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Abstract

For machine translation (MT) systems to produce accurate and fluent translations, reliable

parallel corpora are key. Errors, due to misalignments or inadequate filtering during compi-

lation of a parallel corpus, can have detrimental effects on the performance of an MT system

trained on the data. Moreover, when the corpus is too small, the MT system may not be able

to capture the complexities of the source and target languages and produce accurate transla-

tions. However, obtaining high-quality parallel data is often a challenging task, even more

so for languages with a low number of speakers or rich morphology exacerbating the data

sparsity problem. It is thus imperative to develop accurate methods for processing parallel

corpora that can help make the most of what is available.

In this thesis, we address this challenge by exploring various methods for processing parallel

corpora to maximize their usefulness for MT. First, we investigate a variety of classifiers and

scoring mechanisms used for filtering parallel corpora, looking into how efficient they are at

removing data detrimental to MT training and retaining useful data. We find that different

filtering strategies suit different datasets and that filtering separately for different translation

directions can yield better translations in downstreamMT tasks. Second, we examine differ-

ent approaches to sentence alignment, compare their effectiveness, and show that combining

multiple methods can improve alignment accuracy. Third, we experiment with comparable

corpora mining methods to extract even more useful data from sentences that had previously

been discarded, showing that this often overlooked data is a potential source of useful train-

ing data. Finally, we manually evaluate translations generated by MT systems trained on our

processed datasets, most suitable for each translation direction, confirming the advantages

of our applied methods.

Our findings highlight the importance of careful processing and curation of parallel corpora

for MT. We propose approaches for maximizing the utility of available parallel data, par-

ticularly for scenarios where resources are scarce, contributing to the development of more

accurate and reliable MT systems.



Skilvirk smíði samhliða málheilda fyrir þýðingarvélar við

gagnarýrar aðstæður

Steinþór Steingrímsson

maí 2023

Útdráttur

Áreiðanlegar samhliða málheildir eru lykillinn að því að hægt sé að þjálfa þýðingarvélar, sem

geta myndað nákvæmar þýðingar sem flæða vel á markmálinu. Skekkjur í þjálfunargögn-

um, sem koma til vegna rangrar samröðunar setninga eða ófullnægjandi síunar við smíði

samhliða málheilda, geta spillt gæðum þýðingarvélar sem þjálfuð er á gögnunum. Of lítil

samhliða málheild getur jafnframt orðið til þess að þýðingarvélin nái ekki tökum á málfræði

eða öðrum blæbrigðum frum- og markmálanna og myndi þess vegna ónákvæmar þýðingar.

Það getur hins vegar verið flókið og erfitt að tryggja hámarksgæði þjálfunargagna við úr-

vinnslu samhliða texta, ekki síst þegar um er að ræða texta á tungumálum sem fáir tala eða

þegar flóknar beygingar og virk orðmyndun auka á vandann við að greina rýr gögn. Þegar

samhliða málheildir eru settar saman er því afar mikilvægt að þróa nákvæmar aðferðir sem

miða að því að nýta sem allra best þau gögn sem til eru.

Í þessari ritgerð tökumst við á við þetta vandamál með því að kanna ýmsar aðferðir til að

vinna gögn við smíði samhliða málheilda með það að leiðarljósi að hámarka notagildi gagn-

anna fyrir vélþýðingar. Í fyrsta lagi rannsökum við nokkrar gerðir flokkara og matsaðferðir

sem notaðar eru til að sía samhliða málheildir. Við skoðum hversu árangursríkar þær eru til

að fjarlægja setningapör sem geta dregið úr gæðum þýðingarvéla ef þau eru hluti þjálfun-

argagna og hversu líklegar aðferðirnar eru til að halda eftir þeim setningapörum sem búast

má við að séu best fallnar til að bæta þýðingarvélarnar. Við komumst að því að mismunandi

síunaraðferðir henta mismunandi gagnasöfnun og að með því að sía sérstaklega fyrir hverja

þýðingarátt má bæta gæði þýðinga þeirra véla sem þjálfaðar eru á gögnunum. Í öðru lagi

skoðum við mismunandi aðferðir við samröðun setninga, berum saman markvirkni þeirra

og sýnum að með því að láta margar mismunandi aðferðir vinna saman getum við aukið ná-

kvæmni samröðunarinnar. Í þriðja lagi gerum við tilraunir með aðferðir til að vinna samhliða

gögn úr sambærilegum málheildum, og beitum þeim aðferðum til að draga nýtileg gögn úr

setningum og setningapörum sem hafnað hefur verið á fyrri stigum í smíði þjálfunargagn-

anna. Við sýnum með nokkrum tilraunum að mögulegt er að nýta þessi gögn, sem yfirleitt

er litið fram hjá, til að stækka samhliða þjálfunarmálheildir með nýtilegum gögnum og þar

með bæta þýðingarvélar sem þjálfaðar eru á þeim. Að lokum metum við handvirkt þýðingar

myndaðar af þýðingarvélum sem þjálfaðar eru á gögnum sem unnin hafa verið með okkar

aðferðum, en það mat staðfestir gagnsemi þeirra aðferða sem við beitum.

Niðurstöður okkar undirstrika mikilvægi vandaðrar greiningar og gagnavinnslu við smíði

samhliða málheilda sem notaðar eru til að þjálfa þýðingarvélar. Við kynnum aðferðir sem

hámarka notagildi tiltækra samhliða gagna, ekki sístþegar takmarkað magn gagna er fyrir

hendi, og stuðlum þannig að þróun nákvæmari og áreiðanlegri þýðingarvéla.
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Chapter 1

Introduction

1.1 Motivation

Reliable parallel corpora are key to developing good machine translation (MT) systems.

However, abundant parallel data can be hard to come by, especially in the case of low-

resource languages. Indeed, the lack of parallel data can also be a problem for medium-

resource languages, where some data may be available, but often limited to only a few do-

mains. When the data sparsity problem is exacerbated by rich morphology, in particular

where the task is to translate into a morphologically rich language (MRL), it can become a

major limitation (Dhar et al., 2022). When the corpus is too small, the MT system may not

be able to capture the complexities of the source and target languages and produce accurate

translations. Web-scraped sentence pairs are often used to supplement training data to mit-

igate the low-resource problem. Larger corpora are generally better for training, but having

a large corpus is not enough.

Parallel corpora commonly contain errors due to misalignments, inaccurate translations

and machine translated content or inadequate filtering during compilation (see e.g. Kaalep

and Veskis (2007); Zariņa et al. (2015)). The errors can potentially have detrimental ef-

fects on the performance of MT systems trained on the corpora. Neural machine translation

(NMT) systems have been shown to be sensitive to noise in the training data (Khayrallah and

Koehn, 2018), where noise is defined as erroneous segments that degrade the performance

of systems trained on the data. Noisy data can introduce inconsistencies and ambiguities,

leading to inaccurate translations. Web-scraped corpora are also typically noisy and need

extensive cleaning and filtering to be useful (Kreutzer et al., 2022). Where parallel data is

not plentiful, it is therefore highly important to be able to align, filter and mine available

datasets effectively, if we want our MT models to be as accurate as our chosen architecture

can offer.

In this thesis, we investigate different approaches to sentence alignment and parallel cor-

pus filtering with the aim of making the most of what data is available. The goal is to max-

imise the number of correctly translated segments in a corpus and minimise noise. In order

to do that, it is imperative to be able to accurately align and filter the data.

When aligning parallel documents on the sentence level, the aim is to pair all semantically

equivalent segments without misalignments or extraneous or missing data in either language.

We want to investigate if approaches to alleviate data sparsity problems when we have an

MRL on one side in a bilingual corpus can help with alignment. Moreover, we want to

explore whether a state-of-the-art (SOTA) multilingual sentence embeddings model can be
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used to efficiently score sentences when an exhaustive shortest-path algorithm is used to

maximize accuracy for the sentence-alignment problem.

In filtering aligned data, various scoringmechanisms are typically used to decide whether

a sentence pair should be included in the training data being compiled or if it should be

excluded. Working with MRLs, the number of word forms can decrease scoring accuracy

due to out-of-vocabulary (OOV) problems, especially when data is sparse. We experiment

with lemmatizing the corpora to facilitate filtering, specifically when working with statistical

approaches that do not make use of sentence embedding models, as lemmas may give more

accurate information on frequency of word usage than inflected word forms when resources

are limited.

In most existing work on compiling parallel corpora, a corpus is compiled for a language

pair without regard to the translation direction. The same dataset is then used to train models

for translating both directions. We challenge this approach. Back-translation (Sennrich et al.,

2016a) is a widely used data augmentation technique in which synthetic parallel data is cre-

ated by translating target language texts to the source language using an availableMT system.

The target language texts are fluent and grammatically correct, but the machine-translated

sentences in the source language may in some cases be incorrect or inaccurate renditions of

the target language. Similarly, we hypothesise that different requirements should apply to

source and target data in a parallel corpus and thus the same filtering approaches may not

necessarily be suitable for different translation directions.

Comparable corpora can bemined for parallel sentence pairs, which in turn can be used as

a part of training data for MT. Another data source, often overlooked, is the data discarded

during the alignment and filtering process when training data are compiled from parallel

documents. We investigate whether we can make use of approaches shown to work for

comparable corpora to mine such discarded data for parallel segments.

Having explored approaches for increasing the quality of parallel corpora as well as en-

larging the corpora, we inspect the effects of different alignment and filtering approaches

and select those that produce the highest quality training sets. We evaluate these different

approaches to see if they not only increase the translation quality of MT systems as measured

by automatic metrics, but also as perceived by humans.

1.2 Definitions

In Section 1.1, we introduced terminology that will be used extensively throughout this the-

sis. In this section, we aim to provide definitions for these terms.

When discussing the output of MT systems, we are primarily concerned with conveying

the meaning without adding to or removing from the original text. We talk about high-

quality, accurate or correct translations when referring to these qualities. Incorrect or inac-

curate translations lack some or all of these qualities. They may not convey the meaning of

the source correctly, they may add parts which do not exist in the source, or remove some-

thing important in the translation.

Data used to train MT systems in this thesis is made up of parallel sentence pairs. A

parallel sentence pair is a source sentence and its translation in the target language. In a

good sentence pair, the target sentence should contain an accurate translation of the source

and nothing else. If the translation does not convey the meaning of the original, we define it

as an erroneous sentence pair. If the content of either one or both of the sentences are only

partially represented in the other sentence, we talk about partial alignments. These may
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occur for a number of reasons, e.g. mistakes in the sentence alignment process, differences

in sentence structure or omissions in translation.

Parallel sentence pairs are usually extracted either from parallel corpora or comparable

corpora. Parallel corpora are collections of texts composed of pairs of documents, where

each document in the source language has a corresponding translation in the target language.

Comparable corpora, are collections of documents in two or more languages that share sim-

ilar content, domain or theme, but are not direct translations of one another.

When we talk about good machine translation systems, we are referring to a system that

produces high-quality translations as defined above, translations that convey the meaning of

the source without adding to it or removing information from it. A good machine translation

system should also produce fluent texts, easily understood by a native speaker in the target

language.

Throughout the thesis we talk about noise in the training data. In this context, we define

noise as sentence pairs that do not help improve the translation quality of a machine trans-

lation system, but instead are detrimental and may degrade the performance of the systems

trained on the data, leading to lower quality translations.

1.3 Research Questions

The aim of this thesis is to address four main research questions on the topic of compiling

training data for MT by aligning, filtering and mining bilingual texts:

RQ1: How can we filter parallel corpora to minimize noise, and still lose little or no

useful data from the original texts?

Different approaches have been taken for filtering parallel corpora, from rule-based to clas-

sifiers and score-based methods. In order to gain an insight into the effectiveness of various

approaches, we compare them by manually evaluating random samples of data after apply-

ing each filtering approach. It is also important to know how the manual evaluation aligns

with results of downstreamMT tasks, as the final goal is to build better MT systems and this

may tell us something about what constitutes useful data for NMT training.

RQ2: To what degree should we consider filtering parallel corpora for MT training to

be independent of the dataset and languages being filtered, and the intended translation

direction of the MT system being built?

The objective here is to try to understand to what extent selection of methods for processing

parallel corpora should be dependent on the data. The usefulness of back-translations for

improvingMT quality suggests that we should be more concerned with the quality of texts in

the target language, i.e. that they are fluent, grammatically correct and accurate translations

of the source.

When source and target languages have different levels of morphological complexity, it

is reasonable to ask whether data sparsity may be more of a concern for the morphologically

richer language. Considering this, wewant to investigate whether different approachesmight

be appropriate for compiling training data for different translation directions.

RQ3: Is sentence alignment accuracy important for the results of a downstream MT

task, or is effective filtering of the training data enough?

While accurate sentence alignment is important, it is the role of the filtering process to re-

move misalignments from the training set. Vecalign, the SOTA in sentence alignment, pre-

vious to the work in this thesis, achieves an F1 score of 0.9 (Thompson and Koehn, 2019)
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when tested on a popular German–French evaluation set (Volk et al., 2010). Even if other ap-

proaches could improve on that score, the number of correctly aligned sentence pairs would

only increase slightly. Would a small improvement translate into better quality translations

in a downstream MT task?

RQ4: Are text segments discarded during sentence alignment and filtering suitable as

a source for mining useful sentence pairs for MT training?

Traditionally, MT training data is compiled from parallel documents by aligning the data on

the sentence level and then filtering out sentence pairs deemed unlikely to improve system

performance, as well as sentences that do not meet the requirements of the MT training

approach. This discarded data could be considered as comparable corpora, and, as such, an

interesting potential source for mining parallel sentence pairs.

In attempting to answer these four questions, we develop tools and resources necessary

to aid our research. That work brings up its own research questions, which will be introduced

and discussed in the relevant chapters and sections.

1.4 Contributions

We summarise our main contributions, some of which have previously been described in

reviewed publications. In our work, we mainly work with the English–Icelandic language

pair and some of our contributions relate mainly to working with Icelandic. We start by de-

scribing tools and datasets made in order to facilitate our research on alignment and filtering

parallel data, some of which are aimed at work on Icelandic but others are more generic:

• We developed a Part-of-Speech (PoS) tagger for Icelandic, outperforming previous

taggers for the language by a large margin. Our tagger uses a bidirectional long short-

term memory (BiLSTM) model, augmented with a morphological lexicon. In order

to increase its accuracy, we devised a two-step process: First, tagging with a highly

accurate coarse-grained tagset and, then in a second step, refining the results using a

more fine-grained tagset (Steingrímsson et al., 2019).

• We created a tool, CombAlign, for generating more accurate word alignments. The

aligner runs an ensemble of available word alignment tools and models and uses a

voting system to select the most likely alignments. Our tool outperforms previously

available tools when they are run individually, obtaining higher F1-scores for multiple

language pairs (Steingrímsson et al., 2021a).

• We devised an approach, PivotAlign, for inducing dictionaries using a combination

of word alignments over parallel corpora and pivoting through available dictionaries.

Our approach scored highest in the Translation Induction Across Dictionaries (TIAD)

shared task in 2021 (Steingrímsson et al., 2021c).

• We published a new version of ParIce, a previously available English–Icelandic paral-

lel corpus (Barkarson and Steingrímsson, 2019), with better alignments and filtering.

• We compiled an English–Icelandic bilingual lexicon, containing over 230,000 equiv-

alent pairs. Automatic methods, including the ones introduced at TIAD 2021, were

used to compile candidate lists that were thenmanually evaluated (Steingrímsson et al.,

2022)
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Our contributions in relation to aligning and filtering parallel corpora, and mining com-

parable corpora, can be summarised as follows:

• Wemanually inspect the effectiveness of different scoring mechanisms for identifying

erroneous sentence pairs in parallel corpora and show that, in order to obtain optimum

results when filtering, the threshold for these scores should be set depending on the

dataset being filtered.

• We compare various filtering approaches and show that different filters should be se-

lected depending not only on the dataset, but also on translation direction.

• We show that by filtering the ParaCrawl corpus (Bañón et al., 2020) using a differ-

ent approach for each translation direction, adapted to that translation direction, its

usefulness can be improved, at least for the translation directions we experiment with.

• We introduce a new sentence aligner, SentAlign, capable of extensively exploring the

possible alignment combinations in pairs of fairly large documents in order to find

the best alignments. It uses Language-agnostic BERT sentence embedding (LaBSE)

(Feng et al., 2022) for scoring, outperforming previous aligners on a popular evaluation

set.

• We compare available alignment tools and evaluate their output on two evaluation

sets, one of which was compiled by us for the English–Icelandic language pair. Fur-

thermore, we manually inspect their outputs and evaluate them in a downstream MT

task. We find that while SentAlign most often outperforms other aligners, MT-based

and lexicon-based approaches also give strong results.

• We experiment with a Cross-language Information Retrieval (CLIR)-based approach

for mining parallel sentences from comparable corpora, using a classifier employing

word alignment-based scores and sentence embeddings to select the best candidate

pairs proposed by the CLIR tool. We use this approach to show the potential of ex-

ploiting data usually discarded in the MT training data compilation process.

• We show that by combining the best alignment and filtering approaches for compiling

parallel corpora we can significantly increase the quality of MTmodels trained on that

corpora, as measured both in terms of automatic metrics and by manual annotation.

1.5 Structure of the Thesis

In Chapter 2, we start by outlining the background of our work. We review prior work,

relevant to our research, introduce important concepts used and provide a brief introduction

to the most popular variants of neural MT (NMT) used at the time of writing. We also give

a brief description of the state of MT and natural language processing (NLP) in general for

English–Icelandic.

Chapter 3 describes our work on supporting tools and data sets developed in order to

aid our research on compiling better training data for MT. We describe our work on ABL-

Tagger (Augmented Bi-directional LSTM Tagger), the PoS tagger we developed for Ice-

landic; CombAlign, a tool for acquiring more accurate word alignments; PivotAlign, a tool

we built for helping with inducing bilingual lexicons and our scoring mechanism based on

word alignments, which we call WAScore. We also describe ParIce, an English–Icelandic
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parallel corpus we realigned and filtered and the process of compiling a bilingual lexicon we

published.

Chapter 4 describes the different filtering methods we applied. We evaluate the scoring

methods used as well as the filtering mechanisms themselves. We report on the results of

both manual and automatic evaluations of the methods.

Chapter 5 describes different approaches to sentence alignment, our evaluation of the

different approaches and the design and development of our own sentence aligner, SentAlign.

We also report on the accuracy of the different approaches using three evaluation methods:

measuring F1-scores on sentence alignment evaluation sets, manual annotation of the output

of the aligners, and the effect on translation output in a downstream MT task.

In Chapter 6, we describe our work on mining parallel sentence pairs from comparable

corpora. We also show how we can improve an English–Bengali training set by selecting

only the best sentence pairs and then split up the other pairs in the training corpus in order

to try to extract from them the best matching subsegments. We then use this approach to

segment data discarded from our English–Icelandic corpus during the alignment and filtering

steps, and then mine the collection of segments for parallel pairs, using the same approaches

applied to comparable corpora.

Chapter 7 describes our manual evaluation of MTmodels trained on data compiled using

the approaches described in the previous chapters and compares these models to models

trained on data compiled using previous approaches. We also compare the output of models

trained using TransformerBASE (Vaswani et al., 2017) and by fine-tuning mBART (Liu et al.,

2020b).

Finally, conclusions are given in Chapter 8 where we summarize our findings and point

out possible future directions for our work.
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2. Steinþór Steingrímsson, Hrafn Loftsson and Andy Way. 2020. Effectively Align-
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Chapter 2

Background

Machine translation (MT) is the subfield of natural language processing (NLP) that focuses

on automatically translating text from one natural language to another. The goal is to build

systems that can perform that task accurately and efficiently, outputting fluent and well-

formed text in a target language that preserves the meaning of a source language text, without

the need of human intervention.

Approaches toMT can broadly be divided into three paradigms: rule-basedMT (RBMT),

statistical MT (SMT) and neural MT (NMT). RBMT typically uses a set of grammatical rules

to analyze the source language input text, breaking it down into smaller units, such as words,

phrases or sentences. These units are then matched against transformation rules and rules

for the target language as well as dictionaries to produce an output. The first RBMT system

was demonstrated in 1954 (Dostert, 1955) and RBMT was the ruling paradigm until the late

1980s. While more recent approaches outperform RBMT systems for most language pairs,

rule-based systems are still being developed, mostly for low-resource languages (Forcada

et al., 2011; Pirinen et al., 2017; Khanna et al., 2021).

In SMT, information is extracted from a bilingual corpus (made up of sentence aligned

documents written in two different languages) to find word or phrase equivalences. A word

alignment tool is used to find pairs of words or phrases in the source and target languages. A

translation model is derived from these alignments and a language model is based on word

sequences in the target language. Translation is determined by probabilities using Bayes’

rule, shown in Equation (2.1):

p(t|s) = p(s|t)p(t)
p(s)

(2.1)

In the equation, p(t|s) is the probability of a translation t, given a source sentence s.
p(s|t) is the probability of the source sentence given the translation and p(t) and p(s) are
the probabilities of the translation and source segments occurring, respectively, given the

language model (LM). When looking for a t that maximizes the right side of the equation,
p(s) is always the same for the source sentence and thus unnecessary, so an LM for the

source language is not needed. This approach is called the noisy-channel model and was put

forward by Brown et al. (1993) for word-based translations. Variations of SMT emerged

in the following years, with research in phrase-based SMT (PBSMT) (Koehn et al., 2003),

depicted in Figure 2.1. This was facilitated by open source toolkits such as Moses (Koehn

et al., 2007) in the 2000s and 2010s.

In the standard phrase-based model, a phrase translation table is learned from the parallel

corpus, by extracting small word sequences based on word-alignment results and calculating

relative frequency for each phrase pair based on how many sentence pairs contain it. A
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Figure 2.1: The basic architecture of a PBSMT model. The figure is adapted from (Liu et al., 2021).

distance-based reordering model handles reordering of phrases. The reordering distance is

the number of words skipped relative to the previous phrase. The reordering cost is based

on a decaying cost function, and not learned from data. Finally, an n-gram language model,

based on a target language monolingual corpus is used to help with building a fluent target

language output. These three components work together to build the optimal translation

using a log-linear model. In this framework, sentence translations are viewed as a vector of

features and the model a set of feature functions, trained separately and combined assuming

they are independent of each other. The log-linear model has the following form:

p(e|f) = exp

n∑
i=1

λihi(e, f) (2.2)

In equation (2.2), n stands for the number of feature functions, in this case n = 3. Fea-
ture function h1 = logφ, where φ stands for the phrase translation table. Feature function

h2 = logd, where d stands for the reordering model, and feature function h3 = logpLM,
standing for the language model. λ1, λ2 and λ3 stand for the feature weights. To obtain

better performance, the weights of each feature of the model can be tuned on a separate de-

velopment data set, to maximize translation performance, usually as measured with BLEU

(Papineni et al., 2002). Minimum error rate training (MERT) (Och, 2003) is most often

used for parameter tuning. One of the reasons for using this model is that it allows for the

weighting of the different model components, which may lead to improvements in transla-

tion quality. Another reason for using this model is that it allows for adding additional model



2.1. NEURAL MACHINE TRANSLATION 11

Figure 2.2: The sequence to sequence model proposed by (Sutskever et al., 2014) reads an input

sentence and embeds it in vector space. After processing <eos> at the end of the input sentence, the

recurrent state holds the embedding for the entire input sentence, which is used by the decoder to

generate the output sentence in the target language.

components in the form of feature functions, such as bidirectional translation probabilities

(Koehn, 2009). Finally, to find the best translation for a given sentence, a decoding algo-

rithm uses the trained model to search for the best translation using a heuristic search. The

system can consult the phrase table to look up all translation options that can apply to the

input sentence and then incrementally compute the probability of a translation from left to

right by testing out different hypotheses.

The 2010s saw the rise of a new paradigm, NMT, discussed in the following section.

2.1 Neural Machine Translation

As opposed to SMT, which use text-based models for predicting translations, NMT models

represent source and target language text, as well as internal states, as vectors. They have no

separate translation models and language models, and are trained end-to-end on raw input

(source) and output (target) text sequences.

In the shared translation task at the 2016 Conference on Machine Translation (WMT),

for the first time the best-performing systems in terms of BLEU score for some high-resource

language pairs were NMT models (Bojar et al., 2016). Since then, it has been shown that

NMT can also outperform SMT on low-resource language pairs (Sennrich and Zhang, 2019).

The history of neural networks-based MT research goes as far back as the 1980s when

Allen (1987) experimented with using back-propagation for translation, and to the work by

Chalmers (1992), Chrisman (1991) and Forcada and Ñeco (1997) in the 1990s, who used

two feed-forward neural networks, an encoder and a decoder, to learn internal representa-

tions of input sentences that can be decoded to obtain a corresponding output string. With

improvement in computing power and an increase in available data, the current wave of ap-

plying neural networks to MT emerged in 2013 and 2014 with the work of Kalchbrenner

and Blunsom (2013), Sutskever et al. (2014), Cho et al. (2014) and Bahdanau et al. (2015).

Kalchbrenner and Blunsom (2013) used a model based on convolutional neural networks

(CNN) for encoding the input in a vector space and recurrent neural networks (RNN) for

generating the output. Cho et al. (2014) proposed a model consisting of two RNNs, one

for the encoder and the other for the decoder, while Sutskever et al. (2014) used long short-

term memory (LSTMs) for encoding and decoding sequences of text (represented in Figure

2.2), showing that their architecture could solve sequence-to-sequence problems and learn

representations that are sensitive to word order, benefitting from the LSTM’s ability to suc-

cessfully learn on data with long range temporal dependencies. Bahdanau et al. (2015) based
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Figure 2.3: The input-feeding approach proposed by (Luong et al., 2015b). The attentional vectors h̃t
are concatenated with inputs at the next time step. This results in the model being aware of previous

alignment choices and it creates a deep network spanning both horizontally and vertically.

their architecture on RNNs, both for encoding and decoding, but they also apply an attention

mechanism in the decoder which helps the decoder decide which parts of the source sentence

to pay attention to. The attention value is computed by a feed-forward layer that takes the

previous hidden state and each input word embedding as inputs. They, like Sutskever et al.

(2014), report BLEU scores for an English→French translation task comparable to those

achieved by SMT. Improvements were made on the attention mechanism, e.g. by Luong

et al. (2015b), represented in Figure 2.3, who proposed two classes of attention, a global one

and a local one, which respectively attend to all source words or only a limited window of

words at a time.

