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Agrip

Umritunarpétturinn  MITF  (microphthalmia associated transcription factor) er
mikilveegur fyrir sérhaefingu, fjdlgun og lifun nokkurra frumugerda, par med talis
lifrumur 7 hGd og augum, mastfrumur og beinatsfrumur. MITF gegnir einnig
hlutverki i sortuaexlum par sem pad virkar sem rofi sem akvardar hvort frumurnar
skipta sér eda ekki og hvort peer geta ferdast og myndad meinvérp. Ritgerd
bessi fjallar um tvaer spurningar: i) Hverjar eru sameindaliffreesilegar afleidingar
baelibreytingarinnar Mitfmi-sl i mds; og ii) Hvert er hlutverk PRDM7 gensins {
sortuzexlum? Beelibreytingin Mitfmi-s| er breyting i Mitf geninu sem beelir
svipgerdir annarra stokkbreytinga i Mitf geninu. Breytingin setur stopptékna i stad
takna K316, en pad er pekkt SUMOyleringar-set i MITF. brétt fyrir ad breytingin
hafi veri® pekkt i tvo &ratugi hefur reynst erfitt aé finna sameindaliffreedileg ahrif
hennar. Med préteintjdningu, stokkbreytingum og western-blettun hefur mér
tekist ad syna ad breyting pessi hefur 4hrif & baesi stédugleika MITF préteinsins
og stadsetningu pess i kjarna. Stokkbreytta MITFmi-sl préteinid getur dregi®
dnnur prétein sem pad getur myndad tvenndir med (villigerdar MITF, stokkbreytt
MITF og TFE3) inn i kjarnann og pannig aukid eigin stédugleika. MITFmi-sl
préteinid getur bundi® DNA og pegar pad losnar Gr ofangreindum tvenndum
geta MITFmi-sl einstvenndir bundist DNA og 6rvad umritun. Auk pess hef ég synt
ad E318K stékkbreytingin sem eykur likur & sortuaexlum i ménnum hefur einnig
ahrif & stédugleika MITF og stadsetningu i kjarna, en einungis ef S409 er ekki
fosfeert. | seinna verkefninu syndi ég ad MITF stjérnar tjaningu PRDM7 en pad er
1j46 sérhaeft i sortusexlum og einungis ad finna i primétum. Eg syndi ad genid
hefur 4hrif & skiptingar og Gtlit sortuzexlisfruma auk pess sem pad hefur &hrif 4
tjaning MITF préteinsins. Ahugavert er ad baedi MITF og PRDM7 genin hafa
svipud &hrif 4 umbreytingar histéna i sortuzexlisfrumum. Nidurstédurnar benda til
bess ad &hrif MITF préteinsins fari aé hluta i gegnum &hrif pess & PRDM7.

Lykilord: Mitf, st6dugleiki, flutningur Gr kjarna, beelibreyting, PRDM7,
umbreytingar histéna.



Abstract

Microphthalmia-associated transcription factor (MITF) is known as an essential
regulator of melanocyte differentiation, proliferation, survival, and differentiation
of multiple cell lineages, including neural crest-derived melanocytes, pigmented
epithelial cells of the eye, mast cells, and osteoclasts. In melanoma cells, it plays
a critical role as a lineage-survival oncogene. MITF may act as a switch that
determines whether cells proliferate or become quiescent, thus allowing
migration and formation of metastases. In this thesis, | investigated two
questions: i) What are the molecular consequences of a suppressor mutation in
mouse Mitf, Mitf"sl and ii) What is the role of PRDM7 in melanoma. The Mitfm!
suppressor mutation is an intfragenic suppressor mutation discovered over two
decades ago, but the molecular effects have been elusive. Using protein
expression, mutagenesis, and western blotting, | have shown that this mutation
affects both protein stability and nuclear localization of MITF. Interestingly, the
Mitfs! mutant protein can drag its dimerization partner proteins, including wild-
type MITF, mutant MITF, or TFE3, into the nucleus, thus improving its own
stability. This is likely to explain the suppressor phenotype. In addition, | have
shown that the E318K mutation, which predisposes melanoma in humans, also
affects stability and nuclear localization in concert with S409, providing
information about the molecular mechanism involved. This is a novel way of
action for suppressor mutation and for cancer predisposition. In the second
project, | have shown that MITF regulates the expression of PRDM7, a primate-
specific gene specifically expressed in melanoma. This gene, in turn, affects cell
morphology and proliferation and MITF protein expression level. Interestingly,
both MITF and PRDM7 mediate changes in the distribution of histone marks. Our
results suggest that MITF mediates its role in regulating extracellular matrix
organization, proliferation, and histone modification partially through PRDM7.

Keywords: Mitf, stability, nuclear export, suppressor mutation, Prdm7, histone
modification.
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1 Introduction

1.1 Melanocytes and melanogenesis

Melanocytes are the melanin-producing cells that can be primarily found in the
epidermis, hair, eyes/iris, inner ear, nervous system, heart, and other tissues
(Brito and Kos, 2008; Le Douarin et al., 1999; Tachibana, 1999; Yajima and
Larue, 2008). The development of melanocytes starts with the differentiation of
melanoblasts which originate directly from the neural crest (Figure 1).
Specification of melanoblasts occurs during neural crest delamination, after
which the cells migrate into the migration staging area (MSA), an extracellular
matrix-rich wedge-shaped area that is located between the somite and the dorsal
neural tube. Melanoblasts then migrate between the somites and epidermis (the
dorsolateral pathway) and proliferate during the migration process. While, in
mice, most of the melanoblasts enter the epidermis and then occupy the hair
bulb, most of the melanoblasts in humans remain in the epidermis except in the
palm of the hand and feet (Bertrand et al., 2020; Dilshat et al., 2021b). When
moving foward the hair follicle, some of the melanoblasts enter the hair matrix,
where they differentiate into melanocytes, whereas other melanoblasts enter the
bulge of the hair and form quiescent melanocyte stem cells (MSCs), which
eventually differentiate intfo melanocytes during the hair cycle (Bertrand et al.,
2020; Dilshat et al., 2021b). Briefly, during the anagen phase of the hair growth
cycle, MSCs differentiate into immature melanocytes and produce melanin, while
in catagen and telogen, the melanocyte population in the hair follicle is reduced,
and MSCs maintain a pool of undifferentiated melanocyte precursors that can be
activated to regenerate the melanocyte population in the next anagen phase
(Nishimura, 2011). A second wave of melanoblast development has also been
described, particularly for melanocytes in the skin of the trunk and limbs, which
originate from derivatives from neural crest-derived Schwann cells through the
ventral pathway (between somites and neural tubes) (Figure 1) (Bertrand et al.,
2020; Cichorek et al., 2013; Dilshat et al., 2021b). In the skin, a mature
melanocyte, together with approximately 30-40 of its surrounding keratinocytes,
forms a pigmentary unit.

Melanin synthesis in melanocytes is stimulated by the binding of either o
melanocyte-stimulating hormone (o-MSH) or adrenocorticotropic hormone



Hong Nhung Vu

(ACTH), secreted by neighboring cells, including keratinocytes, to melanocortin-
1 receptor (MC1R) on melanocytes. MC1R then activates the cyclic adenosine
monophosphate  (cAMP) pathway, which subsequently upregulates the
expression of the MITF transcription factor, often termed the master regulator of
melanocyte development. MITF, in turn, activates the expression of pigment
genes involved in melanin synthesis, including the enzymes tyrosinase (TYR),
tyrosinase-related protein 1 (TYRP1), and dopachrome tautomerase (DCT) (Meyle
and Guldberg, 2009). Two basic forms of melanin, reddish-yellow pheomelanin,
and black photoprotective eumelanin, are the final products of this melanin
synthesis process. Those two forms, which differ in color and way of synthesis,
are synthesized in specialized cytoplasmic organelles called melanosomes
(Sturm, 2009). The pigment phenotype of an individual is determined by the
ratio of these two types of melanins (Sturm, 2009). Although both humans and
mice produce eumelanin and pheomelanin, their relative amounts and
distribution differ; human skin contains mainly eumelanin, while mouse skin has
a higher proportion of pheomelanin (lto and Wakamatsu, 2003). Melanosomes
are subsequently transferred to neighboring keratinocytes and benefit the body
by acting like a shield and protecting the genetic material in the nuclei from
ultraviolet (UV) light. Melanosomes also play important roles in ion storage (Bush
and Simon, 2007; Costin and Hearing, 2007; Riley, 1997).
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Figure 1. Neural crest migration and melanocyte development model. Figure
obtained with permission from Springer Nature according to permit number
5513590971375 (Vandamme et al., 2019)
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1.2 Melanoma Epidemiology and risk factors

Melanoma is the malignancy of melanocytes (Mc), melanocyte stem cells (McSC),
or transitamplifying cells (TACs). While cutaneous melanoma arises from
melanocytes in the epidermis and is the most common form of melanoma,
melanoma can also arise in mucosal surfaces, the uveal tract, and leptomeninges
(Leonardi et al., 2018). Unfortunately, the incidence of cutaneous melanoma has
been rising worldwide much faster than other types of cancer (Leonardi et al.,
2018). In addition, melanoma is the most frequent neoplasm in young adults,
especially in women (Rastrelli et al., 2014).

The environment, host factors, and their interplay have been identified as major
risk factors for melanoma (Ali et al., 2013; Leonardi et al., 2018). Exposure to
UV radiation, particularly UV-A and UV-B radiation from both sun exposure and
artificial sources, is a major environmental risk factor for cutaneous melanoma.
UV radiation can cause DNA damage and mutations in skin cells, as well as
suppress the immune system's ability to detect and destroy cancer cells,
contributing to the development of melanoma (Anna et al., 2007; Falzone et al.,
2016; Gilchrest et al., 1999; Pennello et al., 2000). Interestingly, intermittent
(rather than chronic) and high levels of sun exposure during childhood increases
the risk of melanoma (Bertrand et al., 2020). In addition, alcohol, heavy metals,
and pesticides are environmental factors that have been linked with melanoma
development, although the mechanism behind their contribution is still unknown
(Bertrand et al., 2020).

Host factors, including melanocytic nevi, genetic susceptibility, and family
history, have also been associated with melanoma predisposition (Leonardi et
al., 2018). It has been shown that the size and the number of melanocytic nevi
positively correlate with melanoma risk (Bertrand et al., 2020; Grob et al., 1990;
Halpern et al., 1991; Watt et al., 2004). The risk of melanoma is also increased
in families susceptible to familial atypical multiple mole-melanoma syndrome
(FAMMM syndrome) and the melanoma-astrocytoma syndrome (MAS) (Soura et
al., 2016), which has been described with typical phenotypic features including
high nevi count and multiple precancerous dysplastic nevi. While FAMMM
syndrome is commonly associated with the alteration of p16 (CDKN2A) and
rarely with CDK4 and MITF mutations (Truderung et al., 2021), MAS syndrome is
caused by mutations in CDKN2A gene. Various syndromes and conditions also
contribute to the incidence of melanoma, including retinoblastoma, Werner
syndrome, xeroderma pigmentosum, neurofibromatosis, and
immunosuppression conditions (e.g., iatrogenically or HIV infections) (de Snoo
and Hayward, 2005; Saginala et al., 2021).
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Previous work has also indicated that 10% of cutaneous melanoma is due to
mutations in various genes (Bertrand et al., 2020). The genetic susceptibility can
be traced to changes in DNA sequence (mutation, amplification, or
translocation) or epigenetic modifications (DNA methylation, chromatin
alterations, or histone modification) (Giunta et al., 2021; Sarkar et al., 2015;
Truderung et al., 2021). These genetic alterations act as melanoma genetic
drivers through biasing the cell homeostasis, proliferation, metabolism,
apoptosis, cell cycle control, and replicate lifespan (Akbani et al., 2015; Hodis et
al., 2012; Leonardi et al., 2018). This will be described in the following
chapters.

1.3 Germline mutations in melanoma

1.3.1 CDKN2A and CDK4

Germline mutations in approximately 20 genes are found to be associated with
an increase in the risk of melanoma (Bertrand et al., 2020). By using different
reading frames, the CDKN2A locus encodes two different functional and
structural tumor suppressor proteins, called p14*% and p16™“ (Meyle and
Guldberg, 2009). Therefore, mutations, deletions, or promoter hypermethylation
of CDKN2A may affect both p142% and p16™€*s or each gene independently. The
mediator roles of p16™*42 and p14% in melanocyte senescence and melanoma
suppression have been well-described (Bennetft, 2003; Meyle and Guldberg,
2009). On the one hand, the loss of p14*% due to mutations might activate
ubiquitin ligase activity of the MDM2 protein, leading to the inactivation of the
p53 senescence barrier and, in turn, inhibit of the cyclin-dependent kinase
inhibitor p21 (Meyle and Guldberg, 2009). On the other hand, p16™4 inhibits
the cyclin-dependent kinases CDK4 and CDK¢, leading to the activation of
retinoblastoma protein (RB) by preventing it from phosphorylation. Hypo-
phosphorylation of the RB protein subsequently inhibits the E2F protein from
regulating the expression of genes required for entering the S-phase. Loss-of-
function variants in the p14%% and p16™“ genes stop the cell cycle from going
from the G1 phase to the S phase. Inactivation of p16™4 has been found in the
majority of melanoma specimens. Loss-of-function variants in CDKN2A are a
critical factor in bypassing senescence in melanocytes and keeping them from
undergoing growth arrest (Bennett, 2008; Bertrand et al., 2020; Dahl and
Guldberg, 2007; de Snoo and Hayward, 2005). However, some CDKN2A and
CDK4 mutation carriers are free of melanoma (Meyle and Guldberg, 2009),
suggesting that environmental factors may be involved. The importance of
environmental exposure, co-genetic susceptibility, and host-phenotype in
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modulating the penetrance of melanoma has been further suggested (Ali et al.,
2013). Although CDKN2A mutations are found in melanoma families (Berwick et
al., 2006; Goldstein et al., 2007), they have also been frequently identified
among kindreds with pancreatic and neural system tumors (Borg et al., 2000;
Randerson-Moor et al., 2001).

Mutations in CDK4 have also been found in melanoma families. Only two
mutations are known in the CDK4 gene, namely R24H and R24C. Carriers of the
CDK4 variants showed an increased incidence of early onset malignant
melanoma (Read et al., 2016). Interestingly, mutations in CDKN2A, CDK4, and
RB1 occur mutually exclusive, suggesting that they encode critical elements for
suppressing melanoma development (Bartkova et al., 1996; Walker et al., 1998).

1.3.2 MITF

As the key regulator in the proliferation and survival of melanocytes and an
important factor in melanoma development, both loss-of-function and gain-of-
function mutations in MITF might significantly affect melanocyte homeostasis and
proliferation, eventually initiating melanoma progression. Previous studies have
shown that the germline E318K mutation in MITF profein increases the risk of
melanoma by 2 to 5-fold. In an Australian case-control study of 2,059 cases, it
increased the risk by 2.33-fold, whereas in a UK case-control study of 1,929
cases, this mutation increased the risk of melanoma by 2.09-fold (Yokoyama et
al., 2011). The risk was increased 4.8-fold in a French study of 586 melanoma
patients (Bertolotto et al., 2011) and 2.9-fold in a study of 667 ltalian melanoma
patients (Ghiorzo et al., 2013). The MITF-E318K mutation not only increases the
risk of melanoma but also raises the incidence of pancreatic cancer (PC) and
renal cell carcinoma (RCC) (Bertolotto et al., 2011; Ghiorzo et al., 2013).
Surprisingly, MITF-E318K mutation carriers showed no skin pigmentation defects
and no association with hair color or freckling. However, carriers had higher
nevus count and non-blue eye color and suffered from multiple primary
melanomas (Bertolotto et al., 2011; Sturm et al., 2014; Yokoyama et al., 2011).
Non-blue eye color is likely influenced by the gain-of-function activity of MITF-
E318K mutation and may also reflect the transition from pheomelanin to
eumelanin. Interestingly, amelanotic melanoma occurs with higher frequency in
MITF-E318K carriers (30.7%) than in general melanoma patients (2—8%) (Sturm
et al., 2014). Heterozygous mice carrying the Mitf®¥"® mutation had no signs of

fVéOOE/+

nevi or melanoma development. However, on the Bra background,
Mitfe38/+ mice showed an increase in the number of nevi. The Mitfe318/+,
BRafYé%%/* mouse model did not increase melanoma progression unless Pten was

also deleted. Furthermore, the Mitff318/+ BRafV¢0%/+ Pten’ mice showed earlier
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and faster onset of pigmented lesions and reduced survival time compared to
BRaf'6%%/+ Pten”- (Bonet et al., 2017). Unfortunately, none of the previous work
has investigated the link between MITF-E318K and BRAFYC%E mutations in
melanoma patients. In previous studies, CDKN2A mutation carriers were not
included in the cohort to avoid the masking effect of CDKN2A on the MITF-
E318K mutation (Bertolotto et al., 2011; Ghiorzo et al., 2013). Hence, the
interplay between CDKN2A variants and MITF-E318K was not studied. Also, no
evidence indicates an inferaction between MCIR loss-of-function variants and the
MITF-E318K mutation (Berwick et al., 2014).

At the molecular level, the MITF-E318K mutation is located in a SUMO consensus
site (YKXE) (Figure 2), and consistent with that, the E318K mutation impaired
SUMOylation of MITF at the K316 residue; SUMOylation still can take place at
K182 (Bertolotto et al., 2011; Bonet et al., 2017; Yokoyama et al., 2011). The
E318K mutation has some but limited effects on the transcriptional activity of a
limited subset of its target genes. Bertolotto et al., (2011) did not detect any
difference between the transcriptional activity of MITF-E318K and MITF-WT from
the MET, TYR, and CDKN2A promoters using reporter assays in 501Mel cells.
However, MITF-WT showed less efficiency in activating the HIF1A promoter than
the E318K mutant protein (Bertolotto et al., 2011). Transcriptomic analysis
showed that in RCC4 renal carcinoma cells, the MITF-E318K protein increased
the expression of genes involved in cell growth, proliferation, and inflammation.
However, in A375 melanoma cells, no differences were observed in genes
regulated by MITF-WT and MITF-E318K proteins (Bertolotto et al., 2011). In the
transcriptomic analysis performed by Yokoyama et al. (2011), the MITF-E318K
protein led to an increase in the expression of pigment genes as well as in
melanin content compared to the MITF-WT protein (Yokoyama et al., 2011).
Inconsistent with that, it has been reported that heterozygous and homozygous
MitfE38€ mice are slightly hypopigmented compared to Mitf (Bonet et al., 2017).
ChlIP-seq analysis of cells overexpressing the MITF-E318K-HA fusion protfein in
501Mel cells showed a significant increase in the number of binding sites
compared to that observed upon overexpressing MITF-WT. Although the higher
number of binding sites upon MITF-E318K overexpression is mostly due to
weakly occupied sites, some of the binding sites are preferentially occupied by
MITF-E318K (Bertolotto et al., 2011). Interestingly, IHC analysis using anti-MITF
antibodies on melanoma samples from MITF-E318K and MITF-WT suggested that
MITF is intensively stained in the nucleus, and no significant differences were
observed in nuclear/cytoplasmic MITF staining ratio between MITF-WT and MITF-
E318K carriers. Fewer MITF-E318K tumor samples showed cytoplasmic staining
(3 out of 19), hypothesizing that the mutant protein may accumulate mainly in the
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nucleus and, in distinct circumstances, did not present in the cytoplasm (Sturm et
al., 2014).

Forced expression of the BRAFY40E protein in Mel-ST melanocytes stimulated SA-
B-gal activity, which was suppressed in the presence of the MITF-E318K mutant
protein but not in the presence of MITF-WT protein (Bonet et al., 2017).
BRAFY4%%E reduced the incorporation of BrdU in cells overexpressing MITF-WT.
However, the effect on BrdU incorporation in cells expressing MITF-E318K and
BRAFY%%%€ was not observed (Bonet et al., 2017). This work suggests that MITF-
E318K suppresses BRAFV¢°E.induced senescence, but the underlying mechanism
remains unclear. Further, the MITF-E318K mutation increases migration and
invasion in 501Mel and VHL-deficient RCC4 cells but not in A375P cells (Bonet
et al., 2017). It is known that A375P cells express a low level of endogenous
MITF compared to that of 501Mel and VHL-deficient RCC4 cells. The expression
of MITF-E318K resulted in an increased number of colonies in melan-a and RCC
cells; however, it did not affect the proliferation of those cells (Bertolotto et al.,
2011). This suggests a potential role of MITF-E318K in phenotype switching of
melanoma cells. However, the exact mechanism of how the MITF-E318K variant
leads to melanoma remains unknown.

WKXE

E318K

v
HOMO ELENRQKKLEHANS TKQEPVLENCSQDLLQHHADLT TLDLTD
PAN ELENRQ-KLEHAN ITRQEPYVLENCSQDLL AE TLDLTD
MACACA ELENRQHKLEHAN IIKQEPYLENCSQDLL ADLTCTTTLDLTD
RATTUS DLENRQKKLEHANY TTKQEPYLENCS QE\ AD LTI LDLTD
MUS DLENRQKKLEHANE I PVLENCS ADLT TLDLTD
ORYCTOLAGUS ELENRQKKLEHANF ) AD TLDLTD
CANIS ELENRQHKLEHAN AD LDLTD
FELIS AD LDLTD
BOS ELENRQMKLEHANT AD TLDLTD
FONCDEL?HIS ELENRQ<KLEHAN kD DLTD
CRNITHOIHYNCHUS ELENRQ-<KLEHAN D DLTD
GALLUS ELENRQ<KLEHAN D DLTD
HENOPUS EVENKQ<KLEHAN VI Q N D\ NQE HN D S DLTD
TETRAODIN ELENRQ<KLEHANRHLM TTKQENSLEDCHQDIY PC TF

Figure 2. Protein sequence alignment from Human to Tetraodon shows that the
WKXE sumoylation motif is highly conserved. Figure obtained with permission from
Springer Nature according to permit number 5514171050106 (Bertolotto et al., 2011)

1.3.3 MC1R

The melanocortin-1 receptor (MCTR), a seventransmembrane G-protein coupled
receptor, has been proposed to act as a melanoma susceptibility factor. Among
60 nonsynonymous MCIR variants, some (e.g., ins86-87A, D84E, R142H,
R151C, R160W, R294H) have been shown to result in a decrease in cAMP
activation upon otMSH stimulation. These mutations reduce the production of
eumelanin and therefore determine the melanoma-associated red hair color
(RHC) phenotype (Beaumont et al., 2007), which is characterized by fair skin,
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red hair, freckles, poor tanning response, and solar lentigines (Raimondi et al.,
2008). Previous meta-analyses have shown that the frequency of some MCIR
variants is positively correlated with both melanoma incidence and
melanogenesis, while other variants are only associated with melanogenesis
(Raimondi et al., 2008). It has also been suggested that the risk of melanoma
upon MCTR mutations might go beyond their effect on pigmentation (Meyle and
Guldberg, 2009). Remarkably, the association between inherited risk factors and
acquired variants in melanoma development is observed in the case of MCIR,
with a significantly higher rate of BRAF mutations observed in MCITR variant
carriers than in non-MC1R carriers (Dhomen and Marais, 2007). The MCIR
mutations have also been shown to increase the penetrance of CDKNZ2A
mutations, which are highly associated with melanoma, possibly together with
environmental factors (e.g. UV light and geographic variants) that affect the
onset of melanoma (Box et al., 2001). MCTR mutations have also been suggested
to be linked with Parkinson's disease (Chen et al., 2017). Since agouti-signaling
protein (ASIP) enables elevation of pheomelanin production by antagonizing the
binding of &MSH to MCIR, gained function of ASIP mutations might show a
similar pattern as loss-of-function variants in MCIR and could therefore be
considered as low-penetrance melanoma susceptibility alleles (Bastian and
Pinkel, 2008). Variants in other pigment genes, including TYRP1, TYR, OCA2,
MATP, OCA4, KIT, and PARP1, also slightly increase the risk of melanoma
(Bertrand et al., 2020).

1.3.4 Others

Germline mutations in TERT, POT1, ACD, and TERF2IP also increase the risk of
melanoma. Mutations in TERT (telomerase reverse transcriptase) promoter and
coding regions, POT1, ACD, and TERF2IP (all of which encode proteins of the
shelterin complex) caused longer telomeres and favored senescence bypass
(Aoude et al., 2015; Harland et al., 2016; Horn et al., 2013; Robles-Espinoza et
al., 2014). Additionally, loss-offunction mutations in BAPT, nonsense-mutation in
RAD51B, and a missense-mutation in POLE (p.W347C) lead to the impairment of
the DNA repair response and have also been identified in melanoma families
(Aoude et al., 2015; Wiesner et al., 2011).

1.4 Somatic mutations in melanoma

In addition to the germ-line mutations discussed above, numerous somatic
mutations have been shown to act as drivers in melanoma. Typically, the somatic
mutations are known as the main melanoma genetic drivers belonging to the
MAPK and (PI3K)/AKT signaling pathways (Chappell et al., 2011). The MAPK
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pathway is a RAS/RAF/MEK/ERK signaling cascade in which RAS activates the
serinethreonine-specific kinase RAF, which can subsequently activate MEK and,
in turn, activate ERK. Mutations in BRAF, NRAS, and NF1, which elevate the
MAPK kinase activity and lead to the loss of cell proliferation control, are the

most frequent genetic abnormalities identified in melanoma (Akbani et al.,
2015).

Approximately 50 percent of melanomas harbor the BRAFY6%t mutation (Cheng
et al., 2018; Davies et al., 2002). This particular mutation represents over 90%
of BRAF mutations found in somatic tumors (Platz et al., 2008). Interestingly, the
BRAFY¢%°E mutation is not a characteristic of the UV-signature mutation (Thomas et
al., 2006). Mutations in BRAF might be acquired during the melanoma
progression (Bauer et al., 2011). NRAS is found to be mutated in 15-30% of
melanoma cases, whereas that number was 10-15% for NF1. The NFT mutations
were observed to co-occur with BRAF and NRAS (Gibney and Smalley, 2013). In
contrast, BRAF and NRAS mutations occur mutually exclusively at the single
melanoma cell level, although the BRAF and NRAS mutations have been shown
to co-exist in the same melanoma specimens (Fedorenko et al., 2013). Both the
BRAF and NRAS gain-of-function mutations have been shown to be efficient in
activating the MEK-ERK pathway.

The oncogene KIT can also lead to the activation of the MAPK and PI3K pathways
to mediate melanoma proliferation and survival (Curtin et al., 2006). KIT
mutations are detected in 2-8% of melanomas. Both NF7 and KIT variants are
usually associated with sun-exposed skin (Handolias et al., 2010; Krauthammer et
al., 2015). PTEN is another melanoma genetic driver, with 10-30% of melanomas
harboring PTEN mutations (Hodis et al., 2012; Wu et al., 2003). PTEN converts
PIP3 info PIP2, resulting in the inactivation of the oncogenic phosphatidylinositol-
3-kinase (PI3K) signaling pathway, which is fundamental for cell growth and
survival (Cully et al., 2006). It has been suggested that PTEN is critical for
melanoma progression since PTEN mutations are rarely found in primary
melanoma biopsies (Birck et al., 2000). Interestingly, PTEN loss-of-function and
NRAS gain-of-function mutations occur in a mutually exclusive manner, whereas
the co-occurrence of BRAF gain-of-function and PTEN loss-of-function mutations is
frequently observed. Similar to the BRAF gain-offunction and PTEN loss-of-
function mutation, the NRAS gain-of-function mutation enables the activation of
both MAPK and PI3K pathways. Furthermore, it has been suggested that
BRAFY4%% and PTEN mutations are found more in non-CSD (non-chronic sun-
damaged) skin, whereas NFT and TP53 mutations are more frequent in CSD
(chronic sun-damaged) skin, suggesting that the genetic aberrations influencing
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melanomagenesis in CSD and non-CSD skin are different (Damsky and
Bosenberg, 2017). Additionally, the hyperactivate PI3K-AKT signaling pathway in
metastatic melanoma might also be caused by oncogenic mutations in PIK3CA, a
catalytic subunit of PI3K (Wittig et al., 2006).

Interestingly, several somatic mutations in MITF (e.g. E87R, L135V, L142F,
G244R, and D380ON) have been reported in melanoma samples (Cronin et al.,
2009). Surprisingly, most of these MITF melanoma mutations, except the G244R
mutation, are located outside of the DNA binding bHLHzip domain, suggesting
that these alterations do not affect DNA binding ability but may affect signaling
or the function of the intrinsically disordered domains of MITF possibility through
protein-MITF interaction or posttranslational modifications.

The overexpression of matrix metalloproteinases (MMPs), particularly MMP9 and
MMP2, which are regulated by genetic alterations and dysregulation of (NF)-kB
pathways, has been shown to play a role in melanoma progression and
metastasis (Moro et al., 2014). Apart from the burdens of somatic genetic
alterations mentioned above, somatic mutations in CDKN2A, CDK4, POT1, TERT,
PPP6C, RACT1, SNX31, TACC1, BAP1, and STK19 are also linked with melanoma
(Akbani et al., 2015; Hodis et al., 2012; Leonardi et al., 2018; Van Raamsdonk
et al., 2009). However, the roles of mutations in melanoma development and
their interlink with the environment remain to be further investigated.

1.5 Epigenetics in melanoma

As mentioned above, genetic aberrations in melanoma can be caused by
epigenetic modifications, including aberrant DNA methylation, histone
modifications, histone variants, chromatin remodeling, and non-coding RNA
regulation. The epigenetic modifications may initiate or promote melanoma
progression and involve drug resistance (Giunta et al., 2021; Sarkar et al., 2015;
Truderung et al., 2021). Below | briefly summarize what is known about the role
of the different epigenetic processes in melanoma.

1.5.1 DNA methylation

Silencing of tumor suppressor genes due to DNA hypermethylation or activation
of oncogenes through DNA demethylation has been reported as a tumorigenesis
factor in melanoma (Sarkar et al., 2015). DNA methylation is catalyzed by DNA
methyliransferases (DNMTs), in which cytosine in the DNA is methylated. The
RAR2 (RARB) gene is frequently hypermethylated in melanoma, leading to its
silencing and contributing to the development and progression of the disease.
RARB is methylated in 70% of malignant melanoma specimens (Hoon et al.,

10
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2004). The reduction of RARB expression contributes to an increase in
melanoma growth (Fan et al., 2010). Interestingly, silencing of RARB is not only
due to the hypermethylation status but also through histone hypoacetylation,
suggesting that different epigenetic mechanisms might be involved in regulating
tumor suppressor genes at different stages of melanoma progression (Fan et al.,
2010).

Hypermethylation of RASSFIA is apparent in approximately 55% of melanoma
samples (Hoon et al., 2004). RASSF1A regulates ASK1, which in turn activates
the p38 MAPK to modulate cell-cycle progression and induce apoptosis. Hence,
decreasing RASSFTA expression through DNA methylation suppresses apoptosis
and increases the risk of melanoma (Yi et al., 2011). Interestingly,
hypermethylation of RASSFIA is different depending on the stage of melanoma
and is highest at stage IV but is not seen at stages | and Il (Tanemura et al.,
2009), suggesting that it may be an epigenetic marker of malignant melanoma.

DNA methylation at CDKN2A is also well-studied during melanomagenesis. Ten
to twenty percent of melanoma samples lose p16™¥A expression due to
methylation, which in turn is associated with a decrease in survival rate and a rise
of the Ki-67 index, an indicator of proliferation (Straume et al., 2002).
Interestingly, =~ CDKN2A/p16™K*A  promoter  methylation is  frequently
overrepresented in NRAS-mutant melanoma samples (Lahtz et al., 20710).

6™K4A ypon hypermethylation is similar to the CDKN2A/p16™Kk4A

Silencing of p1
loss-of-function variants, which lead to a deficiency of p53-mediated apoptosis

and melanoma progression (Schinke et al., 2010).

In addition to the deletion or loss-of-function mutations in PTEN, PTEN-silencing
is also due to promoter methylation, which has been identified in 62% of sera
samples from melanoma patients (Mirmohammadsadegh et al., 2006). Besides,
the methylation-mediated silencing of KIT, HOXB13, SYK, TERT, and LXN has also
been described in melanoma (Karami Fath et al., 2022; Micevic et al., 2017). A
number of hypermethylated genes have been identified in melanoma cells.
However, the mechanism of hypermethylation in regulating melanoma
development remains to be further investigated. Some hypermethylated genes
in melanoma, e.g., CDHT, CDK8, and PTEN, have been considered independent
predictors of poor outcomes (Sigalotti et al., 2010). Furthermore, the link
between genetic mutations and DNA methylation and their role in the initiation
and progression of melanoma must be considered since it has been shown that
the BRAFYé%E.mutation leads to increased DNMTT expression, which in turn
catalyzes and promotes hypermethylation (Hou et al., 2012).
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On the other hand, DNA hypomethylation is generally associated with oncogene
activation, chromosomal instability, and drug resistance (Giunta et al., 2021). In
primary and metastatic melanoma, the abundance of 5-hydroxymethylcytosine
(5hmC) is decreased compared to that in melanocytes. However, the impact of
DNA hypomethylation in melanoma development still needs further investigation.
It has been shown that in melanoma, the ten-eleven-ranslocase (TET) family of
dioxygenase enzymes is responsible for converting methyl-cytosine (5mC) to
hydroxymethyl-cytosine (5hmC). The loss of TET-family enzymes, particularly
TET2, was more frequent in melanoma than in nevi (Gambichler et al., 2013;
Lian et al., 2012). Therefore, TET has been proposed as a novel epigenetic
marker.

1.5.2 Chromatin remodeling

As a chromatin remodeling complex, SWI/SNF (also known as BAF) impacts the
recruitment of regulators to gene promoter regions through remodeling
nucleosomes. The complex is composed of an ATPase (e.g., BRG1 known as
SMARCA4 or BRM known as SMARCA2) and a DNA binding domain subunit
(e.g., ARID1A, ARID1B or ARID2) (Reisman et al., 2009). The chromatin-
remodeling SWI/SNF complex is known for its roles in sustaining DNA stability
and repairing double-stranded DNA breaks in response to UV. Changes to the
SWI/SNF subunit have been linked to melanoma, with loss-of-function mutations
in ARID2, ARID1A, ARID1B, or SMARCA4 present in 13% of melanomas (Hodis
et al., 2012; Mehrotra et al., 2014; Saginala et al., 2021; Vinod Saladi et al.,
2010). Besides, it has been reported that SOX10 and MITF can recruit
SMARCAA4 (subunit of SWI/SNF complex) and BPTF (subunit of the NURF
complex) to MiITF-associated regulator region for mediating MITF genomic
occupancy (Cancer Genome Atlas, 2015; Laurette et al., 2015). As a result, the
abnormal SMARCA4 and BPTF expression significantly impacted the expression
of MITF target genes. Furthermore, loss-of-function mutations in ATRX, another
SWI/SNF chromatin remodeling protein, have also been associated with
melanoma progression (Qadeer et al., 2014).

The involvement of bromodomain and extraterminal domain (BET) proteins
(BRD2, BRD3, BRD4, and BRDT) in melanoma development has also been
reported. Through binding to acetylated lysine residues of histones, BET proteins
permit the travel of RNA polymerase Il, thus allowing elongation of the mRNA
(LeRoy et al., 2008). Increased expression of BRD2 and BRD4, which control cell
cycle and survival signaling pathways, has been shown in melanoma (Giunta et
al., 2021). Meanwhile, using an inhibitor of the bromodomain-containing protein
resulted in the activation of NF-kB signaling pathway resulting in activation of
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genes associated with cell cycle regulation (e.g., CDK6), inflammation (e.g.,
VEGF and CCL-20), cytokine production (IL-6 and IL-8), and induction of
apoptosis (Gallagher et al., 2014a; Gallagher et al., 2014b).

Through affecting S-phase regulation and the DNA repair processes,
overexpression of p60, a subunit of the chromatin assembly factor-1 (CAF-1), has
also been linked to melanoma progression via promoting the incorporation of
histones into chromatin (Mascolo et al., 2010).

The roles of Polycomb group (PcG) proteins in both development and cancer
have been reported (Sarkar et al., 2015). PcG proteins consist of two separate
complexes called PRC1 and PRC2. While PRC2 is brought to the chromatin and
adds a trimethyl group to lysine 27 on the histone H3 tail, PRC1 recognizes this
mark and contributes to the formation of heterochromatin. The enhancer of zeste
homolog 2 (EZH2), a subunit of the polycomb repressive complex 2 (PRC2), has
been shown to catalyze H3K27me3 and be involved in melanoma progression.
This will be discussed further in the following chapter.

