ |𝐻|𝑛, ↑⟩ ⟨𝑛, ↑ |𝐻|𝑛 + 1, ↓⟩
⟨𝑛 + 1, ↓ |𝐻|𝑛, ↑⟩ ⟨𝑛 + 1, ↓ |𝐻|𝑛 + 1, ↓⟩)

(1.22)

=
⎛
⎜
⎝

𝑛 + 1
2
− ∆̃

2
2𝑎𝑅

√
𝑛

2𝑎𝑅
√
𝑛 𝑛 − 1

2
+ ∆̃

2

⎞
⎟
⎠
= 𝑛𝕀 +

⎛
⎜
⎝

1
2
(1 − ∆̃) 2𝑎𝑅

√
𝑛

2𝑎𝑅
√
𝑛 − 1

2
(1 − ∆̃)

⎞
⎟
⎠
. (1.23)
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The corresponding eigenvalues can be read by this 2 × 2matrices resulting in eigen-
values:

𝜀𝑛,↑ = 𝑛 −
√

1
4(1 − ∆̃)2 + 4𝑎2𝑅(𝑛 + 1) (1.24)

𝜀𝑛+1,↓ = 𝑛 +
√

1
4(1 − ∆̃)2 + 4𝑎2𝑅(𝑛 + 1). (1.25)

These energy levels are plotted in Fig. 1.10. Note that these are two eigenvalues be-
longing to different Landau levels, i.e.𝑛 and𝑛+1. The corresponding of eigenenergy𝜀𝑛,↓
belongs to adjacent 2 × 2matrices:

𝜀𝑛,↓ = 𝑛 − 1
√

1
4(1 − ∆̃)2 + 4𝑎2𝑅(𝑛 + 1). (1.26)

Considering the scaled Rashba constant (𝑎𝑅 = 𝛼√
2ℏ𝜔𝑐𝓁𝑐

) in Eqs. (1.24) and (1.25)
shows that at higher magnetic fields when (𝐵 → ∞) makes 𝑎𝑅 vanish, which ex-
plains why high magnetic field are considered as spin-orbit diminisher factor. In the
same way, setting the 𝛼 to zero (𝑎𝑅 → 0) returns us to the initial case in the absence
of the Rashba term, resulting in the Zeeman splitting shape parallel along the inverse
magnetic field.
In the Rashba case for example, with three Landau levels 𝑛 − 1, 𝑛, and 𝑛 + 1, each
Landau level has two spin states splitted, i.e., |𝑛, ↑⟩ and |𝑛 + 1, ↓⟩, and each state is
coupled with the upper and lower Landau levels according to the Rashba Hamilto-
nian here, the eigenstate |𝑛, ↓⟩ is coupled with the states |𝑛, ↑⟩ and |𝑛 + 1, ↓⟩ so we
can write the |𝑛, ↓⟩ as a linear combination of these two states with the eigenvalue
become:

By determining the eigenstates and eigenvalues of the upper and lower states, it
is possible to obtain all the eigenenergies and eigenvectors of the intermediate states.

In a similar way we can diagonalize the Dresselhaus Hamiltonian

𝐻 = 𝑎†𝑎 + 1
2 +

∆̃
2 𝜎𝑧 +

𝛽
√
2ℏ𝜔𝑐𝓁𝑐

(𝑎†𝜎+ + 𝑎𝜎−), (1.27)

using the fact that [𝐻,𝑁−] = 0. The corresponding 2×2 is now |𝑛, ↑⟩, |𝑛+1, ↓⟩ result
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Figure 1.1: Comparison of Energy Spectra in the Presence of Rashba Spin-Orbit Cou-
pling with 𝑎𝑅 = 6meV nm (right) and Pure Zeeman Effect with 𝑎𝑅 = 0 (left)
.

in:

𝐻2×2 = ( ⟨𝑛, ↑ |𝐻|𝑛, ↑⟩ ⟨𝑛, ↑ |𝐻|𝑛 + 1, ↓⟩
⟨𝑛 + 1, ↓ |𝐻|𝑛, ↑⟩ ⟨𝑛 + 1, ↓ |𝐻|𝑛 + 1, ↓⟩)

=
⎛
⎜
⎝

𝑛 + 1
2
+ ∆̃

2
2𝑎𝐷

√
𝑛

2𝑎𝐷
√
𝑛 𝑛 − 1

2
− ∆̃

2

⎞
⎟
⎠
= 𝑛𝕀 +

⎛
⎜
⎝

1
2
(1 + ∆̃) 2𝑎𝐷

√
𝑛 + 1

2𝑎𝐷
√
𝑛 + 1 − 1

2
(1 + ∆̃)

⎞
⎟
⎠
.(1.28)

Corresponding eigenvalues:

𝜀𝑛,↑ = 𝑛 −
√

1
4(1 + ∆̃)2 + 4𝑎2𝐷(𝑛 + 1) (1.29)

𝜀𝑛+1,↓ = 𝑛 +
√

1
4(1 + ∆̃)2 + 4𝑎2𝐷(𝑛 + 1). (1.30)

Note the different sign in the Zeeman factor,1 + ∆̃ which has an opposite sign com-
pared to the Rashba case in Eq. (1.24). This has important consequences inmaterials
with large g factors as we investigated in this thesis.
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1.4.4 Rashba + Dresselhaus effect case

By adding the Dresselhaus and Rashba case for non-zero magnetic fields the Hamil-
tonian become:

𝐻𝑅𝐷 = 𝑎†𝑎 + 1
2 +

∆̃
2 𝜎𝑧 +

𝛼
√
2ℏ𝜔𝑐𝓁𝑐

(𝑎†𝜎− + 𝑎𝜎+) +
𝛽

√
2ℏ𝜔𝑐𝓁𝑐

(𝑎†𝜎+ + 𝑎𝜎−)

(1.31)

As is shown in Fig [1.2] there are two sets of curves, one with a solid red line rep-

2 4 6 8 10
1/B[T−1]

175

176

177

178

179

180

E n

α=7.5, β=3
α=7.5, β=0

Figure 1.2: Comparison of energy spectra for two cases in LLs range [175:180]. The
red solid line represents the spectrum with (𝛼 = 7.5,𝛽 = 3), while the black dashed
line corresponds to (𝛼 = 7.5,𝛽 = 0).

resenting the Rashba case, and the other with a black dashed line representing the
combined Rashba and Dresselhaus case. In the Rashba case, the spectrum has a
square root shape see Eq. (1.24) with only crossings at intersections. However, in the
Rashba-Dresselhaus case, there are still some crossings but in addition, anticrossings
also appear , along with a slight shift at intersections. This is a result of the splitting
of the Landau levels in the low-range magnetic field caused by adding the Dressel-
haus term. It is apparent that the spectrumwith Rashba andDresselhaus is not solely
characterized by crossings between energy levels, there exist numerous anticrossings
that play a crucial role, see Sec:[1.4.5]
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1.4.5 Parity

Here we are going to define the parity operator as:

𝑃 = 𝑒𝑖𝜋(𝑛+
1
2
+ 1
2
𝜎𝑧). (1.32)

This parity operator commutes with a full Hamiltonian 𝐻𝑅𝐷 in Eq. (1.31). This has
the consequences that the basis states can be separated into subspaces with a given
parity eigenvalue: 𝑃 = ±1. These subspaces are given by: {|0, ↑⟩, |1, ↓⟩, |2, ↑⟩, |3, ↓
⟩,… } for +1 parity and for -1 parity : {|0, ↓⟩, |1, ↑⟩, |2, ↓⟩, |3, ↑⟩,… }. Using the par-
ity subspaces we can underestand the crossings and anticrossing in energy spectra.
States belonging to the same parity subspace are coupled and will anticrossed. Con-
versely, states belonging to opposite parity subspaces are not coupled and will thus
cross. The parity can affect the energy spectrum of the electrons in such a way that
spectrum lines with the same parity open up a gap in the spectrum. Energy levels
with the same parity values repel each other while levels with different parity cross
each other until the next spectrum line [31], [32]. In Fig. 1.3 energy spectra of a full
Hamiltonian model for Landau levels [150-160] in a two-dimensional electron gas
system displays three different cases: a) Landau levels with Zeeman splitting, b) the
pure Rashba case 𝛼 = 7.5, and c) the combined of Rashba 𝛼 = 7.5 and Dresselhaus
terms 𝛽 = 3 together. In case of a), the Zeeman splitting does not result in any differ-
ences in the spectrum as parallel lines with a separation of ∆̃ are observed between
each Landau level (LLs) for spin-up and spin-down. In case of b), the pure Rashba
case shows the square-root shape of the spectrum lines for both spin-up and spin-
down along the inverse magnetic field. Although these lines cross each other, the
blue and red solid lines indicate that only states with the same parity actually cross,
while the other ones meet at the point of intersections. This is because all the family
spectrum lines for the spin-up and spin-down in the pure Rashba case are coupled
by 2x2 matrices. In case c), the spectrum for Rashba and Dresselhaus nonzero terms
results in lines with the same parity being able to see each other and opening up a
gap in the spectrum. However, spectrum lines for different parity states still cross at
intersections and cannot see each other and cross as such an envelope.

1.5 Density of states in 2DEG system

The density of states in a 2DEG system is a quantity that characterizes the electronic
properties of thematerial and can be calculated using the formulawith the 2DEGspe-
cific properties. Another important phenomenon in 2DEG systems is the Shubnikov-
de Haas (SdH) oscillations, which can be related to the density of states.[7] These are
oscillations in themagnetoresistance of the 2DEG system that occur due to the quan-
tization of the electron motion in the presence of a magnetic field [7], [33], [34]. In
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Figure 1.3: Energy spectrum of the Hamiltonian by parity for the Landau levels
[150, 160] in three distinct cases of parity separation.(a) Zeeman splitting present
with 𝛼, 𝛽 = 0, (b) pure Rashba coupling with 𝛼 = 7.5 meV nm−1, and (c) Simul-
taneous presence of Dresselhaus and Rashba terms with 𝛼 = 7.5 meV nm−1 and
𝛽 = 3meV nm−1, respectively.

the present model, the density of states in a magnetic field is given by:

𝐷2𝐷(𝐸, 𝐵) =
|𝑒|𝐵
ℎ

∑

𝑛,𝜎=±
𝛿(𝐸 − 𝜖𝑛𝑠) (1.33)

The number of states per spin-degenerate Landau level is |𝑒|𝐵∕ℎ. For example, for
the Landau levels and Zeeman case the energy comes with:

𝜖𝑛,± = ℏ𝜔𝑐(𝑛 +
1
2) +

1
2𝜇𝑔

∗𝐵. (1.34)
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The Fermi energy level in this case is determined by the highest occupied Landau
level. The electron density at low magnetic fields is therefore given by:

𝑛𝑠 =
|𝑒|𝐵
ℎ

𝐸𝐹
ℏ𝜔𝑐

= 𝑚∗

𝜋ℎ2
𝐸𝐹 . (1.35)

Figure 1.4 also illustrates the energy spectrum of a two-dimensional electron gas

Figure 1.4: This figure shows the energy spectrum in range [149-152] LLs, plot-
ted simultaneously. providing insight into the relationship between numerical and
analytical point of view for three cases of a) pure Rashba b)Rashba+ Dresselhaus
c)Rashba+Dresselhaus+in-plane magnetic field completely matched up.

(2DEG) system in a specific range of LLs and Rashba and Dresselhaus, plotted si-
multaneously with the Fermi level. The reason behind the almost linear horizontal
dependent shape is due to 𝐸𝐹∕ℏ𝜔𝑐, as 𝐸𝐹 is relatively 100 times larger than ℏ𝜔𝑐. The
energy spectrum is represented by a series of lines, each corresponding to a different
Landau level along the magnetic field. The Fermi energy is represented by a solid
line that intersects each spectrum line at a single point. The Landau levels are sep-
arated by the cyclotron energy, and their position in energy space is determined by
the strength of the magnetic field [7], [35]. It is determined by the temperature and
the electron density of the 2DEG system. The Fermi curve is a linear function of the
inverse magnetic field, and it intersects each Landau level at a single point. It also
allows the investigation of the effect of themagnetic field on the electronic properties
of the 2DEG system, such as the density of states and conductivity. As the magnetic
field (B) approaches zero, the separation between Landau levels decreases, leading
to a continuous distribution of states rather than discrete peaks. This results in a
constant two-dimensional density of states. Additionally, the broadening of Landau
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levels due to various factors such as disorder or temperature also contributes to the
smearing out of the discrete density of states peaks. This means that, in the limit
of 𝐵 = 0, the Landau levels and the resulting density of states are no longer distin-
guishable, resulting in a smooth and constant density of states. To understand the
relationship between the density of states and the broadening of electronic states, it is
useful to consider a simplified scenario in which inter-Landau-level scattering is ne-
glected and the broadening is solely due to a lifetime effect, modeled by a Lorentzian
function. This allows us to clearly illustrate the interdependency between the density
of states and the broadening of electronic states. By assuming a Lorentzian density
of states, we can see how the shape and width of the electronic states are affected by
the lifetime broadening and how this, in turn, affects the overall density of states.

𝛿(𝐸 − 𝜖𝑛𝑠) =
1
𝜋

ℏ∕2𝜏𝑞
(𝐸 − 𝜖𝑛𝑠)2 + (ℏ∕2𝜏𝑞)2

(1.36)

The Lorentzian function is preferred over the Gaussian when modeling density of
states in solid-state physics. It can better capture electronic states near the Fermi en-
ergy due to its sharp peak with a long tail. It is also well suited for modeling broad-
ening of electronic states from factors like disorder or temperature [7], [36].

1.6 F-Funciton

The F-function is a continuous function that represents the quantum number for a
spin up and down for each Landau level in a two-dimensional electron gas (2DEG)
system. It is defined by the relation:

𝜖𝑛,𝑠(𝐵) = 𝜖𝐹 ↔ 𝑛 = 𝐹𝑠(𝐵, 𝜖𝐹) (1.37)

The F-function is used to calculate the density of states (DOS) of the 2DEG system,
which is a measure of the number of states available to the system at a given energy.
To see how the 𝐹−function appears in the DOS we look at its definition

𝐷(𝐸) = 𝑒𝐵
ℎ
∑

𝑛,𝑠
𝛿(𝐸 − ℏ𝜔𝑐𝜖𝑛𝑠) =

𝑒𝐵
ℏ
∑

𝑛,𝑠

1
ℏ𝜔𝑐|

𝜕𝜖𝑛
𝜕𝑛
|
𝛿(𝑛 − 𝐹𝑠(𝐸, 𝐵)), (1.38)

where we used standard 𝛿-function relation. The quantity | 𝜕𝜖𝑛
𝜕𝑛
| is approximately

equal to 1 for all relevant spin-orbit parameter values. Using this, we can write
Eq. (1.38) as :

𝐷(𝐸) = 𝑚
2𝜋ℏ2

(
∑

𝑛,𝑠
(𝑛 − 𝐹𝑠(𝐸, 𝐵))). (1.39)
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Next, we apply the Poisson summation formula [7] which allows us to write DOS as:

𝐷(𝐸) = 𝑚
2𝜋ℏ2 (

1 +
∞∑

𝑙=1
cos(2𝜋𝐹+) cos(2𝜋𝐹−).) (1.40)

Here we introduced the sum and differences of the 𝐹-function:

𝐹+ =
𝐹+ + 𝐹−

2 (1.41)

𝐹− =
𝐹+ − 𝐹−

2 . (1.42)

These functions have an important interpretation since they describe the slow and
fast oscillations,𝐹− and𝐹+ respectively. To clarify these two fast and slowoscillations
we consider the case of pure Rashba SOI where the 𝐹−functions can be calculated
exactly [32], [33], [35]:

𝐹↓(𝜖𝐹 , 𝐵) = 𝜖𝐹 + ( 𝛼
√
2ℏ𝜔𝑐𝑙𝑐

)2 (1.43)

−
√
( 𝛼
√
2ℏ𝜔𝑐𝑙𝑐

)4 + 2𝜖𝐹(
𝛼

√
2ℏ𝜔𝑐𝑙𝑐

)2 + 1
4(1 − ∆̄)2

𝐹↑(𝜖𝐹 , 𝐵) = 𝜖𝐹 − 1 + ( 𝛼
√
2ℏ𝜔𝑐𝑙𝑐

)2 (1.44)

+
√
( 𝛼
√
2ℏ𝜔𝑐𝑙𝑐

)4 + 2𝜖𝐹(
𝛼

√
2ℏ𝜔𝑐𝑙𝑐

)2 + 1
4(1 − ∆̄)2

sincewe are looking at a low range ofmagnetic field so theZeeman termand ( 𝛼√
2ℏ𝜔𝑐 𝑙𝑐

)2

leads to a negligible value and the above equations are reduced to:

𝐹↑(𝜖𝐹 , 𝐵) ≈ 𝜖𝐹 + 𝛼 𝑘𝐹
ℏ𝜔𝑐

(1.45)

𝐹↓(𝜖𝐹 , 𝐵) ≈ 𝜖𝐹 − 𝛼 𝑘𝐹
ℏ𝜔𝑐

(1.46)

Where 𝑘𝐹 is the radius of the Fermi sphere. Looking at the definition of 𝐹+ and
𝐹− we obtain:

𝐹+ = 𝐸𝐹
ℏ𝜔𝑐

= ℎ
2𝑒𝑛𝑠

1
𝐵 (1.47)

𝐹− = 𝛼𝑘𝐹
ℏ𝜔𝑐

. (1.48)
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The former equation gives simply the standard Shubnikov de Haas oscillations fre-
quency and the latter equation gives the slower SOI related beating frequency. This
forms the foundation of the theory we have applied in this thesis. Since the plot is in
terms of the inversed magnetic field we need to combine 𝜔𝑐 =

𝑒𝐵
𝑚
and substitute the

𝜖𝐹 with 𝐸𝐹 to have all terms according to
1
𝐵
, then reduced F-functions for Rashba:

𝐹↓(𝐸𝐹 , 𝐵) =
𝐸𝐹
ℏ𝑒
𝑚

1
𝐵 + (𝛼𝑘𝐹

(ℏ𝑒
𝑚
)
) 1𝐵 = 𝑛 + ∆𝑛 (1.49)

𝐹↑(𝐸𝐹 , 𝐵) =
𝐸𝐹
ℏ𝑒
𝑚

1
𝐵 − (𝛼𝑘𝐹

(ℏ𝑒
𝑚
)
) 1𝐵 = 𝑛 (1.50)

In 𝐹↑ −𝐹↓ case, the slope magnitude is equal to (
𝛼𝑘𝐹
( ℏ𝑒
𝑚
)
) in the spectrum of energy two

states |𝑛+∆𝑛, ↑⟩ and |𝑛, ↓⟩ intersect with each other in a specific magnetic points 𝐵∗
as the eigenvalues of energies 𝜖𝑛+∆𝑛,↑ and 𝜖𝑛,↓ have positive and negative square root
shape.

𝐹↑ − 𝐹↓ = 2(𝛼𝑘𝐹
(ℏ𝑒
𝑚
)
) 1𝐵 (1.51)

𝐹↑ + 𝐹↓ = 2 𝐸𝐹
(ℏ𝑒
𝑚
)
1
𝐵 (1.52)

Here the intersection point in energy spectra and Fermi line at magnetic point 𝐵∗ is
the max value in 𝐹↑−𝐹↓

2
plot which is equal to 0.5 where it starts negative sign change

in slope.

𝐹↑(𝐸𝐹 , 𝐵) = 𝑚
ℏ𝑒 (𝐸𝐹 + 𝛼𝑘𝐹)(

1
𝐵 − 1

𝐵∗ ) +
𝑚
ℏ𝑒 (𝐸𝐹 + 𝛼𝑘𝐹)

1
𝐵∗ (1.53)

= 𝑚
ℏ𝑒 (𝐸𝐹 + 𝛼𝑘𝐹)(

1
𝐵 − 1

𝐵∗ ) + 𝑛 + ∆𝑛 (1.54)

𝐹↓(𝐸𝐹 , 𝐵) = 𝑚
ℏ𝑒 (𝐸𝐹 − 𝛼𝑘𝐹)(

1
𝐵 − 1

𝐵∗ ) + 𝑛 (1.55)

With this new looks of 𝐹↑ and 𝐹↓ in eq. (1.53) and (1.55) it abled us to follow
𝐹↑−𝐹↓

2
along inverse magnetic field at the 1

𝐵∗
to have a + and - linear slope before and after

1
𝐵∗
.
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now if 1
𝐵
− 1

𝐵∗
< 0 then:

𝐹↑ − 𝐹↓
2 = 𝛼𝑘𝐹𝑚

ℏ𝑒 ( 1𝐵 − 1
𝐵∗ ) +

∆𝑛
2 (1.56)

So the Slope magnitude is +𝛼𝑘𝐹𝑚
ℏ𝑒

until this assumption 1
𝐵
− 1

𝐵∗
< 0 is satisfied. and

if 1
𝐵
− 1

𝐵∗
> 0 then:

𝐹↑ − 𝐹↓
2 = −𝛼𝑘𝐹𝑚ℏ𝑒 ( 1𝐵 − 1

𝐵∗ ) (1.57)

Here the slope sign under a higher magnetic field than 𝐵∗ changed to 𝛼𝑘𝐹𝑚
ℏ𝑒

and

−𝛼𝑘𝐹𝑚
ℏ𝑒

remains up to the next intersection which is changed up to the next inter-
section point in the spectrum of energy. with the odd integer ∆𝑛 it is the max point
in the ∆𝐹 − 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 equal 1

2
and by even integers it would have taken zero level.

In ∆F-funcitons plot it has been examined our major term 𝐹↑−𝐹↓
2

with the critical
intersection point at inverse magnetic field axis by its slope magnitude. This figure
illustrates one more point in that when it is plotted in a numerical point of view the
𝐹↑−𝐹↓

2
, the two spectrum lines reach the intersection 1

𝐵∗
point but do not cross each

other. This is due to different ways of interpreting as a point of computer view.The
difference between F-functions (𝐹↑ − 𝐹↓) typically exhibits a sawtooth pattern be-
cause of the spin degeneracy of the Landau levels in a two-dimensional electron gas
(2DEG) system. The spin degeneracy of a Landau level refers to the number of spin
states that are available at that energy. In a 2DEG system, the spin degeneracy of each
Landau level is 2, whichmeans that there are two spin states available at each energy
level. The difference gap is related to the spin degeneracy of the Landau levels, and
it is used to calculate the density of states (DOS) of the 2DEG system. This ∆𝐹∕2 ex-
hibits a sawtooth pattern between 0 and 0.5 because the energy separation between
the two spin states increases linearly with the wave vector,inverse magnetic field and
Rashba constant. As a result, the density of states will show a series of peaks and
valleys, with the peaks corresponding to the maxima of the sawtooth pattern and the
valleys corresponding to theminima. This is a consequence of the spin-orbit coupling
in the system, which causes the spin states to have a different energy dispersion.

1.6.1 Fast and Slow Oscillation

SdH oscillations are a manifestation of the quantization of the electron’s cyclotron
orbits in a magnetic field, which results in the periodic variation of the density of
states at the Fermi level. The amplitude of the SdH oscillations is proportional to
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Figure 1.5: Sign changing in terms of 1
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2
, the Sawtooth behavior of difference between F-functions as a function of inverse

magnetic field strength.

the magnetoresistance, which is the change in the electrical resistance of a material
in response to a magnetic field. These oscillations are a valuable tool for studying
the electronic properties of materials and have been used to determine the effective
mass, Fermi surface topology, and many-body interactions of electrons in a variety
of systems, including metals, semimetals, and semiconductors [37]. The oscillatory
part of the density of states (DOS) has two types of oscillations: fast and slow. The
slow oscillations result from cos(2𝜋𝑠(𝐹↑−𝐹↓

2
)), while the fast oscillations arise from

cos(2𝜋𝑠(𝐹↑+𝐹↓
2

)).

1.7 Discrete Fourier (DFT) and Fast Fourier transform (FFT)

1.7.1 discrete Fourier Transform(DFT)

The discrete Fourier transform (DFT) is a mathematical operation that decomposes
a sequence of complex numbers into its component frequencies. The DFT is defined
as a sum over the sequence of complex numbers, with each element of the sequence
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Figure 1.6: Fast oscillations (blue) and slow oscillations (red) are shown as an en-
velope where the main magnetooscillations depends on this part of the Density of
states and the (b) figure is the DOS in terms of inverse magnetic field both in pure
Rashba case.𝛼 =7.5 meV nm

weighted by a complex exponential function. The DFT has a wide range of applica-
tions in fields such as signal processing, image processing, and data analysis. One of
the key properties of the DFT is its ability to transform a sequence of time-domain
samples into a sequence of frequency-domain samples, known as the spectrum of the
sequence. The spectrum of a sequence represents the distribution of energy among
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the different frequencies present in the sequence, and it can provide important infor-
mation about the characteristics of the sequence. The DFT has a number of impor-
tant properties, including the convolution theorem, which states that the DFT of the
convolution of two sequences is equal to the product of the DFTs of the individual
sequences. The DFT also has a number of symmetries, such as the conjugate sym-
metry property, which states that the DFT of a complex conjugate sequence is equal
to the complex conjugate of the DFT of the original sequence. The discrete Fourier
transform (DFT) is amathematical operation that decomposes a sequence of complex
numbers into its component frequencies. The DFT has a wide range of applications
in fields such as signal processing, image processing, and data analysis, and it has
important properties such as the convolution theorem and the conjugate symmetry
property. The DFT can transform a sequence of time-domain samples [38]–[40].