Vaswani et al. (2017) introduced the transformer architecture, represented in Figure 2.4,

based solely on attention with no recurrence or convolutions. In particular, this influential

paper1 introduced using self-attention for MT. Self-attention extends the idea of attention to

the encoder; instead of searching for alignment between input words and output words, it

refines the representation of input words with respect to other relevant words in the input

string (Koehn, 2020). The transformer models require significantly less time to train than

previous models, while still improving output quality, which has made them the dominant

NMT architecture. Vaswani et al. (2017) presented a few variations on the architecture, based

on the hyperparameters chosen for training. In the experiments presented in this thesis, we

employ the TransformerBASE model, detailed in Section 3.5.

Various improvements have been made to the transformer models, such as altering the

depth of the models and by allowing for translation of larger contexts. Examples of that

include Junczys-Dowmunt (2019), who uses document boundaries in his training data to

mark out long text sequences for training the models, Dehghani et al. (2019) who propose

a variant that, instead of having a fixed number of layers, has variable depth, and Liu et al.

(2020a), who build transformer-based models with very many layers, up to 60 encoder layers

and 12 decoder layers.

1At the time of writing this thesis, Vaswani et al. (2017) have more than 70,000 citations, according to

Google Scholar.
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Figure 2.4: The full attention-based transformer model. This representation is adapted from Koehn

(2020). The input words are represented as a vector representation of both the word itself and its

position. In the encoder layer, a self-attention mechanism is used to first mix the word embedding

with the embeddings of related words in the input, found by calculating the dot product of the word

embedding and the embeddings of all words in the sentence. Then this representation is refined with

a feed-forward layer. The decoder layer also has self-attention, but adds attention, computed between

the decoder states and the final encoder states, before refining the representation again.

2.1.1 Representing Tokens in an NMTModel

When training NMT models, source and target sentences are represented as a sequence of

tokens. As the size of the vocabulary is limited due to computational constraints, usually to

tens of thousands of different tokens, representing word forms as separate tokens would im-

ply limiting the vocabulary only to the most frequent words, creating a large OOV-problem.

It would also mean treating the word forms as distinct and unrelated, even though they may

only be different inflectional forms of the sameword, exacerbating greatly the OOV-problem

for MRLs.

To address this, Sennrich et al. (2016b) proposed segmenting input to NMT models us-

ing byte pair encoding (BPE) (Gage, 1994), allowing for representing an open vocabulary

through a fixed-size vocabulary of variable-length sequences of subword units. Unseen and

rare words can then be represented by sequences of these subword units, while frequent

words often get their own tokens. Kudo and Richardson (2018) presented SentencePiece, a

language-independent subword tokenizer and detokenizer which tokenizes and then converts

text into an id sequence, simplifying the process of building end-to-end systems, trained on

subword units.

2.2 Large Language Models

Fine-tuning large language models (LLMs), which means updating their weights by training

them in a supervised2 manner on a dataset with examples for the intended task, have been

shown to produce significant performance gains for a range of MT tasks. mBART25 (Liu

et al., 2020b) is an LLM trained on 25 languages. For some language pairs, by fine-tuning the

2Supervised MT training requires sentence pairs from a parallel corpora for the system to learn how to

perform its task.
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model it can outperformMTmodels trained from scratch on the same parallel data (Liu et al.,

2020b), in terms of BLEU. The model can also generalize to unseen languages, although to

a different extent depending on the language. The authors hypothesize that this is due to the

pre-trained transformer layers learning universal properties of language, even without much

lexical overlap with the languages in the training set.

Generative Pre-trained Transformer (GPT) models have been shown to be able to trans-

late in zero-shot to few-shot scenarios. Zero-shot means that the model is told to translate

without being shown any translation examples, but in few-shot scenarios the model is given

a few demonstrations of the task at hand. In either case, the model weights are not updated.

Brown et al. (2020) show that GPT-3, the third-generation of models in the GPT series,

outperforms previous unsupervised3 NMT work when translating into English, which re-

flects its strength as an English LM. When translating into other languages, the model does

not perform as well. In another study (Hendy et al., 2023), GPT-3 was shown to be able

to reach reasonable accuracy for some language pairs on evaluation datasets from WMT

shared translation tasks, as measured by automatic metrics, especially when translating into

English, although in most cases the results lagged substantially behind the best WMT results

for these same datasets. The evaluation sets used were from WMT21 and WMT22. While

the WMT22 datasets should not overlap with the GPT models training data, collected until

June 2021, the WMT21 might, which could have affected the results of the paper.

2.3 Compiling Training Data for MT

In Section 1.2, we defined noise as segments that may degrade the performance of an MT

system trained on that data. As NMT systems are sensitive to noise (Khayrallah and Koehn,

2018), various efforts have been made in recent years to improve the quality of the data,

i.e. minimize noise. The training data are compiled from parallel corpora, which are collec-

tions of documents in one language paired with their translations into another. In compiling

the training data, the parallel corpora are usually first aligned on a sentence level, and then

the sentence pairs that are likely to be detrimental to the training process are filtered out.

Alignment and filtering are discussed in Sections 2.3.1 and 2.3.2. Comparable corpora are

collections of documents in two or more languages that share similar content, as defined in

Section 1.2. In Section 2.3.3, we discuss the main issues in mining such corpora for parallel

sentence pairs.

2.3.1 Sentence Alignment

The objective of sentence alignment (represented in Figure 2.5) is to find parallel sentences

in aligned documents, ideally all semantically equivalent sentence pairs without any mis-

alignments and extraneous or missing data in either language. When sentence alignment is

incorrect or inaccurate, everything that uses the aligned parallel corpora will be less reliable,

be it MT systems or word alignment tools used for inducing bilingual dictionaries (the focus

of Section 3.6). It is therefore important to select the best available algorithm for a given

dataset to be aligned.

While a wide variety of approaches have been used for automatic sentence alignment

over the last 30 years, the predominant ones have been statistical methods using length-

based features (Brown et al., 1991; Gale and Church, 1991), lexicon-based techniques (Varga

3Unsupervised MT does not require training data in two languages, but instead relies on monolingual data

in both languages and learns representations from them.



2.3. COMPILING TRAINING DATA FOR MT 15

et al., 2005), methods using MT (Volk et al., 2010) and, most recently, multilingual sentence

embedding-based approaches (Thompson and Koehn, 2019).

All of these approaches have their merits, but also some possible disadvantages. The

length-based methods make the assumption that a set number of characters in one language

give rise to a set number of characters in another and that the languages are proportional

to each other. This can work reasonably well for related languages, but some research have

shown the assumption to be less likely to hold for unrelated languages, especially those using

different writing systems (Wu, 1994; Martin et al., 2003; Samy et al., 2006). Lexicon-based

approaches can use simple statistical methods or word alignment to bootstrap a bilingual

dictionary if it is not available, but for best results, it is important to have access to good

external dictionaries. Bilingual dictionaries usually only contain word lemmas and thus good

lemmatizers or stemmers are necessary for them to be useful. MT-based approaches require a

pre-existing good quality MT system, and sentence embedding-based systems require cross-

lingual sentence embeddings, trained on data in the languages to be aligned, for the results

not to be significantly deteriorated (Chimoto and Bassett, 2022). All of these resources are

not often available and some or all are lacking for many language pairs.

Figure 2.5: A sentence alignment system takes in parallel documents in two languages. Pre-

processing usually involves sentence splitting and sometimes cleaning the text of non-linguistic con-

tent. The sentence alignment module needs to have a way of scoring how good a given alignment

is, and a way of finding the optimal set of alignments between two documents. After running all

processing steps, the system then outputs a set of aligned sentences. For successful alignment, the

system needs to be able to perform a variety of functions: Contraction (n↔1) and expansion (1↔n),
in which one sentence aligns to more than one sentence in the other language, deletion (1↔0) and
insertion (0↔1), where a sentence does not align to any sentence in the other language, and substi-
tution (1↔1) where a sentence aligns to exactly one sentence in the other language. Most alignment

systems also allowmergers (n↔m), in which multiple sentences in both languages are merged before

alignment.
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In Chapter 5, we will provide a more detailed account of relevant work in this area, and

describe the most common approaches and tools in more detail.

2.3.2 Filtering

Incorrect translations, as defined in Section 1.2, untranslated target text, misalignments, and

other noisy segments in a parallel corpus have been shown to have a detrimental effect on the

output quality of NMT systems trained on that corpus (Khayrallah andKoehn, 2018), as mea-

sured using BLEU. In recent years, machine learning (ML) research has generally focused

more on creating better models, rather than better datasets, where a focus on benchmarking

model performance prompts researchers into adapting the largest existing datasets without

fully considering fidelity to the underlying problem themodel should solve (Mazumder et al.,

2022). The effectiveness of ML models, however, depends on both algorithms and data.

Aroyo et al. (2022) argue that as the datasets define the entire world within which models

exist and operate, more work is needed on how the data can be optimized for more effective

use. Filtering parallel data for MT is the task of removing possible detrimental segments

from the data used for training MT models. Filtering is usually carried out by using a set

of rules, often accompanied with scoring and/or classifying sentence pairs, to remove the

segments with the lowest perceived quality.

WMT hosted annual shared tasks on parallel corpus filtering for three years, 2018–2020

(Koehn et al., 2018, 2019, 2020). There, methods based on crosslingual sentence embed-

dings trained from parallel sentence pairs did well (e.g. Chaudhary et al. (2019) and Artetxe

and Schwenk (2019a)). Two versions of Bicleaner (Sánchez-Cartagena et al., 2018; Esplà-

Gomis et al., 2020) were submitted, both times ranking highly. Zaragoza-Bernabeu et al.

(2022) introduced a third version, Bicleaner-AI, implementing a neural classifier based on

pre-trained transformer-based language models fine-tuned on a binary classification task. In

Chapter 4 we discuss these systems further, as well as giving a more detailed account of rele-

vant work. We experiment with different versions of Bicleaner as well as various scoring and

classification approaches and try to compare their merits using both manual and automatic

evaluation methods.

2.3.3 Mining Comparable Corpora

Comparable corpora are more abundant than parallel texts. They have been shown to be a

useful source for mining parallel segments that can be useful as additional training data for

MT systems (Wolk et al., 2016; Hangya and Fraser, 2019). This is important in low-resource

scenarios, where parallel corpora are scarce. In contrast to parallel corpora, where it can be

assumed that the sentence order in two parallel texts is the same, potential parallel sentence

candidates in comparable corpora can come from anywhere in two comparable documents.

This means that the search space becomes very large as the comparable documents grow in

size, thus necessitating methods for reducing the search space and finding parallel sentence

candidates effectively.

Considerable work has been carried out on developing methods for extracting parallel

sentences or phrases from comparable corpora. Numerous approaches have been proposed:

lexicon-based (Zhao and Vogel, 2002), MT-based (Sarikaya et al., 2009), and using bilingual

word embeddings, as in the most prominent systems in the 2017 and 2018 shared tasks on

identifying parallel sentences in comparable corpora in theWorkshop on Building and Using

Comparable Corpora (BUCC) (Zweigenbaum et al., 2017, 2018).
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In Chapter 6, we present our approach using a cross-lingual information retrieval (CLIR)

tool, both for mining traditional comparable corpora and for mining data usually discarded

in the parallel corpora alignment process. There, we also discuss related work in more detail.

2.4 Assessing Quality in Machine Translation

There is a range of different use cases for which MT is utilized. Common scenarios include:

gisting, i.e. helping readers find the most important points in a text written in languages they

can’t read; various uses in relation to tourism, both for tourists when communicating with

people that do not share a common language with them and when trying to understand words

or short texts in a foreign languge, as well as for service providers looking to provide infor-

mation in multiple languages; professional translators using MT to become more productive

by post-editingMT-generated translations; and the output ofMT systemsmay even be useful

on its own for various domain-specific scenarios.

To understand the strengths and weaknesses of a given MT system we need to be able

to assess its quality. A variety of different metrics have been introduced. Subjective human

judgements have commonly been measured along two dimensions: 1) “adequacy”, measur-

ing the extent to which a translated text contains the same information as the source text, and

2) “fluency”, the extent to which the sentence is well-formed in the target language (Way,

2018). These are traditionally evaluated on a graded scale, e.g. from 1–5. Another approach

is to rank two or more systems on the sentence level by human evaluators, giving statistics

on which system is preferred over the others. More recently, human evaluation in evaluation

campaigns, such as for the WMT News Translation shared tasks, has used “direct assess-

ment” (Graham et al., 2016). Using this approach, a single translated sentence is evaluated

at a time, using a 100-point scale. The judgments on this scale can more easily be normalized

than judgments on the scale of 1–5, which is important as subjective biases of individual hu-

man evaluators can skew the results. In recent years, more fine-grained approaches have been

employed for evaluating MT output. Multidimensional Quality Metrics (MQM) (Lommel

et al., 2014) is a framework for analytic translation quality evaluation. When using MQM,

an evaluator identifies errors in a translation and classifies them. If applied successfully, the

approach generates data that reduces subjectivity and enhances comparability. The data can

then be used both to identify what kind of quality issues an MT system has and to compare

the strengths and weaknesses of different systems.

While human evaluation has obvious benefits – it shows how MT users are likely to

perceive the output – it is also expensive, slow and can be inconsistent. Automatic metrics

designed specifically for MT evaluation were introduced at the start of the century, as SMT

was becoming the ruling paradigm in MT. BLEU and NIST (Doddington, 2002) both ig-

nored the source sentence and used n-grams to compute similarity between a reference and
the MT output. For developers building MT systems, a fast, automatic system that can tell

them whether the system improves after a change is highly useful and, as these approaches

seemed to serve that purpose without any need for human evaluation, they were quickly

adopted. BLEU, which became the standard for measuring MT quality, has since early on

been criticized for various shortcomings. Callison-Burch et al. (2006) show that BLEU has

a rather low correlation with human judgment and that an improvement in BLEU does not

necessarily reflect a genuine improvement in translation quality, as perceived by human eval-

uators. Other important aspects of BLEU that have been criticized include that BLEU ignores

the relative relevance of different words; that it does not address grammatical coherence be-

yond n-grams; and that the actual BLEU scores have no meaning in themselves but depend
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on multiple different factors, including the reference translations and their quality, the num-

ber of reference translations, the language pair, domain and even the tokenization scheme

(Koehn, 2020). METEOR (Banerjee and Lavie, 2005) introduces the idea of using stemming

and synonyms. It counts the number of word matches between the system output and a refer-

ence, first matching surface forms of words and then backs off to stems and finally to using

WordNet (Miller, 1994) to match semantic classes. This has the drawback that stemmers and

synonym databases are required and thus it cannot easily be applied to all languages. Trans-

lation error rate (TER) (Snover et al., 2006) measures howmuch editing a human would have

to perform to match a reference translation. It inspects addition, deletion and substitution of

words as well as shifts of word sequences. In comparison to BLEU, TER scores more ac-

curately score a single sentence, but as the problem of calculating edit-distance with a move

operation is NP-complete, calculating the score can be computationally expensive. Popović

(2015) proposes using a character n-gram F-score for automatic evaluation, when introduc-

ing chrF, showing that it has higher correlation with human judgments than BLEU, TER

and METEOR, and that it is language- and tokenisation-independent. While BLEU, TER,

METEOR and chrF have been some of the more popular evaluation metrics, recent Metrics

Shared Tasks at WMT (Freitag et al., 2021b, 2022) have shown neural-based learned metrics

to better correlate with human evaluation. Multiple different neural-based metrics have been

introduced. We employ one of these, COMET-22 (Rei et al., 2022) in Chapter 7, where we

evaluate the final MT models trained in our experiments.

The metrics discussed in this section are only few of many metrics that have been de-

veloped for assessing MT quality. They are some of the most commonly used, and despite

the widely acknowledged issues with BLEU, it remains the primary measure of translation

quality, not least with developers of MT systems.

2.5 Machine Translation for Icelandic

In this thesis, we will mostly be working with the English–Icelandic language pair. Be-

fore the commencement of this Ph.D. project in 2018, development in MT for Icelandic had

been limited. In the META-NET White Paper Series from 2012, the report on Icelandic

(Rögnvaldsson et al., 2012) mentions a rule-based system, now defunct, offering transla-

tions between Icelandic and three languages, English, Danish and Esperanto, as well as an

Apertium-based (Forcada et al., 2011) Icelandic–English system (Brandt et al., 2011).

A parallel corpus, ParIce (Barkarson and Steingrímsson, 2019), was compiled and pub-

lished in 2018. ParIce is partly a collection of previously available parallel data, which has

been realigned and filtered, as well as new parallel data with the largest source being regu-

latory texts published in relation with the European Economic Area (EEA) agreement. The

original work on ParIce was mainly carried out by myself in cooperation with Starkaður

Barkarson, prior to starting the work described in this thesis.

Jónsson et al. (2020) was the first published work describing SMT and NMT for Ice-

landic. It compares a PBSMT model trained using Moses (Koehn et al., 2007) and two

NMT models: a sequence-to-sequence model as described in Sutskever et al. (2014) and a

TransformerBASE model (Vaswani et al., 2017). I participated in this paper as part of this

Ph.D. project.

English–Icelandic was one of the language pairs of the shared news translation task at

WMT 2021 (Akhbardeh et al., 2021). Multiple teams participated, with a team from Face-

book achieving the highest scores (Tran et al., 2021). They submitted a multilingual system

employing backtranslation (Sennrich et al., 2016a), in-domain fine-tuning, averaging model
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parameters across the last five checkpoints, noisy channel re-ranking and post-processing of

punctuation. Two of the other systems submitted to the shared task were the Allegro.eu sub-

mission (Koszowski et al., 2021), based on the TransformerBIG architecture, and Miðeind’s4

submission (Símonarson et al., 2021) based on mBART. Due to the similarity of their models

to ours, we will be comparing our results to theirs in Chapter 7.

A National Language Technology Programme for Icelandic (NLTPI) started in 2019

(Nikulásdóttir et al., 2017; Nikulásdóttir et al., 2020; Nikulásdóttir et al., 2022). That pro-

gramme included buildingMTmodels and compiling datasets for trainingMT systems. This

Ph.D. project was in part funded by that programme and some of the work on supporting

tools and data, described in Chapter 3, resulted from cooperation within the programme, as

detailed in the relevant sections.

Most NLP tools and language resources useful for building Icelandic resources for MT

were of limited quality before the start of the NLTPI. The best PoS-tagger available (Lofts-

son and Östling, 2013) still had ample room for improvement, and, at the beginning of this

Ph.D. project, we built a new tagger outperforming the previous one by a large margin (see

Section 3.1). That tagger was then further improved upon within the NLTPI. A lemmatizer

was available, accurately predicting lemmas given the correct PoS-tags (Ingólfsdóttir et al.,

2019). In terms of data, the first version of the Icelandic Gigaword Corpus was published

in 2018 (Steingrímsson et al., 2018), a large database of Icelandic inflection had been in

development for over 15 years (Bjarnadóttir, 2012), and the first version of the previously

mentioned ParIce corpus had been published. All of these projects were further developed

within the NLTPI, thus improving in size and quality as the project described in this thesis de-

veloped. Furthermore, a small English–Icelandic dictionary was available, created as a part

of the Apertium project. For some of our experiments, we wanted to use a larger dictionary

and, in Section 3.6, we describe how we compiled a reasonably large bilingual dictionary

using bilingual lexicon induction (BLI) methods.

4A private software company focusing on NLP for Icelandic.
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Chapter 3

Supporting tools and data

In order to carry out the intended experiments for the English–Icelandic language pair, some

tools and datasets needed to be built, as the resources for Icelandic were either unavailable or

inadequate when we started our project. Available parallel corpora that included Icelandic

were distributed between multiple sources until the first version of the ParIce corpus was

published in 2018. The parallel data had been aligned and filtered along with other language

pairs, using generic methods without any regard to Icelandic in particular. Icelandic datasets

for use with various aspects of language technology and tools to process Icelandic have

progressed substantially during the period this thesis is written in, which largely coincides

with the NLTPI, discussed in Section 2.5. Some of the tools and data discussed in this

chapter stem from the NLTPI and were either built by myself or by me in cooperation with

others. When the work was done in cooperation with others, my contribution is described in

a footnote.

In this chapter, we first describe a part-of-speech (PoS) tagger which significantly raised

the accuracy for Icelandic PoS tagging (Section 3.1). Second (in Section 3.2), we describe a

word alignment tool, which uses an ensemble of word aligners to acquire word alignments

that obtain higher F1-scores than those produced by the best aligners in the ensemble. Third,

we describe an approach to induce a bilingual lexicon using dictionary pivoting in combina-

tion with word alignments on a parallel corpus (Section 3.3). Fourth, we describe a scoring

mechanism based on word alignments (Section 3.4). Fifth, we discuss the compilation of

two versions of an English–Icelandic parallel corpus (Section 3.5). Finally, we describe how

a large English–Icelandic lexicon was induced and evaluated (Section 3.6).

3.1 ABLTagger

Tagging and lemmatizing Icelandic texts with as much accuracy as possible are necessary for

multiple aspects of our work, including building a bilingual lexicon (Section 3.6), training

a lemmatized Bicleaner model (Section 4.2.2), sentence alignments (Chapter 5), and more.

For tagging Icelandic texts, the most accurate tagger previous to our work was IceStagger

(Loftsson and Östling, 2013), which obtained an accuracy of 93.84% using an averaged

perceptron method.

Bidirectional long short-term memory (BiLSTM) models have been shown to be effec-

tive for various sequential labelling tasks, including PoS tagging (Ling et al., 2015; Plank

et al., 2016). They are an extension of general LSTMs (Hochreiter and Schmidhuber, 1997)

that perform better on sequences where the complete input sequence is available. Two

LSTMs are trained on the input sequence, one on its natural reading order and the other
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on its reverse (Graves and Schmidhuber, 2005). Santos and Zadrozny (2014) were first to

join word embeddings, vector representations of words based on their context in training

data, with character embeddings when tagging with BiLSTMs. In our model, both word

embeddings and recurrent character embeddings are used as input. For each word, both for-

ward and backward expressions are generated, containing the sequence of characters in the

word, as well as word initial and word final markers. The character embeddings for a given

word are input into a BiLSTM. The output from the BiLSTM is concatenated to the word

embedding. This helps the model grasp morphological details.

In an effort to raise the accuracy of Icelandic PoS tagging, we developed a new tagger,

ABLTagger1 (Steingrímsson et al., 2019) using a BiLSTMmodel which we augmented with

the Database of Modern Icelandic Inflection (DMII) a morphological lexicon (Bjarnadóttir,

2012; Bjarnadóttir et al., 2019) and a lexical category identification step. In our work on

the tagger, presented in Steingrímsson et al. (2019), we evaluated three models. First, we

confirmed the effectiveness of a BiLSTMmodel for PoS tagging using a fine-grained tagset.

Second, we supplemented the base model with an external morphological lexicon by encod-

ing the morphological features for each word as an n-hot vector and concatenating it to the

word and character embeddings input into themodel, thereby obtaining SOTA results. Third,

we proposed an approach to further increase the accuracy by creating a coarse-grained tagset

from the fine-grained one and using the resulting tagset to devise a two-step process. Specif-

ically, we trained a separate model on only the lexical category and used the coarse-grained

output tag as an input into the main model. This approach was, to the best of our knowledge,

novel in the context of neural network tagging. Combined, this resulted in an overall tagging

accuracy of 95.15%, which is equivalent to an error reduction of 21.3% compared to the

previous state of the art.

3.1.1 The Three Models

We trained our models on the Icelandic Frequency Dictionary (IFD) corpus (Pind et al.,

1991), which contains about 590 thousand tokens, predominantly from literary texts. All

previous taggers developed for Icelandic were trained and tested on this corpus. As the

developers of IceStagger did, we used the so-called corrected version of the corpus, with

a tagset of 565 morphosyntactic tags, and ten-fold split from Loftsson et al. (2009). The

morphosyntactic tags in the tagset are mnemonic encodings, i.e. character strings where each

character has a particular function. The first character denotes the lexical category. For each

category there is a predefined number of additional characters (at most six), which describe

morphological features, like gender, number and case for nouns, etc. To illustrate, consider

the word form maður “man”. The corresponding tag is nken, denoting noun (n), masculine

(k), singular (e), and nominative (n) case.

We also experiment with a more recent corpus, MIM-GOLD (Loftsson et al., 2010). It

uses the same tagset as the IFD but contains a greater diversity of texts. In addition to texts

from published books, it contains texts from news media, blogs, parliamentary speeches

and more. Furthermore, MIM-GOLD is about twice as large as the IFD, i.e. containing

approximately 1 million running words.

Baseline Model

In our baseline model, which is similar to Plank et al. (2016), both word embeddings and

1ABLTagger was written in collaboration with Örvar Kárason, an MSc student at Reykjavik University.

Örvar and I both worked on all aspects of programming and testing of the program, with equal contribution

from both. It is available at https://github.com/steinst/ABLTagger.

https://github.com/steinst/ABLTagger
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Figure 3.1: A partial n-hot vector and the corresponding features from the DMII. The example shows

12 features, including the active features for the word form strætó “bus”. All possible features for the

word form are activated. In this case, the word, a noun, has the same form for nominative, dative and

accusative and therefore all corresponding labels are activated. An actual vector in our model has 61

labels, which are either active, 1, or inactive, 0.

recurrent character embeddings are used as input. The character embeddings for a given

word are input into a BiLSTM. The output from the BiLSTM is concatenated to the word

embedding and the combined vector input into another BiLSTM, whose output is input into

a hidden layer. The hidden layer feeds the output layer, which selects a PoS tag.

Adding an External Morphological Lexicon

Horsmann and Zesch (2017) replicated the work of Plank et al. (2016) using a collection of

corpora annotated with fine-grained tagsets of varying sizes, in contrast to the coarse-grained

Universal Dependencies (UD) tagset in the previous study (17 tags). The replication con-

firmed the superior performance of the BiLSTM tagger, also on fine-grained tagsets. Further-

more, they found that the advantages of the BiLSTM tagger over other taggers grow propor-

tionally with the tagset size of the corpus. However, they also claimed that for large tagsets

of morphologically rich languages, hand-crafted morphological lexicons are still necessary

to reach state-of-the-art performance. Using a morphological lexicon has become common

practice for enriching training data for PoS taggers. Hajič (2000) marked the importance of

this for morphologically rich languages and it was first done for Icelandic in Loftsson et al.

(2011).

Sagot and Martínez Alonso (2017) first used morphological lexicons as supplemental

input for PoS tagging with BiLSTM taggers and showed that it yields consistent improve-

ment. Following their work, we extended the baseline model by adding an input layer that

contains token-wise features obtained from the DMII lexicon, which contains over 300 thou-

sand paradigms and six million inflectional forms. The input vector for a given word is an

n-hot vector where each active value corresponds to one of 61 possible labels in the lexicon.
This vector is concatenated to the two vectors described in the previous section, i.e. the word

embedding and the character embedding, and the result is then fed into the BiLSTM layer.