1.5.3 Histone modifiers

Chromatin is a highly organized structure consisting of histones and DNA
packed info nucleosomes where 146 base pairs of DNA are wrapped around an
octamer histone protein complex (e.g., two of each histone H2A, H2B, H3, and
H4 (Strub et al., 2020). In addition to modifying chromatin access through ATP-
dependent chromatin remodeling, the changes in chromatin structure due to
histone posttranslational modifications (PTMs) or histone variants also affect
histone-DNA and histone-histone interactions and eventually enable the
mediation of transcription activity (Zentner and Henikoff, 2013).

PTMs of histones are important for regulating chromatin structure which
subsequently impacts the transcriptional and replication machinery without
changing the DNA nucleotide sequence (Alaskhar Alhamwe et al., 2018).
Various forms of histone PTMs, including acetylation, methylation,
phosphorylation, and ubiquitination, have been well studied and shown to
regulate chromatin structure and activity (Bannister and Kouzarides, 2017;
Peterson and Laniel, 2004; Swygert and Peterson, 2014). Inferestingly,
individual or combinatorial histone PTMs, placed on both tails and core of the
different histones, affect nucleosome dynamics (Bowman and Poirier, 2015).
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Histone methylation

Histone methylation status is controlled by histone methyltransferases (HMTs)
which transfer up to three methyl groups to either arginine or lysine of histones.
HMTs have been classified into two groups, including lysine methyltransferases
(KMTs) and arginine methyliransferases (PRMTs). To date, 50 KMTs have been
described, which fall into two subfamilies based on catalytic domain sequence:
SET domain-containing and the DOTT1-like protein. KMTs are generally recruited
to a specific lysine residue, leading to more specificity than that of HATs. For
example, KMT1A/SUV39H1, KMTIB/ SUV39H2, KMTIC/G%a, or
KMT1D/EuHMTase/GLP methylate H3K9 histone (Morera et al.,, 2016).
Interestingly, it has been shown that specific DNA sequences, long non-coding
RNAs (IncRNAs), and small non-coding RNAs can direct histone-modifying
enzymes to the target genome location (Greer and Shi, 2012). Different
methylated lysine residues on histones have different turnover rates (Zee et al.,
2010). Besides arginine or lysine methylation, monomethylated histidine has
been shown to be present in histones (Borun et al., 1972; Gershey et al., 1969).
However, histidine methylation is rare and has not been well studied (Greer and
Shi, 2012).

Different forms of histone methylation have been classified. The location and
level of methylation play a critical role in regulation. Different degrees of
methylation of histone lysine residues (e.g., mono-, di- or tri-methylation) have
been identified in different gene regulatory regions. While H3K4me1 (mono-
methylated lysine 4 at histone 3) is enriched at enhancers, H3K4me3 (tri-
methylated lysine at histone 3) is mainly found at promoters of active genes.
(Heintzman et al., 2007). The methylation at different lysine residues is also
suggested to play different roles. For instance, H3K4me3, H3K36me3, or
H3K79me3 are active transcription histone marks. In contrast, H3K9me3,
H3K27me3, or H4K20me3 are associated with repression (Lawrence et al.,
2016).

Histone demethylation is performed by histone demethylases (HDMs). Regarding
HDMs, amine-oxidase type lysine-specific demethylases (LSDs or KDMTs) and
JumonjiC (JMJC) domain-containing HDMs are two subclasses of HDMs that have
been separated due to differences in sequence homology and catalytic
mechanism. While the catalytic activity of LSDs/KDM1s (KDM1A/LSD1/AQF2
and KDM1B/LSD2/AOF1) is the demethylation of only mono- and dimethylated
H3K4, JumonjiC (JMJC) domain-containing HDMs (KDM2-8) eliminate methyl
groups from various mono-, di-, and trimethylated lysine histones (Alaskhar
Alhamwe et al., 2018).
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Abnormal histone methylation has been reported to be involved in melanoma
(Giunta et al.,, 2021; van den Hurk et al., 2012). Through catalyzing tri-
methylation of lysine 9 on histone 3, SETDB1 has been known as a silencing
mediator (Schultz et al.,, 2002). While an increase in SETDB1 activity is
associated with melanoma initiation and progression, SETDBI-silencing in
SETDB1"sh melanoma cell lines reduces melanoma cell viability (Ceol et al.,
2011; Orovuji et al., 2019). The expression of SETDBT is also increased in tumors
harboring BRAFY$% mutation and implicated in tumor development (Ceol et al.,
2011), suggesting an interplay between genetic mutations and epigenetic events
in promoting melanoma progression. The interplay between DNA methylation
and histone modification has also been observed where SETDBI1 is recruited to
methylated CpG islands through its methyl-CpG-binding domain. Subsequently,
the H3K9me3 histone mark is introduced at the specific loci and thus acts as a
double layer to control repression (Sarraf and Stancheva, 2004). In addition to
the gene repression effect, SETDB1 has also been suggested to influence the
H3K4 active mark. SETDB1 has been shown to alter the enrichment of H3K4me1
at the thombospondin-1 (THBS1) enhancer region and induce its expression
(Strub et al., 2020). However, genome-wide histone modifications by SETDB1 in
melanoma remain unknown.

As mentioned before, elevated levels of both EZH2 and H3K27me3 have been
observed in aggressive melanoma cells, leading to suppression of the tumor
suppressors RUNX3 and E-cadherin, allowing the cells to evade senescence
(Sengupta et al., 2016). Meanwhile, reduced EZH2 expression leads to an
increase in CDKN2A and CDKNTA expression, resulting in the inhibition of
proliferation and restoration of apoptosis (Fan et al., 2011; Wu et al., 2010). The

2Y¢4N mutation represses gene expression by

somatic gain-of-function EZH
triggering an enrichment of the H3K27me3 histone mark and reorganization of
chromatin structure, which favors melanoma progression (e.g., bypass of
senescence through the NF-kB pathway or by promoting tumorigenicity through
WNT/Bcatenin signaling) (Strub et al., 2020). Furthermore, the interplay
between Ezh2Y%4F (equivalent to EZH2"*N in humans) and BRAFY¢%®E in
melanomagenesis has been reported in the mouse model (Souroullas et al.,

2016).

G9%a methyltransferase regulates the levels of H3K9me2 and is known as an
important factor in various developmental processes and decisions related to cell
fate (Tachibana et al., 2002). It has also shown that gain-of-function mutations in
G9%a are frequently found in melanomas and other cancer types (Kato et al.,
2020). The activation mutations in G9a can drive oncogenesis by promoting

15



Hong Nhung Vu

cell proliferation and survival, as well as suppressing immune responses through
repressing DKK1, an antagonist of WNT pathway (Kato et al., 2020).

Changes in global H3K4me3 levels were noticed in zebrafish by comparing
melanoma to normal skin (Anelli et al., 2009). The histone demethylase
H3K4me3 JARID1B (i.e. KDM5B) was reported to play roles in melanoma tumor
growth. Knocking down JARID1B accelerated tumor growth, followed by
exhaustion (Roesch et al., 2010). Demethylation at histone H3 lysine 9 at the E2F
target gene promoters by LSD1 (i.e. KDM1A) and JMJD2C (i.e. KDM4C)
promotes the senescence bypass that is induced by HRas®'?V- or BrafVé°t and
favors melanoma development (Yu et al., 2018). Meanwhile, an increase in the
H3K27-specific demethylase KDM6B has been described to be associated with
melanoma progression and metastasis through upregulating genes in the NF-xB
and BMP (Bone Morphogenic Protein) pathways (Park et al., 2016). Additionally,
the role of KMT2D in gene regulation has been identified through its mono-
methylation of H3K4 (Guo et al., 2013). The inactivation of KMT2D results in a
decrease in H3K4mel and H3K27ac histone marks in the enhancer region,
which eventually reduces the expression of genes associated with cell migration
(e.g., MFGE8 and RPL39L) and deregulates tumorigenesis (Bossi et al., 2016).

Histone acetylation: acetyltransferases and deacetylase

There are two groups of enzymes, namely histone acetyliransferases (HATs) and
histone deacetylases (HDACs), that participate in acetylating and deacetylating
histones, respectively (Alaskhar Alhamwe et al., 2018). HATs catalyze the transfer
of the acetyl groups from acetyl-CoA to target lysine residues in histones,
whereas HDACs catalyze their removal. Acetylation of a lysine leads to the loss
of a positive charge on the histone, which weakens the inferaction between
histones and DNA. This, in turn, increases gene expression due to the relaxation
of the chromatin and increases the accessibility of DNA to transcription factors
(Alaskhar Alhamwe et al., 2018). Histone acetylation also affects transcription by
serving as a binding site for histone reader proteins (Gallagher et al., 2015).
Lysine residues on H3 and H4 histone fails are the most widely studied targets of
histone acetylation; however, other residues, like H3K56, which is located in the
H3 histone core domain, can also be acetylated (Gallagher et al., 2015). To
date, three subfamilies of HATs have been described, namely GCN5-related N-
acetyltransferase (GNAT), MYST, p300/CBP. The GNATs subfamily is one of the
major subfamilies of histone acetyltransferases (HATs) in humans. GNATs
consisting of at least 12 genes, including KAT2-KAT14, have been suggested to
modulate cell cycle, DNA replication, and DNA repair by contributing to the
acetylation of histones and transcription factors (Alaskhar Alhamwe et al., 2018)
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and to maintain genome stability by preserving the correct centrosome numbers
(Fournier and Tora, 2017). Similar to GNATs, the MYST subfamily (i.e., KAT6A,
KAT6B, KAT8, MYST2) is also involved in transcription regulation and DNA repair
(Alaskhar Alhamwe et al., 2018). On the other hand, there are 18 enzymes in the
family of HDACs, and they are classified into four groups. Group | (HDAC 1, 2,
3, and 8) is primarily expressed in the nucleus in all tissues. While group lla
(HDAC4, 5, 7, and 9) is mainly in the cytoplasm, group llb (HDAC6 and 10) is
present both in the nucleus and cytoplasm. Little is known about the subcellular
localization of group Ill, NAD-dependent sirtuins (SIRTs; SIRT 1-7), and group
IV (HDACT11) (Alaskhar Alhamwe et al., 2018; Seto and Yoshida, 2014).

Deregulation of acetylation resulting in melanomagenesis has been reported
(Strub et al., 2020). It has been shown that loss of histone acetylation in
regulatory regions of genes associated with cell signaling pathways that drive
melanoma (e.g. PI3K, ITGB1, TGFB, PDGF) (Fiziev et al., 2017). In this context,
the expression of PIB5PA or BCL2, both of which play roles in apoptosis
resistance by blocking PI3K/AKT signaling, is also usually reduced in melanoma
upon hypoacetylation (Giunta et al., 2021; Ye et al., 2013). Additionally, it has
been shown that CDKN2A (p1447) and CDKNTA (p21) expression was reduced
upon histone deacetylation, resulting in senescence bypass and melanoma
progression (Fiziev et al., 2017; Flgrenes et al., 2004).

Although the understanding of HDAC expression in melanoma is still limited, it
has been shown that the percentage of nuclear HDAC3 and cytoplasmic HDACS8
positively correlate with survival in melanoma (Wilmott et al., 2015). However,
HDAC1 and HDACS are also connected to increased levels of phosphorylated
p65, a subunit of the NF-kB complex that has been linked to resistance to MAPK
inhibitors (Konieczkowski et al., 2014; Wilmott et al., 2015). Notably, another
study also described the function of HDACs on other proteins rather than
histones. Particularly, HDAC8 was shown to deacetylate cJUN to activate cjun
transcriptional activity, which subsequently affects MAPK and AP-1 signaling
regulation and eventually conveys resistance to BRAF inhibition (Emmons et al.,
2019).

Histone variants

Histone variants have been shown to play a key role in modifying chromatin
structure and gene expression since variant histones differ from canonical
histones in sequence and properties. H2A and H3 variants are the most common
and are placed in specific genomic locations by histone chaperones
(Vardabasso et al., 2014). The expression of H2A.Z variants, including H2A.Z.1
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and H2A.Z.2, is increased in melanoma as well as other cancers (Kapoor et al.,
2010). An increase in H2A.Z.2 expression has been associated with poor patient
survival (Vardabasso et al., 2015). In fact, H2A.Z.2 stabilizes the histone reader
protein BRD2, leading to the activation of genes, especially E2F targets, that
advance the cell cycle (Vardabasso et al., 2015). Meanwhile, the H3.3 variant is
linked to the expression of E2F target genes. An increase in H3.3 results in the
suppression of E2F target genes and induced senescence (Duarte et al., 2014).
The histone variant MacroH2A, known as transcriptionally repressive, suppresses
CDK8 expression, resulting in a slower proliferation of melanoma cells (Kapoor
et al., 2010). Overexpression of histone variant H2A.Z.2 has been reported to
lead to poor melanoma progression (Kapoor et al., 2010; Vardabasso et al.,
2015).

Histone modification in key genomic regions

While the pattern of histone modifications can indicate a gene activation state,
the location of these modifications in the genome can provide further specific
information about their role and the underlying mechanism. In general, the
histone modifications H3K4me1/2/3, H3K%ac, H2A.Z, H3.3, and H3K27ac are
found at active promoters, whereas H3K27me3, H3K9me3, and DNA
methylation are usually found at inactive promoters (Tollefsbol, 2017). It has
been shown that some genes have bivalent promoters, in which both the
H3K4me3 and H3K27me3 or the H3K4me3 and H3K9me3 histone marks are
found. The H3K4me3 and H3K27me3 marks at bivalent promoters are mostly
identified on adjacent histones within a homodimer. Interestingly, genes
containing bivalent promoters are silent and only switch to activation mode
during differentiation and development (Tollefsbol, 2017). In melanoma, it has
been suggested that the bivalent states are impacted by the NRAS and BRAF
genotypes (Terranova et al., 2021). Additionally, the broad H3K4me3 domain,
which can span thousands of kilobases at promoters, might be involved in pro-
mefastatic melanoma, suggesting an epigenetic feature of melanoma
development (Terranova et al., 2021). Particularly, SOX9, PDGFA, PDGFRA, and
MYCN, which are important metastasis drivers, showed a transition from a
bivalent state to active transcription with broad H3K4me3 modification upon
switching towards mesenchymal/invasive state (Terranova et al., 2021).
Compared to melanocytes, in melanoma tumors, reduced H3K4me3 domains
(<2 kb) were observed at the promoter regions of melanocyte-specific cell-
identity genes (e.g., PMEL, PAX3, MITF, and TFAP2A), leading to decreased
gene expression (Terranova et al., 2021).
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Active genes are often associated with active enhancers, which usually present
both the H3K4me1 and H3K27ac histone marks and contain of H3.3 and H2A.Z
histone variants. The H3K4me1 mark primes active enhancer regions. Active
enhancers are also defined by other histone acetylation marks, such as
H2BK20ac, H3K122ac, and H4Kléac. Meanwhile, inactive enhancers have
increased H3K9me2/3 marks, and surprisingly, inactive enhancers lack TF
binding. A different enhancer state referred to as prime enhancer has been
discovered, marked by the presence of H3K4mel but not H3K27ac.
Nevertheless, the H3K4mel mark is much reduced in prime enhancers
compared fo active enhancers (Tollefsbol, 2017).

Histone modification has also been identified in the gene body. The H3K36me3
and H3K79me2 methylations are found in the body of active genes since these
two histone modifications are favorable for RNAPII traveling through the genes.
Although H2BK120ub1, H3K9me2/3, H3K27me2, and H3K27me3 are also
located within the gene bodies, they play roles in transcriptional elongation
through pausing the traveling RNAPII (Tollefsbol, 2017).

1.6 The Microphthalmia-associated transcription factor

The Microphthalmia-associated transcription factor (MITF) regulates the
specification, proliferation, survival, and differentiation of multiple cell lineages,
including neural crest-derived melanocytes, pigmented epithelial cells of the eye,
mast cells, and osteoclasts (Arnheiter, 2010; Goding and Arnheiter, 2019;
Steingrimsson et al., 2004). In melanoma cells, it plays a critical role as a
lineage-survival oncogene (Garraway et al., 2005). It may act as a switch that
determines whether cells proliferate or become quiescent, thus allowing
migration and formation of metastases (Hoek and Goding, 2010). lis protein
product, MITF, is a member of the basic-Helix-Loop-Helix-leucine zipper
(bHLHZip) transcription factor family that binds to the E- (CACGTG) and M-
(TCATGTG) box motifs as homodimers or heterodimers with its closest relatives
TFE3, TFEB and TFEC (Hodgkinson et al., 1993; Strub et al., 2011); a unique 3-
amino acid domain EQQ[260—262] restricts dimerization of these profeins such
that they do not dimerize with other bHLHZip proteins (Pogenberg et al., 2020;
Pogenberg et al., 2012).

The human MITF gene is located on chromosome 3 and is about 230,000 base
pairs long, while the mouse Mitf gene is located on chromosome 6 and is
215,000 base pairs long. Both genes have multiple promoters and tissue-specific
first exons which are all spliced to the common exons 2-9, leading to the
production of various mRNA and protein forms through alternative promoter
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usage and splicing (Goding and Arnheiter, 2019; Vu et al., 2021). Multiple
MITF mRNA and protein isoforms (e.g. MITF-A, -B, -C, -D, -E, 4, -H, -Mc, and -M),
therefore, differ at the amino terminus and are regulated by specific promoters
(Goding and Arnheiter, 2019). While human MITF and mouse Mitf genes are
remarkably conserved and share overall gene organization, in zebrafish, there
are two Mitf genes encoding two Mitf proteins, named Mitfa and Mitfb. These
zebrafish genes are considered homologs of mouse and human MITF-M and
MITF-A, respectively (Lister et al., 2001). MITF proteins are further grouped into
MITF(+) (referred to as MITF-WT in this thesis), containing the six amino acids
encoded by exon 6A and MITF()) (referred to in this thesis as MITF™P) lacking
these residues.

The various MITF isoforms are expressed in different tissues (Figure 3). For
instance, MITF-M is found mostly in melanocytes and melanoma cells, while MITF-
Mc only occurs in mastocytoma cell lines. MITF-E is abundant in mastcells, and
MITF-D is expressed in cells of the RPE, macrophages, mast cells, and
osteoclasts. On the other hand, MITF-A, MITF-B, MITF-H, and MITF{ are
expressed in multiple cell types, with MITF-H being prominent in the heart and
MITF-A and - in RPE cells. MITF-C, although present in many cell lines, is absent
in cells of the melanocyte lineage. The specific functional roles of the different
MITF isoforms have not been clarified, and in fact, most of the work on MITF has
focused on the MITF-M isoform, which is predominant in melanocytes and
melanoma (Goding and Arnheiter, 2019; Hershey and Fisher, 2005;
Hodgkinson et al., 1993; Yasumoto et al., 1998).

1.6.1 Regulation of MITF expression

The transcription of MITF is regulated by a collection of transcription factors,
including MITF itself, as well as signaling events that are important in melanocyte
development and homeostasis (Goding and Arnheiter, 2019; Levy et al., 2006).
It has been reported that MITF expression is positively governed by the
transcription factors SOX10 (Bondurand et al., 2000), PAX3 (Yang et al., 2008),
the EMT transcription factor ZEB2 (Denecker et al., 2014), ONECUT-2
(Jacquemin et al., 2001), as well as by LEF1 (lymphoid enhancer-binding factor
1) (Eichhoff et al., 2011; Saito et al., 2002), and CREB (Huber et al., 2003).
MITF is also suppressed by PAX3 (Eccles et al., 2013), GLI2 (Javelaud et al.,
2011), BRN2 (Pinner et al., 2009; Thurber et al., 2011), and signaling pathways
like TGFB and WNT (Hartman et al., 2014).
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Figure 3. The alternative exon 6A has been described in human MITF-A, MITF-H, and MITF-M proteins. Translation starts and stops
codons are indicated by the (V) symbol and (*) symbol, respectively. The (V) symbol shows the alternative start codon of the MITF-B isoform.
The numbers indicate amino acid residues. The cell lines exhibiting the major expression of the human MITF isoforms according to the
FANTOM database are presented. Figure obtained with permission from John Wiley and Sons according to permit number 5514180354498
(Vu et al., 2021).

21



Hong Nhung Vu

PAX3 is a paired-box homeodomain transcription factor that plays a crucial role
in melanocyte development and melanocyte stem cell activation regulation. This
is achieved through its ability to control MITF-M expression and activity (Lang et
al., 2005; Medic and Ziman, 2010). While PAX3 has been shown to activate the
transcription of MITF-M in melanocytes and melanoma (Watanabe et al., 1998),
PAX3 promotes the activation of the BRN2 promoter via PI3K, which might
eventually repress the expression of MITF (Bonvin et al., 2012; Eccles et al.,
2013). PAX3 not only controls MITF expression but also regulates TYRP1
expression. In melanoblasts, PAX3 competes with MITF for binding to the
enhancer region of the DCT (Lang et al., 2005). Working together with PAX3,
SOX10, a key player in both neural crest development and melanocyte biology,
also positively regulates the MITF expression (Elworthy et al., 2003; Lee et al.,
2000; Verastegui et al., 2000). It is further suggested that SOX10 plays a crucial
role in melanoma initiation and development, in which a high expression level of
SOX10 was found in melanoma samples but not frequently mutated (Cronin et
al., 2013; Shakhova et al., 2012). A decline in the transcriptional proficiency of
SOX10 due to increased ERK activity may also cause alteration in MITF
expression since ERK-mediated phosphorylation inhibits the transcriptional
activity of SOX10 by impeding its SUMOylation, which is typically necessary for
its transcriptional function (Han et al., 2018). In contrast, by blocking PAX3 from
the MITF promoter, FOXD3 indirectly repressed the MITF expression (Thomas
and Erickson, 2009). FOXD3 is also widely expressed in melanoma and has
been linked to conferring resistance to BRAF inhibitors, partly through its ability
to suppress MITF expression and activation of ERBB3/HER3 (Abel et al., 2013).

Known as a bZIP transcription factor, CREB activates MITF expression in
response fo elevated cAMP levels through its binding to a TGACGTCA motif
(CRE element) in the MITF promoter (Huber et al., 2003). The regulation of MITF
expression by CREB is dependent on SOX10 and is involved in controlling hair
and skin pigmentation through the regulation of downstream genes implicated in
the pigmentation process (Huber et al., 2003). Furthermore, the cAMP-CREB-
MITF activation pathway has also been shown to play an important role in the UV-
suntanning response (Kawakami and Fisher, 2017). In addition to cAMP-CREB-
MITF, the SIK-CRTC-CREB axis in regulating MITF expression was also reported.
In detail, SIK kinases phosphorylate cAMP-regulated transcriptional co-activator
(CRTC) proteins, which inhibits their translocation to the nucleus where
phosphorylated CRTC typically co-activates CREB and causes an inhibition MITF
expression (Nguyen and Fisher, 2019). In this context, the ATF4 transcription
factor can suppress MITF mRNA expression by competing with CREB for binding
to the MITF promoter (Falletta et al., 2017; Ferguson et al., 2017). This means
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that any upstream activator of ATF4 (e.g., TNFad) that increases its expression
could also lead to decreased MITF transcription and eventually to melanoma de-
differentiation (Falletta et al., 2017).

WNT/beta-catenin also plays an important role in regulating MITF expression by
activating the MITF promoter through the LEF1/TCF transcription factors, which
are essential for the specification of melanoblasts from neural crest cells and for
melanocyte formation. The functional role of WNT/Bcatenin in activating
melanocyte stem cells in adult hair follicles has also been reported, likely through
increasing MITF expression to promote cell differentiation (Rabbani et al., 2011).
In melanoma, the activation of WNT/beta-catenin pathway has been shown to
decrease tumor proliferation in vivo. (Chien et al., 2009).

Despite the fact that both ZEB1 and ZEB2 belong to the Zinc-Finger-E-box
binding transcription factor family, they regulate MITF in different ways and
significantly impact the switching from epithelial to mesenchymal cells
(Vandewalle et al., 2009). In particular, ZEB2 activates MITF expression, whereas
ZEB1 has been reported to repress MITF expression in retinal pigment epithelium
cells (Denecker et al., 2014).

Also known as a MITF regulator, the homeodomain transcription factor ONECUT-
2 is expressed in melanocytes and enables to bind to the MITF promoter. A
mutation in the binding site of ONECUT-2 decreases MITF promoter activity by
about 75% (Jacquemin et al., 2001). However, the specific function of ONECUT-
2 in melanocyte differentiation and melanoma development remains to be
investigated.

Additionally, BRG1, a component of SWI-SNF chromatin remodeling complex,
has also been shown to positively regulate MITF expression through its direct
binding to the MITF promoter (Vachtenheim and Borovansky, 2010).
Interestingly, while BRN2 has been shown to regulate MITF directly by binding to
MITF promoter, BRN2 has been shown to mediate both increased and decreased
MITF expression, depending on the control of BRAFYé%® mutation on BRN2
expression and the BRN2 phosphorylation status (Berlin et al., 2012; Goodall et
al., 2008; Goodall et al., 2004; Wellbrock et al., 2008). BRN2 is a transcription
factor that is regulated by three different signaling pathways involved in both
melanocyte development and melanoma, namely BRAF/MAPK, PI3K through
PAX3, and WNT/Bcatenin. BRN2 expression is commonly increased in
melanoma and is important in driving melanoma invasion (Goding and
Arnheiter, 2019).
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Although the activity of ALX3 in melanocytes and melanoma is still limited,
according to CHIP-seq data, ALX3 has been reported to repress MITF expression
and is involved in regulating pigmentation patterning in rodents through binding
to the MITF promoter (Mallarino et al., 2016). The GLI2 transcription factor,
which is downstream of Hedgehog signaling, also has a significant role in
melanoma, e.g., by promoting invasion and resistance to BRAF inhibitors
through its binding to MITF promoter regions and inhibiting the expression of
MITF (Alexaki et al., 2010; Faiao-Flores et al., 2017; Javelaud et al., 2011).

1.6.2 MITF target genes

MITF is known as the master regulator of melanocyte differentiation, melanoma
proliferation, and invasion. Consistent with that, MITF has been shown to bind to
the regulatory regions of many genes involved in the indicated pathways and
regulate their expression.

MITF can stimulate differentiation-related processes in both melanocytes and
melanoma (Goding and Arnheiter, 2019) by positively regulating the expression
of pigmentation-associated genes cell adhesion or epithelialto-mesenchymal
transition genes (Goding and Arnheiter, 2019). In addition, MITF has been
shown to play a role in autophagy regulation (Méller et al., 2019). It has been
shown that the depletion of MITF reduced the autophagy response to starvation,
whereas overexpression of MITF increased the number of autophagosomes. A
subset of genes involved in autophagy has been shown to be regulated by MITF
(Méller et al., 2019). Particularly, MITF can regulate the expression of the
lysosomal acid ceramidase ASAH1, which manages sphingolipid metabolism
(Leclerc et al., 2019). Notably, the cell cycle arrest caused by the depletion of
MITF was rescued by overexpression of ASAH1, suggesting that ASAH1 plays an
important role proliferation of melanoma cells (Realini et al., 2016).

Previous studies also reported that MITF sustains both cell growth and survival
during melanoma development. The role of MITF in mediating the cell cycle is
particularly interesting. It has been shown that MITF positively regulates the
expression of genes associated with DNA replication and DNA repair, including
BRCA1, AURKB, and TERT (Strub et al., 2011). A reduction in MITF protein
expression, therefore, causes genomic instability and increases the expression of
DNA damage markers such as yH2AX and p53. MITF depletion in melanoma
cell lines, therefore, leads to cell cycle arrest and senescence (Giuliano et al.,
2010; Strub et al., 2011; Wellbrock and Marais, 2005). Reduced MITF protein
expression has also been linked to a senescence-associated secretome driven by
PARP and NFkB, which leads to the dedifferentiation of melanoma cells (Ohanna

24



Introduction

et al., 2013; Ohanna et al., 2011). On the other hand, the cell cycle arrest upon
MITF depletion is also explained by its direct binding and activation of the cyclin
genes (e.g. CDK2, CDK4, CDKN2A, CCNB1, and CCNDI1) (Du et al., 2004,
Loercher et al., 2005; Sestdkova et al., 2010; Strub et al., 2011; Wellbrock et
al., 2008). In melanoma cells, MITF also indirectly represses CDKN2B (p27kip1)
through a regulator of the actin cytoskeleton termed Dia1 (Carreira et al., 2006).
As another layer to control the cell cycle, high MITF protein expression also halts
cell proliferation through regulating genes associated with mitosis, such as PLK1,
a crucial player in M-phase progression. MITF further regulates components of
the CENPA and NDC80 complexes, which link mitotic spindle microtubules to
kinetochores. (Du et al., 2004; McGill et al.,, 2006; Strub et al., 2011;
Wellbrock et al., 2008). However, MITF also activates the expression of genes
that inhibit proliferation. For example, MITF cooperates with the RB1 protein to
mediate cell cycle progression by activating CDKNTA expression (Carreira et al.,
2005). The opposing functions of MITF in mediating the cell cycle could be
explained by the MITF rheostat model, which is explained below.

MITF is also known to mediate cell invasion. On the one hand, MITF depletion in
melanoma cell lines has been linked to the promotion of invasion (Carreira et al.,
2006; Cheli et al., 2011; Javelaud et al., 2011). The loss of MITF has been shown
to increase intracellular GTP levels by mediating the expression of the Guanosine
Monophosphate Reductase (GMPR), which then enabled the elevation of the
expression of the actin cytoskeleton regulators RAC1, RHO-A, and RHO-C
(Bianchi-Smiraglia et al., 2017; Carreira et al., 2006). Furthermore, MITF also
regulates the expression of the actin polymerization-associated gene DIAPHT,
thus consolidating the observation that a reduction in MITF activity enhances
invasion (Carreira et al., 2006). In contrast, the decrease of MITF expression has
been also reported not to induce invasion (Falletta et al., 2017).

The observation that MITF depletion can both reduce and increase invasion and
proliferation has been a confusing paradox (Goding and Arnheiter, 2019).
However, this paradox was explained by the MITF rheostat model, which links
the level of MITF protein expression or activity to effects on the phenotype
(Figure 4). According to this model, low MITF activity results in the
dedifferentiation of melanocytes/melanoma cells, promotes invasion, and slows
down the proliferation through increased cell cycle inhibitor expression, which
are favorable conditions for malignant transition. However, the severe replication
and mitotic defects observed upon reduction below a specific threshold of MITF
expression/activity result in cell senescence. In contrast, intermediate levels of
MITF promote proliferation through the activation of genes associated with cell

25



Hong Nhung Vu

cycle regulators and repression of genes that promote invasion. High levels of
MITF stimulate cell cycle arrest and induce differentiation (Figure 4) (Rambow et
al., 2019; Strub et al., 2011).

MITF activity
D D S
Senescent and Invasive Proliferative Differentiated
apoptotic and pigmented
Cell state

Figure 4. MITF rheostat model MITF expression level has been hypothesized to link
with cell phenotype

1.6.3 MITF posttranslational modifications (Paper I)

Posttranslational modifications (PTMs) are defined as the chemical changes of
proteins following the translation process (Biirkle, 2001). Many different types of
PTMs have been shown to occur on a wide range of proteins in every cellular
compartment. PTMs serve as a tightly regulated and highly dynamic mechanism
in response to different physiological conditions, including nutrient availability,
hormone stimulation, cell differentiation, and cell cycle controls (Fan et al.,
2015). PTMs play critical roles in regulating protein activity, conformation,
location inside the cell, and interaction with DNA/RNA or other proteins
(Bowman and Poirier, 2015). There are over 400 different types of PTMs,
including phosphorylation, ubiquitination, acetylation, sumoylation, and
glycosylation, among others (Ramazi and Zahiri, 2021).

The activity of MITF is regulated by several posttranslational modifications,
including phosphorylation, SUMOylation, ubiquitination, acetylation, and
proteolytic cleavage that affect its transcriptional activity, localization, protein
stability, and interaction with partner proteins (Goding and Arnheiter, 2019;
Larribere et al., 2005; Vu et al., 2021) (Figure 5). Below | review what is
currently known about PTMs in the MITF protein.

While phosphorylation is catalyzed by kinases that add phosphate groups to
proteins, phosphatases are responsible for removing the phosphate groups
(Skamnaki et al., 1999). The amino acids serine, threonine, tyrosine, and
histidine can all be phosphorylated (Panni, 2019). Phosphorylation is a highly
dynamic and reversible process. It has been reported that phosphorylation
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regulates cellular processes such as signal transduction, metabolism, and gene
expression through modulating protein activity by altering their conformation and
interactions with other proteins. As a result, phosphorylation plays a key role in
many physiological processes and is also involved in many diseases, such as
cancer, diabetes, and neurological disorders (Ramazi and Zahiri, 2021).
Notably, phosphorylation of MITF has been shown to affect the subcellular
localization of the protein. Phosphorylation at Y22, Y35, and Y90 by SRC (Phung
et al., 2016), S69 by GSK3B (Ngeow et al., 2018), S73 by ERK (Hemesath et al.,
1998; Wu et al., 2000) and S173 by C-TAK1 (Bronisz et al., 2006) has been
shown to lead to the retention of MITF in the cytosol. The phosphorylation at
S173 of MITF leads to the accumulation of the protein in the cytoplasm due to the
formation of complexes with 14-3-3 proteins which are chaperone-like adaptor
molecules and play important roles in many cellular processes. However, S73A,
S298A, S307A, and S409A mutations did not impact the binding of MITF to 14-
3-3 proteins (Bronisz et al., 2006). This suggests that Ser173 is specifically
involved in 14-3-3 inferactions. In contrast, phosphorylation at the $298, S397,
S401, and S405 residues did not affect MITF subcellular localization (Ngeow et
al., 2018). Phosphorylation of MITF has also been suggested to affect
transcription. For example, phosphorylation at S73 affects transcription activation
through stimulating the interaction between MITF and p300 (Hemesath et al.,
1998; Xu et al., 2000). While phosphorylation at S298 by GSK3B has been
suggested to increase the binding of MITF to the TYR promoter (Takeda et al.,
2000), this site does not fit the GSK3B consensus sequence. Phosphorylation of
S409 has been shown to alter the expression of the CDKNTA and TYR genes
(Wang et al., 2016).
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In addition to nuclear localization and transcription activity, phosphorylation has
also been proposed to mediate the stability of the MITF protein (Goding and
Arnheiter, 2019; Vu et al., 2021). Initially, phosphorylation at S73 was suggested
to be required for MITF degradation, and the $73/409A double mutant protein
was reported to be significantly more stable than the human MITF-WT protein
(Wu et al., 2000; Xu et al., 2000). However, Wellbrock et al. (Wellbrock and
Marais, 2005) later found that S73 phosphorylation is not the only mechanism
regulating MITF stability since MITF-S73A protein was significantly increased
upon MG132 proteasomal inhibitor treatment. Importantly, phosphorylation of
$397, S401, S405, and S409 sites has been shown to improve the stability of
the MITF protein; when these residues are mutated to alanine protein, stability is
also increased (Ploper et al., 2015; Wang et al., 2016).

SUMOylation is a type of postiranslational modification (PTM) found in MITF.
SUMOylation is a process in which the small ubiquitin-like modifier (SUMO)
protein is covalently aftached to target proteins at lysine residues. Like
phosphorylation, it is a reversible modification. While the SUMO-activating
enzyme (E1), SUMO-conjugating enzyme (E2), and SUMO-ligase (E3) are
responsible for catalyzing the reaction, SUMO proteases remove SUMO from
target proteins. SUMOylation has been shown to affect protein structure,
localization, activity, and stability (Flotho and Melchior, 2013). In the case of
MITF, SUMOylation has been shown to take place at the K182 and K316 residues
(Miller et al., 2005). The enzymes SAE I/SAE Il and UBC9 have been suggested
to be involved in this SUMOylation process. Interestingly, it has been shown that
the single mutation K182R or K316R did not alter the nuclear distribution; and
the double K182/316R double mutation did not impact DNA binding, stability,
or nuclear localization. However, transcriptional activation by the double mutant
was shown to depend on the number of MITF binding sites in the promoter
region of its target genes (Murakami and Arnheiter, 2005), such that the
K182/316R double mutation is better at activating promoters with multiple
binding sites compared to single mutation K182R or K316R or MITF-WT. This
suggests that SUMOylation has specific effects on transcription.

Although phosphorylation and SUMOylation of MITF have been well studied,
MITF ubiquitination and acetylation are less understood. The K201 residue has
been reported as a potential ubiquitination site. While the UCHL1T enzyme has
been suggested to act as a ubiquitin ligase for MITF and decrease its stability
(Seo et al., 2017), the ubiquitin-specific protease 13 (USP13) deubiquitinates
MITF, eventually increasing MITF protein expression leading to an induced
expression of genes involved in the proliferation and growth of melanoma cell

29



Hong Nhung Vu

lines (Zhao et al., 2011). Multiple lysine residues in MITF can undergo
acetylation, including K21, K33, K43, K243, and K248. Acetylation at K243 has
been demonstrated to impact its binding to low-affinity binding sites
(Louphrasitthiphol et al.,, 2020). Although these modifications have been
mapped, the exact biological function of these PTMs and the interplay between
different types of PTMs are still unknown.