1.7.2 Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) is an algorithm that is used to efficiently compute
the discrete Fourier transform (DFT) of a sequence. The discrete Fourier transform is
a mathematical operation that decomposes a sequence into its component frequen-
cies, and it has a wide range of applications in fields such as signal processing, image
processing, and data analysis. The FFT algorithm was developed by mathematician
and physicist Cooley and John Tukey in the 1960s [41], and it has since become an
essential tool in many scientific and engineering disciplines. The FFT algorithm is
based on the principle of divide and conquer, and it involves breaking down the DFT
of a sequence into smaller DFTs that can be computed more efficiently. One of the
key advantages of the FFT algorithm is its computational efficiency. The FFT algo-
rithm can compute the DFT of a sequence in O(n log n) time, which is much faster
than the𝑂(𝑛2) time required by the standard algorithm for computing the DFT. This
makes the FFT algorithm particularly useful for analyzing large datasets or for real-
time processing of signals. the Fast Fourier Transform (FFT) is an algorithm that is
used to efficiently compute the discrete Fourier transform (DFT) of a sequence. The
FFT algorithmwas developed in the 1960s and has become an essential tool in many
scientific and engineering disciplines due to its computational efficiency. The FFT
algorithm can compute the DFT of a sequence in O(n log n) time, which is much
faster than the (𝑛2) time required by the standard algorithm for computing the DFT.
There is a relationship between the density of states (DOS) and the FFT of a signal.
The FFT of a signal can be used to compute the power spectrum of the signal, which
is a measure of the power of the signal(The power of a signal is the sum of the abso-
lute squares of its time-domain samples divided by the signal length. The function
allows you to estimate signal power in one step.) at different frequencies. The power
spectrum of a signal is related to the DOS of the system, as the power at a partic-
ular frequency is proportional to the number of states available at that energy, the
density of states (DOS) is a measure of the number of states available to a system
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at a given energy, and it provides information about the electronic properties of the
system. The Fast Fourier Transform (FFT) is an algorithm that is used to efficiently
compute the discrete Fourier transform (DFT) of a sequence, and it can be used to
analyze the frequency content of a signal [33], [42], [43]. There is a relationship be-
tween the DOS and the FFT of a signal, as the power spectrum of the signal is related
to the DOS of the system. The FFT analysis reveals the frequency components of
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Figure 1.7: This figure shows the Fast Fourier Transform (FFT) of the magnetoresis-
tance signal for a sample of a material with both Rashba and Dresselhaus spin-orbit
coupling (𝛼 = 7.5,𝛽 = 3meV nm)in the presence of an in-plane magnetic field with
varying angles 𝜃 ranging from 5 to 90 degrees.

the magnetoresistance signal and provides insight into the magnetic anisotropy and
spin-orbit coupling properties of the material, which are sensitive to the angle of the
applied magnetic field [44]. We have plotted two different Fast Fourier Transforms
(FFTs) on the same graph at different angles in order to better understand the role of
the FFT and electron density at the Fermi level.

1.8 Conclusion

In general, peaks or spikes in a Fast Fourier Transform (FFT) plot indicate the pres-
ence of specific frequency components in the original signal. The magnitude of the
peak represents the strength of that frequency component, and the position of the
peak along the frequency axis corresponds to the frequency of the component. The
FFT plot allows us to identify and analyze the different frequency components of a
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Figure 1.8: This figure shows the Fast Fourier Transform (FFT)with bothRashba and
Dresselhaus spin-orbit coupling (𝛼 = 7.5,𝛽 = 3 meV nm)in the presence of an in-
planemagnetic field with varying angles 𝜃 ranging from [50-75] for two 𝑛2𝐷 = 0.0085
in blue and 𝑛2𝐷 = 0.017 in solid red line.

signal and can be useful in a wide range of applications such as signal processing, im-
age analysis and telecommunications. In the case of density of states (DOS) or mag-
netoresistance signal, peaks or spikes in the FFT plot indicates the presence of spe-
cific energy levels or specific frequency components in the signal, respectively [45].
In the case of the density of states, it can be used to understand the electronic prop-
erties of a material, like the number of available states at a specific energy level. The
FFT can be used to analyze the DOS signal and identify the energy levels that are
more likely to be occupied by electrons. This can give us insight into the electronic
band structure of the material and its electronic conductivity. On the other hand, for
the magnetoresistance signal, a peak or spike in the FFT plot can indicate the pres-
ence of a specific frequency component in the signal, which may be related to the
magnetic properties of the material. By analyzing the FFT of the magnetoresistance
signal, it is possible to extract information about the magnetic properties of the ma-
terial, such as its magnetic anisotropy or the way in which the magnetic properties
depend on the direction of the applied magnetic field [46].
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1.8.1 In-plane Magnetic field in pure Rashba case

Here it is assumed two crossing states in the spectrum of Energy with their linear
combination of shared basis states andmatrix elements in newbasis |𝜓𝑛,↓⟩ and |𝜓𝑚,↑⟩:

|𝜓𝑛,↓⟩ = (cos(𝜃𝑛2 )|𝑛, ↓⟩ + sin(𝜃𝑛2 )|𝑛 − 1, ↑⟩

|𝜓𝑚,↑⟩ = (− sin(
𝜃𝑚+1
2 )|𝑚 + 1, ↓⟩ + cos(

𝜃𝑚+1
2 )|𝑚, ↓⟩

(1.58)

And here we know that it could have been equal to any number of arbitrary of n
𝑚 =, 𝑛−1, 𝑛+1, the 2×2 matric elements are implemented in the Hamiltonian as it
comes:

𝐻𝑛𝑠,𝑚𝑠′ = ⟨𝑛𝑠|𝐻𝑅|𝑚𝑠′⟩ +
∆̃
2 𝑥𝑝𝜎𝑥

= (𝑛 + 1
2 +

∆̃
2 )𝛿𝑛𝑚𝛿𝑠𝑠′ +

∆̃
2 .𝑥𝑝⟨𝑛, 𝑠|𝜎𝑥|𝑚, 𝑠

′⟩ + 𝛼
√
2ℏ𝜔𝑐𝓁𝑐

⟨𝑛𝑠|𝑎†𝜎+ + 𝑎𝜎−|𝑚𝑠′⟩

(1.59)

Here it has just been implemented an extra term come from in-plane intense compo-
nent of the Zeeman term in Hamiltonian that makes some nonzero elements in the
same landau levels spin quantum number without any changes in quantum num-
bers.

𝐵⟂𝜎𝑧 + 𝐵∥𝜎𝑥 (1.60)

∆̃
2 .𝑥𝑝 (

⟨𝜓𝑛,↓|𝜎𝑥|𝜓𝑛,↓⟩ ⟨𝜓𝑛,↓|𝜎𝑥|𝜓𝑛,↑⟩
⟨𝜓𝑛,↑|𝜎𝑥|𝜓𝑛,↓⟩ ⟨𝜓𝑛,↑|𝜎𝑥|𝜓𝑛,↑⟩

) (1.61)

by definition of new Hamiltonian as:

𝐻 = 𝐻𝑅 +
∆̃
2 (𝑥𝑝𝜎𝑥) (1.62)
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It has been two states that crossed each other even though implementing the in-plane
magnetic field it opens up a gap that shows they have couplings [32], [47], [48].

⟨𝜓𝑛↓|𝐻𝑅|𝜓𝑚↑⟩ = 0 + ∆̃
2 𝑥𝑝⟨𝜓𝑛,↓|𝜎𝑥|𝜓𝑚,↑⟩

⟨𝜓𝑛↓|𝐻𝑅|𝜓𝑚↓⟩ = 𝜀𝑛↓ +
∆̃
2 𝑥𝑝⟨𝜓𝑛,↓|𝜎𝑥|𝜓𝑚,↓⟩

⟨𝜓𝑚↑|𝐻𝑅|𝜓𝑚↑⟩ = 𝜀𝑚↑ +
∆̃
2 𝑥𝑝⟨𝜓𝑚,↑|𝜎𝑥|𝜓𝑚,↑⟩

⟨𝜓𝑛↓|𝐻𝑅|𝜓𝑚↑⟩ = 0 + ∆̃
2 𝑥𝑝⟨𝜓𝑛,↓|𝜎𝑥|𝜓𝑚,↑⟩

Upon examination of the Hamiltonian, it is clear that any changes to Landau levels
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Figure 1.9: In this figure it has been shown the gap coming from implementing the in-
plane magnetic field with a definition of a dimensionless parameter 𝑥𝑝=3 (right)and
𝜎𝑥 operator in the presence of Rashba effect with 𝑎𝑅=6 meV nm versus the regular
Rashba case without in-plane magnetic field with the same 𝑎𝑅=6 meV nm (left)
.

can be attributed solely to alterations in the nondiagonal elements. When 𝛿 is set to
zero, a 2|𝑉| open gap emerges due to the influence of the in-plane magnetic field.
This results in a coupling between two adjacent states, allowing for mutual interac-
tion between them. It is important to note that the magnetic field can be determined
for any given values of 𝑛 and ∆𝑛, where ∆𝑛 represents the crossing or non-crossing
nature of adjacent Landau levels in the spectrum. By setting 𝛿 to zero, we observe
the emergence of a gap in only two specific Landau levels, caused by the in-plane
magnetic field. We can use this information to calculate the precise value of B for
any number of adjacent Landau levels, such as n, n+1, and n+2, thereby expanding
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our understanding of the behavior of the system under varying magnetic fields.

𝑉 = ∆̃
2 𝑥𝑝⟨𝜓𝑛↓|𝜎𝑥|𝜓𝑚↑⟩ (1.63)

It is found that the in-planemagnetic field opens a gap in the spectrumof Energies, In
our attempts to investigate the effects of low magnetic fields, we have found that in-
creasing themagnetic field leads to the disappearance of one of the crossing branches
and the associated spin-orbit interactions. This phenomenon is particularly evident
in the Rashba case, where an analytical expression has been derived for lowmagnetic
field regimes using the Hamiltonian parameters obtained through the implementa-
tion of the Zeeman and Rashba terms. These findings provide valuable insights into
the behavior of spin-orbit interactions under varying magnetic fields, with potential
implications for the design and optimization of electronic devices that rely on these
interactions [32], [49], [50].
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Figure 1.10: In this figure it has been shown with the 𝑥𝑝=3 there is a gap between 2
crossing lines of the landau levels in high Landau levels [90:97] and with the same
magnetic(Zeeman) and Rashba parameters.
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Chapter 2

Analytical Method
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Shubnikov-de Haas (SdH) oscillations are the fingerprint of the Landau and Zeeman splitting
level structure on the resistivity in presence of a moderate magnetic field before full quantization
is manifest in the integer quantum Hall effect. These oscillations have served as a paradigmatic
experimental probe and tool for extracting key semiconductor parameters such as carrier density,
effective mass m∗, Zeeman splitting with g-factor g∗, quantum scattering time and Rashba α and
Dresselhaus β spin-orbit (SO) coupling parameters. Analytical descriptions of the SdH oscillations
are available for some special cases, but the generic case with all three terms simultaneously present
has not been solved analytically so far, seriously hampering the analysis and interpretation of experi-
mental data. Here, we bridge this gap by providing an analytical formulation for the SdH oscillations
of 2D electron gases (2DEGs) with simultaneous and arbitrary Rashba, Dresselhaus, and Zeeman
interactions. We use a Poisson summation formula for the density of states of the 2DEG, which
affords a complete yet simple description of the oscillatory behavior of its magnetoresistivity. Our
analytical and numerical calculations allow us to extract the beating frequencies, quantum lifetimes,
and also to understand the role of higher harmonics in the SdH oscillations. More importantly, we
derive a simple condition for the vanishing of SO induced SdH beatings for all harmonics in 2DEGs:
α/β = [(1 − ∆̃)/(1 + ∆̃)]1/2, where ∆̃ ∝ g∗m∗ is a material parameter given by the ratio of the
Zeeman and Landau level splitting. This condition is notably different from that of the persistent
spin helix at α/β = 1 for materials with large g∗ such as InAs or InSb. We also predict beatings in
the higher harmonics of the SdH oscillations and elucidate the inequivalence of the SdH response
of Rashba-dominated (α > β) vs Dresselhaus-dominated (α < β) 2DEGs in semiconductors with
substantial g∗. We find excellent agreement with recent available experimental data of Dettwiler et
al. Phys. Rev. X 7, 031010 (2017), and Beukman et al., Phys. Rev. B 96, 241401 (2017). The
new formalism builds the foundation for a new generation of quantum transport experiments and
spin-orbit materials with unprecedented physical insight and material parameter extraction.

I. INTRODUCTION

The spin-orbit (SO) interaction couples the orbital and
spin degrees of freedom, not only forms the basis for a
range of spin related effects such as the spin Hall effect1–4

and the persistent spin helix5–7, but also underlies the
physical mechanisms of new phases of matter, e.g., topo-
logical insulators, quantum spin Hall materials 8–10, and
Majorana11–13, Dirac and Weyl fermions14. Accordingly,
advancing techniques and methods to measure and ex-
tract SO couplings from experimental data are crucial
for the development of these fields.

Shubnikov-de Haas (SdH) oscillations16,17 are among
the best techniques to probe simultaneously spin- and
charge-related quantities associated to electrons in semi-
conductors, including effective masses, gyromagnetic ra-
tios, quantum scattering times, densities and SO cou-
plings. Most recently, they have been crucial to the
study and understanding of new materials, as for exam-
ple, 2D-materials, transition metal dichalcogenides, van
der Waals heterostructures18–25, and also materials host-
ing new phases of matter e.g., topological insulators26,
unconventional superconductivity27 and correlated insu-
lator behavior28. It has also been used to establish the
presence of nodal-lines29, Berry’s phase30,31, and differ-

ent topology of Fermi surfaces32. SdH oscillations are
magneto-oscillations in the resistivity and originate from
the sequential crossings of the discrete Landau Levels
(LLs) through the Fermi energy. Without SO coupling
and in the low-field regime, the period of the SdH oscilla-
tions can be related to the density of the electron gas33.
In the presence of SO interaction, on the other hand,
the energy spectrum changes dramatically thus leading
to additional frequencies in the magnetoresistivity and
hence beatings, Figs. 1(a). This was first theoretically
described semiclassically by Das et. al.,34. In the so-
called Onsager’s picture, different sub-bands possess dif-
ferent Sommerfeld quantized orbits (playing the role of
the LLs), which cross the Fermi energy with different fre-
quencies in B−1. The spin-split bands give rise to two
distinct oscillating frequencies in the magnetotransport.
The standard experiment relies on Fourier analyzing the
measured SdH oscillations. An experimental method in-
troduced in Refs. 35–37 has often been used to estimate
the strength of the Rashba coupling via the splitting of
the Fourier frequency peaks. However, these methods
have been criticized for not accounting for the Zeeman
splitting (through the g-factor g∗) nor for the additional
Dresselhaus SO coupling15.

There have been some attempts to analyze the SdH os-
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FIG. 1. Magnetoresistivity for a) pure Rashba α =
7.0 meV nm and b) pure Dresselhaus β = 7.0 meV nm with
m∗ = 0.019mo and n2D = 3.3× 1011 cm−2 from Ref. 15. The
curves in a) and b) are not the same due to the large g–
factor g∗ = −34. The insets display the normalized FFT in-
cluding the 2nd harmonic. The presence of beating nodes in
δρxx are clearly visible in a) the fundamental and b) the 2nd
harmonic, see Fig. 8. The condition for the absence of beat-
ings (single peak for each harmonic) is α = 7.0 meV nm and
β = 5.0 meV nm, shown in c), but not α = β = 7.0 meV nm,
the persistant spin helix case, shown in d), clearly exhibiting
a beating (here a splitting of 2nd harmonic peak).

cillations taking into account both α, β and g∗. However,
these mostly involved qualitative comparison with the en-
ergy spectrum of pure Rashba and pure Dresselhaus38,39.
In Ref. 40, fully numerical calculations of magneto-
oscillations were performed but for relatively high mag-
netic fields and low electron densities, far away from the
regime of recent experimental works41. Moreover, it was
realized that in the absence of the Zeeman interaction,
important features are absent. More specifically, without
accounting for the spin mixing generated by the mag-
netic field (via the Zeeman interaction), predictions be-
come imprecise42, and even fail to describe phenomena
such as magnetic inter-subband scattering43 and mag-
netic breakdown44. In general, full quantum mechani-
cal numerics are generally done in order to check agree-
ment with experiments, which are neither very practical
nor elucidate much of the physics happening in those
systems41,45. Finally, all the previous works have ne-
glected the influence of higher harmonics, recently seen
experimentally46.

Here, we present a detailed investigation of SdH oscil-
lations in the presence of SO couplings of both Rashba α
and Dresselhaus β types and Zeeman interaction with g-

factor g∗. Our main result is the derivation, for the first
time in the literature, of a simple analytical expression for
the SdH oscillations in the presence of simultaneous arbi-
trary couplings α and β in addition to g∗. We note that
earlier analytical descriptions of SdH magnetoresistivity
oscillations considered particular cases, namely, when ei-
ther only one of the parameters α, β or g∗ was nonzero
or any two of these parameters were nonzero, with the
exceptions (α 6= β 6= 0, g∗ = 0) and (α = β, g∗ 6= 0).

Interestingly, our analytical formula generalizes previ-
ous results44 for g∗ = 0 and predicts a new condition for
the vanishing of the SdH magneto-oscillation beatings in
all harmonics [e.g., Figs. 1(c)] in Rashba-Dresselhaus cou-
pled 2DEGs with substantial Zeeman splittings, namely,

α

β
=

√
1− ∆̃

1 + ∆̃
, (1)

where ∆̃ is a material parameter given by the ratio be-
tween the Zeeman splitting and the Landau-level spacing.
As we discuss later on, Eq. (1) is not associated with a
conserved quantity in our system; this contrasts with the
persistent-spin-helix condition α = β, which predicts spin
conservation along particular axes5–7. We stress that this
case with α = β and generic g∗ 6= 0 leads to beating in
the frequency spectrum of our system, Figs. 1(d), as op-
posed to our new condition in Eq. 1. As we discuss below,
our numerical and analytical approaches show excellent
agreement with available data from Refs. 41 and 46.

Our approach combines a semiclassical formulation for
the resistivity of 2DEGs with a trace formula for the den-
sity of states (DOS) in a quantizing magnetic field. The
trace formula expresses the DOS using the usual Poisson
summation formula47. This formulation brings out the
oscillatory part of the DOS, thus allowing us to clearly
identity the higher harmonics of the SdH oscillations. It
enables us to conveniently separate the frequency scales
into “fast” and “slow” oscillations thus allowing for a
clearer interpretation of the underlying physical phenom-
ena, e.g., the slow beating SdH oscillations due to the SO
coupling.

Our main results for the oscillatory part of magnetore-
sistivity δρxx(1/B) and its frequency spectra I(f) [panel
insets] are show in Fig. 1. For pure Rashba [α 6= 0, β = 0,
Fig. 1a)] and pure Dresselhaus [α = 0, β 6= 0, Fig. 1b)],
but non-zero Zeeman term (g∗ 6= 0), the frequency spec-
tra, as usual, show two main peaks, which correspond to
the first two Fourier components of δρxx(1/B). These
two cases, however, exhibit a marked contrast: while
the pure Rashba shows a peak splitting at the funda-
mental frequency, the pure Dresselhaus exhibits a peak
splitting in the second harmonic. As we explain in de-
tail in Sec. V D, this contrasting behavior arises from
the interplay between the Zeeman and SO interactions,
which makes the SdH magneto-responses with nonzero g-
factors g∗ inequivalent for Rashba-dominated (α > β) vs.
Dresselhaus-dominated (α < β) 2DEGs. For g∗ = 0, the
pure Rashba and pure Dresselhaus cases give identical
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results.

Figure 1(c) illustrates our prediction in Eq. (1) thus
showing no peak splitting in the frequency spectra –
at any harmonic – when this condition is satisfied. To
emphasize this condition emulates a situation with no
SO coupling (i.e., no beating), we plot in Fig. 1(c) the
α = β = 0 (with g∗ 6= 0) case [dashed curve in 1(c)],
which shows complete overlap with the case satisfying
Eq. (1). In contrast and for completeness, Fig. 1d) shows
the α = β 6= 0 case with g∗ 6= 0, which exhibits peak
splitting in the second harmonic.

We have applied our analytical description to low-
density GaAs-based quantum wells for which there are
experimental data46 showing several harmonics in the
SdH magneto-oscillations. Figure 2 shows the excellent
agreement obtained, thus illustrating that our semiclas-
sical formulas can satisfactorily capture the higher har-
monics of the SdH oscillations. Moreover, we have ap-
plied our analytical approach to low-density InSb-based
2DEGs15,39 where, unlike GaAs-based 2DEGs, a strong
SO coupling manifests itself as beatings in the measured
SdH oscillations, and find good agreement. We have also
implemented a detailed numerical calculation for high-
density InAs-based 2DEGs for which an analytical de-
scription is not adequate. Here again we find very good
agreement with available data41 and are able to extract
SO coupling parameters.

Next (Sec II), we present a description of the Hamil-
tonian of our system. In Sec. III we discuss how to ob-
tain the “F–function”, the central quantity in our for-
mulation, from the Landau-quantized energy spectrum of
our system and its connection with the density of states
(DOS). The formalism for obtaining the Shubnikov-de
Haas oscillations in terms of the Poisson summation for-
mula and the F-function is described in Sec. IV. Finally,
in Sec. V we present and analyze different particular cases
of SdH oscillations and, more important, derive the new
condition in Eq. (1) for the complete absence of beatings
(all harmonics) in the SdH oscillations, for 2DEGs with
non-zero Rashba, Dresselhaus, and Zeeman couplings.
The appendices present relevant details of our theoret-
ical formulation.

II. 2DEG HAMILTONIAN

Our starting point is the Hamiltonian for a 2DEG
confined in a quantum well (xy plane) grown along the
[001] crystallographic direction, taken as z axis. In
the presence of a perpendicular external magnetic field
B = (0, 0, B) and both Rashba48 and Dresselhaus49 spin
orbit interactions, the Hamiltonian reads

H =
1

2m∗
(
Π2
x + Π2

y

)
+

1

2
g∗µBBσz

+
α

~
(Πxσy −Πyσx) +

β

~
(Πxσx −Πyσy) , (2)

where g∗ is the g-factor, m∗ is effective mass, Π = p−qA
is the canonical momentum, q is the electric charge, µB is
the Bohr magneton, ~ the reduced Planck’s constant and
σx, σy, σz denote the usual Pauli matrices. The parame-
ters α and β denote the linear-in-k Rashba and Dressel-
haus SO couplings, respectively. The β coupling includes
a density dependent correction arising from the cubic
Dresselhaus term. As we discuss later on [Sec. VI A],
our numerical results will account for the full cubic Dres-
selhaus term.

Let us introduce the annihilation and creation opera-
tors associated to the Landau level |n〉

a =
`c√
2~

(Πx − iζΠy) , (3)

a† =
`c√
2~

(Πx + iζΠy) , (4)

obeying
[
a, a†

]
= 1, a |n〉 =

√
n |n− 1〉,

a† |n〉 =
√
n+ 1 |n+ 1〉, ζ = −sign (qB), with the

magnetic length and the center of the Landau orbit

denoted by `c =
√

~
|qB| and y0 = ekx

|qB| , respectively. In

this work, we have q = −e, where e > 0 is the absolute
value of the elementary electronic charge, and we choose
B > 0, yielding ζ = 1. Using Eqs. (3) and (4), our
Hamiltonian [Eq. (2)] becomes

H = ~ωc(a†a+ 1/2) +
∆

2
σz −

iα√
2`c

(a†σ− − aσ+)

+
β√
2`c

(a†σ+ + aσ−), (5)

where the cyclotron frequency is ωc = eB/m∗,
∆ = g∗µBB, which inherits its sign from g∗, and σ± =
σx ± iσy, with σx and σy denoting Pauli matrices. We

now perform the canonical transformation H̃ = UHU†
with U = e−i

π
4 (σz2 +a†a), which yields

Uσ±U† = σ±e
∓iπ4 , (6)

UσzU† = σz, (7)

Ua†U† = ei
π
4 a†, (8)

and finally

H̃
~ωc

= (a†a+ 1/2) +
∆̃

2
σz + αB(a†σ− + aσ+)

+βB(a†σ+ + aσ−), (9)

where we have introduced the real valued, dimensionless
quantities αB = α√

2~ωc`c
, βB = β√

2~ωc`c
and ∆̃ = ∆

~ωc =
g∗m∗

2m0
.

Analytical solutions for the above Hamiltonian
[Eq. (9)] can be found for the cases with either pure
Rashba or pure Dresselhaus48,50. The specific cases of
α = ±β turn out to be of great physical interest, where
persistent spin helix (PSH)5,6,46 and persistent Skyrmion
lattice (PSL)7 were predicted. Interestingly, the case
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with α = ±β maps to the Rabi model in quantum optics
and was recently solved exactly51. The exact solution
relies on obtaining zeros of a transcendental function.
Moreover, previous studies of the Rabi model have impor-
tant implications for our system. For instance, we have
shown that the Rabi parity symmetry51,52 remains valid
in our problem for arbitrary α and β (See Appendix B).
This enables us to separate the Hilbert space in two sub-
spaces with different parities, which can be individually
analyzed and compared. As for general couplings α and
β, similar systems have been studied before in the frame-
work of Landau levels, using either variational (Hartree-
Fock) methods53, second order perturbation54,55 or ob-
taining the spectrum in terms of solutions of transcen-
dental equations56. A perturbation scheme based on 4th
order Schrieffer-Wolff transformation has also been used
to find approximate analytical solutions57. However, we
are unaware of any exact analytical solution for general
Rashba, Dresselhaus and Zeeman coupling.

III. F -FUNCTION AND ITS CONNECTION
WITH THE ENERGY SPECTRUM AND DOS

For our 2DEG in the presence of perpendicular mag-
netic field, the low magnetic field regime corresponds
to having a very large number of Landau levels below
the Fermi energy εF (taken as constant and equal to its
zero-field value), i.e., many occupied states. The system
is thus assumed to be far away from the integer quan-
tum Hall regime where few Landau levels are occupied
and the effects of electron-electron interaction become
important33. Let us denote the eigenenergies of our di-
mensionless Hamiltonian Eq. (9) by εn,s, where n ∈ N0

represents the LL number and s = ± represents a pseudo-
spin associated to the presence of two spin-split bands
(due to the Zeemann and SO interactions). With this
notation, the density of states (DOS) reads

D(ε,B) =
D̃

A

∑

n,s

δ(ε− ~ωcεn,s), (10)

where D̃ = A/2π`2c is the LL degeneracy and A the 2DEG
area. This LL degeneracy is the same for all 2DEGs
studied here in the presence or absence of Zeemann and
SO interactions.

As we show in the next section, the magnetotransport
properties of the system can be determined by the Lan-
dau levels sequentially crossing εF . The rate at which
these crossings happen will determine a periodic behav-
ior of the magnetotransport properties of the system as
the magnetic field is varied. In order to describe this pe-
riodicity, we introduce the F -function33 (see Appendix A
for details), which is defined by the relation

εn,s(B) = ε↔ n = Fs(ε,B). (11)

The F -function gives the Landau level index n of the

state that has energy ε and pseudo-spin s at magnetic
field B.47,58 It is important to notice that the equation
for n [Eq. (11)] can also return non-integer values for n.
In such cases the F -function provides a measure of how
close a Landau level n is to the energy ε, for a given
pseudo-spin s and magnetic field B.