An example of an n-hot vector is given in Figure 3.1.
Previous taggers using DMII have had to map the information to the IFD tagset. As

the tagsets of IFD and DMII are not completely compatible, some information has been lost

in the mapping process. Our method on the other hand allows the model to use and learn

from all the information encoded in the morphological lexicon, even though it uses a tagset

slightly different from the training data.

Lexical Category Identification Step

When employing a fine-grained tagset with mnemonic encoding, the model does not place

different significance on two tags when they differ in lexical category, on one hand, or share

a lexical category but differ in morphological features, on the other. A human, however,

would consider the former a more significant error than the latter. A PoS tagger is especially
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Figure 3.2: Our full tagging model, employing word embeddings, character embeddings, a morpho-

logical lexicon, and the output of the lexical category identification step. The hidden layer is omitted

for simplicity. Figure adapted from Plank et al. (2016).

prone to such errors when the tagset is large and the amount of training data is insufficient

to detect all the subtle differences between labels.

To place a higher emphasis on assigning the correct lexical category, we devised a two-

step process. First, we simplified the tagset from 565 to 10 tags by using only the first

letter of the fine-grained tag mnemonic, i.e. the letter denoting the lexical category. We then

trained our third and final model on this new coarse-grained tagset, using word and character

embeddings as well as the morphological lexicon. This resulted in a lexical category tagger

with very high accuracy, 98.97% in our case. In the second step, the output of that tagger is

embedded as a one-hot vector and concatenated to the vectors input into the BiLSTM layer

of the main model. This guides the tagger to the correct lexical category and eliminates some

of the errors caused by insufficient training data. This final model is shown in Figure 3.2.

3.1.2 Part-of-Speech Tagging Results

The test results for all three models are shown in Table 3.1. The substantial gain achieved by

using DMII confirms the advantages of using an external morphological lexicon. Employing

the stepwise model further increases accuracy by helping in assigning rare or ambiguous

Accuracy Known Unknown

Baseline 93.25% 95.19% 66.84%

+ DMII 94.84% 95.17% 54.61%

+ LC 95.15% 95.48% 54.06%

Table 3.1: Accuracy of the threemodels trained and tested on IFD. The results show how the accuracy

improves when the model is augmented with the Database of Modern Icelandic Inflection (DFII), and

again when the lexical category (LC) identification step is added.
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Accuracy Known Unknown

MIM-GOLD 94.04% 95.13% 68.34%

+ IFD 94.17% 95.62% 68.18%

Table 3.2: Accuracy when training and testing on MIM-GOLD.

tags in the fine-grained tagset guided by the highly accurate lexical category. Note that

the baseline model achieves the highest accuracy for unknown words. This is because on

average, the IFD ten-fold splits contain 58,977words and by incorporatingDMII, the average

unknown word rate in testing falls from 4,036 to 476, a drop from 6.8% to 0.8%. The words

that are still unknown are mostly foreign words and rare or unorthographical word forms,

which are the word classes the taggers struggle most with.

While our tagger achieved a significant gain in accuracy over previous taggers, using

the same training and testing data they used, these datasets, containing mainly literary texts,

are not necessarily characteristic of texts that need to be tagged for language technology or

research purposes. We thus also evaluated our system using a more recent gold standard,

MIM-GOLD, which contains more diverse texts.

Table 3.2 shows that there is a substantial drop in accuracy compared to training and

testing on the IFD (see Table 3.1). The lower accuracy may, at least partly, be due to a

greater variety in texts than before and a larger proportion of unknown words and word

forms in the MIM-GOLD test set compared to IFD (Steingrímsson et al., 2015). This also

shows the importance of the choice of training and testing data. In practice, PoS tagging

is not carried out primarily on literary fiction and the training data should reflect that. For

further discussion, comparison to previous taggers for Icelandic and error analysis, refer to

Steingrímsson et al. (2019).

Since the first version of ABLTagger was published in 2019 it has been developed further

by others to reach even more accuracy. The latest version uses a BERT-like model and

an updated version of MIM-GOLD with a somewhat revised tagset (Jónsson and Loftsson,

2022). While the results are not entirely comparable due to differences in the tagset, the

developers report the latest version to reach 97.8% accuracy.2

Figure 3.3: A simple example of English–Icelandic word alignments. Corresponding words are

connected by edges.

3.2 CombAlign

Word alignment, the task of finding corresponding words in a bilingual sentence pair (see

Figure 3.3) was a key component of statistical machine translation (SMT) systems. While

word alignments are not necessary for neural machine translation (NMT), various methods

incorporating word alignment have been found to achieve significant improvements in per-

formance. Alkhouli et al. (2018) and Liu et al. (2016) use alignments as a prior; Arthur et al.

2Latest model and reported accuracy released on https://github.com/cadia-lvl/POS

https://github.com/cadia-lvl/POS
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Language Gold Sentence Edges

Pair Standard Pairs

en-cs Mareček

(2008)

2,501 67,424

en-de Europarl6 508 10,534

en-fr Och and

Ney (2000)

447 17,438

en-is new 384 5,517

Table 3.3: Gold standard alignments used for evaluation. The en-is gold standard contains further

220 sentence pairs that were used as a development set for grid search.

(2016) augment NMT systems with discrete translation lexicons that encode low-frequency

words; Press and Smith (2018) infer a correspondence between words in sentence pairs be-

fore encoding/decoding and, as demonstrated by Poncelas et al. (2019), back-translated data

created using SMT systems, requiring word alignments, can be valuable to augment NMT

systems. Word alignments have also been utilized to improve automatic post-editing (Pal

et al., 2017) as well as to preserve markup in machine-translated texts (Müller, 2017). Shi

et al. (2021) show that by simply pipelining word alignment with unsupervised bitext mining,

BLI efficiency can be improved significantly. For BLI, Artetxe et al. (2019) use an unsuper-

vised MT pipeline, also employing word alignments. Kurfalı and Östling (2019) use word

alignments to filter noisy parallel corpora, and Paetzold et al. (2017) include word alignment

as a part of their pipeline to align monolingual comparable documents.

We use word alignments as a part of multiple pipelines. We use it to help create a bilin-

gual lexicon (Section 3.6), for scoring sentence pairs when filtering parallel corpora (Chapter

4) and as a part of a pipeline to extract mutual translations from comparable corpora or data

that can be regarded as comparable corpora (Chapter 6).

A variety of different available word alignment tools, based on different approaches,

are able to attain a fairly high F1-score on a variety of evaluation sets, as shown in Figure

3.4. It is reasonable to expect that combining their results in a sensible way could give better

results than using any one of the individual systems. We thus create an experiment where we

compare the results from common aligners and then compare these to ensemble alignments

created by CombAlign (Steingrímsson et al., 2021a), a tool we developed to combine the

output of multiple word aligners in order to try to maximize precision or recall, depending

on the use case.3 The tool runs the five aligners and returns all alignments that the majority

of the aligners agree upon. In order to raise recall we can relax the demands for agreement,

accepting alignments that two or more of the five aligners agree upon.

We evaluate on four language pairs, using known test sets that have been used in multiple

previous work for three of the language pairs. For English–Czech we used the evaluation

set provided by Mareček (2008), for English–German we used the Europarl evaluation set,4

and for English–French we used the evaluation set provided by Och and Ney (2000). Addi-

tionally, we compiled a new gold alignment test set for English–Icelandic.5

3Available at: https://github.com/steinst/CombAlign.
4Available at: https://www-i6.informatik.rwth-aachen.de/goldAlignment/
5Available at: https://repository.clarin.is/repository/xmlui/handle/20.500.12537/

103. The test set was compiled by me with Hjalti Daníelsson assisting on manually annotating the alignments.
A detailed description of the dataset and how it was created is provided in Steingrímsson et al. (2021a).

https://github.com/steinst/CombAlign
https://www-i6.informatik.rwth-aachen.de/goldAlignment/
https://repository.clarin.is/repository/xmlui/handle/20.500.12537/103
https://repository.clarin.is/repository/xmlui/handle/20.500.12537/103
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3.2.1 Experimental Setup

There is a variety of word aligners available. For our experiments we use four different

systems. Giza++ (Och and Ney, 2003) and fast_align (Dyer et al., 2013) are easy to use

implementations of the IBM models (Brown et al., 1993). While fast_align builds on IBM

model 2, Giza++ iterates on a number of the models in sequence, as well as using an HMM

model. eflomal (Östling and Tiedemann, 2016), using a Bayesian model with Markov Chain

Monte Carlo inference on the IBM models, is fast and gives competitive results. SimAlign

(Masoud et al., 2020) takes advantage of the rising availability of contextualized embeddings

and leverages them by extracting alignments from similarity matrices.

Giza++, fast_align and eflomal are trained on parallel data. For all language pairs except

English–Icelandic, we use a a subset of 512, 000 sentences from Europarl (Koehn, 2005) to

train the models. For English–Icelandic we use sentence pairs from the first version of the

ParIce corpus (see Section 3.5.1).

In order to find the best settings for Giza++, fast_align and eflomal, we run the systems

using different heuristics and compare the results. With SimAlign, we induce alignments

from two different contextualized embedding models, multilingual BERT (mBERT) (Devlin

et al., 2019), and XLM-R (Conneau et al., 2020). We are thus working with five different

aligners/alignment models. For SimAlign, we carry out a grid search to find the best set of

hyperparameters for each model and run the experiments both for whole words and BPE.

Detailed results of the grid search is provided in Steingrímsson et al. (2021a). The paper

also describes how different hyperparameters and different levels of agreement should be

chosen, depending on whether the objective is to reach high recall, high precision or a high

F1-score. For the comparison in the next section, we run CombAlign using the setting that

we expect to obtain the highest F1-score.

3.2.2 Results

As shown in Table 3.4, the results vary considerably between language pairs. This can, at

least in part, be explained by the fact that the gold alignment data the aligners are evaluated

on are all created by different researchers, at different times using different source material.

The criteria for what constitutes an alignment may thus have varied to some extent when the

gold alignments were compiled. The sets also vary in size (see Table 3.3). For all language

pairs, the CombAlign approach based on an ensemble of five alignment models gives the

highest F1-scores. The downside to this approach is that it requires all aligners to be run,

being by far the most time and computing power intensive. When comparing individual

aligners, SimAlign employing BERT gives the highest score for three out of four language

Method en-cs en-fr en-de en-is

eflomal .86 .91 .73 .91

fast_align .78 .86 .70 .89

Giza++ .81 .89 .73 .88

SimAlign: XLM-R .87 .93 .78 .90

SimAlign: BERT .87 .94 .81 .86

CombAlign .91 .95 .83 .95

Table 3.4: Word alignment F1-scores for the four language pairs. The highest scoring alignments

are in bold, all ensemble alignments created by CombAlign. The highest scoring individual aligners

for each language pair is in italics.
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pairs. For one pair, English–Icelandic, eflomal gave a slightly higherF1 score than SimAlign.

A possible reason for this is that the contextualized models SimAlign uses were trained on

less Icelandic data and so have more ‘knowledge’ of the other languages than of Icelandic.

Based on these results, we proceed to use CombAlign and an ensemble of available word

aligners when taking advantage of word alignment information in our further work.

3.3 PivotAlign

When filtering parallel data (Chapter 4) , aligning parallel corpora (Chapter 5), and extracting

parallel sentence pair candidates from comparable corpora and data discarded when align-

ing and filtering (Chapter 6), we use lexicon-based methods as well as other approaches.

In order to induce an English–Icelandic bilingual lexicon (Section 3.6), we apply various

approaches, amongst them pivoting through intermediary dictionaries and extracting trans-

lation candidates from a parallel corpus using word alignments. We developed a tool, Pivot-

Align (Steingrímsson et al., 2021c), to experiment with combining these two approaches.

We tested PivotAlign and compared against other approaches by participating in the Trans-

lation Inference Across Dictionaries (TIAD) 2021 shared task (Gracia et al., 2021), obtaining

a very competitive result.7

Word alignments have previously been used for automatically inducing bilingual dictio-

naries, see e.g. (Melamed, 2000; Caseli et al., 2006; Shi et al., 2021). It is simple to regard

the outputs of word alignment models as hypotheses for translation equivalence. However,

the problem with word alignments has been that these hypotheses are not necessarily very

accurate, both due to the limitations of the aligners themselves and to the limitations of the

data being aligned. We try to circumvent these limitations by using CombAlign (Section

3.2) to obtain sets of alignment suiting our purposes, whether our goal is high precision,

high recall or high F1-score.

3.3.1 Experimental Setup

Our approach is based on two methods applied in conjunction to induce a bilingual dictio-

nary: word alignments and pivoting through intermediary dictionaries. We created three

versions of our system for three different goals: high precision, high recall and a high F1-

score. In the experiment, we worked with all translation directions between three languages,

English, French and Portuguese, resulting in six induced dictionaries: en→pt, pt→en, pt→fr,

fr→pt, en→fr and fr→en.

We started by collecting as many lexical translations as possible, using a subset of Aper-

tium RDF v2 (Gracia et al., 2020) (see Figure 3.4). Our main approach is pivoting through

either one or two intermediary languages for each language pair. In order to score the candi-

date lexical translations, we extract sentence pairs from a parallel corpus, align them at the

word level and calculate a word alignment score for each aligned pair of words, in effect

using the extracted word alignment pairs as a filter for the candidates obtained by pivoting

through Apertium.

It has been demonstrated that by using a method called One Time Inverse Consultation

(OTIC) it is possible to get a translation candidate or a list of translation candidates in the tar-

get language with a good likelihood of the candidates being relevant (Tanaka and Umemura,

1994). OTIC induces a candidate list through a pivot language, but sets restrictions that result

7Available at: https://github.com/steinst/pivotalign.

Available at: https://github.com/steinst/pivotalign
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Figure 3.4: The subset of the Apertium dictionaries used in our experiment. Each bilingual dictionary

is represented by an edge between vertices in the graph. In the experiment we aim to infer translations

between the languages in the red circles.

in pruning of unlikely candidates based on information in the available dictionaries. OTIC

was used in one of the baseline systems for the TIAD 2021 shared task.

As our method relies on a scoring mechanism external to the Apertium dictionaries, we

want to extract as many potential candidates as possible. We thus opt for taking a more naive

approach to collecting translation candidates and simply accept all words inferred through

the intermediary dictionaries. This gives us lists of translation candidates for each of the

language pairs we are working with, which are larger than the pruned lists OTIC generates.

Before proceeding to filter the data, we iterate using our new induced and unfiltered dictio-

naries. By connecting the three languages, English, French and Portuguese, in all possible

combinations, with one as a source language, another as a target language and the third as

an intermediary, we obtain even more translation candidates.

While our system investigates all possible paths through one or two intermediary dic-

tionaries between our source and target languages, we compile another list of word pairs by

running word alignments on parallel corpora, with 1 million sentence pairs for each language

pair. The corpora were obtained from OPUS8 (Tiedemann, 2012), with the sentence pairs

selected from larger corpora only if they contained a word from the source or target lan-

guage intermediary dictionaries. In order to get a decent coverage, after a word was found

10 times it was removed from the list. We lemmatized the sentences using spaCy9 before

doing the word alignments. After aligning the parallel corpora using six word alignment sys-

tems and models, the five described in Section 3.2 as well as AWESoME (Dou and Neubig,

2021), which exploits multilingual BERT to extract the word alignments, different settings

of CombAlign (Section 3.2) were used to select the final word alignments depending on

whether the aim was high precision, high recall or high F1-score. Different goals can suit

different needs. in our work on building a bilingual lexicon, described in Section 3.6, auto-

matically generated candidates for lexicon entries are manually checked and to obtain a high

coverage we aim for high recall. In Chapter 4 and Chapter 6, where we experiment with us-

ing WAScore (see Section 3.4), a word-alignment-based approach to assist with estimating

the likelihood of a sentence pair containing mutual translations, we aim for high precision

word alignments.

8https://opus.nlpl.eu/
9https://spacy.io

https://opus.nlpl.eu/
https://spacy.io
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After obtaining the alignments from CombAlign, we use the word alignment frequency

combined with a count of word co-occurrences in the sentence pairs to score the candidates.

The score is calculated for each word pair 〈s, t〉 using Equation 3.1:

ρ (s, t) =
mat (s, t)

coc (s, t) + λ
(3.1)

where mat (s, t) is the one-to-one matching count, i.e. how often the words are aligned in

the corpus, and coc (s, t) is the number of one-to-one co-occurrences, i.e. count of 〈s, t〉
appearing in a sentence pair in the corpus. λ is a non-negative smoothing term. The equation
was proposed by Shi et al. (2021) but we use it with a slight variation. While Shi et al. (2021)

set the smoothing variable λ to 20, we set it to log2 nwhere n is the number of sentence pairs
in the corpus under consideration. This makes the score more comparable between corpora

of different sizes. The scores are in the range [0, 1].

3.3.2 Results

We submitted three variants of PivotAlign to the TIAD 2021 shared task, one aiming for

high precision, another aiming for high recall and the third aiming for a high F1-score. The

detailed settings are described in (Steingrímsson et al., 2021c). As shown in Table 3.5, two of

our submitted system variants outperformed all other participating systems with respect toF1

score, showing the usefulness of a scoring mechanism based on accurate word alignments

extracted from parallel corpora. Our third variant, PivotAlign-P, achieved a precision of

0.85, but it had much lower recall, 0.24, and came in seventh in terms of F1 score.

The candidate translations accepted by PivotAlign-R, aiming for high recall, had the

minimum threshold for ρ (s, t) set to 0.15, thus including candidate translations with ρ (s, t)
from 0.15 and up to 1.00. These scores, measured against the evaluation sets, show how the

precision score rises almost linearly as the threshold rises, while recall goes down, see Figure

3.5. This indicates a good correlation between our alignment score and translation inference,

showing that a scoring mechanism based on accurate alignments from an ensemble of word

alignment tools can be highly valuable for tasks such as this one.
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Figure 3.5: Precision, recall and F1 score charted against various threshold settings for PivotAlign-

R. The threshold is the minimum value of the confidence score, ρ (s, t). It is highly correlated with
all three scores.
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Top 5 Systems

System Precision Recall F1-score Coverage

PivotAlign-R 0.71 0.58 0.64 0.77
PivotAlign-F 0.81 0.51 0.62 0.68
ACDcat 0.75 0.53 0.61 0.75
TUANWEsg 0.81 0.47 0.59 0.76
TUANWEcb 0.81 0.47 0.59 0.76

Table 3.5: The five highest ranking systems, in terms of F1, submitted to the TIAD 2021 shared task.

Our systems are the PivotAlign systems.

3.4 WAScore

In order to be able to take advantage of word alignments as a scoring mechanism, when

filtering parallel corpora or when mining parallel sentence pairs from comparable corpora,

we need high-precision alignments and a scoring formula.

Word alignments have previously been used for parallel sentence extraction, generally

under the assumption that if a pair of sentences is equivalent in two languages, there should

be a number of word alignments between the sentences, and, in contrast, non-parallel sen-

tences should have few or no word alignments. Stymne et al. (2013) use alignment-based

heuristics to filter out sentence pairs. They hypothesize that sentence pairs with very few

word alignments common to both directions would likely not be corresponding sentences.

They use GIZA++ to find the alignments and set three thresholds for accepting valid sen-

tence pairs: 1) Ratio between number of alignment points and maximum sentence length; 2)

Absolute number of alignment points in a sentence pair; 3) Length ratio of the sentences. Lu

et al. (2020) use a word alignment based translation score as a part of their scoring ensemble

for filtering a noisy parallel corpus. Their translation score is a simplified version of the

translation score introduced by Khadivi and Ney (2005) and based on fast_align probability

scores. Zariņa et al. (2015) identify parallel sentences using word alignments, experimenting

with five different alignment based scores, four of which are based on fast_align probabil-

ity scores. They find that the best out of the five approaches is a geometric mean of the

alignment probability scores for each token.

Our approach to creating alignment-based scores is to collect high precision word align-

ments using CombAlign (Section 3.2). As we are combining outputs from multiple aligners

to create a final alignment using CombAlign, we do not have probability scores for each

alignment. In light of the results of our word alignment experiment (see Table 3.4), we work

under the assumption that our alignment approach eliminates most extraneous alignments

without missing too many of the correct ones. In Steingrímsson et al. (2021b) we calculate

a word alignment score by multiplying the ratio of aligned tokens in the source sentence to

the aligned tokens in the target sentence and call it WAScore:

sa
s
× ta

t
(3.2)

In Equation (3.2), s is the number of words in the source sentence and sa is the number of
source words that are aligned to some word in the target sentence, t is the number of words
in the target sentence, and ta is the number of target words that are aligned to some word in
the source sentence.
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With a set of highly likely alignments for each sentence pair, theWAScore tends to favour

sentences of similar length as a much longer sentence on one side usually has proportionately

few alignment edges on that side which lowers the score substantially. In contrast, if a shorter

sentence on one side has all tokens aligned to a longer sentence on the other side, it can

result in a reasonable score. Such pairs are often partially parallel, meaning that a part of

either sentence can align perfectly with either the whole or a part of the other sentence. In

Steingrímsson et al. (2021b), we show that this approach is suitable for extracting partially

parallel sentence pairs as well as truly parallel ones. In order to differentiate between these

two, when filtering or extracting sentence pairs from comparable corpora, we use additional

scoring mechanisms to raise the accuracy further.

3.5 ParIce

The ParIce English–Icelandic parallel corpus was compiled in order to facilitate work onMT

for that language pair. Before it was published, MT training data was fragmented and com-

piled using generic approaches not necessarily focusing on making the sentence pairs for this

particular language pair as accurate as possible. The available data was part of multilingual

datasets, shown in Table 3.6. The largest of these datasets was the OpenSubtitles corpus,

(Tiedemann, 2016) available from the OPUS project. The second largest was data obtained

from the European Medicines Agency (EMA), as part of the Tilde MODEL (Multilingual

Open Data for EU Languages) corpus (Rozis and Skadiņš, 2017).

The aim of the ParIce corpus project was to collect available corpora in one place and

refilter them, as well as compiling additional data. Two versions of the corpus have been

published. They are described in the following sections, as well as an automatic evaluation

of training NMT systems using the published versions.10

3.5.1 The First Version

The first version of the corpus was published in 2018 (Barkarson and Steingrímsson, 2019).

While the work was carried out in part by me, it was not part of the research carried out for

this thesis. Nevertheless, as the work done on the second version of the corpus, ParIce 21.10,

was part of the research for this thesis, I will give an overview of how the first version was

compiled.

Previously available data was collected. An examination of random samples of sentence

pairs indicated that for some of the subcorpora, in particular KDE4, OpenSubtitles and Statis-

tics Iceland, a rather large portion of the sentence pairs were faulty. For KDE4 almost half

the pairs were deemed faulty, while approximately 8% were deemed faulty for the other two

subcorpora. This is most commonly due to misalignment, semantic mismatch or inadequate

optical character recognition (OCR) of the texts being aligned. Between 200 and 800 sen-

tence pairs were manually assessed, depending on size of the subcorpus. The results are

shown in Table 3.6.

10The work on the corpus was joint work between me and Starkaður Barkarson. For the first version,

published in 2018, I collected the data and Starkaður and I worked together on the alignments and evaluation.

For the second version of the corpus, published in 2021, Starkaður collected more data and I aligned it, scored

the sentence pairs and filtered the corpus.
11http://christos-c.com/bible/
12https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
13http://opus.nlpl.eu
14Available at the ELRC-SHARE repository

http://christos-c.com/bible/
https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
http://opus.nlpl.eu
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Corpus Sentence Pairs Faulty Pairs (%)

The Bible11 31,085 0.5

EMA12 420,297 3.3

Gnome13 5,431 n/a

KDE413 87,575 45.0

OpenSubtitles13 1,368,170 8.3

Statistics Iceland14 2,360 8.0

Tatoeba13 8,139 0.0

Ubuntu13 2,127 2.5

TOTAL 1,923,060

Table 3.6: Pair count and ratio of bad alignments in the available parallel corpora collected for ParIce.

A large part of the Icelandic translation of the KDE4 dataset was untranslated or containing place-

holders, explaining the high ratio of faulty pairs. An inspection of the Gnome dataset revealed similar

issues, resulting in a decision not to work further with that data.

The corpus was realigned when possible and refiltered in order to increase the quality of

the corpus. Furthermore, new data was added. For the first version, regulations and direc-

tives in relation to the EEA agreement were collected in English and Icelandic and aligned

on sentence level using LFAligner,15 which is based on Hunalign (Varga et al., 2005). Fur-

thermore, some out-of-copyright books were collected from Project Gutenberg and a similar

website specializing in Icelandic books,16 as well as news from the European Southern Ob-

servatory (ESO),17 and aligned in the same way.

In order to filter out the misalignments, a scoring and filtering mechanism was devised.

It was based on an NMT system and a makeshift dictionary containing all possible Icelandic

word forms for any given English word form. The dictionary is based on the Apertium dic-

tionary (Brandt et al., 2011), Icelandic Wiktionary,18 a bilingual dictionary built from the

parallel data using bitextor-builddics (Esplà-Gomis, 2009), and a set of wordforms extracted

from DMII. OpenNMT (Klein et al., 2017) was used to train the NMT system on data from

a one-million-segment translation memory acquired from the Translation Centre of the Min-

istry for Foreign Affairs, in addition to the parallel data obtained from OPUS.

All sentences in the corpus were translated using the NMT system and scored by counting

howmanywords in the source sentence were represented in the target sentence and vice versa

using this equation:

score =
(sr/s) + (tr/t)

2
(3.3)

where sr are the number of words in the source sentence present in the translation of the
target sentence, s the total number of words in the source sentence, tr the number of words
in the target sentence present in the translation of the source sentence and t the total number
of words in the target sentence. Consider the sentence pair in (1), where (a) is the source

sentence in Icelandic and (b) is the target sentence in English: As each word in the Icelandic

sentence is found in the translation of the target sentence and translations of only three of

15http://sourceforge.net/projects/aligner
16https://rafbokavefur.is/
17https://www.eso.org/
18https://www.wiktionary.org/

http://sourceforge.net/projects/aligner
https://rafbokavefur.is/
https://www.eso.org/
https://www.wiktionary.org/
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Faulty Faulty

Before Accepted Accepted Accepted Deleted

Subcorpus Filtering Pairs Pairs (%) Pairs (%) Pairs (%)

The Bible 32,964 32,964 100.0 0.0 n/a

Books 16,976 12,416 73.1 3.5 38.0

EEA 2,093,803 1,701,172 81.3 5.0 63.5

EMA 420,297 404,333 96.2 1.3 45.0

ESO 12,900 12,633 97.9 0.5 46.0

KDE4 137,724 49,912 36.2 9.0 n/a

OpenSubtitles 1,620,037 1,305,827 80.6 1.4 37.0

Sagas 43,113 17,597 40.8 11.0 55.5

Statistics Iceland 2,481 2,288 92.2 5.0 56.0

Tatoeba 8,263 8,263 100.0 0.0 n/a

Ubuntu 11,025 10,572 95.9 2.0 n/a

TOTAL 4,399,582 3,557,977 80.9

Table 3.7: Pair count before and after filtering as well as ratio of accepted pairs and deleted pairs that

were deemed faulty during the assessment of the first version of ParIce.

eight English words are represented in the corresponding Icelandic sentence, the score would

be (1 + 0.38)/2 = 0.69.