1.6.4 MITF mutations in mouse and human

Mutations in Mitf have been found in organisms ranging from zebrafish to
humans. In humans, as mentioned above, the germline mutation E318K increases
the incidence of melanoma. (Bertolotto et al., 2011; Yokoyama et al., 2011). The
somatic mutations E87R, L135V, L142F, G244R, and D380N in MITF have also
been found in melanoma (Cronin et al., 2009). MITF mutations have also been
associated with the Waardenburg type 2A, Tietz syndromes, and the more
serious COMMAD syndrome (Amiel et al., 1998; George et al., 2016; Smith et
al., 2000; Tassabehji et al., 1994). WS2 is characterized by pigmentary
abnormalities in the irides, skin, and hair and partial or bilateral loss of
sensorineural hearing (Pingault et al., 1998; Tassabehji et al., 1994). Meanwhile,
Tietz syndrome also reduces pigmentation and is characterized by partial
albinism and congenital deafness (Léger et al.,, 2012). The more severe
COMMAD syndrome is characterized by coloboma, osteopetrosis,
microphthalmia, macrocephaly, albinism, and deafness and is associated with
biallelic MITF mutant alleles (George et al., 2016). More than 18 MITF mutations
(R203K, K206Q, N210K, 1212M, 12125, E213D, R214X, R216K, R217del, R217,
R217G, 1224S, S250P, Y253C, R259X, N278D, L283P, and S298P) have been
identified in WS2A and TS patients. Consistent with their location in the
bHLHzip domain of MITF, most of these mutations, except R203K and S298P,
are defective in DNA binding and fail to regulate MITF target genes (Cronin et
al., 2009; Grill et al., 2013).

In mice, there are over 40 different alleles that can be arranged in an allelic
series according to the severity of their phenotypic effects. The original and most
severe allele, Mitf", leads to a white coat, severe microphthalmia, and
osteopetrosis, and results in death at 3-4 weeks of age (Table 1). Mitf-White (Mijtf-
"h) is characterized by a point mutation changing residue 212 from isoleucine to
asparagine (Steingrimsson et al., 1994) (Table 1). This residue lies in the middle
of the DNA-binding basic region of the protein, is conserved in MIiT-TFE family
members, and is crucial in the binding of MITF to the M-box motif (Pogenberg et
al., 2012). Homozygotes carrying the Mitf***" mutation are white and have small
eyes but are less severely affected than the Mitf" mutation (Steingrimsson, 2010).
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Mitf'Wh heterozygotes have a relatively severe phenotype characterized by dilute
coat color and a white belly spot; of all Mitf mutations, the Mitf"h mutation
leads to the most severe phenotype in heterozygous condition. The Mitfrierelesswhite
(Mitm=*) mutation, which lacks amino acids 187-212, has a white coat and severe
microphthalmia but no osteopetrosis (Table 1). The mildest Mitf mutation, Mitf""
spoted (Mjtfmi+°), creates no visible phenotype even when homozygous. The Mitf™s
mutation is characterized by an extra cytosine in the alternatively spliced 18 bp
exon 6A that encodes six amino acids just upstream of the DNA-binding basic
domain and, when present in mature mRNA, leads to a premature stop codon in
the adjacent exon 6B (Steingrimsson et al., 1994) (Table 1). While typically, the
mRNAs encoding or lacking the alternative 6A domain are made in
approximately equal proportion in most cell types, Mitf"** homozygotes lack the
6A+ version and the overall Mitf mRNA levels are reduced. The DNA binding
ability and stablity of MITF(-) homodimers are reduced compared to that of
MITF(+) (hereafter referred to as MITF-WT) homodimers (Hemesath et al., 1994;
Pogenberg et al., 2012). The combination of reduced mRNA levels and reduced
DNA binding of the MITF™*P protein may explain why the pigment enzyme
encoded by the Mitf target gene Tyrosinase and the survival of melanocytes are
impaired in Mitf"** homozygotes (Boissy and Lamoreux, 1995; Wolfe and
Coleman, 1964). Nevertheless, this latter allele is named “mi-spotted” because it
induces or enhances a white spotting phenotype when combined with other
mutations at the locus (Arnheiter, 2010; Steingrimsson et al.,, 2004). For
example, when the Mitf" allele is mated to the MitM™"h or Mitfe* allele, the
resulting offspring is light grey/tan with white spots (Figure 6A). The offspring
are white with light grey pigment spots when Mitf" is mated to the original
Mitf" mutation (Figure 6A). And when mated to the Mif™** mutation, the
offspring exhibit a "salt-and-pepper” body color with a white head, belly, and
feet.

1.6.5 The Mitf™ suppressor mutation

The intermediate coat pigmentation alterations obtained in compound
heterozygotes with Mitf"» made this allele ideal for an N-ethyl-N-nitrosourea
(ENU) mutagenesis screen for suppressors of the Mitf phenotype (Appendix 1A).
Using this approach, the Steingrimsson group expected to find mutations in
novel genes participating in the molecular pathways through which Mitf regulates
pigment cell development and melanogenesis. Although the group was able to
isolate a suppressor mutation, intriguingly, it turned out to be a derivative of the
Mitfrise allele, named Mitfmiseotless (Mitfmis!)  that lacks 104 residues of the carboxyl
end of MITF (Figure 6B-C).
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Table 1. List of mouse Mitf mutants mention in this study

Phenotype*
Mode of
Allele Symbol Heterozygote Homozygote Lesion
¥! induction Ve V8
Iris pif t less than i
ris pigmen essr anin White coat, eyes small and red; deficiency L N
. . . R wild type; occasional M ) 3 bp deletion in basic
micropthalmia Mitf X-irradiation of mast cells, incisors fail to erupt,
spots on belly, head, or o domain
tail osteopetrosis; inner ear defects
oak ridge Mitfior Qammaf- Pale ears and tail; belly White coat, eyes sma!l and red; incisors fail R216K
irradiation streak or head spot to erupt, osteopetrosis
spontaneous Coat color lighter than . .
o;r, % dilute {n‘/d)-ge os dark White coat; eyes small and slightly
white Mitf-wh - 7 ey : pigmented; inner ear defects 1212N
irradiation ruby; spots on feet, tail
and belly
. i i i White coat, reduced eye pigment, eyes of
brownish Mitfrh spontaneous RGN bromf'msh il . Ve Plgl ¥ G244E
pale ears and tail normal size
White coat, eyes almost absent, eyelids 25 amino acid
eyeless-white  Mitfm-ew spontaneous Normal + €Y -+ &Y deletion
never open -
(splicing)
iy transgene White coat, eyes red and small; inner ear transgene insertion
o -vga9
REas M insertion Rogzel defects and 882 bp deletion
red-eyed Mitfmiw white Normal White with pigmented spot on head and Upstream genomic
spontaneous rump; eyes small and red deletion
Normal (reduced qumél (reducled ‘Y”’"“?“e a:tlwty: 5 205} Additional cytosine in
— . o . MitfMi-Wh/Mitfmi-sp animals are light L
spotted Mitfmise spontaneous tyrosinase activity in skin) ‘ 3 polypyrimidine tract;
yellow with white spots on coat; eyes are -
. 18 bp exon missing
pigmented
Additional M.
“Brownish” coat color. Compound dld't‘ut]a _;}rtustlmav:.n
Normal heterozygotes with other Mitf mutations polypyrimicine tract;
spotless Muitfmi-s! ENU Ve ! ! 18 bp exon missing.

show a more normal coat color than is seen
with Mitfmi-sp mice.

In addition,
Lys3165TOP

In combination with other alleles of MITF, the Mitf"¥' mutation led to reduced
effects on the phenotype when compared to the same alleles in combination with
the Mitf"» mutation. For example, the Mitf"*Mitf"s and MitM""Mitfrs' mice
have the darkly pigmented phenotype whereas the Mitfr=*/Mitfre and Mitf
Wh/Mitf» compound hereozygotes have major pigmentation defects (Figure
6A). The color was even darker than MitM"h/Mitf* mice, suggesting that the
Mitfris' mutant represents a gain-of-function compared to the Mitf¥T. Similar
effects were also seen when animals carrying the Mitf"/ mutation were crossed
to the dominantnegative Mitf" (Figure 6A), Mitf'o" and MitM* mutations
(Appendix 1B) or the null mutation Mitf"+9e° (Figure 6A). In all cases the coat was
more pigmented than when the respective mutations were crossed to the original
Mitfmise mutation (Figure 6A). These observations showed that the suppressor
effects of the Mitf" mutation did not depend on the genetic background.
However, Mitf"< did not affect the coat color of the recessive Mitf"™ allele when
compared to Mitf"™ /Mitf"? animals (Figure 6A), reflecting the fact that the latter
animals are already black and no further improvement in coat color is therefore
possible. Similarly, no effects were observed on eye size or bone development
in any of the combinations since both phenotypes are normal in Mitfmise
homozygotes or their compound heterozygotes.
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Figure 6. Phenotypes and molecular alteration associated with the induced
suppressor mutation (Mitf"<). (A) From left to right in the upper pannel: NAW-Mitf"*
ev/B6-Mitfms> and NAW-Mitfm=/B6-Mitf"!' compound heterozygotes. B6-MitfMWh/Bé-
Mitfmise and B6-MitfMWh/B6&-Mitfms! compound heterozygotes. B6-Mitf™s?/B&-Mitf™ and B6-
Mitfmisl /B6-Mitf™ compound heterozygotes. Notice the dramatic suppression of the
phenotype from near-white to black coat color. B6-Mitfm*/B6-Mitf™ and B&-Mitf™!/B6-
Mitf* animals. From left to right in the lower pannel: Bé-Mitfm=!/B6-Mitfmive2?  B6-Mitfm+
P/B6&-Mitfmive2°  B6-Mitfmise /Mitfmise  B&-Mitfmisl/Mitfms! (B) Compared to MITF-WT, the
MITF™s protein lacks 104 residues of the carboxyl end, including a SUMOylation site at
K316, a transcription activation domain 3 (AD3), a caspase cleavage site at D345, and
phosphorylation sites at S384, S397, S401, S405, and S409. Like the Mitf™s* mutation,
the Mitfm~' RNA also lacks the alternative 18 bp exon 6A. (C) The Mitf™sl mutation is an A
to T transversion at nucleotide 1075, replacing K316 with a stop codon.

Importantly, in the homozygous condition, the Mitf""*/ mutation affects coat color
such that instead of the normally black coat, the animals have a brown color. The
“brownish” color of homozygotes carrying the Mitf"* mutation might be
explained by the observed delay in the onset of pigmentation (Appendix 1C-F).
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However, the delay in pigmentation is not due to either an extended period of
cell proliferation that would delay the beginning of differentiation, nor does it
impair melanoblast development. Interestingly, the total Mitf RNA expression was
shown to be affected by the Mitf"* mutation. While expression of Mitf RNA is
reduced to 65.7% in Mitf""* in hearts and skin compared to wildype controls, it
remains above wildtype levels (115.8%) in Mitf"* hearts (Appendix 1G).
Importantly, however, the fundamental rescue mechanism at the molecular level
of the Mitf" was still unknown.

1.7 The PR domain-containing Protein (PRDM) family and
PRDM7

The human PR domain-containing Protein (PRDM) family of proteins consists of
17 members (PRDM1-17) with a conserved N-terminus PR domain followed by a
variable number of Cys2-His2 (C2H2) zinc fingers towards the Cterminus
(Hohenauer and Moore, 2012). The PR domain, which was first noted as the
PRDI-BFT-RIZT homologous region, has been suggested to be a derivative of the
SET (Su(var)3—9, enhancer of zeste, and trithorax) domain (Buyse et al., 1995;
Huang et al., 1998). Although many residues associated with catalytic activity in
the PR domain are not conserved in the SET domain, the NMR structure of PR
and SET domains are closely similar and both of them potentially have potential
methyliransferase activity (Clifton et al., 2014). Regarding location, the PR and
SET domains are localized at different parts of the respective protein, with the
former mostly located at the N-terminus and the latter primarily at the Cterminus
(Huang, 2002). Proteins contfaining the PR domain typically also have zinc-finger
domains. In contrast, SET domains are linked to various motifs, for instance, A/T
hooks, zinc fingers, PHD fingers, and GTP binding motifs (Huang, 2002;
Jenuwein et al., 1998). It has also been shown that the PR domain of human
PRDM4, -6, 7, 9, -10, -11, and -15 is preceded by a short motif with consensus
sequence C-X2-C-X7-C-X2-HG-P where X can be any amino acid (Briknarové et
al., 2011). This short motif is a zinc knuckle motif that participates in protein-
protein interactions (Briknarova et al., 2011).

PRDM profeins contain a variable number of zinc fingers except for PRDMT1,
which has no zinc finger domain (Fumasoni et al., 2007). It has been suggested
that differences in the number of C2H2 zinc finger repeats in PRDM proteins
can influence specific interactions of PRDMs with either DNA or other proteins
(Brayer and Segal, 2008; Ma et al., 2011) and may play an important role in
nuclear import (Choi et al., 2014). The interactions of PRDMs with either DNA or
other proteins may involve methyltransferase activity or recruitment of
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transcription factors to the target promoters (Fog et al., 2012). Particularly, it was
shown that PRDMs could recognize a specific DNA sequence and then mediate
transcription factors to the target gene promoter. For instance, PRDM1 recruits
the Groucho transcription factors to repress the INFB promoter (Ren et al.,
1999).

PRDMs are not present in fungi or plant genomes but originated in metazoans,
expanded in vertebrates, and were further duplicated in primates (Fumasoni et
al., 2007). PRDMs have been shown to be important players in cell-cycle
regulation, apoptosis, cell differentiation, and chromatin-mediated gene
expression (He et al., 1998; Hohenauer and Moore, 2012). It has also been
found that PRDM genes act as tumor repressors (Huang, 2002). PRDMs are
reported to be associated with a wide range of diseases. For instance, genetic
variants of PRDM1 have been linked to the risk of rheumatoid arthritis
(Raychaudhuri et al., 2009), and a SNP in PRDM9 correlates with human sterility
(Miyamoto et al., 2008).

Among the 17 PRDM family members, PRDM2, -3, -6, -8, -9, and -16 show
methyltransferase activity (Eom et al., 2009; Eram et al., 2014; Pinheiro et al.,
2012; Wu et al., 2008). Particularly, both PRDM2 and PRDM8 catalyze di-
methylation of lysine 9 of histone H3 (H3K9me2) (Eom et al., 2009; Kim et al.,
2003). However, histones may not be the sole target for the methylation activity
of PRDMs (Fog et al., 2012). Since only a few members of the PRDM family
present catalytic activity, it has been suggested that the PR domain may have
evolved from a catalytic domain to a protein interaction module. Subsequently,
PRDMs may have acquired roles in regulating their interaction partners (Fog et
al., 2012). Definitely, some members of the PRDM family have been shown to
play indirect roles by recruiting chromatin remodeling enzymes (Ancelin et al.,
2006; Davis et al., 2006). Particularly, PRDM1 binds to PRMT5, an arginine-
specific histone methyltransferase, to provoke di-methylation of arginine 3 on
histone H2A and/or H4 tails (H2A/H4R3me2s) in germ cells (Ancelin et al.,
2006). PRDM6 is associated with H4K20 methylation in endothelial cells (Wu et
al., 2008) and interacts with p300 histone acetyltransferase (HAT) to acetylate
histones in smooth muscle cells (Davis et al., 2006).

PRDM proteins have been found at different protein complexes and play distinct
roles in different cell types and promoter-dependent manners. For example,
PRDM1, -5, and -6 function as transcriptional repressors by recruiting histone
methyltransferase G9%a and class | histone deacetylases HDAC1-3 to their target
gene promoters (Davis et al., 2006; Duan et al., 2007; Gyory et al., 2004; Yu et
al., 2000). PRDM2, -5, and -9 regulate cell-cycle (Deng and Huang, 2004;
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Hayashi et al., 2005; He et al., 1998), while PRDM6 is suggested to regulate
vascular proliferation by repressing genes associated with a differentiated
phenotype (Davis et al., 2006). Although the enzymatic activity of PRDM14
remains to be clarified, this protein has critical roles in the maintenance and
differentiation of human embryonic stem cells by regulating the expression of the
key pluripotency gene POUS5SF1 directly and integrating into the core
transcriptional regulatory network with other key transcription factors such as
OCT4, NANOG and SOX2 (Chia et al., 2010; Tsuneyoshi et al., 2008).
PRDM16 is a master regulator of brown fat differentiation (Kajimura et al., 2010).

Interestingly, it has been shown that PR domain-containing protein 7 (PRDM7)
arose from a PRDM9 duplication event during the primate evolution (Fumasoni et
al., 2007; Heerschop et al., 2021). PRDM7 may have originated in the
Catarrhine branch before the separation of Cercopithecoidea and Hominoidea.
However, why Hominoidea representatives need PRDM?7 still needs to be further
investigated. Because of the duplication event, PRDM9 and PRDM7 are highly
homologous, with only three amino acid residues of the PR/SET domain of
PRDM?7 being different from that of PRDM9 (residues 244—358 in both proteins)
(Blazer et al., 2016). These three different residues may lead to different catalytic
activities and substrate specificity between PRDM7 and PRDM9. Although the
biological roles of PRDM7 remain elusive, it is generally suggested to be a
histone methyltransferase, with the SET domain enabling trimethylation of H3
lysine 4 (H3K4) both in vitro and in vivo (Blazer et al., 2016). Compared with
PRDM?7, the catalytic activity of PRDM9 is mono-, di- and trimethylation of H3K36
and H3K4 in vitro and in cells (Eram et al., 2014; Hayashi et al., 2005). While
PRDM9 is only found in germ cells and plays roles in meiotic recombination
(Baudat et al., 2010), PRDM7 is more widely expressed in non-meiotic tissues.
However, limited information has been reported on its function. PRDM7 has
been suggested to be expressed highly in melanocytes, suggesting its specific
contribution to regulating melanocyte function (Fumasoni et al., 2007).

PRDM?9 contains three functional domains, namely an N-4terminus KRAB domain,
a central PR/SET domain, and a terminus zinc finger (ZF) domain of C2H2 type
(cysteine2-histidine2) (Parvanov et al., 2010). While an N-4terminus KRAB domain
promotes protein-protein interactions, the central PR/SET domain catalyzes
histone trimethylation, and a terminus zinc finger (ZF) domain of C2H2 type
determines DNA binding specificity (Parvanov et al., 2010). The PRDM7 gene
has undergone a massive structural rearrangement compared with the PRDM9
gene. The number of encoded zinc fingers in PRDM7 is reduced compared to
PRDM?, and the pattern of gene splicing is altered (Fumasoni et al., 2007).
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Indeed, the PRDM7 protein contains only four Zn-Fingers domains in contrast to
14 Zn-Fingers in PRDM9 upon the partial deletion of the last exon coding for Zn-
Fingers (Fumasoni et al., 2007). Moreover, an 89-nucleotide long segment
coding for the PR-domain C+erminus part is duplicated in PRDM7 compared to
PRDM9 (Fumasoni et al., 2007). The tandem duplication causes splicing variants
(Appendix 2). In theory, the genomic locus of PRDM7 could code for a long
isoform with the KRAB, SET, and Zn-figures domains, but the mRNA sequences
published so far correspond to a short variant containing either KRAB and SET
domains (isoform A — dominant isoform) or SET and Zn-Figures (isoform B) only
(Figure 7). The above-mentioned rearrangements may be involved in changing
the function of PRDM7 compared with PRDM9 (Blazer et al., 2016; Fumasoni et
al., 2007).
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Figure 7. Domain architecture of PRDM7 isoform A and isoform B
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2 Aims

2.1

Characterize the molecular mechanism involved in the
genetic suppression of the Mitf"<! mutation

Study the molecular effects of the Mitf™' mutation
Unravel the mechanism of E318K mutation in melanoma

The functional roles of PRDM7 in melanoma

Functional characterization of Skmel28 and 501Mel melanoma upon

PRDM?7 depletion

Analysis of the transcriptome profile of PRDM7 knock-out cells to map the
regulatory network of PRDM7 and MITF

Analyze the alteration of H3K4me3, H3K9me3, H3K27me3 histone
modifications upon PRDM7 and MITF knock-out
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3 Materials and methods

3.1 Cell culture, reagents, and antibodies

The cell lines HEK293, A375P (CRL-3224), and SkMel28 (HTB-72) were
purchased from ATCC. 501Mel melanoma cells were obtained from the lab of
Dr. Ruth Halaban (Yale University). The cells were maintained in RPMI 1640
medium (Gibco, (#5240025) supplemented with 10% FBS (Gibco #10270—
106) at 5% CO, and 37°C in a humidified incubator. Cycloheximide (CHX -
50mg/ml) (Sigma, #66819), 20mg/ml MG132 (Sigma, #474790), 10mg/ml
Doxycycline (Dox — Sigma, #324285), 10mg/ml TPA (Merck, #P1585), Tmg/ml
Baf-A1 (Merk, #88899-55-2), 5mM Leptomycin B (Merk, #L2913), 5mM PLX4032
(Selleckchem, #S1267) stock solutions were prepared in DMSO. The primary
antibodies used for all Western blot (WB) experiments and their dilutions were
as follows: Anti-Flag (Sigma, #F3165) at 1:5000 dilution; Anti-3-Actin (Cell
Signaling, #4970) at 1:1000 dilution; Anti-yH2AX (Abcam, #ab2251) at 1:2000
dilution, Anti-GAPDH (Cell Signaling, #), at 1:1000 dilution; Anti-H3K27me3
(Cell Signaling, #9733) at 1:1000 dilution; Anti-GFP (Abcam, #ab290) at
1:2500 dilution; Vimentin (Cell signaling, #5741) at 1:2000 dilution; CDC2
(Cell signaling, #9111) at 1:1000 dilution; CyclinB1 (Abcam, #ab32053) at
1:2000 dilution; Actin (Millipore, #Mab1501) at 1:5000 dilution; and MITF
(Millipore, #Mab3747) at 1:2000 dilution. The primary antibodies used for the
immunostaining experiments and their dilutions were as follows: Vimentin (Cell
signaling, #5741) at 1:250 dilution, phospho-Paxillin (Tyr118) (Cell Signaling,
#2541) at 1:100 dilution, MITF (Millipore, #Mab3747) at 1:200 dilution. The
antibodies used for the Cut&Run are listed as follows: Anti-H3K4me3 (Cell
Signaling, #9751S), Anti-H3K9me3 (Active-MO, #39161), Anti-H3K27me3 (Cell
Signaling, #9733), and Rabbit IgG (Cell Signaling, #3900S).

3.2 Generation of plasmid constructs for stable doxycycline-
inducible overexpression and knockdown

Fusions of wildtype and mutant mouse MITF-M cDNA with the 3XFLAG-HA tag at

the C- or Nterminus or fusion with the GFP-tag at the C terminus were generated

in the piggy-bac vector pPB-hCMV1. PRDM7 isoforms fusions with the 3XFLAG-
HA tag at the Cterminus were also constructed in the same piggy-bac vector.
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The cDNAs were subcloned downstream of a tetracycline response element
(TRE) using the Gibson Assembly Cloning kit (New England Biolabs # E5510S).
Mutations were introduced by in vitro mutagenesis using Q5 Site-directed
Mutagenesis Kit (New England Biolabs) according to the manufacturer's
instructions.

The BLOCK-T RNAI designer was used to design microRNAs (miR1-PRDM7 and
miR2-PRDM7) both targeting exon 10 of PRDM7. A non-argeting control (miR-
CTRL) was used as a negative control. The microRNAs targeting PRDM7 and
miR-CTRL (Table 2), including the required sequence for the terminal loop, were
cloned downstream of a tetracycline response element (TRE) in the pPB-hCMV1
vector using the Gibson Assembly Cloning kit (New England Biolabs # E5510S
following a similar protocol as mentioned above. A non-argeting control (miR-
CTRL) was used as a negative control. All clones were sequence verified (Table

3).

Table 2. List of miR-PRDM7

Name pre-miRNA sequences

miR-NTC 5'-TTTCGCTAAATGTACTGCGCGTGGAGACTTTTGGCCACTGACTGACTCTGAGGTCTTCAGCGAAA-3'
miR1-PRDM7-1 5'-TTTCGCTGAAGCCACCTCAGAGTTTTGGCCACTGACTGACTCTGAGGTCTTCAGCGAAA-3'
miR2-PRDM7-2 5'- TTTCCGATCTCTTTACACTCTGTTTTGGCCACTGACTGACAGAGTGTAGAGATCGGAAA -3'
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Table 3. List of generated pPB-hCMV1 plasmids in this study

Expressing protein Fusion tag Expressing protein Fusion tag
PRDM7-isoformA 3XFlag-HA MITF™P_de|326-378 3XFlag-HA
PRDM7_28kDa_PC1 3XFlag-HA MITF™"_573E 3XFlag-HA
PRDM7_28kDa_PC2 3XFlag-HA MITF™ _573A 3XFlag-HA
miR1_PRDM7 3XFlag-HA MITF™P_-K316R 3XFlag-HA
miR2_PRDM7 3XFlag-HA MITF™P_E318K 3XFlag-HA
Empty (EV) 3XFlag-HA MITF™"_-S409A-K316R 3XFlag-HA
Empty GFP MITF™*P-S409A-E318K 3XFlag-HA
MITF-WT 3XFlag-HA MITF™_-K182R-K316R 3XFlag-HA
MITF-WT GFP MITF™ 53257 3XFlag-HA
MITF-WT-S73E 3XFlag-HA MITF™*P-K316R-S325A 3XFlag-HA
MITF-WT-K316R 3XFlag-HA MITF™P_£318K-S325A 3XFlag-HA
MITF-WT-E318K 3XFlag-HA MITF™_5384A 3XFlag-HA
MITF-WT-S409A-K316R ~ 3XFlag-HA MITF™*P-5397A 3XFlag-HA
MITF-WT K182R-K316R  3XFlag-HA MITF™"_5401A 3XFlag-HA
MITF-WT 3XFlag-HA -(N-ter) MITF™P_5405A 3XFlag-HA
MITEM-WhE) 3XFlag-HA MITF™P-5409A 3XFlag-HA
MITEMHWO) 3XFlag-HA MITE™P-4A 3XFlag-HA
MITF™-316X 3XFlag-HA MITF™"P_£318K-S384A 3XFlag-HA
MITF™-326X 3XFlag-HA MITF™*_£318K-S397A 3XFlag-HA
MITF™-378X 3XFlag-HA MITF™P_E318K-S401A 3XFlag-HA
MITF™-del316-326 3XFlag-HA MITF™P_£318K-S405A 3XFlag-HA
MITF™-S73A 3XFlag-HA MITF™P-E318K-4A 3XFlag-HA
MITE™e" 3XFlag-HA MITF™_K316R-5384A 3XFlag-HA
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MITF™*-316X

MITF™*¥-326X

MITF™*¥-378X

MITF™®"_del316-326

MITF™*¥.S73A

MITE™*P

MITF™P

MITF™P

MITF™P-del316-326

MITF™P-326X

MITF™-326X-K316R

MITF™ -326X-E318K

MITF™P-378X

MITF™ .378X-K316R

MITF™ .378X-E318K

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

GFP

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

-(N-ter)

MITF™*P-K316R-S397A
MITF™*P-K316R-S401A
MITF™*P-K316R-S405A
MITF™*P-K316R -4A
MITE™ !

MITE™ !

MITE™ !

MITF™¢!(+)
MITF™_K182R
MITF™*.s73E
MITF™.573A

TFEB

TFE3

1433

€-14-3-3

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

GFP

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

3XFlag-HA

-(N-ter)

3.3 Generation of stable doxycycline-inducible MITF,
PRDM7 overexpression, and PRDM7-knockdown cell

lines

Inducible A375P, SKmel28, and 501Mel cells were generated as described
before (Dilshat et al., 2027a). Briefly, the wildtype and mutant mouse MITF
fusion constructs with the 3XFLAG-HA at the C- or at N-terminus or fusion with
GFP at C4erminus or PRDM7 fusion constructs with the 3XFLAG-HA at C-
terminus or a pPB-hCMV1-miR-PRDM7 or a pPB-hCMV1-EV-3XFLAG-HA empty
vector were transfected into 70—80% confluent A735P, 501Mel or SKMel28 cells
using Fugene HD reagent (Promega, Ref#E2311) together with the py-CAG-
pBase and pPB-CAG-rTA-IRES-Neo plasmids at a 10:10:1 ratio. After 48 hours of
transfection, the transfected cell lines were selected with 0.5mg/ml of G418
(Gibco, #10131-035) for two weeks. A ‘mock plate’ of no transfected cells was
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also included in each case. To equalize the expression of MITF proteins, the dox-
inducible A375P, 501Mel, and SKmel28 melanoma cell lines were treated with
varying concentrations of doxycycline and the dox concentrations leading to
similar MITF protein levels were used for future experiments. For overexpressing
or knocking down PRDM7, the dox-inducible PRDM7 overexpression or knock-
down cell lines were treated with doxycycline at Tug/ml final concentration.

3.4 Knockdown of genes using siRNA

Cells were seeded at the density of 8x10* per well in 24-well plates before
transfection with the appropriate siRNAs. The siRNAs were obtained from
ThermoFisher and were the following: siPRDM7 #AM16708 ID: 35655,
siAKIRIN2 #4392420 ID: s30222). Cells were reverse transfected with 5pmol
siRNA at the final concentration using Lipofectamine RNAIMAX (Invitrogen,
#13778030) according to the manufacturer's instructions. For the protein
degradation assay, cells were cultured with siRNA for 24 hours before inducing
MITF expression by doxycycline. In order to prepare RNA from the samples,
cells were treated with corresponding siRNA two days before harvesting.

3.5 Subcellular fractionations

The stable doxycycline-inducible MITF cells were seeded on 6-well plates at a
density of 3.5x10° cells per well. The next day, cells were treated with
doxycycline at a different concentration depending on the cell lines to induce the
expression of MITF protein. Upon 24 hours of dox treatment, the cells were
either directly harvested or continuously treated with TPA at 200nM for 1 hour, 4
hours, or treated with TPA (200nM) for 1 hour and MG132 (40ug/ml) for the
next 3 hours in the presence of TPA before harvesting by trypsinization. Cells
were washed with PBS before washing twice with swelling buffer, which
consisted of 10 mM HEPES, pH 7.9, 1.5 mM MgCl,, 10 mM KCI, 0.5 mM DTT,
and freshly added protease and phosphatase inhibitors. The cells were then
lysed by incubated at 4°C for 15min in Cell lysis buffer (10mM HEPES, pH 7.9,
1.5 mM MgCl;, 10 mM KCl, 0.5mM DTT, 0.1% NP40). Approximately 30% of
the sample was collected and set aside as whole cell lysate. The remaining cell
lysate was spun down at 3000 rpm for 5min at 4°C, and the supernatant was
collected as the cytoplasmic fraction. At the same time, the pellet, representing
the nuclear fraction, was washed with cold PBS before resuspension in RIPA
buffer (20mM Tris-HCI, pH7.4, 50mM NaCl, 2mM MgCl2, 1%(v/v) NP40,
0.5%(m/v) sodium deoxycholate, and 0.1% (m/v) sodium dodecyl sulfate, and
freshly added protease and phosphatase inhibitors) for further experiments
including Western blot and immunoprecipitation.
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3.6 Immunoprecipitation

Cells were seeded on 6-well plates at a density of 3.5x10° cells per well the day
before transfection. The following day, FUGENE HD reagent (Promega # E2311)
was used to conduct the co-ransfection of MITF-WT, MITF™=* or MITF™<.GFP-
tagged constructs together with MITF™, MITF™ew, MITFM-Wh £-14-3-3 or £-14-3-3)-
Flagtagged proteins. After 24 hours, the cells were washed twice with ice-cold
PBS and lysed by adding 200ul of RIPA buffer (20mM Tris-HCI, pH7.4, 50mM
NaCl, 2mM MgCl2, 1%(v/v) NP40, 0.5%(m/v) sodium deoxycholate, and 0.1%
(m/v) sodium dodecyl sulfate), with freshly added protease and phosphatase
inhibitors. The cell lysate was then ready for immunoprecipitation (IP); 30% of
the sample was collected as an input fraction.

For each IP sample, 20ul of Dynabeads Protein G magnetic beads (Invitrogen, #
10004D) were washed twice with Tml PBS using a magnetic stand before
resuspending in 300ul of PBS containing 0.01% Tween 20. The magnetic beads
were then conjugated with anti-Flag antibodies by adding Tug anti-Flag antibody
(Sigma, #F3165), followed by a 30-minute incubation at RT with rofation. The
magnetic beads were then washed twice with PBS containing 0.01% Tween 20
to eliminate non-conjugated antibodies and then resuspended with 20ul of PBS
containing 0.01% Tween 20. The IP samples were incubated with the coated
beads overnight at 4°C with rotation. Samples were then placed on the magnetic
stand, and supernatants were removed and saved as an unbound fraction (UnB)
in each case. The beads were washed twice with Tml PBS containing 0.01%
Tween 20. The protein was eluted from the beads by incubating with 150 ng/pL
3X Flag peptide in PBS containing 0.01% Tween 20 for 30 minutes at 4°C with
rotation. The samples were placed on the magnetic stand, and supernatants were
saved as an immunoprecipitation fraction (IP). The collected fractions were then
subjected to Western blot analysis.

3.7 Protein degradation assay

The dox-inducible A375P cells were treated with doxycycline to express MITF-
WT and MITF mutant proteins for 24 hours and then treated with 40pg/ml
cycloheximide (Sigma #66819), in the presence or absence of 200nM TPA,
2uM PLX, or 5nM LMB for O, 1, 2, and 3 hours before harvesting. For protein
degradation pathway analysis, the dox-inducible A375P cells were treated with
doxycycline to express the respective MITF constructs for 24 hours at a density of
8x10* cells and then treated with either 40ug/ml MG132 or 2ug/ml Baf-A1 in the
presence or absence of 40ug/ml CHX for 3 hours before harvesting. For
determining where protein degradation takes place, the dox-inducible A375P
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cells were seeded at a density of 8x10* cells and treated with siAKIRIN2 for 24
hours before inducing the expression of either MITF-WT or MITF™ proteins with
dox in the next 6 hours. The cells were then treated with 40pg/ml cycloheximide
for 0, 1, 2, and 3 hours before harvesting.

FUGENE HD reagent (Promega # E2311) was used for the codransfection of
MITF and other MITF mutant proteins. After 24 hours, the cells were treated
with 55pg/ml cycloheximide (Sigma #66819) for O, 1, 2, and 3 hours. The cells
were finally lysed in SDS sample buffer (2% SDS, 5% 2-mercaptoethanol, 10%
glycerol, 63 mM Tris-HCI, 0.0025% bromophenol blue, pH 6.8), and the
expression of the MITF protein determined by Western blot using Flag
antibodies.

3.8 Western blot analysis

Cell lysates in SDS sample buffer (2% SDS, 5% 2-mercaptoethanol, 10%
glycerol, 63 mM Tris-HCI, 0.0025% bromophenol blue, pH6.8) were boiled for
5 minutes at 95°C. Proteins were separated by SDS-PAGE and then transferred
to 0.2 pym PVDF membranes (Thermo Scientific #88520). To minimize
background staining, the membranes were blocked in T-TBS (20mM Tris, pH
7.4; 150mM NaCl; 0.01% Tween 20) containing 5% BSA. The membranes were
probed with specific primary antibodies. Following incubation with the primary
antibody the blots were washed three times with T-TBS for 10 minutes each, the
membrane was then incubated for 1 hour at room temperature with either
DyLight 800 anti-mouse (Cell Signaling, #5257) or DyLight 580 anti-rabbit IgG
(Cell Signaling, #5366) secondary antibodies (Cell Signaling Technology). The
protein bands were detected using Odyssey CLx Imager (LICOR Biosciences)
and Image Studio version 2.0. The band intensities were quantified using the
open-access Image| software (https://imagej.nih.gov/ij/).