Since one can relate transport phenomena with the
density of states, we rewrite the DOS of our system in a
way that highlights its oscillatory behavior dependence
on both α and β. First we introduce the Fs function into
Eq. (10)

D(ε,B) ≈ m∗

2π~2

∑

n,s

δ(n− Fs(ε/~ωc, B)), (12)

which neglects terms O[(αm∗`c)2/~] + O[(βm∗`c)2/~)].
This holds for typical values of α, β, m∗ and small mag-
netic fields B . 1T. Using the Poisson summation for-
mula

∑∞
n=0 δ(n−Fs) = 1 + 2

∑∞
l=1 cos(2πlFs) and defin-

ing the relevant quantities

F± =
1

2
(F+ ± F−), (13)

we obtain

D(ε,B)− 2D0

2D0
≈ 2

∞∑

l=1

cos(2πlF+) cos(2πlF−), (14)

where D0 = m∗

2π~2 is the (constant) density of states per
spin for the 2DEG at zero magnetic field (see Appendix
A for details). As we are going to see later, F+ contains
the fast oscillations with respect to 1/B, which is is pro-
portional to the electron density n2D. On the other hand,
F− contains the slow oscillations that are determined by
the spin-orbit coupling terms, α and β. Moreover, the
fast oscillations arising from the terms with l > 1 cor-
respond to the higher harmonics, and have be seen in
experiments46.

IV. SDH OSCILLATIONS IN THE
MAGNETORESISITIVITY

As already mentioned, the oscillations in the magne-
toresistivity as a function of the magnetic field are called
SdH oscillations33. They appear as a consequence of the
sequential depopulation of the LLs when the magnetic
field is increased. For low magnetic fields where multiple
LL are occupied, i.e., far from the integer quantum Hall
regime33, a semi-classical description of the magneto-
oscillations can be used.

In experiments, the measurement of the SdH oscilla-
tions is accessed via the longitudinal differential resistiv-
ity. In general, the resistivity tensor is defined as the

31



5

inverse matrix of the conductivity tensor,

ρ =

(
σxx σxy
σxy σxx

)−1

. (15)

The relevant magnetoresistivity component for us is

ρxx =
σxx

σ2
xx + σ2

xy

, (16)

where

σxx(xy)(B, T ) =

∫
dε

(
−df0(ε)

dε

)
σxx(xy)(B, ε, T = 0),

(17)
where f0(ε) is the Fermi-Dirac distribution. Using a
semi-classical approach, we account for the magnetic field
dependence of the conductivity via the electron scat-
tering time τ(ε,B), which is proportional to the DOS
D(ε,B) via Fermi’s golden rule. Accordingly, up to lin-
ear order on the deviation of the DOS, we obtain

τ(ε,B) ≈ τ0 (ε)

[
1− D(ε,B)−D0(ε)

D0(ε)

]
, (18)

with D0(ε) = D(ε,B = 0) and τ0(ε) = τ(ε,B = 0). Us-
ing the Drude semi-classical equations for the frequency-
independent current33, the normalized longitudinal resis-
tivity reads

δρxx(B) =
ρxx(B)− ρxx(B = 0)

ρxx(B = 0)
(19)

=

∫
dε

(
−df0(ε)

dε

) D(ε,B)−D0(ε)

D0(ε)
. (20)

For the DOS in the presence of Landau level broaden-
ing due to scattering processes, the relation in Eq. (10)
is replaced by

D(ε,B) =
D̃

A

∑

n,s

LΓ(ε− ~ωcεn,s), (21)

where LΓ(x) describes the broadening function, e.g.,
Lorentzian or Gaussian, and Γ is parameter defining the
broadening of the levels (see Appendix A for details).
After applying the Poisson summation formula, we ob-
tain a result that resembles Eq. (14), apart from the ap-
pearance of the the cosine Fourier transform of LΓ(x),

denoted with L̃Γ(x),

D(ε,B)−D0(ε)

D0(ε)
≈ 2

∞∑

l=1

L̃Γ

(
l

Γ

~ωc

)
cos(2πlF−) cos(2πlF+).

(22)

The so-called Dingle factor L̃Γ(x)33 sets the limit of
validity of the semi-classical approximation, i.e., that
the oscillatory part of the resistivity should be much
smaller than the constant term. It also gives the regime
where it is valid to consider only the lowest harmonic.

Higher harmonics have been observed in magnetoresis-
tivity measurements46 in GaAs-based 2DEGs. The F−
function can be related to the envelope of the SdH oscil-
lations. The general form of the temperature-dependent
normalized resistivitity reads

δρxx(B, T ) = 2

∞∑

l=1

∫
dεL̃Γ

(
l

Γ

~ωc

)(
−df0(ε, T )

dε

)

(23)

× cos(2πlF−) cos(2πlF+).

Even though we only consider the zero-temperature limit
in the present work, for completeness, below we present
the temperature-dependence of δρxx(B, T ) valid in the
relevant parameter range considered in this work and for
all the systems studied here. As show in Appendix G, we
find

δρxx(B, T ) ≈ 2

∞∑

l=1

L̃Γ

(
l

Γ

~ωc

)
Al(T )

× cos(2πlF−) cos(2πlF+)|ε=εF , (24)

where the temperature-dependent coefficient

Al(T ) =
2π2lkBT/~ωc

sinh (2π2lkBT/~ωc)
(25)

accounts for the temperature dependence of the SdH os-
cillations. In the limit of vanishing α and β this reduces
to the result in Ref. 59, and in the case of both vanishing
β and broadening (Γ = 0) gives the result in Ref. 50
[Eq. (9.28)]. Here we assume that ε is close to the zero
magnetic field Fermi energy εF = ~2k2

F /2m.

A widely used method to extract spin-orbit couplings
and electronic densities is to analyze the oscillations by
calculating the quantity

I(f) =

∣∣∣∣∣

∫ B−1
1

B−1
2

d

(
1

B

)
ρxx(B)− ρxx(B1)

ρxx(B1)
ei2πf/B

∣∣∣∣∣

2

,

(26)
which defines the power spectrum of the normalized
magneto-resistivity with a trivial background value
ρxx(B = B1) removed. Note that B1 should be small
enough such that the semiclassical regime of a constant
ρxx(B → 0) is reached.

In Fig. 2 the power spectrum is shown for data from
Fig. S11a in Ref. 46, where magnetoresistivity SdH oscil-
lations were measured in a GaAs 2DEG over a magnetic
field interval [0.20, 1.5] T. The power spectrum shows a
SdH peak at f ≈ 10.5 T (the fundamental frequency),
and higher harmonics are clearly visible at 21.0 T and
31.5 T, corresponding to the first and second harmonic,
respectively. The experimental data was fitted with Eq.
(30) with one fit parameter: τq. The resulting fit matches
very well the harmonics of the SdH signal. To acccount
for the small background shift in the experimental data
as seen in the inset a more elaborate modeling of the data
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FIG. 2. The power spectrum I(f) for δρxx measurements on
a GaAs 2DEG in Ref. 46 obtained using Eq. (26). The cal-
culated results used Eq. (30) with one fitting parameter: τq.
The inset shows the magneto-resistivity data and the corre-
sponding calculated δρxx.

would be required. The fitting was done using six har-
monics, and resulted in τq = 0.8 ps, using standard GaAs
parameters m = 0.067m0 and g∗ = −0.44. Note that we
have used Eq.(30), which does not include SO coupling,
for our fitting procedure here. This is justifiable be-
cause GaAs-based 2DEGs have relatively small SO cou-
plings, not accessible via SdH measurements. Weak anti-
localization measurements can access the SO parameter
in these systems41. However, GaAs-based 2DEGs have
relatively high mobilities thus making it possible to see
many harmonics.

V. RESULTS AND DISCUSSIONS

In this section we present the energy spectrum, F–
function and magnetoresistivity SdH oscillations for dif-
ferent parameter regimes of our Hamiltonian, Eq. (9).
Additionally, we discuss in detail the interpretation of
the SdH oscillations within the trace formula description
(e.g., contribution of higher harmonics) and show how to
extract relevant spin-orbit couplings from it. The results
are presented in order of simplicity, i.e., from the simplest
to the more complex case.

A. Landau levels with only Zeeman interaction

In the presence of Zeeman and no Rashba and Dres-
selhaus SO couplings, i.e., α = β = 0, the eigenenergies
of our Hamiltonian [Eq. (9)] are given by

εn,s
~ωc

= n+
1

2
+

∆̃

2
s. (27)

6.0

5.5

5.0

4.5

4.0
1.0 1.5 2.0 2.5 3.00.5

FIG. 3. Landau levels n = 4, 5 [Eq. (27)] as a function of
1/B for a 2DEG with only Zeeman interaction and no SO
couplings (α = β = 0). The dotted line shows εF /~ωc. Here,
we use m∗ = 0.019mo, g∗ = −34 and n2D = 3.3× 10−3 nm−2

for InSb-based wells15,39.

with n ∈ N0 and s = 1 (s = −1) representing the pure
spin state |↑〉 (|↓〉). In Fig. 3 we plot the four energy
levels corresponding to n = 4, 5 and s = ±1, along with
εF /~ωc, using the following InSb QW parameters from
Refs. 15 and 39: m∗ = 0.019mo, g

∗ = −34 and electron
density n2D = 3.3 × 10−3 nm−2. For these parameters,
the ordering of the energies obeys εn+1,−1 > εn+1,1 >
εn,−1 > εn,1. Figure 3 shows how successive levels cross
the Fermi energy as a function of the magnetic field.
This, in turn, will reflect on the oscillations of the resis-
tivity once for εF ≈ εn,s, an increase on the conductivity
will happen due to the resonance condition between the
corresponding LL and the Fermi energy.

From the energy expressions above [Eq. (27)], we can
obtain the F–functions through Eq. (11), namely,

Fs (ε) =
ε

~ωc
− ∆̃

2
s− 1

2
, with

dFs(ε)

dε
=

1

~ωc
, (28)

yielding the fast and slow components [Eq. (13)]

F+ (ε,B) =
ε

~ωc
− 1

2
, F− (ε,B) = −∆̃

2
. (29)

At ε = εF these can be expressed (to a very good approx-

imation) as F+ = hn2D

2e
1
B − 1

2 and F− = − g4 m
∗

m0
, where

we assume that n2D =
k2
F

2π is the 2DEG electron density
at B = 0.

The corresponding resistivity can now be determined
through Eq. (22) and reads
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δρxx(B) = 2
∞∑

l=1

e−lπ
~/τq
~ωc

2π2lkBT/~ωc
sinh (2π2lkBT/~ωc)

cos

[
2πl

(
fSdH

B
− 1

2

)]
cos

(
πlg∗

m∗

m0

)
, (30)

where fSdH = hn2D

2e and we have assumed a Lorentzian
form for the LΓ broadening. For small magnetic fields,
both effective mass and g-factor nominal values do not
depend on the magnetic field60. As a result, the 1/B-
dependence of the resistivity in a 2DEG with only Zee-
man coupling, displays oscillations with frequencies mul-
tiple of fSdH, and absence of beating. This can be
seen from Fig. 4, where we plot δρxx(B) vs 1/B for
the harmonics l = 1, 2, 3 and clearly see oscillations
with the respective frequencies fSdH,2fSdH, and 3fSdH.
The solid (dotted) curves correspond to g∗ = −34 and
m∗ = 0.019mo (g∗ = 0 and m∗ = 0.019mo)

15,39. Note
that the higher harmonics have smaller resistivity am-
plitudes. This occurs due to the Dingle factor ∝ e−l/B ,
which suppresses the higher harmonic components.

0.5 1.0 1.5 2.0 2.5

2.0

1.5

1.0

0.5

0.0

FIG. 4. Magnetoresistivity deviation δρxx(B) as a function
of 1/B for a 2DEG with only Zeeman coupling and no SO
couplings. The lowest curve corresponds to δρxx(B) and the
curves labelled by l are the individual frequency components
in Eq. (30). The solid (dashed) line corresponds to g∗ = −34
(g∗ = 0), m∗ = 0.019mo and n2D = 3.3 × 10−3 nm−2. These
parameters are for InSb-based wells 15,39.

We should stress that the effects of the Zeeman cou-
pling within the plot of δρxx(B) are not immediately
obvious. For instance, it can be seen that for g∗ = 0
and g∗ 6= 0, the corresponding δρl=1

xx (B) (blue curves de-
picting the first harmonic) only differ from themselves

by the amplitude of the oscillation. For ∆̃ = −0.323,
cos(2π∆̃/2) is smaller than one, thus yielding a reduc-
tion of the total amplitude for g∗ 6= 0 as compared to

g = 0. As a consequence, the presence of Zeeman is not
readily evident from the oscillations of δρl=1

xx (B). Con-
versely, the Zeeman is only manifested within the resis-
tivity when one considers many harmonics, as we discuss
below.

The definition of DOS in Eq. (21) gives broadened Lan-
dau levels separated by ~ωc , which are in turn spin
split by the Zeeman term ∆̃ [See Eq. (27) and Fig. 3].
This spin splitting can only be seen in the resistivity
[Eq. (30)] when the contributions from the first and

second harmonics, cos(2πfSdH/B − π) cos(2π∆̃/2) and

cos(4πfSdH/B − 2π) cos(4π∆̃/2), respectively, have op-

posite signs. For the parameters of Fig. 3 ∆̃ = −0.323
the Zeeman term significantly affects the maximum of the
resistivity. This can be seen in Fig. 4, where the resistiv-
ities associated to harmonics l = 1 and l = 2 (blue and
cyan solid curves, respectively), interfere in a destructive
way, producing the double-peak feature in the total resis-
tivity (purple solid lines), characteristic of the incipient
spin splitting in such data. We emphasize, however, that
this feature can be absent depending on the broadening
of the energy levels (due to the overlap of the spin-split
levels). This is the reason why the double-peak feature
is not seen on the other maximum peaks.

Although the g∗-factor term does not depend explicitly
on magnetic field, it can manifest itself in the magneto-
oscillations. More specifically, Zeeman-only effects can
have a pronounced effect on the magneto-oscillations,
controlling the amplitude and sign of how subsequent
harmonics are added, either constructively or destruc-
tively, before being damped by the quantum life time.
Furthermore, it is important to say that the Zeeman
can give rise to interesting features and affect drasti-
cally the understanding of the magneto-oscillations. For
instance, if one could engineer a material61 such that

∆̃ = g∗

2
m∗

mo
= 0.5 +m with m ∈ Z, then the main weight

of the resistivity would be due to the second harmonic
with SdH frequently 2fSdH as cos(lπ∆̃) = 0 for l = 1.

B. Landau Levels with Zeeman and Rashba
interactions

We now analyze the case where we have the presence
of both Zeeman and Rashba terms, i.e., ∆̃ 6= 0, α 6= 0
and no Dresselhaus coupling β = 0 in Eq. (9). In the spin
basis {|↑〉 , |↓〉}, the corresponding Hamiltonian assumes
the following matrix form

H̃
~ωc

=

(
a†a+ 1

2 + ∆̃
2 2αBa

2αBa
† a†a+ 1

2 − ∆̃
2

)
. (31)
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TABLE I. Definitions of the Zeeman and SO-related quantities used is this work.

Zeeman (g∗) ωc = eB
m∗ `c =

√
~
eB ∆ = g∗µBB ∆̃ = ∆

~ωc = g∗m∗

2m0

Rashba (α) εR = α2m∗

2~2 =
~2k2

R

2m∗ αB = α√
2~ωc`c

εR
~ωc = α2

B

Dresselhaus (β) εD = β2m∗

2~2 =
~2k2

D

2m∗ βB = β√
2~ωc`c

εD
~ωc = β2

B

SO parameters γ = αB + βB δ = αB − βB Ω = 2εR/~ωc
1−∆̃

+ 2εD/~ωc
1+∆̃

Λ = 2εR/~ωc
1−∆̃

− 2εD/~ωc
1+∆̃

Interestingly, the operator N+ = a†a + σz/2 com-

mutes with the Hamiltonian above, i.e., [H̃,N+] = 0,

and hence H̃ and N+ share the same eigen-
states. Hence we have N+ |n, ↑〉 = (n+ 1/2) |n, ↑〉 and
N+ |n+ 1, ↓〉 = (n+ 1/2) |n+ 1, ↓〉 , i.e., for n ∈ N, |n, ↑〉
and |n+ 1, ↓〉 are degenerate with respect to the op-
erator N+, except for |0, ↓〉 with corresponding energy
ε0,↓
~ωc = 1

2 (1 − ∆̃). As a consequence, a linear combina-

tion of |n, ↑〉 and |n+ 1, ↓〉 is also an eigenstate of our
Hamiltonian Eq. (31). This motivates us to rewrite the
total Hamiltonian as a direct sum of 2× 2 block Hamil-
tonians in the basis {|n, ↑〉 , |n+ 1, ↓〉}(H̃|n,↑〉;|n+1,↓〉), in
addition to the non-degenerate decoupled Hamiltonian
(H̃|0,↓〉), namely

H̃ = H̃|0,↓〉 ⊕
∞⊕

n=0

H̃|n,↑〉;|n+1,↓〉, (32)

with H̃|0,↓〉 = ε0,↓ and

H̃|n,↑〉;|n+1,↓〉 = ~ωc

(
n+ 1

2 + ∆̃
2 2αB

√
n+ 1

2αB
√
n+ 1 n+ 1 + 1

2 − ∆̃
2

)
.

(33)
The diagonalization of the Hamiltonian Eq. (33) yields
energies

εn,s
~ωc

=

(
n+

1

2
+
s

2

)
(34)

− s

2

1− ∆̃

|1− ∆̃|

√(
1− ∆̃

)2

+ 16α2
B

(
n+

1

2
+
s

2

)
,

with s = ± and n ∈ N0, which already incorporates
the energy of the decoupled state |0, ↓〉, ε0,− ≡ ε0,↓
(ε0,+ ≡ ε0,↓) if 1− ∆̃ > 0 (1− ∆̃ < 0). These LLs are
plotted in Fig. 5 as a function of 1/B for parameters
α = 10 meV nm, m∗ = 0.019mo and g∗ = −34 15,39.
Due to the spin-orbit coupling, the energy levels

εl,s
~ωc are

no longer equidistant, and their separation changes as
function of 1/B. On this scale, the energy dispersion

appears linear in 1/B. In fact, for ∆̃ < 0 (∆̃ > 0)
the spin-splitting is enhanced (suppresses) relative to the
case with α = 0 (See Fig. 3). This can be seen through

the expansion of the term (1−∆̃)2 within the square root

of Eq. (34), yielding −2∆̃, which enhances the Zeeman
splitting in the presence of Rashba SO coupling.39

Accordingly, for this case we obtain

F+(ε,B) =
ε

~ωc
− 1

2
+ 2α2

B , (35)

F−(ε,B) = −1

2
+

1

2

1− ∆̃

|1− ∆̃|

√
(1− ∆̃)2 + 16α2

B

(
α2
B +

ε

~ωc

)
.

(36)

Differently from the results in the previous section, here
both F± functions depend on the magnetic field. As a
consequence, we will have more complex oscillations in

ρxx(B) as compared to the case without Rashba coupling
[Fig. 4].

In Fig. 6, we plot the total differential magneto-
resistivity δρxx(B), and the independent contributions
from harmonics l = 1, 2 and l = 3. Here we use
α = 10 meV nm, m∗ = 0.019mo, g

∗ = −34 and n2D =
3.3 × 10−3 nm−215,39. Similarly to the case with α = 0
(dashed line in Fig. 6), here we also see oscillations
for the l = 1, 2, 3 harmonics with respective frequencies
fSdH, 2fSdH and 3fSdH. However, for l = 1 we observe
beating, which can be expected as both F−(ε,B) and
F+(ε,B) frequencies now depend on 1/B. More specifi-
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FIG. 5. Landau levels n = 4, 5 [Eq. (34)] as a function of 1/B
for a 2DEG with non-zero Zeeman and Rashba interactions
but no Dresselhaus coupling (β = 0). The dotted line denotes
εF /~ωc. The parameters here are α = 10 meV nm, m∗ =
0.019mo, g∗ = −34 and n2D = 3.3 × 10−3 nm−2 for InSb-
based wells15,39. The dashed lines show the corresponding
levels for α = 0.

cally, this beating appears here because in the magnetic
range considered we have 2πlF−(B) = π

2 , which leads
to a node in δρxx as δρxx ∝ cos [2πlF−(B)]. Note that
this only occurs for l = 1, since for higher harmonics this
condition is not satisfied. Due to the larger amplitude of
the harmonic l = 1, this beating is also seen in the total
magneto-resistivity.

C. Landau Levels with Zeeman and Dresselhaus
interaction

In the case of Zeeman with pure Dresselhaus, i.e., ∆̃ 6=
0, α = 0 and β 6= 0, the Hamiltonian Eq. (9) in the spin
basis is given by

H̃
~ωc

=

(
a†a+ 1

2 − ∆̃
2 2βBa

†

2βBa a†a+ 1
2 + ∆̃

2

)
. (37)

Differently from the case of pure Rashba, here the oper-
ator N− = a†a − σz/2 commutes with the Hamiltonian
above. For this case we have N− |n, ↓〉 = (n+ 1/2) |n, ↓〉
and N− |n+ 1, ↑〉 = (n+ 1/2) |n+ 1, ↑〉, i.e., for n ∈ N,
|n, ↓〉 and |n+ 1, ↑〉 are degenerate with respect to the
operator N−, except for the state |0, ↑〉 with correspond-

ing energy
ε0,↑
~ωc = 1

2 (1 + ∆̃). As a consequence, a linear

combination of |n, ↓〉 and |n+ 1, ↑〉 is also an eigenstate
of our Hamiltonian. Therefore, differently from the pre-
vious case here the Hamiltonian reads,

H̃ = H̃|0,↑〉 ⊕
∞⊕

n=0

H̃|n,↓〉;|n+1,↑〉, (38)

with H̃|0,↑〉 = ε0,↑ and

1.0 1.5 2.0 2.5 3.00.5
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0.8

0.6

0.4

0.2

0.0

-0.2

FIG. 6. Magnetoresistivity deviation δρxx(B) as a function of
1/B for a 2DEG with Zeeman and Rashba interactions and
no Dresselhaus coupling (β = 0). The lowest curve corre-
sponds to δρxx(B) and the curves labelled by l are the indi-
vidual frequency components (i.e., harmonics) in Eq. (30).
The solid lines are obtained with g∗ = −34, α = 10 meV nm,
m∗ = 0.019mo and n2D = 3.3 × 10−3 nm−215,39; the dotted
lines show the corresponding α = 0 case.

H̃|n,↓〉;|n+1,↑〉 = ~ωc

(
n+ 1

2 − ∆̃
2 2βB

√
n+ 1

2βB
√
n+ 1 n+ 1 + 1

2 + ∆̃
2

)
.

(39)
The diagonalization of the Hamiltonian Eq. (39) yields
energies

εn,s
~ωc

=

(
n+

1

2
− s

2

)
(40)

+
s

2

1 + ∆̃

|1 + ∆̃|

√(
1 + ∆̃

)2

+ 16β2
B

(
n+

1

2
− s

2

)
,

with s = ± and n ∈ N0, which already incorporates the
energy of the decoupled state |0, ↑〉, ε0,+ ≡ ε0,↑ (ε0,− ≡
ε0,↑) if 1 + ∆̃ > 0 (1 + ∆̃ < 0). Here, it is important
to notice the opposite sign of s with respect to Eq. (33).
This happens because the pure Dresselhaus Hamiltonian
Eq. (39) has opposite basis ordering of the spin states
as compared to the pure Rashba Hamiltonian Eq. (33).
Accordingly, the F± functions change slightly and read

F+(ε,B) =
ε

~ωc
− 1

2
+ 2β2

B , (41)

F−(ε,B) =
1

2
− 1

2

1 + ∆̃

|1 + ∆̃|

√(
1 + ∆̃

)2

+ 16β2
B

(
β2
B +

ε

~ωc

)
.

(42)
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FIG. 7. Landau levels n = 4, 5 [Eq. (40)] as a function of 1/B
for a 2DEG with Zeeman and Dresselhaus interations but no
Rashba coupling (α = 0). The dotted line denotes εF /~ωc.
The parameters here are β = 10 meV nm, m∗ = 0.019mo,
g∗ = −34 and n2D = 3.3× 10−3 nm−215,39 dashed lines show
the corresponding levels for β = 0.

Due to the: i) similarity of the Dresselhaus expression
Eqs. (40), (41) and (42) to the ones arising from the
pure Rashba case, Eqs. (34), (35) and (36); ii) cosine
dependence of the F± functions within the resistivity
Eq. (22); all the results and equations in the last sec-

tion also holds here by making αB → βB , ∆̃ → −∆̃
and s → −s. This can also be seen on the level of the
Hamiltonian in Eq. (2) where applying the unitary trans-
formation W = ei

π
2 σxei

π
4 σz results in

W
H̃
~ωc

W † = (a†a+ 1/2) +
(−∆̃)

2
σz + βB(a†σ− + aσ+),

+αB(a†σ+ + aσ−), (43)

which is the expected result. This mapping from (α, ∆̃)

to (β,−∆̃) has visible consequences on the energy lev-
els. In Fig. 7 we plot the corresponding LLs [Eq. (40)]
as a function of 1/B for parameters β = 10 meV nm,
m∗ = 0.019mo and g∗ = −3415,39. Due to the spin-orbit
coupling, the energy levels

εl,s
~ωc are no longer equidis-

tant, and their separation changes as function of 1/B.
However, differently from the pure Rashba case, now the
Dresselhaus competes with the Zeeman coupling, even
leading to LL-dependent crossings. This can be seen
through the expansion of (1+∆̃)2 within the square root

[Eq. (40)], which will give rise to 2∆̃ < 0, thus suppress-
ing the spin splitting in the presence of Dresselhaus SO
coupling.