(1) a. Hann gekk inn. (e. He walked in)

b. As he walked in he sang a song.

Furthermore, the average of all sentence pair scores in each document is calculated, and

if the document score is below a threshold it is discarded. For other documents, the sentence

pairs are deleted if multiple pairs in a row have a score under a given threshold. This is to

allow for limitations in the scoring mechanism, which sometimes gives low scores for good

sentence pairs, and thus the low scoring sentence pairs are accepted unless they appear in

clusters.

Before filtering the texts, the corpus contained 4,399,582 sentence pairs in total. After

filtering it had 3,557,977 pairs, including repeated sentence pairs. When duplicates had been

removed, 2,774,942 were left for MT training. A manual evaluation was carried out and

sentence pairs that were accepted and discarded were evaluated for each data source. If the

sentence pairs were deemed to be a mutual translation by the annotator they were accepted,

otherwise they were rejected. Table 3.7 gives the number of sentence pairs for each data

source in the corpus and shows that while the filtering process usually did not accept many

bad pairs, for many of the text sources over half of what was discarded were good sentence

pairs. Barkarson and Steingrímsson (2019) describe the compilation of the first version of

ParIce in more detail.

In our experiments with different MT models, we filtered the first version of ParIce fur-

ther (Jónsson et al., 2020).19 The additional filtering was primarily based on rules, such as

sentence length ratio, minimum and maximum length, digit mismatch, a character whitelist

filter, removing sentence pairs with corrupt symbols, e.g. ‘?’ inside words, removing identi-

cal and close to identical source and target sequences and other shallow filters. After applying

these filters 1,642,927 sentence pairs were left for training.

19I was one of five authors of this paper. My main contribution was overseeing the human evaluation of

the models.
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Corpus Sentence pairs

The Bible 32,423

EMA 405,088

EEA 3,418,465

ESO 10,079

KDE4 17,654

Norden 11,441

OpenSubtitles 1,412,940

Statistics Iceland 2,288

Tatoeba 9,440

Ted 2,392

Ubuntu 7,431

TOTAL 5,329,641

Table 3.8: Number of sentence pairs from each source of ParIce 21.10. These numbers are before

deduplication and filtering.

3.5.2 The Second Version

A second version of the ParIce corpus, ParIce 21.10, was published in 2021.20 It contained

updated data from the same data sources as before with some additions: News texts published

by the Nordic Council of Ministers21 were acquired and subtitles of TED talks available at

OPUS were added. All texts were checked for OCR errors and whether the texts had an

expected ratio of the Icelandic letters ‘þ’ and ‘ð’, an indicator of whether the texts have been

processed and saved correctly. Documents with such errors were discarded and all other

texts aligned using Vecalign (Thompson and Koehn, 2019). Table 3.8 shows the number of

sentences from the different sources.

We score all sentence pairs using three different scoringmechanisms: Language-Agnostic

SEntence Representations (LASER) (Schwenk and Douze, 2017) and LaBSE (Feng et al.,

2022), described in Section 4.2.2, and WAScore (Steingrímsson et al., 2021b) described in

Section 3.2.

Three filters were created for the aligned data: 1) A character filter that filters out sen-

tence pairs where more than 40% of tokens in either language contain characters that are

not punctuation marks or alphabetic letters in the English or Icelandic alphabets; 2) A length

filter that filters out all sentence pairs where either of the sentences is shorter than 4 tokens or

longer than 200 tokens; 3) A score filter using a logistic regression classifier trained on the

three scoring mechanisms. The classifier and training set used for training it are described

in more detail in Section 4.2.2.

The dataset is published with all the sentence pairs, accompanied with flags representing

the outcome of the three filters. Table 3.9 shows the total number of sentences when evalu-

ation sets (Section 3.5.3) and duplicates have been removed and different filters have been

applied.

20The work was carried out in cooperation between me and Starkaður Barkarson. Starkaður collected ad-

ditional data and I aligned, scored and filtered the data.
21https://norden.org

https://norden.org
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Filter No. of pairs

Unfiltered 3,464,789

Character filter (CF) 2,735,354

Length filter (LF) 2,896,886

Score filter (SF) 2,470,838

Shallow filters (CF + LF) 2,453,135

All filters (CF + LF + SF) 1,864,679

Table 3.9: Number of distinct sentence pairs in ParIce 21.10 training data after different filters have

been applied.

Data Source Valid pairs Test Dev No. of files

Open Subtitles 7,388 3,694 3,694 N/A

EMA 6,279 3,139 3,140 N/A

EEA 5,812 2,189 2,190 25

Norden 2,317 974 974 116

ESO 2,561 1,213 1,213 106

Total 24,357 11,209 11,211 247

Table 3.10: Number of distinct sentence pairs in ParIce 21.10 development and evaluation datasets

after different filters have been applied.

3.5.3 Evaluation Sets

We created development/test sets out of subsets from five different sources included in the

ParIce 21.10 corpus.22 These sets can be used to run automatic evaluations on different MT

models for these different domains. From the EEA, Norden and ESO datasets, we randomly

selected a set of files for these datasets and removed these files from the training data. For

training sets from Open Subtitles and EMA, we randomly selected sentence pairs to be eval-

uated for inclusion in the evaluation sets. The data was divided between four annotators who

evaluated whether sentence pairs were valid or invalid and selecting only valid sentences for

the evaluation sets.23 Table 3.10 shows the number of sentence pairs accepted as valid for

each source.

3.5.4 Evaluation

To establish a baseline for comparing our experiments, we evaluate the different versions of

ParIce by training MT models using identical hyperparameters. We use fairseq (Ott et al.,

2019) to train TransformerBASE models, as described in Vaswani et al. (2017), except that

we set dropout to 0.2, in line with Sennrich and Zhang (2019). Their results indicate that
a more aggressive dropout than applied in the original transformer paper leads to higher

BLEU scores in low and medium resource settings, and we use byte pair encoding with a

shared vocabulary size of 32, 000. We train each model on a single A100 GPU and use early

stopping with the patience set to 10 epochs.
We evaluated six versions of ParIce training data against the WMT 2021 news transla-

tion evaluation sets (Akhbardeh et al., 2021). For the first version of ParIce, we train two

models. One using all the corpus and the other one using a filtered version of that corpus,

22Available at http://hdl.handle.net/20.500.12537/146
23I organized the work and annotated the sentence pairs with the help of Finnur Ágúst Ingimundarson, Árni

Davíð Magnússon and Hildur Hafsteinsdóttir. Starkaður Barkarson packaged the data for publication.

http://hdl.handle.net/20.500.12537/146
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en-is is-en

Training Set No. Pairs BLEU BLEU

ParIce 1 2,774,942 13.5 25.1

As filtered by Jónsson et al. (2000) 1,642,927 18.0 24.7

PI 21.10 raw 3,464,789 17.5 25.4

PI 21.10 Character filter 2,735,354 18.5 24.5

PI 21.10 Shallow filters 2,453,135 19.0 24.7

PI 21.10 All filters 1,864,679 19.2 25.7

Table 3.11: BLEU scores for TransformerBASE NMT models trained on different versions of ParIce.

The systems are evaluated on WMT 2021 news translation test data. Scores in bold are highest.

Scores in italics are lower but not significantly lower than the highest scores (p > 0.05).

which was published by Jónsson et al. (2020). We trained four models on Parice 21.10, one

on the unfiltered corpus, the second one using only the character filter, the third one using

the character filter and the length filter, and the fourth one on both the shallow filtering ap-

proaches and the classifier based on the three scoring mechanisms described in 3.5.2. All

models are evaluated using SacreBLEU (Post, 2018).24 ParIce 21.10 generally performed

better than ParIce 1. This is more prominent when translating from English into Icelandic,

although there are some improvements in the other translation direction also. The filters ap-

plied to ParIce 21.10 are also beneficial for English→Icelandic, but the shallow filters seem

to harm the translation quality in the other direction, at least as measured by BLEU. Table

3.11 shows BLEU scores, statistical significance calculated using the pairwise bootstrap test

(Koehn, 2004).

Furthermore, we evaluate the four models, trained on different subsets of ParIce 21.10,

on the five ParIce evaluation sets described in section 3.5.3. Note that during training we

have not used the development data for these datasets, only WMT 2021 development data.

We do not evaluate models trained on data from the first version of ParIce because some

sentence pairs in the evaluation sets may be present in these training data. Results of the

evaluation on the ParIce 21.10 evaluation sets are shown in Table 3.12.

As evident from tables 3.11 and 3.12, different evaluation sets give very different BLEU

scores. The WMT test sets are made of sentences extracted from news media and translated

especially to be used for evaluating MT systems. The domain is quite open, the sentences

are rarely short, on average over 20 words for both Icelandic and English, and can be compli-

cated. The Norden data also has sentence pairs from news texts and thus has a resemblance

to theWMT test sets. While OpenSubtitles also has texts from a rather open domain, the sen-

tences extracted from movie or television subtitles are, in contrast, considerably shorter, less

than nine words on average, and therefore often simpler. This may explain some of the dif-

ference in BLEU scores between these data sets. The EEA and EMA data on the other hand

are from rather closed domains, but are well represented in the training data. TheMT systems

can therefore obtain high scores for these datasets. It is also evident from Table 3.12 that the

is→en translation direction scores higher than en→is. BLEU matches words and n-grams
between the MT output and a reference translation. For morphologically rich languages this

may be too simplistic. Belinkov et al. (2017) suggest that while translating from morpho-

logically rich languages is challenging, translating into such languages is even harder, with

BLEU scores in their experiments consistently being lower when translating from English

24SacreBLEU Signature: BLEU+numrefs.1+case.mixed+tok.13a+smooth.exp +version.2.2.0
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en-is is-en

Filters Filters

Evaluation Set No. Pairs No Ch C+L All No Ch C+L All

EEA 2,189 39.1 39.2 39.8 41.2 48.0 49.3 49.7 50.6

EMA 3,139 46.0 46.2 47.0 48.3 53.9 55.3 55.5 56.8

ESO 1,213 23.9 24.5 25.8 26.4 30.0 30.9 31.9 31.9

Norden 974 19.3 20.0 20.6 21.3 26.9 27.8 27.8 28.0

OpenSubtitles 3,694 33.2 33.4 33.4 34.0 34.3 35.8 35.8 36.0

Table 3.12: Evaluation of TransformerBASE NMT models trained on ParIce 21.10 using different

levels of filtering. BLEU scores are given for five different evaluation sets distributed with the corpus.

The highest scores are in bold and scores that are lower but not significantly lower in italics (p > 0.05).

into morphologically rich languages than the other way around. This may partly be due to

better source-side representations when translating from the morphologically rich language.

In order to make our results as comparable as possible to other work, we will use the

WMT 2021 evaluation set for further experiments in this work, when the nature of the ex-

periments do not necessitate the use of other evaluation sets.

3.6 Bilingual Lexicon

Bilingual lexicons are useful for an array of different tasks. In our work, we use a bilingual

lexicon when filtering parallel sentences (Chapter 4), in sentence alignment (Chapter 5),

when working with comparable corpora (Chapter 6), and when extracting sentence pairs

from discarded data (Chapter 6). In order for the approaches taking advantage of a lexicon

to be useful, we want a fairly large lexicon. Previously, only the Wiktionary and Apertium

dictionaries were publicly available for this language pair, containing approximately 18,000

and 23,000 word pairs, respectively. We used a variety of approaches to BLI in order to

generate a larger lexicon. The bilingual lexicon project was carried out under my supervision

within the NLTPI.25 The aim of the project was to build a highly accurate glossary list. As

different BLI approaches have different merits, we wanted to compare the effectiveness of

multiple different methods and see if they could be used jointly in order to increase accuracy.

We designed a number of experiments to explore three research questions: 1) How ac-

curately can we produce equivalence pairs using four different methods: using cross-lingual

word embeddings trained on comparable corpora, pivoting through available dictionaries,

mining bitexts using word alignments, and translating using available MT systems? 2) To

what extent does the frequency of words affect the results in corpus-based approaches? 3)

How can we best combine the different approaches to increase accuracy while not reducing

the size of the resulting lexicon too much?

3.6.1 Related Work

A wide range of approaches to BLI have been shown to be effective. Bilingual lexicons

have beenmined from parallel corpora usingword alignments (Mihalcea and Pedersen, 2003;

25Others working on the project were Luke O’Brien who executed word alignments using a combination of

word alignment tools and CombAlign (Section 3.2), and Finnur Ágúst Ingimundarson, Árni Davíð Magnússon,

Þórdís Dröfn Andrésdóttir and Inga Guðrún Eiríksdóttir who evaluated translation candidates. All other work

was carried out by me.
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Vulić andMoens, 2012), and from comparable corpora with various methods, in recent years

commonly by learning cross-lingual word embeddings (Lample et al., 2018; Rapp et al.,

2020). Artetxe et al. (2019) use an unsupervised MT system to create a synthetic corpus

from which they extract a lexicon. Comparable corpora can also be exploited by identifying

word pairs in the corpus using word alignments. For this purpose, sentence pairs first have

to be extracted from the comparable corpora. This has been carried out using a range of

approaches. Bouamor and Sajjad (2018) produced candidate lists using bilingual sentence

level embedding models and cosine similarity, filter the lists using a threshold based on sen-

tence level BLEU, with an MT generated translation as a reference and finally select the

final pairs using a classifier exploiting features such as part-of-speech, named entities and

sentence length. Feng et al. (2022) use a BERTmodel to generate a similarity score based on

contextualized sentence embeddings and, as we do in one of our experiments, discussed in

Section 6.2, by using CLIR to limit the search space and a classifier, based on a word align-

ment score and a contextualized embedding score, to select the sentence pairs (Steingrímsson

et al., 2021b).

Shi et al. (2021) show that the performance of lexicon induction from bitexts correlates

with bitext quality, although they are still able to induce a reasonably good bilingual lexicon

from their lowest quality bitexts. They also observe that a better word aligner, in terms of

F1-score, usually leads to a better induced lexicon.

It is also common to pivot through existing dictionaries to infer translations between two

languages using an intermediary language, as we did with PivotAlign (Section 3.3). The

problem has also been approached by using MT systems to translate the words between

languages (Arcan et al., 2019).

3.6.2 Methodology

We based our experiments on four different approaches: 1) Using word alignments to extract

candidate pairs from bilingual corpora, i.e. parallel or comparable texts in two languages;

2) Pivoting through existing dictionaries; 3) Using MT; and 4) Using cross-lingual word

embeddings. Each experiment resulted in a list of translation candidates from which we

extracted a random sample for evaluation.

The evaluation was carried out by first comparing the list against the following manually

curated Icelandic–English/English–Icelandic dictionaries and word lists: English–Icelandic

Wiktionary and Apertium dictionaries, titles of common pages in the Icelandic and English

Wikipedia, the Icelandic Term Bank,26 and the Terminology Database of the Ministry of

Foreign Affairs.27

If the candidate pairs were found in these data sets they were automatically accepted.

Other candidate pairs were divided between five human annotators who manually evaluated

them. Each candidate pair was only evaluated by one person. The annotators were all Ice-

landic native speakers, educated in linguistics and with excellent knowledge of English. The

annotators were to categorize a pair as acceptable if the word in either language could be

translated to the other word, in any environment the annotators could think of. The recti-

fiable/partial category was used when there was a minor error in one of the words, e.g. a

spelling error, lemmatization error or a typo, or when a word in one language had to be trans-

lated into a multiword unit, and the translation given only has a part of that unit. Words that

fell into neither of these categories were categorized as unacceptable.

26https://idordabanki.arnastofnun.is/
27https://hugtakasafn.utn.stjr.is/

https://idordabanki.arnastofnun.is/
https://hugtakasafn.utn.stjr.is/
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Translation Pair Probabilities

Icelandic English is→en en→is

ananas pineapple 1.0 0.82

ananasjurt pineapple 1.0 0.15

granaldin pineapple 1.0 0.03

regnhlíf umbrella 0.70 0.73

regnhlíf brolly 0.30 1.0

hlífð umbrella 0.02 0.01

sólhlíf umbrella 0.31 0.26

sólhlíf parasol 0.48 1.0

sólhlíf sunshade 0.21 0.46

Table 3.13: Example of translation pairs with probability scores from the lexicon resulting from the

project. If there is only one translation for a word, the probability is 1.0, if there are many translations

the probabilities sum to 1.0, as for the English word pineapple or the Icelandic word regnhlíf.

Ourwork resulted in amanually verified lexicon of over 232, 000 pairs, with a probability
score attached to each pair for both translation directions. The probability scores are an

attempt to order the translations for a given source word frommost common to least common.

The probability is based on relative frequency, calculated by tallying the number of times the

pair was suggested by our methods and comparing that to how often other translations for

the same word were suggested. An example of the lexicon format is shown in Table 3.13.

3.6.3 Extracting Candidate Pairs from Bilingual Corpora

We use six different bilingual corpora. One parallel corpus: ParIce (version 1, see Section

3.5). Three collections of parallel sentences extracted from comparable corpora: WikiMa-

trix (Schwenk et al., 2021) and two versions of ParaCrawl (Bañón et al., 2020). Further-

more, we use two synthetic corpora with back-translated source sentences on one side and

human-written target sentences on the other. These corpora were generated by translating

monolingual data, one by translating Icelandic data into English and the other by translating

English data into Icelandic.28

We extracted accurate word alignments using six word alignment models and Comb-

Align (Section 3.2). If four out of six models agreed on an alignment, it was accepted. In

order to increase alignment accuracy and to reduce noise, we lemmatized all the data and

collected lemma pairs from the lemmatized sentence pairs. We used spaCy for lemmatiz-

ing English, and after PoS-tagging the Icelandic texts using ABLTagger (Section 3.1), we

lemmatized them using Nefnir (Ingólfsdóttir et al., 2019). We then calculated a confidence

score for each aligned word pair (see Equation 3.1 in Section 3.3.1). By evaluating samples

of 250 candidate pairs at different levels of the confidence score, we found cutoff thresholds

for each of the bilingual corpora we used.

As Figure 3.6 shows, the acceptance ratio differs between different corpora. This has

to do with both the smoothing mechanism and the nature of the different corpora. The

smoothing mechanism is intended to raise the score for rare occurrences if a corpus is small,

but lower the confidence as the corpus gets larger. But if a rare occurrence is repeated in

proportion to the growth of the corpus, the confidence score is raised. An example could

be a wrong translation extracted four times from a corpus of four million sentence pairs,

28The synthetic corpora are available here: http://hdl.handle.net/20.500.12537/70

http://hdl.handle.net/20.500.12537/70


3.6. BILINGUAL LEXICON 41

0 1 2 3 4 5 6 7 8 9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Band

A
cc
ep
ta
n
ce

R
at
io ParIce

Paracrawl 7.1

Paracrawl 8

WikiMatrix

Synthetic IS-EN

Synthetic EN-IS

Figure 3.6: Bilingual corpora. Manually evaluated acceptability of candidate pairs at different bands

of confidence, as automatically assessed by our confidence score.

with eight co-occurrences of the words in sentence pairs in the corpus. This pair would

obtain a confidence score of 4/(8 + log2(4, 000, 000)) = 0.13. The same proportion of

alignments and occurrences in a corpus of 50 million sentence pairs, with the erroneous

pair extracted 50 times and the words co-occurring 100 times, would give the a score of

50/(100 + log2(50, 000, 000)) = 0.4. In a genuine parallel corpus, this would probably be
the correct assumption, but in a synthetic corpus, containing back-translations on one side, it

might not be. The synthetic corpora may not have as rich a vocabulary and they sometimes

generate made up words or get the inflections incorrect. In a large synthetic corpus these

patterns are more likely to repeat than in a genuine parallel corpus.

3.6.4 Pivoting

We used dictionaries with Icelandic as the source language and pivoted through an interme-

diary language into English. For collecting translations from Icelandic into intermediary lan-

guages, we used the ISLEX (Úlfarsdóttir, 2014) and LEXIA dictionaries (Icelandic–Danish /

Swedish / Norwegian / Finnish / French) and dict.cc29 for Icelandic–German. For collecting

translations from the intermediary languages into English, we used Apertium (Forcada et al.,

2011) (Finnish / French / Norwegian / Swedish-English) and dict.cc (German/Finnish/Nor-

wegian/ Swedish/French/English). For each Icelandic source word, we collected all possible

translations in the intermediary languages and, for each of the intermediary translations, we

collected all English translations, as we did previously with PivotAlign (Section 3.3).

We compiled candidate lists for each of the intermediary languages, using both Apertium

and dict.cc to obtain English translations from the intermediary language words. A random

sample from each list was evaluated and the acceptance ratio calculated. As seen in Table

3.14, up to 76% of the translations are rated acceptable, depending on the intermediary dic-

tionary and language used. In order to increase the accuracy even further, we can require a

pair to be suggested by two or more pivoting paths. While this raises the accuracy it produces

fewer candidate pairs.

29https://www.dict.cc/

https://www.dict.cc/
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Apertium dict.cc

acc. ratio no. pairs acc. ratio no. pairs

se 0.64 34,915 0.76 26,622

fi 0.43 214,659 0.75 19,304

no 0.53 15,261 0.74 31,213

fr 0.63 20,865 0.64 39,590

de 0.54 137,970

Table 3.14: Pivoting. Acceptance ratio and number of pairs yielded by pivoting from Icelandic to

English via an intermediary language in ISLEX and the Apertium and dict.cc dictionaries.

Opus M2M Google MS no. pairs

is 0.59 0.60 53,151

da 0.52 0.59 0.63 80,074

sv 0.56 0.32 0.65 0.65 69,884

fi 0.53 0.27 0.66 0.62 62,876

no 0.59 0.61 66,129

fr 0.56 0.35 0.67 0.71 48,533

Table 3.15: Machine translation. Acceptance ratio in 250 randomly selected candidate pairs for each

language and system. For all languages except Icelandic, we pivoted through intermediary languages

using dictionaries and translated the intermediary languages to English using MT.

3.6.5 Machine Translation

Our most simple approach was translating words into English using four available MT mod-

els: Google Translate,30 Microsoft Translator,31 OPUS-MT (Tiedemann and Thottingal,

2020) and M2M-100 (Fan et al., 2021). First, we translated the Icelandic source words of

the ISLEX/LEXIA dictionaries into English, thereby creating a candidate list. Second, we

also translated into English the target language equivalents in the same dictionaries, Danish,

Swedish, Norwegian, Finnish and French, and then paired the source Icelandic word to the

MT output for the target words.

While this method is simple and accessible for many languages, using existing commer-

cial MT services can make it difficult to replicate the results of the experiments. As one of

our goals was to compile a lexicon at minimal cost, we decided to use these services anyway

to see if they could be useful for this purpose.32

All the systems except M2M-100 resulted in over 50% acceptable translations for all

languages. A high acceptability rate should be expected as each model only produces one

translation for each word, often selecting a common translation. When doing word align-

ment on parallel corpora or when pivoting through intermediary dictionaries more examples

are produced and thus we may expect to see a higher number of rare translations using those

approaches. Out of the different translation engines, Microsoft Translator gave the best re-

sults, as shown in Table 3.15, and for all translation engines, translating through French gave

the best results, even better than translating straight from Icelandic to English.

30https://translate.google.com/
31https://translator.microsoft.com/
32The translation services, Google Translate and Microsoft Translator, were used via an API in May 2021.

https://translate.google.com/
https://translator.microsoft.com/
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Translation Retrieval Classification

Direction method High Medium Low

NN 0.39 0.20 0.03

en-is CSLS 0.59 0.38 0.14

freq. 0.71 0.50 0.14

NN 0.48 0.26 0.15

is-en CSLS 0.63 0.40 0.19

freq. 0.67 0.44 0.22

Table 3.16: Cross-lingual word embeddings. Acceptance ratio for candidate lists in different simi-

larity or frequency classes, for each of the methods employed.

3.6.6 Cross-lingual Word Embeddings

Icelandic news texts collected from the Icelandic Gigaword Corpus (Steingrímsson et al.,

2018) and English news texts collected from Newscrawl33 were used to train two word2vec

models (Mikolov et al., 2013), one for English and the other for Icelandic. VecMap (Artetxe

et al., 2018) was then used to build cross-lingual word embeddings by mapping the models

to a common vector space.

Three candidate lists were generated. One is a list of the most frequent English and

Icelandic words in their respective corpora, with the target word being the nearest neighbour

(NN) in the target language, as calculated by cosine distance in the common vector space.

For the second list the nearest neighbour is found for all words represented in the word

embeddings, and the ones with the lowest cosine distance to a word in the other language,

i.e. NN, are selected.

Dinu and Baroni (2015) show that few vectors in the embedding space tend to be nearest

neighbours of many other points, pushing the correct ones down the neighbour list. This is

called the hubness problem. The Cross-domain Similarity Local Scaling (CSLS) method,

proposed by Lample et al. (2018) alleviates this problem by subtracting the mean similarity

of the source embedding to its target neighbourhood and the mean similarity of the target

embedding to its source neighbourhood, from twice the cosine distance between points in the

hubs. This expands the space where there is a high density of points, increasing accuracy.

For our third list we look for the lowest distance as for the second list, but using CSLS instead

of NN.

For each of these approaches, we divided the results into three classes: High, for the top

2,000 pairs,Medium, for the next 8,000 pairs, and Low for the 90,000 pairs after that. Table

3.16 shows that while we obtain decent scores for the most frequent words in the corpora

and the most similar ones in terms of the model and scoring methods, the results fall sharply

as word frequency and similarity decrease. This approach thus seems to be the least useful

one.

3.6.7 Combining Different Approaches

Based on the results presented above, we created two lists. One containing all candidate pairs

obtained through either pivoting or MT, being in classes where the acceptance rate for the

manual evaluation was above 50%. The other list was created from all six bilingual corpora,

but only from confidence bands with over 50% acceptance rate (see Figure 3.6). Taking an

33https://data.statmt.org/news-crawl/en/

https://data.statmt.org/news-crawl/en/
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Evaluator 1

C P I Total

C 883 20 23 926

Evaluator 2 P 8 15 6 29

I 17 0 28 45

Total 908 35 57 1000

Table 3.17: Evaluation matrix for the two evaluators. C=Correct; P=Partially correct; I=Incorrect.

intersection of these two lists resulted in a list of 29,609 candidates, of which 93.2% were

accepted after manual evaluation. Furthermore, if the confidence bands are ignored and the

second list contains all pairs from the six bilingual corpora, and is used to filter the results

of the previous list in much the same way we do with PivotAlign (Section 3.3), this results

in a list of 57,818 candidates, of which 84.1% were accepted.