3.9 Generation of PRDM7 knock-out cell lines

In order to generate knock-out mutation in the PRDM7 gene, CRISPR-Cas9
technology was used. Recombinant AR S.p. Cas? Nuclease V3 (Cat#
1081059), sequence-specific CRISPR RNA (crRNA) (5'-
CCGATGAAGAATGGACCT-3',  Ref#225403159) and  AN-RCRISPR-Cas9
tracrRNA ATTO 550 (tracrRNA) (IDT, t#1077024) were obtained from Integrated
DNA Technologies (USA). The tracrRNA and pre-designed crRNA with the
highest ontarget and off4arget scores targeting exon 3 of PRDM7 were ordered
in the Alt-R format. The proprietary chemically modified Alt-R RNA protects the
RNA oligos from degradation by cellular RNAase and further improves on-target
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editing performance. The Cas?:crRNA:#trRNA Alt-R ribonucleoprotein (RPN)
complex was formed according to the manufacturer’s instructions. Firstly, the
crRNA and #rRNA were resuspended to 2uM in Nuclease-Free Duplex Buffer
(IDT, Cat#1072570) before forming the crRNA:#rRNA duplex. Oligos were
mixed at equimolar concentrations in a sterile microcentrifuge tube before
annealing by heating at 95°C for 5 min in a PCR thermocycler. The mixture was
then slowly cooled to room temperature. Before producing the transfection
complex, (1:1:1, Cas9:crRNA:tracrRNA) Alt-R RNP complex was prepared 5 mins
prior to mixing TuM crRNA:tracrRNA and TuM Cas9 nuclease with 1:1 volume
ratio in Opt-MEM media (Gibco, Cat#11858-021). After that, 1.2ul per well
Lipofectamine RNAIMAX lipid transfection reagent (Invitrogen, #13778-075) was
incubated with 30nM (1:1:1, Cas9:crRNA:tracrRNA) Alt-R RNP complex in a final
50ul total volume for 20 min at room temperature. All transfections in SKmel28
and 501Mel cell lines were reverse transfected in a 96-well cell culture plate
using 4.10* cells suspended in 100ul RPMI with 10% FBS per transfection. The
cells were incubated for 48 hours posttransfection at 37°C in a 5% CO,
humidified incubator. The transfected SKmel28 and 501Mel cells were serially
diluted in 96-well plates to form single colonies. Following five weeks in
stepwise expansion culture, single-cell colonies were trypsinized and divided in
half. Half of the cells were sub-cultured in 6-well plates for further growth, and
the other half was subjected to DNA isolation. Mutations were then detected by
using T7 Endonuclease | (NEB, Cat#M0302S) and Sanger sequencing. As a
result, we obtained PRDM7 knock-out cell lines (501Mel-PRDM7-KO and
SKmel28-PRDM7-KO) targeting exon 3. The respective control cell lines, termed
Skmel28-Control and 501Mel-Control, were generated by transfecting the cell
without crRNA:#rRNA duplex.

3.10 Preparation for Sanger sequencing

Genomic DNA was isolated from the PRDM7 knock-out cell lines. Approximately
2.10° cells were trypsinized and spun down at 1500 rpm for 2 min in an
Eppendorf 5418 Centrifuge. The supernatant was removed. The cell pellet was
resuspended in 25 plL of PBS before suspending in 250 pL Tail buffer (50mM
Tris pH8, 100 mM NaCl, 100 mM EDTA, 1% SDS and 0.2mg/mL Proteinase K
ThermoFisher, #£00491) and incubating at 56°C overnight. At the next stage,
50ul of 5M NaCl was mixed with the suspension collected from the above step
on a shaker for 5 minutes and spun at 12000 rpm for 5min in an Eppendorf
5418 Centrifuge 5418. The resulting supernatant was mixed with 300pL
isopropanol by inversion and centrifuged at 12000 rpm for 5min in an
Eppendorf 5418 Centrifuge. The collected pellet was washed with 70% Ethanol
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and air-dried at room temperature. Finally, the dried pellet was dissolved in
nuclease-free water for at least 2 hours at 37 °C.

PCR was performed to amplify the genomic region around exon 3 of PRDM7
using specific primers (Table 4). PCR mixture consisted of 500ng of gDNA, 10l
of 5X Q5 reaction buffer (NEB, #B9027S), 2.5pl of each specific forward and
reverse primers (10pmol/pl), Tul of 10mM dNTPs, 0.5ul of Q5 Hot start High-
Fidelity DNA polymerase and nuclease-free water to the final volume of 50pl.
After heating at 98°C for 30 seconds, the PCR amplification was programmed on
the Veriti 96-Well Thermal Cycler (ThermoFisher, #4375786) for 31 cycles at
98°C for 10 seconds, 68°C for 12 seconds, 72°C for 30 seconds, and final
elongation at 72°C for 5 mins. After PCR, the sizes of the resulting PCR products
were confirmed by running the samples on 1.5% agarose gels at 90V for 30min.
Subsequently, the PCR product was purified using the GeneJET PCR Purification
Kit (ThermoFisher, #K0702). The concentration and purity of DNA were
measured using the NanoDrop One Microvolume UV-Vis Spectrophotometer
(ThermoFisher Scientific). The purified DNA was stored at —20°C or used
immediately. The amplified regions were then subjected to Sanger sequencing,
and the percent of insertions and deletions (indels) in the DNA of the targeted
region relative to control cells was further determined using the ICE CRISPR
Analysis Webtool (https://www.synthego.com/).

Table 4. Primers used for amplifying genomic regions of exon 3 of PRDM7 and
exon 4 of PRDM9

Target Primer name Sequence Amplicon size
Exon 3 -PRDM7 PRDM7_CRISPR-F GAGAAGCTGAGGTGGGAGAA 958bp
PRDM7_CRISPR-R ATGGGCAGAAATGGGAGACT
Exon 4-PRDM9 PRDM9-CRISPRscreen-F TTAGTTCTCAGGTGGTGGCA 619bp
PRDM9-CRISPRscreen-R GAGACCAGCTTGACCAACAC

3.11 Identifying alternative splicing and novel PRDM7
isoforms by PCR amplification and test digest

cDNA isolated from SKmel28 melanoma cells was used as the template to
identify novel PRDM7 isoforms using PCR amplification. The common PCR was
performed to amplify the target region using specific primers (Tables 5 and 6).

49


https://www.synthego.com/

Hong Nhung Vu

The sizes of PCR products were confirmed by running samples on 1.5% agarose
gels at 90V for 30min. To screen novel PRDM7 isoforms, PCR products were
cloned into pUC19 using the Gibson Assembly Cloning kit (New England
Biolabs # E55108S). Before sending to sequencing the pUC19_PRDM?7 plasmids,
we conducted the test digested using BamHI (NEB, #R3136) and HindIl (NEB,
#R3104) restriction enzymes to confirm the size of the insert. For understanding
alternative splicing events, primers in table 6 were used to amplify the target
regions. The resulting PCR products were excised from agarose gels and
purified by using GenelET Gel Extraction Kit (ThermoFisher, #K0692) before
sending fo sequencing.

Table 5. Primers used for identifying novel PRDM7 isoforms

Primer name Sequence
PRDM7_Predicted_GibpUC19_fwd gcttgeatgectgecaggtcg GATCTTGACTCACTGCAAC
PRDM7_Predicted_GibpUC19_rev acccggggatcctctagagtAGAGTTTGGACCTTTCTTTG

Table 6. Primers used for identifying alternative splicing in PRDM7

Primer name Sequence
PRDM7_PCR_Exon1_Fwd ATGAGCCCTGAAAGGTCCCAAGA
PRDM7_PCR_Exon3_Rev TCTTCTGTGTCATCCACCTGGAGTTT
PRDM7_PCR_Exon5_Rev AGGAGGGGACACTGGTTTCTGAGCC
PRDM7_PCR_Exon6_Rev TGTGGCTCGCTGATCTCTTTGTATG
PRDM7_PCR_Exon5_Fwd GAGAGAATTGTCAGGAACGCCA
PRDM7_PCR_Exon9_Rev TGAGCTCTTTCTTCCACTTGCTG
PRDM7_PCR_Exon7_Fwd ATTTGTAAAGGACAGTGCAGTGG
PRDM7_PCR_Exon10_Rev GACTTGAAAAGGCCAGACAGCATG

3.12 Immunostaining

For immunohistochemistry, cells were seeded in 8-chamber polystyrene vessel
tissue culture-treated glass slides (Falcon, #354108) at 70% confluence. First, the
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culture media were aspirated, and cells were then fixed with 4%
paraformaldehyde (PFA) diluted in warm PBS for 15 minutes. After three washes
with PBS for 5 min each, the blocking buffer (1xPBS, 5% Normal Goat Serum
(Gibco, #6210-064) 0.3% Triton X-100) was added to each chamber and
incubated for 1 hour at room temperature. After that, the cells were incubated
with the appropriate primary antibody diluted in antibody dilution buffer (1xPBS,
1% BSA, 0.3% Triton™X-100) at 4°C overnight. After three washes with PBS for
5min each, the cells were then incubated for 2 hours at room temperature with
the appropriate secondary antibody diluted in antibody dilution buffer. The
secondary antibodies used for immunostaining were listed as follows: Alexa
Flour 488 (ThermoFisher, #A11008) at 1:1000 dilution or Alexa Flour 546
(ThermoFisher, #1-11003) at 1:1000 dilution. Finally, the cells were washed three
times in 1X PBS for 5min each before mounting in SlowFade Gold Antifade
Reagent with DAPI (ThermoFisher, #8961,) and covering with a cover slide. The
slides were then stored at 4°C in the dark.

3.13 Incucyte live cell imaging

Dox-inducible A375P melanoma cells overexpressing MITF-WT, MITFm?, and
MITF™s or PRDM7-KO cells and their corresponding control were seeded at
2000 cells per well in triplicate onto a 96-well cell culture plate (Falcon,
#353072). Images were recorded with Incucyte S3 Live-Cell Analysis System
(Sartorius, Essen BioScience) every 2 hours for four days. Collected images were
then analyzed using the Incucyte software by measuring the percentage of cell
confluency.

3.14 Single-cell movement assy

PRDM7-KO cells and their corresponding control were seeded at 100 cells per
well in triplicate onto a 96-well cell culture plate (Falcon, #353072). Images
were recorded with Incucyte S3 Live-Cell Analysis System (Sartorius, Essen
BioScience) every 20 mins for 24 hours. Collected images were then analyzed
using the Tracmate/Image] software by measuring the movement of single cells.

3.15 Scratch assay

Each cell line was seeded at 2x10* cells per well in triplicate onto a 96-well cell
culture plate (Sartorius, #4379). When the culture reached 100% confluency,
scratches were made with Incucyte 96-well WoundMaker (Essen Bioscience,
#4563). Images were recorded with Incucyte S3 Live-Cell Analysis System
(Sartorius, Essen BioScience) every hour for a maximum of four days. The
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recorded images of the scratches were analyzed with Incucyte software to
quantify gap closure by measuring relative wound density (%) and wound width
(pm). The migration rate was calculated with the following formula: (Wound
Width[To] - Wound Width [T])/(( T: -To)x2).

3.16 Colony formation assay

Each cell line was seeded at 200 cells per well in triplicate onto a six-well cell
culture plate. These cells were allowed to grow for another 11 days with or
without constant treatment with 0.5uM Vemurafenib PLX4032 (Selleckchem,
#51267). Cells were then fixed by ice-cold 100% methanol for 30mins at -20°C
and stained by staining solution (0.5% crystal violet, 25% methanol) for 20 mins
at room temperature. Cells were washed with water to remove the excess dye.
The number of colonies was counted using the Image] software.

3.17 Apoptosis assay

Each cell line was seeded at 3000 cells per well in triplicate onto a 96-well cell
culture plate (Falcon, #353072). After 24 hours, the cells were treated with the
IncuCyte Caspase-3/7 Green Reagent for Apoptosis (Essen BioScience, #4440)
with 1:1000 dilution in culture media, for a final assay concentration of 5 pM.
Phase-contrast and fluorescent images were recorded with Incucyte S3 Live-Cell
Analysis System (Sartorius, Essen BioScience) every 2 hours for four days.
Collected images were then analyzed using the Incucyte software by measuring
the percentage of cell and fluorescent object confluency per well. The
confluence of fluorescent objects (%) was a measurement of apoptosis.

3.18 qPCR and sequencing

The day before inducing MITF expression by doxycycline, cells were seeded on
12-well plates at a density of 1.2x10° cells per well. MITF expression was induced
for 6, 12, 24, and 36 hours and harvested for RNA isolation using TRIzol
reagent (ThermoFisher, #15596—026). Regarding the PRDM7-KO, the cells were
seeded on 12-well plates at a density of 1.2x10° cells per well for 48 hours
before being isolated by TRIzol reagent (ThermoFisher, #15596—026). High-
Capacity cDNA Reverse Transcription Kit (#4368814, Applied Biosystems) was
used for cDNA synthesis according to the manufacturer’s instructions. The
SensiFAST SYBR Lo-ROX Kit (Bioline, #BIO-94020) was utilized for the qPCR.
gPCR reactions were performed using 0.4 ng/pl cDNA in triplicates. The
relative fold-change in gene expression was calculated using the D-AACt method
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(Livak and Schmittgen, 2001). The geometrical mean of Bactin and hARP
expression was used to normalize target gene expression.

3.19 Cell Cycle Synchronization by Thymidine Block

Cells were seeded on 12-well plates with 1.2x10° cells per well. On the following
day, cells were treated twice with 2mM Thymidine (Sigma, #T9250) for 16 hours
each time with an 8-hour interval between treatments by replacing with fresh
RPM1 media containing 10%FBS. After the thymidine treatment, cells were
harvested for Western blot analysis at O hours, 4 hours, 8 hours, and 12 hours
time points counted from the second thymidine release.

3.20Differential gene expression analysis of melanoma
tumor samples in cancer genome atlas database

The RNA-seq data of 480 skin Cutaneous Melanoma samples in the TCGA
database were used for further analysis of the roles of PRDM7 in melanoma. The
tumors were sorted based on PRDM7 expression, and the 30 melanoma tumor
samples with the highest and 30 with the lowest PRDM7 mRNA expression were
classified into the PRDM7"s" or PRDM7'* groups, respectively. The different
expression analyses between the two groups were performed using
TCGAbiolinks in the R-Bioconductor package.

RNA samples were isolated from PRDM7-KO cells and their corresponding
controls using Quick-RNA MiniPrep Kit (Zymo research, #R1055). The isolated
RNA then sent to Decode Genetics for paired-end sequencing with 50 million
reads per sample. The sequencing reads were quality-controlled using FastQC
(Simons, 2010) before alignment to the human genome (build GRCh38) using
Kallisto (Bray et al., 2016). Various downstream analysis was then conducted,
including differential expression analysis performed by Sleuth (Pimentel et al.,
2017) and enrichment analysis using GSEA software (Subramanian et al., 2005).

3.21 Cleavage Under Targets and Release Using Nuclease
(CUT&RUN)

The protocol used for the Cut&Run analysis was described by (Dilshat et al.,
2021a). To determine which changes are mediated in H3K4me3, H3K4me9, and
H3K4me27 histone modifications upon PRDM7 and MITF depletion, Anti-
H3K4me3, anti-H3K9me3 and anti-H3K27me3, and anti-lgG Cut&Run were
performed in PRDM7-KO, MITF-KO cells, and their corresponding controlz.
10x10° cells at log-phased in culture were harvested by cell scraping. The cells
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were then washed twice in washing buffer (20 mM HEPES, pH7.5, 150 mM
NaCl, 0.5 mM spermidine and the protease-inhibitor cocktail, Roche cOmplete
Mini, EDTA-free). The cells were then suspended in a washing buffer and added
into the preactivated Concanavalin  A-coated magnetic beads (Bangs
Laboratories, Inc) in binding buffer (20mM HEPES pH 7.5, 10mM KCI, TmM
CaCl2, TmM MnClI2) in the ratio 1:1 V/V. The tube was incubated at RT for
10min for the cells to adhere to the beads. The ConA beads conjugated with
cells were then suspended in antibody buffer (wash buffer with 2 mM EDTA and
0.03% digitonin) and appropriate antibody before incubating at 4°C on a
rotating wheel overnight.

In the next stage, the wash buffer containing 0.03% digitonin (dig-wash buffer)
was used to wash the cells before performing chromatin digestion by the pAG-
MNase. The digesting step was terminated by 2X Stop buffer (340 mM NaCl, 20
mM EDTA, 4 mM EGTA, 0.02% Digitonin, 100 pg/mL RNAse A, 50 pg/mL
Glycogen, and Ing/mL E. coli Spike-in DNA control EpiCypher). The released
DNA fragments were treated with 0.1% SDS at final concentration and 1.2ul
Proteinase K (ThermoFisher, #EQ0491) for 1 hour at 50°C and purified by
Phenol:chloroform:lsoamylAlcohol ethanol-precipitated. Al CUT&RUN
experiments were performed in duplicate.

3.22Cut&Run library preparation and data analysis

CUT& RUN libraries were prepared using NEBNext Ultra || DNA Library Prep Kit
for lllumina (Neb, #E7645L) according to the manufacturer’s instructions. The
quality of library amplification was determined by using 2100 Bioanalyzer for
fragment analysis. Libraries were then paired-end sequenced with a sequence
depth of approximately 7 million reads per sample and a read length of 2x150
on lllumina Novaseq. Bowtie2 version 2.1.0 (Langmead and Salzberg, 2012)
was used to map the reads against the hg38 genome assembly. The peak call
and downstream analyses were performed using the R-package.

3.23 Statistical analysis

Experimental data were analyzed with GraphPad Prism 9.0 software (San Diego,
CA). All experiments were performed in at least three biological replicates. An
unpaired ttest was conducted to compare the two groups. A significant
difference was established with *p<0.05. All the data were expressed as mean
+ SEM. For RNA-seq data, we selected differentially expressed genes with the
cut-off of |log2 (foldchange)|=1 and qval <0.05 for downstream analysis.
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4 Results

4.1 Characterisation of the molecular properties of the
Mitfm suppressor mutation (Paper Il -manuscript in
preparation)

4.1.1 MITF™ protein accumulates in the nucleus

The MITF™* mutation affects a domain of MITF that has been implicated in
protein stability, localization, and transcription activation. This domain has all the
characteristics of an internally disordered region (IDR), lacking 3D structure,
although Alphafold predicts a couple of helices and a short Bsheet structure; the
confidence of the prediction is low. To determine how this mutation mediates the
genetic suppression observed, we investigated the effects of the mutation on
various protein properties.

To investigate the effects of the MITF™ mutation on nuclear localization, Flag-
tagged (at C-terminus) MITF-WT, MITF™+, and MITF™ proteins were expressed
in a dox-inducible vector and transfected into A375P melanoma cells, which
express little endogenous MITF. To equalize expression at a steady state, the
A375P cell lines were treated with varying concentrations of doxycycline for 24
hours. The nuclear and cytoplasmic fractions were separated as described
(Ramsby and Makowski, 1999; Senichkin et al., 2021), and the MITF proteins
were characterized by Western blot. The MITF protein is observed as two bands
where the upper band is phosphorylated at S73 (hereafter referred to as pS73-
MITF), and the lower band is not phosphorylated at S73 (hereafter referred to as
unpS73-MITF) (Fock et al., 2019; Ngeow et al., 2018). For the MITF-WT and
MITFmP proteins, both bands were observed at similar ratios in the nuclear and
cytoplasmic fractions. However, for MITF™* both bands were predominantly
located in the nucleus, although a portion was still found in the cytoplasm
(Figures 8A and 8B). A similar result was observed when the MITF-WT, MITFmi,
and MITF™ proteins were overexpressed in 501Mel and SKmel28 melanoma
cell lines, expressing a high endogenous level of MITF (Figures 8C-F). Flag-
tagging the MITF protein at the N-end or replacing the C4erminus Flag with GFP
also resulted in the significantly increased nuclear presence of the MITF™!
protein (Figures 8G and 8H).
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Figure 8. The 316-419 domain affects MITF localization (A), (C), (E), (G), (H)
Western blot analysis of subcellular fractions isolated from A375P (A, G, H) or 501Mel
(C) or SKmel28 melanoma cells induced for 24 hours overexpressing indicated MITF
mutant proteins with either Flagtag at Cterminus (A, C, E) or Flagtag at N-terminus (G)
or GFP+tag at Cterminus (H) were visualized using either Flag or GFP antibody. MITF
mutant proteins in whole cell lysate (WL), cytoplasmic (Cyto) and nuclear fractions (Nu)
were visualized using Flag or GFP antibody depending on the fusion tag. Actin/GAPDH
and yH2AX/H3K27me3 were loading controls for cytoplasmic and nuclear fractions,
respectively. (B), (D), (F) The indicated pS73- and unpS73-MITF protein band intensities
from the Western blot analysis (A),(C), and (E) respectively, were quantified separately
with Image| software and are depicted as percentages of the total amount of protein
present in the two fractions. Error bars represent SEM of three independent experiments.
Statistically significant differences (Student's test) are indicated by *, p< 0.05.
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To determine whether the six amino acids encoded by exon 6A are involved in
mediating nuclear localization, the MITFMWhO (lacking the éaa domain) and
MITFMWh() (containing the éaa domain) proteins were transiently expressed in
A375P cells. No difference was observed in the distribution of MITF between the
nuclear and cytoplasmic fractions of the two constructs (Figure 9A). We also
generated a version of Mitf™s which contains exon 6A (Mitf"**)) (Figure 9B),
and studied its effects on nuclear localization in A375P cells. The results showed
that the MITF™=*) protein was also primarily nuclear (Figure 9A). Taken together,
we have demonstrated that the 316-419 domain of MITF, but not exon 6A or the
tags, mediate MITF nuclear localization.
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Figure 9. The C-terminus is essential for MITF"" nuclear accumulation, regardless
of $73 phosphorylation status. (A) Western blotanalysis of subcellular fractions isolated
from A375P cells transiently overexpressed the indicated MITF mutant protein. MITF
proteins in cytoplasmic (Cyto) and nuclear fractions (Nu) were visualized using Flag
antibody. Actin and yH2AX were loading controls for cytoplasmic and nuclear fractions,
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respectively. (B) Schematic of MITF™) mutant construct which was generated by deletion
exon 6A. (C) Western blot analysis of subcellular fractions isolated from A375P melanoma
cells induced for 24 hours overexpressing different MITF mutant proteins. MITF proteins
in cytoplasm fraction (Cyto) and nuclear fractions (Nu) were visualized using Flag
antibody. GAPDH and H3K27me3 were loading controls for cytoplasmic and nuclear
fractions, respectively. (D The indicated pS73- and unpS73-MITF band intensities in the
cytoplasmic and nuclear fractions from Western blot analysis (C) were quantified
separately with Image| software and are depicted as percentages of the total amount of
protein present in the two fractions. Error bars represent SEM of three independent
experiments. Statistically significant differences (Student’s test) are indicated by *, p<
0.05.

Previous work has shown that the phosphorylation of S73 leads to the nuclear
export of MITF (Ngeow et al., 2018). To determine whether the effects of the
316-419 domains on subcellular localization of MITF depend on S73
phosphorylation, we replaced S73 with either the non-phosphorylated alanine
residue or the phosphorylation mimic glutamic acid in the MitFWT and Mitf~-!
constructs. Cellular fractionation was then performed. Like the MITF™ protein,
MITF<.S73A and MITF™<.S73E showed significant accumulation in the nucleus
(Figures 9C and 9D). Although, a higher enrichment was observed for MITF-WT-
S73A and MITF-WT-S73E in the nuclear compartment than MITF-WT (Figures 9C
and 9D), the most pronounced effect was observed for the MITF™=, MITF™s! .
S73A, and MITF™ .S73E proteins. Our findings suggest that lacking the C-
terminus is essential for MITF™ nuclear accumulation, regardless of S73
phosphorylation status.

4.1.2 The 316-326 and 378-419 domains of MITF affect its
localization

To determine which domains within the carboxyl end of MITF determine the
nuclear retention properties, we generated truncated versions of MITF™<P with
Flagtag fusion at the carboxyl end in our inducible vector system (schematic
diagram in Figure 10A). The results showed that the unpS73-MITF™r-del326-377
protein behaves like unpS73-MITF-WT in that the protein is distributed equally
between the cytoplasmic and nuclear fractions; the pS73-MITFmr.del326-377
was slightly more cytoplasmic (Figures 10B and 10C). In contrast, a significant
portion of the MITF™<*-326X and MITF™<*-378X proteins was present in the
nuclear fraction, suggesting that the 378-419 domain, including the
phosphorylation sites (indicated in Figure 10A), plays an essential role in the
nuclear accumulation of MITF. However, since the MITF™* protein was more
nuclear than the MITF™+P-326X and MITF™,-378X proteins (Figures 10B and 6C),
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the absence of the 378-419 domain is not the only reason for the nuclear

enrichment of MITF™!,
SUMOssite and adjacent residues,

The MITFm

*.del316-326 construct, which lacks the
did not alter the cytoplasmic-nuclear

distribution of MITF (Figures 10B and 10C). Taken together, our results suggest
that the 378-419 domain plays a major role in the nuclear retention of MITF.
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Figure 10. The 316-326 and 378-419 play important roles in regulating MITF
localization. (A) Schematic of C-erminus MITF™P truncation constructs. Cierm
truncations were generated by introducing stop codons at position Q326 or L378 or
deletion fragments 326-377 or 316-326. MITF™P-326X introduces a stop-codon at residue
326, which contains the SUMO-site at 316; MITFm+,.del326-377 lacks the tentative
activation domain AD3; MITF™*P-del316-326 lacks SUMO-site and adjacent amino acid;
MITF™+,.378X lacks the series of phosphorylation sites at the carboxyl-end of the protein.
(B) and (D) Western blot analysis of subcellular fractions isolated from A375P melanoma
cells induced for 24 hours overexpressing different MITF mutant proteins. Using the FLAG
antibody, the indicated MITF mutants were visualized in the cytoplasmic and nuclear
fractions. Actin or GAPDH and yH2AX or H3K27me3 were loading controls for
cytoplasmic and nuclear fractions, respectively. (C) The indicated pS73 MITF and unpS73
MITF protein band intensities in the cytoplasmic and nuclear fractions from Western blot
analysis (B) were quantified separately with Image] software and are depicted as
percentages of the total amount of protein present in the two fractions. Error bars
represent SEM of three independent experiments. Statistically significant differences
(Student’s t-test) are indicated by *, p< 0.05.

To further investigate the effects of the 316-326 and 378-419 domains in
regulating MITF localization, versions of MITF™ and MITF™=¥ lacking the C-
terminus were generated in our inducible vector system, expressed in A375P
melanoma cells, and characterized as before. Intriguingly, the results showed
that MITF™ and MITF™" proteins that also contained the 316X, 378X, and
del316-326 mutations were more nuclear than the MITF™ and MITF™* proteins
(Figure 10D). This suggests that the 316-326 and 378-419 domains can mediate
the nuclear localization of MITF and that they override the karyophilic effects of
the bHLHZip domain.

Previous work has shown that treatment with 12-O-etradecanoylphorbol-13-
acetate (TPA) leads to phosphorylation of S73 of MITF and shifts the protein to
the cytoplasm (Ngeow et al., 2018). Therefore, we treated A375P cells
expressing various constructs with TPA and determined their effects on
localization. Consistent with the previous literature, TPA treatment promoted S73
phosphorylation (as seen by the almost exclusive presence of the upper MITF-
band) and shifted the protein out of the nucleus (Figures 11) (Ngeow et al.,
2018). Similar to MITF-WT, the MITF™<,-del326-377 and MITF™<-378X proteins
were predominantly phosphorylated at S73 and located in the cytoplasm after the
treatment. In contrast, although the MITF™, MITFm<,-326X, and MITF™,-del316-
326 proteins were phosphorylated at S73 after 1 hour of TPA treatment, the
proteins were present in both cytoplasmic and nuclear fractions; a significant
proportion of the MITF™* protein was nuclear, whereas MITF™-326X protein
was equally distributed between the two compartments and one-third of MITF™ise-
del316-326 protein was located in the nuclear fraction (Figures 11). These data
suggest that the 316-326 domain of MITF can override the effects of TPA on
nuclear export. Taken together, the results suggest that the 316-326 and the 378-
419 domains play a crucial role in the nucleo-cytoplasmic shuttling of MITF.
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Figure 11. The 316-326 domain overrides the effect of TPA to export
phosphorylated $73 MITF out of the nucleus. (A) Western blot analysis of subcellular
fractions isolated from 24-hours-inducible A375P melanoma cells overexpressing different
MITF mutant proteins before treatment with TPA at 200nM for 1 hour. MITF-WT, MITF™,
MITFmsP-326X, MITF™+P-del326-377, MITF™+P-d316-326, and MITF™<P-378X protein in
cytoplasmic fraction (Cyto) and nuclear fractions (Nu) were visualized using Flag
antibody. Actin or GAPDH and yH2AX or H3K27me3 were loading controls for
cytoplasmic and nuclear fractions, respectively. (B) The indicated pS73-MITF proteins
band intensities from Western blot analysis (A) in the cytoplasmic and nuclear fractions
from the cell treated with TPA were quantified separately with Image] software and are
depicted as percentages of the total amount of protein present in the two fractions. Error
bars represent SEM of three independent experiments. Statistically significant differences
(Student's ttest) are indicated by *, p< 0.05.

Previous work has shown that MITF phosphorylated at S173 interacts with the 14-
3-3 protein, leading to the retention of MITF in the cytosol in the osteoclasts
(Bronisz et al., 2006). To determine whether the difference in nuclear
localization between the MITF-WT, MITF™* and MITF™* proteins was due to
interactions with 14-3-3, we co-expressed &-14-3-3 and £-14-3-3 fused with Flag
together with either MITF-WT-GFP, MITF™*.GFP or MITF™"P.-GFP proteins in A375
cells and performed co-immunoprecipitation (co-IP) of the whole cell lysis using
the Flag-antibodies. Our results showed that MITF-WT, MITF™<*: and MITF™!
proteins interacted with the &-14-3-3 and £-14-3-3 isoforms, and no difference was
observed in signal intensity between the two mutants (Figure 12). This suggests
that the nuclear accumulation of MITF™* protein is not due to effects on
interactions with 14-3-3.
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Figure 12. MITF™! protein can be complex with 14-3-3 proteins at a similar level
as MITF™=* and MITF-WT. Western blot analysis showing the results of a co-
immunoprecipitation experiment. MITF™*.GFP, MITF™.GFP, or MITF-WT-GFP construct
was cotransfected with either -14-3-3-Flag or ({-14-3-3-Flag in A375P melanoma cells. Co-
immunoprecipitation (co-IP) of the whole cell lysate using Flag-antibodies was performed
and visualized using Flag antibody. Input fraction (Input), unbound fraction (Unb), and an
immunoprecipitated fraction (IP) were indicated in the Western blot.

4.1.3 The SUMOylation site at K316 and the $409
phosphorylation site interact to regulate MITF subcellular
localization

To determine the role of the different phosphorylation sites at the carboxyl end of
MITF in mediating nuclear localization, we substituted S384, S397, S401, S405,
and S409 phosphorylation sites with the non-phosphorylatable alanine,
separately or together in the MITF™ construct. Our results showed that the
S384A, S397A, S401A, and S405A in MITF™* were equally distributed between
the nucleus and cytoplasm (Figures 13A) whereas MITF™*-S409A was slightly
more nuclear (Figures 13B and 13C). As S409 serves as a priming site for
phosphorylation at S405, S401, and S397 (Ploper et al., 2015), the effect of the
quadruple S397/401/405/409A mutation in MITF™=P (MITF™P-4A) and MITF-WT
(MITF-WT-4A) on localization was determined. It showed that both pS73 and
unpS73 forms of MITF™-4A and MITF-WT-4A were more nuclear (Figures 13B
and 13C). This suggests that phosphorylation at S409 affects MITF localization
and that the phosphorylation cascade at the carboxyl end may be involved in the
cytoplasmic retention of MITF.

To determine whether the SUMOylation site at K316 was involved in regulating
MITF subcellular localization, we replaced the K316 residue with arginine in the
MITF-WT and MITF™* constructs. We also determined the effects of the E318K
mutation. Neither the K316R nor the E318K mutation altered the localization of
the MITF-WT and MITF™=* proteins (Figures 13B and 13C). Although the single
SUMOylation site at K316 does not contribute to MITF localization and S409 only
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moderately enriched nuclear localization, the K316 residue may cooperate with
the phosphorylation sites to mediate the effects on MITF localization. To further
investigate this, we generated the K316R or E318K mutations in MITF™P.S384A,
MITFmise .S397A, MITF™ -S401A, MITF™ .S405A, and MITF™.S409A
constructs and determined effects on nuclear localization. When together with
the S384A, S397A, S401A, and S405A mutations, the K316R and E318K
mutations did not alter nuclear localization of MITF (Figure 13D). Intriguingly,
however, the MITFm* K316R-S409A and E318K-S409A proteins were more
nuclear, regardless of S73-phosphorylation (Figures 13B and 13C). The effect on
nuclear enrichment was slightly more pronounced than observed in the single
S409A mutation. This suggests that a specific interplay between the SUMOylation
site at K316 and the phosphorylation site at S409 affects MITF subcellular
localization. Interestingly, none of the double point mutations or the
combinations of the K316R and E318K mutations with the C-terminus deletions
exhibited a similar impact on nuclear enrichment as observed for MITF™
(Figures 13E and 13F). Together, our findings suggest that the individual
SUMOylation and phosphorylation sites located at the MITF carboxyl end are
important but insufficient for the nuclear localization of MITF. Instead, nuclear
localization depends on both the region around SUMOylation site at K316 and
the carboxyl end.
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Fiqure 13. SUMOylation at K316 and phosphorylation at S409 interplay to
mediate MITF localization. (A), (B), (D), (E) Western blot analysis of subcellular
fractions isolated from 24-hours-inducible A375P melanoma cells overexpressing different
MITF mutant proteins. Indicated MITF protein in cytoplasmic fraction (Cyto) and nuclar
fractions (Nu) were visualized using Flag antibody. GAPDH and H3K27me3 were loading
controls for cytoplasmic and nuclear fractions, respectively. (C) and (F) The indicated
pS73 MITF and unpS73 MITF protein band intensities in the cytoplasmic and nuclear
fraction from Western blot analysis (A and B) or (D and E) were quantified separately
with Image] software and are depicted as percentages of the total amount of protein
present in the two fractions. Error bars represent SEM of three independent experiments.
Statistically significant differences (Student’s ttest) are indicated by *, p< 0.05.

To confirm the cooperation between K316 and the carboxyl terminus of MITF in
regulating MITF localization, we inducibly expressed the MITF™,.-326X-K316R,
MITF™,-378X-K316R, MITF™<,-326X-E318K, and MITFm+,-378X-E318K proteins in
A375P cells for 24 hours. The cells were then treated with TPA at 200nM for 1
hour before harvesting for fractionation. While the pS73-MITFm+P-326X protein
was approximately equally distributed between the two compartments, the pS73-
MITFm<r-326X-K316R and MITF™=,-326X-E318K showed a marginally higher
proportion in the nucleus (Figures 14A and 14B). Similarly, TPA treatment of the
MITFmis,.378X construct also carrying the K316R or E318K mutations reduced the
percentage of pS73-MITF protein in the cytoplasmic fraction (Figures 14A and
148).
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Critically, the double mutation K316R-S409A in the MITF™P construct overrides
the effects of TPA on nuclear export, resulting in equal distribution between the
nucleus and cytoplasm (Figures 14C and 14D). A similar effect was observed for
the MITFmP-E318K-S409A mutant protein (Figures 14C and 14D). TPA treatment
of A375P cells expressing MITF™<-4A, MITF™*.4A-K316R, and MITF™sP-4A.
E318K also increased the nuclear localization of MITF (Figures 14C and 14D).
However, MITF™<.S384A, MITF™<,-S397A, MITF™<P-S401A, MITF™<P-S405A
carrying either the K316R or E318K mutations, as well as the MITFm<P-K316R,
MITF<*-E318K, MITF-WT-K316R, MITF-WT-E318K proteins were primarily located
in the cytoplasmic compartment after the treatment, similar fo MITF-WT (Figure
14E). The data suggest that there is cooperation between the domain around
K316 and the S409 site at the MITF C4erminus, which regulates the nuclear
export/retention dynamic of pS73-MITF. Taken together, we conclude that both
the 316-326 and 378-419 domains of MITF are essential for nuclear retention.
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Figure 14. Lack of SUMOylation at K316 and phosphorylation at $409 impairs
the MITF nucleus export upon TPA treatment. (A), (C), (E) Western blot analysis of
subcellular fractions isolated from A375P melanoma cells induced for 24 hours
overexpressing different MITF mutant proteins before treatment with TPA at 200nM for 1
hour. Indicated MITF mutant protein in cytoplasmic (Cyto) and nuclear fractions (Nu) were
visualized using Flag antibody. GAPDH and H3K27me3 were loading controls for
cytoplasmic and nuclear fractions, respectively. (B) and (D) The indicated pS73-MITF
proteins band intensities from Western blot analysis (A) and (C), respectively, in the
cytoplasmic and nuclear fraction from the cell treated with TPA were quantified separately
with Image] software and are depicted as percentages of the total amount of protein
present in the two fractions. Error bars represent SEM of three independent experiments.
Statistically significant differences (Student’s ttest) are indicated by *, p< 0.05.