In Fig. 8 we plot the total differential magneto-
resistivity δρxx(B), and the individual contributions
from the harmonics l = 1, 2 and l = 3. We use β =
10 meV nm, m∗ = 0.019mo, g∗ = −34 and n2D =
3.3 × 10−3 nm−215,39. First, similarly to the previous
cases, here we can also clearly see oscillations with fre-
quencies fSdH, 2fSdH, 3fSdH. Differently from the pre-

vious case with α = 10 meV nm and β = 0, now we see
no beating for the l = 1 harmonic but find beating for
l = 2. This happens as 2πlF−(B) = π

2 – the condition
to observe beating – is only satisfied for l = 2. Even
though the beating appears within the second harmonic,
it is not manifested in the total differential magneto-
resistivity δρxx(B) for our choice of parameters. This
is due to the smaller oscillation amplitude of l = 2 with
respect to l = 1.

D. Beatings in the SdH oscillations with nonzero
Zeeman and in the presence of either Rashba or

Dresselhaus: a unified description

In this section we will discuss more thoroughly the con-
ditions for the appearance of beatings. The two functions
F+ and F−, Eq. (13), determine the fast and slow com-
ponent, respectively, of the SdH oscillations. To highlight
this point and its connection to the power spectrum in
Eq. (26), we start by rewriting Eqs. (35)- (36), and Eqs.

0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

FIG. 8. Magnetoresistivity deviation δρxx(B) as a function
of 1/B for a 2DEG with Zeeman and Dresselhaus interac-
tions and no Rashba coupling (α = 0). The lowest curve
corresponds to δρxx(B) and the curves labelled by l are the
individual frequency components in Eq. (30). The solid lines
are calculated for g∗ = −34, β = 10 meV nm, m∗ = 0.019mo

and n2D = 3.3 × 10−3 nm−215,39; the dotted line shows the
corresponding β = 0 case.
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(42)- (42) in a unified way

F+(ε,B) = fSdH
R(D)

1

B
− 1

2
, (44)

F−(ε,B) = ∓1

2
±1

2

1∓ ∆̃

|1∓ ∆̃|

√
(1∓∆̃)2 + 4

(
fR(D)

1

B

)2

,

(45)

where we have introduced the magneto-oscillation fre-
quencies

fSdH
R(D) =

h

2e

(
n2D +

k2
R(D)

π

)
, (46)

fR(D) =
h

2e

√
2k2
R(D)

π

√

n2D +
k2
R(D)

2π
, (47)

where the R (D) index refers to either pure Rasbha

(Dresselhaus) case, with kR = mα
~2 (kD = mβ

~2 ). Here,
the upper (lower) sign refers to the Rashba (Dressel-
haus) case. In the case where n2D � k2

R(D)/2π, and

4 6 8 10 12
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0.25

14 16

0.20
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FIG. 9. Frequency response
√
I(f) for α = 10.0 meV nm

and β = 0.0 [red curve], and α = 0.0 and β = 10.0 meV nm
[blue curve]. Other parameters are m∗ = 0.019mo, g∗ =
−34 and n2D = 3.3× 10−3 nm−215,39. The solid black shows
corresponds to no spin-orbit coupling (α = β = 0) and black
dashed corresponds to α = β = g = 0.

fR(D)/B � 1, the beating frequency takes the stan-

dard form fR(D) = h
2e

√
2k2
R(D)n2D/π, in which case

∆̃ becomes irrelevant for the magnitude of the beating
frequency36.

The frequency fSdH
R(D) [Eq. (46)] is the main SdH fre-

quency of the magneto-resistance oscillations, usually
extracted from experiments to infer the 2D electronic
density n2D. On the other hand, the frequency fR(D)

[Eq. (47)] is the one allowing for possible beatings in
the magneto-oscillation. As previously discussed in the
last two sections, the presence of beating happens when

2πlF−(B) = π
2 is satisfied, which depends on the value

of both fR(D) and ∆̃.

The presence or absence of beatings can also be visu-
alized through the power spectrum defined by Eq. (26).
From interference of waves, we know that the presence of
beatings correspond to sum of cosines waves with slightly
different frequencies. Accordingly, the power spectrum
for this case would show two peaks located at slightly
different frequencies. In Fig. 9 we plot

√
I(f) for

m∗ = 0.019mo and n2D = 3.3 × 10−3 nm−2, using dif-
ferent spin-orbit parameters and g-factor values. For all
different sets of parameters, we always have the pres-
ence of two main peaks located at both 1/B ≈ 6.8 T−1

and 1/B ≈ 13.6 T−1. These correspond to the main
SdH frequencies for the first and second harmonics, fSdH

R(D)

and 2fSdH
R(D), respectively. In the absence of both Rashba,

Dresselhaus and g-factor (dashed yellow curve), we ob-
serve no beating in the δρxx (Fig. 4).

On the other hand, for the case of pure Rashba α =
10 meV nm with g = −34 (solid red curve), the presence
of the beating in Fig. 6 is made clear by the splitting
of the peak of the power spectrum around f = fSdH

R
in Fig. 9. Interestingly, for α = 10 meV nm with g =
0 (dashed red curve), the splitting of the peak is not
seen anymore, thus highlighting the important role of
the Zeeman on the visualization of beatings. For the
pure Dresselhaus case with β = 10 meV nm and g = −34
(solid blue line), we do not see a peak splitting at the f =
fSdH
D but rather at f = 2fSdH

D , which is consistent with
the presence of the beating seen on the second harmonic
in Fig. 8. Similarly to the pure Rashba case, for β =
10 meV nm with g = 0 (dashed blue line), the splitting
of the peak is not seen anymore, corroborating again the
role of the Zeeman term on the presence of beatings.

The apparent “asymmetry” in having peak-splitting
for Rashba spin-orbit coupling but not for Dresselhaus
(even when they have same SO strength) can be under-
stood from the behavior of the lF−-function vs 1/B,
shown in Fig. 10. As already discussed previously in
Secs. V B and V C, the condition for beating happens
when cos(2lπF−) = 0 or equivalently, lF− = ±1/4 (±1/4
plotted as gray lines). In the case of Rashba (green lines)

one has (1 − ∆̃) > 1, and the condition for a beating
node, cos(2lπF−) = 0, is reached in the interval of 1/B
for l = 1 (solid purple) (gray circles). In the Dresselhaus

case, (1 + ∆̃) < 1, such that lF− for l = 1 only crosses
−1/4 for large values of 1/B, where the amplitude of
the SdH has already been suppressed. Conversely, lF−
crosses 1/4 for l = 2 at smaller values of 1/B, thus guar-
anteeing the presence of a beating within the magnetic
field range, as shown in Fig. 8.
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FIG. 10. Plot of lF−(B) vs 1/B for l = 1 and l = 2 using
α = 10 meVnm with β = 0 (purple lines), α = β = 0 (cyan
lines), and β = 10 meVnm with α = 0 (green lines). The solid
gray lines indicate ±1/4 and the gray circles indicate where
beating nodes occur. For all curves, we use m∗ = 0.019mo,
g∗ = −34 and n2D = 3.3 × 10−3 nm−2, parameters for InSb-
based 2DEGs15,39.

E. Landau Levels with simultaneous Zeeman,
Rashba and Dresselhaus interactions: Analytical

results

As mentioned earlier, to the best of our knowledge,
there are no general exact analytical results for the ener-
gies and SdH oscillations corresponding to the case with
simultaneous and arbitrary Zeeman, Rashba and Dressel-
haus couplings. Therefore, in this section we will outline
how to derive an effective approximate solution that can
be used to shed light on magnetotransport results for
materials, e.g. GaAs or InAs, in which all the three cou-
plings are present. For convenience, we define the sum
and difference of the spin-orbit couplings

γ = αB + βB , (48)

δ = αB − βB , (49)

[see definitions of αB and βB following Eq. (9)] which
allows us to rewrite Eq. (9) as

H̃
~ωc

= a†a+
1

2
+

∆̃

2
σz +

γ + δ

2

(
a†σ− + aσ+

)

+
γ − δ

2

(
a†σ+ + aσ−

)
. (50)

Note that both the pure Rashba and pure Dresselhaus
cases are recovered from the equation above for γ = δ and
γ = −δ, respectively. Next, we define the Hamiltonian
for γ = δ and γ = −δ

H̃±
~ωc

= a†a+
1

2
+

∆̃

2
σz ± δ(a†σ∓ + aσ±), (51)

which describes the pure Rashba (+) and pure Dres-
selhaus (−) cases in the presence of the Zeeman cou-
pling. As we already discussed in the previous sec-

tions, by defining the operator N± = a†a ± 1
2σz, we

obtain [H̃±,N±] = 0, so the eigenstates of H̃± are
also eigenstates of N±. The eigenstates of N+ (N−)
are then constructed from the pair {|n, ↑〉, |n + 1, ↓〉}
({|n, ↓〉, |n+ 1, ↑〉}). The above statement is true except
for the decoupled eigenstates |0, ↑〉 (|0, ↓〉) with corre-

sponding eigenenergy ~ωc(1− ∆̃)/2 [~ωc(1 + ∆̃)/2]. The
diagonalization of each two state subspace results in

εn,s
~ωc

=

(
n+

1

2
+

δ

|δ|
s

2

)
− δ

|δ|
s

2

(
1− δ

|δ|∆̃
)

×
√

1 +
16δ2

(1− δ
|δ|∆̃)2

(
n+

1

2
+

δ

|δ|
s

2

)
, (52)

with s = + (−) and n ∈ N0. Note that this form is
valid for both pure Rashba (δ = γ > 0) and Dresselhaus
(δ = −γ < 0), Eqs. (34) and (40), respectively, thus
also including the corresponding decoupled state with the
lowest eigenvalues of N±. Note that to recover the pure
Zeeman case with no Rashba and Dresselhaus, we should
take δ → 0 with δ/|δ| → 1.

When both Rashba and Dresselhaus are present, we
can use second order perturbation theory with respect to
δ, γ � 1 (See Appendix E), to obtain the approximate
eigenvalues of the Hamiltonian in Eq. (50), namely

εn,s
~ωc

= n+ 1/2 + s
∆̃

2
− 2sΛ(l + 1/2)− Ω (53)

where the quantities Λ and Ω are defined as

Λ =
(γ2 + δ2)∆̃ + 2γδ

(1− ∆̃2)
=

2 εR
~ωc

(1− ∆̃)
−

2 εD
~ωc

(1 + ∆̃)
, (54)

Ω =
(γ2 + δ2) + 2γδ∆̃

(1− ∆̃2)
=

2 εR
~ωc

(1− ∆̃)
+

2 εD
~ωc

(1 + ∆̃)
, (55)

where we have introduced εR/~ωc = α2
B and εD/~ωc =

β2
B .

Our goal now is to rewrite Eq. (53) in a form that re-
covers the already obtained exact results for pure Rashba
and pure Dresselhaus cases. First, we write Λ = Λ

|Λ| |Λ|
since Λ changes sign depending on the relative strengths
of α and β, similarly to the sign of δ that enters into Eq.
(52). By adding and subtracting a term s

2
Λ
|Λ| in Eq. (53)

and after some straightforward algebra we obtain

εn,s
~ωc

=

(
n+

1

2
+

Λ

|Λ|
s

2

)
− Λ

|Λ|
s

2

(
1− Λ

|Λ|∆̃
)

×
{

1 +
4

1− Λ
|Λ|∆̃

[
|Λ|
(
n+

1

2

)
+ Ω

Λ

|Λ|
s

2

]}
.

(56)

In the case of pure Rashba we have Λ = Ω = δ2

1−∆̃
> 0

while for pure Dresselhaus Λ = −Ω = − δ2

1+∆̃
< 0; these
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neatly reduce to the exact results when using second or-
der Taylor expansion of Eq. (52). Note that Eq. (56) also
reproduces the exact result for when α = β and g∗ = 0

62, represented here by Λ → 0 with Λ/|Λ| → 1, ∆̃ = 0,
and Ω = 2εD/R/~ωc . The mathematical expression of
Eqs. (34) and (40) motivate us to rewrite Eq. (56) as

εn,s
~ωc

=

(
n+

1

2
+

Λ

|Λ|
s

2

)
− Λ

|Λ|
s

2

1− Λ
|Λ|∆̃

|1− Λ
|Λ|∆̃|

×
√(

1− Λ

|Λ|∆̃
)2

+ 8

(
1− Λ

|Λ|∆̃
)[
|Λ|
(
n+

1

2

)
+ Ω

Λ

|Λ|
s

2

]
, (57)

where we have used 1+ x
2 ≈
√

1 + x63. It is important to
note that although |Λ| � 1, Λ enters the square root mul-
tiplied by n, the Landau level index. This means that for
high enough n, the product |Λ|n is not necessarily a small
quantity. Accordingly, although the equation above be-
comes exact for either pure Rashba or Dresselhaus case,
for α, β 6= 0 Eq. (57) is only valid when |Λ|n . 1, be-
sides αB , βB , δ, γ � 1 already assumed in Appendix E to
obtain Eq. (53).

We reiterate that Eq. (57) satisfies the exact results for
(i) the Zeeman-only case [Eq. (27)], (ii) the pure Rashba
plus nonzero g∗ [Eq. (34)] and (iii) the pure Dresselhaus

plus nonzero g∗ [Eq. (40)]. The case α = β with g∗ = 0,
for which there is also an exact solution62, is satisfied
to leading order using

√
1 + x ≈ 1 + x/2 for with x =

8Ω(s/2)/(1 − ∆̃) � 1. That is, as mentioned in the
previous paragraph, the approximate solution given by
Eq. (56) reproduces the exact solution for α = β with
g∗ = 062.

As in the case of pure Zeeman, Rashba or Dresselhaus,
we can now calculate the F -function from Eq. (57). The
corresponding results are presented in Appendix F, and
by neglecting SO contributions higher or equal than sec-
ond order in the spin-orbit parameters Λ and Ω (or fourth
order in γ and δ), we obtain

F+ =
ε

~ωc
− 1

2
+ Ω− Λ∆̃, (58)

F− = −1

2

Λ

|Λ| +
1

2

Λ

|Λ|
1− Λ

|Λ|∆̃∣∣∣1− Λ
|Λ|∆̃

∣∣∣

√(
1− Λ

|Λ|∆̃
)2

+ 8 |Λ|
(

1− Λ

|Λ|∆̃
)[

ε

~ωc
+

1

2
|Λ|
(

1− Λ

|Λ|∆̃
)]
. (59)

It is easy to see that these equations recover all the pre-
vious results: pure Zeeman [Eq. (29)], Zeeman with pure
Rashba [Eqs. (35) and (36)], and Zeeman with pure Dres-
selhaus [Eqs. (41) and (42)]. Additionally, in the case of

Λ ≈ 0, F−≈ −∆̃/2 , which reduces to the pure Zeeman
case. Accordingly, here F− becomes independent of B
(for B . 1 T), and therefore, we expect the absence of
beatings in the magneto-resistivity, previously seen for

both pure Rashba and pure Dresselhaus cases.

F. Generalized SdH magneto-resistivity for
arbitrary α, β and g∗ : new prediction for the

absence of beatings.

Using the Eqs. (58) and (59) in Eq. (24), we can de-
rive the magnetoresistivity δρxx(B) for the case with ar-
bitrary Rashba and Dresselhaus couplings and simulta-
neous nonzero Zeeman field,

δρxx(B) =2
∞∑

l=1

e−lπ
~/τq
~ωc

2π2lkBT/~ωc
sinh(2π2lkBT/~ωc)

× cos

[
2πl

(
εF
~ωc

+
2εR
~ωc

+
2εD
~ωc

)]
cos



πl

√(
1− Λ

|Λ|∆̃
)2

+ 16λ2
B

(
λ2
B +

εF
~ωc

)
 , (60)
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with λ2
B = |Λ|

2

(
1− Λ

|Λ|∆̃
)

. From Eq. (60), we can derive

the condition for the absence of beatings for any l by find-
ing the condition for the second cosine being independent
of 1/B ; this implies |Λ| = 0, which leads to

α

β
=

√
1− ∆̃

1 + ∆̃
, (61)

thus yielding Eq. (1) presented in the introduction. For

∆̃ � 1, the above condition is reduced to α ≈ β, corre-
sponding to the situation where the total SO k-dependent
effective field becomes unidirectional5–7.

Note that the above condition does not correspond to
any fundamental symmetry, since there is no new con-
served quantity in our Hamiltonian with both non-zero
Zeeman (g∗ 6= 0) and Rashba-Dresselhaus couplings.
We reiterate that Eq. (61) is entirely distinct from the
persistent-spin-helix condition α = β. As shown in
Fig. 1(d), the case α = β and g∗ 6= 0 does not show
peak splitting in the first harmonic but ehxibits beating
(or peak splitting) in the second harmonic. Only when
g∗ = 0 (no Zeeman) and α = β there are peak splittings
absent altogether44,62.

G. Beatings for both α and β non-zero

In the previous sections, we studied the effect of the
Zeeman interaction on the frequency splitting of the
power spectrum peaks, which represents the beatings in
the SdH oscillations. Here we study the interplay of both
the Dresselhaus and Rashba interactions on the beatings
of the SdH oscillations.

Similarly to what we did leading up to Eq. (47), we
can obtain the effective beating frequency from the F−–
function in Eq. (59) which results in

fR+D =
h

2e

√∣∣∣∣
2k2
R+D

π

(
n2D +

k2
R+D

2π

)∣∣∣∣, (62)

where the effective SO momentum is

kR+D =
m∗

~2

√(
1− Λ

|Λ|∆̃
)(

α2

1− ∆̃
− β2

1 + ∆̃

)
. (63)

We start with the pure Rashba case plus Zeeman, α =
7.0 meV nm and g∗ = −34. The corresponding power
spectrum yields the bottom curve in Fig. 11, similar to
the one plotted in Fig. 9. This curve shows two main
peaks representing the first two harmonics, and the pres-
ence of a split main peak. We assume a Lorentzian broad-
ening ~τ−1

q = 1.75 meV. When the Dresselhaus coupling
β increases, we see the splitting of the main peak reduces
until it vanishes for β = 5.0 meV nm (the frequency split-
ting from Eq. (62) is indicated by the gray circles). The
absence of beating is indeed expected as predicted by the

FIG. 11. Normalized power spectrum
√
I(f) for a fixed α =

7.0 meV nm, and for β = 0.0 to 10 meV nm, from bottom
to top. [red curves], along with full numerical results [black
dashed]. The curve corresponding to kRD = 0 with β =
5.0 meV nm, is shown [blue curve]. The gray circles indicate
the frequency splitting in Eq. (62). Other parameters are
m∗ = 0.019mo, g∗ = −34, n2D = 3.3 × 10−3 nm−2, and
~τ−1

q = 1.75 meV, for InSb-based 2DEGs15,39

FIG. 12. Normalized power spectrum
√
I(f) for a fixed

β = 5.0 meV nm, and for α = 0.0 to 9.0 meV nm, from
bottom to top. [red curves] along with full numerical re-
sults [black dashed]. The curve corresponding to kRD = 0
with α = 7.0 meV nm [blue curve]. The gray circles indi-
cate the frequency splitting in Eq. (62). Other parameters
are m∗ = 0.019mo, g∗ = −34, n2D = 3.3 × 10−3 nm−2, and
~τ−1

q = 1.75 meV, for InSb-based 2DEGs15,39

condition β = α
√

1+∆̃
1−∆̃

= 5.0 meV in Eq. (61). For larger

β, we see that the splitting of the main peak remains
neglible. However, in the second harmonic a clear split-
ting opens up. The condition for having no peak split-
ting at any harmonics is indeed the condition in Eq. (61),
where the effects of the SO couplings basically disappear
[there are still small SO terms εR , εD in Eq. (60)]. The
power spectrum using full numerical calculations are also
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shown [black dashed], and for this parameter regime the
analytical and numerical results agree well.

A similar analysis can be done for the case of pure
Dresselhaus with Zeeman, β = 5.0 meV nm and g∗ =
−34, see Fig. 12. Here the splitting is not observed
in the main peak, but rather in the second harmonic.
As α is increased from 0.0 to 9.0 meV nm, the split-
ting in the second harmonic decreases, and vanishes at
α = 7.0 meV nm, which again corresponds to the con-
dition in Eq. (61). Despite the good accuracy of the
approximate analytical solution for α . 8.0 meV nm, it
starts to deviate from the exact one (full numerics) for
higher values of β. This happens because for these val-
ues, the combined effect Rashba and Dresselhaus is more
pronounced, producing an anti-crossing between different
energy levels (see blue curves Fig. 14, discussed further
below). While the approximate energies obtained here
are always monotonic with respect to 1/B, around the
anti-crossing the numerical ones are not. Accordingly,
our F -function calculation will not be able to fully de-
scribe the SdH oscillations and frequencies around the
anti-crossing regions, specifically the approximate solu-
tion misses a central peak that starts developing, which
will be discussed in the next section. In terms of the F -
function, the occurance of level anticrossings corresponds
to |F−| ≈ 1/2. Since the power spectrum is obtained by
integrating δρxx over a range of 1/B, there is no simple
condition determining the validity of the approximate so-
lution. However, looking at the λB term in Eq. (59) the
condition

8πn2D

(
k2
R

1− ∆̃
− k2

D

1 + ∆̃

)
l4c . 1, (64)

yields a useful estimate for the 1/B values where the
Dingle factor has not suppressed δρxx. Equation (64)
generalizes a similar condition derived in Ref. 57. It is
also interesting to note that the analytical result is more
accurate for higher harmonics, as the Dingle-factor helps
diminishing the amplitude of the anti-crossing at higher-
fields (see Fig. 14).

VI. LANDAU LEVELS WITH ZEEMAN,
RASHBA AND DRESSELHAUS INTERACTIONS:

NUMERICAL RESULTS

In the previous section, we have derived an approxi-
mate analytical result for the magnetoresistance oscilla-
tions in the presence of both Rashba, Dresselhaus and
Zeeman interactions. The assumptions and approxima-
tions underlying the derivation involved the relatively
small SO coupling and the low number of occupied Lan-
dau levels. These are satisfied in the low electron density
InSb-based 2DEGs of Refs. 39 and 64. For higher elec-
tron density systems (but still with just a singly-occupied
subband at B = 0), such as the InAs/GaSb wells in
Ref. 41, a numerical approach is needed. Below we out-

line the numerical procedure. The numerical approach
also allows us to account for the full form of cubic Dres-
selhaus term, see Sec. VI A.

For the case of either pure Rashba or Dresselhaus with
Zeeman, the absence of anti-crossing in the LL spectrum
allow us to obtain exact analytical results for the prob-
lem. As we explain below, this does not hold in the pres-
ence of both Rashba and Dresselhaus with the Hamilto-
nian (in the spin basis) Eq. (9)

H̃
~ωc

=

(
a†a+ 1

2 + ∆̃
2 2αBa+ 2βBa

†

2αBa
† + 2βBa a†a+ 1

2 − ∆̃
2

)
. (65)

Therefore, here we calculate the magnetotransport nu-
merically via the diagonalization of the Hamiltonian
above. The F -function method used for the analytical
cases can be extended to allow for numerical methods
for calculating the energy spectrum, see App. D.

As opposed to both the pure Rashba and pure Dres-
selhaus cases, N± do not commute with the Hamiltonian
above, and therefore, the diagonal basis cannot be de-
scribed by any linear combination of the previous degen-
erate eigenstates of N±. However, there is still a unitary
operator, P = exp

{
iπ
(
N± − 1

2

)}
that commutes with

this Hamiltonian, called the parity operator 51,52, which
is discussed in detail in App. B. The corresponding uni-
tary transformation gives PaP† = −a, Pa†P† = −a†
and Pσ±P† = −σ±, which clearly makes the Hamilto-
nian Eq. (9) invariant due to presence of only a†a, a†σ±
and aσ± terms. The eigenvalues of P, ±1, help analyze
the energy spectrum behavior.

To understand the influence on the spectrum of both
Rashba and Dresselhaus contributions, we first recall
that in the absence of the latter, the Rashba term is
responsible for coupling |n, ↑〉 to |n+ 1, ↓〉, for n ∈ N0

, thus yielding decoupled 2 × 2 block diagonal Rashba
Hamiltonians (shown by the red boxes in the Hamil-
tonian below). When we account for the Dresselhaus
contribution, we obtain a coupling between states |n, ↓〉
and |n+ 1, ↑〉 for n ∈ N0, which belongs to different
Rashba blocks. More specifically, the Dresselhaus term
produces a coupling between blocks {|n, ↑〉 , |n+ 1, ↓〉}
and {|n+ ∆n, ↑〉 , |n+ 1 + ∆n, ↓〉} with ∆n = 2,
which is indicated by the blue box in the Hamil-
tonian below (See App. B). As a consequence,
we have two decoupled orthogonal basis set given
by {|0+〉} = {|n, ↑〉 , |n+ 1, ↓〉 , . . .} and {|0−〉} =
{|n, ↓〉 , |n+ 1, ↑〉 , . . .} with n ∈ N0. Interestingly, these
decoupled basis have different eigenvalues with respect to
the parity operator, i.e., P |0±〉 = ±1 |0±〉 and therefore,
represent different parity subspace.

In terms of the spectrum, in the presence of only
Rashba SO coupling, we observe multiple crossing be-
tween the Rashba eigenstates {|n,−〉, |n,+〉} for different
n ∈ N0, with energy given by Eq. (34), obtained through
the diagonalization of the Rashba blocks (red boxes
within the Hamiltonian matrix in Fig. 13). This is shown
by the red solid lines in Fig. 14(a) for α = 7.5 meV nm.
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FIG. 13. Graphical illustration of the parity subspaces in the matrix representation of the Hamiltonian Eq. (65). Here we see
the Rashba interaction couples |n− 1, ↑〉 to |n, ↓〉 (red boxes), while the Dresselhaus interaction couples |n, ↓〉 to |n+ 1, ↑〉 (blue
boxes).

In the presence of Dresselhaus SO coupling, the states
|n,−〉 and |n + ∆n,+〉 with ∆n ∈ Nodd belong to the
same parity subspace and adding a Dresselhaus contri-
bution will yield anti-crossing, which open up gaps in the
spectrum (blue curves). Conversely, the decoupling be-
tween the different parity sets, i.e., |n,−〉 and |n+∆n,+〉
with ∆n ∈ Neven, implies multiple crossing between their
corresponding energy states. These features are shown
by the blue curve in Figs. 14(a) and (c), where we have
used β = 3.0 meV nm. Other parameters are m∗ = 0.04,
g∗ = −12 and n2D = 17.6 × 10−3 nm−2. These parame-
ters are for InAs/GaSb-based (double) quantum wells41

in the electron regime. This regime, as emphasized in
Ref. 41, corresponds to the configuration in which the
GaSb well is depleted and the system is effectively a sin-
gle InAs-based asymmetric quantum well with electrons
only. Furthermore, we also observe that the effect of the
Dresselhaus term is to simply shift the crossing point to
a different magnetic field and energy (the crossing-point
energy remains constant to lowest order in β but does in
general shift for higher values of β).