3.6.8 Results

We applied and compared four different approaches to automatically compile an English-

Icelandic bilingual lexicon. We showed that by using a combination of bilingual corpora,

pivoting andMT approaches, we can build a highly accurate candidate list for lexicon transla-

tions between languages. While using an unsupervised approach such as cross-lingual word

embeddings did not result in many useful candidate pairs, extracting candidate pairs from

the back-translated synthetic corpora using word alignments did give promising results.

Our resulting lexicon contains 232, 950 pairs, with 105, 442 different Icelandic lexical
items, of which 84, 812 are single words and 20, 630multiword units, and 116, 744 different
English items, of which 45, 147 are unique English words and 71, 597 multiword units.34

The published dataset includes the probability scores described in Section 3.6.2 and word

class information, in cases where that could be retrieved automatically from Wiktionary or

the DMII. The published dataset also contains information on which methods produced the

pairs included in the dataset and how often. More detailed results and description of the

process can be found in Steingrímsson et al. (2022).

A random sample of 1, 000 pairs in the final lexicon was evaluated independently by two
of the annotators, me and Finnur Ágúst Ingimundarson. As before, the pairs were evaluated

to be in one of three categories: acceptable, unacceptable, rectifiable/partial. Results are

shown in Table 3.17.

The two annotators agreed on a correct translation 92.6% of the time. We calculated the

Cohen’s Kappa coefficient (Cohen, 1960) to measure inter-rater reliability between the two.

κ =
Po − Pe

1− Pe

. (3.4)

Equation 3.4 uses Po, the proportion of observed agreement and Pe, the proportion of

chance agreement to calculate a coefficient that accounts for the possibility of the raters

guessing at the variables due to uncertainty. It can range from -1 (no agreement) to +1

(perfect agreement). When κ is equal to 0, the agreement is the same that might obtained by
chance. If it is negative, it is less than the agreement expected by chance. While there is some

debate on how to interpret the kappa-value for subjective labels, such as fair, moderate or

34Available at http://hdl.handle.net/20.500.12537/144

http://hdl.handle.net/20.500.12537/144
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substantial agreement (see e.g. Landis and Koch (1977), Viera and Garrett (2005), McHugh

(2012)), Fleiss (1973) argues, in line with most other work, that values between 0.40 and

0.75 may be taken to represent fair to good agreement beyond chance. Our calculated κ of

0.52 falls in that range, indicating that the inter annotator agreement is reasonable.

After evaluating independently, the two annotators had another look at the pairs they

disagreed upon and tried to come to a common conclusion for each of them. This final eval-

uation of the lexicons quality resulted in 91.6% correct pairs, 4.1% incorrect and 4.3%which

were almost correct and needed a minor amendment. The ‘almost correct’ ones were most

often incorrectly lemmatized word forms, nouns in an oblique case or lemmas containing

spelling errors, and thus not suitable for being added to the lexicon without correcting.

3.7 Conclusion

We have introduced the data and tools we created to facilitate our research on how best to

process data in order to make the best use of bilingual data for training MT systems. In

the following chapters, we will work further with the data and methods introduced here to

align parallel corpora on a sentence level, filter parallel sentence pairs, and use data that is

traditionally discarded in these processes as well as comparable corpora. In the next chapter,

we will start with filtering.
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Chapter 4

Filtering Parallel Corpora

In the previous chapter, we provided an overview of the tools and datasets we have developed

in order to be better able to study different approaches to compiling parallel training data

for English–Icelandic MT. In this chapter, we will look into the effectiveness of different

filtering approaches and whether the dataset and/or language direction matter when choosing

a filtering approach.

Detrimental segments, in our context, are sentence pairs in training data that may de-

grade the performance of an MT system trained on that data. Filtering parallel data for MT,

the task of removing possible detrimental segments from the data, is usually performed by

applying rules and sometimes a scoring mechanism or a classifier. The aim is then to remove

pairs most likely to weaken performance of an MT system in some way, usually in terms of

translation quality as measured by automatic metrics.

We work with the English–Icelandic language pair, and raw data from two parallel cor-

pora, ParIce and ParaCrawl (Bañón et al., 2020), with the goal of minimising data detrimental

to translation performance while losing little or no useful data from the original texts, thus

building a data set better suited for MT training. We experiment with basic shallow filters,

scoring mechanisms and classifiers based on some of the scores, as well as other classifiers

not dependent on extrinsic scoring mechanisms. We investigate whether lemmatizing the

morphologically rich Icelandic texts helps to increase filtering accuracy, and whether we

can further improve the datasets by using multiple classifiers in combination. The work

described in this Chapter is also partly presented in Steingrímsson et al. (2023).

Recent literature on parallel corpus filtering has largely focused on filtering noisy data

collected from the web. This was, for example, the objective of the parallel filtering shared

tasks at WMT 2018–2020 (Koehn et al., 2018, 2019, 2020). We want to inspect whether

we should apply the same filtering approaches to noisy datasets and to cleaner parallel cor-

pora compiled from document pairs where one document is known to be a translation of the

other, or where both are a translation of a third original text. Finally, for a given dataset,

the same training data is usually used for training both translation directions, src→trg and

trg→src, instead of filtering especially for each translation direction. We want to investigate

if whether filtering separately for each translation direction is likely to bring improvements

in a downstream MT task.

Our aim in this chapter is thus to find out how to filter parallel corpora so as to compile

a training set that potentially gives the best results when used to train an MT system. We

seek to answer our first two research questions, the first one being a more general search for

good filtering approaches: RQ1: How can we filter parallel corpora to minimize noise,

and still lose little or no useful data from the original texts? And the second question

being more specific about whether something is gained by adapting the filtering approach
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more to the problem at hand: RQ2: To what degree should we consider filtering parallel

corpora for MT training to be independent of the dataset and languages being filtered,

and the intended translation direction of the MT system being built? In order to answer

these questions, we build MT models for both translation directions and multiple different

filtering approaches for each one, and evaluate the results, both manually and automatically.

4.1 Related Work

In their paper, Khayrallah and Koehn (2018) specify five general classes of noise commonly

found in the German–English part of the Paracrawl corpus: misaligned sentences, disfluent

text, wrong language, short segments, and untranslated sentences. They find this distinction

to be useful to give a good general idea of which types of errors seem to have the least

impact on MT systems (short segments, untranslated source sentences and wrong source

language) and which have the most dramatic effect (untranslated target sentence). In the

paper, misalignments, misordered words, and wrong language, in source or target texts, are

also shown to be harmful, but not as harmful.

As this classification is rather coarse, some variation can be expected within each class;

a misalignment in one sentence pair does not have to be equivalent to a misalignment in

another sentence pair. Briakou and Carpuat (2021) focus on fine-grained semantic diver-

gences within mostly equivalent pairs (pairs of words, phrases or sentences that have similar

meanings and connotations), instead of looking at broader and perhaps more coarse defini-

tions of noise as Khayrallah and Koehn (2018) define it. An example given in the paper

is fr: “votre père est français” → en: “your parent is french”, where the correct translation

should be: “your father is french”. These fine-grained divergences can be found in even

high-quality parallel corpora. For lexical substitution the authors of the paper corrupt equiv-

alents by substituting words with their hypernyms or hyponyms. For phrase replacement

they replace sequences of words with phrases of matching PoS tags and for subtree deletion

they randomly delete subtrees in the dependency parse tree of either source or target. They

find that the divergences cause degradation on the MT output of a system trained on the data,

as measured by BLEU andMETEOR, and that divergences impact model confidence in their

predictions. Corrupting training data by lexical substitution causes the largest degradation

in MT output and subtree deletion the least. Nevertheless, the impact of divergences seem to

be smaller than that of noise. They argue that this suggests that noise-filtering techniques are

suboptimal to deal with fine-grained divergences. While these are recent papers, the call to

better quality data for MT training is not only confined to NMT. Ozdowska and Way (2009)

observe that the original source language has considerable impact on French–English phrase-

based SMT, with a decrease in translation quality if the original source language was neither

French nor English, and best results when the original language is the source language being

translated. They argue that better quality data is more important than more data, and that

more attention has to be paid to the role of the human translator.

A wide array of approaches for parallel data filtering has been employed. Early work

used the IBM models (Brown et al., 1993) for word alignment. For example, Khadivi and

Ney (2005) filter out the noisy part of a corpus based on IBM models 1 and 4 and length-

based models, and score the alignments on a linear combination of these. Taghipour et al.

(2011) do outlier detection and show that their filtered corpus results in improved translation

quality as measured by BLEU, even though sentences have been removed. Sarikaya et al.

(2009) use context extrapolation to boost the sentence pair coverage, checking whether the

distance of the sentences from an anchor point is the same, and whether the sentences have
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the highest similarity score compared to other pairs within a window, despite being below a

defined threshold. In an early work on filtering web-scraped parallel corpora, Rarrick et al.

(2011) filter machine-translated content from web-scraped corpora employing a maximum

entropy classifier, using a variety of sentence-level and document-level features, and show

that it is possible to improve performance of an MT system by removing large amounts of

training data, challenging conventional wisdom at the time that more data is better data.

Cross-lingual word embeddings have been used to calculate distance between equiva-

lences in different languages (Luong et al., 2015a; Artetxe et al., 2016). Defauw et al. (2019)

treat filtering as a supervised regression problem and show that Levenshtein distance (Lev-

enshtein, 1966; Wagner and Fischer, 1974) between the target and MT-translated source, as

well as cosine distance between sentence embeddings of the source and target, are important

features. While they use InferSent (Conneau et al., 2017), in more recent work BERT has

been employed for calculating crosslingual semantic textual similarity to detect misalign-

ment with good results (Lo and Simard, 2019).

In the three shared tasks on parallel corpus filtering at the WMT (Koehn et al., 2018,

2019, 2020), some very promising tools and approaches were submitted. Methods based

on crosslingual sentence embeddings trained from parallel sentence pairs did well, such as

Chaudhary et al. (2019) based on LASER and Artetxe and Schwenk (2019a) which uses

a BiLSTM model. Both papers tackle the scale inconsistencies of cosine similarity, the

problem that cosine similarity is not globally consistent and that potentially different scales

of target candidates for a given source sentence may affect their relative ranking, causing

the hubness problem discussed in Section 3.6.6. They do that by considering the margin

between a given sentence pair and its closest candidates to normalize the similarity scores.

Zipporah (Xu and Koehn, 2017) uses probabilistic translation dictionaries, language models

and a logistic regression model trained to classify sentence pairs. Noisy data is synthesized

and used as negative samples in training. Bicleaner (Sánchez-Cartagena et al., 2018) uses a

set of handcrafted hard rules to detect flawed sentences and then proceeds to use a random

forest classifier based on lexical translations and several shallow features such as respective

length, matching numbers and punctuation. It also scores sentences based on fluency using

5-gram language models. The tool ranked highly on the first two parallel corpus filtering

tasks at WMT. Bicleaner AI (Zaragoza-Bernabeu et al., 2022) is a fork of Bicleaner using a

neural classifier. It has been shown to give significant improvements in translation quality

as measured by BLEU when used for filtering training data for multiple language pairs, as

compared to the previous version of the tool.

Herold et al. (2022) revisit the noise classes specified by Khayrallah and Koehn (2018)

to investigate how accurately two of the strongest filtering approaches to date, according

to them, cross entropy (Rossenbach et al., 2018) and LASER, can filter out different noise

classes. They find that for a common language pair, German–English, most types of noise

can be detected with over 90% accuracy, although misalignments and poor synthetic trans-

lation can only be detected with an accuracy of less than 70%. For a less common language

pair, Khmer–English, the performance of the filtering system degraded significantly and the

accuracy of identifying noise was lowered by 8–19%, depending on the type of noise.

4.2 Experiments

In order to answer the research questions set out in the beginning of this chapter, we compare

a number of approaches and scoring mechanisms when applied to a set of sentence pairs

derived fromweb-crawled corpora, on the one hand, and from parallel corpora compiled from
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known parallel documents, on the other. For each approach, a sample of the data is manually

evaluated using the taxonomy developed by Kreutzer et al. (2022) to gain an understanding

of what sort of data each approach and scoring mechanism filters out. We then train MT

systems using datasets filtered using different filtering approaches, and compare the quality

of the resulting systems in terms of BLEU score. Furthermore, the scores are compared to

the output of the unfiltered systems described in Section 3.5.4. We measure BLEU scores on

the test set provided for the English–Icelandic language pair in the WMT 2021 shared task

(Akhbardeh et al., 2021), using SacreBLEU (Post, 2018).

4.2.1 Data Sets

The two different data sets we use for our experiments both contain English–Icelandic paral-

lel sentences: ParaCrawl and ParIce. We carry out the same experiments using both corpora

and compare the results in order to answer our research question about whether the same

methods work as well for both types of data and both language directions, or whether differ-

ent approaches should be considered depending on the data set and/or intended translation

direction.

ParaCrawl

ParaCrawl is compiled from web-crawled data. Based on the evaluation by Kreutzer et al.

(2022), approximately 76% of sentence pairs are acceptable mutual translations, on aver-

age, in 21 language pairs from the ParaCrawl 7.1 datasets cleaned for publication. This is

still substantially higher than for two other common datasets compiled from web-crawled

data and also evaluated in the same paper, CCAligned (El-Kishky et al., 2020) and Wiki-

Matrix (Schwenk et al., 2021). Nonetheless, there is high variance between languages and

low-resource datasets tend to have be of the lowest quality as judged by human annotators.

Rikters (2018) inspects the quality of the first version of ParaCrawl and filters out 85% of the

English–Estonian Paracrawl dataset. Although it should be noted that there are differences

in noise ratio between different versions of the corpus, it is clear that for ParaCrawl to be of

good use for training MT models it has to be filtered thoroughly, especially in the case of

languages where the corpus quality has not been evaluated. This has also been emphasized

by the results of the three shared tasks at the WMT focusing on filtering parallel corpora. In

our work, we start with the raw data from version 9 of the corpus, consisting of 65,373,727

sentence pairs in total. Our goal is to extract from the corpus sentence pairs useful for train-

ing MT systems on its own or to complement other data sets, and leave out sentence pairs

likely to be detrimental.

ParIce

The English–Icelandic parallel corpus ParIce differs from ParaCrawl in that it is compiled

from known parallel documents, which have been aligned at the sentence level. We work

with the 21.10 version of the corpus (Steingrímsson and Barkarson, 2021). It is available

unfiltered, accompanied with semantic similarity scores for each sentence pair and flags

indicating whether it is recommended to filter out the pair or not. The corpus is described in

more detail in Section 3.5.

4.2.2 Filtering and Scoring Tools

In order to decide which sentence pairs are useful and which ones should be filtered out, we

use an array of tools for scoring sentence pairs to find the highest-quality data within the
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corpora. We start with shallow filters, mostly rule-based, to remove pairs that are very likely

to be noise, and then proceed to run different tools, both made available by others and of our

own device.

Shallow Filters

In order to remove duplicates, near duplicates and other redundant data, we apply a few

shallow filters. Most of these are rules inspired by Pinnis (2018), who applies 17 different

filters in his work. We do not use all his filtering approaches but select the ones likely to

remove the highest portion of detrimental pairs as outlined by Khayrallah and Koehn (2018).

Our shallow filters are:

1. ParaCrawl Zero Score: ParaCrawl is distributed with Bicleaner scores for each sen-

tence pair. We remove all pairs where this score is 0, the lowest possible.

2. Minimum Sentence Length: If both source and target sentence have 3 tokens or less,

the pair is discarded. Khayrallah and Koehn (2018) show that very short sentences can

have a small detrimental effect on MT translation quality.

3. High Overlap: We remove all pairs where 60% or more of the tokens in one language

are also present in the other language.

4. Symbol Filter: At least 70% of characters in both sentences should be alphabetical,

when whitespace has been removed. Otherwise the pair is discarded.

5. Language Filter: We use the fasttextmodel (Joulin et al., 2017) to identify the language

of each sentence. The model predicts the two most likely languages for each sentence,

and if the expected language is not one of them, we discard the pair.

6. Similar Pairs: Our last two shallow filters remove near-duplicates. Lee et al. (2022)

show that removing such segment pairs allows for training models that require fewer

training steps to achieve the same or higher accuracy. Our first step for this is to

remove all spaces and symbols, except for alphabetical letters, and create one string

from both segments. We find all pairs with identical such strings and keep only the

one with the highest Bicleaner score.

7. Similar Segments: In our second step for removing near-duplicates, we start by cal-

culating four scores for each pair, WAScore, LaBSE, NMTscore (Vamvas and Sen-

nrich, 2022) and LASER. (See more details about the scores in Section 4.2.2). Then

all segments are tokenized. Tokens starting with a capital letter or containing non-

alphabetical letters are removed. This removes most named entities and the resulting

string should thus primarily include other content words and function words. We cre-

ate these strings for all sentences, in the source and target language. For each of these

strings, we search for identical strings in the same language and select only one pair

for each string, the one with the highest Bicleaner score. The aim of this step is to

reduce the number of sentences that are identical, except for proper nouns or numbers,

a common phenomenon in ParaCrawl. A large portion of such almost identical seg-

ments in the corpus seem to originate from tourism websites, commonly referring to

hotels, locations or companies.

While all filters are applied to the ParaCrawl data, all except the first one are applied

to the ParIce corpus as the three scores published with each sentence pair in that corpus,
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LASER, LaBSE and WAScore, almost never receive the value 0. For the sixth filter, we use

these three scores published with ParIce, instead of a Bicleaner score.

Bicleaner Models

Bicleaner (Sánchez-Cartagena et al., 2018; Ramírez-Sánchez et al., 2020) is an open-source

noise filter and classification tool to clean parallel corpora. It was released as part of the

ParaCrawl project and is used to compile the clean datasets for ParaCrawl. Bicleaner uses

a set of hard rules for pre-filtering, n-gram language models for fluency scoring, and a

random-forest classifier to produce a probability score using features such as lexical sim-

ilarity and shallow properties like sentence length, punctuation and capitalization. Bicleaner

AI (Zaragoza-Bernabeu et al., 2022) the Bicleaner fork, uses a fine-tuned XLM-RoBERTa

classifier to produce probability scores by training it on positive samples from existing paral-

lel corpora and negative samples which are created by corrupting the same positive samples.

In synthesising the noise, the tool tries to emulate errors commonly introduced by sentence

segmentation and alignment.

We use two publicly available Bicleaner models for English–Icelandic, version 1.5 of

the original Bicleaner and Bicleaner AI 1.0 full model. In addition, we train two new models

using Bicleaner v0.15.2, one that classifies lemmatized data and the other unlemmatized.

We follow the instructions provided in the Bicleaner repository when training the models.1

For training each model, we need word frequency information, probabilistic dictionaries and

a parallel training corpus.

En–Is: Retrained

We create word frequency lists from monolingual corpora. For Icelandic we use the 20.05

version of The Icelandic Gigaword Corpus (IGC) (Steingrímsson et al., 2018) and for English

we use News Crawl (Barrault et al., 2020) with data from 2012–2019. This resulted in lists of

6.5M unique Icelandic word forms and 2.8M unique English word forms. For a probabilistic

dictionary, we use the bilingual lexicon described in Section 3.6.

The lexicon contains 232,950 pairs of both single words and multiword units. All single

word units are lemmatized. For training the Bicleaner model, we only use pairs of single

words, approximately 145,000 pairs in total. The published dictionary contains probabilities

for each equivalency pair. As we have removed all pairs containing multiword units, we

recalculate the probabilities so the probabilities of all translations for each word add up to 1.

This results in a dataset of approximately 52,000 unique Icelandic words and 44,000 unique

English words with one or more translations and a probability assigned to each one.

For a bilingual training corpus, we extract sentence pairs from the 21.10 version of ParIce.

The corpus is published with LaBSE, LASER and WAScore calculated for each sentence

pair, as described in Section 3.5. We calculated an average of these three scores and used

the highest-scoring 250,000 sentence pairs for training.

En–Is Lemmatized

As our probability dictionary is lemmatized, and the proportion of unlemmatized word forms

is very high in running Icelandic texts, we want to investigate whether training a Bicleaner

model with lemmatized data would improve the results. We train a newmodel using the same

datasets as before, but with the Icelandic IGC and English News Crawl lemmatized before

creating the word frequency lists, and the 250,000 sentence pairs extracted from ParIce lem-

matized before training. For lemmatizing English texts we use spaCy, and for Icelandic texts

1https://github.com/bitextor/bicleaner/wiki/How-to-train-your-Bicleaner

https://github.com/bitextor/bicleaner/wiki/How-to-train-your-Bicleaner
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we first tag them using ABLTagger and then proceed to lemmatize using Nefnir (Ingólfs-

dóttir et al., 2019). The same tools are used to process the data to be classified using the

model.

Scoring

Various scoring mechanisms have been developed to automatically assess the quality of

bilingual sentence pairs in parallel corpus filtering. We employ six approaches to score and

manually evaluate sentence pairs and compare these mechanisms in filtering out data. We

use the scores to train classifiers. We also experiment with using them to set cut-off rates for

adding and removing sentence pairs from the final datasets.

LASER (Artetxe and Schwenk, 2019b), is an architecture to learn joint multilingual

sentence representations. It uses a single BiLSTM encoder with a shared BPE vocabulary

for all languages. This is coupled with an auxiliary decoder and trained on parallel corpora.

LASER can be applied to various tasks, e.g. multilingual similarity search (Artetxe and

Schwenk, 2019b) and bitext mining (Artetxe and Schwenk, 2019a). It was trained on 93

languages, including Icelandic and English.

LaBSE (Feng et al., 2022) is amodel trained and optimized to produce similar representa-

tions for bilingual sentence pairs. It uses dual encoder models, with the encoder architecture

following the BERT Base model, and additive margin softmax which extends the scoring

function in the model by introducing a large margin around positive pairs, improving the

separation between translations and nearby non-translations (Yang et al., 2019). Monolin-

gual and bilingual data are used to pre-train the model with a masked languagemodel (Devlin

et al., 2019) and a translation language model (Conneau and Lample, 2019), respectively. A

publicly released pre-trained model was trained on 109 languages, including Icelandic and

English.2 Feng et al. (2022) show the LaBSE model to give state-of-the-art results on a

number of bitext retrieval tasks.

NMTScore (Vamvas and Sennrich, 2022) is based on translation cross-likelihood, the

likelihood that a translation of segment A into some language, could also be a translation

of segment B into the same language. An example could be the translation of the French

‘Bonjour!’ into the Swedish ‘Hej!’. To calculate translation cross-likelihood, the French

segment would first be translated to a third language, say English, and the score is based

on the probability of the model getting the same translation for the Swedish segment. The

score is symmetrized by averaging the translation probabilities in both directions. We use

the M2M100 multilingual translation model (Fan et al., 2021) to calculate NMTScore in our

work.

WAScore is the word alignment-based score we devised to measure word-level paral-

lelism, described in Section 3.4.

Furthermore, we experiment with additional translation-based measures, which do not

use any resources other than the dataset to be filtered. We do that by training NMT models,

for both translation directions, on the corpus to be filtered. We then use these models to

translate the training dataset. The assumption is that incorrect pairs in the corpus are irregular

and arbitrary and thus amodel trained on data, albeit noisy, would in translation not create the

same errors, while translations of sentences in pairs of mutual translations would at least to

some extent be close to the original. For each sentence in the training corpus, we create five

translations and calculate two types of scores. ChrF (Popović, 2015) is more forgiving than

BLEU when it comes to minor errors due to morphology, and correlates better with human

judgement on the segment-level (Ma et al., 2019). We therefore opt to calculate ChrF for

2https://huggingface.co/sentence-transformers/LaBSE

https://huggingface.co/sentence-transformers/LaBSE
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all five translations and select the highest score. We do this for both translation directions.

We also do a simple comparison of the tokens in the target sentences against tokens in the

five most likely translations from the source, and calculate the ratio of overlapping tokens

between the target sentence and the translated source sentences. Again we select the highest

score of the five and call this BOWScore, for bag-of-words score. We calculate separate

scores for each translation direction, four scores in total.

Three Score-based Classifiers

Using four of the scores described in the previous section, LASER, LaBSE, NMTScore and

WAScore, we train three different classifiers to determine whether the sentence pairs are

useful or not. We adapt a training set we compiled for a classifier used in mining compa-

rable corpora (Steingrímsson et al., 2021b). The dataset was compiled of 50,000 randomly

sampled non-parallel pairs from two monolingual news corpora for negative examples. We

use these and 1,000 parallel segments selected from the Icelandic part of the Parallel Uni-

versal Dependencies (PUD) treebanks.3 LASER, LaBSE, NMTScore and WAScore were

calculated for all 51k sentence pairs and used to train the classifiers. We used scikit-learn

(Pedregosa et al., 2011) to train random-forest, support vector machine and logistic regres-

sion classifiers.

A random-forest classifier is an averaging algorithm that combines a number of decision

tree classifiers, fitted on sub-samples of the dataset and uses averaging to improve the pre-

dictive accuracy and control over-fitting. Using a random selection of features to split each

node, they become more robust with respect to noise (Breiman, 2001). In our training, we

use the scikit-learn default number of estimators, i.e. number of trees in the forest = 100.

Support vector machines (SVM) (Cortes and Vapnik, 1995) use multiple features to sep-

arate two classes by a hyperplane. We use a support vector classifier using a radial base

function kernel that allows some observations to be on the incorrect side of the hyperplane

to be able to generalize better on the data.

Logistic regression (Cox, 1958) uses maximum likelihood to fit a model applying logistic

functions to the training dataset. We use the default settings in scikit-learn.

For all sentence pairs we want to classify, we calculate the same scores as were calculated

for the training data and run each classifier on all that data.