4.1.4 The carboxyl-end is important for MITF protein stability

The effects of the suppressor mutation on protein stability were also determined
using the dox-inducible A375P melanoma cells overexpressing our MITF-Flag
fusion proteins. After inducing the expression of MITF for 24 hours, the cells
were treated with the translation inhibitor cycloheximide (CHX) for different
periods and harvested to visualize the MITF protein by Western blot. The bands
on the Western blot were quantitated, and the changes in protein concentration
were plotted over time. This data was used to calculate protein half-life, defined
as the time required to reduce the initial protein abundance to 50%. The MITF-
WT and MITF™*P proteins had comparable half-lives, which were approximately
3.2 hours for pS73-MITF and 1.2 hours for unpS73-MITF (Figures 15A and 15B).
The stability of the pS73 and unpS73 versions of the MITFM™*h protein, regardless
of exon 6A, was not significantly different from that of MITF-WT (Figures 15C
and 15D). This suggests that exon 6A does not contribute substantially to MITF
stability. However, the MITF™* protein was considerably less stable than the
MITF-WT and MITF™ proteins; the halflife of the pS73 and unpS73 forms of
MITF™ were 1.2 and 0.4 hours, respectively (Figures 15A and 15B). The MITF-
WT and MITF™ proteins were also more stable than the MITF™! protein,
regardless of S73 phosphorylation status, when overexpressed in the 501Mel
and SKmel28 melanoma cell lines (Figures 15E-H). We also tested the stability of
proteins carrying the Flag tag at the N-end (Flag-MITF-WT, Flag-MITF™<, and
Flag-MITF™*) or GFP tag at the Cterminus (MITF-WT-GFP, MITF™**-GFP, MITF™-
GFP).
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Figure 15. The 316-419 domain affects MITF stability. (A), (C), (E), (G), (1), (K)
Western blot analysis of the stability of the MITF proteins with different tags at either N-
terminus or C-terminus. The inducible A375P (A, C, |, K) or 501Mel (C) or SKMel28 (G)
cells were treated with doxycycline for 24h to express the indicated mutant MITF proteins
before treating them with cycloheximide (CHX) 40ug/ml for O, 1, 2, and 3 hours. MITF
proteins quantity was then compared by Western blot using Flag antibody. Actin was used
as a loading control. The band intensities were quantified using Image| software. (B), (D),
(F), (H) and (J) Non-linear regression (one-phase decay) and half-life analysis of indicated
pS73- and unpS73-MITF proteins degradation over time after CHX treatment. The MITF
protein level relative to TO were calculated, and non-linear regression analysis was
performed. Error bars represent SEM of at least three independent experiments.
Statistically significant differences (Student’s t-test) are indicated by *, p< 0.05.

Although the pS73 form of Flag-MITF, regardless of mutation, showed more
stability than the corresponding protein with a Flag tag at the Cterminus, Flag-
MITF™ was less stable than Flag-MITF-WT and Flag-MITF™° (Figures 15l and
15)). Similarly, the MITF™<.GFP protein was less stable than MITF-WT-GFP and
MITF™=,-GFP (Figure 15K). Our finding suggests that the lack of the 316-419
domain significantly reduces the stability of MITF. Furthermore, regardless of
mutation, in all cases, the unpS73 MITF (the lower band) was degraded faster
than the pS73 form (upper band).

4.1.5 The domains at the carboxyl end of MITF are involved in
regulating its stability

To determine which domains within the carboxyl end of MITF are essential for
mediating effects on stability, a protein stability assay was performed in dox-
inducible A375P melanoma cells expressing the truncated carboxyl-end MITF
constructs in the presence of CHX. The half-life of these mutant proteins was then
calculated. The results showed that, again, the pS73 form of MITF-WT, MITF™,
MITF™+r-326X, and MITF™,-378X proteins was considerably more stable than the
corresponding unpS73 proteins (Figure 16A and 16B). It also shows that MITF™
2.326X, MITFm=,-378X, and MITF™r.del316-326 proteins were less stable than
the MITF-WT protein. However, the MITF™*! protein still showed the most rapid
degradation upon CHX treatment compared to all the different proteins tested
(Figures 16A and 16B). The results suggest that the carboxyl end is important for
nuclear localization and MITF stability.

To further investigate the role of the 316-419 domain in mediating MITF protein
stability, we determined the stability of the non-DNA binding MITF™-316X and
MITFm*.316X proteins. Interestingly, these mutant proteins have similar stability
to MITF-WT (Figure ST16A and S16B). This suggests that the ability to bind to
DNA in concert with carboxyl-end is important for mediating MITF stability.
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Figure 16. Different domains at the carboxyl terminus play different roles in
maintaining MITF stability. (A) and (C) Western blot analysis of the stability of the MITF
proteins. The inducible A375P cells were treated with doxycycline for 24h to express the
indicated mutant MITF proteins before treating them with cycloheximide (CHX) 40ug/ml
for 0, 1, 2, and 3 hours. The MITF proteins were then compared by Western blot using
Flag antibody. Actin was used as a loading control. The band intensities were quantified
using Image] software. (B) and (D) Non-linear regression (one-phase decay) and half-life
analysis of the indicated pS73- and unpS73-MITF proteins over time after CHX treatment.
The MITF protein levels relative to TO were calculated, and non-linear regression analysis
was performed. Error bars represent SEM of at least three independent experiments.
Statistically significant differences (Student’s test) are indicated by *, p< 0.05.

To clarify the role of the SUMOylation site at K316 in MITF protein stability, we
tested the stability of the MITF-WT, MITF™<P, MITFm,.378X, and MITF™rP-326X
proteins in the presence of the K316R mutation. The pS73-MITF-WT-K316R and
pS73-MITFmP-K316R proteins were significantly more stable than pS73-MITF-WT;
the stability of the unpS73-MITF-WT-K316R and unpS73-MITF™<*K316R proteins
was slightly but not significantly increased (Figures 17A and 17B).
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Interestingly, the pS73-MITF™! protein was significantly less stable than the pS73-
MITF™<,-326X protein (Figures 17A and 17B), whereas the stability of the pS73-
MITF™,-326X-K316R proteins was comparable to pS73-MITF™ (Figures 17A and
17B). The unpS73-MITF™<,-378X-K316R protein was not different from unpS73-
MITF™ (Figures 17A and 17B), whereas unpS73-MITF™+*-378X was more stable
than unpS73 MITF™ (Figures 17A and 17B). This suggests that in the presence
of the carboxyl end, the SUMO-site at K316 leads to reduced stability of S73-
phosphorylated MITF. However, in the absence of the carboxyl end, the SUMO-
site at K316 positively influences the stability of the S73-phosphorylated MITF
protein. We hypothesize that the carboxyl domain (aa 378-419) of MITF interacts
with the SUMO-site at K316, determining the stability of MITF and that
phosphorylation at S73 further affects MITF stability.

The stability of MITF™ proteins carrying the S384A, S397A, S401A, S405A,
S409A, and 4A mutations was not affected (Figures 17C and 17D). Although the
stability of the pS73 MITF™**-S397A protein was marginally increased compared
to pS73-MITF-WT, the stability of unpS73 MITF™*-S397A was not changed
(Figures 17C and 17D). Interestingly, replacing the S384, S397, and S401
residues with alanine did not change the ratio between pS73 and unpS73
proteins. In contrast, the S405A, S409A, and 4A mutations changed this ratio
(Figure 17C), resulting in a higher proportion of pS73 than unpS73 MITF. This
suggests that phosphorylation of either S405 or S409 might affect the
pS73/unpS73 ratio by priming phosphorylation at S73 or by affecting its
dephosphorylation.

To characterize the role of S73 phosphorylation in stability, we mutated S73 to
either alanine or phosphomimetic glutamate and then determined the effects on
MITF™! stability. Interestingly, the MITF™<.S73A protein was more stable than the
unpS73-MITF™ protein and had similar stability as pS73-MITF™ and unpS73-
MITE-WT (Figures 18A and S18B). The MITF-WT-S73A protein was also more
stable than unpS73-MITF-WT (Figures 18C and 18D). However, the S73E
mutation did not alter the stability of MITF™' and MITF-WT as compared to their
corresponding pS73 forms (Figures 18C-F). Cells expressing MITF-WT, MITFmise,
and MITF™ were also treated with TPA to promote the formation of pS73-MITF,
and stability was determined. The results showed that the pS73-MITF-WT and
pS73-MITF™+* were more stable than pS73-MITF™ (Figures 18G and S18H). Our
findings suggest that pS73 is not required for MITF degradation but may affect
the rate of the degradation process.
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Figure 17. SUMOylation site at K316 regulated MITF stability differently in the
presence or absence of a carboxyl terminus, and the four individual
phosphorylation sites at C-terminus (S384, $397, S401, and S405) did not affect
the MITF stability. (A) and (C) Western blot analysis of the stability of indicated MITF
mutant proteins. The dox-inducible A375P cells were treated with doxycycline for 24h to

express the indicated MITF proteins before treating them with cycloheximide (CHX)
40ug/ml for 0, 1, 2, and 3 hours. MITF proteins were then compared by Western blot
using Flag antibody. Actin was used as a loading control. The band intensities were
quantified using Image] software. (B) and (D) Half-life analysis of the indicated pS73- and
unpS73-MITF proteins over time after CHX treatment. The MITF protein levels relative to
TO were calculated, and non-linear regression analysis was performed. Error bars
represent SEM of at least three independent experiments. Statistically significant
differences (Student’s ttest) are indicated by *, p< 0.05.
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Figure 18. The unpS73/pS73 dynamic could increase the stability of MITF protein
(A), (C), (E), and (G) Western blot analysis of the stability of the indicated MITF mutant
proteins. The dox-inducible A375P melanoma cells were treated with doxycycline for 24h
to express the indicated MITF proteins before treating them with cycloheximide (CHX)
40ug/ml for 0, 1, 2, and 3 hours with (G) or without (A, C, E) presenting of TPA 200nM.
The MITF protein was then compared by Western blot using Flag antibody. Actin was
used as a loading control. The band intensities were quantified using Image| software.
(B), (D), (F), and (H) Halflife analysis of the indicated pS73- and unpS73- MITF proteins
over time after CHX treatment, respectively. The MITF protein levels relative to TO were
calculated, and non-linear regression analysis was performed. Error bars represent SEM
of at least three independent experiments. Statistically significant differences (Student's t-

test) are indicated by *, p< 0.05.

The absence of the SUMOylation site at K316 in MITF™ may accelerate
SUMOylation at K182, reducing MITF™*! stability. To investigate this hypothesis,
we measured the stability of the MITF-WT-K182R-K316R, MITFm,.K182R-K316R,
and MITF™<.K182R proteins. The K182R mutation did not affect the stability of
MITF™! (Figures 19A and 19B). Interestingly, while the single MITF-WT-K316R
and MITFm<P-K316R mutations were more stable than MITF-WT (Figures 19A and
19B), the double mutation K182R-K316R in the MITF-WT and MITF™ constructs
did not alter their stability compared to that of the MITF-WT protein (Figures 19C
and 19D). We, therefore, conclude that the SUMOylation site at K182 is not a
major contributor to MITF™ protein stability. How the K182R mutation reduces
the effects of the K316R mutation on stability remains to be investigated.
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Figure 19. The arginine mutation at the K182 SUMOylation site could not rescue
the stability of MITF™!. (A) and (C) Western blot analysis of the stability of the indicated
MITF mutant proteins. The dox-inducible A375P melanoma cells were treated with
doxycycline for 24h to express the indicated MITF proteins before treating them with
cycloheximide (CHX) 40ug/ml for O, 1, 2, and 3 hours. The MITF proteins were then
compared by Western blot using Flag antibody. Actin was used as a loading control. The
band intensities were quantified using Image| software. (B) and (D) Half-life analysis of the
indicated pS73- and unpS73-MITF proteins over time after CHX treatment. The MITF
protein levels relative to TO were calculated, and non-linear regression analysis
performed. Error bars represent SEM of at least three independent experiments.
Statistically significant differences (Student's ttest) are indicated by *, p< 0.05.

4.1.6 MITF is mainly degraded through a ubiquitin-mediated
proteasome pathway in the nucleus

To investigate which degradation pathway is responsible for MITF degradation,
we treated the cells with either the ubiquitin-proteasomal inhibitor MG132 or the
lysosomal inhibitor Baf-A1 together with CHX for 3 hours. Treatment with MG132
and CHX increased the intensities of both the upper and lower bands of the
MITF-WT, MITF+, and MITF™ proteins (Figures 20A and 20B), although the
change for unpS73-MITF™* was not statistically significant. Upon Baf-A1 and
CHX treatment, the pS73 band was unchanged for the MITF-WT and MITF™
proteins, whereas the pS73-MITF™* protein was severely reduced (Figures 20A
and 20B); the lower unpS73 band was considerably decreased for all three
proteins after the Baf-A1 and CHX treatment (Figures 20A and 20B). The dox-
inducible A735P cells expressing MITF-WT, MITF™= and MITF™! were treated
with either MG132 or Baf-A1 for 3 hours without CHX before harvesting and
Western blot. A significant increase was observed in the intensity of the pS73
band of the MITF™ and MITF™* proteins after MG132 and Baf-A1 treatment
(Figures 20C and 20D). Interestingly, the unpS73-MITF-WT, unpS73-MITF™i=
and unpS73-MITF™ bands showed a considerable increase after MG132
treatment (approximately 2.4-, 2.7- 6.7-fold increase respectively) (Figure 20D).
No such increase was observed upon Baf-A1 treatment (Figure 20D). Taken
together, our data suggest that the ubiquitin-proteasome pathway is the primary
degradation machinery for MITF and that the unpS73 form of MITF, rather than
the pS73 form, is the cleavage substrate of the ubiquitin-proteasomal pathway.

74



Results

A MWL Mgetes Mg € MitfWT  Mitfniso  Mitfnist
Doxycycline  0.1ug/ml 0.1ug/ml lug/ml  (24hours) Dorycycline  0.1ug/ml 0.ug/ml tug/ml  (2¢hours)
CHXS0ug/ml - + 4+ - + + - + + 3hours
MG13220ug/ml - + - -+ - -+ - 3 hours
MG132 20ug/ml . 4 - -+ - -+ - 3hours
Baf-A10.2ug/ml - - OB B 3 & % P Baf-A10.2ug/ml - - + - - + - - + 3 hours
TOKD | = o e e s e
70kDa || g s’ g — — D e s Sl w—
MITF SN MITF
55KkDa —— 55kDa =4
———— —— w—— v | Actin —————————|  ACtiD
40kDa 40kDa
B MITF protein D MITF protein
ns ns i x ** e ns
e '..‘ 'q '.—’ 1mqq@7 .:‘
3 |0 Aalnlnln H
2 2
2 = 8
c
S 3 ]
| io
£ £8 ¢
322 - .+ DMSO 33 DMSO
] . ] f1 * MG132+CHX Lo MG132
E e o 5 T . Baf-A1 + "—s' o Baf-A1
. o 1 g u T CHX ] L
S 1 i 2
: H H H H H H H :
° Z 3
k3 ) 3
oL 1] 1 (A
N
g&‘ §¢,Q §,e g\ g\,,? 2
IR S S W
¢\'3' ,\'5‘ AY 1'5' ,\'5' 1".\' é\ 4\'5
) S ) S S S Q S
Q ¢ N \)(\Q \‘(\Q

Figure 20. MITF is mainly degraded through the proteasome pathway. (A)
Western blot analysis of the degradation of the MITF-WT, MITF™=?, and MITF™! proteins.
The 24-hour-inducible A375P cells were treated with CHX 50ug/ml in the presence of
either DMSO or MG132 40ug/ml or Baf-A1 0.1ug/ml for 3 hours. The MITF protein was
then compared by Western blot using Flag antibody. Actin was used as a loading control.
The band intensities were quantified using Image| software. (C) Western blot analysis of
the degradation of the MITF-WT, MITF™+r, and MITF™ proteins. The 24-hour-inducible
A375P cells were treated with either DMSO or MG132 40ug/ml or Baf-A1 0.Tug/ml for 3
hours. The MITF protein was then compared by Western blot using Flag antibody. Actin
was used as a loading control. The band intensities were quantified using Image]
software. (B) and (D) The indicated pS73- and unpS73-MITF protein band intensities from
Western blot analysis (A) and (C), respectively, were quantified separately with Image|
software and are depicted as relative protein expression to DMSO. Error bars represent
SEM of at least three independent experiments. Statistically significant differences
(Student's ttest) are indicated by *, p< 0.05.

To confirm that the unpS73 form of MITF is the cleavage substrate of the
proteasome pathway, the MITF-WT-S73A, MITF™<.S73A, MITF-WT-S73E, and
MITF™<.S73E proteins were expressed in the A375P melanoma cells for 24 hours
before MG132-treatment in the presence or absence of CHX for 3 hours. The
MG132 treatment led to an increase in MITF-WT-S73A protein level (about 1.7-
fold compared to vehicle control) which was less of an increase than observed
for unpS73-MITF-WT (approximately 2.4-fold compared to vehicle control)
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(Figures 21A-C). Although the expression of MITF™<.S73A protein was increased
3.7-fold after treatment with MG132 compared to vehicle control, the unpS73-
MITF™ protein was observed to have a more robust accumulation in the
presence of MG132 with an approximately 6.7-fold increase (Figures 21A-C).
Consistent with the previous report proposing that S73 phosphorylation status is
not the only mechanism regulating MITF degradation (Wellbrock and Marais,
2005), the data showed that the MITF-WT-S73E and MITF™.S73E proteins were
slightly increased upon MG132 treatment (Figures 21B-C), Furthermore, the
significant increase of unpS73-MITF after MG132 treatment suggests that MITF
needs fo be dephosphorylated before cleaving by the proteasomal machinery.
Our findings also hypothesized that the transformation between unpS73 and
pS73 stages might accelerate the MITF degradation process.
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Figure 21. Both unpS73- and pS73-MITF proteins are substrates of the ubiquitin-
proteasomal pathway. (A) and (B) Western blot analysis of the degradation of the
indicated MITF mutant proteins. The 24-hour-inducible A375P cells were treated with either
DMSO or MG132 40ug/ml or MG132 40ug/ml and CHX 40ug/ml for 3 hours. The MITF
protein was then compared by Western blot using Flag antibody. Actin was used as a
loading control. The band intensities were quantified using Image| software. (C) and (D)
The indicated pS73- and unpS73- MITF protein band infensities were quantified separately
with Image] software and are depicted as relative protein expression to DMSO. Error bars
represent SEM of at least three independent experiments. Statistically significant
differences (Student's ttest) are indicated by *, p< 0.05.
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Figure 22. MITF is mainly degraded in the nucleus (A) Western blot analysis of
whole cell lysate isolated from 24-hours-inducible A375P melanoma cells overexpressing
MITF-WT protein before treating with either DMSO or TPA 200nM for 1 hour or TPA
200nM for 1 hour and then adding MG132 40ug/ml for the next 3 hours. MITF proteins
were visualized using Flag antibody. Actin was used as a loading control. (B) Western
blot analysis of subcellular fractions isolated from 24-hour-inducible A375P melanoma
cells overexpressing MITF-WT protein before treating with either TPA 200nM for 1 hour or
TPA 200nM for 4 hours or TPA 200nM for 1 hour and then adding MG132 40ug/ml for
the next 3 hours, or MG132 40ug/ml for 3 hours. MITF-WT protein in cytoplasmic (Cyto)
and nuclear fractions (Nu) were visualized using Flag antibody. GAPDH and yH2AX were
loading controls for cytoplasmic and nuclear fractions, respectively. (C) Western blot
analysis of the degradation of the indicated MITF mutant proteins. The 24-hour-inducible
A375P cells were treated with CHX 40ug/ml in the presence of LMB 5nM for O, 1, 2, and
3 hours. The MITF proteins were then compared by Western blot using Flag antibody.
Actin was used as a loading control. The band intensities were quantified using Image|
software. (D) Half-life analysis of the indicated pS73- and unpS73-MITF proteins over time
after CHX plus LMB. The MITF protein levels relative to TO were calculated, and non-linear
regression analysis was performed. Error bars represent SEM of at least three
independent experiments. Statistically significant differences (Student's ttest) are
indicated by *, p< 0.05. (E) gPCR analysis of Akirin2 gene expression in A375P cells
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treated with siAKIRIN2 for 24hour and dox-inducible A375P overexpressing MITF for 6
hours. The expression was normalized to siCTRLtreated cells. Error bars represent SEM of
at least three independent experiments. Statistically significant differences (Student’s t-test)
are indicated by *, p< 0.05. (F) Western blot analysis of the stability of the MITF-WT and
MITFm mutant proteins after Akirin2 knockdown for 24 hours and then dox-inducing MITF
expression for 6 hours. The inducible A375P cells were treated with CHX 40ug/ml for O,
1, 2, and 3 hours. The MITF proteins were then compared by Western blot using Flag
antibody. Actin was used as a loading control. The band intensities were quantified using
Image] software. (G) The indicated pS73- and unpS73-MITF protein band intensities from
Western blot analysis (F) were quantified separately with Image| software and are
depicted as relative protein expression to DMSO. Error bars represent SEM of three
independent experiments. Statistically significant differences (Student’s tdest) are
indicated by *, p< 0.05. (H) Halflife analysis of the indicated pS73- and unpS73-MITF
proteins in the 24-hour-siAKIRIN2-treated and then 6-hour-inducible overexpression MITF
A375P cells over time after CHX treatment. The MITF protein levels relative to TO were
calculated, and non-linear regression analysis was performed. Error bars represent SEM
of at least three independent experiments. Statistically significant differences (Student's t-
test) are indicated by *, p< 0.05.

We also treated cells expressing MITF-WT, MITF™**, and the previously
described Cterminus truncated MITF™* proteins with TPA and MG132. After one
hour of TPA treatment, the MITF-WT and mutant MITF proteins were mostly in
pS73 form (Figure 22A). TPA treatment significantly increased the total MITF
protein compared to vehicle controls (Figure 22A). Treating the cells for 3 hours
with MG132 in the presence of TPA resulted in a significant increase in the lower
unpS73 band in all cases (Figure 22A). Separating the nuclear and cytoplasmic
fractions after the TPA and MG132 treatment revealed that the lower band
primarily accumulated in nucleus (Figure 22B), suggesting that the proteasomal
degradation of MITF takes place in the nucleus.

To further confirm that MITF degradation takes place in the nucleus, the dox-
inducible A375P melanoma cells expressing MITF-WT, MITF™", and MITF™
were exposed to CHX and the nuclear export inhibitor leptomycin B (LMB) (Sun
et al., 2013) for different time points before harvesting for Western blot. The
results showed that the stability of pS73-MITF-WT and pS73-MITF™* was slightly
but significantly reduced, whereas unpS73 was not changed and that the stability
of both unpS73- and pS73-MITF™ decreased upon LMB treatment (Figures 22C
and 22D). Akirin2 is essential for proteasomal degradation in the nucleus (de
Almeida et al., 2021). Akirin2 was knocked down in dox-inducible A375P cells
expressing MITF-WT and MITF™* before CHX treatment and harvesting at
different time points to measure protein stability. After treating the cells for 24
hours with siAKIRIN2, the expression of the Akirin2 mRNA was significantly
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decreased, whereas the expression of both unpS73-MITF-WT and unpS73-MITF™
s'was significantly increased (Figures 22E-G). Although MITF-WT did not show an
increase in stability, the stability of MITF™* was improved considerably upon
Akirin2 knockdown (Figures 22F-H). Taken together, our results show that MITF
is degraded in the nucleus through the proteasomal pathway. The increased
nuclear presence of the MITF™* protein may explain its reduced stability.

4.1.7 MITF™ stability improves in the presence of other MITF
mutants upon dragging its dimer partner into the nucleus

We further assessed the stability of MITF™! protein in cells also expressing either
MITF™ev, MITF™, or MITFM™*h The results showed that the stability of both pS73
and unpS73 MITF™ was considerably increased in the presence of the MITF™-,
MITF™, and MITFMWh() proteins, with the most pronounced effect observed in
the cells also expressing MITF™* and MITF™ (around 2.5fold increase for pS73
and 3.5fold increase for unpS73) (Figures 23A-E). The stability of pS73 and
unpS73 versions of MITF™* was also significantly improved when co-expressed
with MITF-WT (Figures 23F and 23G). To eliminate the possibility that we
saturated the degradation machinery in the cells, we co-ransfected the cells with
Mitfm=.EGFP and MITF™*.Flag and measured the stability of MITF™=.Flag protein.
The results showed that the stability of MITF™*.Flag was not rescued in the
presence of Mitf"*.EGFP (Figure 23H).

To understand how MITF™! stability improves in the presence of other MITF
mutants, we studied the dimerization between MITF™ or MITF™* proteins and
non-DNA binding mutants of MITF. We co-expressed MITFMWh(+).Flag, MITF™.
Flag, and MITF™*.Flag with either the MITF-WT-GFP, MITF™<.GFP, or MITFms®.
GFP proteins in A375 cells and performed co-immunoprecipitation (co-IP) using
Flag-antibodies. This showed that the MITF-WT-GFP, MITF™<.GFP, and MITF™-
GFP proteins were immunoprecipitated with the MITFMWht).Flag,  MITF™-Flag,
and MITF™=*.Flag proteins indicating a similar ability of MITF-WT, MITF™": and
MITF™= proteins to interact with the non-DNA binding MITF mutant proteins
(Figure 24A). These interactions might result from a tetramer or oligomer
forming between MITF™* and MITF mutant proteins.
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Figure 23. The stability of MITF™ is significantly improved in presenting
defective DNA binding MITF mutations. (A), (B), (C), and (F) Western blot analysis of
the degradation of the MITF™ protein in the presence of non-DNA binding MITF
mutations or MITF-WT. The A375P cells were transiently co-transfected with MITF™! and
either MITF™, MITFmiew  MITFMWh = or MITF-WT for 24 hours before being treated with
CHX 55ug/ml. The MITF protein was then compared by Western blot using Flag
antibody. Actin was used as a loading control. The band intensities were quantified using
Image] software. (D), (E), and (G) Non-linear regression (one-phase decay) and half-life
analysis of indicated pS73- and unpS73-MITF proteins over time after CHX treatment. The
MITF protein levels relative to TO were calculated, and non-linear regression analysis was
performed. Error bars represent SEM of at least three independent experiments.
Statistically significant differences (Student's ttest) are indicated by *, p< 0.05. (H)

81



Hong Nhung Vu

Western blot analysis of the degradation of the MITF™! protein fusion with Flagtag at C-
terminus in the presence of either MITF™! protein fusion with GFP tag at C-terminus or
MITF™ protein fusion with Flag at C4erminus. The A375P cells were transiently co-
transfected with MITF™.Flag and indicated MITF mutant protein for 24 hours before
being treated with CHX 55ug/ml. The MITF protein was then compared by Western blot
using Flag antibody. Actin was used as a loading control. The band intensities were
quantified using Image] software.

To further clarify the interactions between MITF™* and the non-DNA binding
MITF mutants, we co-expressed the MITF™-Flag protein together with either MITF-
WT-GFP, MITF™**.GFP, or MITF™.GFP proteins in A375 cells. We then
performed Blue native PAGE (Wittig et al., 2006) followed by a second
dimension of SDS-PAGE. The results suggest that dimers indeed form between
MITF™ and the MITF™ or MITF™? proteins (Figures 24B and 24C). Interestingly,
cells expressing MITF™' showed that the MITF™! protein was mostly in the form of
a dimer (Figure 24C). Interestingly, on the Blue-PAGE, MITF-WT/MITF-WT,
MITF™ /MITF™ homodimers, and MITF-WT/MITF™ heterodimers were observed in
cells co-expressing MITF™ and MITF-WT. A similar pattern was also seen in cells
co-expressing MITF™ and MITF™*, However, only the heterodimer MITF™=<-MITF™
was seen in cells co-expressing MITF™ and MITF™=. Our finding suggested that
MITF™ prefers to form dimers with MITF™ev MITF™  and MITFM-Wh,

To determine if the MITF™* protein affects the subcellular localization of the
above non-DNA binding MITF mutations, MITF™ protein was transiently
overexpressed together with the other MITF mutant proteins, and their subcellular
distribution was determined. As before, a significant portion of the pS73- and
unpS73-MITF™ proteins were observed in the nucleus (Figures 25A and 25B).
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Figure 24. MITF™ enables dimer formation with other MITF mutant protein (A)
Western blot analysis showing the results of a co-immunoprecipitation experiment.
MITF™-Flag MITFMWhi+.Flag, MITF™ev.Flag construct was cotransfected with either MITF-
WT-GFP, MITFm*.GFP  or MITF™s.GFP in A375P melanoma cells. Co-
immunoprecipitation (co-IP) of the whole cell lysate using Flag-antibodies was performed
and visualized using Flag antibodies. Input fraction (Input), Unbound fraction (Unb), and
Immunoprecipitated fraction (IP) were indicated in the Western blots. (B) and (C) Western
blot analysis showing the results of a Blue native PAGE followed by the second dimension
of SDS-PAGE. The A375P melanoma cells transiently (B) co-expressed the MITF™-Flag
protein with either MITF WT-EGFP, MITF™s*EGFP, or MITF™<.EGFP proteins or (C)
expressed MITF-WT-Flag, MITF™<,-Flag, MITF™*.Flag, MITF™-Flag or in A375 cells. We
then performed Blue native PAGE (Wittig et al., 2006) followed by a second dimension
of SDS-PAGE.
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The cells transiently expressing either MITF™, MITF™¥, or MITFMWh+) proteins
showed equal distribution between cytoplasm and nucleus, whereas, in the
presence of the MITF™ protein, they were significantly translocated into the
nucleus (Figures 25A and 25B). Similar results were observed in cells co-
expressing MITF™s and MITF-WT (Figures 25C and 25D). Taken together, the
data strongly suggest that the MITF™ protein drags its dimeric partners into the
nucleus. This is consistent with the observed preference of MITF™*! for forming
dimers with MITF™e¥  MITF™ and MITFMWh and the enhancement of MITF™
stability in their presence.
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Figure 25. MITF™* enables the localization of its dimer partner into the nucleus
(A) and (B) Western blot analysis of subcellular fractions isolated from A375P cells
transiently co-overexpressed the MITF™*! protein with MITF mutant or wild type MITF. MITF
profeins in cytoplasmic (Cyto) and nuclear fractions (Nu) were visualized using Flag
antibody. GAPDH and yH2AX were loading controls for cytoplasmic and nuclear
fractions, respectively. (C) and (D) pS73-and unpS73-MITF™ protein band intensities in
the cytoplasmic and nuclear fraction of A375P cells transiently co-overexpressing the
MITF™ protein with MITF mutant or wild type MITF were quantified separately with Image|
software and are depicted as percentages of the total amount of protein present in the two
fractions. Error bars represent SEM of three independent experiments. Statistically
significant differences (Student’s ttest) are indicated by *, p< 0.05.
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4.1.8 The melanoma-associated E318K mutation reduces MITF
stability

Individuals carrying the E318K mutation in MITF are predisposed to melanoma
(Bertolotto et al., 2011; Yokoyama et al., 2011). The mutation abolishes
SUMOylation at K316. Therefore, the stablity of MITF™=r, MITF™,.326X, and
MITFmir-378X constructs also carrying the E318K mutation was determined. The
stability of these proteins was significantly reduced in the presence of the E318K
mutation (Figures 26A-C). Interestingly, the MITF™<,-378X-E318K protein showed
similar stability as MITF™* whereas the MITF™+,-326X-E318K and MITF™-326X
proteins were equally stable and both more stable than MITF™, regardless of
phosphorylation at S73 (Figures 26A-C).

Interestingly, the E318K mutation in the MITF™<-378X and MITF™* constructs
resulted in a mobility shift on the SDS-gels, whereas the MITF™+P-326X and
MITFm,-326X-E318K did not (Figure 26A). This observation suggested that the
E318K mutation might affect phosphorylation in the 316-326 domain, leading to
a migration shift. The S325 residue is a potential phosphorylation site, so we
investigated the effects of the S325A mutation on MITF stability. Although the
MITF™,-326X-S325A also resulted in a slight mobility shift compared to MITF-
WT, it did not alter MITF™* protein stability (Figure 26D). Furthermore, the
MITFmisr-E318K-S325A double mutation shifted further and was less stable than
K316R-S325A (Figure 26E). These results suggest that the reduction in stablity
and mobility shift on SDS-gels of E318K mutation is not due to phosphorylation at
S325.