The contrasting behavior of crossings vs. anti-crossings
has direct consequences on the F -function, which will be
analyzed in the next paragraphs. First we consider the
crossing between states |n,−〉 and |n+∆n,+〉, with even
∆n (corresponding to states belonging to different parity
subspaces). The F -function are

εn,−(B) =
ε

~ωc
↔ n = F−

(
ε

~ωc
, B;α, β

)
, (66)

and

εn+∆n,+(B) =
ε

~ωc
↔ n+ ∆n = F+

(
ε

~ωc
, B;α, β

)
,(67)

where we have explicitly added their dependence on α
and β. This results in an F -function difference [see Eq.

13] at the crossing ε = εc and B = Bc

F−
(
εc
~ωc

, Bc;α, β

)
=

∆n

2
∈ Z. (68)

Note that since the SdH oscillation is dependent on F± in
the form of cos(2πF±), we can re-define F− to lie within
an unit interval, e.g., F− ∈ [−1/2, 1/2]. Accordingly,
integer values of F− are equivalent to F− = 0 and there-
fore, the vanishing of F− provides the field values where
the crossing happens. The curves for F− are plotted in
Fig. 14(b) for the same parameters as in Fig. 14(a). It
presents a sawtooth pattern because values of |F−| > 1/2
are shifted back to the [−1/2, 1/2] interval. The role of
the Dresselhaus coupling for these crossings is evident in
Fig. 14(b), where the zeros of F− remain zeros for any
value of β, but are simply shifted to new values of mag-
netic field, open circle moves to open rectangle Fig. 14(b).

Next, we look at the crossing between states belonging
to the same parity subspace, i.e., |n,−〉 and |n+ ∆n,+〉
for odd ∆n. We recall that this crossing only exists for
the pure Rashba case, shown in both Figs. 14(a) and (c).
Here the relations in Eqs. (66) and (67) still hold, the
only difference being the value of ∆n, which results in

F−
(
εc
~ωc

, Bc;α, β = 0

)
=

∆n

2
∈ Z +

1

2
. (69)

Adding a non-zero Dresselhaus contribution will cou-
ple these states and lead to an anti-crossing, shown in
Figs. 14(a) and (c). The anti-crossing result in non half-
integer values of F± in Eqs. (66) and (67) and will lead
to a rounding of the sawtooth pattern as seen in Fig.
(14)(b) (blue curves).

The conditions in Eqs. (68) and (69) lead to values of
cos(2πF−) = 1 [filled circle and rectangle in Fig. 14b)]
and cos(2πF−) = −1 [open cirlce circle in 14b)], respec-
tively, in the case of either pure Rashba or pure Dressel-
haus. However, when both Rashba and Dresselhaus are
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present only the former condition cos(2πF−) = 1 holds
(crossing of states with opposite parity) but the latter
condition changes such that cos(2πF−) > −1 due to an-
ticrossings of states with same parity eigenvalue [open
rectangle in Fig. 14b)]. This, in turn, affects the shape
of the magneto-oscillations leading to an asymmetry in
the maximum and minimum values of cos(2πF−).
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FIG. 14. The energy spectrum for two sets of (α, β) =
(7.5, 0.0) meV nm [red] and (α, β) = (7.5, 3.0) meV nm [blue],
along with εF /~ωc (black dashed), a) around n = 125
and c) n = 255. b) Fc for the same pair of parameters.
Note sawtooth form for pure Rashba [red], and for (α, β) =
(7.5, 3.0) meV nm [blue] a rounding, and translation, of the
cusps due to level anticrossing [solid circles]. Other parame-
ters are m∗ = 0.04, g∗ = −12 and n2D = 17.6 × 10−3 nm−2,
for InAs-based quantum wells41.

In Fig. 15 this asymmetry is visible in the magneto-
osillations. Here we assume Gaussian broadening with
Bq = 0.50 T which forms an envelope (black dashed
curve). The lowest curve is the pure Rashba (α, β) =
(7.5, 0.0) meV nm and there all maximas intersect the
envelope [black circles]. The curve for (α, β) =
(7.5, 3.0) meV nm shows that only some maxima inter-
sect the envelope, the other maximas correspond to
cos(2πF−) > −1 do not (black circle). This is a di-
rect consequence of the anti-crossing in the spectrum
in Fig. 14. The curves for (α, β) = (5.5, 3.0) meV nm
and (4.5, 3.0) meV nm show how the anti-crossing be-
comes larger, eventually leading to an absence of beat-
ings. This can also be seen in the frequency spectrum
shown in Fig. 16, for the f ≈ fSdH peak. The lowest
curve (blue) corresponds to (α, β) = (7.5, 3.0) meV nm
where the spectrum shows well separated peaks. How-

FIG. 15. Magnetooscillations for four different parameter
values, including pure Rashba, then different combinations
of (α, β). The anti-crossings in the spectrum complicates
the beating behavior, which eventually vanishes for around
(α, β) = (4.5, 3.0) meV nm. Other parameters are m∗ = 0.04,
g∗ = −12 and n2D = 17.6× 10−3 nm−2.

ever, as the strength of the Rashba coupling is decreased
all the way down to α = 0.5 meV nm for a fixed value of
β = 3.0 meV nm a central peak develops and for α be-
tween 4.5 and 1.5 meV nm, the two split peaks are barely
visible.

FIG. 16. Power spectrum for af fixed β = 3.0 meV nm for α =
7.5 down to 0.5 meV nm. Other parameters are m∗ = 0.04,
g∗ = −12 and n2D = 17.6× 10−3 nm−2, from Ref. 41.

A. Extracting α and β from SdH data

The magneto-oscillations can be thought of as a finger-
print of the sample parameters, including Fermi energy
εF , effective mass m∗, g∗, and α and β. To better cap-
ture the influence of the spin-orbit couplings for higher
electron density, the full form of the Dresselhaus inter-
action will be used. For non-zero magnetic fields, this
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corresponds to having Dresselhaus SO term in Eq. (9)
replaced with
[

1√
2~ωc`c

(
β1 − γ

a†a
2`2c

)
a†σ+ +

γ

2`2c
a3σ−

]
+ h.c.,(70)

where β1 = γ〈k2
z〉, γ is material-dependent parame-

ter describing the SO interaction due to bulk inversion
asymmetry, and 〈k2

z〉 is the expectation value of the z-
component of the square of momentum operator (divided
by ~), see App. C for details of full Dresselhaus coupling.
Note that β in Eq. (2) is assumed to include the first har-
monic of the cubic Dresselhaus7,49, which makes it lin-
early dependent on the electron density. For instance, if
the potential confining the 2DEG is assumed to be an in-
finite well of width dQW then 〈k2

z〉 = π2/d2
QW. To model

the magnetoresistance data we start from Eq. (22), which
features (i) a sum over higher harmonics , (ii) rapid oscil-
lations coming from F+, and (iii) damping due to Lan-

dau level broadening L̃Γ. The analysis introduced in the
previous section was based on the study of the proper-
ties of cos(2πF−), which forms an envelope on top of
the rapid oscillations. Note that in the case having both
Rashba and Dresselhaus coupling the rapid oscillations
are still dominated by the normal SdH oscillations, i.e.

F+(B) = −1

2
+

εF
~ωc

(
1 +O

(
εR
εF
,
εD
εF

))

≈ −1

2
+
fSdH

B
, (71)

so the SO coupling does not affect the rapid oscillations.
The resulting lowest harmonic form of the magneto-
resistivity is

δρxx(B) = −2L̃Γ(B) cos(2πlF−(B)) cos

(
2π
fSdH

B

)
,

(72)
which can be fitted to available data.

Figures 17-19 show the experimental data from Ref.
41 for InAs/GaSb quantum wells in the electron regime)
along with our theoretical fits [Eq. (72)]. We focus on the
experimental curves 1, 5 and 10, of Fig. S4 of Ref. 41 that
we label as C1, C5 and C10 in Fig. 17-19. The data was
fitted to δρxx(B) in Eq. (72), where F− was calculated
numerically. For the fitting we consider both the Dres-
selhaus coupling in Eq. (9) [black dashed lines], and also
with the full Dresselhaus term in Eq. (70) [solid red lines].
The black dots are reference points extracted from the
data, which are used in the fitting of L̃Γ(B) cos(2πF−).
The best fittings were produced by assuming Gaussian
broadening, namely.

L̃Γ(B) = exp

(
−2π2 Γ2

(~ωc)2

)
= exp

(
−B

2
q

B2

)
, (73)

where Bq =
√

2πm
∗Γ
~e and Γ is a constant Landau level

broadening.

FIG. 17. The black dots are reference points for curve
C1, solid black line. The black dashed curve is the lin-
ear Dresselhaus result and solid red curve full Dresselhaus
result. Parameter values from fitting are shown in the in-
set. Other parameters41 are m∗ = 0.019, g = −12 and
n2D = 0.0176 nm−2.

FIG. 18. Similar to Fig. (17), but for curve C5, solid black
line. The black dashed curve represents the linear Dresselhaus
result, while the solid red curve, the full cubic Dresselhaus
term. Extracted fitting parameters are shown in the inset.
Other parameters41 are m∗ = 0.019, g = −12 and n2D =
0.0176 nm−2.

For curve C1 in Fig. 17 the fitting with linear Dressel-
haus yields values α = 7.2 meV nm and β = 3.0 meV nm.
On the other hand, for fitting to the full model we ob-
tain α = 7.6 meV nm, and γ = 85 meV nm3. We see
that both fits produce equally good curves fitting the
experimental data points, with comparable values for
the extracted Rashba SO coupling. This indicates that
when the Rashba coupling dominates the cubic Dressel-
haus term (a3-term in Eq. (70)), fitting the data with
the addition of the cubic term does not strongly affect
the result. The results for curve C5 in Fig. 18 behave
similarly, i.e. we find fitted values of the Rashba coeffi-
cient, α = 6.7 meV nm for the linear Dresselhaus with
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FIG. 19. Similar to Fig. (17), but for curve C10, solid black
line. The black dashed curve represents the linear Dresselhaus
result, which fails to fit the data. However, the full cubic Dres-
selhaus term (solid red curve) results in a good fit. Extracted
fitting parameters are shown in the inset. Other parameters41

are m∗ = 0.019, g = −12 and n2D = 0.0176 nm−2.

β = 2.8 meV nm, and α = 6.3 meV nm for the full cubic
Dresselhaus, with γ = 82 meV nm3.

However, the story is different for the curve C10 shown
in Fig. 19. Here the value of Rashba and Dresselhaus
coupling are closer, and then the details of the linear vs.
cubic Dresselhaus become relevant. Indeed, the linear
Dresselhaus model fitting yields α = 5.5 meV nm and β =
2.5 meV nm while the cubic fit gives α = 4.9 meV nm.
More importantly the error in the linear fit is quite high,
and the fit [black dashed curve] fails to describe the data
points. However, the cubic model gives a good fit , with
γ = 80 meV nm3. This clearly shows the importance
of the cubic contributions in samples with high density,
where the Rashba and Dresselhaus contributions are of
comparable magnitudes.

The fit results in Fig. 17-19 were done for 〈k2
z〉 =

π2/d2
QW where dQW = 12.5 nm41. To fully model the

sample a self-consistent Poisson-Schrödinger calculation
is required7,46,65, which is beyond the scope of this work.
We can however use different values of 〈k2

z〉, which in-
directly emulate self-consistent potential details, i.e. in-
creasing the value of 〈k2

z〉 suggests a stronger confinement
in the InAs quantum well, and decreased value of 〈k2

z〉
would correspond to wavefunctions being less localized
in the InAs quantum well.

In Fig. 20 the values of α, β1, and β are shown as

a function of 〈k2
z〉 from 0.75 π2

d2
QW

to 1.25 π2

d2
QW

. The data

from the three curves are indicated by different forms:
C1: circle, C5: triangle, and C10: square. For each value
of 〈k2

z〉, specific values of α β1, and β are obtained from
the fit. The fit results for α and β for each curve remain
relatively insensitive to 〈k2

z〉-variations. Note that as 〈k2
z〉

varies β1 changes quite rapidly via the fitted value of γ.
This is to be expected since lower values 〈k2

z〉, correspond

to the electron leaking out the InAs quantum well γ into
the GaSb, which has a higher bulk value of γ. For higher
values of 〈k2

z〉 the system becomes more strongly confined
in the InAs quantum well and the value of γ should tend
to the value corresponding to bulk InAs.

The fact that the values of α and β change only slightly
as function of 〈k2

z〉, as can be seen in Fig. 20, has impor-
tant consequences on the fitting proceedure. For this rea-
son a fitting with γ and 〈k2

z〉 both being independent fit-
ting parameters can not be performed, since if β1 = γ〈k2

z〉
is the dominant contribution to the Dresselhaus couplings
then there are multiple (infinite) solutions to the equa-
tion γ〈k2

z〉 = const. and fitting the data with γ and 〈k2
z〉

independent will not converge41.

FIG. 20. The spin-orbit parameters that result from the fit-
ting as a function of 〈k2

z〉. Other parameters are m∗ = 0.019,
g = −12 and n2D = 0.0176 nm−2. The three different symbols
represent different curves: curve 1: circle, 5: triangle, and 10:
square.

VII. SUMMARY

We investigated the SdH magneto-oscillations in the
resistivity ρxx of 2DEGs in the presence of spin-orbit
(Rashba-Dresselhaus) and Zeeman couplings. We used a
semiclassical approach for the resistivity combined with
a Poisson summation formula for the Landau-quantized
DOS. Our approach allows for an intuitive separation
of the slow and fast quantum oscillations in terms of
“F-functions”, central quantities in our description, es-
sentially being the inverse functions of the spin-resolved
Landau-level structure of the system. We study a vari-
ety of exact cases such as the pure Zeemann, pure Dres-
selhaus, and pure Rashba cases – all of which provide
analytical expressions for the magnetoresistivity.

More importantly, from our unified and general formu-
lation we also derive, for the first time, an analytical solu-
tion for the case with arbitrary Rashba and Dresselhaus
couplings and simultaneous non-zero Zeeman coupling
(g∗ 6= 0).Interestingly, this allows us to derive a unique
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new condition for the vanishing of the SO-induced beat-
ings in the SdH signals: α/β = [(1 − ∆̃)/(1 + ∆̃)]1/2,

where ∆̃ = g∗m∗/2m0 (i.e., ratio (Zeeman energy)/~ωc).
This new condition does not correspond to any conserved
quantity in our Hamiltonian, unlike the persistent-spin-
helix condition α = β which is associated with the conser-
vation of spin along some particular axes. We emphasize
that our new condition precludes beatings in all harmon-
ics of the quantum oscillations.

We have applied our analytical formulation to describe
low-density data for SdH oscillations showing many har-
monics in GaAs-based 2DEGs (see SM in Ref. 46) and
found an excellent agreement, Fig. 2. We have also ap-
plied our theory to low-density InSb-based 2DEGs15,39.
In addition, we have also developed a detailed numer-
ical calculation for high-density InAs-based 2DEGs, in
which an analytical description is not satisfactory. We
find excellent agreement with available data for high-
density InAs-based 2DEGs41,46. We have also pointed
out an inequivalence between the Rashba-dominated +
Zeeman vs the Dresselhaus-dominate + Zeeman cases,
with only the former showing beatings. This follows from
a distinct interplay between the SO and Zeeman terms
in these two regimes. We hope our detailed study and
unified general formulation will stimulate furhter experi-
mental investigations aiming at verifying our theoretical
predictions.
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Appendix A: Density of states and F-Functions

Here we follow closely the discussion (and notation)
in Sec. 3.2.2 of the book Semiclassical Physics by Brack
and Bhaduri47.

For simplicity, we first consider the case with a dis-
crete spectrum εn = f(n), n = 0, 1, 2, ... in which each

level has a degeneracy dn = D̃(n), with D̃(n) being an
arbitrary function of n. Later on we will account for a
(pseudo) spin index. As an example, we note that for
the usual 2DEG Landau levels (LLs) (in the absence of
both Zeeman or SO interaction), εn = ~ωc(n+ 1/2) and

dn = AeB/h = D̃(n) (A: area of the 2DEG, e > 0);

in this case, dn = D̃(n) denotes the LL degeneracy
and is independent of n. This same Landau degener-
acy holds in the presence of Zeeman and SO interac-
tions. For later convenience, we define D(n) = D̃(n)/A
to be the level degeneracy per unit area [e.g., for LLs
D(n) = nLL(B) = eB/h]. As in Ref. 47, let f(n) be an
arbitrary monotonic function with a differentiable inverse
f−1(x) = F (x), the relevant “F-function” in our discus-
sion. In this case, because f−1(f(x)) = x = f(f−1(x))
it follows that n = F (εn). Next we define the DOS of
our system and relate it the to the F-function, which ul-
timately allows us to calculate the oscillatory part of the
DOS relevant for our semiclassical transport calculation.

1. Density of states without LL broadening

Quite generally we can define the DOS of our system
as,

g(ε) =
1

A

∞∑

n=0

D̃(n)δ(ε− εn). (A1)

Note that the above DOS is defined per area and energy.
In Ref.47 the DOS is defined just per energy. Motivated
by the property δ[y(x)] = 1

|y′(x0)|δ(x − x0) where x0 de-

notes a root of y(x), i.e., y(x0) = 0 and y′(x) = dy(x)/dx,
we define h(ε) = n − F (ε), which obeys h(εn) = 0 as
n = F (εn) by construction. We can then write

δ[h(ε)] = δ(n−F (ε)) =
1

|F ′(εn)|δ(ε−εn) =
1

|F ′(ε)|δ(ε−εn),

(A2)
or

δ(ε− εn) = |F ′(ε)|δ(n− F (ε)). (A3)

Substituting (A3) into (A1), we find

g(ε) = D(ε)|F ′(ε)|
∞∑

n=0

δ(n− F (ε)), (A4)
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where D(ε) ≡ D(F (ε)). Noting that

∞∑

n=0

δ(ε− n) =
∞∑

l=−∞
e2πilε, (ε > 0) (A5)

we can straightforwardly cast (A4) in the form

g(ε) = D(ε)|F ′(ε)|
∞∑

l=−∞
e2πilF (ε). (A6)

Now we introduce the (pseudo) spin index s = ±1 by
adding a subscript s to all quantities [except D(ε) for it
is not (pseudo) spin dependent]. This s index accounts
for the spin-dependent Zeeman and SO interactions in
our 2DEG. With this new index, the DOS in Eq. (A5),
viewed as per spin now, becomes

gs(ε) = D(ε)|F ′s(ε)|
∞∑

l=−∞
e2πilFs(ε), (A7)

or

gs(ε) = D(ε)|F ′s(ε)|
{

1 + 2
∞∑

l=1

cos[2πlFs(ε)]

}
. (ε > 0)

(A8)
By summing over s, we obtain the total DOS,

g(ε) = D(ε)
∑

s

|F ′s(ε)|
{

1 + 2

∞∑

l=1

cos[2πlFs(ε)]

}
.

(A9)
For the systems investigated in our work, F ′s(ε) ' 1/~ωc.
This is actually exact for the Zeeman-only case, see
Eq. (28), main text, but only approximate in the pres-
ence of SO interaction [see Eq. (A38)]. In this case and

D(ε)|F ′s(ε)| = m∗

2π~2 , we find

g(ε) ' m∗

π~2

{
1 +

∞∑

l=1

(cos[2πlF+(ε)] + cos[2πlF−(ε)])

}
.

(A10)
Using the identity,

cos a+ cos b = 2 cos[(a+ b)/2] cos[(a− b)/2], (A11)

we can rewrite Eq. (A10) as

g(ε) ' m∗

π~2

{
1 +

∞∑

l=1

2 cos[2πlF+(ε)] cos[2πlF−(ε)]

}
,

(A12)
where

F±(ε) =
1

2
[F+(ε)± F−(ε)]. (A13)

To regain the DOS notation in the main text, we now
make g(ε) → D(ε,B) and use D0 = m∗

2π~2 . Hence,

Eq. (A12) becomes

D(ε,B) ' 2D0

{
1 + 2

∞∑

l=1

cos[2πlF+(ε)] cos[2πlF−(ε)]

}
,

(A14)
or

D(ε,B)− 2D0

2D0
' 2

∞∑

l=1

cos[2πlF+(ε)] cos[2πlF−(ε)],

(A15)
which is Eq. (14) in the main text.

2. Density of states including Landau level
broadening

We can account for LL broadening in the DOS calcula-
tion by considering Lorentzian or Gaussian functions as
particular representations of the ideal δ functions describ-
ing the discrete levels. We consider a simple phenomeno-
logical description which assumes that all LLs have the
same spin-independent broadening Γ.

a. Lorentzian DOS case

Here we take the delta function representing the DOS
of a single LL as,

δ(ε− εn) = lim
Γ→0

1

π

Γ/2

(ε− εn)2+(Γ/2)2
= lim

Γ→0
LΓ(ε− εn),

(A16)
where

LΓ(ε) =
1

π

Γ/2

ε2+(Γ/2)2
, (A17)

with
∫ ∞

−∞
LΓ(ε)dε = 1. (A18)

Note that
∫ ∞

−∞
LΓ(ε)e−2πilεdε = e−Γπ|l| = L̃Γ(k), (A19)

where L̃Γ(k) is the Fourier transform (FT) of LΓ(ε) and
l ∈ Z. Using the shifting property of FTs, it follows
that the FT of LΓ(ε − x) is e−2πikxL̃Γ(k). Generalizing
Eq. (A1) for Lorentzian-broadened levels we have (we will
add a subindex s later on)

g(ε) = lim
Γ→0

∞∑

n=0

D(n)LΓ(ε− εn), (A20)
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which we can rewrite as,

g(ε) = lim
Γ→0

∞∑

n=0

∫ ∞

−∞
D(n)LΓ(ε− x)δ(x− εn)dx. (A21)

Considering that D(n) is independent of n and using
Eq. (A5) with the replacement ε→ F (ε), we obtain

g(ε) = lim
Γ→0

∫ ∞

−∞
D(F (x))|F ′(x)|

∞∑

l=−∞
e2πilF (x)LΓ(ε−x)dx.

(A22)
Since LΓ(ε − x) = LΓ(x − ε) is peaked at x = ε, it is
convenient to expand F (x) around this point. Then g(ε)
becomes

g(ε) = lim
Γ→0

∫ ∞

−∞
D[F (ε) + |F ′(ε)|(x− ε)][|F ′(ε)|+

|F ′′(ε)|(x− ε)]
∞∑

l=−∞
e2πil[F (ε)+|F ′(ε)|(x−ε)]LΓ(ε− x)dx.

(A23)

Neglecting the contribution |F ′′(ε)|(x − ε) [as a matter
of fact, this contribution vanishes identically in the limit
LΓ(x − ε) → δ(x − ε), because

∫∞
−∞ f(x)δ(x − x0)dx =

f(x0)], we have

g(ε) = D(ε) lim
Γ→0
|F ′(ε)|

∞∑

l=−∞
e2πilF (ε)×

∫ ∞

−∞
e2πil|F ′(ε)|(x−ε)LΓ(x− ε)d(x− ε). (A24)

Using Eq. (A19), we can write

g(ε) = D(ε) lim
Γ→0
|F ′(ε)|

∞∑

l=−∞
e2πilF (ε)L̃Γ(l|F ′(ε)|).

(A25)
or

g(ε) = D(ε) lim
Γ→0
|F ′(ε)|

∞∑

l=−∞
e2πilF (ε)e−Γπ|lF ′(ε)|,

(A26)
where have used,

L̃Γ(l|F ′(ε)|) = e−Γπ|lF ′(ε)| (A27)

As before [Eq. (A7)], we can rewrite Eq. (A26) by adding
a subindex s to obtain the LL-broadened DOS per spin

gs(ε) = D(ε)|F ′s(ε)|
{

1 + 2
∞∑

l=1

cos[2πlFs(ε)]e
−Γπl|F ′s(ε)|

}
.

(A28)
In the above we have dropped the limΓ→0, since a real
system has a finite Γ. Interestingly, the broadened DOS
in Eq. (A28) can be obtained directly from the case with-

out broadening [Eq. (A8)] by simply multiplying the os-
cillating components (harmonics) in the latter by the ex-

ponential (“Dingle”) factor e−Γπl|F ′s(ε)|.

Here again, for the systems of interest here F ′s(ε) '
1/~ωc and the exponential factor in Eq. (A28) becomes

e−Γπl|F ′s(ε)| = e−πlΓ/~ωc , (A29)

where Γ ≡ ~/τq, τq is the quantum lifetime of the LL.
Summing over the (pseudo) spin index s Eq. (A28) be-
comes

g(ε) =
m∗

π~2

{
1 + 2

∞∑

l=1

cos[2πlF+(ε)] cos[2πlF−(ε)]e−
πlΓ
~ωc

}
.

(A30)
In the notation of the main text we have

D(ε,B)− 2D0

2D0
' 2

∞∑

l=1

cos[2πlF+(ε)] cos[2πlF−(ε)]e−
πlΓ
~ωc ,

(A31)
which is the Eq. (22) of the main text, but written for
the Lorentzian broadening case.

b. Gaussian DOS case

The Gaussian-broadened case can be treated similarly
by considering the delta function representation

δ(ε− εn) = lim
Γ→0

1√
2πΓ

e−
(ε−εn)2

2Γ2 . (A32)

From this we can evaluate the integral in Eq. (A19) which
results in the Gaussian version of Eq. (A27):

L̃Γ (l|F ′(ε)|) = e−2π2(l|F ′(ε)|)2Γ2

. (A33)

This reduces to Eq. (73) for l = 1 (fundamental fre-
quency) and |F ′(ε)| = 1/~ωc.

c. Calculating the F-function and its derivative F ′(ε)

Here we illustrate the calculation of Fs(ε) and its
derivative with respect to ε, F ′(ε), in the presence of SO
interaction. For simplicity, we consider the pure Rashba
case (no Zeeman). To determine the F-functions we need
to invert εn,s = ε, where

εn,s
~ωc

=

(
n+

1

2
+
s

2

)
(A34)

− s

2

1− ∆̃

|1− ∆̃|

√(
1− ∆̃

)2

+ 16α2
B

(
n+

1

2
+
s

2

)
,
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is the pure Rashba energy, Eq. (33) in the main text.
Squaring ε− ñ~ωc, with ñ = n+ (1 + s)/2, we find

[ε− ñ~ωc]2 =
1

4
(~ωc −∆)2 + 4εR~ωcñ

ε2 − 2ε~ωcñ + ñ2~2ω2
c =

1

4
(~ωc −∆)2 + 4εR~ωcñ

ñ2~2ω2
c − (2ε~ωc + 4εR~ωc)ñ−

1

4
(~ωc −∆)2 + ε2 = 0

ñ2 −
(

2ε

~ωc
+

4εR
~ωc

)
ñ −

(
1

2
− ∆

2~ωc

)2

+

(
ε

~ωc

)2

= 0(A35)

We can easily solve (A35) for ñs(ε) ⇒ ns(ε) = −(1 +
s)/2 + ñs(ε) = f−1

s = Fs(ε)

Fs(ε) = −1 + s

2
+

ε

~ωc
+

2εR
~ωc

(A36)

+ s

√(
ε

~ωc
+

2εR
~ωc

)2

+

(
1

2
− ∆

2~ωc

)2

−
(

ε

~ωc

)2

.