Sentence Perplexity using GPT-2

The manual evaluation of ParaCrawl sentence pairs revealed that the Icelandic sentences in

ParaCrawl are frequently ungrammatical or have erratic syntax, even though some, and in

some cases most or all, of the lexical semantics of the translations are correct. This is likely

because many web pages, scraped by the ParaCrawl project, useMTmodels to generate texts

in multiple languages, even though the MT models do not generate fluent results. We try to

find these badly formed sentences by training a classifier to recognize fluent and disfluent

sentences. The classifier uses a pre-trained GPT-2 model (Radford et al., 2019), trained on

the IGC.4 We selected sentences to train the classifier randomly fromWikiMatrix (Schwenk

et al., 2021) and ParaCrawl v8, and manually classified them in two groups, coherent and

incoherent. 6,570 sentences were classified as coherent and 3,430 sentences as incoherent.5

The classifier uses the GPT-2 model to calculate perplexity for the sentences, and chooses

potential thresholds as the average between two adjacent perplexity values. It then uses a

3https://universaldependencies.org/treebanks/is_pud/index.html
4The model, trained by Jón Friðrik Daðason, a PhD student at Reykjavik University, is available on Hug-

ging Face: https://huggingface.co/jonfd/gpt2-igc-is/tree/v1.0.
5Dataset available here: https://github.com/steinst/filter-align-datasets

https://universaldependencies.org/treebanks/is_pud/index.html
https://huggingface.co/jonfd/gpt2-igc-is/tree/v1.0
https://github.com/steinst/filter-align-datasets
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Correct Codes

C: Correct translation, any Combined label for CC, CB, CS

CC: Correct translation, natural sentence

en: I caught a big fish yesterday. is: Ég veiddi stóran fisk í gær.
en: I cought a big fish yesterday.

CB: Correct translation, boilerplate, partial alignments or grammatical errors

en: Dust can not get to the engine itself. is: Ryk getur ekki fá til vélarinnar sjálfrar.
en: Dust can not receive to the engine itself.

en: Search for hotels in Liausson is: Leita að hótelum - Liausson

en: Search for hotels - Liausson.

en: I feel something, I’m telling you. is: Ég er að segja þér það.
en: I’m telling you.

CS: Correct translation, short

en: All right. is: Allt í lagi.
en: All right.

Error Codes

X: Incorrect translation, but both correct languages

en: What a gorgeous image. is: Þetta er glæsilegur árangur hjá þér.
en: This is an impressive accomplishment for you.

WL: Source OR target wrong language, but both still linguistic content

en: Alamin ang mga detalye... is: Nánari upplýsingar...
en: Further information...

NL: Not a language: at least one of source and target are not linguistic content

en: 7.7 / 7.0 knots is: 7.7 / 6.5

Table 4.1: Annotation codes for sentence pairs. Taxonomy developed by Kreutzer et al. (2022), with

slight adaptations to the CB class. An English gloss of the Icelandic segments is provided in italics.

maximization function to decide on a threshold that yields the most accurate prediction based

on the training set. This approach was selected in collaboration with Jón Friðrik Daðason.

4.2.3 Manual Evaluation

In order to gain some understanding of how good the translations in our parallel corpora are,

and to see what kind of data our filters weed out, we manually annotated samples of the

data sets compiled by each filtering approach. We found that ParaCrawl contained a lot of

boilerplate, as well as a large portion of data most likely translated from English to Icelandic

using inadequate MT systems. ParIce, in contrast, commonly includes misaligned segments

where a segment in one language contains not only the translation of the segment in the other

language, but also extraneous data. In our evaluation, we followed the taxonomy developed

by Kreutzer et al. (2022), using three codes for correct segment pairs and three error codes

(see Table 4.1). In order to accommodate for the characteristics of the two corpora, we

decided to amend one category, CB (correct translation, but boilerplate or grammatical

errors). We use that category as carried out by Kreutzer et al. (2022), but we also use it for

partially aligned sentence pairs and segment pairs where a sentence in one of the languages

is grammatically incorrect, while the meaning is still conveyed. Many of the translations in

these sentence pairs are probably generated by MT systems.
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ParaCrawl shallow filtering

Filter Dataset Size CC (%) 3C (%) X (%) 3X (%)

0. ParaCrawl v9 Raw 65,373,727 14.40 69.20 8.00 30.80

0b. ParaCrawl v9 Clean 2,967,519 13.60 89.20 8.80 10.80

1.-3. Non-zero / low overlap (accepted) 31,094,385 23.60 94.80 4.40 5.20

1.-3. Non-zero / low overlap (discarded) 34,285,591 1.60 46.80 9.20 53.20

4.-5. Symbol+Language filter (accepted) 26,609,214 25.00 97.20 2.80 2.80

4.-5. Symbol+Language filter (discarded) 4,485,171 11.20 85.60 9.20 14.40

6. Similar pairs (accepted) 4,666,464 12.00 86.80 12.80 13.20

7. Similar segments (accepted) 2,081,354 14.80 95.60 3.60 4.40

ParIce shallow filtering

0. ParIce 21.10 filtered 1,776,049 73.60 95.20 4.80 4.80

Table 4.2: Sizes and manual evaluation results for the shallow filtering approaches. For each dataset

250 randomly sampled pairs are evaluated. 3C stands for all correct codes: CC, CB and CS. 3X stands

for all error codes: X, WL and NL. For comparison, we also evaluate the clean version of the corpus

as published by the ParaCrawl project. Note that we evaluated both accepted and discarded pairs for

two of the filtering steps.

For the datasets created by applying different shallow filters to ParaCrawl, we annotated

250 randomly selected pairs from each dataset. Two annotators carried out the evaluation,

myself and a linguist, fluent in English, Finnur Ágúst Ingimundarson. Sentence pairs for all

the different approaches were collected and the order randomized. We worked together to

come to a mutual understanding on how to annotate the sentence pairs. Finnur then annotated

all the sentences and I checked the annotations to look for errors and to make sure they were

as standardized as possible, with similar sentence pairs annotated in the same way. We then

went on to randomly sample and annotate 100 pairs from each group of stochastic filtering

approaches using the same approach as before, as well as carrying out a more thorough eval-

uation of the scoring approaches, to discover whether they are good at making a distinction

between mutual translations and erroneous or lower-quality segments.

Table 4.2 shows the size of the datasets when shallow filtering has been applied, and

the percentage of sentence pairs in different categories. The evaluation indicates that almost

70% of the raw ParaCrawl data are potentially useful data, while over 30% is in the best

case useless and possibly detrimental. That data has not been cleaned at all and contains

duplicates and many pairs that are very similar. ParaCrawl also distributes a cleaned version

of the corpus,6 containing approximately three million sentence pairs. In that version, over

10% of sentence pairs are still erroneous, and while almost 90% are potentially useful, only

13.6% are evaluated to be good mutual translations. We filter the raw data and show how

the accuracy changes with every shallow filtering step. All the filters discard some mutual

translations but proportionally a lot more inadequate pairs. While the 3C column indicates

the ratio of all pairs in the correct category, some sentences are boilerplate or ungrammatical

and may or may not be useful for MT.With our filtering procedures we want to keep as many

sentence pairs from the CC category and remove all from the X-categories. When the last

two filters are applied, the number of pairs annotated as correct, CC, is lowered from 25%

down to 14.8%. This is because sentences that are identical except for numbers or other

named entities have been reduced to one example.

6https://web-language-models.s3.us-east-1.amazonaws.com/paracrawl/release9/en-
is/en-is.deferred.tmx.gz

https://web-language-models.s3.us-east-1.amazonaws.com/paracrawl/release9/en-is/en-is.deferred.tmx.gz
https://web-language-models.s3.us-east-1.amazonaws.com/paracrawl/release9/en-is/en-is.deferred.tmx.gz
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Laser LaBSE

ParaCrawl ParIce ParaCrawl ParIce

CC 3C X 3X CC 3C X 3X CC 3C X 3X CC 3C X 3X

0.0 => 0.1 10 100 0 0 95 100 0 0 0 7 93 93 1 9 91 91

0.1 => 0.2 9 99 1 1 93 99 1 1 0 5 95 95 4 12 88 88

0.2 => 0.3 8 99 1 1 92 100 0 0 1 6 94 94 11 26 74 74

0.3 => 0.4 16 100 0 0 87 100 0 0 0 7 93 93 14 50 50 50

0.4 => 0.5 16 99 1 1 83 99 1 1 2 13 85 87 24 75 25 25

0.5 => 0.6 20 85 14 15 75 98 2 2 4 42 57 58 46 93 7 7

0.6 => 0.7 15 69 31 31 61 90 10 10 16 71 29 29 64 98 2 2

0.7 => 0.8 10 43 57 57 58 93 7 7 26 94 6 6 82 100 0 0

0.8 => 0.9 13 56 42 44 63 75 25 25 15 98 2 2 89 99 1 1

0.9 => 1.0 27 63 36 37 51 65 36 36 11 99 1 1 99 100 0 0

NMTScore WAScore

ParaCrawl ParIce ParaCrawl ParIce

CC 3C X 3X CC 3C X 3X CC 3C X 3X CC 3C X 3X

0.0 => 0.1 22 76 24 24 65 92 8 8 1 17 81 83 8 45 55 55

0.1 => 0.2 20 96 4 4 87 100 0 0 12 46 53 54 43 91 9 9

0.2 => 0.3 12 98 2 2 85 100 0 0 28 72 21 28 57 95 5 5

0.3 => 0.4 9 100 0 0 94 100 0 0 27 88 9 12 73 97 3 3

0.4 => 0.5 9 100 0 0 97 100 0 0 39 96 4 4 80 100 0 0

0.5 => 0.6 12 99 1 1 97 100 0 0 33 95 5 5 92 100 0 0

0.6 => 0.7 13 100 0 0 93 100 0 0 27 93 7 7 93 99 1 1

0.7 => 0.8 11 99 0 1 99 100 0 0 10 99 1 1 94 99 1 1

0.8 => 0.9 23 100 0 0 100 100 0 0 7 97 3 3 94 99 1 1

0.9 => 1.0 20 100 0 0 100 100 0 0 5 98 2 2 95 100 0 0

ChrF translation score – ParaCrawl ChrF translation score – ParIce

en–is is–en en–is is–en

CC 3C X 3X CC 3C X 3X CC 3C X 3X CC 3C X 3X

0.0 => 0.1 0 11 89 89 4 28 72 72 13 29 69 71 6 14 85 86

0.1 => 0.2 1 6 94 94 1 13 87 87 18 48 52 52 11 39 60 61

0.2 => 0.3 9 38 62 62 8 26 73 74 40 83 16 17 41 66 34 34

0.3 => 0.4 25 84 16 16 22 67 33 33 56 89 10 11 48 85 15 15

0.4 => 0.5 34 96 4 4 36 91 9 9 70 100 0 0 74 96 3 4

0.5 => 0.6 24 97 3 3 30 95 5 5 85 99 0 1 79 97 3 3

0.6 => 0.7 21 96 4 4 25 99 1 1 80 99 1 1 87 100 0 0

0.7 => 0.8 9 97 3 3 9 95 4 5 89 100 0 0 79 99 1 1

0.8 => 0.9 8 100 0 0 11 100 0 0 93 100 0 0 93 100 0 0

0.9 => 1.0 19 100 0 0 8 99 0 1 91 97 3 3 94 99 0 1

Bag-of-words translation score – ParaCrawl Bag-of-words translation score – ParIce

en–is is–en en–is is–en

CC 3C X 3X CC 3C X 3X CC 3C X 3X CC 3C X 3X

0.0 => 0.1 7 26 73 74 6 20 79 80 25 46 54 54 24 45 53 55

0.1 => 0.2 10 40 60 60 7 22 77 78 49 78 22 22 19 49 57 57

0.2 => 0.3 30 70 29 30 10 44 56 56 49 86 13 14 25 69 31 31

0.3 => 0.4 36 86 14 14 27 72 27 28 74 97 3 3 49 85 15 15

0.4 => 0.5 37 97 3 3 33 80 20 20 65 97 3 3 61 90 9 10

0.5 => 0.6 19 97 3 3 29 91 8 9 78 97 3 3 73 96 4 4

0.6 => 0.7 16 98 2 2 19 99 1 1 75 98 0 2 78 97 2 3

0.7 => 0.8 6 98 2 2 11 100 0 0 85 99 0 1 85 100 0 0

0.8 => 0.9 3 95 5 5 7 97 3 3 84 99 0 1 91 99 1 1

0.9 => 1.0 8 98 2 2 9 96 3 4 81 99 0 1 90 99 0 1

Table 4.3: Results of the manual evaluation of samples of 100 randomly selected sentence pairs from

each of ten bands for the scoring mechanisms used.
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For the ParIce corpus, we only evaluated a dataset that had been filtered using the shallow

filters described in 4.2.2, and did not investigate the changes at each stage. This is because

the ParIce corpus is smaller and the data in the corpus all comes from known document

sources and should not contain as much noisy data as ParaCrawl. We found that about 5% of

sentence pairs in the corpus were erroneous, a number largely in line with the original ParIce

paper, where the evaluation indicated that 3.5% of the alignments were bad, but we also

found that only about three out of every four sentence pairs were mutual translations, with

about 20% being accepted as correct but not annotated as CC, indicating they were imperfect

in some way, usually due to misalignments.

Due to the large differences in the results of the evaluation of the two corpora, we wanted

to investigate further whether different filtering approaches might suit the different corpora.

However, first we wanted to investigate how good our chosen scoring mechanisms were by

evaluating sentence pairs for each score, selecting samples for ten bands for each scoring

approach.

As detailed in Section 4.2.2, we used a variety of scoring mechanisms, based on different

approaches. In order to see if they are effective at identifying good translations from inferior

ones and erroneous pairs, Finnur andmyself manually evaluated 1000 sentence pairs for each

scoring mechanism, divided into 10 scoring bands with 100 pairs in each. Evaluation results

are shown in Table 4.3. The evaluation indicates that all the scoring methods have some

merit and could probably be useful to a classifier. On their own, the results usually differ

depending on the parallel corpora used, with the accuracy of the same scoring mechanism

varying for different corpora. For example, for more than 90% of sentence pairs in a scoring

band to be acceptable (3C), the LaBSE score has to be more than 0.7 for ParaCrawl, but 0.5

for ParIce. This may be because a large part of the ParIce corpus comes from two domain

specific subcorpora, EEA regulations and directives, and texts from the European Medicines

Agency document portal, and these domains may not be well represented in the LaBSE

training data. As LaBSE is not as confident with sentences from these domains, they may

score slightly lower even though they are accepted as correct in manual evaluation. The

distribution of the scores are also quite different between scoring approaches, which can

effect their usefulness. While NMTScore seems to be very accurate when looking at the

bands in the table, 83% of the ParaCrawl sentences have a score of less than 0.3, and 25%

of the ParIce sentences have a score of less than 0.1, indicating that even though the results

seem very good, using only this scoring method may not be enough for accurate filtering. It

should also be noted that most of the approaches do not seem to be very good at discerning

finer nuances such as whether a sentence pair contains only mutual translations or if there

is additional content in at least one of the sentences. The ratio of CC thus usually does not

change as consistently with rising scores as the 3C or 3X ratio. This may indicate that we

need other approaches to identify these sentence pairs and filter them out if we find that some

of the sentence pairs classified as CB are detrimental to MT training.

Our next step is thus to train classifiers based on these scores and described in Section

4.2.2, in order to find if we can more effectively filter the sentence pairs using multiple

scoring mechanisms at the same time. We also use four different Bicleaner models, and set

the cutoff score at two different levels for each model, the default 0.5 threshold, and a higher

threshold of 0.67 to try to discover whether detrimental sentence pairs can still be found at

such a high level.

As is evident in Table 4.4, the filtering mechanisms are quite adept at removing the most

erroneous sentence pairs. We can see that for both corpora in our study, all but two filters

return over 90% accepted sentence pairs, and a low rate of erroneous data, and for ParIce in

particular almost all erroneous data is removed with the 3X category (any erroneous data)
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ParaCrawl Filters

Filter accepted (%) rejected (%)

No. pairs CC 3C X 3X No. pairs CC 3C X 3X

GPT-2 1,218,256 15 93 7 7 863.098 5 91 8 9

Logistic Regression 1,940,385 38 85 4 15 140,969 18 37 61 63

Random Forest 1,981,405 7 98 0 2 99,949 2 22 77 78

Support Vector Machine 1,991,924 12 98 2 2 89,430 0 22 78 78

Bicleaner baseline (0.50) 1,973,885 22 96 4 4 107,469 10 41 58 59

Bicleaner baseline (0.67) 1,705,042 15 98 2 2 376,312 20 80 20 20

Bicleaner retrained (0.50) 1,898,209 25 97 3 3 183,145 27 75 25 25

Bicleaner retrained (0.67) 1,615,913 20 98 2 2 465,441 24 81 18 19

Bicleaner lemmatized (0.50) 1,850,884 18 88 8 12 230,470 14 66 28 34

Bicleaner lemmatized (0.67) 1,512,437 30 93 5 7 568,917 21 70 29 30

Bicleaner AI (0.50) 1,235,771 33 99 1 1 845,583 6 85 13 15

Bicleaner AI (0.67) 1,096,288 25 97 3 3 985,066 8 92 8 8

ParIce filters

Filter accepted (%) rejected (%)

No. pairs CC 3C X 3X No. pairs CC 3C X 3X

GPT-2 1,444,956 81 96 4 4 331,093 68 91 9 9

Logistic Regression 1,560,346 85 100 0 0 215,703 49 77 23 23

Random Forest 1,667,847 86 99 1 1 108,202 20 51 49 49

Support Vector Machine 1,646,183 91 100 0 0 129,866 28 58 42 42

Bicleaner baseline (0.50) 1,546,216 85 99 1 1 229,833 35 79 21 21

Bicleaner baseline (0.67) 1,242,258 86 100 0 0 533,791 48 86 14 14

Bicleaner retrained (0.50) 1,499,610 85 99 1 1 276,439 42 90 10 10

Bicleaner retrained (0.67) 1,244,412 94 100 0 0 531,637 55 95 5 5

Bicleaner lemmatized (0.50) 1,463,780 89 100 0 0 312,267 50 90 10 10

Bicleaner lemmatized (0.67) 1,117,814 88 100 0 0 604,235 69 98 2 2

Bicleaner AI (0.50) 1,262,313 95 100 0 0 513,736 60 86 13 14

Bicleaner AI (0.67) 1,152,319 91 100 0 0 623,730 77 95 5 5

Table 4.4: Results of the manual evaluation of samples of 100 randomly selected sentence pairs

from datasets generated by different filtering approaches. We both evaluate sentence pairs accepted

by each filtering approach, and rejected by it.

at 0% in the evaluated data for 8 out of 12 filtering approaches. However, as it is important

to keep as many of the correct sentence pairs as possible, the most useful approaches may

be the ones that remove the fewest mutual translations. We see that while the model having

the highest proportion of CC, mutual translations, is Bicleaner AI, it has the drawback of

filtering out the highest proportion of sentences compared to almost all other approaches.

With almost half of the ParaCrawl data rejected when the threshold score is set to 0.67,

and only 1,096,288 sentence pairs left out of 2,081,354 sentence pairs, 92% of the rejected

sentence pairs are annotated in one of the C categories. In order to investigate further what

is best for MT training, we next train multiple models, using all the different data sets we

have compiled, in order to see how the translations generated by these models compare to

the results of our manual evaluation.

4.2.4 Automatic Evaluation

In order to evaluate the effect of different filtering approaches for training data onMT output,

we train different MT models for each of the compiled datasets and evaluate them using

BLEU (Papineni et al., 2002). We use fairseq to train TransformerBASE models as described

in Section 3.5.4. We use the development and test sets provided for English–Icelandic news

translation task at WMT 2021 (Akhbardeh et al., 2021). The development sets are used for

validation, with validation loss being the criteria for early stopping if it does not improve for

10 checkpoints. The test sets are used for evaluation, using SacreBLEU.7

7SacreBLEU Signature: BLEU+numrefs.1+case.mixed+tok.13a+smooth.exp +version.2.2.0
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ParaCrawl training experiments

Dataset no. pairs en→is time is→en time

Baseline: ParaCrawl v9 clean 2,967,519 20.2 23h3m 30.7 11h14m

Shallow filter 3 - Similar pairs 4,666,464 19.1 18h9m 30.4 29h56m

Shallow filter 4 - Similar segments 2,081,354 20.0 13h3m 31.9 15h57m

IS-perplexity (GPT-2) 1,218,256 21.1 5h50m 33.0 14h11m

SVM 1,991,924 19.6 13h41 32.4 15h56m

Logistic Regression 1,940,385 20.1 11h48 32.1 12h01m

Random Forest 1,981,405 19.5 6h37m 31.8 15h32m

Bicleaner 1.5 (0.50) 1,973,885 19.5 11h25m 32.2 15h33m

Bicleaner 1.5 (0.67) 1,705,042 19.3 8h29m 31.4 8h53m

Bicleaner retrained (0.50) 1,898,209 18.9 8h17m 31.9 15h41m

Bicleaner retrained (0.67) 1,615,913 19.5 7h36m 30.5 12h59m

Bicleaner lemmatized (0.50) 1,850,884 19.6 10h29m 31.6 17h19m

Bicleaner lemmatized (0.67) 1,512,437 19.3 6h27m 30.9 8h32m

Bicleaner AI (0.50) 1,235,771 20.5 8h26m 31.7 7h15m

Bicleaner AI (0.67) 1,096,288 21.0 4h50m 30.8 3h45m

ParIce training experiments

Dataset no. pairs en→is time is→en time

Baseline: ParIce shallow filter 1,776,049 19.7 23h29m 25.5 14h31m

IS-perplexity (GPT-2) 1,444,956 18.5 22h33m 24.7 10h18m

SVM 1,646,183 19.8 17h38m 26.0 13h04m

Logistic Regression 1,560,346 19.2 16h51m 26.1 13h30m

Random Forest 1,667,847 18.6 20h07m 25.2 12h22m

Bicleaner 1.5 (0.50) 1,546,216 19.5 21h52m 26.2 12h5m

Bicleaner 1.5 (0.67) 1,242,258 19.5 12h06m 25.6 9h01m

Bicleaner retrained (0.50) 1,499,610 19.7 7h13m 25.6 12h22m

Bicleaner retrained (0.67) 1,244,412 19.8 10h16m 25.5 6h13m

Bicleaner lemmatized (0.50) 1,463,780 19.8 15h12m 25.9 11h56m

Bicleaner lemmatized (0.67) 1,171,814 19.8 7h29m 25.6 8h56m

Bicleaner AI (0.50) 1,262,313 19.1 7h07m 26.1 7h44m

Bicleaner AI (0.67) 1,152,319 18.9 7h11m 25.1 7h28m

Table 4.5: BLEU scores and training time for different filtering approaches. Scores in bold are the

highest for the dataset and translation direction. Scores in italics are lower but not significantly lower

than the highest ones (p > 0.05).

Our translation models commonly generate translations using the same quotation marks

as in the source sentences. FollowingKoszowski et al. (2021)we apply regular expressions to

fix quoting, making sure Icelandic quotation marks („ “) are used in the Icelandic translations

and English quotation marks (“ ”) in the English translations.

We train baseline models using only the datasets compiled by the shallow filters, as well

as using the readily available cleaned ParaCrawl dataset. We then train models using the

filtering approaches previously evaluated manually, calculate BLEU scores and record the

time it took to train each model until convergence. Table 4.5 shows the results. The scores

for the separate filtering approaches do not always differ significantly from the baselines.

The baseline we set for ParIce, only applying the shallow filters, is very close to the highest

BLEU score for en→is. On the other hand, in most cases filtering the data allows the models

to converge faster, reducing the training time to reach scores in line with or above the base-

line scores. We know from our manual evaluation that most of these training sets contain

some erroneous pairs, and in order to try to reduce the number of these we select the dataset

resulting in the highest BLEU score out of the datasets compiled by a Bicleaner model and

the best resulting dataset compiled by a classifier. We do an ablation study to investigate

whether by combining these filters, as well as the filter looking at perplexity in Icelandic

sentences, can help us create a better training set.

When we combine multiple filters we only retain the sentence pairs all the filters accept.

As well as combining the different filtering methods, we try adding all sentence pairs being

scored high enough to have 95% possibility or more by all scoring metrics of being mutual

translations, according to the manual evaluations shown in Table 4.3. We then remove all
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ParaCrawl en→is filters

Dataset no. pairs BLEU time

Bicleaner AI (0.67) + LogReg 1,071,802 20.4 3h51m

Bicleaner AI (0.67) + GPT-2 776,984 21.5 4h17m

Bicleaner AI (0.67) + LogReg + GPT-2 756,503 20.7 3h40m

Bicleaner AI (0.67) + LogReg + GPT-2 + Add95 - ScoreMaj 851,059 21.2 4h10m

ParaCrawl is→en filters

Dataset no. pairs BLEU time

Bicleaner 1.5 (0.50) + SVM 1,930,998 32.3 20h24m

Bicleaner 1.5 (0.50) + GPT-2 1,147,961 31.9 9h02m

Bicleaner 1.5 (0.50) + SVM + GPT-2 1,119,400 32.1 7h32m

Bicleaner 1.5 (0.50) + SVM + GPT-2 + Add95 - ScoreMaj 1,920,186 31.6 7h05m

ParIce en→is filters

Dataset no. pairs BLEU time

Bicleaner Lemmatized (0.50) + SVM 1,405,446 20.2 17h59m

Bicleaner Lemmatized (0.50) + GPT-2 1,205,070 19.6 14h04m

Bicleaner Lemmatized (0.50) + SVM + GPT-2 1,161,337 18.9 13h24m

Bicleaner Lemmatized (0.50) + SVM + GPT-2 + Add95 - ScoreMaj 1,417,565 19.5 14h04m

ParIce is→en filters

Dataset no. pairs BLEU time

Bicleaner 1.5 (0.50) + LogReg 1,430,015 26.1 13h22m

Bicleaner 1.5 (0.50) + GPT-2 1,269,808 25.7 9h30m

Bicleaner 1.5 (0.50) + LogReg + GPT-2 1,179,158 25.7 10h46m

Bicleaner 1.5 (0.50) + LogReg + GPT-2 + Add95 - ScoreMaj 1,544,980 26.2 10h17m

Best datasets from both corpora combined.

Dataset no. pairs BLEU time

is→en: ParaCrawl – GPT-2 + ParIce Bicleaner 1.5 (0.50) 2,764,472 33.2 15h55m

en→is: ParaCrawl – Bicleaner AI (0.67) + GPT-2

+ ParIce – Bicleaner Lemmatized (0.50) + SVM 2,182,430 22.6 18h57m

Table 4.6: BLEU scores and training time for combinations of different filtering approaches. The

Add95 and ScoreMaj filters, described in Section 4.2.4, are also added to the models combining three

filters. While datasets compiled with combined filters were used to train MT systems delivering

the highest BLEU scores for the English→Icelandic translation direction, for Icelandic→English the

highest scoring systems were trained on data compiled with only one filter. Scores in bold are the

highest scores for the dataset and translation direction they represent. Scores in italics are lower but

not significantly lower (p > 0.05). Scores in bold and italics are the highest scores obtained for the

translation direction.

sentence pairs where the scores indicate a more than 50% chance of the sentence pair being

erroneous. These datasets are indicated with Add95 - ScoreMaj in Table 4.6, which shows

the results of the different combinations. For the English→Icelandic translation direction

combined filters compile datasets obtaining higher scores for both corpora. On the other

hand, the BLEU scores never exceed the best standalone filters for the Icelandic→English

translation direction. We hypothesize that English as a target language may be more robust

to noise in the training data than Icelandic as a target language, cancelling out beneficial

effects of training on somewhat cleaner data. We discuss these ideas further in Chapter 8.