4.1.9 The MITF" mutation affects transcription regulation

The lack of a carboxyl-end might affect the transcriptional activation potential of
MITF™s Hence, we determined the transcriptional activation potential of the
MITFm MITF WT, and C-+runcated MITF proteins. The human A375P cells were
induced to express the indicated mouse MITF proteins at the same protein level,
and RNA was harvested at different time points for gPCR analysis. The log2(fold
change) of MITF target genes was first normalized to EV and then to the
proportion of MITF proteins retained in the nucleus. Consistent with previous
work (Ballesteros-Alvarez et al., 2020), the results showed that MITF-WT, MITF™,
and the C4erminally truncated MITF proteins significantly decreased expression
of the endogenous human MITF mRNA starting at 6 hours posttransfection
(Figure 27A). Expression of the endogenous Mitf protein was considerably
reduced over the 36 hours sample period in all cases except for MITF™,-del326-
377, which was similar to empty vector control starting at 12 hours. The
expression of the CDH2 and NRPT genes, which were shown to be repressed by
MITF (Dilshat et al., 2021a) was significantly reduced in all cases, starting from
the 6 hours time point (Figure 27B and 27C). The MITF™+P-326X, MITF™-378X,
MITF™P.del326-377, and MITF-WT constructs were all able to activate the
expression of the known MITF target genes PMEL and TRIM63 to similar levels. In
contrast, the MITF™ construct exhibited about half the ability of the other
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constructs to activate the expression of these genes (Figures 27D and 27E).
Interestingly, MITF™+,-326X and MITF™ did not activate the expression of the
TYRPT and MLANA genes (Figures 27F and 27G). Our results suggest that the
316-419 domain is critical for the selective transcriptional activation and
repression activity of MITF.
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Figure 26. E318K mutation reduces the stability of MITF protein (A), (D), and (E)
Western blot analysis of the stability of the MITF mutant proteins. The inducible A375P
cells were treated with doxycycline for 24 hours to express the MITF proteins before
treating them with cycloheximide (CHX) 40ug/ml for O, 1, 2, and 3 hours. The MITF
proteins were then compared by Western blot using Flag antibody. Actin was used as a
loading control. The band intensities were quantified using Image] software. (B) and (C)
Half-life analysis of indicated pS73- and unpS73- MITF proteins degradation over time
after CHX treatment, respectively. The MITF protein levels relative to TO were calculated,
and non-linear regression analysis was performed. Error bars represent SEM of at least
three independent experiments. Statistically significant differences (Student's ttest) are
indicated by *, p< 0.05.
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Figure 27. MITF™* protein is a less potent activator than MITF™? qPCR analysis of
(A) endogenous MITF and MITF target genes: (B) NRP1, (C) CDH2, (D) PMEL, (E)
TRIMé63, (F) TYRP1, and (G) MLANA in the dox-inducible A375P overexpressing cells. The
cells were treated with different doxycycline for 6, 12, 24, and 36 hours to induce MITF
expression at the same level before harvesting. Expression was normalized to EV-FLAG-
HA cell lines and then to the proportion of MITF proteins retained in the nucleus. Error
bars represent SEM of at least three independent experiments. Statistically significant
differences (Student’s ttest) are indicated by *, p< 0.05.
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4.2 Functional roles of PRDM7

4.2.1 PRDM?7 expression is correlated with MITF

As proposed by the MITF rheostat model, the expression or activity of MITF
determines the phenotypic outcome in melanoma cells. This is a reversible and
dynamic process where cells can change their phenotype from proliferative to
non-proliferative migrating cells (Goding and Arnheiter, 2019; Rambow et al.,
2019). The dynamic changes might suggest that MITF might do this by regulating
the expression of epigenetic modifiers to reshape the melanoma chromatin state.
By searching for epigenetic modifiers depending on MITF expression, the
histone methyltransferase PRDM7 was observed to be significantly reduced upon
MITF knockout in SKmel28 melanoma cell line (Dilixiati, 2019). The expression of
PRDM7 also showed a considerable increase upon transient overexpressing
MITF-WT and MITFm+r isoforms. Consistent with that, the DNA-binding mutant
MITFMWh() was not able to elevate PRDM7 expression (Figure 28A). The positive
correlation between MITF and PRDM7 expression is also shown in 480 cutaneous
melanoma tumor samples from the Cancer Genome Atlas (TCGA database)
(Figure 28B) as well as in microarray data of 24 melanoma cell lines generated
by Lionel Larue's group and made available to us (Figure 28C). Interestingly,
PRDM7 is a primate-specific gene (Fumasoni et al., 2007) and is uniquely
expressed in melanoma among among all cancers type (Figure 28D). Among 53
melanoma cell lines grouped by phenotype (Tsoi et al., 2018), PRDM7 is most
highly expressed in melanocytic cells where MITF and SOXT0 are also highly
expressed (Figure 28E). Although Chip-Seq data do not show direct binding of
MITF at PRDM7 promoter nor gene body (Laurette et al., 2015), there are more
than 16 MITF Chip-peaks of high confidence and containing MITF binding sites
in a TAD domain near PRDM7. Surprisingly, apart from PRDM7, none of the
other genes located in that TAD showed changes in expression upon MITF
depletion. Hi-C data from SKMel5 melanoma cells suggests long-range
interactions between the areas containing MITF-Chip-peaks and the PRDM7
promoter region (http://3dgenome.fsm.northwestern.edu/view.php) (Appendix
3). This suggests the direct regulation of PRDM7 by MITF through long-range
effects. Taken together, the data strongly suggests that PRDM7 is a direct MITF
target gene.
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Figure 28. Positive correlation between PRDM7 and MITF expression (A) RNA-
expression of PRDM7 in inducible A375P cells overexpression MITF-WT, MITF™sp, MITFM-
Whit) was measured by qPCR. Error bars represent SEM of at least three independent
experiments. Statistically significant differences (Student's ttest) are indicated by *, p<
0.05. (B) and (C) Correlation of PRDM7 and MITF across 480 cutaneous melanoma tumor
samples from the Cancer Genome Atlas (TCGA database) (B) or 24 melanoma cell lines
generated by Lionel Larue's group (C). (D) PRDM7 mRNA expression across 30 cancer
types in the TCGA database. (E) PRDM7, MITF, and SOX10 mRNA expression among 53
melanoma cell lines grouped by phenotype (Tsoi et al., 2018).
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4.2.2 Alternative splicing and novel PRDM?7 isoforms in melanoma

To investigate the functional roles of PRDM7 in melanoma cells, it was important
to know which PRDM7 isoforms are expressed in melanoma cells. Previous work
has reported the existence of two PRDM7 isoforms (Figure 7), of which isoform B
containing KRAB and PR/SET domains, was shown to be abundant in
melanocytes and melanoma cell lines (Fumasoni et al.,, 2007). However,
alternative PRDM7 isoforms were also predicted by computational analysis, with
three other transcripts being proposed in the ENSEMBLE database (PRDM7-203
to PRDM7-205) (Figure 29A). To characterize which PRDM7 isoforms are
expressed in melanoma, the StringTie de novo assembly analysis was performed
on RNASeq data from 501Mel and Skmel28 cells to assemble possible
transcripts. Interestingly, this analysis revealed that several potential novel
transcripts are possible, none of which match the previously suggested
transcripts (Figure 29A). Among the proposed PRDM7 transcripts, the nine with
the highest predicted score started from the first exon of
ENSEMBLE_PRDM7_205 (exon m3) and extended to the last exon of the
ENSEMBLE_PRDM7_202 (exon 10) transcript and skipped some exons in
between compared to isoform A. To verify the results obtained using the RNA-
seq data, we conducted PCR using cDNA isolated from Skmel28 cells with the
aim of amplifying the suggested PRDM7 isoforms. All possible PCR fragments
were then Gibson cloned into the pUC19 vector for generating novel transcripts.
Interestingly, seven new PRDM7 transcripts, which contain incomplete KRAB and
SET domains, were identified; these transcripts are consistent with the results
from the StringTie analysis (Figures 29B and 29C and Appendix 4). However,
we did not find two of the StringTie-proposed (SKC3_3_2525.5 and
SKC3_3_2525.3) PRDM7 transcripts by PCR analysis, possibly because of their
low expression compared to other isoforms.
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Figure 29. Alternative splicing and novel PRDM7 isoforms in melanoma (A)
Alternative PRDM?7 isoforms were predicted by Stringte analysis based on RNAseq data of
SKMel28 (B) Seven PRDM7 isoforms were identified from the cDNA of Skmel28. (C)
Schematic representation of the PRDM7 isoforms showing the distinct alternative splicing
events. (D) Schematic representation of the location of designed primers to identify
splicing events. (E) PCR amplification of cDNA isolated from Skmel28 cells to identify
alternative splicing between adjacent exons

To further investigate and confirm the alternative splicing events, we also

performed PCR using multiple sets of PCR primers to amplify cDNA isolated

from Skmel28 cells to identify alternative splicing between adjacent exons (Table
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6 and Figure 29D). The pPB-hCMV1_PRDM7_isoformA containing protein-
coding regions of PRDM7 isoform A (equivalent to PRDM7_202 transcript
following the ENSEMBLE database) was utilized as a control for the PCR product
size. Consistent with the prediction based on RNA seq, our results show that
exons 4, 5, and 9 are alternatively spliced (Figure 29E). Taken together, our data
showed that although many of the proposed isoforms need to be further
classified, at least seven PRDM7 transcripts are found (named isoforms C-l) in
melanoma cells. Among the seven novel PRDM7 transcripts, only isoforms D and
E potentially result in a 28kDa protein. Surprisingly, both isoforms D and E lack a
major part of the KRAB and PR/SET domains compared to isoform A, proposing
a significant difference in function between the different PRDM7 isoforms. Due
to the lack of useful anti-PRDM7 antibodies, we have not yet been able to
determine which of the proposed proteins are expressed in melanoma cells.

4.2.3 Generation of melanoma cells lacking PRDM7

To study the longterm effect of PRDM7 depletion in melanoma, PRDM7 was
permanently knocked out in 50TMel and Skmel28 melanoma cell lines using the
clustered regularly interspaced short palindromic repeats (CRISPR/Cas9)
technique. The resulting knock-out PRDM7 (PRDM7-KO) melanoma cell lines
would be an efficient model to study the PRDM7-low cell state in melanoma
progression.

It is not practical to target the PR/SET or KRAB domain of PRDM7 without the risk
of affecting PRDM9 because only 9 basepairs in the PR/SET and 2 basepairs in
the KRAB coding sequence of PRDM7 are different from that of PRDM9 (Blazer
et al., 2016) (Appendix 5). Besides, our analysis identified multiple PRDM7
transcripts with different alternative splicing in melanoma cells. Therefore, exon 3
of PRDM7, located right after the KRAB domain and present in all detected
isoforms, was fargeted to be mutated by CRISPR/Cas9. The sequence-specific
crRNA targeting exon 3 of PRDM7 in 501Mel and SKmel28 melanoma cell lines
were designed and ordered from Integrated DNA Technologies (USA) (Figure
30A). The Skmel28 and 501Mel cells were incubated for 48 hours post-
transfection with a Cas9:crRNA:trRNA RPN-complex and then serially diluted to
form single colonies. Following five weeks in stepwise expansion culture, single-
cell colonies were screened for mutant alleles by using the T7 Endonuclease |
assay and Sanger sequencing. We obtained 24 501Mel and 19 SKmel28
positive colonies, of which all were shown to carry the mutation. The PRDM7
knock-out cell lines targeting exon 3 are referred to as 501Mel-PRDM7-KO and
Skmel28-PRDM7-KO to indicate the cell line of origin. The control cell lines,
termed Skmel28-Control and 501Mel-Control, were generated by transfecting the
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cells without a crRNA:trRNA duplex. The expression of the PRDM7 mRNA in
control and knock-out cell lines was compared using qPCR.

501Mel-PRDM7-KO and SKmel28-PRDM7-KO clones were screened for deletion
mutations. The sequence analysis showed that all of the positive PRDM7-KO
clones had a different mutation, whereas no mutation was detected in the
PRDM7 sequence in any of the Skmel28-Control and 501Mel-Control clones. The
PRDM9 genome sequence was also confirmed to be unaltered in all the PRDM7-
KO clones and in the single-cell control clones (Appendix 6). For further studies,
we selected two PRDM7-KO single-cell clones for each cell line (501Mel-PRDM7-
KO13, 501Mel-PRDM7-KO24, SKMel28-PRDM7-KO13, and SKmel28-PRDM7-
KO17); all showed a marked reduction in the expression of PRDM7 mRNA
compared to the wild type controls (501Mel-C1 and SKmel28-C3) (Figure 30B).
Three mutations were detected in the genome sequence of 501Mel-PRDM7-
KO13: (i) deletion of two base pairs (AC) resulting in a premature stop codon at
residues R98 of WT-PRDM7; (ii and iii) deletion of six base pairs resulting in the
replacement of two T96-P97 residues by either a serine or a proline (Figure
30C). Sequence analysis of the 501Mel-PRDM7-KO24 clone discovered two
mutations: (i) deletion of one base pair leading to a frameshift and premature
stop codon at L130 amino acid position of WT-PRDM7; (ii) insertion of 1 base
pair which resulted in a stop codon at R98 position (PRDM7 isoform B
numbering) (Figure 30C). Only one mutation was discovered in each PRDM7
genome sequence of SKMel28-PRDM7-KO singlecell clones. The SKMel28-
PRDM7-KO13 cells contain a deletion of one base pair, which gives rise to a
premature stop codon at the L130 of WT-PRDM7, whereas the SKMel28-PRDM7-
KO17 cells have one base pair insertion at the P97, resulting in a stop codon
immediately at R98 of WT-PRDM7 (Figure 30D). The mutations were confirmed
by analysis of the RNA-sequencing data of 501Mel-PRDM7-KO13, 501Mel-
PRDM7-KO24, SKMel28-PRDM7-KO13, and SKmel28-PRDM7-KO17 cell lines
(Appendix 6). The three frameshift mutations are likely to result in nonsense-
mediated decay and a significant decrease in PRDM7 mRNA, whereas the two
inframe mutations might not severely alter the function of the PRDM7 protein.
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Figure 30. Generated PRDM7 knock-out melanoma cells (A) Schematic illustration
of the guide RNA targeting exon 3 of PRDM7. (B) RNA expression of PRDM7 in PRDM7-
KO and its corresponding control was measured by qPCR. Error bars represent the SEM
of at least three independent experiments. Statistically significant differences (Student's -
test) are indicated by *, p< 0.05. (C) and (D) Mutations detected in the PRDM7-KO cell
lines.

Although the PRDM7 mRNA was detected to be expressed in 50Tmel and
SKMel28 by qPCR, SKmel28 cells showed a higher expression than 501Mel
cells. However, endogenous PRDM7 protein was not detected in either cell line
by either Western blot or Immunostaining using commercial PRDM7-specific
antibodies, including PRDM7 antibodies from Sigma #HPA059944, DSHB
#3F10S, and Abcam #ab177033. It is possible that endogenous PRDM7
expression is very low in SKmel28 and 501Mel melanoma cells, which qPCR
data have suggested. However, it is also possible that the epitopes located in
exon 9 are absent in the major PRDM7 transcripts.

4.2.4 PRDM7-KO alters gene expression of SKmel28 and 501Mel
melanoma cells

To identify the main functional roles of PRDM7, mRNA sequencing of 501Mel
and SKmel28 PRDM7-KO cells and their corresponding control cells was
performed. First, total RNA was isolated from control and PRDM7 knockout cell
lines (501Mel-C1, 501Mel-PRDM7KO13, 501Mel-PRDM7-K0O24, SKmel28-C3,
SKmel28-PRDM7-KO13, SKmel28-PRDM7-KO17). Paired-end sequencing was
performed on an lllumina Hiseq instrument at deCODE genetics. The reads were
aligned to the human transcriptome version GRCh38 using Kallisto (Bray et al.,
2016). After that, differential expression analysis was performed by quantifying
transcripts by Sleuth in R through Bioconductor (Pimentel et al., 2017). While the
Wald test was used as a model to estimate differentially expressed genes
(DEGs), the LRT test was applied to estimate differentially expressed genes
(DEGs). There were 5.021 and 3.851 differentially expressed genes (DEGs)
between the 501Mel-C1 controls on the one hand and either 501Mel-PRDM7-
KO24 or 501Mel-PRDM7-KO13 on the other hand, with a cut-off FDR of <0.05
and >1fold change in expression (Figures 31A and 31B). The number of DEGs
between SKmel28-C3 and the SKmel28-PRDM7-KO clones KO17 or KO13 were
1.351 or 3.598, respectively. A total of 219 DEGs were shared between
SKmel28 and 501Mel cells after knocking out PRDM7. The limited number of
shared genes and the difference in the total number of genes affected in
SKmel28 versus 501Mel cells might be explained by either the cell line
characteristics or distinct roles of PRDM7 in these different cell lines.
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In order to further characterize the relationship between MITF and PRDM7, we
also performed DEGs analysis on PRDM7"'s" (30 tumor samples with the highest
PRDM7 expression) and PRDM7'* (30 tumor samples with the highest PRDM7
expression) tumors from the Cancer Genome Atlas using RNA-seq data from
480 cutaneous melanoma samples (TCGA) (Cancer Genome Atlas, 2015). This
analysis showed that 1.561 genes were induced in expression in PRDM7hish
tumors while 585 genes were reduced in expression in PRDM7"s" tumors (Figure
31C).

The DEGs between PRDM7-KO and their corresponding control as well as
between PRDM7"sh and PRDM7'°* tumors in TCGA database were next classified
into functional gene ontology (GO) groups (e.g., biological pathways (BP) and
KEGG pathways). This showed that the DEGs upregulated in the PRDM7-KO cells
were enriched for biological pathways such as synapse organization,
extracellular matrix organization, extracellular structure organization, cell junction
assembly, and cell-substrate adhesion (Figure 31D). KEGG pathway analysis of
DEGs between PRDM7-KO and its corresponding controls revealed that the
upregulated genes are associated with EMC-receptor interaction, PI3K-AKT
signaling pathway, and cytokine-cytokine receptor interaction (Figure 31D).
Similarly, the same pathways were also enriched in PRDM7'* tumors in the
TCGA data sets, suggesting that PRDM7-KO cells exhibit cellular alterations
similar o those observed in melanoma tumors.

Previous work has established that when MITF is knocked out, this leads to
reduced proliferation and increased numbers of focal adhesions ((Dilshat et al.,
2021a; Goding and Arnheiter, 2019). Therefore, we compared the expression
profile of PRDM7-KO cells to that of MITF-KO cells. The functional gene ontology
groups showed similar GO terms to be upregulated in both MITFKO and
PRDM7KO cells, including extracellular matrix and structure organization and
cell4ocell adhesion via plasma adhesion (Figure 31D). Furthermore, previous
work reported that MITF could bind to the cjun enhancer region and repress c-
Jun expression; therefore, reducing MITF expression amplifies TNFa-stimulated
cytokine signatures through inhibiting cJun expression (Riesenberg et al., 2015).
Therefore, in the next step, GSEA analysis was performed to determine the
correlation between transcriptomic profiles of SKmel28-PRDM7-KO, SKmel28-
MITF-KO cells and MITF**/JUNMsh stage. Interestingly, a positive correlation
between the transcriptomic profiles of PRDM7-KO cells and MITF*¥/JUNPsh stage
was clearly observed (Figure 31E).
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4.2.5 PRDM7 affects the morphology of SKmel28 and 501Mel
melanoma cells

In the next step, the morphology of the cells has been characterized. The phase
contrast microscopy and vimentin immunostaining showing altered morphologies
and cytoskeletal structure of PRDM7-KO cells. While 501Mel-C1 cells consist
mostly of multipolar stellate shape, the 501Mel-PRDM7-KO13 and PRDM7-KO24
cells are more rounded and spread out (Figures 32A and 32B). In contrast,
knocking out PRDM7 in SKmel28 cells resulted in an increased number of cells
showing elongated neuron-like morphology compared with SKmel28-C3 cells,
which showed a round shape as a main feature (Figures 32A and 32B).
Critically, the morphological changes in 501mel and SKmel28 cells upon PRDM7
depletion are not due to changes in quantitative of vimentin expression (Figure
32C). Interestingly, DAPI staining also suggested that the size of the nucleus in
SKmel28 PRDM7-KO13 and PRDM7-KO17 cells are larger than that of SKmel28-
C3 cells. However, no significant differences were observed in nuclear size
between 501Mel-PRDM7-KO and 501Mel-C1 cells (Figure 32D).
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Figure 31. Gene expression profile of PRDM7-KO
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showing the number of overlapping differentially expressed genes (DEGs) in PRDM7-KO

SKmel28 and 501Mel cells. (B) Volcano plot showing

differentially expressed genes

(DEGs) in PRDM7-KO cells compared to its corresponding control with log2 2-fold
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tumors. (D) Gene ontology of biological pathway and KEGG pathway analysis on induced
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Figure 32. PRDM7-KO affects cell morphology (A) Phase contrast images of PRDM7-
KO and its corresponding control showed different morphology in cell culture. (B)
Vimentin and dapi staining displayed the cytoskeleton in PRDM7-KO and its
corresponding control. (C) Western blot analysis of PRDM7-KO and its corresponding
control. The vimentin was shown by vimentin staining. Actin was used as a loading
control. (D) The size of nuclei in PRDM7-KO cells was measured based on dapi
immunostaining (B) by using image] software.

4.2.6 Depletion of PRDM7 affects the proliferation rate and
ability to form colonies

Distinct gene signatures in melanoma, characterized by unique gene expression
patterns, are linked to various stages of melanoma development and
progression. Therefore, using our RNA-Seq data, we performed a gene set
enrichment analysis (Subramanian et al., 2005) to determine the correlation
between our data set and several previously characterized datasets, including the
Verfaillie proliferative and invasive signatures (Verfaillie et al., 2015) as well as
the GSEA EMT hallmark (Mootha et al., 2003; Subramanian et al., 2005). Our
analysis showed that PRDM7-KO cells were negatively correlated with Verfaillie
proliferative signature and positively enriched for the Verfaillie invasive signature
(Verfaillie et al., 2015) and EMT hallmark (Mootha et al., 2003; Subramanian et
al., 2005) (Figure 33A). In line with that, the depletion of PRDM7 led to a
considerable increase in the expression of cell cycle inhibitors, including
CDKN2A, CDKN2B, CDKN2C, CDK2, and CDKN1B (Figures 33B and 33C).

Therefore, we further investigated the growth rate of PRDM7-KO cells. The cells
were incubated in the Incucyte S3 live cell imaging system, images were
acquired every two hours for four days, and cell proliferation was analyzed. The
doubling time was calculated based on the quantification of cell confluency over
time. This shows that the doubling times of 501Mel PRDM7-KO13 and PRDM7-
KO24 cell lines are significantly increased compared to the 501Mel-C1 control
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cell line (Figure 33D). The doubling time of 501Mel control cells was 18.91
hours. However, the doubling time of the 501Mel PRDM7-KO13 and PRDM7-
KO24 cells was 23.51 hours and 27.91 hours, respectively. The IncuCyte live cell
imaging showed that SKmel28 control and PRDM7-KO cells have similar growth
rates (Figure 33D). The proliferation rate of the inducible PRDM7 knockdown in
melanoma cells was also measured. The microRNA (miR) construct was
knockdown of the PRDM7 mRNA in PRDM7-KD cells (Figure 33E), and the
proliferation rate of 501Mel cells upon either miR1-PRDM7 or miR2-PRDM7
induction was significantly reduced compared to miR-CTRL (Figure 33E). Similar
to the SKmel28 PRDM7-KO cells, shortterm inactivation of PRDM7 in the
SKmel28 PRDM7KD cells had similar cell proliferation as the SKmel28 miR-CTRL
cells (Figure 33E).

A colony formation assay was performed to better assess the roles of PRDM7 in
maintaining cell growth and forming colonies from single cells. Both control and
PRDM7-KO 501Mel and SKmel28 cells were able to form colonies. However, the
number, size, and shape of the PRDM7-KO colonies are altered compared to the
control cell lines (Figures 33F and 33G). 12 days after seeding, the 501Mel-C1
cells formed different types of colonies: small, intermediate, and large colonies
with both loosely and tightly packed cells. In contrast, the 501Mel-PRDM7-KO13
cells dominantly resulted in small and intermediate-sized colonies, and 501Mel-
PRDM7-KO24 formed mainly small and loosely adherent colonies (Figures 33F).
The number of colonies in 501Mel-PRDM7-KO24 cell lines was reduced by 80%
as compared to 501MelC1 cells (Figure 33F). Although there was no significant
reduction in the number of colonies between SKmel28 control and PRDM7-KO
cells, SKmel28 PRDM7-KO13 and PRDM7-KO17 formed mainly smaller and
densely packed colonies, which were lighter stained by crystal violet (Figures
33F and 33G). Together, these data indicate that although the effects of PRDM7-
KO were not the same in 501Mel and SKmel28 cell lines, the absence of
functional PRDM7 in the two melanoma cell lines contributes to a significant
defect in proliferation in both the shortterm and longterm and reduces colony
formation capabilities.
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Figure 33. Depletion of PRDM?7 affects the proliferation rate and ability to form
colonies (A) GSEA analysis on PRDM7-KO and MITF-KO DEGs for Verfaillie
proliferative/invasive and EMT gene signatures. (B) Expression of a subset of cycle
inhibitor genes plotted in a heatmap. Log2 2-fold change of PRDM7-KO DEGs was used
for plotting. (C) Western blot analysis of p21 in PRDM7-KO and its corresponding control.
Actin was used as a loading control. (D) Doubling time in hours calculated from
quantification of cell confluency over 70 hours for the PRDM7-KO and its corresponding
control. Statistically significant differences (Student's ttest) are indicated by *, p< 0.05.
(E) The upper panel showed PRDM7 mRNA expression in PRDM7-KD and its
corresponding control was measured by qPCR. The lower panel indicated doubling time
in hours calculated from the quantification of cell confluency over 70 hours for the
PRDM7-KD and its corresponding control. Statistically significant differences (Student’s t-
test) are indicated by *, p< 0.05. (F) Colony-formation assays were performed using
PRDM7-KO cells. (G) The number and size of colony-forming ability of PRDM7-KO cells
were measured by Image] software. Statistically significant differences (Student's ttest) are
indicated by *, p< 0.05.

4.2.7 Overexpressing PRDM7 isoform A did not affect
proliferation

To further determine the effects of different PRDM7 expression levels in
melanoma cell lines, PRDM7 was overexpressed in 501Mel and SKmel28 cell
lines utilizing a piggy-bac transposon vector system. The PRDM7 coding
sequence for isoform A, which contains KRAB and SET domain (Figure 7) was
cloned into the pPB-hCMV vector (Table 2). Similar to the system in PRDM7-KD
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cells, the inducible promoter, which is a Tetracycline-On system, regulates
PRDM?7 expression by adding doxycycline. The overexpressed PRDM7 isoform A
and control cells are termed PRDM7-OE and EV, respectively. The success of
PRDM7 overexpression was confirmed by western blot analysis (Figure 34A).
However, overexpressing PRDM7 in 501Mel and SKmel28 cells did not show any
effect on proliferation using the IncuCyte proliferation and colony formation
assays (Figures 34A and 34B).
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Figure 34. Overexpressing PRDM7 isoform A did not affect proliferation (A) The
upper panel shows the representative western blot analysis of PRDM7 isoform A protein in
PRDM7-OE 501Mel and SKmel28 cell lines. PRDM7 protein was detected using Flag
antibody, and Actin was used as a loading control. The lower panel indicates doubling
time in hours calculated from the quantification of cell confluency over 70 hours for the
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PRDM7-OE and its corresponding control. Statistically sianificant differences (Student's t-
test) are indicated by *, p< 0.05 . (B) Colony-formation assays were performed using
PRDM7-OE in both SKmel28 and 501Mel melanoma cells. Image] software measured the
number and size of PRDM7-OE cells' colony-forming. Statistically significant differences
(Student's ttest) are indicated by *, p< 0.05. (C) Doubling time in hours was calculated
from the quantification of cell confluency over 70 hours for the PRDM7-KO cells followed
by overexpressing PRDM7 isoform A. Statistically significant differences (Student's t-test)
are indicated by *, p< 0.05. (D) and (E) Rescue of the colony-forming ability of PRDM7-
KO by overexpressing PRDM7 isoform A. Image] software measured the number and size
of PRDM7-OE cells’ colony-forming. Statistically significant differences (Student's ttest) are
indicated by *, p< 0.05.

Overexpressing PRDM7 or MITF in PRDM7-KO cells was also performed to
rescue the phenotypic effects upon depletion of PRDM7. Again, the effects on
proliferation were determined using Incucyte proliferation and colony formation
assays. However, overexpressing PRDM7 isoform A did not alter the proliferation
rate of 501Mel-PRDM7-KO cells, nor did it affect the colony formation ability of
501Mel-PRDM7-KO and SKmel28-PRDM7-KO cells (Figures 34C-E). In contrast,
overexpression of MITF reduced the difference in proliferation between PRDM7-
KO and its corresponding control (Figure 34C). One caveat is that in our
overexpression experiments, we overexpressed the A isoform of PRDM7, which
is not the predominant isoform in melanoma cells. These experiments, therefore,
need to be repeated using the more common isoforms detected by RNA-seq and
gPCR analysis.

4.2.8 Increased apoptosis observed in 501Mel-PRDM7-KO cells

The defect in proliferation observed in the 501Mel-PRDM7-KO cells may be due
to increased cell death. To investigate this hypothesis, apoptosis was determined
in the 501Mel PRDM7-KO and control cells using the IncuCyte Caspase-3/7
Green Reagent in the Incucyte S3 system. In this assay, caspase-3/7 dyes are
added to the cell culture. The caspase-3/7 dye couples with a DNA intercalating
dye to an activated caspase-3/7 recognition motif (DEVD) and thus allows the
quantification of cells undergoing apoptosis. An apoptotic index was determined
by the percentage of fluorescent cells over tofal cell confluency (%) (Figure 35A).
Upon depletion of PRDM7, more apoptotic cell death was detected in 501Mel
PRDM7-KO cells than in control cell lines. Notably, the apoptosis index of
501Mel PRDM7-KO24 cells after seeding for 12, 24, 36, and 48 hours was
significantly higher than that of 501Mel control cells (Figures 35A and 35B).
However, knocking out PRDM7 in SKmel28 did not alter the apoptosis index
(Figures 35A and 35B). This observation, again, raises the question whether
PRDMY plays cell-specific roles in the different melanoma cell lines.
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Figure 35. Increased apoptosis observed in 501Mel-PRDM7-KO cells (A)
Representative images showing the apoptosis of PRDM7-KO and its corresponding control
(Scale bars = 400 pm). The green fluorescence indicated cell death. (B) The graph
showed the apoptosis index of PRDM7-KO by 12h, 24h, and 36h following exposure to
caspase 3/7.

4.2.9 PRDM7 knock-out and knock-down cells affect migration.

Gene enrichment analysis suggested that RNA expression of PRDM7-KO cells
correlated with the Verfaillie invasive signature. In order to determine if PRDM7
plays a role in melanoma immigration, the wound-scratch assay and single cell
movement assay were performed. After 501Mel and SKMel28 PRDM7KO and
KD cells reached 100% confluency, scratches were made on a confluent layer of
cells using the Woundmaker96 instrument (Essen Bioscience). The cell migration
rate was calculated based on gap closure quantification. The migration rate of
the 501Mel PRDM7-KO24 cells was only 2.25 pum/hour, which is three times
slower than that of 501Mel control cells (6.11 pm/hour) (Figure 36A). In contrast,
SKmel28 PRDM7-KO, SKmel28 PRDM7-KD, and 501Mel PRDM7-KD cells showed
no difference in the ability of the cells to close the wound compared to their
corresponding control cells (Figures 36A and 36B). The cell migration rate, as
measured by wound-scratch assay, is affected by at least three main factors,
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including invasion ability, proliferation, and expansion of the cells. The 501Mel
PRDM7-KO24 cells significantly reduced the growth rate compared to their
parental counterpart. Hence, we used time-lapse videos to analyze the movement
of single cells to investigate further the role of PRDM7 in regulating melanoma
invasion. Although the average speed of movement of 501Mel and SKmel28
cells did not change due to the lack of PRDM7, interestingly, the maximal
distance traveled between movements showed a significant increase in PRDM7-
KO cells (Figure 36C). Together, our results suggest that the absence of
functional PRDM7 may affect certain pathways involved in the invasion ability of

melanoma cells.
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Figure 36. PRDM7 knock-out and knock-down cells affect invasion (A) Scratch
assay was performed in PRDM7-KO cells and its corresponding control. Quantified gap
closure was quantified over 12 hours for PRDM7-KO SKmel28 or 40 hours for PRDM7-KO
501Mel, and the cell migration rate was determined. (B) Scratch assay was performed in
PRDM7-KD cells and their corresponding controls. (C) Mean speed and maximal moving
distance were measured by using a single-cell movement assay. Error bars represent the
SEM. Statistically significant differences (Student's ttest) are indicated by *, p< 0.05.

4.2.10Focal adhesions are increased in SKmel28-PRDM7-KO cells

The RNA-seq data suggested that focal adhesion genes are also markedly
increased in PRDM7-KO cells (Figure 37A). Therefore, we investigated whether
PRDM7 knockout leads to changes in focal adhesions. Immunostaining for
Paxillin (pTyr111), which is required for focal points (Panetti, 2002), was
conducted on PRDM7-KO cells and the respective controls (Figure 37A). The
images were analyzed using Image] for both the number of focal adhesions and
their size (by counting pixel numbers per focal adhesion point). While SKmel28-
PRDM7-KO cells had increased numbers of focal points, 501Mel-PRDM7-KO cells
showed a significant reduction in focal point numbers, especially of focal points
that are greater than 10 pixels in size (Figure 37B). Overexpression of PRDM7
isoform A in SKmel28 cell lines slightly reduced the number of focal points, but
the difference was not statistically significant (Figures 37C and 37D).
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Figure 37. Focal adhesions are increased in SKmel28-PRDM7-KO cells (A) and (C)
Immunostaining for Paxillin(Tyr111) in PRDM7-KO (A) and PRDM7-OE (C) cell lines. Scale
bars: 10pM (B) and (D) Focal adhesion points quantified by using Cellprofiler software.
Error bars represent the SEM. Statistically significant differences (Student's ttest) are
indicated by *, p< 0.05.

4.2.11 PRDM7 depletion leads to reduced MITF expression

A positive correlation between the transcriptomic profiles of PRDM7-KO cells and
MITFv/JUNPMe" stage was observed. No changes were observed in the
expression of the MITF mRNA in PRDM7KO cells (Figure 38A). Surprisingly,
however, MITF protein expression was significantly reduced in SKmel28-PRDM7-
KO cells as well as when PRDM7 was knocked down in SKMel28 and 50Mel-
PRDM7-KD cells using siPRDM7(Figures 38B and 38C).

To further investigate the changes of MITF protein expression upon PRDM7-KO
through the cell cycle, the SKmel28-PRDM7-KO and 501Mel-PRDM7-KO cells,
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and their corresponding control were synchronized using a double thymidine
block. By treating the cell with thymidine, which is a DNA synthesis inhibitor, the
cells are arrested at the G1/S boundary. After the thymidine treatment, cells
were harvested at O hours, 4 hours, 8 hours, and 12 hours time points for MITF
protein analysis using Western blot. This showed that MITF expression changes
through the cell cycle, gradually increasing from the S phase and peaking at the
G1 phase (Figures 38D and 38E), suggesting that the expression of MITF is
regulated during the cell cycle. Although the lack of PRDM7 did not completely
abolish the expression of the MITF protein, the expression of MITF in the G1
phase of SKmel28 and 501Mel cells was not increased in PRDM7-KO cells
(Figures 38D and 38E).
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Figure 38. PRDM7 depletion leads to reduced MITF expression (A) MITF mRNA
expression in SKmel28-PRDM7-KO and its corresponding control was measured by qPCR.
(B) Western blot analysis and quantification of MITF protein expression in SKmel28-
PRDM7-KO and its corresponding control. Actin was used as a loading control. (C) MITF
mRNA expression in PRDM7-KD and its corresponding control was measured by gPCR.
(D) and (E) Western blot analysis of MITF protein changes through the cell cycle in
SKmel28-PRDM7-KO and its corresponding control. Actin was used as a loading control.
CDC2 and Cyclin B1 were used as cell cycle indicators. (F) Western blot analysis of the
stability of the MITF proteins in PRDM7-KO cells. The inducible PRDM7-KO cells were
treated with doxycycline for 24h to express the MITF-WT proteins before treating them
with cycloheximide (CHX) 40ug/ml for O, 1, 2, and 3 hours. The MITF proteins were then
compared by Western blot using Flag antibody. Actin was used as a loading control. (G)
Western blot analysis of subcellular fractions isolated from PRDM7-KO cells. MITF protein
in cytoplasmic (Cyto) and nuclear fractions (Nu) were visualized using MITF antibody.
GAPDH and yH2AX were loading controls for cytoplasmic and nuclear fractions,
respectively. . Error bars represent the SEM. Statistically significant differences (Student’s
ttest) are indicated by *, p< 0.05.

A reduction in MITF protein expression might explain the overlapping phenotype
observed in the PRDM7-KO and PRDM7-KD cells. However, the molecular
mechanism of how PRDM7 regulates MITF protein expression remains unknown.
It may act by reducing the stability of MITF protein or altering MITF localization.
Therefore, we overexpressed a MITF-Flag fusion protein in PRDM7-KO cells and
performed a stability assay. The MITF-Flag protein expressed in PRDM7-KO and
control cell lines exhibited the same degradation rate (Figure 38F), suggesting
that protein degradation is not important for stability. The subcellular localization
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of the endogenous MITF protein in 501Mel and SKmel28 was not altered upon
PRDM7 knockout (Figure 38G). In line with that, overexpressing MITF in PRDM7
cells was partially able to rescue the expression of MITF°*/Junsh TNFa signature
genes, including IL8, IL1B, and NRP1 (Figure 39). Taken together, our data
confirmed the role of PRDM7 in affecting MITF protein expression, possibly
through mediating the MITF translation process or posttranscriptional processing
of mRNA. However, this needs to be further investigated.
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Figure 39. Overexpression of MITF partially rescued PRDM7-KO cells (A) IL1B, (B)
NRP1, (C) IL8, (D) SFRPT mRNA expression in PRDM7-KO cells overexpressing MITF was
measured by gPCR. (E) IL1B, NRP1, and IL8 mRNA expression in PRDM7-KD was
measured by qPCR.

4.2.12PRDM7 does not affect sensitivity to PLX treatment

The clear link between PRDM7 and MITF and the suggested role of MITF in
response to PLX treatment raised the question if PRDM7 was involved in
developing resistance to BRAF inhibitors in melanoma cells. In order to test this,
the response of SKMel28 and 501Mel cells to PLX treatment was first
determined. The growth curve of these cells upon treatment with different PLX
concentrations was determined using IncuCyte live imaging (Figure 40A).
SKmel28 and 501mel cells showed comparable sensitivity to PLX treatment, with
IC50 of 0.5uM in both cases. Upon treatment with 0.5uM PLX, the colony
formation ability of PRDM7-KO cells was significantly impaired (Figures 40B and
40C). However, different PRDM7-KO clones responded in distinct ways,
suggesting variation between cell lines. While the 501Mel-PRDM7-KO13 cells are
less sensitive to PLX treatment than 501-C1 cells both in terms of number and
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size of colonies, the 501Mel-PRDM7-KO24 cells did not show any significant
difference compared to the control. Upon PLX treatment, the number of
SKmel28-PRDM7-KO13 colonies was significantly reduced compared to
SKMel28-C3. Although the SKmel28-PRDM7-KO17 colonies were loosely
adherent, their size was considerably greater than observed in the
corresponding control. Overexpressing PRDM7 isoform A in either 501Mel or
Skmel28 did not affect sensitivity to PLX (Figures 40D and 40E). Our data
showed that both MITF and PRDM7 mRNA expression significantly increased in
501Mel PLXtreated cells. However, MITF and PRDM7 mRNA expression was
significantly reduced upon longer PLX treatment (Figure 40F). Taken together,
our findings suggest that PRDM7 responds differently to PLX treatment
depending on different melanoma cell lines, suggesting that it does not play a
major role in PLX sensitivity response.
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Figure 40. PRDM7 does not affect sensitivity to PLX treatment (A) The growth
curve of 501Mel and SKmel28 cells upon treatment with different PLX concentrations were
determined using IncuCyte live imaging. (B) Colony-formation assays were performed by
treating PRDM7-KO cells with PLX at 0.5uM for SKmel28 and 0.25uM for 501Mel. (C)
Image| software measured the number and size of PRDM7-KO cells upon PLX treatment.
Statistically significant differences (Student’s ttest) are indicated by *, p< 0.05. (D)
Colony-formation assays were performed using PRDM7-OE upon treatment with PLX at
0.5uM for SKmel28 and 0.25uM for 501Mel. (E) Image]) software measured the number
and size of PRDM7-OE cells upon PLX treatment. Statistically significant differences
(Student’s ttest) are indicated by *, p< 0.05. (F) MITF and PRDM7 mRNA expression in
SKmel28 and 501Mel after PLX treatment was measured by gPCR.