We obtain F ′±(ε) by differentiating (A37),

F ′s(ε) =
1

~ωc
+ s

1

2

2
(

ε
~ωc + 2εR

~ωc

)
1

~ωc −
2ε

~2ω2
c√(

ε
~ωc + 2εR

~ωc

)2

+
(

1
2 − ∆

2~ωc

)2

−
(

ε
~ωc

)2
,

or (A37)

F ′s(ε) =
1

~ωc
+ s

2εR
~ωc√

4εεR
~2ω2

c
+
(

2εR
~ωc

)2

+
(

1
2 − ∆

2~ωc

)2
. (A38)

As mentioned earlier, the leading term in F ′s(ε) is 1/~ωc.
By expanding the above expression, we can easily find
O (εR/εF ) = O[(αm∗`c)2/~] corrections. The above cal-
culation also holds for the Dresselhaus case. The general
case with simultaneous and arbitrary Rashba and Dres-
selhaus couplings lead to the correctionsO[(αm∗`c)2/~]+
O[(βm∗`c)2/~)] mentioned following Eq. (12).

Appendix B: Orthogonal subspaces P

When both Rashba and Dresselhaus are present nei-
ther N+ nor N− are conserved, i.e. [N±, H̃] 6= 0. This
will result in mixing of states, e.g. the pure Rashba states
will get couple to each other when a finite β is introduced,
and vice versa. However, there is a conserved quantity
that can be constructed from N± by defining51,52

P± = exp(iπ(N± + 1/2)). (B1)

Using the definition of N+ = a†a+ 1
2σz we can show that

P+ = exp

(
iπ(a†a+

1

2
σz)

)
= exp

(
iπ(a†a− 1

2
σz + σz)

)

= P− exp(iπσz) = −P−, (B2)

where we used exp(iπσz) = −1. Since P± have eigen-
value ±1, we only need to consider P = P+ = −P−.
First, we look at how the operator P affects the opera-
tors a, and σ+:

Pσ+P† = ei
π
2 σzσ+e

−iπ2 σz = eiπσ+ = −σ+ (B3)

PaP† = eiπa
†aae−iπa

†a = eiπa = −a (B4)

The Hamiltonians in both Eqs. (9) and Eq. (70) contain
diagonal terms (a†a and σz) that commute with P, and
non-diagonal terms that involve odd power a, a† multi-
plying σ+, σ−, so then its straightforward to show that
[H,P] = 0. Note that P is unitary so the condition
[H,P] = 0, can be rewritten as PHP† = H. Focusing on
the spin-orbit part of Eq. (9) one obtains

P
(
αBa

†σ− + βBa
†σ+

)
P† + h.c.

=
(
αBPa†P†Pσ−P† + βBPa†P†Pσ+P†

)
+ h.c.

=
(
αB(−a†)(−σ−) + βB(−a†)(−σ+)

)
+ h.c.

=
(
αBa

†σ− + βBa
†σ+

)
+ h.c., (B5)

which shows that PHP† = H, since the diagonal terms
in H trivially commute with P.

The practical results of having a diagonal operator P
that commutes with H is that the Hamiltonian can be
diagonalized using two separate sets of basis states:

P = +1 : {|0, ↑〉, |1, ↓〉, |2, ↑〉, |3, ↓〉, |4, ↑〉, . . . }
P = −1 : {|0, ↓〉, |1, ↑〉, |2, ↓〉, |3, ↑〉, |4, ↓〉, . . . }

Diagonalizing H in either of the P = +1, or −1, sub-
spaces will result in a set of states that all anticross. We
can connect these sets of states to N+ eigenstates

P = +1 : {
|0,+〉,|1,−〉︷ ︸︸ ︷
|0, ↑〉, |1, ↓〉,

|2,+〉,|3,−〉︷ ︸︸ ︷
|2, ↑〉, |3, ↓〉, |4, ↑〉, . . . }

P = −1 : {|0, ↓〉, |1, ↑〉, |2, ↓〉︸ ︷︷ ︸
|1,+〉,|2,−〉

, |3, ↑〉, |4, ↓〉︸ ︷︷ ︸
|3,+〉,|4,−〉

, . . . },

and similarly for the N− eigenstates

P = +1 : {|0, ↑〉,
|1,−〉,|2,+〉︷ ︸︸ ︷
|1, ↓〉, |2, ↑〉,

|3,−〉,|4,+〉︷ ︸︸ ︷
|3, ↓〉, |4, ↑〉, . . . }

P = −1 : {|0, ↓〉, |1, ↑〉︸ ︷︷ ︸
|0,−〉,|1,+〉

, |2, ↓〉, |3, ↑〉︸ ︷︷ ︸
|2,−〉,|3,+〉

, |4, ↓〉, . . . }

Note that P also commutes with the cubic Dresselhaus
terms as is discussed in App. C.

Appendix C: Cubic Dresselhaus

The Hamiltonian in Eq. (9) describes a 2DEG with
both Rashba and linear Dresselhaus. For the numerical
part we also include the full cubic Dresselhaus contribu-
tion. Starting from Eq. (6.1) in Ref. 50, and projecting
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down to the lowest transverse level results in

HD3 =
(−γ〈k2

z〉)
~

([
1

2
Π+σ+

− 1

8~2〈k2
z〉
{Π2

+ −Π2
−,Π−}

]
+ h.c.

)
, (C1)

where Π± = Πx ± iΠy, and 〈Π2
z〉 = ~2〈k2

z〉. Note that
now the Dresselhaus spin-orbit coupling is parametrized
by two parameters γ and 〈k2

z〉, while for the linear ap-
proximation, only the single parameter β = (−γ)〈k2

z〉 is
required. Using the definition in Eqs. (3) and (4) the full
Dresselhaus Hamiltonian becomes

HD3 =
(−γ〈k2

z〉)
~

{[(
1− 1

2〈k2
z〉`2c

a†a

)
a†σ+

+
1

2〈k2
z〉`2c

a3σ+

]
+ h.c.

}
. (C2)

In the absence of spin-orbit interaction a†a can be re-
placed by its eigenvalue n, which in turn is related to the
ratio of the Fermi energy and ~ωc (valid for εF � ~ωc)

1

`2c
a†a→ 1

`2c
n ≈ 1

`2c

εF
~ωc

=
k2
F

2
= πn2D. (C3)

In the presence of spin-orbit we can still formally rewrite
Eq. (C2) as

HD3 =
(−γ)

(
〈k2
z〉 − π

2n2D

)

~

{[
〈k2
z〉 − 1

2`2c
a†a

〈k2
z〉 − π

2n2D
a†σ+

+
1

2`2c

1

〈k2
z〉 − π

2n2D
a3σ+

]
+ h.c.

}
. (C4)

The prefactor −γ
(
〈k2
z〉 − π

2n2D

)
is defined as

β = β1 − β3

=
[
(−γ)〈k2

z〉
]
−
[
(−γ)

π

2
n2D

]
, (C5)

which reduces to the traditional definition of β for low
density samples as considered in Sec. V.

The parity operator P introduced in App. B also com-
mutes with the Hamiltonian in Eq. (C2), since the spin-
orbit terms involve odd powers of a, a† multiplied by ei-
ther σ+ or σ−, and the sign introduced the unitary trans-
formation gets cancelled.

Appendix D: The numerical procedure for finding
the F -function

For fixed parameter values, the eigenenergies of the
Hamiltonian Eq. (9) take discrete values. They are ob-
tained numerically by diagonalizing the Hamiltonian ma-
trix using a large enough set of basis states. Finding the
F -function as described in Eq. (11) is equivalent to a root

finding problem for the function

gs(n) = εn,s(B)− εF = 0. (D1)

This requires the quantum number n to be a continu-
ous variable. which leads to a minor modification of the
Hamiltonian diagonlization procedure. The standard di-
agonalization proceedure is to construct a 2NL matrix
from NL harmonic oscillator eigenstates, in addition to
the spin degree of freedom. The Pauli matrices form 2×2
blocks that are coupled by the ladder operators a and a†,
leading to block tri-diagonal matrix with 2×2 block ma-
trices

hl,l = (l − 1)

[
1 0
0 1

]
+

[
1−∆̃

2 0

0 1+∆̃
2

]
(D2)

hl,l+1 =
√
l + 1

[
0 2αβ

2βB 0

]
, (D3)

where l runs from 1 to NL (number of Landau levels
used in the calculations). To obtain a continuous version
of Eqs. (D2) and (D3) a variable x is added to the index
l, resulting in

hl,l(x) = (l + x− 1)

[
1 0
0 1

]
+

[
1−∆̃

2 0

0 1+∆̃
2

]
(D4)

hl,l+1(x) =
√
l + x+ 1

[
0 2αβ

2βB 0

]
. (D5)

The full block-tridiagonal matrix based on the subma-
trices in Eqs. (D4) and (D5) will then yield a spectrum
εn+x,s, for x ∈ [−1, 1]. To further simply the calculations
the basis states can be split into P = ±1 subspaces. Each
P-subspace contains ordered states {ε0+x, ε1+x, . . . }. For
each subspace, one chooses the two adjecent eigenenergies
determined by the condition εn+x <

εF
~ωc < εn+x+1. Sub-

sequently the value of x is found by solving gs(n+x) = 0.

Appendix E: Perturbation theory and
“Bogoliubov-de Gennes Hamiltonian”

Here we solve the Hamiltonian Eq. (50) through a per-
turbative approach. As the Hamiltonian due to the spin-
orbit terms are generally much smaller than the Hamil-
tonian corresponding to free electron gas, we rewrite
Eq. (50) as

H̃
~ωc

=

H0/~ωc︷ ︸︸ ︷
a†a+

1

2
+

∆̃

2
σz +

V/~ωc︷ ︸︸ ︷
γ
(
a† + a

)
σx + iδ

(
a− a†

)
σy

= H0/~ωc + V/~ωc.

with corresponding unperturbed Hamiltonian and per-
turbation, H0 and V, respectively. Using now the
Schrieffer–Wolff transformation66,67, defined by eS , with
the constraint V + [S,H0] = 0, we obtain an effective
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Hamiltonian given by Heff = H0 + 1
2 [S,V] + O

(
V3
)
.

For our system we find S = Sγ + Sδ, with

Sγ = − γ

1− ∆̃2

{
a
(
σx + i∆̃σy

)
− a†

(
σx − i∆̃σy

)}
,

(E1)

Sδ = − iδ

1− ∆̃2

{
a
(
σy − i∆̃σx

)
+ a†

(
σy + i∆̃σx

)}
,

(E2)

yielding

H̃eff
~ωc

=
1

2

(
1 + ∆̃σz

)
− Ω− Λσz + (1− 2Λσz) a

†a

+ Γ
(
aa+ a†a†

)
σz, (E3)

with

Ω =

(
γ2 + δ2

)
+ 2δγ∆̃

1− ∆̃2
, (E4)

Λ =

(
γ2 + δ2

)
∆̃ + 2δγ

1− ∆̃2
, (E5)

Γ =
δ2 − γ2

1− ∆̃2
∆̃. (E6)

The Hamiltonian Eq. (E3) can be rewritten in the
Bogoliubov-de Gennes form as

H̃eff
~ωc

=
1

2
(1 + ∆̃σz)− Ω− Λσz −

1

2
(1− 2Λσz)

+
1

2

(
a† a

) [ 1− 2Λσz 2Γσz
2Γσz 1− 2Λσz

](
a
a†

)
,

(E7)

which can be diagonalized by a 2 × 2 Bogoliubov-de
Gennes transformation, and reads

H̃eff
~ωc

=
1

2
(1+∆̃σz)−Ω−Λσz−

1

2
(1− 2Λσz)+

1

2

(
ã† ã

) [ √(1− 2Λσz)2 − 4Γ2 0

0
√

(1− 2Λσz)2 − 4Γ2

](
ã
ã†

)
, (E8)

with the diagonal operators ã and ã†. For most semicon-
ductors, we have Ω,Λ,Γ � 1. By neglecting the fourth
order or higher spin-orbit terms, i.e., δiγj with i+ j ≥ 4,
we obtain

H̃eff
~ωc

=
∆̃

2
σz + |1− 2Λσz|

(
ã†ã+

1

2

)
− Ω (E9)

with energies

εl,s
~ωc

=
s

2
∆̃− Ω + |1− 2Λs|

(
l +

1

2

)
. (E10)

For 1− 2Λ > 0 we obtain

εl,s
~ωc

=

(
l +

1

2
+ ∆̃

s

2

)
− 2sΛ

(
l +

1

2

)
− Ω, (E11)

which is Eq. (53) in the main text.

Appendix F: Approximations leading to Eqs. (58)
and (59)

Starting from Eq. (57) one can obtain the the F -
function by inverting the energy levels to obtain l, for
each value of s. The resulting equations are
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F+ =
ε

~ωc
− 1

2
+ |Λ|

(
1− Λ

|Λ| ∆̃
)

+
1

4

Λ

|Λ|
1− Λ

|Λ| ∆̃∣∣∣1− Λ
|Λ| ∆̃

∣∣∣

√(
1− Λ

|Λ| ∆̃
)2

+ 8

(
1− Λ

|Λ| ∆̃
)[

ε

~ωc
|Λ|+ |Λ|

2

2

(
1− Λ

|Λ| ∆̃
)

+
1

2

(
Ω

Λ

|Λ| − Λ

)]

− 1

4

Λ

|Λ|
1− Λ

|Λ| ∆̃∣∣∣1− Λ
|Λ| ∆̃

∣∣∣

√(
1− Λ

|Λ| ∆̃
)2

+ 8

(
1− Λ

|Λ| ∆̃
)[

ε

~ωc
|Λ|+ |Λ|

2

2

(
1− Λ

|Λ| ∆̃
)
− 1

2

(
Ω

Λ

|Λ| − Λ

)]
(F1)

F− = −1

2

Λ

|Λ| +
1

4

Λ

|Λ|
1− Λ

|Λ| ∆̃∣∣∣1− Λ
|Λ| ∆̃

∣∣∣

√(
1− Λ

|Λ| ∆̃
)2

+ 8

(
1− Λ

|Λ| ∆̃
)[

ε

~ωc
|Λ|+ |Λ|

2

2

(
1− Λ

|Λ| ∆̃
)

+
1

2

(
Ω

Λ

|Λ| − Λ

)]

+
1

4

Λ

|Λ|
1− Λ

|Λ| ∆̃∣∣∣1− Λ
|Λ| ∆̃

∣∣∣

√(
1− Λ

|Λ| ∆̃
)2

+ 8

(
1− Λ

|Λ| ∆̃
)[

ε

~ωc
|Λ|+ |Λ|

2

2

(
1− Λ

|Λ| ∆̃
)
− 1

2

(
Ω

Λ

|Λ| − Λ

)]
(F2)

We will further simplify these equations by approxi-
mating Eqs. (F1) and (F2) up to second order in the
spin-orbit parameters Λ and Ω (or fourth order in γ and
δ). Accordingly, we rewrite these equations as

F+ =
ε

~ωc
− 1

2
+ |Λ|

(
1− Λ

|Λ|∆̃
)

+
1

4

Λ

|Λ|
1− Λ

|Λ|∆̃∣∣∣1− Λ
|Λ|∆̃

∣∣∣

(√
A+B −

√
A−B

)
, (F3)

F− = −1

2

Λ

|Λ| +
1

4

Λ

|Λ|
1− Λ

|Λ|∆̃∣∣∣1− Λ
|Λ|∆̃

∣∣∣

(√
A+B +

√
A−B

)
,

(F4)

where A = A0 +A1 +A2 and B = B1, with

A0 =

(
1− Λ

|Λ|∆̃
)2

, (F5)

A1 = 8
ε

~ωc
|Λ|
(

1− Λ

|Λ|∆̃
)
, (F6)

A2 = 4 |Λ|2
(

1− Λ

|Λ|∆̃
)2

, (F7)

B1 = 4

(
1− Λ

|Λ|∆̃
)(

Ω
Λ

|Λ| − Λ

)
. (F8)

Here, the nominal values of the subindices of Ai and Bj
indicate their order on the spin-orbit terms Λ and Ω.
Accordingly, we expand the square roots of Eqs. (F3) and
(F4) and keep only terms up to second order in either Λ
or Ω, yielding

√
A+B +

√
A−B ≈ 2

√
A0 +A1

(
1 +

1

2

A2

A0 +A1

)
,

= 2
√
A0 +A1 +A2 (F9)

√
A+B −

√
A−B ≈ B1√

A0

. (F10)

As a consequence, we can finally write

F+ =
ε

~ωc
− 1

2
+ Ω− Λ∆̃ (F11)

F− = −1

2

Λ

|Λ| +
1

2

Λ

|Λ|
1− Λ

|Λ|∆̃∣∣∣1− Λ
|Λ|∆̃

∣∣∣
×
√(

1− Λ

|Λ|∆̃
)2

+ 8 |Λ|
(

1− Λ

|Λ|∆̃
)[

ε

~ωc
+

1

2
|Λ|
(

1− Λ

|Λ|∆̃
)]
, (F12)

which are Eqs. (58) and (59), respectively. Appendix G: Temperature dependence of the
normalized differential resistivity

In this section we derive the general temperature de-
pendence of the normalized differential magnetoresistiv-
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ity in Eq. (24) for the systems studied in this work.

δρxx(B) = 2
∞∑

l=1

∫
dεL̃Γ

(
l

Γ

~ωc

)(
−df0(ε)

dε

)

× cos(2πlF−) cos(2πlF+). (G1)

At T = 0 K, we have −df0(ε)/dε → δ(ε − εF ), which
simplifies Eq. (G1) to

δρxx(B) = 2

∞∑

l=1

L̃Γ

(
l

Γ

~ωc

)
cos(2πlF−) cos(2πlF+)|ε=εF ,

(G2)
being obviously temperature independent. When the
temperature is finite but small, i.e., kBT � µ ∼ εF ,

we have a temperature dependent δρxx(B). We now an-
alyze the relevant case for low-density semiconductors,
but with εF � εR, εD, and high number of populated
Landau levels, i.e., εF /~ωc � 1. With these condi-
tions, all the different cases analyzed in this manuscript
present F±-functions constant or linearly dependent on
the energy, so we write here, F± ∝ ε + cte, see, for
example Eqs. (29), (44), (45), (58), and (59). Using
2πlF+ = 2Λl+ε+φ

l
+, 2πlF− = 2Λl−ε+ φl−, with φl± prop-

erly defined by comparison with these equations, and as-
suming an energy-independent Dingle factor (only true
for Lorentzian broadening.), we need to calculate inte-
grals of the following form,

∫ ∞

0

dε

(
−∂f

0

∂ε

)
cos
(
2Λl+ε+ φl+

)
cos
(
2Λl−ε+ φl−

)
=

∫ ∞

− µ
2kBT

dx
cos
(
4Λl+kBTx+ 2Λl+µ+ φl+

)
cos
(
4Λl−kBTx+ 2Λl−µ+ φl−

)

2 sinh2 x
,

(G3)

where we have introduced the dimensioness quantity x = ε−µ
2kBT

. For µ� kBT , we obtain

∫ ∞

0

dε

(
−∂f

0

∂ε

)
cos
(
2Λl+ε+ φl+

)
cos
(
2Λl−ε+ φl−

)
= πkBT

{(
Λl+ − Λl−

)
cos
[
2µ
(
Λl+ − Λl−

)
+ φl+ − φl−

]

sinh
[
2πkBT

(
Λl+ − Λl−

)] (G4)

+

(
Λl+ + Λl−

)
cos
[
2µ
(
Λl+ + Λl−

)
+ φl+ + φl−

]

sinh
[
2πkBT

(
Λl+ + Λl−

)]
}
. (G5)

using

∫ ∞

−∞
dx

cos(2λ1 + a1) cos(2λ2 + a2)

coshx2

=
π(λ1 − λ2) cos(a1 − a2)

sinhπ(λ1 − λ2)
+
π(λ1 + λ2) cos(a1 + a2)

sinhπ(λ1 + λ2)

For the cases treated in this work, Λl+ � Λl− holds, and
we obtain
∫ ∞

0

dε

(
−∂f

0

∂ε

)
cos
(
2Λl+ε+ φl+

)
cos
(
2Λl−ε+ φl−

)

≈ Al(T ) cos
(
2µΛl+ + φl+

)
cos
(
2µΛl− + φl−

)
,

with

Al(T ) =
2πkBTΛl+

sinh
(
2πkBTΛl+

) , (G6)

for the temperature dependent coefficient for the SdH
oscillation. For all the cases investigated in this work, we
have Λ+ = πl/~ωc, yielding Eq. (25) in the main text,

Al (T ) =
2π2lkBT/~ωc

sinh (2π2lkBT/~ωc)
. (G7)
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Magneto-oscillations in two-dimensional systems with spin-orbit interaction are typically charac-
terized by fast Shubnikov-de Haas (SdH) oscillations and slower spin-orbit-related beatings. The
characterization of the full SdH oscillatory behavior in systems with both spin-orbit interaction and
Zeeman coupling requires a time consuming diagonalization of large matrices for many magnetic
field values. By using the Poisson summation formula we can explicitly separate the density of
states into, fast and slow oscillations, which determine the corresponding fast and slow parts of the
magneto-oscillations. We introduce an efficient scheme of partial diagonalization of our Hamilto-
nian, where only states close to the Fermi energy are needed to obtain the SdH oscillations, thus
reducing the required computational time. This allows an efficient method for fitting numerically
the SdH data, using the inherent separation of the fast and slow oscillations. We compare systems
with only Rashba spin-orbit interaction (SOI) and both Rashba and Dresselhaus SOI with, and
without, an in-plane magnetic field. The energy spectra are characterized in terms of symmetries,
which have direct consequences visible in the magneto-oscillations. To highlight the benefits of our
methodology, we use it to extract the spin-orbit parameters by fitting realistic transport data.

I. Introduction

Shubnikov-de Haas (SdH) oscillations [1, 2] have been
an important tool to characterize charge densities, and
scattering times in 2D semiconductor [3]. In addition, the
SdH oscillations have been used to extract the Rashba
and Dresselhaus spin-orbit interactions (SOI)[4]. Ear-
lier theoretical description showed that the SOI leads to
changes in the oscillation beating pattern [5], and further
analysis of the same group incorporated the known ex-
act result[6] to improve the analysis of the Rashba and
Zeeman coupling [7]. As is pointed out in Ref. [8], the
study and interpretation of oscillations in the magne-
toresistance relies on some assumptions , as for example,
what the dominant source of SOI is. A method that has
often been used to estimate the strength of the Rashba
coupling was introduced in Ref. [9–11], which uses the
density of states (DOS) at zero magnetic field to relate
the DOS to the Rashba SOI strenght α. However, this
method has drawbacks since it can not account for Zee-
man (via the g-factor g∗) or Dresselhaus spin-orbit cou-
pling [12, 13]. There have been some attempts to ana-
lyze the SdH oscillations in terms of α, β, and g∗ , but
they have mostly involved qualitative comparison with
the energy spectrum of pure Rashba and pure Dressel-
haus [13, 14].

Magnetoresistance oscillations were considered by
Tarasenko and co-authors [15, 16] for the special case
of α = β and no Zeeman coupling. They showed that
the beatings vanished for this case, since the correspond-
ing spectrum consists of equally spaced Landau levels.
Furthermore, the effects of Zeeman splitting and tilted
magnetic field (in the absence of spin-orbit coupling)

were considered in Ref. [17]. In Ref. 18, full numeri-
cal calculations of magneto-oscillations were performed
for relatively high magnetic fields and low electron den-
sities, which is far away from the regime of recent exper-
imental works.[19] In Ref. [19, 20] numerical calculations
of magnetoresistivity-oscillations were performed, but a
general analysis of the oscillations, relating the frequency
and position of beating pattern directly to α and β, was
not presented. Such connections are very important for
experimental works as they allow the extraction of sys-
tem parameters. In a recent experimental work, SdH
oscillations were considered in InAs 2DEGs, where the
Rashba SOI was tuned, but there were unresolved issues
concerning the cubic Dresselhaus SOI [19]. Furthermore,
the effects of the tilted magnetic field were theoretically
considered in the context of the cyclotron and electric-
dipole spin resonances in the presence of both Rashba
and Dresselhaus SOI [20]. For tilting angles at which
the Zeeman splitting and cyclotron energy were equal,
the effects of the SOI could be made more pronounced.
This has been used in more recent experiments study-
ing magnetization [21] and magneto-oscillations [22], al-
though the analysis suffers from the same issues discussed
in Ref. [13].

In this paper we introduce a new efficient method to
obtain the relevant energy spectrum for magneto trans-
port, in the presence of both Rashba and Dresselhaus
SOIs and Zeeman coupling. Our method is based on the
diagonalization of a partial/truncated Hamiltonian, and
allows a faster calculation, and clearer interpretation of
SdH magneto-oscillations. In Sec. II we introduce the
system properties and the partial Hamiltonian. In Sec.
III we present the density of states using the Poisson
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summation formula and highlight the fast and slow, os-
cillations. Finally, we apply our method to accurately fit
realistic magneto-oscillation data, highlighting the speed
and convenience of our method.