Finally, we combine the highest-scoring datasets for ParaCrawl and ParIce to create a

final dataset. The models trained from these datasets obtain the highest BLEU scores, 22.6

for English→Icelandic and 33.2 for Icelandic→English. Comparing these scores to the re-

sults of the WMT21 shared translation task for the same language pair and directions, we see

that they are competitive with the TransformerBIG models (Vaswani et al., 2017) submitted

by Koszowski et al. (2021) (en→is: 22.7; is→en: 33.3), and with the mBART-25 models

submitted by Símonarson et al. (2021) (en→is: 24.3; is→en: 33.5), which are trained on

more data, using more computational resources and for a longer time than we do. We will

come back to these two models and compare them to our final models in Chapter 7.
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4.3 Conclusions

In this chapter, we addressed our first two research questions: RQ1: How we can filter

parallel corpora to minimize noise, while still losing little or no useful data from the original

texts, and RQ2: To what degree we should filter parallel corpora without regard to the dataset

or translation direction in question. Our results indicate that different filtering approaches

suit different datasets and translation directions, even though we are working within the same

language pair. For the language pair we focus on, English–Icelandic, we find that single

filters work well for is→en, while a combination of filters work better for en→is, for both

the datasets we work with. As the morphology is more complex in Icelandic, we speculate

that models translating into a more morphological complex language may be more sensitive

to ungrammatical and noisy target language data. A more thorough filtering thus works

better, even though a higher proportion of beneficial sentence pairs are lost in the process.

When translating into English the models may be more forgiving, as there are fewer word

forms proportionally to lemmas, and so fewer sentence pairs need to be filtered out. While

we see some general tendencies in our experiments, they do not show us what data exactly

are detrimental and which are beneficial.

On another level, our manual evaluation shows that the scores generated by the automatic

scoring systems have different interpretations depending on the dataset. If the scores are

used for filtering or mining parallel data, the optimal score for the dataset should thus be

found to result in a dataset that produces the best MT model. Feng et al. (2022) suggest

a threshold of 0.6 for LaBSE when mining parallel text from CommonCrawl, stating that

the threshold was selected by manually inspecting sampled data, but they do not specify the

language pair used when inspecting the data. In order for the scoring mechanism to be most

effective, the user should thus inspect the results for their dataset before setting a threshold.

While all the scoring mechanisms seem to be useful for filtering out useless or detrimental

data, and likewise to find possibly useful data (that is sentence pairs that are at least partial

translations), none of the methods are very good at finding mutual translations, labelled as

CC. In Chapter 6 we try to close in on that goal by mining for mutual translations on the

sub-sentential level.

We trained two Bicleaner models for our experiments. They worked reasonably well and

for filtering ParIce for the en→is translation direction, the lemmatized Bicleaner model gave

the best results. These models could perhaps be made even better. Bicleaner uses n-gram
models and we only used our parallel corpora to train these. By using If we would use larger

corpora the n-gram models would likely give us more accurate scores thus resulting in a

more accurate model.

In the next chapter, we will compare different approaches to sentence alignment, search-

ing for the most effective way to align two documents on the sentence level.
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Sentence Alignment

In the previous chapter, we looked into the effectiveness of various filtering approaches and

how different filters may suit different translation directions. In this chapter, we will turn our

attention to sentence alignment and examine whether better sentence alignment approaches

are likely to yield improved results on downstreamMT tasks. Sentence alignment is the task

of finding as many matching sentences as possible from two documents, one of which is

the translation of the other. It can be considered to be a path-finding problem, with a list of

sentences in one language to be the x-axis in a two-dimensional graph and the sentences in
the other language to be the y-axis. Each potential sentence pair is a node in the graph and the
objective of the sentence alignment algorithm is to find the best path through the graph. The

path is most often continuous, with gaps when either one of the documents has sentences

that do not have corresponding sentences in the other. The alignments can also be non-

monotonous, with sentences crossing so the order of sentences differs between languages.

This problem can usually be solved by chunking multiple sentences. We can thus describe

automatic sentence alignment in terms of two different problems:

• Scoring the sentence pairs to give an indication as to how likely they are to be a trans-

lation of one another.

• Comparing two documents in different languages and returning the best set of aligned

sentence pairs via an alignment algorithm.

In this chapter, we describe our own sentence alignment system, SentAlign, and evaluate

it. Additionally, we describe five other available sentence aligners and how their scoring

and alignment algorithm work. We use all six systems in our experiments, as well as ex-

perimenting with using a combination of systems do decide on alignments. We evaluate in

three different ways. First, we compare how the alignment approaches fare on two different

evaluation sets. Second, we manually evaluate samples of the aligned sentence pairs. Third,

we evaluate the approaches in downstream NMT tasks in terms BLEU score.

We use the sentence alignment evaluation sets distributed with Bleualign1 (see Section

5.2.4) as well as new English–Icelandic evaluation sets we compiled.2 The parallel docu-

ments used are the EEA documents,3 mostly regulations and directives, used to compile the

EEA part of the ParIce corpus (see Section 3.5).

1https://github.com/rsennrich/Bleualign
2Available at https://repository.clarin.is/repository/xmlui/handle/20.500.12537/

150
3Documents downloadable from: https://github.com/steinst/filter-align-datasets

https://github.com/rsennrich/Bleualign
Available at https://repository.clarin.is/repository/xmlui/handle/20.500.12537/150
Available at https://repository.clarin.is/repository/xmlui/handle/20.500.12537/150
https://github.com/steinst/filter-align-datasets
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The aim of this chapter is to gain insights into how important sentence alignment is in

the process of compiling a parallel corpus and answer RQ3: Is sentence alignment accu-

racy important for the results of a downstream MT task, or is effective filtering of the

training data enough? In answering that we will compare different approaches, also asking

which methods we can use to help us find the best alignment approaches for a given task.

The remainder of the chapter is organized as follows. In Section 5.1, we describe previous

and related work. Section 5.2 describes all the approaches we use for sentence alignment,

including five alignment methods previously published by others, as well as our own system.

In Section 5.3, we describe our experiments and results, and, in Section 5.4, we conclude the

discussion on sentence alignment.

5.1 Related Work

Recently, the state-of-the-art in sentence alignment has been improved for some language

pairs by employing sentence representations obtained from pre-trainedmultilingual language

models (MLMs). Vecalign (Thompson and Koehn, 2019), which we describe in more detail

in Section 5.2.5, uses LASER (Artetxe and Schwenk, 2019b) to score sentence pair can-

didates. Feng et al. (2022) compare LaBSE (Feng et al., 2022) and LASER for sentence

alignment and Rajitha et al. (2020) compare LASER and XLM-R (Conneau et al., 2020) for

the related task of document alignment. Fernando et al. (2023) compare LASER, LaBSE

and XLM-R for both document and sentence alignment, incorporating bilingual lexicons to

generate weights between sentences in a candidate pair, applying them to the MLM-based

similarity scores to calculate a final score. In their evaluation, LaBSE scored highest on an

evaluation dataset, while the difference was largely insignificant when evaluated on BLEU

in a downstream NMT task. While these large MLMs can give good results for language

pairs represented in the training data for these models, it has been noted that the results are

not as good for languages that are not well represented in the models. In their review of using

LASER and LaBSE for parallel corpora mining from bilingual texts, Chimoto and Bassett

(2022) found that there is a stark difference in alignment quality depending on whether the

language is represented in the MLM training data or not. They do note, however, that this

problem can be somewhat alleviated by fine-tuning the language models on texts in the un-

represented language.

Previously, various different methods have been developed for sentence alignment. The

first approaches to automatic sentence alignment were length-based. Gale and Church (1991)

found that “the correlation between the length of a paragraph in characters and the length of

its translation was extremely high”. Motivated by that, they describe a method for aligning

sentences based on a simple statistical model of character lengths. Brown et al. (1991) also

describe a length-based method, but use tokens instead of characters. When finding the

optimal alignments, a sentence in one language is compared to all sentences in the other

language. As most parallel documents have a similar amount of lines in each language,

this is a quadratic time complexity algorithm, O(n2), where n is the approximate number

of sentences in each language. In order to reduce the search space, dividing the corpora to

be aligned into ‘beads’ (windows where it is most likely to find the correct alignments) is a

common approach. Brown et al. (1991) assume prior alignment of paragraphs and use the

paragraph boundaries as anchors, while Gale and Church (1991) rely on previously aligned

sentences as anchor points and use these to divide the text into smaller chunks. Martinez

et al. (1998) used markup in the texts for anchoring. That can be very useful when available,

but is unfortunately not common in bilingual texts.
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Lexical information has been shown to improve on pure length-based methods (Chen,

1993; Wu, 1994). The lexical features can be acquired by various means. Simard et al.

(1992) suggest using cognates to help with aligning bilingual corpora. They informally de-

fine cognates for these purposes, as pairs of tokens in different language which share phono-

logical or orthographic and semantic properties, usually having the same origin. Based on

that they compute the “cognateness”, comparing the number of matching tokens in a string to

the length of the string. They observe that cognates are more likely to occur in mutual trans-

lations than in random pairs, although unrelated pairs of sentences frequently share cognates,

especially if they appear in the same context. In their experiment, they use bitexts that can be

correctly aligned, and show that, for aligning such texts, cognates can be useful in combina-

tion with other methods when alignment is performed in two passes, even though cognates

are not very reliable for alignment on their own. Lamraoui and Langlais (2013) come to the

same conclusion using a slightly different two-pass method, and Simard (1999) shows that

accuracy can be improved when more than two languages are being aligned at once. Using

bilingual lexicons is also common, though they are harder to obtain than cognates. Some sys-

tems infer a bilingual lexicon from the texts being aligned (Chen, 1993; Kay and Röscheisen,

1993; Moore, 2002), while others require an external lexicon to be provided (Wu, 1994; Li

et al., 2010). Haruno and Yamazaki (1996) show that combining an induced lexicon with an

external dictionary yields better results. Bilingual lexicon induction was discussed in more

detail in Section 3.6.

Papageorgiou et al. (1994) use part-of-speech (PoS), commonly preserved in transla-

tion, by computing the optimum alignment based on the PoS tags. Tschorn and Lüdeling

(2003) use a morphological analyzer to improve a dictionary-based distance measure, and

Ma (2006) increases the robustness of a lexicon-based aligner by assigning greater weights

to less frequent translated words, while using a dynamic programming algorithm that allows

from 0–1 up to 4–1 alignments. Braune and Fraser (2010) use a multi-pass procedure using

length-based statistics and a modified version of the model by Moore (2002).

As SMT improved in the early 2000s, MT-based alignment methods became viable. Fol-

lowing Adafre and de Rijke (2006), who use MT to mine parallel sentences from Wikipedia

pages, Sennrich and Volk (2010) use MT and BLEU as a similarity score for their alignment

system, Bleualign, described in more detail in Section 5.2.4. These methods are still being

applied in various scenarios today.

In the WMT 2020 shared task on parallel corpus alignment and filtering (Koehn et al.,

2020), three teams described their sentence alignment approaches. Xu et al. (2020) build their

alignment approach upon statistical lexicon translation scores, based on word alignments

obtained by fast_align (Dyer et al., 2013). Lu et al. (2020) used Champollion Ma (2006),

a lexicon-based sentence aligner, and word alignment to extract the bilingual lexicon from

a parallel corpus. Lo and Joanis (2020) use an iterative statistical method, first aligning

paragraphs and then sentences within the paragraphs, employing ssal, a reimplementation

and extension of Moore (2002), which uses the IBM-HMM model (Och and Ney, 2003).

Hasan et al. (2020) use aligner ensembles, taking a union of sentence pairs and thus

collecting a large part of the aligned sentences. Zhang (2022) uses a divide and conquer

approach, using 1–1 alignments, which are surrounded by other 1–1 alignments, as anchors,

and then does a second pass.
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5.2 Our Approaches to Sentence Alignment

In our experiments, we employ six different approaches to aligning parallel documents at the

sentence level. We describe the scoring mechanism and the alignment selection algorithm in

five previously available tools and try to identify their weak and strong points. Furthermore,

we describe in detail our own tool, SentAlign.

5.2.1 Gale–Church Algorithm

Gale and Church (1991) note that DP is often used to align two sequences of symbols in

a variety of settings. It could thus be expected that such a matching technique would be

useful for aligning sequences of text in two languages. Details of the techniques differ from

one application to the other, but all use a distance measure to compare individual elements

within the sequences and a DP algorithm to minimize the total distance between aligned

elements. The algorithm by Gale and Church (1991) is a DPmethod that compares the length

(in characters) of two sentences to be aligned. With limited data and computing resources,

sentence length is an obvious choice and had been used previously in work described in

Brown et al. (1990) and Brown et al. (1991) to extract sentence pairs from parallel documents

using statistical approaches. While the previous work uses words for length-based measures,

Gale and Church use characters, arguing that there aremore of them in the texts and thus there

is less variation in length and so less uncertainty, which produces better sentence alignments.

Scoring

The distance measure in the Gale–Church algorithm is based on the assumption that longer

sentences in one language tend to be translated into longer sentences in the other language,

and shorter sentences tend to be translated into shorter sentences. They assert that each char-

acter in one language, L1, gives rise to a random number of characters in the other language,

L2, which are independent and identically distributed with a normal distribution. The mean

of these variables, c, is the expected number of characters in L2 per character in L1 and the

variance, s2, is the variance in the number of characters in L2 per character in L1. These pa-

rameters are determined empirically from a small corpus of English–German–French data,

15 economic reports issued by the Union Bank of Switzerland, containing 725 English sen-

tences and corresponding sentences in the other languages. By observing two language pairs

from this dataset, the authors assume language–independent values, which they expect to

be useful for most pairs of European languages. Furthermore, they count the frequency of

1–1, 1–0, 0–1, 2–1, 1–2 and 2–2 sentence alignments in the same dataset and give the dif-

ferent alignment types probabilities based on the empirical evidence. These probabilities,

as well as the original values for c and s2, are the default settings in implementations of the
Gale–Church algorithm used to calculate alignment cost for different types of alignments,

along with a function of source and target sentence lengths. For further details, we refer the

interested reader to the original paper.

Alignment Algorithm

The Gale–Church alignment algorithm finds the minimum distance between source sen-

tences, s1, ..., si, and their translations, t1, ..., tj , in a corpus containing i sentences in the
source language and j sentences in the target language. It does so by recursively calculating
the minimum cost for each pair of sentences, allowing for six types of sentence alignments:

substitution (1–1), deleting a source sentence (1–0), inserting a target sentence (0–1), con-

tracting two source sentences to one target sentence (2–1), expanding one source sentence
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to two target sentences (1–2), and merging two source sentences to match with two merged

target sentences (2–2). In the original implementation, the algorithm does not allow merging

more than two sentences in one alignment.

After calculating the minimum cost for a pair, the algorithm adds it to the previously

calculated costs to reach the pair, finding the least costly path after comparing the cost for

all alignment types. This is repeated until the final sentence pair, (si, tj), is reached and the
least costly alignment path found.

The Gale–Church algorithm is simple and runs fast for relatively short parallel texts.

For such a simple approach, using no semantic information to help with alignment, it is

surprisingly accurate, as the results in Section 5.3 show. A large drawback is, however,

that the algorithm calculates costs for all possible sentence pairs without having any inbuilt

mechanism for dividing the input files into smaller beads or dealing with large files in any

other way. As it is of O(n2) time complexity, it will slow down as the input files get very

large and finally it will not be able to process them. For very large documents, Gale–Church

needs some hard delimiters to split them up, as it can not deal with them as single units.

The language-independent values are derived from a small manually annotated dataset of

two language pairs. Alignments of more than two merged sentences in each language are not

considered and no probabilities given for such alignments as their manual annotation does

not contain any alignments larger than 2–2. Furthermore, almost 90% of the alignments are

1–1. The assumptions derived from their dataset may fall short for some language pairs and

some sets of parallel texts. This can be amended by evaluating the language pair and parallel

texts to be aligned to recalculate the parameter values.

Experimental Settings

For our experiments, we reimplemented the Gale–Church algorithm in Python 3, with minor

adjustments to the original implementation.4 As working with very large files tends to yield

high costs for very unlikely alignments, we add a cutoff score in order to reduce the number

of calculations. When a cost to reach a node exceeds the cutoff score, no paths will be

calculated from that node. We apply the cutoff mechanism when the number of sentences

in either language exceeds 1,000. A visual inspection of the results indicates that applying

the cutoff score does not seem to have an effect on the final alignment outcome in the vast

majority of cases when aligning very large files. Our implementation allows the user to set

the usually language-independent values of the distance measure in the input parameters. It

is accompanied with a script for calculating these measures from an aligned corpus.

While our implementation is accompanied with tools to define language-dependent val-

ues for the scoring mechanism, we use the language-independent values given by Gale and

Church in order for our results to be better comparable to others.

5.2.2 Hunalign

Varga et al. (2005) argue that the choice of appropriate language technology for a given task

is greatly impacted by the availability of digital resources. They define languages spoken

by less than 100 million and more than 500 thousand speakers as medium density languages,

for which some useful data exists but not enough for many tasks. They describe a hybrid

sentence alignment algorithm combining dictionary- and length-based methods for sentence

alignment to be used for rapidly building parallel resources for medium density languages.

While the language technology landscape has changed significantly since their paper was

4Our implementation is available at https://github.com/steinst/galechurch.

https://github.com/steinst/galechurch
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published, it has been argued that progress in NLP has been “restricted to a minuscule subset

of the world’s ≈6,500 languages” (Blasi et al., 2022) and the work of the European Language

Equality project shows that even the majority of the EU languages are at a risk of digital

extinction (Gaspari et al., 2022). This hybrid approach may thus still be a valid choice for

some languages where little parallel data and/or digital dictionaries are available.

Scoring

The similarity score has two main components, token-based and length-based. The token-

based component searches for shared words in the two sentences. It starts by producing

a translation of the source text by automatically finding translations for each source word

token, looking for the highest frequency token in the target corpus. This pseudo-translation

is then compared against the actual target text on a sentence-by-sentence basis to identify

shared words in the sentences. The length-based component is based on the ratio of longer

to shorter sentences with the relative weight set to maximize precision on the Hungarian–

English training corpus, which the authors assume is a sensible choice for other languages

as well. Finally, paragraph boundaries are treated as sentences with special scoring, with the

similarity of two paragraph boundaries being a high constant and the similarity of a paragraph

boundary to a real sentence being minus infinity, to find paragraph boundaries to pair up.

Alignment algorithm

The similarity score described above is calculated for every sentence pair around the diagonal

of the alignmentmatrix, with at least a 500-sentence neighbourhood calculated and up to 10%

of the number of sentences in the longer text, if it is longer than 5,000 sentences. The authors

find this to be high enough to produce good recall on their evaluation dataset. They justify

this approach by the assumption that the beginning and end of the texts are aligned and that

the sentence ratio in the two texts represents the average one-to-many assignment ratio of

alignment segments, expecting no significant deviation from that. Scores are also assigned to

deleting/inserting and merging sentences. The score of deleting/inserting is calculated using

the training corpus and the score of merging by summing up the minimum of the token-

based scores for both sentences and the length-based score of the concatenation of the two

sentences.

Once a similarity matrix has been obtained, an optimal path is selected. Initially, the

algorithm does not take into account the possibility of more than two sentences matching

one sentence, but, after an optimal path is found, a postprocessing step iteratively merges a

neighbouring pair of 1–n (n > 1) and 0–1 segments wherever the resulting new segment has

a better character-length ratio than the starting one. With this method, any 1–n alignments

can be found.

Adding an external dictionary

While the base algorithm can give meaningful results, an external dictionary can be utilized

by the system for more accurate lexical scoring. As dictionaries usually only show lemmas

and not all the different possible word forms, the authors suggest stemming the texts to be

aligned as well as the external bilingual dictionary. In our case we lemmatize the texts.

Experimental Settings

We perform two experiments with Hunalign: running the tool with and without an external

dictionary. When we use a dictionary, we lemmatize both the Icelandic and English texts

using ABLTagger first for PoS tagging and then Nefnir to lemmatize the Icelandic texts and

spaCy for the English texts. We then provide the system with the dictionary we created and

described in Section 3.6.
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5.2.3 Gargantua

Gargantua (Braune and Fraser, 2010) is an unsupervised and language-independent sentence

alignment tool which uses a two-step clustering approach to sentence alignment. It aims to

find 1–n andn–1 alignments wheren ≥ 0, but does not search formany-to-many alignments.
The authors argue that while the accuracy for unsupervised and language-independent ap-

proaches like Brown et al. (1991) and Gale and Church (1991) decreases drastically when

aligning texts containing deletions or free translations, their approach augments a sentence

length-based model with lexical statistics, making more informed high-quality alignments.

Scoring

To score the sentences, Gargantua uses sentence length-based statistics considering relative

lengths in comparison to the mean length of source and target sentences, and translation

likelihoods of each target word with all source words, according to IBM Model-1 (Brown

et al., 1990).

Alignment

Gargantua uses a multi-pass approach. The first step looks for optimal alignments through

the alignment matrix consisting only of 0–1, 1–0 and 1–1 correspondences. An approxi-

mate alignment is computed using the sentence length and the resulting 1–1 alignments then

selected for creating translation tables using IBM Model-1.

In a second step, the previously acquired alignments are merged into clusters containing

up toR sentences on either the source or target size, whereR is an upper bound to the number

of allowed sentences. If a 1–1 alignment is found next to a 0–1 or 1–0 alignment, that is a

candidate for composing a cluster, and if the merge produces a better score it is accepted.

As this step only clusters 1–1 alignments to 1–0 or 0–1 alignments, all alignments will have

1 sentence on at least one of the two sides. By default, the R value, the upper bound to the

number of allowed sentences on either side of the alignment, is set to 4. The final alignments

are found when an optimal score has been obtained for the whole matrix.

Experimental Settings

In our experiments, we use Gargantua using the default settings.

5.2.4 Bleualign

Bleualign (Sennrich and Volk, 2010, 2011) uses MT and BLEU to align sentences. It needs

an MT system for at least one of the translation directions to generate translations of the

sentences in at least one of the languages. It then compares the resulting translations to

sentences in the target language to determine whether they are likely to be a translation of the

original sentence. For the comparison, it uses BLEU to generate a similarity score. Bleualign

is evaluated on a set ofmanually aligned texts consisting of parallel German/French data from

the Text+Berg corpus5 (Volk et al., 2010). This evaluation set has commonly been used for

evaluating subsequent sentence alignment systems and we use it for our evaluation.

Scoring

Even though BLEU has been criticised as a measure of translation quality and is not consid-

ered reliable on a sentence level (Callison-Burch et al., 2006), the authors of Bleualign point

out that judging the quality of a translation is harder than deciding whether two sentences

5Available at https://github.com/rsennrich/Bleualign/tree/master/eval

Available at https://github.com/rsennrich/Bleualign/tree/master/eval
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are possible translations of each other. Furthermore, they find that BLEU is very sensitive

to misalignments, indicating that it should be capable of discriminating between aligned and

unaligned sentence pairs.

BLEU is usually measured on up to 4-grams. This yields a score of 0 for sentence pairs

too often for the purposes of sentence alignment, especially when using low performance

MT systems. Thus Bleualign uses 2-grams, which yield better results. Furthermore, when

comparing two sentences, s and t, the BLEU scores are different depending on which of the

sentences is the hypothesis, due to the brevity penalty in BLEU. Therefore, Bleualign goes

in both directions and uses the mean as the final score.

Algorithm

The alignment algorithm consists of two passes. In the first pass, anchor points are identified

after translating the source language sentences and comparing the translations to the target

text sentences. These anchor points are a set of 1–1 beads considered reliable based on

BLEU as a similarity measure as well as on sentence order. Given a set of target sentences

and another set of source sentence translations, the BLEU score is calculated for all members

of the Cartesian product of the two. The best-scoring alignments are considered if they fall

into order according to the position of the source and target sentences in their respective

texts, with crossing alignments not allowed. To generate a final ordered list of beads, a

shortest-path algorithm is used to find the path that maximizes the BLEU score.

In the second pass, all unaligned sentences, gap-sentences, that fall between the anchors,

are extracted and aligned using a number of heuristics. At first Bleualign tries to find if any

of the 1–1 beads are in fact part of a 1–n or n–1 alignment (n > 1). It does so by creating a
list of all possible 1-, 2- or 3-sentence sequences that are composed of the gap-sentences and

the sentences on either side of the gap. Then BLEU scores are calculated for the Cartesian

product of the two lists, and if any 1–n bead scores higher than the original 1–1 bead it is

replaced in the graph and the step is repeated. If not, analogous checks are done for n–1
alignments. When no new beads are found, a new search for 1–1 alignments is done in the

gap. If a bead is found, the previous heuristic is repeated. If the gap size is down to 0 on

either language side or if its size is asymmetrical by a factor of more than two, the remaining

sentences are left unaligned. Otherwise Gale–Church can be used to find alignments between

all remaining sentences in the gap. In this case, Gale–Church compares source translations

to target sentences in order to be more robust for unrelated language pairs which could have

very different lengths.

Finally, the algorithm can be run in both directions and an intersection of the results

selected for high-precision results. Sennrich and Volk (2011) suggest in a follow-up to the

original Bleualign paper to use an iterative approach for better alignment quality. In that

paper, they bootstrap anMT system by first using Gale–Church to create alignments and then

use these alignments to train anMT system that translates for Bleualign. They then iteratively

improve the MT system by repeating the process multiple times, resulting in slightly better

alignments.

Experimental Settings

In our experiments, we use OPUS-MT6 (Tiedemann and Thottingal, 2020), both to translate

the evaluation sets in Section 5.3.1 and the parallel documents in Section 5.3.3. In all cases,

we supply Bleualign with translations generated in both translation directions.

6https://opus.nlpl.eu/Opus-MT/

https://opus.nlpl.eu/Opus-MT/
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5.2.5 Vecalign

In their Vecalign paper, Thompson and Koehn (2019) presented novel approaches both to

scoring sentence-pair candidates and to the alignment algorithm. Vecalign uses multilingual

sentence embeddings to calculate a normalized cosine distance between source and target

sentences together with an approximation algorithm (Salvador and Chan, 2007), which make

the algorithm linear in time and space complexity with respect to the number of sentences

being aligned.

The authors reported a considerable gain over previous state-of-the-art methods both in

terms of runtime and sentence alignment quality as measured by the evaluation sets released

with Bleualign and by BLEU scores on downstream MT tasks.