4.2, 13MITF-KO and PRDM7-KO alter histone modifications in

melanoma cell lines

As PRDM7 is known as an H3K4me3 histone methyliransferase, its depletion
might influence the histone modification pattern in melanoma cells. In order to
determine if such changes occur, we performed Cut&Run to map the H3K4me3,
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H3K9me3, and H3K27me3 histone modifications in MITFKO SKMel28-MITF-X6
and SKmel28-MITF-X2) and PRDM7-KO cells and their corresponding controls.
Surprisingly, although the overall number of H3K27me3 histone marks did not
change, the distribution of active (H3K4me3) and repressive marks (H3K9me3
and H3K27me3) was significantly altered in PRDM7-KO and MITFKO cells
compared to the corresponding control (Figures 471A-E). Functional gene
ontology group analysis between PRDM7-KO and their corresponding controls
indicated that the deletion of PRDM7 in SKMel28 and 501Mel cells introduced a
unique H3K4me3 mark in genes associated with RNA localization and regulation
of RNA stability. Although PRDM7-KO cells and its corresponding controls
showed overlapping H3K4me3 marks in a subset of genes, the H3K4me3 signals
were located in genes responsible for DNA conformation changes and DNA
geometric changes were significantly reduced in PRDM7-KO cells compared to
control cell lines (Figures 41F{).

Meanwhile, the mapping of H3K4me3 histone marks in MITF-KO and its
corresponding control showed that the unique H3K4me3 marks, which were
found only in MITF-KO cells compared to its control, are enriched in genes
involved in the regulation of actin cytoskeleton organization, regulation of cell
growth, and positively activated JUN kinase pathway (Figures 41H-l). Deletion of
MITF also resulted in a loss of the H3K4me3 signal in genes involved in the
regulation of translation, positive regulation of cellular catabolic processes, and
vesicle organization categories (Figures 41H-I). The active histone modification
H3K4me3 signal also changed in genes associated with chromatin segregation,
RNA splicing, and regulation of chromatin organization (Figure 41) upon
knocking out PRDM7 and MITF. Our data suggested that the depletion of either
MITF or PRDM7 leads to a massive change in melanoma cells’ repressive and
active histone marks. Possibly, MITF and PRDM7 regulate each other's
expression and are involved in reshaping the chromatin state in melanoma.
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Figure 41. MITF-KO and PRDM7-KO alter histone modifications in melanoma cell
lines. (A), (B), and (C) Heatmap showing the distribution of histone mark H3K4me3 (A),
H3K27me3 (B), and H3K9me3 (C) in MITFKO and PRDM7-KO cells around 10kb +/-
corresponding histone marks in control cell lines. (D) Western blot analysis of H3K27me3
in SKMel28-PRDM7-KO and SKmel28-C3. Actin was used as a loading control. (E) Venn
diagram showing the number of overlapping H3K4me3, H3K27me3, and H3K9me3
histone marks between PRDM7-KO or MITF-KO and their corresponding control. (F), (G),
and (H) Gene ontology analysis of unique H3K4me3 histone marks in PRDM7-KO and
MITFKO cells. (l) and () Gene ontology analysis of the H3K4me3 histone marks of the
overlapping H3K4me3 mark in PRDM7-KO or MITF-KO compared to their corresponding
control.
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5 Discussions and Conclusions

5.1 Characterization of the molecular mechanism behind the
Mitf"s' suppressor mutation

5.1.1 Molecular effects of the Mitf™s! mutation

Suppressor mutation screening is an important approach to providing valuable
information about gene function, molecular pathways, and protein-protein
interactions (Bautista et al., 2021; Sujatha and Chatterji, 2000). Suppressor
screens are commonly performed in yeast, Drosophila, and C. elegans but rarely
in mice. A novel intragenic suppressor mutation at the Mitf locus in the mouse
was generated and shown that it is a re-mutation at the Mitf locus, which results
in a truncation of the already mutated Mitf" protein.

In homozygous conditions, the Mitf"s/ mutation leads to brownish coat color
compared to the normal black coat of Mitf"* homozygotes. In compound
heterozygous conditions with other Mitf mutations, including severe dominant-
negative or loss-of-function mutations, the Mitf"s/ mutation improves the
phenotype as compared to combinations of the same alleles with the original
Mitf"=P mutation. At the molecular level, we show that this suppressor mutation
increases the nuclear localization of the MITF protein and reduces its stability.
Importantly, in the presence of defective DNA-binding mutations such as MITF™"
e MITF™, and MITFMWh “the Mitf"s protein will dimerize with these partners and
drag them into the nucleus, thus increasing the stability of the Mitf"* protein
itself. This can explain the dichotomous phenotypic effects of the Mitf"
mutation. The “brownish” phenotype of Mitf" homozygotes is likely to be due
to the reduced stability of Mitf™ protein. Although there is more of it in the
nucleus, its stability is reduced, thus resulting in reduced expression of target
genes involved in pigmentation, e.g. Pmel, Tyrp1, and Mlana. Here, the total
concentration of active MITF™* protein in the nucleus at any given time will
depend on the relationship between effects on nuclear import on the one hand
and stability on the other hand. Expression of the MITF-partner proteins TFEB and
TFE3 is limited in melanocytes so that they will have negligible effects on MITF
activity in the homozygous situation. However, when the Mitf"/ mutation is
combined with the various other Mitf mutations, MITF™* preference to form
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dimerize and drag its partner proteins (MITF-WT or mutant MITF) into the
nucleus, in turn, protecting MITF™ from degradation. Eventually, however, the
dimers will release MITF™* monomers from their non-DNA-binding dimeric
partner, thus forming MITF™ homodimers, which can bind DNA and activate
the expression of target genes. This helps explain the suppressive effects. Here
the combined effects of nuclear import, rate of nuclear degradation, DNA
binding, and dimerization properties are likely to determine the final outcome;
the steady-state levels of nuclear MITF™ are likely to be determined by the rate
of heterodimer dissociation and rate of degradation. The near-normal coat color
phenotype of Mitf"<//Mitf" compound heterozygotes suggests that together these
effects result in almost full MITF activity during critical stages of melanocyte
development and function. This is a novel mechanism of genetic suppression.

5.1.2 Factors affecting MITF localization and stability

In addition to providing an explanation for the phenotypic outcome of the
suppressor mutation, the mutation provides novel insights into how both stability
and nuclear import of the MITF protein are regulated. Nuclear localization of
MITF has been shown to involve a balance between import and export that
depends on a number of domains, including the DNA-binding domain of MITF
and the S69 and S73 phosphorylation sites (Fock et al., 2019; Ngeow et al.,
2018). In wildtype cells, MITF is approximately equally distributed between the
nucleus and cytoplasm, although, due to differences in nuclear and cytoplasmic
volumes, it is more concentrated in the nucleus than in the cytoplasm, as
evidenced by immunocytochemistry (Fock et al., 2019). Unexpectedly, our
observations show that the C-end of MITF has major effects on nuclear
localization and that residues 316-326 and 378-419 are critical factors in
mediating nuclear localization. While lacking the 378-419 domain results in
nuclear accumulation, the depletion of the 316-326 domain impairs the nuclear
export dynamic of pS73-MITF. Interestingly, simultaneously mutating the SUMO-
site at K316 and the phosphorylation site at S409 increased the nuclear
localization of MITF compared to the single S409A mutation. However, other
residues must also be involved since this double mutant protein did not fully
replicate the effects observed with the Mitf"s/ mutation alone. It is likely that other
residues within the 378-419 region are important for mediating these effects.

The nuclear localization of MITF is not affected by the alternative six amino acids.
Additionally, the interaction of MITF with the 14-3-3 family of proteins was not
affected by the 104 aa deletions associated with the MITF™*! mutation. Previous
work has shown that the interaction between MITF and 14-3-3 proteins depend
on phosphorylation at S173 (Bronisz et al., 2006), a residue that is still present in
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the MITF™ protein. Consistent with our data, the MITF-S409A and TFEB-S467A
(equivalent to S409 of MITF-WT) proteins retained their ability to form complexes
with 14-3-3 proteins but significantly increased their nuclear retention compared
to their WT counterparts (Bronisz et al., 2006; Palmieri et al., 2017; Wang et al.,
2016). This is also consistent with the observation that reduced MAPK activity, as
seen in Kif™"4f/Kit* mice, does not alter the Mitf"' phenotype and with previous
results showing that transgenic Mitf BACs with an S409A mutation can fully
rescue the phenotype of Mitfm9®®/Mitfmv92® mice (Bauer et al., 2009).
Furthermore, it has been reported that the localization of MITF is regulated by
the BRAF/MAPK-regulated nuclear export signal (NES), which contains the
phosphorylation at S69 and S73 residue (Ngeow et al., 2018). Interestingly, the
nuclear localization of MITF is also modulated by three karyophilic signals in the
bHLH-Zip domain spanning residues 197-206, 214-217, and 255-265 (Fock et
al., 2019). In addition, a couple of NES signals located in the C-terminus of MITF
(350-366 and 374-388 residue) are predicted by the LocNES algorithm and
need further studies to verify their roles in regulating MITF localization.

This work shows that MITF is mainly degraded through ubiquitin-proteasomal
degradation located in the nucleus. Again, the effects on stability are mediated
by the domains encoded by residues 316-326 and 378-419. The fact that the
effects on nuclear localization and stability are encoded in the same domains
suggests that these events are related. The effects on nuclear localization are
likely dominant since the nuclear proteasome machinery will degrade the protein
as soon as the protein is in the nucleus. Notably, DNA binding ability of MITF™!
is essential for the degradation process. However, how DNA binding contributes
to MITF stability is not clear. It is possible that the interaction of the two carboxyl
domains can only take place when bound to DNA. Alternatively, DNA binding
may be essential for either SUMOylation of K316 or phosphorylation of $409. It
is also possible that the increase in cytoplasmic proportion of MITF™-316X and
MITF™w.316X compared to that of MITF™ could potentially explain the increase
in their stability. Importantly our work shows that the inferaction between the
SUMOylation site at K316 and the phosphorylation site at S409 are important for
regulating MITF localization and stability. smFRET results obtained by the Masters
student Matthias Mar Valdimarsson show that these two residues are near each
other in space, suggesting that direct interactions are involved.

Previous work using HEK293 cells has shown that an S409A mutant protein has
similar stability to that of MITF-WT, whereas the S73A-S409A double mutant is
more stable (Wu et al., 2000). Consistent with that, in our A375 model, the
S409A mutation alone did not affect stability. Critically, we show for the first time
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that the SUMO-site at K316 is involved in mediating MITF stability and
surprisingly cooperates with the S409 phosphorylation site in mediating this.
Consistent with previous work (Murakami and Arnheiter, 2005), we also showed
that the double K182/316R MITF mutant did not alter stability. SUMOQylation at
K182 and K316 may play specific roles and complement each other in MITF
stability and subsequent effects on transcription regulation.

Surprisingly, our results show that the unpS73 form of MITF-WT is much less
stable than the pS73 form. In our model, there is an almost 3-fold difference in
the stability of the two forms. Interestingly, the Mitf"* mutation reduced the
stability of both the pS73 and unpS73 forms of MITF about 3-fold in each case,
suggesting that the effects of the C-end on stability are independent of the effects
of pS73. Additionally, the observation that pS73-MITF is exported from the
nucleus (Ngeow et al., 2018) suggests that the kinetics of S73 phosphorylation
and dephosphorylation may determine the subcellular location and thus mediate
protein stability. Currently, there is limited information on the kinetics or
pathways involved.

5.1.3 Model for the molecular effects of E318K mutation in
melanoma

Independent reports have shown that the E318K variant in human MITF
predisposes to melanoma (Bertolotto et al., 2011; Yokoyama et al., 2011). This
variant alters an essential residue in the SUMOylation motif YKXD/E, including
K316, the actual SUMOylation site. We show that the E318K mutant protein,
which cannot be SUMOylated at this site, exhibits normal nuclear localization.
However, when the S409A mutation is also present, the protein is more nuclear,
regardless of S73 phosphorylation status. The E318K mutation resulted in
reduced MITF stability both in the presence and absence of the S409A mutation.
It has been reported that MITF-E318K occupied a larger number of binding sites
(Bertolotto et al., 2011). In line with that, DNA binding ability might increase the
degradation rate, suggesting a reason for the reduced stability in the MITF-E318K
mutation.

Interestingly, MITF-E318K has been reported to induce invasion and suppress the
senescence promoted by the BRAFYE mutation (Bonet 2017). Since BRAF-
signalling has been proposed to mediate the effects of the E318K mutation, our
work suggests a cooperation of the K316 SUMOylation site with phosphorylation
at S409 in mediating effects on MITF localization and stability. This may suggest
that signaling enhances the effects of the E318K mutation. S409 has been
suggested to be phosphorylated by the MAPkinase p?ORsk (Wu et al., 2000) or
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by AKT (Wang et al., 2016). The gain-of-function BRAFY6° mutation and loss-of-
function PTEN might accelerate the p9ORsk or AKT kinase activity, respectively,
and promote S409 phosphorylation. Eventually, this ability of BRAFY¢°t to
phosphorylate S409 might promote cytoplasmic retention of MITF-E318K, which
subsequently could increase the stability of MITF and maintain the level of MITF
at steady-state levels. Thus, the medium-risk allele E318K (Bertolotto et al., 2011;
Yokoyama et al., 2011) may depend on particular environmental signals (e.g.,
sun exposure) in mediating disease predisposition.

Based on our data, we propose a model (Figure 42) where the two regions of
the C-end of MITF contribute to nuclear localization and stability. MITF needs to
bind DNA upon which the protein is SUMOylated at K316 and phosphorylated at
5409, thus leading to interactions between the two domains. Lacking
phosphorylation at S409 and SUMOylation at K316 results in the impairment of
nuclear export, suggesting that SUMOylation at K316 and phosphorylation at
S409 might be important for the interaction of MITF and export proteins (e.g.,
CRM1, NPM1). Consequently, the interaction between MITF and nuclear export
protein is suggested to affect protein degradation and stability. Perhaps this is a
feedback loop to limit the activity of MITF based on environmental signals. We,
therefore, conclude that generating suppressor mutations in the mouse is an
exciting and feasible option for studying gene function and may reveal
unexpected aspects of protein function and regulation, leading to novel insights
into protfein activities in the living organism.

5.1.4 Future perspectives regarding MITF carboxyl terminus

In this study, the 316-419 domain has been shown to play important roles in
regulating both stability and localization. Importantly, we showed that
phosphorylation at S409 and SUMOylation at K316 has been shown to play a
critical role in modulating both localization and stability. However, which
signaling pathway is involved in accelerating the degradation rate of MITF due to
lack of carboxyl end remains to be further investigated. It is possible that lack of
carboxyl end results in the exposure of degron signal and subsequently reduces
stability in MITF™*. However, the degron signal's location at the carboxyl end
and how it recruits the proteasomal degradation machinery to degraded MITF
still need to be further investigated.
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Figure 42. Propose model mechanism of 316-419 domain regulate MITF stability
and localization.

Furthermore, the nuclear accumulation of MITF™* has been shown due to the
impairment of both nuclear import and export. However, the exact sequence of
NES and NIS signals located at the carboxyl end remains to be verified and
further studied. Additionally, it would be further interesting to understand the
interactome of MITF carboxyl-end. The comparison of MITF-WT and MITF™
interactome could propose carboxyl-end MITF inferaction partner proteins that
might regulate MITF localization. Performing a CRISPR screen could also be a
powerful screening technique for the specific kinases and SUMOylation
enzymes, which regulates the phosphorylation at S409 and SUMOylation at
K316, respectively. As a result, the signaling pathways involved in regulating
MITF localization and stability would be clarified.

Additionally, besides the cycloheximide decay kinetics, radioactive pulse-chase
assays also offer a complementary approach to measuring protein stability and
turnover rate. While cycloheximide decay kinetics assays provide valuable
insights into the global turnover rates of proteins, they do not discriminate
between newly synthesized and pre-existing protfeins. In contrast, radioactive
pulse-chase assays enable the specific measurement of protein stability by
incorporating a radioactive amino acid during synthesis and subsequently
tracking its fate over time. This technique, therefore, might provide precise
information about the synthesis and turnover kinetics of MITF proteins, allowing
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us fo distinguish between newly synthesized and pre-existing protein pools and
possibly distinguish between upS73- and pS73-MITF. Additionally, radioactive
pulse-chase assays offer the opportunity to study MITF trafficking and localization,
providing further insights into upS73- and pS73-MITF dynamics within cells.

5.2 Functional roles of PRDM7

The link between MITF activity and melanoma phenotype suggests that MITF
might be involved in reshaping chromatin states in melanoma by mediating the
expression of epigenetic modifiers. In this study, we reported that MITF positively
regulates the methyliransferase PRDM7, a primate-specific gene that is
exclusively expressed in melanoma. To investigate the functional roles of PRDM7,
we generated PRDM7-KO melanoma cell lines using CRISPR-Cas9 and used
them to profile the transcriptome and phenotypic effects of PRDM7. The RNA-
seq data of PRDM7-KO melanoma cells resembles PRDM7'°% tumor samples. In
both datasets, we observed a significant increase in the expression of genes
associated with extracellular matrix organization, extracellular structure
organization, cell junction assembly, and cell-substrate adhesion. This is
consistence with the changes in morphologies upon depletion of PRDM7 using
miRNAs. Additionally, the transcriptomic profile of PRDM7-KO was positively
correlated with the Verfaillie proliferative and invasive signatures (Verfaillie et
al., 2015) and the EMT hallmark. Notably, the EMT hallmark, which was default
set by GSEA, included genes defining epithelial-mesenchymal transition (e.g.,
wound healing, fibrosis, and metastasis) (Subramanian et al., 2005). The
Verfaillie proliferative or invasive signatures were based on transcriptome data of
tumor biopsies and defined by signature genes in either proliferative or invasive
clusters (Verfaillie et al., 2015). Cell lines with high MITF expression exhibited
the proliferative phenotype, and cells with low MITF expression exhibited the
signature of an invasive phenotype (Hoek, Eichhoff, et al., 2008; Widmer et al.,
2012).

Depletion of PRDM7 in both 501Mel and SKmel28 cells resulted in increased
expression of cell cycle inhibitors genes. In line with that, 501Mel and SKmel28
PRDM7-KO cells significantly reduced their proliferation rate and colony
formation abilities compared to their corresponding controls. The 501Mel-
PRDM7-KD cells also showed a slower proliferation rate using the Incucyte
system. Knockdown of PRDM7 showed less of an effect than knockout cells. The
duration of the knockdown and incomplete depletion of PRDM7 might explain
the difference observed between the 501Mel PRDM7-KO and PRDM7-KD cells.
The slower proliferation of 501Mel-PRDM7-KO might be explained by increased
apoptosis.
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Although the RNA-seq data suggested that PRDM7 might play a role in migration
and invasion, the scratch assay did not support that. Single-cell movement assays
did not suggest a difference in the mean migration speeds upon PRDM7
deletion; however, PRDM7-KO cells showed a notable increase in the maximal
distance traveled, suggesting the role of PRDM7 in regulating cell stretching and
morphology during migration. PRDM7 also influenced the number of focal
points, although the SKmel28-PRDM7-KO and 501Mel-PRDM7-KO showed
opposite effects.

Previous work has shown changes in cell morphology, focal adhesion,
proliferation, and invasion upon MITF depletion (Dilshat et al., 2021a). The RNA-
seq data of PRDM7-KO cells resembles MITF-KO cells in that the deletion of
either PRDM7 or MITF leads to induced expression of genes associated with
extracellular matrix and structural organization as well as with EMT genes.
Consistent with that, a reduction in MITF protein expression was observed in
PRDM7-KO cells, whereas no changes were observed at the mRNA level.
Reduced MITF protein expression might explain the phenotypic similarity seen
between PRDM7-KO and MITF-KO cells.

Interestingly, our observation shows that MITF protein expression changes
through the cell cycle. If MITF expression increases over a specific threshold, it
might activate or repress the genes that are responsible for cell cycle regulation.
However, depletion of PRDM7 reduced the expression of MITF protein, making
the cells non-proliferative and unable to switch between stages. Interestingly,
consistent with the reduction of MITF protein in PRDM7-KO cells, overexpressing
MITF partially rescued the PRDM7KO cells. However, the reduction of MITF
protein in PRDM7-KO cells was not due to the alteration of MITF stability or
changes in MITF localization. It is possible that PRDM7, known as a
methyliransferase, regulates the MITF translation process through methylating
mRNA. However, it is not known if this is the case or how this is mediated.

Although the PRDM7-KO knockouts altered the cellular phenotypes,
overexpression of the PRDM7 isoform A did not significantly influence
proliferation, invasion, focal adhesion, or sensitivity to PLX treatment.
Importantly, overexpression of PRDM7 isoform A could not rescue the phenotype
of the PRDM7KO cells. It is possible that the PRDM7 isoform A used in these
experiments is not functional in melanoma cells. We have discovered seven
novel PRDM7 isoforms to be expressed in melanoma cells that did not contain
complete KRAB and SET domains. Possibly, different isoforms play different
functional roles. Thus, it is possible that the isoform A used to rescue PRDM7-KO
simply does not replicate the similar function of other PRDM7 isoforms, which
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might be dominant presenting in melanoma cells. Therefore, these experiments
need to be repeated using the novel isoforms.

Furthermore, in this study, two melanoma cell lines, 501Mel and SKmel28, were
used to study the function of PRDM7. Although PRDM7 depletion in 501Mel and
SKmel28 affected cell proliferation, morphologies, and focal adhesion, PRDM7-
KO in these two cell lines did not show the same results. It might be explained
by specific cell line characteristics, including the difference in endogenous
PRDM7 and MITF expression level, which eventually leads to different responses
due to reduced MITF protein expression. However, many questions are still
open regarding PRDM7 and remain to be further investigated. First of all, the
dominant PRDM7 isoforms and their specific functional roles in melanoma need
to be studied through the rescue of PRDM7-KO melanoma. Secondly, the effect
of PRDM7 on the expression of MITF protein needs to be further investigated.
Although PRDM7 has not been shown to affect MITF protein localization and
stability, PRDM7 might play roles in regulating the MITF translation process,
possibly through methylation of MIT mRN and recruiting translation machinery
for MITF protein synthesis. Further, it is critical and important to understand how
the histone modification changes upon deletion of PRDM7. Although the PRDM7
protein has not been detected by using commercial antibodies, CRISPR-knockin
could be used to tag PRDM7 and mass spectrometry could be performed to
investigate the PRDM7 interactome. The question of whether PRDM7 interacts
with chromatin modifiers or polycomb to direct the histone modification could
then be answered.
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Abstract

The microphthalmia-associated transcription factor (MITF) is at the core of melano-
cyte and melanoma fate specification. The related factors TFEB and TFE3 have been
shown to be instrumental for transcriptional regulation of genes involved in lyso-
some biogenesis and autophagy, cellular processes important for mediating nutrition
signals and recycling of cellular materials, in many cell types. The MITF, TFEB, TFE3,
and TFEC proteins are highly related. They share many structural and functional fea-
tures and are targeted by the same signaling pathways. However, the existence of
several isoforms of each factor and the increasing number of residues shown to be
post-translationally modified by various signaling pathways poses a difficulty in in-
dexing amino acid residues in different isoforms across the different proteins. Here,
we provide a resource manual to cross-reference amino acids and post-translational
modifications in all isoforms of the MiT-TFE family in humans, mice, and zebrafish and
summarize the protein accession numbers for each isoform of these factors in the dif-
ferent genomic databases. This will facilitate future studies on the signaling pathways

that regulate different isoforms of the MiT-TFE transcription factor family.

KEYWORDS

isoform, MITF, post-translational modifications, TFE, transcription factor

the relative affinities of the different monomers to each other in the
different cells and tissues where they are expressed. The restriction

of dimerization within the MiT-TFE family is due to the presence of a

The MIT-TFE family of transcription factors consists of the MITF,
TFEB, TFE3, and TFEC proteins (Hemesath et al., 1994; Hodgkinson,
etal., 1993). They all share the common basic helix-loop-helix leucine
zipper (bHLH-Zip) motif required for dimerization and DNA binding
as well as a couple of other functional domains including transac-
tivation and nuclear translocation domains (reviewed in Goding &
Arnheiter, 2019; Steingrimsson, Copeland, & Jenkins, 2004). These
proteins can bind DNA as either homodimers or as heterodimers ex-
clusively with each other but not with other members of the bHLH-
Zip family of proteins (Hemesath et al., 1994; Pogenberg et al., 2012).
In principle, four homodimers and six heterodimers can be generated

between MIT-TFE family members. However, little is known about

© 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

three-residue sequence EQQ[260-262] (based on MITF-M number-
ing) in the zipper domain of only the MiT-TFE subfamily of bHLH-Zip
transcription factors (Pogenberg et al., 2012, 2020).

MITF has emerged as a key regulator of proliferation, differen-
tiation, cell cycle, and survival of melanocytes and melanoma cells
(reviewed in Goding & Arnheiter, 2019). It also affects mast cells,
retinal pigment epithelium (RPE) and osteoclast development and in
addition plays a role in olfaction as well as in circadian regulation of
gene expression (Atacho et al., 2020; Malcov-Brog et al., 2018; Morii
et al., 1996; Shibahara et al., 2000; Weilbaecher et al., 2001). In hu-
mans, MITF mutations have been linked to Tietz syndrome (Amiel,
Watkin, Tassabehji, Read, & Winter, 1998; Smith, Kelley, Kenyon,
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& Hoover, 2000), Waardenburg syndrome type 2A (Tassabehji,
Newton, & Read, 1994) as well as the more serious COMMAD syn-
drome observed in individuals carrying MITF mutations on each
of the two chromosomes (George et al., 2016). Importantly, it has
been shown that MITF plays a role in melanoma where it regu-
lates proliferation and invasiveness (Carreira et al., 2006) and has
been suggested as a distinct class of lineage survival oncogene for
both tissue-specific cancer development and tumor progression
(Garraway et al., 2005). Notably, individuals carrying the Glu318Lys
germline mutation, which affects a SUMO-site in MITF, have an in-
creased chance of developing melanoma (Bertolotto et al., 2011;
Yokoyama et al., 2011).

TFEB and TFE3 are known as master controllers of lysosomal
biogenesis and autophagy in many cell types. They are important
for nutrient sensing and regulation of energy metabolism (Martina
et al., 2014; Roczniak-Ferguson et al., 2012; Sardiello et al., 2009;
Settembre et al., 2011). Under normal physiological conditions,
mTORC1 directly mediates the phosphorylation of TFEB and
TFE3, which leads to cytoplasmic retention of these proteins
due to interaction with 14-3-3 proteins (Martina, Chen, Gucek,
& Puertollano, 2012; Martina et al., 2014; Roczniak-Ferguson
et al., 2012). When mTOR is inactivated upon starvation, it leads
to dephosphorylation of TFEB and TFE3 by calcineurin (Medina
etal.,, 2015; Settembre et al., 2011), resulting in nuclear translocation
and transcriptional activation of genes important for recycling of cel-
lular components (Medina et al., 2015; Settembre & Ballabio, 2011;
Zhang et al., 2016). MITF has also been implicated in regulating the
expression of genes involved in endolysosomal biogenesis and the
starvation-induced autophagy response (Méller et al., 2019; Ploper
etal., 2015; Zhang et al., 2015).

Like MITF, TFEB and TFE3 have been linked to cancer.
Translocations of TFEB or TFE3 have been described in a distinct
subset of renal cell carcinoma (RCC), with TFE3 translocations more
frequent than those of TFEB (Zhong et al., 2012; reviewed in Raben
& Puertollano, 2016). At least fourteen different TFE3 translocation
partners have been identified consisting of ASPL (Argani et al., 2001),
PRCC (Shipley et al., 1995), PSF/SFPQ (Clark et al., 1997), NonO (Clark
et al., 1997), CLTC (Argani et al., 2003), PARP14 (Huang et al., 2015),
GRIPAP1 (Classe et al., 2017), MED15 (Ye et al., 2019), LUC7L3 (Malouf
et al., 2014), KHSRP (Malouf et al., 2014), NEAT1 (Pei et al., 2019),
KAT6A (Pei et al., 2019), DVL2, and RBM10 (Cancer Genome Atlas
Research Network et al., 2016). The multiple gene rearrangements
lead to various fusion proteins but all chimeric TFE3 proteins con-
tain the bHLH-Zip domain of TFE3 and are overexpressed under
the regulation of the partner's promoter, resulting in abnormal TFE3
expression (Kauffman et al., 2014). Approximately 40% of pediat-
ric RCC involve TFE3 translocations (Ross & Argani, 2010), whereas
only around 1%-5% of adult RCC are associated with TFE3 translo-
cations (Komai et al., 2009; Zhong et al., 2012). Additionally, TFE3
gene fusions have been found in alveolar soft part sarcomas (Argani
et al., 2001; Ladanyi et al., 2001). Several fusion partners have also
been found for TFEB in RCC, including MALAT1 (Argani et al., 2005;
Davis et al., 2003), COL21A, and CADM2 (Cancer Genome Atlas

Research Network et al., 2016). The MALATI-TFEB fusion retains
the full TFEB coding region but its expression is regulated from the
highly activated MALAT1 promoter, resulting in overexpression of
TFEB (Kuiper et al., 2003; reviewed in Raben & Puertollano, 2016).
Additionally, TFEB and TFE3 have been shown to play a role in pan-
creatic ductal adenocarcinoma (PDA; Perera et al., 2015). In PDA
cells, TFEB and TFE3 are constitutively transported to the nucleus
and as a result, the expression of genes responsible for PDA growth
is considerably increased (Perera et al., 2015). In contrast, the func-
tional role of TFEC remains largely uncharacterized.

2 | MIT-TFE ISOFORMS
2.1 | MITFisoforms

The human MITF gene spans approximately 230,000 bp and is located
on chromosome 3 (GRCh38/hg38 chr3:69,739,435-69,968,336),
whereas the mouse Mitf gene is on chromosome 6 and extends over
215,000 bp (GRCm38/mm10 chré6:97,807,058-98,021,349). Both
human MITF and mouse Mitf genes are significantly conserved, and
they share a similar gene organization with several promoters and
tissue-specific first exons as well as the common exons 2-9 (re-
viewed in Goding & Arnheiter, 2019). Due to alternative promoter
usage and splicing, the human MITF and mouse Mitf genes generate
multiple mRNAs and protein isoforms which differ primarily at their
5'-ends and amino termini, respectively. The distinct first exons are
termed exon 1A, 1B1a, 1C, 1D, 1E, 1J, 1H, 1Mc, and 1M (Figure 1;
reviewed in Goding & Arnheiter, 2019). Each of these first exons is
regulated by specific promoters. Thus, there are nine distinct pro-
moters and nine major MITF/Mitf mRNAs which are generally named
by their unique first exon, as summarized in Tables 1 and 2. The
MITF/Mitf-A, Mitf-D, Mitf-J, Mitf-H, and Mitf-M isoforms have been
identified in both human and mouse whereas the mouse homolog of
the human MITF-B and MITF-C transcripts and the human homolog
of the mouse Mitf-E and Mitf-Mc transcripts were later identified
in genomic DNA and can be translated (Hershey & Fisher, 2005). It
should be noted that the full-length protein sequences of several
human and mouse MITF isoforms are currently not available in all
databases or have been only predicted by automated computational
analysis (Tables 1 and 2). Adding a level of confusion, the nomen-
clature system of mouse and human MITF differs between data-
bases as well as between the two species. In the NCBI database, the
human MITF isoforms are named as isoforms 1-5, 7, and 9 without
direct reference to the genetic nomenclature (Table 1). Meanwhile,
the mouse MITF isoforms are numbered in the order of identifica-
tion, with the mouse MITF-A, MITF-M, and MITF-H isoforms termed
MITF isoforms 1, 2, and 3, respectively (Table 2).

In both human and mouse, each of the isoform-specific exons
1A, 1B1a, 1C, 1D, 1E, 1J, 1Mc, and 1H is spliced to exon 1B1b; and
then to the common exons 2-9. In addition, there is exon 1M which
is directly joined to exons 2-9. Five of the first exons of human
MITF, including exons 1A, 1B1a, 1C, 1H, and 1M, contain their own
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FIGURE 1 Schematic representation of the human MITF isoforms showing the distinct N-termini. The alternative exon 6A has been
described in human MITF-A, MITF-H, and MITF-M proteins. Translation start and stop codons are indicated by the (v) symbol and (*) symbol,
respectively. The (V) symbol shows the alternative start codon of the MITF-B isoform. The numbers indicate amino acid residues. The cell
lines exhibiting the major expression of the human MITF isoforms according to the FANTOM database are presented

translation initiation sites (reviewed in Goding & Arnheiter, 2019). As
aresult, the human 1A, 1B1a, 1C, 1H, and 1M exons encode 35, 10,
34,19, and 11 amino acids, respectively (Figure 1). However, the first
methionine residue located in exon 1B1b has also been proposed as
a translation start site for the MITF-B mRNA, translating into either
468- or 474-residue proteins (reviewed in Goding & Arnheiter, 2019).
In contrast, human exons 1J, 1Mc, 1E, and 1D do not contain a start
codon. Therefore, the proposed translation start sites of the result-
ing transcripts are located in exon 1B1b and are the same as the al-
ternative start codon of the MITF-B transcript (Figure 1). Thus, the
nine different splice forms of human MITF generate at least six dis-
tinct proteins with different amino termini. In the mouse Mitf gene,
a start codon is present in exons 1A, 1B1a, 1C, 1H, 1Mc, and 1M,
whereas exon 1J, 1E, and 1D do not include their own translation
start sites. The mouse Mitf-A, Mitf-B, Mitf-D, Mitf-E, Mitf-J, Mitf-H,
and Mitf-M transcripts are expected to be translated into proteins
which are of the same length as the human counterparts; each of the
mouse and human isoforms shares approximately 95% identity with
their corresponding human MITF protein homologs. Conversely, the
mouse Mitf-C and Mitf-Mc transcripts are translated into proteins
containing 11- and 43-residue unique amino termini, respectively,
which are different from those of the human MITF-C and MITF-Mc
proteins.

In zebrafish, there are two mitf genes encoding two Mitf proteins,
termed Mitfa and Mitfb (Table 3). The zebrafish mitfa gene spans
approximately 6,600 bp and is located on chromosome 6 (GRCz11/
danRer11l chré:43,426,669-43,433,277), whereas the zebrafish
mitfb gene extends over 53,000 bp and is found on chromosome
23 (GRCz11/danRer11 chr23:711,075-764,135). The zebrafish Mitfa

and Mitfb proteins are homologs of human MITF-M and MITF-A,
respectively (Lister, Close, & Raible, 2001). Two zebrafish mitfb
isoforms translating into either 427- or 500-residue proteins have
been identified and reported in both NCBI and UNIPROT databases
(Table 3). Confusingly, while the zebrafish Mitfb 427-residue pro-
tein is called microphthalmia-associated transcription factor b, the
zebrafish Mitfb 500-residue protein is called melanocyte-inducing
transcription factor b in the UNIPROT database (Table 3).

The human and mouse MITF isoforms are further classified
into MITF(+) or MITF(-) isoforms based on containing or lacking a
six-amino acid fragment (ACIFPT) encoded by the 18 bp exon 6A
(Figure 2). While this small insert region has been found in the MITF-
A/Mitf-A, MITF-H/Mitf-H, Mitf-E, Mitf-J, Mitf-Mc, and MITF-M/Mitf-M
transcripts (Amae et al., 1998; Hallsson et al., 2000; Murakami,
lwata, & Funaba, 2007; Primot et al., 2010), the other human and
mouse isoforms also are expected to express it but have not been
described in the literature. It has been shown that the ratio of the (+)
and (-) isoforms is controlled by the MEK1-ERK2 pathway (Primot
et al., 2010). Functional differences have been observed between
the (+) and (-) isoforms of MITF. In melanocytes, MITF(+) affects
cell cycle regulation by interfering with S-phase (Bismuth, Maric,
& Arnheiter, 2005). Interestingly, the specific DNA binding ability
of the MITF(-) isoform to its cognate binding sites (the E-box and
the M-box) is reduced when compared to the MITF(+) isoform
(Pogenberg et al., 2012). The expression of the MITF(-) isoform has
been suggested to be increased in metastatic melanoma (Primot
et al., 2010). In the zebrafish mitfa and mitfb genes, the region oc-
cupied by the six-amino acid fragment (ACIFPT) in mammalian MITF
contains an unrelated 31-amino acid sequence. All zebrafish mitfa
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TABLE 3 Summary of zebrafish Mitf isoforms

Ref.