II. Hamiltonian and numerical diagonalization

Our focus will be on two dimensional electron gas
(2DEG) in the presence of a magnetic field B =
(B∥ cos(ϕ), B∥ sin(ϕ), B⊥), where B⊥ is the component
of the magnetic field perpendicular to the 2DEG. In ad-
dition, we consider both Rashba[6] and Dresselhaus[12]
spin-orbit couplings. The resulting Hamiltonian is

H2D =
1

2m∗
(
π2
x + π2

y

)
+

g∗µB

2
B⊥σz

+
g∗µBB∥

2
(σx cos(ϕ) + sin(ϕ)σy)

+
α

h̄
(πyσx − πxσy) +

β

h̄
(πxσx − πyσy), (1)

where the h̄ is reduced Planck’s constant, m∗ is the ef-
fective electron mass, g∗ is the effective g-factor, and µB

is the Bohr magneton, and and σx, σy, σz denote the
usual Pauli matrices. The angle θ describes the tilting
of the magnetic field away from the perpendicular di-
rection, and we assume that B ≡ B⊥ is fixed for all
tilting angles, which is done to ease the comparison be-
tween different tilting angles, with absolute value of the
applied magnetic field B/ cos(θ). The strength of the
Rasbha and Dresselhaus SOI are determined by the co-
efficients α and β, respectively. The momenta are given
by πx = px−eBy/2, and πy = py+eBx/2, where e > 0 is
the electrical charge. Note that the gauge is chosen such
that B∥ drops out from the momenta once the 3D prob-
lem is projected onto the lowest transverse level. Next,
we introduce the ladder operators

a =
ℓc√
2h̄

(πx − iπy) , and a† =
ℓc√
2h̄

(πx + iπy) ,

(2)

where ℓc =
√

h̄
eB is the magnetic length. The ladder op-

erators obey the commutation relation [a, a†] = 1, as
a consequence of the canonical commutation relations
[x, px] = ih̄ and [y, py] = ih̄. The Hamiltonian then
reduces to

H2D

h̄ωc
= a†a+

1

2
+

∆̃

2

(
σz +

tan(θ)

2

(
σ+e

iϕ + σ−e
−iϕ
))

+
β√

2h̄ωcℓc
(a†σ+ + aσ−)−

iα√
2h̄ωcℓc

(a†σ− − aσ+),

(3)

where the Zeeman term ∆̃ = g∗µBB
h̄ωc

= g∗m∗

2 inherited

its sign from the g∗-factor, and ωc = eB/m∗ is the cy-
clotron frequency, σ± = σx ± iσy . The standard way
of obtaining the spectrum of the Hamiltonian Eq. (3) is

FIG. 1. Comparison of full diagonalization [black points]
and partial Hamiltonian [red and blue curves], for a) α =
7.5meVnm, β = 0, b) α = 7.5meVnm, β = 3.0meVnm, and
c) α = 7.5meVnm, β = 3.0meVnm, and θ = π/3. Other
parameters are m∗ = 0.04, g∗ = −12 and n2D = 0.0176 nm−2

for InAs based systems.[19]

by creating a matrix of dimension 2N × 2N , where N is
the number of eigenstates of a†a (i.e. a†a|m⟩ = m|m⟩,
m = 0, 1, . . . , N − 1), in addition to accounting for the
spin-degree (i.e σz|σ⟩ = σ|σ⟩, σ = ±1). The choice of N
depends on the number of eigenstates that are required
for a given problem. In the case of magnetotransport cal-
culations for realistic systems parameters, the required
eigenstates are counted in the hundreds, and to calculate
those states accurately, the size of N should be around
four times larger [23], resulting in N ∼ 103. Although
diagonalizing a single such matrix does not represent a
computational challenge, the diagonalization has to be
repeated for multiple values of magnetic field (measured
in the thousands), and α, β, etc. Accounting for all this,
calculating a set of magnetoresistance curves can lead to
computational time around multiple hours [24].
The method we introduce here is designed to efficiently

calculate the eigenenergies for a given n, which labels
the Landau levels. Before outlining the methods, we first
discuss general properties of the Hamiltonian Eq. (3). If
we have β = θ = 0, we can obtain exact eigenvalues (see
App. A)

εn,+ = n+ 1−

√
(1− ∆̃)2

4
+ 4

εR
h̄ωc

(n+ 1), (4)

εn,− = n+

√
(1− ∆̃)2

4
+ 4

εR
h̄ωc

n, (5)

where εR = m∗α2

2h̄2 . These eigenvalue are plotted in Fig.
1a) for n = 150 (dashed orange curve). When the same
system is diagonalized numerically, the energy spectra
take a sawtooth shape since the numerical diagonaliza-
tion orders the eigenvalues according to their size and
crossings turn into anticrossings (black dotted lines).
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There is an underlying parity symmetry for θ = 0, first
introduced in Refs. [25, 26] for α = β, and later extended
for systems with Rashba and Dresselhaus coupling in Ref.
[27]. This parity allows the spectrum to be split into two
separate subspaces that can be diagonalized separately,
see App. B 1. When this is done, we obtain states with
different parities crossing each other, as they belong to
different parity subspaces (blue and red curves). How-
ever, they anticross with other states that belong to the
same parity space.

In Fig. 1b) a non-zero value of β = 3.0meVnm is
added, which opens up overall gaps in the spectrum, but
leaves some crossing unaffected. The spectrum now con-
sists of pairs of states for each value of n and s = ±1
which cross, but anticross with adjacent states above and
below. Finally, in Fig. 1c) an in-plane component of the

FIG. 2. The structure of HPD illustrated relative to the full
matrix H2D. For a given value of n the partial matrix HPD is
constructed around matrix element [H2D]n,n.

magnetic field is added with θ = π/3. For this case,
the parity is no longer a good quantum number, i.e. the
parity operator does not commute with H2D, and ex-
tra anticrossings opens up between the |n,+⟩ and |n,−⟩
states corresponding to eigenenergies εn,+ and εn,+, re-
spectively.

A. Numerical methods

Now, we turn to describing the numerical diagonaliza-
tion procedure. As can be seen in Fig. 1b) and c) the
eigenstates are always pushed up or down by their cou-
plings to adjecent states. This results in each state fol-
lowing a unique curve which can be tracked, as a function
of 1/B, for all n. Based on this we introduce a partial
diagonalization outlined in Fig. 2, where n = 0, 1, 2 . . .
is the Landau level index of interest. The matrix repre-
sentation of Eq. (3) can be written as a block-tridiagonal

FIG. 3. Relative deviation between eigenstates obtained using

full numerical diagonalization with N = 1000, ε
[num]
n,s and the

eigenstates with the partial diagonalization, ε
[PD]
n,s , as a func-

tion of NPD for magnetic field B = 0.15T. Parameter values
are α = 7.5meVnm, β = 3.0meVnm, and θ = 0. Other
parameters are m∗ = 0.04, g∗ = −12 and n2D = 0.0176 nm−2

for InAs based. systems[19]

matrix with diagonal 2× 2 blocks

[H2D]m,m =

[
m+ 1

2 + ∆̃
2

∆̃
2 tan(θ)eiϕ

∆̃
2 tan(θ)e−iϕ m+ 1

2 − ∆̃
2

]
, (6)

where σ0 is the Pauli identity matrix, and off-diagonal
2× 2 block is given by

[H2D]m,m+1 =
√
m+ 1

1√
2h̄ωcℓc

[
0 2β

−2iα 0

]
. (7)

With these we construct the partial matrix HPD centered
on block n with NPD blocks above and below. The re-
sulting matrix has dimension 2(2NPD+1)×2(2NPD+1),
see App. B 2.
If the parity is a good quantum number, i.e. θ = 0,

then each block in HPD is halved (i.e. becomes 1 × 1)
when each parity subspace is considered, see App. B 1
for details. For states with n ≤ NPD, then the lower part
of the partial matrix is decreased accordingly, and for
n = 0 only NNP states above n are needed. With this,
the entire spectrum can be calculated for each value of n.
To test the accuracy of this procedure we calculate the
relative deviation between the full numerical diagonaliza-

tion, ε
[num]
n,s for N = 1000 and the eigenstates obtained

with the partial diagonalization, ε
[PD]
n,s , at B = 0.15T for

α = 7.5meVnm, β = 3.0meVnm, and θ = 0. Figure 3
shows our results for NPD = 8, 12, 16 and 20. Already
for NPD = 16 the relevant eigenenergies (first quarter
of eigenvalues) have a relative deviation less than 10−10,
and for NPD = 20 the machine precision is reached for
all relevant eigenvalues.
As we will see in the next section, allowing n to take

non-integer values can be useful in calculating the den-
sity of states and transport properties. As is discussed in
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App. B 1 this can be implemented via the partial diag-
onalization, i.e. one can calculate eigenenergies εn+∆x,s,
where ∆x ∈ [−0.5, 0.5] is a real number. The interval
is set by the condition that εn+∆x,s = εn+1−∆x,s, i.e.
∆x = 0.5 corresponds to a crossing with next state above,
and similarly ∆x = −0.5 corresponds to a crossing with
the next state below.

III. Density of States and F -function

The eigenenergies of the Hamiltonian Eq. (1) results
in a discrete spectrum, the well known Landau levels [3].
The resulting DOS is given by

D(EF , B) =
1

2πℓ2c

∞∑

n=0

∑

s

LΓ(EF − h̄ωcεns(B)), (8)

where 1/2πℓ2c accounts for the Landau level degeneracy
(per spin), and LΓ(x) describes broadening due impu-
rity scattering [3]. Here it is assumed that all levels
are broadened by a phenomenological parameter Γ, e.g.,
δ(·) → LΓ(·), for Gaussian broadening with LΓ(x) =

e−
x2

2Γ2 /
√
2πΓ2. Our goal is to rewrite the DOS in a way

that highlights the fast and slow oscillations, which are
not directly evident in Eq. (8). This is achieved using
by the Poisson summation formula [3, 4, 17, 28] which
results in

δD(B) ≡ D(EF , B)−D0

D0
(9)

≃ 2

∞∑

l=1

L̃

(
l
Γ

h̄ωc

)
cos(l2πF+) cos(l2πF−),(10)

where D0 = h̄2

πm∗ is the zero-field DOS, L̃Γ is the cosine
transform of the broadening function, and the functions
F± = 1

2 (F+ ± F−) represent the fast (+) and slow (−)
parts of the SdH oscillations, respectively. Details of this
derivation are found in App. C. The functions Fs =
Fs(EF , B), with s = ±1, are defined by the relation

εn,s(B) =
EF

h̄ωc
⇔ n = Fs(EF , B), (11)

so determining Fs becomes a root finding problem. In
Fig. 4a) we plot a zoom-in of εn,s(B) along with EF /h̄ωc

[gray solid line]. Accepting non-integer values of n al-
lows the energy levels to cross EF /h̄ωc for fixed values
of 1/B and EF . The dominant behavior of εn,s(B) with
respect to n is linear (see App. A) as is visible in Fig. 4b).
The energy levels cross EF /h̄ωc at values n+ and n−, for
εn,+(B) and εn,−(B), respectively, which are the values
of the corresponding Fs-functions : ns = Fs(EF , B).

As seen in Fig. 1b), gaps open in the spectrum when
both α and β are non-zero. In Fig. 5a) a zoom-in of
εn,s(B) is shown along with EF /h̄ωc [gray solid line]
for α = 7.5meVnm and β = 3.0meVnm. The dashed
curves are the corresponding pure Rashba eigenenergies.

FIG. 4. a) Energy level n = 150 using the PD algo-
rithm, along with adjacent states [dashed black line] for
α = 7.5meVnm and β = 0.0. The solid gray line shows
EF /h̄ωc, and its value at 1/B = 4.145 [gray circle]. b) The
energy levels εn,s(B) as a function of n showing the inter-
section with EF /h̄ωc at 1/B = 4.145. Other parameters are
m∗ = 0.04, g∗ = −12 and n2D = 0.0176 nm−2 for InAs based
systems.[19]

FIG. 5. a) Energy level n = 150 using the PD algorithm for
α = 7.5meVnm and β = 3.0meVnm. The dashed curves
correspond to α = 7.5meVnm and β = 0. The solid gray line
shows EF /h̄ωc, and its value at 1/B = 4.145 [gray circle].
b) The F-function for α = 7.5meVnm and β = 3.0meVnm
[solid lines], and pure Rashba, β = 0 [dashed line]. Other
parameters are m∗ = 0.04, g∗ = −12 and n2D = 0.0176 nm−2

for InAs based systems.[19]

Note the sawtooth shape of the dashed curves since all
states cross in this case. The corresponding F-functions
are shown in Fig. 5b). The anticrossings in the spectrum
are visible as a rounding of the sawtooth shape, and level
crossings correspond to F− = 0.

It is instructive to look at the F±-function in the case
of pure Rashba SOI,

F+ =
EF

h̄ωc
+

2εR
h̄ωc

− 1

2
=

h

2e
n2D

1

B
− 1

2
+

2εR
h̄ωc

, (12)

61



5

F− = −1

2
+

√
(1− ∆̃)2

4
+

εREF

(h̄ωc)2
≈ m∗αkF

eh̄

1

B
,(13)

where kF =
√
2πn2D, and the approximate sign in Eq.

(13) refers to the low field limit. Since the SdH oscillation
frequency in Eq. (12) is dominated by the term propor-
tional to n2D, we define the spin-orbit related contribu-
tion to the fast oscillations as

∆F+ ≡ F+ −
(

h

2e
n2D

1

B
− 1

2

)
. (14)

This allows us to plot on the same graph the slow spin-
orbit related oscillations described by F− and the spin-
orbit related modification of the fast oscillation ∆F+.
Note that the sawtooth shape in Fig. 5b) for the case of
pure Rashba SOI [purple dashed curve] have a fixed slope

±m∗αkF

eh̄ . This is equivalent to the result in Eq. (13),
which is linear in 1/B, since cos(2lπF−) = cos(−2lπF−),
i.e. the sign of the F−-slope is irrelevant.

FIG. 6. a) Energy level n = 150 using the PD algorithm
for α = 7.5meVnm, β = 3.0meVnm, and θ = π/3. The
dashed curves correspond to α = 7.5meVnm and β = 0. The
solid gray line shows EF /h̄ωc, and its value at 1/B = 4.145
[gray circle]. b) The F-function for α = 7.5meVnm and
β = 3.0meVnm [solid lines], and pure Rashba, β = 0 [dashed
line]. Other parameters are m∗ = 0.04, g∗ = −12 and n2D =
0.0176 nm−2 for InAs based systems.[19]

Finally, we consider the influence of an in-plane com-
ponent of the magnetic field, i.e. θ ̸= 0. In this case the
parity symmetry no longer holds and all states anticross
as seen in Fig. 6a). This results in no states simulta-
neously crossing EF , due to the level repulsion. Note
that F− = 0 corresponds to both pseudo-spin species
simultaneously crossing EF at a given B-field. These
new anticrossings have a direct effect on the F−-function
here, which never reaches zero, as opposed to Fig. 5b)
where F− takes both positive and negative values. The
F− thus contains information on how close to (or far
from) each other states with opposite s cross EF . This
property is useful when interpreting so-called coincidence

FIG. 7. a) Magnetoresistance data generated using Eq. (8)
with Γ = 0.45meV, n2D = 0.019 nm−2, α = 7.20meVnm
and β = 2.40meVnm. Slight background slope and ran-
dom noise is to mimic realistic measurements. b) Normal-
ized magneto-oscillations showing slope due to background.
Extrema and zeros are indicated by black and red dots, re-
spectively. c) Proper normalized magneto-oscillations after
subtracting background [see Sec. IV for details]. Other pa-
rameters are m∗ = 0.04, g∗ = −12. [19]

measurements [29] that have been used to map out level
crossings in SdH oscillations in 2DEGs in tilted magnetic
fields.[30, 31]

IV. Fitting magnetotransport data

The oscillation frequencies introduced in the previous
section allows for a convenient separation of tasks when
analyzing the magneto-oscillations. In 2D systems, the
longitudinal resistance is proportional to the DOS [3], so
the previous analysis applies directly to their magneto-
oscillations. The rapid oscillations, i.e. SdH oscillation
frequency fSdH = h

2en2D can be easily extracted by calcu-
lating the frequency spectrum via FFT, thus yielding the
2DEG density n2D [10, 19]. The remaining parameters
(α, β and Γ) can be found by fitting the slow spin-orbit
related oscillations. We outline below this procedure for
fitting realistic magnetoresistance data.
Our starting point is Eq. (8), which we use to generate

realistic magnetoresistance data [19]. We use parameters
Γ = 0.45meV, n2D = 0.019 nm−2, α = 7.20meVnm and
β = 2.40meVnm, and add a slight background and noise
components to better mimic realistic data. The resulting
Rxx(B) is shown in Fig. 7a) where a slight upward slope
is barely discernible. From the Rxx data, the normalized
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magneto-oscillation is calculated

∆Rxx =
Rxx(B)−Rxx;0

Rxx;0
, (15)

where Rxx;0 is defined as the resistance at the magnetic
field where the oscillations have been fully suppressed,
in this case for B ≤ 0.25T. This is plotted in Fig. 7b),
where the extremas have been marked with black dots,
and central points (zeros) are marked with red dots. The
background signal showing a slight upward trend is now
more visible. The data is brought to the proper nor-
malized magneto-oscillation form, shown in Fig. 7c), by
subtracting the background using a simple linear interpo-
lation between the middle points [red points in Fig. 7b)].
At this point, the data can be directly fitted to the slow
oscillating terms in Eq. (10) using only a small number of
points [black dots]. Due to background compensation we
introduce an extra parameter R0, so the resulting slow
envelope function used for fitting is

δρxx(B) = 2R0L̃Γ

(
Γ

h̄ωc

)
cos(2πF−(B;α, β)). (16)

Fitting the data in Fig. 7c) to Eq. (16) results in

FIG. 8. a) The normalized magneto-oscillations along with
fitted curve through 6 data points [black dots]. Result-
ing fitted parameters are α = (7.24 ± 0.06)meVnm and
β = (2.5 ± 0.3)meVnm. b) Normalized magneto-oscillations
generated using Eq. (8) with Γ = 0.45meV, α = 3.30meVnm
and β = 5.60meVnm [see main text]. c) Zoom in on ref-
erence points and fitted curve which yields fit values α =
(3.33± 0.03)meVnm and β = (5.63± 0.02)meVnm.

a slow envelope shown in Fig. 8a). The results of
the fitting yields parameter values R0 = 1.2 ± 0.2,
Bq = 0.71 ± 0.03T, α = (7.24 ± 0.06)meVnm and

β = (2.5 ± 0.3)meVnm. The fitting only takes a few
tens of seconds, and a few attempts for finding a good
starting point for the fitting parameters. Note that the
time to generate the full data took a couple of hours (on
the same computer). Attempting to fit real transport
data using Eq. (8), which requires calculating the whole
spectrum εn,s(B) for all B-values to capture both fast
and slow oscillations, would thus be prohibitively time
consuming. Our method circumvents this problem by
extracting the important slow spin-orbit-related oscilla-
tions via F−(B), which are easily fitted using only 5-10
magnetic field points.

Finally, we point out that for cases where Rashba and
Dresselhaus SOI parameters are close to each other in
value, the slow part of the magnetoscillations does not
cross zero, i.e. there are no beating nodes [27]. This can
be seen in magneto-oscillation data in Fig. 8b) generated
using α = 3.30meVnm and β = 5.60meVnm. The back-
ground can be subtracted using center points between the
red and black dots. In Fig. 8c) a zoom-in of the refer-
ence points and fitted curve is shown. The fit values are
α = (3.33±0.03)meVnm and β = (5.63±0.02)meVnm,
which is a very good agreement with the parameter val-
ues used to generate the original data. Note that in both
cases of Figs. 8a) and 8b), the reference points fulfill
δρxx < 0.4, which ensures that the higher harmonics can
be neglected, due to the exponential suppression [27].

V. Conclusion

In this paper we presented a new method to efficiently
calculate the relevant energy spectrum for SdH magneto-
oscillation analysis. We showed that the numerical pro-
cedure along with the Poisson summation formula allow
for an efficient calculation and a better understanding of
the fast and slow magneto-oscillations. The spin-orbit
parameters α and β, and the Landau level broadening
Γ, can be uniquely extracted from F−, which oscillates
slowly. To illustrate our method we applied it to realistic
magneto-transport data and find that fitting the slow os-
cillations yields very quick and accurate fit results. The
slow oscillations in F− can also shed light on so-called
coincidence measurements on tilted magnetic fields. Our
method does not rely on finding beating nodes so it can
be used fit data in case of α and β being comparable in
size.
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A. εn,s and Fs in the case of pure Rashba

The Hamiltonian in Eq. (3) with β = θ = 0 results in
the pure Rashba Hamiltonian

HR =

(
a†a+

1

2

)
+
∆̃

2
σz+

α√
2h̄ωcℓc

(a†σ−+aσ−). (A1)

This can be written in 2×2 subspaces {|n, ↑⟩, |n+1, ↓⟩},
n = 0, 1, . . .,[27] which results in the matrix

HR;2×2 =


 n+ (1+∆̃)

2
2α√

2h̄ωcℓc
(n+ 1)

2α√
2h̄ωcℓc

(n+ 1) n+ 1 + (1−∆̃)
2




= (n+ 1) +

[
(1−∆̃)

2

√
2α

h̄ωcℓc
(n+ 1)

√
2α

h̄ωcℓc
(n+ 1) − (1−∆̃)

2

]
,(A2)

with eigenvalues

εn,+ = (n+ 1)−
√

(1− ∆̃)2

4
+

2m∗α2

h̄ωch̄
2 (n+ 1)(A3)

εn+1,− = (n+ 1) +

√
(1− ∆̃)2

4
+

2m∗α2

h̄ωch̄
2 (n+ 1).(A4)

The above equations reduce to Eqs. (4) and (5) using

εR = m∗α
2h̄2 . The labelling of the eigenstates is chosen

such that in the limit α → 0 the eigenstates evolve into
the correct eigenstates in the absence of SOI: εn,+ → ε0n,↑
and εn+1,− → ε0n+1,↓.

The definition of the DOS in Eq. (8) contains a sum
over n = 0, 1, 2, . . . which can be formally written as an
integral over the continuous variable x via the Poisson
summation formula (also known as trace formula [28]) in
Eq. (C1). Since the eigenenergies εn,s are a well defined
function of n, the index n can be replaced by a continuous
variable x ∈ [0,∞). The derivative of the eigenenergies
with respect to x can then be calculated

∂εx,+
∂x

= 1−
2εR
h̄ωc√

(1−∆̃)2

4 + 4εR
h̄ωc

(x+ 1)
, (A5)

≈ 1−
√

εR
EF

≈ 1, (A6)

where we used x+ 1 ≈ EF

h̄ωc
. The same argument applies

to εx,−, i.e.
∂εx,−
∂x ≈ 1. In the case of non-zero β and/or θ

in Eq. (3) will lead to anticrossings, which tend to flatten
the square root behavior of the energy levels, see Fig. 1b)
and c), thus making the approximation in Eq. (A6) even
better.

B. Partial Hamiltonians and parity

Here we describe the form of the partial Hamiltonian
in the case of parity symmetry [27], and in the absence
of that symmetry.

1. Matrix elements and parity symmetry

As was outlined in Ref. 27 the full basis |m,σ⟩ can
be split in two according to the eigenvalues of the parity
operator

P̂ = exp(iπ(a†a+ 1/2(σz − 1))), (B1)

which are P = ±1. The basis states of the resulting
parity subspace are then

P = +1 : {|0, ↑⟩, |1, ↓⟩, |2, ↑⟩, |3, ↓⟩, |4, ↑⟩, . . .}(B2)
P = −1 : {|0, ↓⟩, |1, ↑⟩, |2, ↓⟩, |3, ↑⟩, |4, ↓⟩, . . .}.(B3)

The Hamiltonian matrix for each P = ±1 subspace be-
come a tridiagonal matrix with diagonal elements

[
H

(+1)
2D

]
k,k

= k +
1

2
+

∆̃

2
(−1)k (B4)

[
H

(−1)
2D

]
k,k

= k +
1

2
− ∆̃

2
(−1)k, (B5)

where k = 0, 1, 2, . . . labels the basis states in subspace
P = ±1. The alternating sign of the Zeeman term reflects
the alternating ↑ and ↓ in the basis states in Eq. (B2) and
(B3). The off-diagonal matrix elements are given by

[
H

(+1)
2D

]
k,k+1

=
√
k + 1

( iα√
2h̄ωcℓc

(1 + (−1)k)

+
β√

2h̄ωcℓc
(1− (−1)k)

)
, (B6)

[
H

(−1)
2D

]
k,k+1

=
√
k + 1

( iα√
2h̄ωcℓc

(1− (−1)k)

+
β√

2h̄ωcℓc
(1 + (−1)k)

)
. (B7)

The (1± (−1)k) takes alternating values 0 and 2, which
switches between the α and β couplings due to the alter-
nating spin arrangement in Eqs. (B2) and (B3). Compare
this to Eq. (7) in the absence of parity symmetry where
each 2× 2 block contains both α and β.
The partial Hamiltonian for P = +1 centered on the

n-th state is constructed from Eqs. (B4) and (B6)

[
H

(+1)
PD (n)

]
m,m

=

(
n+ (m−NPD − 1) +

1

2

)

+
∆̃

2
(−1)(n̄+m−NPD−1), (B8)

[
H

(+1)
PD (n)

]
m,m+1

=
√

(n+m−NPD − 1) + 1×
( iα√

2h̄ωcℓc
(1 + (−1)(n̄+m−NPD−1))

+
β√

2h̄ωcℓc
(1− (−1)(n̄+m−NPD−1))

)

, (B9)

where n̄ = round(n) and m ∈ [1, 2NPD + 1]. The eigen-

energy ε
(+1)
n,s is obtained as the (NPD+1)-th eigenvalue of
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H
(+1)
PD (n). In a similar fashion the partial Hamiltonian for

P = −1 centered on the n-th state has matrix elements
[
H

(−1)
PD (n)

]
m,m

=

(
n+ (m−NPD − 1) +

1

2

)

+
∆̃

2
(−1)(n̄+m−NPD−1), (B10)

[
H

(−1)
PD (n)

]
m,m+1

=
√

(n+m−NPD − 1) + 1×
( iα√

2h̄ωcℓc
(1− (−1)(n̄+m−NPD−1))

+
β√

2h̄ωcℓc
(1 + (−1)(n̄+m−NPD−1))

)
,

(B11)

and the eigenenergy ε
(−1)
n,s , is obtained as the (NPD+1)-th

eigenvalue of H
(+1)
PD (n).