UNIPROT database

NCBI database

VU ET AL

Description in UNIPROT

database

Accession number of

proteins

Description in NCBI

database

Accession number of

proteins

Length

Species

Isoform

(Lister, Robertson, Lepage,

Melanocyte-inducing

Q9PWC2-1

Melanocyte-inducing

412 aa NP_570998.1

Danio rerio

Mitfa

1

Johnson, & Raible, 1999)

transcription factor a

transcription factor

isoform 1

(Lister et al., 2001)

Microphthalmia-associated

Q90XP4-1

Microphthalmia-

Danio rerio 427 aa AAK95588.1

Mitfb

2

transcription factor b

associated transcription

factor b

Melanocyte-inducing

F1Q885-1

Melanocyte-inducing

NP_571922.2

500 aa

transcription factor b

transcription factor b

and mitfb transcripts described to date contain the 31-amino acid
sequence. Clearly, it would be interesting to investigate further the
role of the six and 31-amino acid sequences in melanocytes and mel-
anoma in the different species. In addition to the 18 bp alternative
splice forms, several other alternatives splicing events have been
described in MITF, for example, an isoform lacking a portion of exon
2 (Bauer et al., 2009; Debbache et al., 2012) and the M-Del isoform
(Wang, Radfar, Liu, Riker, & Khong, 2010). The characterization of
these isoforms is limited. Currently, it is not known if all theoreti-
cal combinations of splice forms are expressed (e.g., does the M-Del
variant exist for all isoforms?) and therefore the total number of al-
ternative MITF transcripts and proteins is currently not known.

The MITF isoforms are expressed in a tissue-specific manner
(Figure 1). For example, MITF-M is expressed mainly in melano-
cytes and melanoma cells (Hershey & Fisher, 2005; Hodgkinson,
et al., 1993; Yasumoto et al., 1998) and MITF-Mc is only detected in
mastocytoma cell lines (Hershey & Fisher, 2005; Takemoto, Yoon, &
Fisher, 2002). In addition, MITF-E is highly expressed in mast cells and
MITF-D mainly accumulates in RPE, macrophages, mast cells, and os-
teoclasts (Bharti, Liu, Csermely, Bertuzzi, & Arnheiter, 2008; Hershey
& Fisher, 2005; Oboki, Morii, Kataoka, Jippo, & Kitamura, 2002;
Takeda et al., 2002). In contrast, MITF-A, MITF-B, MITF-H, and MITF-J
are found in many cell types, with MITF-H being enriched in the heart
and MITF-A and -J presenting through RPE development (Bharti
et al., 2008; Hershey & Fisher, 2005; Steingrimsson et al., 1994;
Tshori et al., 2007). Despite being detected in many cell lines, MITF-C
is not found in cells of the melanocyte-lineage (Fuse et al., 1999).
Consistent with the literature, the GTEx database shows that the
MITF-A and MITF-C transcripts are widely expressed in many human
tissues and have the highest expression level as compared to the
other MITF isoforms, whereas the MITF-M transcript is found mainly
in skin, adipose tissue, muscle and uterus (GTEx Consortium, 2013).
Cell type-specific expression of the MITF isoforms can also be read
in the FANTOM database based on the transcription start site (TSS)
expression signal (Figure 1). This shows that MITF-E is mostly ex-
pressed in mast cells and MITF-M only in melanocytes and melanoma
cell lines. According to FANTOM, the MITF-Mc transcript is detected
in promyelocytes/myelocytes and mesenchymal stem cells (Noguchi
et al., 2017).

The functional role of the different MITF isoforms has not been
fully investigated. Isoform-specific knockouts showed that mice
lacking Mitf-M do not have melanocytes in the epidermis, hair folli-
cle, iris, and choroid, whereas there was no change of pigmentation
in RPE and iris (Flesher et al., 2020). Surprisingly, both Mitf-M knock-
out mice and Mitf-A overexpressing mice showed enlarged kidneys
(Flesher et al., 2020; Phelep et al., 2017). Knocking out the Mitf-A
isoform only resulted in minor changes in melanin accumulation in
the hair, reduced expression of Tyrosinase in the eye, and reduced
number of nephrons (Flesher et al., 2020; Phelep et al., 2017).
Clearly, the M-isoform is critical for pigmentation whereas the A
isoform plays a limited role for this phenotype. Isoform-specific
knockouts have not been generated for the other first exons but
cell work suggests that the H-isoforms are involved in regulating
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o Acetylation at Lysine residue
A\ Potental acetylation at Lysine residue
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o SUMOylation at Lysine residue
() Residue conserved with SUMOylated Lysine residue
AR Potential ubiquitination at Lysine residue
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FIGURE 2 A schematic showing all post-translational modifications (PTMs) of human MITF, TFEB, and TFE3 isoforms. Phosphorylation
(purple circles), SUMOylation (red circles), ubiquitination (turquoise circles), and acetylation (black circles) of specified residues are shown.
The residues that have been shown to be modified are presented in filled circles. Residues that have been proposed as potentially modified
sites are shown in filled triangles. Residues that are conserved with either modified or potential modified residues in the other MiT/TFE
factors are indicated by unfilled circles. The responsible kinases for each PTM are indicated on top, and the numbers indicate amino acid
residues. The bHLH-Zip domain is shown as a blue line, and the 6-amino acid insert region is shown as a green line

the expression of myosin light-chain 1a (MLC-1a) in cardiomyocytes
(Tshori et al., 2007). The specific functions of the different MITF
isoforms can now be addressed in cells or model organisms using
CRISPR methods.

2.2 | TFEB, TFEC, and TFE3 isoforms

Similar to MITF, other MIiT-TFE members are conserved between
human, mouse, and zebrafish. The human TFEB gene has a simi-
lar gene organization as the MITF gene and is encoded by over
52,000 bp (GRCh38/hg38 chr6:41,683,978-41,736,259). It also has
nine exons, with multiple non-coding first exons, each of which is
spliced to the common coding exons 2-9 (Kuiper, Schepens, Thijssen,
Schoenmakers, & van Kessel, 2004). At least seven transcripts, called
TFEB-A through G, have been described and suggested to be regu-
lated from different promoters (Kuiper et al., 2004). However, all
seven identified TFEB transcripts have the same translational start
site located in exon 2 (Kuiper et al., 2004) and are all translated into
the same 476-residue protein (UNIPROT protein accession number:

P19484-1). The alternative human TFEB transcripts are expressed in
a tissue-specific manner such that TFEB-E and TFEB-G are expressed
specifically in the brain and TFEB-A and TFEB-F are highly enriched
in placenta and spleen, respectively. TFEB-B and TFEB-C are found in
many tissues whereas the tissue-specific expression of the TFEB-D
transcript has not been described due to its low expression level
(Kuiper et al., 2004). There are at least two additional TFEB isoforms
translating into either 490- or 391-residue proteins reported in both
NCBI and UNIPROT databases. Unfortunately, the nomenclature of
these isoforms is not uniform between databases. While the TFEB
391-residue protein is called transcription factor EB isoform 3 in the
NCBI database (NCBI protein accession number NP_001258872.1),
it is called transcription factor EB isoform 2 in the UNIPROT data-
base (UNIPROT protein accession number: P19484-2). In the NCBI
database, the TFEB 490-residue protein is called transcription fac-
tor EB isoform 2 (NP_001161299.2). According to the GTEx data-
base, the transcript encoding the human TFEB 476-residue protein
is expressed in many tissues and at a much higher level than that of
the transcripts encoding the 490- and 391-residue proteins (GTEx
Consortium, 2013). The mouse TFEB protein (UNIPROT protein
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accession number: Q9R210-1) consists of 475 amino acids and
shares 94% identity with the human TFEB 476-residue protein.

The human TFEC gene extends over 95,000 bp and is located
on chromosome 7 (GRCh38/hg38 chr7:115,935,152-116,030,763).
Similar to the TFEB and MITF genes, the human TFEC gene con-
sists of 8 exons, with alternative 5’ exons and common exons 4-8
encoding the bHLH-Zip domain (Kuiper et al., 2004). There are at
least three TFEC transcripts, namely TFEC-A (NCBI protein acces-
sion number NP_036384.1), TFEC-B (NCBI protein accession num-
ber NP_001018068.1), and TFEC-C (NCBI protein accession number
NP_001231512.1), translating into 347-, 318-, and 280-residue pro-
teins, respectively (Kuiper et al., 2004). The three TFEC-A, B, and C
transcripts have been proposed to be regulated by different promot-
ers and expressed in a tissue-specific manner (Kuiper et al., 2004).
The TFEC-B transcript is expressed in various tissues, whereas TFEC-C
is only expressed in kidney and small intestine and the highest ex-
pression of TFEC-A is in testis, trachea, and colon (Kuiper et al., 2004).
In contrast to this, according to the GTEx database, TFEC-A, B, and
C are expressed in many tissues and the percentage of TFEC-B tran-
script is lower than that of TFEC-A and TFEC-C (GTEx Consortium,
2013). TFEC-A is highly expressed in colon, esophagus, adrenal gland,
adipose tissue, and lung, TFEC-C is enriched in small intestine, kidney,
brain, and muscle, whereas TFEC-B is expressed most highly in uterus,
vagina, brain, and muscle (GTEx Consortium, 2013). Consistent with a
previous study (Rehli, Lichanska, Cassady, Ostrowski, & Hume, 1999),
TFEC is found only in mononuclear phagocyte cell lines according to
the FANTOM database (Noguchi et al., 2017) and is proposed to play
arole in mononuclear phagocyte cell lines.

The human TFE3 gene spans approximately 15,000 bp and con-
tains 10 coding exons (GRCh38/hg38 chrX:49,028,726-49,043,357).
Although the TFE3 gene has the same structure of exon-intron
borders as the other MiT-TFE family members (Rehli, Den Elzen,
et al., 1999), it seems to have only one 5’ exon and to be regulated
by a single promoter (Kuiper et al., 2004). The full-length human
TFE3 protein consists of 575 amino acids (NCBI protein accession
number: NP_006512.2 and UNIPROT protein accession number:
P19532-1). It is 96% identical to the mouse TFE3 protein (NCBI pro-
tein accession number: NP_766060.2 and UNIPROT protein acces-
sion number: Q64092-1) and shares the conserved bHLH-Zip and
transactivation domains with the other MiT-TFE family members
(reviewed in Kauffman et al., 2014). In the NCBI database, an addi-
tional TFE3 isoform has been identified, termed transcription factor
E3 isoform 2 (NP_001269071.1), translating into a 470-residue pro-
tein. According to the literature, the TFE3 gene is expressed widely
at low level in normal tissues but is expressed at a higher level in pla-
centa, lung, and adrenal gland (Kuiper et al., 2004; reviewed in Folpe
& Deyrup, 2006). The GTEx database shows that the transcript en-
coding the human TFE3 575-residue protein is expressed in many
tissues including muscle, skin, lung, blood, and bone marrow (GTEx
Consortium, 2013). The FANTOM database shows that the human
full-length TFE3 transcript is found in fibroblasts, placental epithe-
lial cells, mesenchymal stem cells, and mesothelioma cells (Noguchi
etal, 2017).

3 | MIiT-TFE POST-TRANSLATIONAL
MODIFICATIONS

The activity of the MiT-TFE proteins has been shown to be mediated
by various post-translational modifications (PTMs) including phos-
phorylation, SUMOylation, ubiquitination, and acetylation (Figures 2
and 3). Although little is known about PTMs of the zebrafish MiT-
TFE factors, much more is known about PTMs of human and mouse
MiT-TFE family members. In general, the human and mouse MiT-TFE
proteins have been shown to be phosphorylated at multiple sites
by an array of kinases. However, as the MiT-TFE family members
and their isoforms are of different size, this has resulted in a confu-
sion when cross-referencing residues between proteins. Therefore,
we have aligned all the known isoforms of the MiT-TFE factors in
human, mouse, and zebrafish, in order to allow cross-referencing of
the PTMs (Figures 2 and 3).

3.1 | Phosphorylation

The phosphorylation status of MiT-TFE family members has been
suggested to impact their transcriptional activity, stability, and sub-
cellular localization (reviewed in Goding & Arnheiter, 2019; Hartman
& Czyz, 2015; Puertollano, Ferguson, Brugarolas, & Ballabio, 2018).
The ERK and p90/RSK kinases phosphorylate MITF-M(+) at the Ser73
and Ser409 residues, respectively (Hemesath, Price, Takemoto,
Badalian, & Fisher, 1998; Wu et al., 2000). Phosphorylation of Ser73
leads to interactions between MITF and p300, resulting in effects
on transcription activation. The stability of the MITF protein has
also been suggested to be affected by phosphorylation of Ser73
and Ser409, possibly through ubiquitination of Lys201 by hUBC9
(Hemesath et al., 1998; Xu et al., 2000). Recently, it has been shown
that phosphorylation of Ser409 serves as a priming site for phospho-
rylation by GSK3 at Ser405, Ser401, and Ser397 (Ploper et al., 2015)
and that phosphorylation of Ser73 primes phosphorylation by GSK3
at Ser69 (Ngeow et al., 2018). All these phosphorylation sites (Seré9,
Ser73, Ser397, Ser401, Ser405, and Ser409) are conserved in human
and mouse MIT-TFE family members (Figure 2). Remarkably, in ze-
brafish mitfa, Ser69 which is equivalent to Ser69 in human MITF-M
has been suggested to also be phosphorylated by GSK3 (Ngeow
et al., 2018). Substituting Ser69 with alanine rescued melanophore
development in the mitfa-null nacre zebrafish (Ngeow et al., 2018).
In contrast, the zebrafish mitfa mutation Ser69Glu, which mim-
ics constitutive phosphorylation, did not recover the development
of melanophores in mitfa-null nacre zebrafish (Ngeow et al., 2018).
GSK3p has also been shown to phosphorylate Ser298 of MITF-M(+)
in vitro, leading to increased binding of MITF to the tyrosinase pro-
moter (Takeda et al., 2000). It should be noted, however, that the
typical GSK3-priming site is not found in the vicinity of Ser298.
While phosphorylation of MITF-M(+) at Ser298, Ser397, Ser401,
and Ser405 residues does not affect subcellular localization of MITF,
the Ser69 and Ser73 phosphorylation sites regulate nuclear export
of MITF-M(+) (Ngeow et al., 2018). The Ser298X and Ser73Ala
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mutations in MITF-M(+) do not affect MITF stability in 501MEL
melanoma cells (Fock et al., 2019). Meanwhile, MITF-M(+) carrying
the Ser397Ala, Ser401Ala, or Ser405Ala mutations has been demon-
strated to be more stable by escaping from the proteasomal degra-
dation process (Ploper et al., 2015).

The serine threonine kinase AKT has been shown to phos-
phorylate the MITF-A(-) isoform at Ser510 which is equivalent to
the Ser409 residue of the MITF-M(+) isoform (Wang et al., 2016).
MITF-A(-) phosphorylated at Ser510 enhanced binding to TP53,
resulting in increased expression of CDKN1A, whereas the un-
phosphorylated MITF-A(-) protein elevated TYR expression (Wang
etal., 2016). In addition to this, three tyrosine residues in MITF-M(+),
Tyr22, Tyr35, and Tyr90, have been shown to be phosphorylated
by any of 9 different SRC kinases upon a complex formation be-
tween the Asp816Val mutated KIT, SRC, and MITF proteins (Phung
et al., 2017). MITF phosphorylated by SRC is retained in the cyto-
plasm, yet leading to an increase of the transcriptional activity of
MITF target genes involved in melanoma proliferation, survival, cell
cycle progression and invasion (Phung et al., 2017).

In osteoclasts, the Ser307 residue in MITF-M(+) has been
shown to be a substrate of p38/MAPK in vitro (Mansky, Sankar,
Han, & Ostrowski, 2002). Interestingly, the equivalent of Ser307 in
MITF-M(+) is not conserved in TFEB. Therefore, phosphorylation of
MITF-M(+) at Ser307 in osteoclasts may have unique effects on MITF
activity (Mansky et al., 2002). Although the effects of MITF-Ser307
phosphorylation on activity in osteoclasts remain to be investigated

further, it has been shown that the phosphorylated protein interacts
with PU.1 in osteoclasts, integrating with the CSF-1/RANKL signals
leading to activation of genes associated with osteoclast differenti-
ation (Mansky et al., 2002; Sharma et al., 2007). In osteoclasts, the
C-TAK1 kinase has been shown to phosphorylate Ser173 (based on
MITF-M(+) numbering), leading to the formation of an MITF/14-3-3
complex and retention of MITF in the cytosol (Bronisz et al., 2006).
Inversely, when CSF-1/RANKL signaling deactivates the C-TAK1
kinase, the interaction of MITF and 14-3-3 proteins is destabilized,
resulting in MITF nuclear translocation, subsequently triggering the
expression of genes involved in osteoclast differentiation (Bronisz
et al., 2006). Notably, mutations of four phosphorylated residues,
Ser73, Ser298, Ser307, and Ser409, did not impact the binding of
MITF to 14-3-3 proteins (Bronisz et al., 2006). The phosphoryla-
tion of both MITF-A at Ser280 and MITF-H at Ser264, which are
equivalent to Ser173 of MITF-M(+), by mTORC1 affects transloca-
tion of the MITF-A and MITF-H proteins into the nucleus (Martina
& Puertollano, 2013). Many additional phosphorylation sites in
MITF have been summarized in the PhosphoSitePlus web-based re-
source (Hornbeck et al., 2015). Based on proteomic discovery mass
spectrometry, residues Thr54 and Ser55 (based on MITF-A(+) num-
bering), Ser50, Ser109, Ser250, Tyr253, Thr382, Ser395, Thr403,
Ser404, and Ser408 (based on MITF-M(+) numbering) have all been
suggested to be phosphorylated (Hornbeck et al., 2015). However,
the responsible kinases and biological roles of many of these MITF
phosphorylation sites remain to be investigated.
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Similar to MITF, TFEB is phosphorylated at multiple sites but
is mostly regulated by nutrition signaling. mTORC1 is an import-
ant player in mediating phosphorylation of TFEB (reviewed in
Puertollano et al., 2018) and has been shown to phosphorylate
three different residues of the TFEB protein, namely Ser122, Ser142
(equivalent to Ser73 of MITF-M(+) isoform), and Ser211 (equivalent
to Serl73 of MITF-M(+); Figure 2; Martina et al., 2012; Roczniak-
Ferguson et al., 2012; Vega-Rubin-de-Celis, Pefa-Llopis, Konda, &
Brugarolas, 2017). In TSC1/TSC2-deficient cells where mTORC1 is
highly activated, mTORC1 additionally mediates phosphorylation
at Ser462 (equivalent to Ser404 of the MITF-M(+) isoform), Ser463
(equivalent to Ser405 of the MITF-M(+) isoform), Ser466 (equivalent
to Ser408 of the MITF-M(+) isoform), Ser467 (equivalent to Ser409
of MITF-M(+)), and Ser469 (equivalent to Ser411 of the MITF-M(+)
isoform) of TFEB (Figure 2; reviewed in Puertollano et al., 2018).
Phosphorylation of TFEB at Ser122, Ser142, and Ser211 is sug-
gested to influence its subcellular localization as well as its stability.
It has been shown that the chaperone protein HSP70 determines
the interaction between the chaperone-dependent E3 ubiquitin li-
gase STUB1 and TFEB phosphorylated at Ser142 and Ser211. As a
result, phosphorylated TFEB is triggered for ubiquitin-proteasomal
degradation (Sha, Rao, Settembre, Ballabio, & Eissa, 2017). In terms
of subcellular localization of TFEB, the phosphorylation of TFEB at
Ser211 initiates the interaction of TFEB and 14-3-3 proteins. Similar
to MITF-M(+) phosphorylated at Ser173, TFEB phosphorylated at
Ser211 is retained in the cytosol through its binding to 14-3-3 pro-
teins (Martina et al., 2012; Roczniak-Ferguson et al., 2012). Inversely,
dephosphorylated TFEB is translocated to the nucleus for activating
the expression of genes involved in autophagosome and lysosome
biogenesis in response to nutrient deficiency (Roczniak-Ferguson
et al., 2012; Settembre et al., 2012). Furthermore, it has been sug-
gested that phosphorylation of TFEB at Ser142 is the priming site for
TFEB phosphorylation at Ser138 (equivalent to Ser69 of MITF-M(+)—
Figure 2) which in turn influences TFEB phosphorylation at Ser211
and TFEB nuclear translocation (Napolitano et al., 2018). Consistent
with that, it has also been observed that mutating Ser142 of TFEB to
alanine results in reduced Ser211 phosphorylation (Li et al., 2016).
The Ser142 residue in TFEB can also be targeted by the extracellu-
lar signal-regulated kinase ERK2, a signaling pathway which phos-
phorylates Ser73 of MITF-M(+) (Settembre et al., 2011). However,
how the ERK2 and mTORC1 signaling pathways interact to deter-
mine phosphorylation of TFEB at Ser142 is currently not under-
stood. The Ser122 phosphorylation of TFEB also is vital to control
its subcellular localization; however, the substitution of Ser122 with
alanine did not affect TFEB cytoplasmic retention (Vega-Rubin-de-
Celis et al., 2017). Meanwhile, the double mutation Ser122Ala and
Ser211Ala resulted in nuclear translocation of TFEB (Vega-Rubin-
de-Celis et al., 2017).

In osteoclasts, PKCB phosphorylates the human TFEB pro-
tein at Ser462, Ser463, Ser467, and Ser469 (equivalent to Ser461,
Ser462, Ser466, and Ser468 of mouse TFEB, respectively), affect-
ing stability and transcription activity of the TFEB protein (Ferron
et al., 2013). Residue Ser467 of TFEB can also be phosphorylated by

AKT, resulting in the formation of a TFEB/14-3-3 complex and cyto-
plasmic sequestration of TFEB in an independent mTORC1-mediated
TFEB phosphorylation mechanism (Palmieri et al., 2017). GSK3p spe-
cifically phosphorylates TFEB at Ser134 and Ser138. This affects the
phosphorylation of TFEB at Ser211 and retains TFEB in the cytosol
(Li et al., 2016; Napolitano et al., 2018). MAP4K3 has been shown
to directly bind to and phosphorylate TFEB at Ser3. Interestingly,
this phosphorylated site is required for the mTORC1-mediated phos-
phorylation of Ser211. In addition, phosphorylation at Ser3 also af-
fects the subcellular localization of TFEB by preventing the travel of
the phosphorylated TFEB protein to the nucleus (Hsu et al., 2018).
Clearly, there are many different signaling pathways that mediate
phosphorylation of different residues of TFEB but since most of
these phosphorylation events affect Ser211 phosphorylation, this
residue is likely to be the key switch determining localization of
TFEB. In the PhosphoSitePlus web-based resource, an additional 17
TFEB phosphorylation sites have been reported based on proteomic
discovery mass spectrometry (Hornbeck et al., 2015). These in-
clude Ser74, Tyr95, Ser97, Tyr100, Ser109, Ser114, Ser133, Thr183,
Ser227, Thr330, Thr331, Ser332, Ser334, Ser423, Ser429, Ser441,
and Ser455, all of which remain to be further characterized.

The only TFE3 phosphorylation site that has been verified to
date using methods other than discovery mass spectrometry is
Ser321 (equivalent to Ser211 of TFEB and Ser173 of MITF-M(+) iso-
form—Figure 2; Martina et al., 2014). Phosphorylation of this residue
in TFE3 has been shown to lead to the binding of TFE3 to 14-3-3
proteins and to its cytoplasmic retention (Martina et al., 2014).
According to PhosphoSitePlus, many phosphorylation sites in TFE3
have been identified using proteomic discovery mass spectrome-
try. Remarkably, among these reported phosphorylation residues,
Ser202, 5246, Ser556, Ser560, Ser563, Ser564, Ser567, Ser568, and
Ser570 of TFE3 are conserved and also indicated to be phosphory-
lated in the other members of the MiT-TFE family (Figure 2; Hornbeck
et al., 2015). According to the literature, no phosphorylation sites
have been reported in TFEC to date; however, PhosphoSitePlus re-
cords three phosphorylated sites in TFEC, namely Thr2, Ser15, and
Ser119 (Hornbeck et al., 2015). Obviously, future studies need to
explore the regulatory pathways mediating PTMs in TFEC as well as

their effects on dimers with other MiT-TFE family members.

3.2 | SUMOylation

TheMIT-TFE proteinshavebeenshowntobe SUMOylated. MITF-M(+)
was shown to be SUMOylated at Lys182 and Lys316 (Miller, Levy,
Davis, Razin, & Fisher, 2005; Murakami & Arnheiter, 2005). The en-
zymes SAE I/SAE Il and UBC9 have been suggested to be involved in
the SUMOylation of MITF-M(+) at Lys182 and Lys316 (Murakami &
Arnheiter, 2005). The germline mutation Glu318Lys in MITF-M(+) im-
pairs its SUMOylation at Lys316 and increases the transcriptional ac-
tivity of MITF (Bertolotto etal., 2011; Yokoyamaetal., 2011), whereas
it has no effects on MITF nuclear localization (Grill et al., 2013). TFE3
has been shown to be SUMOylated at Lys330, which is equivalent to



VU ET AL

Lys182 in the MITF-M(+) isoform (Figure 2; Miller et al., 2005). In the
PhosphoSitePlus web-based resource, Lys79 (based on MITF-A(+)
numbering) and Lys33 (based on MITF-M(+) numbering) in MITF
and Lysé8 in TFE3 are also SUMOylated (Hornbeck et al., 2015).
TFEB is subjected to SUMOylation at Lys347, which is equivalent
to Lys316 of MITF-M(+) (Figure 2; Miller et al., 2005). However, the
functional role of the SUMOylation of TFE3 and TFEB remains to be
characterized.

3.3 | Ubiquitination and acetylation

While phosphorylation and SUMOylation of the MIT-TFE family
members are well described, ubiquitination and acetylation are less
well characterized. MITF has been shown to be deubiquitinated by
the ubiquitin-specific protease 13 (USP13) which in turn affects the
expression of genes involved in proliferation and growth of mela-
noma cell lines (Zhao, Fiske, Kawakami, Li, & Fisher, 2011). UCHL1
has been proposed to be a MITF ubiquitin ligase, which negatively
affects MITF stability (Seo et al., 2017) and Lys201 of MITF-M(+) is a
potential ubiquitination site (Xu et al., 2000). In the PhosphoSitePlus
web-based resource, Lys21, Lys91, and Lys265 in MITF (based on
MITF-M(+) numbering), Lys202 and Lys339 in TFE3, and Lys91 in
TFEB are suggested to be ubiquitinated (Hornbeck et al., 2015).
Furthermore, PhosphoSitePlus has reported that Lys21 in MITF
(based on MITF-M(+) numbering) and Lys401 in TFE3 are acetylation
sites (Hornbeck et al., 2015). Several lysine residues in MITF-M(+)
have been shown to be acetylated, including Lys21, Lys33, Lys43,
Lys243, and Lys248; acetylation of Lys243 was shown to affect
binding to low-affinity binding sites (Louphrasitthiphol et al., 2020).
Acetylation of TFEB has been suggested to affect its subcellular lo-
calization and transcriptional activity (Zhang et al., 2018). Four lysine
residues in TFEB, namely Lys91, Lys103, Lys116, and Lys430, have
been shown to be acetylated in cells treated with the histone dea-
cetylase inhibitor SAHA, supporting the roles of TFEB acetylation in
lysosomal activation, autophagy, and cell death induced by histone
deacetylase inhibitors (Zhang et al., 2018). These four acetylated
sites, which are not conserved in MITF and TFE3, might contribute
to the unique activity of TFEB.

4 | CONCLUSIONS

To minimize discrepancies in nomenclature and to allow the cross-
referencing of residues between MiT-TFE factors and isoforms, we
have assembled this information in easy to use graphics (Figures 1-
3). A comparison between MITF, TFEB, and TFE3 shows that these
proteins are largely regulated by the same post-translational
modifications at conserved amino acids and by the same signal-
ing pathways, suggesting the involvement of similar molecular
mechanisms in controlling transcriptional activity, stability, and
nuclear localization of MIiT-TFE factors. A few post-translational
modifications are unique to the individual MIiT-TFE factors and
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are not conserved in all members of the family, suggesting that
they contribute to distinct biological functions. Important lessons
about signaling to transcription factors and the consequent func-
tional effects will be learned from comparing the MiT-TFE family
of proteins.
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(A) Schematic of generation of a Mitf suppressor mutation in mouse (B)
82UT-MitfM-0r /B6-Mitfmise* and 82UT-Mitf-Cr /B 6-Mitfmi-p compound
heterozygotes. B6-Mitf** /B&-Mitf-°" and B6-Mitf"s? /B6-Mitf-°" compound
heterozygotes. B6-Mitf*/B6-Mitf and B6-Mitf"*° /B6-Mitf animals. (C)
Percentage of BrdU-positive cells was assessed. Error bars represent SEM of
three independent experiments and relative cell confluence compared to day
O obtained from IncuCyte proliferation assay was plotted for A375P



expressing either MitkWT, Mitf"> or Mitf"* Error bars represent SEM of
three independent experiments. (D) Melanocytes differentiating from neural
crest cultures from Mitf"* and Mitf"** animals show that pigmentation is
severely delayed in Mitf"* homozygotes compared to Mitf"** homozygotes.
Nevertheless, melanoblasts are present, as evidenced by anti-MITF antibody
staining (inset). (E) Homozygous Mitf"</ newborns show delayed onset of
pigmentation compared to Mitf"P homozygotes, particularly clearly visible at
postnatal day-2 and 3. (F) No difference in the onset of pigmentation in
compound heterozygous condition with Mitf"+99?_ Compare mice labeled #1
(Mitfri=p /Mitf+99%) with mice labeled #3 (Mitf!/Mitfr9=?)  (G) Relative RNA
expression levels in wild type, Mitf"=> and Mitf"* heart and skin, as
determined by gPCR.
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Appendix 2
Splicing variants of human PRDM7 and PRDM9 (Fumasoni et al., 2007)
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Appendix 3

ChIP-seq track of MITF ChIP-seq performed in 501Mel cells (Laurette et al., 2015)
taken from UCSC genome browser.
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Hi-C data from SKMel5 melanoma cells suggests long-range interactions between
the areas containing MITF-Chip-peaks and the PRDM7 promoter region

(http://3dgenome.fsm.northwestern.edu/view.php).
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Appendix 4

Predicted transcripts based on RNA-seq data using Stringtie (de novo and
reference guide)
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Novel identity sequence PRDM7 isoforms
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Appendix 5

Clustal O multiple sequence alignment of KRAB and SET domains of PRDM7 and

PRD

A

PRDM9_KRAB
PRDM7_KRAB

PRDM9_KRAB
PRDM7_KRAB

PRDM9_KRAB
PRDM7_KRAB

PRDM9_KRAB
PRDM7_KRAB

PRDM9_KRAB
PRDM7_KRAB

PRDMI_KRAB
PRDM7_KRAB

PRDM9_SET
PRDM7_SET

PRDMO_SET
PRDM7_SET

PRDM9_SET
PRDM7_SET

PRDM9_SET
PRDM7_SET

PRDMO_SET
PRDM7_SET

PRDM9_SET
PRDM7_SET

PRDM9_SET
PRDM7_SET

PRDM9_SET
PRDM7_SET

ATGGTCAAAGATGCCTTCAAAGACATTTCCATATACTTCACCAAGGAAGAATGGGCAGAG
ATGGTCAAAGATGCCTTCAAAGACATTTCCATATACTTCACCAAGGAAGAATGGGCAGAA

ATGGGAGACTGGGAGAAAACTCGCTATAGGAATGTGAAAAGGAACTATAATGCACTGATT
ATGGGAGACTGGGAGAAAACTCGCTATAGGAATGTGAAAATGAACTATAATGCACTGATT

ACTATAGGTCTCAGAGCCACTCGACCAGCTTTCATGTGTCACCGAAGGCAGGCCATCAAA
ACTGTAGGTCTCAGAGCCACTCGACCAGCTTTCATGTGTCACCGAAGGCAGGCCATCAAA
sokk ok

CTCCAGGTGGAT 192
CTCCAGGTGGAT 192
Fofofololokoloraokor

MVKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKRNYNALITIGLRATRPAFMCHRRQAIK
MVKDAFKDISIYFTKEEWAEMGDWEKTRYRNVKMNYNALITVGLRATRPAFMCHRRQAIK

LQVD 64
LQVD 64
Fokkok

CCAGGGCTGAGAATTGGGCCATCAGGCATCCCTCAGGCTGGGCTTGGAGTATGGAATGAG
CCGGGGCTGAGAATTGGGCCATCAGGCATCCCTCAGGCTGGGCTTGGAGTATGGAACGAG
ok Kokk

GCATCTGATCTGCCGCTGGGTCTGCACTTTGGCCCTTATGAGGGCCGAATTACAGAAGAC
GCATCTGATCTGCCACTGGGTCTGCACTTTGGCCCCTATGAGGGCCGAATTACAGAAGAC

GAAGAGGCAGCCAACAATGGATACTCCTGGCTGATCACCAAGGGGAGAAACTGCTATGAG
GAAGAGGCAGCCAACAGTGGATATTCCTGGCTAATCACCAAGGGGAGAAACTGCTATGAG

TATGTGGATGGAAAAGATAAATCCTGGGCCAACTGGATGAGGTATGTGAACTGTGCCCGG
TATGTGGATGGAAAAGATAAATCCTCGGCCAACTGGATGAGGTATGTGAACTGTGCCCGG

GATGATGAAGAGCAGAACCTGGTGGCCTTCCAGTACCACAGGCAGATCTTCTATAGAACC
GATGATGAAGAGCAGAACCTGGTGGCCTTCCAGTACCACAGGCAGATCTTCTATAGAACC

TGCCGAGTCATTAGGCCAGGCTGTGAACTGCTGGTCTGGTATGGG 345
TGCCGAGTCATTAGGCCAGGCTGTGAACTGCTGGTCTGGTCTGGG 345
Horkok

60
60

120
120

180
180

60
60

60
60

120
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180
180

240
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300
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PGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWLITKGRNCYE
PGLRIGPSGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANSGYSWLITKGRNCYE

YVDGKDKSWANWMRYVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWYG 115
YVDGKDKSSANWMRYVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPGCELLVWSG 115

*

60
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Appendix 6

Primers used for qPCR

Primer name

Sequence

PRDM7-cDNA-qPCR_F CCTGGCTAATCACCAAGGGG

PRDM7-cDNA-qPCR_R CGGGCACAGTTCACATACCT

PRDM9-cDNA-qPCR-F GTTTGAAAGAATTGTCAAGAACAGC

PRDM9-cDNA-qPCR-R TCCTTCTTCCTGAGTTCCAGTTT

PRDM9_cDNA_Zin_Fwd

PRDM9_cDNA_Zin_Rev

TAGCGATAGGTCAAGCCTCTG

ACTTACTCATCCTCCCTGCAGAC

The alignment of 501Mel-PRDM7-KO cell lines and their corresponding control
confirm the acquired mutations in PRDM7-KO cell lines.

Mutations in PRDM7-KO melanoma cells

501Mel-C1

501Mel-K013

501Mel-KO24

]

OTTAOTACOTAGATATCOATTOTTCATCGAAOTOTTOTATATOATCOACOTAAAGTTTAATAGEOT
CTTACTAGCCTAGATATCCATTCTTCATCAGACTCTTCTATATCATCCACCTAAAGTTTAATAACCT
CTTACTECOTAGAGTATCCATTCTTCATCGAACTCTTCTATATCATCCACCTAGAGTTTAATAGCET

OTAAGAGGTEATAAGAAATOAGTAGTTTGATTAATAAATATTTCCAAAGTOTAGAGATTTTTTTTITE
ATAAGAGOTAATGAGAAATCAGTAATTTAATTAGTAAATATTTCCAAAGTCTAGAGATTTTTTTTITE

CTAAGAGGTAATAAGAAATCAGTGGTTTGATTAGTAAATA

LT

GOTTTOCTTAOTGOOTAGGTTOTTOATOGGAGTOTTOTAGTGTOATCOAOCTAGAGTTTAATAGOOTA

CTGTATOATCOACCTAGAGTTTAATAGCCTE
[T Al CTOTATGATGGAGGTAGAGTTTAATAGGOTE
GCTTTCCTTACTACCTAGGTTCTTCATCOGGACTCTTCTGTATCATCCACCTGGAGTTTGATAGCETE
OTAAGAGGTOATAAGAAATOAGTGGTTTGATTAGATAAATGTTTOCAAAOTOTAGAGATTTTTTTTTE

TAETGEETANGTTATEGATTETTCATCOAACTETTETATATCATCGEACCTAGAGTTTAATAGEETE

1

o

9



The alignment of SKmel28-PRDM7-KO cell lines and their corresponding control
confirm the acquired mutations in PRDM7-KO cell lines.

T4g00tp 20074925t

;
!

920074975 bp

5]

SKmel28-C3

o

SKmel28-K013
o

SKmel28-C3

SKmel28-K017

E
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