2. Matrix elements without parity symmetry

In the absence of parity symmetry, i.e. for θ ̸= 0, the
matrix elements in Eqs. (6) and (7) are used to construct
the partial matrix centered on the n-th state

[
HPD(n)

]
m,m

=
(
(n+m−NPD − 1) +

1

2

)[
1 0
0 1

]

+

[
∆̃
2

∆̃
2 tan(θ)eiϕ

∆̃
2 tan(θ)e−iϕ − ∆̃

2

]
,(B12)

[
HPD(n)

]
m,m+1

=
√

(n+m−NPD − 1) + 1×

1√
2h̄ωcℓc

[
0 2β

−2iα 0

]
, (B13)

where m ∈ [1, 2NPD + 1]. The eigenenergy pair εn,+
and εn,+ are obtained as eigenvalues of HPD(n) number
(2NPD + 1) and (2NPD + 2).

C. Poisson’s summation formula

Here we will apply the Poisson summation formula

∞∑

n=0

f(n) =

∫ ∞

0

dxf(x) + 2
∞∑

l=1

∫ ∞

0

dxf(x) cos(l2πx),

(C1)

to the sum over the broadened Landau levels in Eq.̃(8).
Starting with one spin species s

∞∑

n=0

LΓ(EF − h̄ωcεn,s(B)) (C2)

=

∫ ∞

0

dxLΓ(EF − h̄ωcεx,s(B))

+
∞∑

l=1

∫ ∞

0

dxLΓ(EF − h̄ωcεx,s(B)) cos(l2πx).(C3)

Next, we introduce a change of variables

u = EF − h̄ωcεx,s(B), (C4)

du

dx
= −h̄ωc

∂εx,s
∂x

. (C5)

The derivative
∂εx,s

∂x = 1 +O(
√

εR/EF ) when evaluated
at εx,s ≈ EF /h̄ωc

∞∑

n=0

LΓ(EF − h̄ωcεn,s(B)) (C6)

=
1

h̄ωc

(∫ ∞

−∞
duLΓ(u)

+ 2
∞∑

l=1

∫ ∞

−∞
duLΓ(u) cos (l2πFs(EF − u,B))

)
.(C7)

In order to keep the equations as concise as possible, we
will now drop the B argument in both Fs and εx,s. The
integrand in Eq. (C7) has width ∼ Γ, and since EF ≫ Γ,
we can use 1st order Taylor expansion of the Fs function
in terms of u

Fs(EF − u) = Fs(EF )− F ′(EF )u+O(u2) (C8)

≈ Fs(EF )−
1

h̄ωc
u, (C9)

where we have used dFs(EF )
dEF

= 1
h̄ωc

, which is a conse-

quence of
∂εn,s

∂n = 1. This can be shown using that
n = Fs(EF ) is the inverse function of EF = h̄ωcεn,s, i.e.
n = Fs(h̄ωcεn,s). Taking the derivative of this relation
with respect to n results in

1 =
dFs(EF )

dEF
h̄ωc

∂εn,s
∂n

≈ dFs(EF )

dEF
h̄ωc, (C10)

which yields the relation below Eq. (C9). We can thus
write Eq. (C7) as

∞∑

n=0

LΓ(EF − h̄ωcεn,s) (C11)

=
1

h̄ωc

(∫ ∞

−∞
duLΓ(u)

+ 2

∞∑

l=1

cos(l2πFs(EF ))

∫ ∞

−∞
duLΓ(u) cos

(
l2π

u

h̄ωc

))

=
1

h̄ωc

(
1 + 2

∞∑

l=1

cos(l2πFs(EF , B))L̃Γ

(
l
Γ

h̄ωc

))
,

(C12)

where the symmetric broadening will makes the sine-term
appearing in the Taylor expansion vanish. The cosine
transform is defined as

L̃Γ

(
l
Γ

h̄ωc

)
=

∫ ∞

−∞
duLΓ(u) cos

(
l2π

u

h̄ωc

)
, (C13)
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which, for Gaussian broadening, leads to

L̃Γ

(
l
Γ

h̄ωc

)
= exp

(
−
[√

2π l
Γ

h̄ωc

]2)
= e−l2

B2
q

B2 , (C14)

where weBq =
√
2πm∗Γ

h̄e . Finally, applying this to Eq. (8)
and using the trigonometric relation

cos(l2πF+) + cos(l2πF+) (C15)

= 2 cos

(
l2π

F+ + F−
2

)
cos

(
l2π

F+ − F−
2

)
,(C16)

and 1
2πℓ2c

1
h̄ωc

= h̄2

2πm∗ results in Eq. (10).
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Chapter 4

Appendix

4.1 Parity and Hamiltonian elements for pure Rashba and
Dresselhaus

[𝐻𝑅, 𝑁+] = [𝑎†𝜎− + 𝑎𝜎+, 𝑎†𝑎 +
𝜎𝑧
2 ]

= [𝑎†𝜎−, 𝑎†𝑎] + [𝑎†𝜎−,
𝜎𝑧
2 ] + [𝑎𝜎+, 𝑎†𝑎] + [𝑎𝜎+,

𝜎𝑧
2 ]

[𝐻𝑅, 𝑁+] = 𝑎†[𝜎−, 𝑎†]𝑎+(𝑎†)2[𝜎−, 𝑎]+𝑎†[𝑎†, 𝑎]𝜎−+𝑎†[𝜎−,
𝜎𝑧
2 ]+[𝑎

†, 𝜎𝑧2 ]𝜎−+𝑎[𝜎+, 𝑎
†]𝑎+

+ [𝑎, 𝑎†]𝜎+𝑎 + 𝑎†𝑎[𝜎+, 𝑎] + 𝑎[𝜎+,
𝜎𝑧
2 ] + [𝑎, 𝜎𝑧2 ]𝜎+

= 0
(4.1)

In our calculations, the parity operator and theRashba andDresselhausHamiltonian
terms commute, which is a valid assumption in systems with a well-defined parity
symmetry.

[𝑃, �̂�𝑎†𝜎±] = (𝑃�̂�𝑎†𝜎± − �̂�𝑎†𝜎±𝑃)
= 𝑃(�̂�𝑎†𝜎± − 𝑃−1�̂�𝑎†𝜎±𝑃)
= 𝑃(�̂�𝑎†𝜎± − 𝑃−1�̂�𝑎†𝑃𝑃−1𝜎±𝑃)
= 𝑃(�̂�𝑎†𝜎± − �̂�𝑃−1𝑎†𝑃𝑃−1𝜎±𝑃)
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where we used that [𝑃, �̂�] = 0. The similarity transforms are

𝑃−1𝑎†𝑃 = 𝑒𝑖𝜋𝑎†𝑎𝑎†𝑒𝑖𝜋𝑎†𝑎

= 𝑎† + (𝑖𝜋)
1! [𝑎

†𝑎, 𝑎†] + (𝑖𝜋)2
2! [𝑎†𝑎, [𝑎†𝑎, 𝑎†]] + …

= 𝑎† (1 + 𝑖𝜋
1! 𝜋 +

(𝑖𝜋)2
2! + … )

= 𝑎†𝑒𝑖𝜋 = 𝑎† cos(𝜋) = 𝑎†(−1)

𝑃−1𝜎±𝑃 = 𝑒+𝑖
𝜋
2
𝜎𝑧𝜎±𝑒

+𝑖 𝜋
2
𝜎𝑧

= 𝜎± +
(𝑖𝜋)
21! [𝜎𝑧, 𝜎±] +

(𝑖𝜋)2
222!

[𝜎𝑧, [𝜎𝑧, 𝜎±]] + …

= 𝜎± +
(𝑖𝜋)
21! (±2𝜎±) +

(𝑖𝜋)2
222!

(±2)2𝜎± + …

= 𝜎± (1 +
(±𝑖𝜋)
1! + (±𝑖𝜋)2

2! + … )

= 𝜎±𝑒±𝑖𝜋 = 𝜎± cos(±𝜋) = (−1)𝜎±

[𝑃, �̂�𝑎†𝜎±] = 𝑃(�̂�𝑎†𝜎± − �̂�𝑃−1𝑎†𝑃𝑃−1𝜎±𝑃) (4.2)
= 𝑃(�̂�𝑎†𝜎± − �̂�(−1)𝑎†𝑃(−1)𝜎±)
= 𝑃(�̂�𝑎†𝜎± − (−1)2�̂�𝑎†𝜎±) = 0

4.2 Eigenstates by different Landau levels

an eigenstate is a state of a quantum system that is an eigenvector of a particular oper-
ator here theHamiltonianwell-knownoperatorwhich gives the energy of the system.
The corresponding eigenvalue is the energy of the system in that state. Eigenstates
are important because they represent the possible states of a system that can be ob-
served or measured. For example, in a system with two modes (such as the vibra-
tions of a molecule), each mode can be described by its own set of eigenstates. These
eigenstates are orthogonal to each other, meaning that they are independent of one
another. This is important because it means that the state of onemode does not affect
the state of the other mode. The eigenstates of a system can also be used to describe
the probability of finding the system in a particular state. For example, if a system
is in an eigenstate with a high probability, it is more likely to be found in that state
when measured.

Overall, eigenstates play a key role in understanding and predicting the behavior
of quantum systems. Since the eigenvalues are obtained analytically in pure Rashba
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case,in order to better see exactly what is happening between the states specially the
crossing points, one needs to have a relationship between the different eigenstates,
which is the closest states and points for two different.|𝜓±⟩.

⎛
⎜
⎝

1
2
(1 − ∆̃) 2𝑎𝑅

√
𝑛

2𝑎𝑅
√
𝑛 − 1

2
(1 − ∆̃)

⎞
⎟
⎠
(𝐴𝐵) =

=
√

1
2(1 − ∆̃)2 + (2𝑎𝑅

√
𝑛)2 (𝐴𝐵)

⎛
⎜
⎝

1
2
(1 − ∆̃) 2𝑎𝑅

√
𝑛

2𝑎𝑅
√
𝑛 − 1

2
(1 − ∆̃)

⎞
⎟
⎠
=
√

1
4(1 − ∆̃)2 + (2𝑎𝑅

√
𝑛)2 (cos(𝜃𝑛) sin(𝜃𝑛)

sin(𝜃𝑛) − cos(𝜃𝑛)
)

so we can define these cos(𝜃𝑛) and sin(𝜃𝑛) :

cos(𝜃𝑛) =
1
2
(1 − ∆̃)

√
1
2
(1 − ∆̃)2 + (2𝑎𝑅

√
𝑛)2

(4.3)

sin(𝜃𝑛) =
2𝑎𝑅

√
𝑛

√
1
2
(1 − ∆̃)2 + (2𝑎𝑅

√
𝑛)2

(4.4)

so we have 𝜃𝑛 = cos−1(
1
2
(1−∆̃)

√
1
2
(1−∆̃)2+(2𝑎𝑅

√
𝑛)2
) in one hand which present as auto nor-

malization of states.
nowwe are going to obtain the eigenstates for general case eigenvalue is equal to +1
and -1:

(cos(𝜃𝑛) sin(𝜃𝑛)
sin(𝜃𝑛) − cos(𝜃𝑛)

) (𝐴𝐵) = +1 (𝐴𝐵)

now we have the tools for obtaining the A and B and the defenition of eigenstates
with knowing these basics.

|𝐴|2 + |𝐵|2 = 1
𝐴 cos(𝜃𝑛) + 𝐵 sin(𝜃𝑛) = 𝐴
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Figure 4.1: the cosine and sine parts which describe the situation of the states and
projecting on the basis states

so the A and B will satisfy both relations with cos(𝜃) and sin(𝜃) in eigenvalue equal
+1:

𝐴 = cos(𝜃)
𝐵 = sin(𝜃)

cos(𝜃) cos(𝜃𝑛) + sin(𝜃) sin(𝜃𝑛) = cos(𝜃)
cos(𝜃 − 𝜃𝑛) = cos(𝜃)

𝜃 = 𝜃𝑛
2

Therefore for eigenvalue equal 1 the eigenvector is:

⎛
⎜
⎝

cos( 𝜃𝑛
2
)

sin( 𝜃𝑛
2
)

⎞
⎟
⎠
⇒ cos(𝜃𝑛2 )|𝑛, ↓⟩ + sin(𝜃𝑛2 )|𝑛 − 1, ↑⟩ (4.5)

for eigenvalue equal -1 as well it could be written as :

⎛
⎜
⎝

−sin( 𝜃𝑛
2
)

cos( 𝜃𝑛
2
)

⎞
⎟
⎠
⇒ −sin(𝜃𝑛2 )|𝑛, ↓⟩ + cos(𝜃𝑛2 )|𝑛 − 1, ↑⟩ (4.6)

By thismeans nowwe can apply theHamiltonian operator on these states andwe are
able to explain in what points they have the same amount with crossing point which
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is taken by definition of the cos and sin in eigenstates.

𝐻𝑅(cos(
𝜃𝑛
2 )|𝑛, ↓⟩ + sin(𝜃𝑛2 )|𝑛 − 1, ↑⟩ = 𝜀+((cos(

𝜃𝑛
2 )|𝑛, ↓⟩ + sin(𝜃𝑛2 )|𝑛 − 1, ↑⟩)

𝐻𝑅(− sin(
𝜃𝑚+1
2 )|𝑚+1, ↓⟩+cos(

𝜃𝑚+1
2 )|𝑚, ↑⟩ = 𝜀−(− sin(

𝜃𝑚+1
2 )|𝑚+1, ↓⟩+cos(

𝜃𝑚+1
2 )|𝑚, ↑⟩)

and matrix elements comes as :

⟨𝜓𝑛↓|𝐻𝑅|𝜓𝑚↑⟩ = 0
⟨𝜓𝑛↓|𝐻𝑅|𝜓𝑚↓⟩ = 𝜀𝑛↓
⟨𝜓𝑚↑|𝐻𝑅|𝜓𝑚↑⟩ = 𝜀𝑚↑
⟨𝜓𝑛↓|𝐻𝑅|𝜓𝑚↑⟩ = 0

4.2.1 Magnetic points at the intersecting energy spectrum

In this study, we considered two states that cross each other in the absence of an in-
plane magnetic field. However, when an in-plane magnetic field was applied, a gap
opened up between the two states, indicating that they are coupled. To understand
the nature of this coupling and the points of connection between the two states, we
labeled the states differently and rewrote one state in terms of the difference between
the other state and the magnetic field.[48] This allowed us to gain insight into the
behavior of the system and the role of the magnetic field in mediating the coupling
between the two states. Overall, our analysis provides a deeper understanding of the
coupling between these two states and the effects of an in-plane magnetic field on
their behavior.

{ 𝑚 = 𝑛 + ∆𝑛
𝛿 = 𝜀𝑚,↑ − 𝜀𝑛,↓

(4.7)

In order to find the points of connection of the two energy spectra and in whichmag-
netic field two different energy spectra intersect, we can take the energy of these two
equations to obtain the magnitude of the magnetic field in terms of other parameters
such as differential state numbers. And we can have a quantum number like that.
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After obtaining the wave function of this system in two basis.[25], [32], [33]

𝛿 = 𝜀𝑛+∆𝑛,↑ − 𝜀𝑛,↓

𝑛 + ∆𝑛 + 1 −
√

1
4(1 − ∆̃)2 + 4𝑎2𝑅(𝑛 + ∆𝑛 + 1) − 𝑛 −

√
1
4(1 − ∆̃)2 + 4𝑎2𝑅𝑛 = 0

(4.8)

The ∆̃ = 𝑚𝑔𝐵𝑧
ℏ𝜔𝑐

if we take the limilts 𝐵 → ∞ the energy of the system would be the
same as simple word kill the spin-orbit interaction and as a fixed magnetic field for
Zeeman case 𝑎𝑅 → 0 also we take that |𝐵𝑧| T and we have a dependent of magnetic
field for 𝜔𝑐 that make us able to find all the crossing points in the spectrum of Ener-
gies for each Landau levels. as we defined all the magnetic fields are 𝐵𝑧 in Rashba
constant and in Zeeman term and we are here trying to show in what magnetic field
we have crossing points. for doing the algebraic part it would be helpful to do the
Taylor expansion as we consider n and n + ∆𝑛+1 a standard trick for simplifying as
it comes in below:

𝑛 = 𝑛 + (1 + ∆𝑛
2 ) − (1 + ∆𝑛

2 ) (4.9)

𝑛 + 1 + ∆𝑛 = 𝑛 + (1 + ∆𝑛
2 ) + (1 + ∆𝑛

2 ) (4.10)

now we have considered the difference between these two energies values:

𝑛 + (1 + ∆𝑛)∕2 + (1 + ∆𝑛)∕2 −
√

1
4(1 − ∆̃)2 + 4𝑎2𝑅(𝑛 + (1 + ∆𝑛)∕2 + (1 + ∆𝑛)∕2)

−𝑛+(1+∆𝑛)∕2−(1+∆𝑛)∕2−
√

1
4(1 − ∆̃)2 + 4𝑎2𝑅(𝑛 + (1 + ∆𝑛)∕2 − (1 + ∆𝑛)∕2) = 0

(4.11)

and using Taylor expansion around this new version of n and 𝑛 + (∆𝑛 + 1)∕2:

𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) + 𝑓′′(𝑎)
2! (𝑥 − 𝑎)2 + 𝑓′′′(𝑎)

3! (𝑥 − 𝑎)3 + ... (4.12)

using the general definition of the Taylor approximation, we have the difference of
these two energies as a contribution of the opposite signs that cause to kill the linear
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terms and second, third and other terms are negligible comparing the others.

𝑓(𝑥+𝑎)+𝑓(𝑥−𝑎) = (𝑓(−𝑎)+𝑓(𝑎))+𝑥(𝑓′(−𝑎)+𝑓′(𝑎))+1∕2𝑥2(𝑓′′(−𝑎)+𝑓′′(𝑎))+
1∕6𝑥3(𝑓′′′(−𝑎) + 𝑓′′′(𝑎)) + 𝑂(𝑥4) (4.13)

here in this equation we have the 𝑥=𝑛 + (∆𝑛+1
2

) and 𝑎=(∆𝑛+1
2

). by this substitution
and contribution of opposite signs of the linear terms kill each other and the second
terms and the further dependence of the x killing each other and just 𝑓(𝑎)+𝑓′(−𝑎)
survive from the algebra and we have a simple equation contains 𝑎𝑅 which has in-
cluded the 𝐵𝑧 the only dependency of magnetic field.

(1 − ∆̃) + (
4𝑎2𝑅(𝑛 + (∆𝑛+1

2
))

1 − ∆̃
) = 0 (4.14)

the only term of B is 𝐵𝑧 in the term of the ℏ𝜔𝑐𝓁𝑐 which is :

ℏ𝜔𝑐𝓁𝑐 =
3
𝑚
√
𝐵𝑧 (4.15)

that leads us to this final magnetic field of 𝐵𝑧:

𝐵𝑧 =
0.22𝑚2𝛼2(𝑛 + (1+∆𝑛)

2
)

(∆ − 1)2
(4.16)

we know that ∆𝑛 compared to n is small because it has indicated the number of
differences of the states like first or 2nd or ... above or underneath states. where m
and g for example InAs fix parameters are g=-12 and m=0.04. and in all the figures
there is fixed 𝐵𝑧 for showing the Zeeman effect. also all the crossing points has this
𝛿 =0 in case of the in-plane magnetic field.

4.3 Density of States

The description of the density of states in a magnetic field is suitable for further cal-
culations at lowmagnetic fields, wheremany landau levels are occupied (𝐸𝐹 ≫ ℏ𝜔𝑐).

𝐷2𝐷(𝐸, 𝐵) =
∞∑

𝑥=0
𝐿(𝐸𝐹 − 𝜀�̄�𝑠(𝐵))
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∞∑

𝑛=0
𝐿(𝐸𝐹 − 𝜀�̄�𝑠(𝐵)) = ∫

+∞

− 1
2

𝐿(𝐸𝑓 − 𝜀𝑥𝑠(𝐵))𝑑�̄�+

2
+∞∑

𝑠=1
∫

+∞

− 1
2

𝐿(𝐸𝐹 − 𝜀�̄�𝑠(𝐵)) cos(2𝜋(�̄�)𝑠)𝑑𝑥

∫
+∞

− 1
2

𝐿(𝐸𝐹 − 𝜀�̄�𝑠(𝐵))𝑑�̄� + 2
+∞∑

𝑠=1
∫

+∞

− 1
2

𝐿(𝐸𝐹 − 𝜀�̄�𝑠(𝐵)) cos(2𝜋(�̄�)𝑠)𝑑𝑥

𝑔(�̄�) = 𝐿(𝐸𝐹 − 𝜀�̄�𝑠(𝐵))

𝐷2𝐷(𝐸, 𝐵) = ∫
∞

1
2

𝑔(�̄�)𝑑�̄� + 2
∞∑

𝑠=1
∫

∞

1
2

𝑔(�̄�) cos(2𝜋𝑠�̄�)𝑑�̄�

where we used the relations at the same time.
actually we have to part first is the simple integral and the other is the integral

with crossing a cos part for that we are trying to get result in seperate way for both
parts

𝑢 = −𝐸𝐹 + 𝜀𝑥↓(𝐵)

𝑑𝑢 = (𝜕𝜀𝑥𝑠𝜕𝑥 )𝑑𝑥 ≃ 𝑑𝑥

because of the number of occupied Landua levels as you can see in equation (??)

we have = 𝜕𝜀𝑥𝑠
𝜕𝑥

≃ 1 ±
( 𝛼
ℏ𝜔𝑐𝑙𝑐

)2

2
√
( 𝛼
ℏ𝜔𝑐𝑙𝑐

)2𝑛
which is very small and with good approximation

is 1

𝑢 + 𝐸𝐹 = 𝜀𝑥↓(𝐵)
𝐹↓(𝐸𝐹 + 𝑢) = 𝑥

𝜕𝜀𝑥𝑠
𝜕𝑥 ≃ 1
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which it comes from first order Taylor’s expansion of F function:

𝐹↓(𝐸𝐹 + 𝑢) = 𝐹↓(𝐸𝐹) +
𝜕𝐹↓
𝜕𝐸𝐹

𝑢 (4.17)

𝐹↑(𝐸𝐹 + 𝑢) = 𝐹↑(𝐸𝐹) +
𝜕𝐹↑
𝜕𝐸𝐹

𝑢 (4.18)

we have this conceded part that 𝐸𝐹 is a very big number in order the landau level
occupied by electrons in the nth level and it is 𝐸𝐹 ≫

ℏ
𝜏𝑞

∞∑

�̄�=0
𝐿(𝐸𝐹 − 𝜀�̄�𝑠(𝐵)) = ∫

+∞

−∞
𝐿(𝐸𝐹 − 𝜀�̄�𝑠(𝐵))𝑑�̄�+

2
+∞∑

𝑠=1
∫

+∞

−∞
𝐿(𝐸𝐹 − 𝜀�̄�𝑠(𝐵)) cos(2𝜋(�̄�)𝑠)𝑑𝑥+

∫
+∞

−∞
𝐿(𝐸𝐹 − 𝜀�̄�𝑠(𝐵))𝑑�̄�+

2
+∞∑

𝑠=1
∫

+∞

−∞
𝐿(𝐸𝐹 − 𝜀�̄�𝑠(𝐵)) cos(2𝜋(�̄�)𝑠)𝑑𝑥

in this case the term of the∆𝐷
𝐷
or finding the cosine part is the key of finding the total

Density of States so we can rewrite one part as well as the other one which is the
same almost and then conducive to the Oscillations.

∫
+∞

− 1
2

𝐿(𝐸𝐹 − 𝜀𝑥↓(𝐵))𝑑𝑥

= ∫
∞

∞
𝑑𝑢𝐿(𝑢) = 1 ∫

+∞

−𝐸𝐹+𝜀𝑥↓
𝐿(𝑢) 1

𝜕𝜀𝑥↓
𝜕𝑥

𝑑𝑢 ≈ ∫
+∞

−𝐸𝐹+𝜀𝑥↓
𝐿(𝑢)𝑑𝑢

∆𝐷
𝐷 = ∫

+∞

−∞
𝐿(𝑢) cos(2𝜋𝑠(𝐹↑(𝐸𝐹), 𝐵) + 𝑢))𝑑𝑢+

∫
+∞

−∞
𝐿(𝑢) cos(2𝜋𝑠(𝐹↓(𝐸𝐹 , 𝐵) + 𝑢))𝑑𝑢
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𝐷2𝐷(𝐸, 𝐵) = ∫
+∞

−∞
𝐿(𝑢)𝑑𝑢+

2
+∞∑

𝑠=1
∫

+∞

−∞
𝐿(𝑢) cos(2𝜋𝑠(𝐹↑(𝐸𝐹), 𝐵) + 𝑢))𝑑𝑢 + ∫

+∞

−∞
𝐿(𝑢)𝑑𝑢

+ 2
+∞∑

𝑠=1
∫

+∞

−∞
𝐿(𝑢) cos(2𝜋𝑠(𝐹↓(𝐸𝐹), 𝐵) + 𝑢))𝑑𝑢

It is therefore justified to consider only the first term with 𝑠 = 1 and harmonic
variation of the density of states at constant energy, for small magnetic fields where
1≫ 𝜔𝑐𝜏. At the Fermi energy, the density of states varies periodically as

1
𝐵
.

∆𝐷
𝐷 = cos(2𝜋𝑠𝐹↓) ∫

+∞

−∞
𝐿(𝑢) cos(2𝜋𝑠𝑢)𝑑𝑢 + (4.19)

cos(2𝜋𝑠𝐹↑) ∫
+∞

−∞
𝐿(𝑢) cos(2𝜋𝑠𝑢)𝑑𝑢 (4.20)

𝐷2𝐷(𝐸, 𝐵) = 2𝐷0 + 2𝐷0�̃�(𝑢)((cos(2𝜋𝑠𝐹↑) + cos(2𝜋𝑠𝐹↓))

𝐷2𝐷(𝐸, 𝐵) = 2𝐷0 + 4𝐷0�̃�(𝑢) cos(2𝜋𝑠(
𝐹↑ + 𝐹↓

2 )) cos(2𝜋𝑠(
𝐹↑ − 𝐹↓

2 )) (4.21)
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