Scoring

The authors of Vecalign propose using the similarity between sentence embeddings as the

scoring function for sentence alignment. They use the LASER multilingual sentence em-

bedding method and model (Artetxe and Schwenk, 2019b). An advantage of sentence em-

beddings is that blocks of sentences can be represented as the average of their sentence em-

beddings and the size of the resulting vector is independent of the number of sentence em-

beddings being averaged. Cosine similarity can then be used to compare the embeddings.

It has been noted that embeddings can be globally inconsistent due to the “hubness” prob-

lem, described in Section 3.6.6 To tackle that problem, the embeddings can be normalized

using nearest neighbours, as described in Section 3.6.6. In Vecalign on the other hand, the

embeddings are normalized with embeddings randomly sampled from the given document

instead of nearest neighbours, as that has linear complexity. The authors of Vecalign find

that DP with cosine similarity favours many-to-many alignments over 1–1 alignments, even

though the many-to-many alignments could be split into multiple 1–1 alignments. As sen-

tence alignment seeks for minimal parallel units, they scale the cost by the number of source

and target sentences being considered in a given alignment. Furthermore, they model inser-

tions and deletions using a skip cost, which can only be meaningful in comparison to other

costs, and is not expected to generalize across languages or normalizations. They thus define

it in terms of the distribution of 1–1 alignment costs at alignment time.

Alignment Algorithm

Vecalign uses a DP algorithm to find the best path through the alignment matrix, which uses

recursive approximation to reduce the search space. Salvador and Chan (2007) propose this

approach for dynamic time warping but the authors of Vecalign are the first to apply it to

sentence alignment. The approach works by first averaging adjacent pairs of sentence em-

beddings in both search and target documents, thus halving the number of embeddings for

each document and producing approximate sentence alignments. This can be applied recur-

sively. In this phase, only insertions, deletions and 1–1 alignments are considered. Finally,

the approximate alignment can be refined using the original sentence vectors, constraining

the model to a small window around the approximate alignment. In that phase, 1–n, n–1 and
n–m alignments are also considered.

Experimental Settings

In our experiments, we use Vecalign with the LASER2 (Heffernan et al., 2022) embeddings

model and allow up to 5 adjacent sentences to bemerged for each alignment (n-m alignments,

where 0≤n≤5 and 0≤m≤5).
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Figure 5.1: SentAlign module architecture.

5.2.6 SentAlign

We now present our own tool for sentence alignment, SentAlign.7 It is capable of evaluating

all possible alignment paths through fairly large documents, while using a LaBSE-based

scoring mechanism resulting in highly accurate alignments, as shown by our experiments.

While this is done to some extent at the cost of speed, the need for cutting corners in terms

of computation and memory is not as acute as it was when many of the previous sentence

aligners were developed. Furthermore, it can be argued that quality is much more important

than speed, as alignment has only to be done once for a given parallel corpus. Having said

that, our approach is of quadratic complexity, O(n2). In order to handle very large files, we
therefore apply a divide-and-conquer (DaC) approach. When parallel documents have over

2, 000 sentences on each side, or equivalently when total nodes are lower than 4, 000, 000, the
DaCmechanism is activated in order to reduce the time complexity for these files, potentially

to O(n logn).

On a desktop computer running an i5-12600K processor, with 64 GB of memory and

a GeForce RTX 3090 graphics card to calculate the LaBSE scores, it took approximately

13 hours to align 16501 file pairs containing a total of over 3,500,000 sentences in each

7https://github.com/steinst/SentAlign

https://github.com/steinst/SentAlign
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language. This is similar to the time it takes to run many of the sentence aligners previously

described. We describe SentAlign, illustrated in Figure 5.1, in more detail below.

Scoring

We use LaBSE to score sentence-pair candidates. A minimum threshold score, defined by

the user, is required for a sentence pair to be accepted. For each node [i : j] (where i is a
sentence in the source language and j is a sentence in the target language) in the alignment

graph, scores for all possible alignment combinations ending in that node are calculated. If

merging up to three sentences on either side is allowed, both in source data and target data,

this means comparing scores for [[i], [j]], [[i], [j−1, j]], [[i], [j−2, j−1, j]], [[i−1, i], [j]], [[i−
1, i], [j−1, j]], [[i−1, i], [j−2, j−1, j]], [[i−2, i−1, i], [j]], [[i−2, i−1, i], [j−1, j]], [[i−

Figure 5.2: An example of how SentAlign finds the maximum score for a node in the alignment

matrix. In this example, we are searching for the best alignment that ends in node [4:4]. We merge

up to three sentences ending in that node and calculate the LaBSE score for each sentence pair. Note

that for the null alignments, where either one of the sentences is discarded, we assign a minimum

threshold score. In our experiments it is set to 0.4, found by searching for the best settings on the

development set from the Text-Berg corpus. The scoring information is used in the pathfinding step

to choose the optimal alignment.



74 CHAPTER 5. SENTENCE ALIGNMENT

2, i− 1, i], [j− 2, j− 1, j]], a total of 3× 3 = 9 scores for each node. If no sentence pair that
can be represented in a given node in the alignment graph reaches the threshold, an insertion

or deletion is selected and allotted the minimum threshold score. Sentence pair scoring is

illustrated with an example in Figure 5.2. If the number of words in either language exceeds

a user-defined maximum, a penalty is applied to the alignment score. To find the maximum

score for a node, this alignment score is then added to the score of the node it connects from,

e.g. [i− 1 : j − 1] for [i : j], as that alignment has one sentence on each side.

Divide and Conquer

If the search space is larger, in terms of a number of nodes to consider, than a pre-defined

threshold allows (the default is 4, 000, 000), we search for high-confidence alignments (i.e.
hard delimiters) to divide the search space into multiple smaller chunks to align separately,

k+1 chunks for k hard delimiters. Zhang (2022) shows that for a quadratic time complexity
sentence-alignment algorithm, “clumping” the parallel texts to be aligned using hard delim-

iters can reduce the time complexity to O(n logn). Our aim is to find the minimum amount

of alignments to use as hard delimiters to split our parallel texts into chunks of manageable

size.

There are two stages involved in finding the high-confidence alignments. Our first ap-

proach, used for large files above a user-defined divide-and-conquer threshold, first employs

the Gale–Church algorithm to align the parallel text/chunk under consideration and then

scores all resulting alignments using LaBSE. The highest-scoring alignment, which meets

the required conditions (which include limits to how close the alignment can be to previous

hard delimiters), is chosen as a high-confidence alignment.

If the parallel files are very large, running Gale–Church will take an excessive amount

of time. Therefore, we have a fallback approach to be used when file size surpasses another

threshold. In that case, we do not use Gale–Church but rather resort to a greedy algorithm

that only looks for the highest scoring 1–1 alignments. This threshold can be user-defined,

but by default (as well as in our experiments) it is set to 10, 000 sentences for either language.
Both approaches only consider 1–1 alignments and only select alignment from themiddle

half of the parallel texts, if possible, with the middle half defined as the sentences in between

the first and last 25% of the sentences in the texts. From there we select the highest-scoring

alignment, split the parallel text into two chunks, and if the chunks are still too large repeat

the process until the desired search space size is achieved.

Pathfinding

If we look at the alignment problem as a way of finding the optimal path through anN ×M
matrix, whereN is the number of source sentences andM is the number of target sentences,

we need to search from the initial node [0, 0] to the final node [n,m]. As we have to check
for insertions and deletions for all nodes, this means we have to calculate the cost for each

node to find the optimal path. Dijkstra’s algorithm (Dijkstra, 1959) finds the shortest path

from a node to all other nodes within a graph, by visiting all the nodes and calculating the

minimum cost of arriving there. In our case, we calculate a maximum score for the path to

each node. Edges between nodes in the graph are labelled with positive numbers, which the

algorithm uses to calculate the score when travelling to that node.

When the aligner is configured, we set a maximum number of sentences that can be

merged in each language for each alignment. We have to account for that during alignment

when we calculate the cost to reach each node. For example, if the number is 3 and we

are calculating the cost to reach node (4, 4), we need to know the cost to reach there from

(1, 1), (1, 2), (1, 3), (1, 4), (2, 2) and all up to (4, 3), with the alignment starting in (2, 2)
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being a 3–3 merge, the alignment from (3, 4) being a 1–0 deletion and the alignment from
(4, 3) being a 0–1 insertion. In the case of deletions and insertions, we use the minimum
score threshold and assign that value to the edge, which we set as the cost of including one

non-aligned sentence in the path. If one or more of the possible n–m (n ≥ 1) alignments has
a LaBSE score above the threshold, after applying penalties we select the highest-scoring

one as described above. The edge label is assigned a value equaling the LaBSE score mul-

tiplied by the total number of sentences merged in both languages. That way each sentence

is assigned the penalty-adjusted LaBSE score of the alignment of which it is a member. The

Figure 5.3: An example of how SentAlign finds the optimal alignment to a given node. When scores

for all sentence pairs representing the alignments that ends in a given node have been calculated (see

Figure 5.2), the score to reach the node is calculated by adding the alignment score to the maximum

score of the node the alignment leads from. The score is assigned to each of the sentences that are

merged and the sum for all merged sentences added to a previous score. To find the optimal alignment

to node (4,4) in the figure, we calculate scores for each of the possible alignments and then add the

scores to the maximum node score in the node the alignment connects to. Alignment [2,3,4:3,4] has

five sentences, three in the source language and two in the target language, and thus the LaBSE score

is multiplied by five. The last node in the previous alignment is (1,2), as the first sentences in this one

are sentences 2 and 3. When the maximum score in node (1,2) is added to the alignment score, we

obtain a score of 6.53, which is higher than the scores for all other alignments. Thus, this alignment
is selected for this node. When maximum scores have been found for all nodes the algorithm works

its way back to collect all alignments for the highest scoring path. Three alignments are assigned a

penalty, which is subtracted from the final score. The penalty is assigned to an alignment when the

length of the target sentence exceeds the maximum recommended sentence length.
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value of the selected edge is then added to the value of the node it leads from, the total set

as the current node’s value and the edge leading to that node recorded as the optimal path

there. Figure 5.3 illustrates this example of finding the optimum alignment to a node in the

alignment graph. This process is repeated for each node until node (n,m) is reached. We

then have the optimal score from (0, 0) to (n,m) and mark the path by tracing backwards
through the recorded edges.

Readjusting the Path

As Thompson and Koehn (2019), among others, have argued, sentence alignment should

seek aminimal parallel pair, the pair having the fewest mergers while still being truly parallel.

An effect of the scoring and alignment mechanism described above is that sometimes large

mergers are preferred over smaller ones that provide better alignments, thus counteracting

the desired results. This can happen when a LaBSE score for large mergers (say 3×4) is
high enough to attain a higher average score from the source node to the end node, than if

a better alignment with fewer sentences was selected (say 2×2) along with a lower-scoring
substitution and an insertion. To counter that, we finish our process by reevaluating each

alignment in the selected path by taking another look at mergers, insertions and deletions.

1. First, we investigate all n×m alignments, where (n > 1) and (m > 1), and search
for the highest-scoring alignment which is a subset of the one we are investigating.

If one is found that has a higher score than the original alignment, we look through

the remaining sentences for another sentence pair scoring above the LaBSE threshold.

We add the discarded sentences to the list of null alignments, consisting of previous

insertions and deletions.

2. We look at the list of non-aligned source and target sentences and reevaluate whether

the non-aligned sentences should remain discarded or be merged with the surrounding

alignments. If a non-aligned sentence is adjacent to a sentence which has been aligned,

we trymerging it to that alignment and calculate the LaBSE score. If the score rises, we

keep them merged and amend the path. This is repeated until all possible amendments

have been made.

When this reevaluation is done, we return the set of alignments generated by the selected

path through the alignment matrix.

Experimental Settings

For our experiments, we searched for the best settings for the alignment tool parameters using

the development set from the Text-Berg corpus. We found the best LaBSE threshold to be

0.4, maximum number of words per language before applying a length penalty to be 80, and
the penalty for each word exceeding that maximum to be 0.01. We performed a complete

search through the alignment matrix, without chunking the search space by finding anchors,

if the search space had less than 4, 000, 000 nodes. If a file had more sentences than 10, 000
in either one of the languages, we did not run Gale–Church but instead searched for anchors

only using the greedy algorithm.

5.3 Evaluation and Results

We compare the six sentence alignment systems in three different ways: using sentence

alignment evaluation data sets, by manually inspecting the resulting alignments, and by cal-

culating BLEU scores on NMT systems trained on alignments obtained from the corpus of
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Figure 5.4: Examples of non-monotonic alignments that most alignment algorithms do not allow.

The first two are examples of crossed alignments. Source sentence 1 aligns with target sentence 2,

while source sentence 2 aligns with target sentence 1. In the last example, a target sentence is skipped

from in between two target sentences that are merged for the alignment. Most alignment algorithms

do not allow this. Aligned sentences on both sides must be a continuation from previous alignments

and only adjoining sentences are allowed to merge.

16, 501 aligned documents which make up the EEA portion of the ParIce corpus. Further-

more, we use an ensemble of these six alignment tools to extract anchor points in all docu-

ment pairs, and then use the best aligners to realign the text between the anchor points. The

hypothesis is that if the majority of the sentence aligners agree on an alignment, it is highly

likely that it is correct. We only measure the results of the ensemble approach in terms of

effect on the downstream NMT task.

5.3.1 Measuring Against Evaluation Sets

The manually aligned German–French evaluation set created from the Text+Berg corpus

(Volk et al., 2010), first used to evaluate Bleualign, is commonly used for sentence align-

ment evaluation. While most alignment tools, with the exception of Bleualign, do not allow

reordering of sentences (see examples illustrated in Figure 5.4: crossing alignments [2, 1] and
[1, 2]where source language sentence s2 alignswith target language sentence t1, s1 alignswith
t2, and sentences are skipped when merging as in [4 : 3, 5] where t4 is deleted while t3 and t5
are merged). There are examples of such alignments in this evaluation set, which makes it

impossible for the aligners to attain a perfect score. Furthermore, a few entries of null align-

ments are missing from the Bleualign files. To try to be consistent with previous reported

scores, we do not make any changes to the evaluation set, but we do use a slightly amended

version of the evaluation script provided with Vecalign. There, precision is calculated using

equation (5.1):

Precision =
True Positives

True Positives+ False Positives
(5.1)

As only some null alignments are included in the evaluation set and some are not, the

results can be different based on whether a given sentence aligner returns null alignments

or only useful alignments. We thus only calculate precision on non-null alignments, i.e.

alignments that are true sentence pairs. Furthermore, Vecalign calculates recall as precision

with no insertion/deletion or swaps. That is very similar to how we calculate precision. We

change the recall calculation and, while we still only consider non-null alignments, we use

equation (5.2) to calculate recall:
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Alignment results on Text+Berg

Strict Lax

Algorithm P R F1 P R F1

Gargantua 0.76 0.75 0.76 0.89 0.78 0.83

Hunalign 0.66 0.69 0.67 0.86 0.74 0.80

Gale–Church 0.68 0.69 0.69 0.80 0.73 0.76

Vecalign 0.90 0.90 0.90 0.99 0.91 0.95

Bleualign 0.93 0.66 0.77 1.00 0.68 0.81

SentAlign 0.94 0.92 0.93 1.00 0.93 0.96

Table 5.1: Results of the evaluation of different sentence alignment systems using the German–

French Text+Berg evaluation set. Note that Hunalign does not use any external dictionary here. The

highest scores are in bold. Our SentAlign algorithm outperforms all systems both for the strict and

lax conditions, although Bleualign has a perfect score for precision, just like SentAlign. Vecalign

scores under the lax condition are very close to SentAlign, while other systems are far behind.

Recall =
True Positives

True Positives+ False Negatives
(5.2)

Following the original Bleualign paper, in Table 5.1 we report results both under the

strict condition where exact matches between the gold alignment and the hypothesis are

demanded, and under the lax condition where a hypothesis is true if there is an overlap with

a gold alignment on both language sides. Under the lax condition, a 2–2 alignment, which is

recognized as two 1–1 alignments, will yield two true positives, while it would have yielded

two false positives under the strict condition.

We compiled an evaluation set for English–Icelandic sentence alignment from five sub-

corpora of the ParIce corpus. The evaluation set (Steingrímsson, 2021) is available under

an open license and contains a total of 549 sentence alignments from 10 aligned documents

from these subcorpora.8 These documents are arguably easier to align than the Text+Berg

documents as none of them contain long stretches of non-alignments and there are few n–n
(n > 1) merge alignments.

We repeat the same experiment as before for this alignment set, using all the same settings

as before for all aligners. In addition, we run Hunalign employing the English–Icelandic

lexicon described in Section 3.6. As shown in Table 5.2, the scores are higher for all aligners

except for SentAlign. The reason why the scores are not higher for SentAlign may be due to

the fact that we are missing a development set for the English–Icelandic language pair and are

using the parameters set for the Text+Berg de–fr development set. The acceptance threshold

for the scoring mechanism we use, LaBSE, may be different for different language pairs.

While we found that 0.4 was the optimum threshold score for the Text+Berg corpus, Feng

et al. (2022) set their threshold when mining sentences from CommonCrawl to 0.6. This
suggests that analysis of the data to be processed could be useful on a case-by-case basis.

Another possibility is that our SentAlign is more accurate than other alignment systems when

dealing with multiple insertions/deletions in a row or with multiple merges. As this data set

does not contain many such alignments this advantage is not useful here, but it is worth

noting that it may play a role in other experiments.

As with the evaluation set from Text+Berg, the sentence embeddings-based alignment

systems SentAlign and Vecalign are the most accurate. Bleualign is the third best system,

8http://hdl.handle.net/20.500.12537/150.

http://hdl.handle.net/20.500.12537/150.
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Alignment results on English–Icelandic evaluation set

Strict Lax

Algorithm P R F1 P R F1

Gargantua 0.82 0.76 0.79 0.89 0.78 0.83

Hunalign 0.72 0.75 0.73 0.87 0.78 0.82

Hunalign+dict 0.74 0.76 0.75 0.89 0.79 0.84

Gale–Church 0.78 0.79 0.79 0.87 0.81 0.84

Vecalign 0.92 0.94 0.93 0.97 0.95 0.96

Bleualign 0.93 0.78 0.85 0.98 0.79 0.88

SentAlign 0.93 0.92 0.93 0.99 0.92 0.95

Table 5.2: Results of the evaluation of different sentence alignment systems using an English–

Icelandic evaluation set. The highest scores are in bold. While SentAlign outperforms other systems

in terms of precision, Vecalign has a slightly higher F1 score under lax conditions. These two systems

still fare considerably better than the other systems.

but in order to achieve good accuracy it needs a good MT system to base its scores on. By

replacing the OPUS-MT models with higher quality models, Bleualign could possibly be

further improved.

5.3.2 Manual Evaluation of Aligned Pairs

We created multiple MT training datasets from the EEA subcorpus of ParIce. We used the

different sentence alignments systems separately, as well as combining the best-performing

ones with anchor point alignments selected with a majority vote by an ensemble of the align-

ers. The best-performing systems were defined as those obtaining the highest BLEU scores

in the downstream MT task described in Section 5.3.3. After running sentence alignment,

we filtered the data. First, we applied the shallow filters described in Section 4.2.2. As our

intention here is to measure the effect of different sentence aligners, we opted for keeping

other variables as constant as possible, and selected one filtering approach to be used for all

the data, regardless of the translation direction (see Table 5.4). In Chapter 4, we found that

three of our approaches scored highest for Icelandic→English, with none being significantly

better than the others. As two of the sentence aligners we use have scoringmechanisms based

on sentence embeddings, we chose a filter that does not primarily use such embeddings, but

performs similarly well to a filter that does so. This is our logistic regression classifier,

which classifies sentence pairs based on four different scores: LaBSE, NMTScore, LASER

and WAScore (see Section 4.2.2). By selecting a filter not solely based on sentence embed-

dings, we hope to reduce homogeneity in the selection process and search for detrimental

alignments from different points of view.

In order to investigate whether a manual inspection of the aligned data could be an indi-

cator of quality in a downstream NMT task, we randomly selected 250 sentence pairs from
each training dataset and performed a manual evaluation using the same taxonomy as in

Section 4.2.3.9 Table 5.3 gives the results of the manual evaluation. The results suggest that

9The evaluation was carried out by two people, me and Finnur Ágúst Ingimundarson. Finnur received a

list of all the sentences in random order and annotated each sentence. I then checked the list and if I strongly

disagreed with the annotation of a sentence pair I changed it. This sort of data is rather straightforward to label

and we should not expect high disagreement. For the 3000 alignments I made 88 changes, so the two annotators

agreed 97.1% of the time. We calculated Cohen’s Kappa (see Section 3.6.8) and obtained κ=0.815, indicating
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Manual Evaluation of Aligned Sentence Pairs

Aligner CC CB CS X

Gale–Church 225 22 0 3

Bleualign 242 8 0 0

Gargantua 230 18 1 1

Hunalign 230 19 0 1

Hunalign+dict 226 23 0 1

Vecalign 221 28 0 1

SentAlign 242 8 0 0

Anchors+Bleualign 239 10 0 1

Anchors+Gale–Church 239 11 0 0

Anchors+Hunalign+dict 243 5 0 2

Anchors+Vecalign 237 13 0 0

Anchors+SentAlign 241 9 0 0

Table 5.3: Results of the manual evaluation of samples of 250 randomly selected sentence pairs from

the EEA subcorpus in ParIce, generated by different alignment approaches. The taxonomy is the same

as described in Table 4.1 in Chapter 4. CC is a correct translation of good quality; CB is a correct

translation, but quality is lacking; CS is a correct translation, but either one of the sentences is very

short; X is a wrong translation.

all training sets mostly contain valid alignments. The alignments that deviate from that are

usually annotated as CB, meaning that it is a correct translation, but of low quality or con-

tains a partial misalignment, as defined in the taxonomy shown in Table 4.1. We categorized

further all the alignments in the CB class, and found that out of a total of 213 CB annotated

alignments, 19 were classified in such a way due to spelling errors, usually derived from

inadequate OCR, and all other CB annotated alignments were partial alignments, ranging

from one or two extraneous words on either side of one of the aligned sentences to added

text that made one side of the alignment more than double the length of the other. Inspecting

the faulty alignments, Hunalign seems to be the most likely to have lengthy misalignments,

while the sentence embeddings-based aligners seem least likely to produce such pairs.

5.3.3 Downstream MT Task

We used fairseq to train TransformerBASE models using the settings described in Section 3.5.

The results are reported in Table 5.4. As the main task was to align the EEA subcorpus from

ParIce, we used the EEA development and evaluation sets described in Section 3.5.3. We

calculate statistical significance using the pairwise bootstrap test as before and found that our

SentAlign aligner achieved the best results, 42.8 and 53.6 as measured by BLEU, for en→is

and is→en, respectively. This is significantly better than all other aligners with the exception

of Hunalign when using our English–Icelandic lexicon, which obtained a BLEU score of

42.4. Using anchors also seems to be useful, with the anchored models overall obtaining
stronger results than the non-anchored ones, and the best one, Anchors+SentAlign, reaching

the highest score in our alignment experiments, 43.4 and 54.0 BLEU for en→is and is→en,

respectively. While the majority of the anchor-using models are stronger than the ones not

using anchors, Bleualign and Vecalign are exceptions to that. They obtain slightly but not

almost perfect agreement. Having reached agreement for the annotations, I alone did the further categorization

of all alignments classified as CB.
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Training with data produced by different alignment tools

Sentence Aligner no. pairs en→is is→en

Gale–Church 683,813 41.8 51.4

Hunalign 717,879 41.4 52.1

Hunalign+dict 798,558 42.4 53.0

Gargantua 606,768 39.1 48.9

Bleualign 627,019 42.0 53.0

Vecalign 670,595 41.8 51.7

SentAlign 877,485 42.8 53.6

Aligned after anchoring datasets with ensemble vote

Sentence Aligner no. pairs en→is is→en

Anchors+Hunalign+dict 800,564 43.2 53.7

Anchors+Gale–Church 837,446 42.2 52.3

Anchors+Bleualign 778,587 42.1 52.7

Anchors+Vecalign 883,693 42.7 51.6

Anchors+SentAlign 903,692 43.4 54.0

Table 5.4: Number of pairs and BLEU scores for different alignment approaches. Bold and italic

scores are the highest scores for each category. Bold and non-italic scores are insignificantly lower

than the highest score. Other scores are significantly lower. For the is→en translation direction, the

results from using the ensemble anchors and SentAlign are insignificantly higher than only using

SentAlign.

significantly lower BLEU scores for is→en when using the anchor sentences. There may be

various reasons for that. Possibly this is related to the training being stopped when the model

has not improved on the validation set for 10 epochs. An indicator of that being a factor is

the fact that the Anchors+Vecalign setup scored surprisingly low in comparison to the results

on the evaluation data in Section 5.3.1, stopped training earlier than all other models, after

53 and 47 epochs for en→is and is→en, respectively. Most other models stopped training

after 70 to 90 epochs and the Hunalign+dict model trained for the longest amount of time

and did not stop until after 88 and 103 epochs for en→is, is→en, respectively. We use a

development set of just over 2,000 sentences from a rather homogeneous data set. Perhaps

a larger or more extensive validation set would result in more optimal stopping points at

training time.

5.4 Conclusion

In this chapter, we introduced a new sentence aligner and showed by experiments and com-

parison to previously published systems that it is very competitive. We also showed that by

using an ensemble of sentence aligners to find hard delimiters in a parallel corpus, the quality

can be improved somewhat, as measured by BLEU in a downstream MT task. While using

sentence embeddings seems to be very useful for this task, our experiments show that using

the lexical-based Hunalign system aided by an external dictionary can also give good results.

At the beginning of this chapter, we set out to answer our third research question: Is

sentence alignment accuracy important for the results of a downstream MT task, or is effec-

tive filtering of the training data enough? In order to answer that question, we consider the

results of aligning the evaluation sets to be a test of aligner accuracy and the BLEU scores in
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the downstream task a quality measure of the MT system. Tables 5.1 and 5.2 give accuracy

scores for Vecalign and SentAlign that outperform the other systems by far. The lowest-

performing systems on the evaluation sets are also the lowest-performing ones in terms of

BLEU scores in the downstream MT task. That said, Vecalign does not do particularly well

in the downstream MT task, while SentAlign does. The difference between the systems as

measured by BLEU also does not seem to be as clear as when evaluated on the evaluation

sets. Overall, sentence alignment accuracy seems to be a clear indicator of downstream MT

quality.

We also wanted to answer the added question of which methods could be used to help

find the best alignment approaches for a given task. If evaluation sets are available for the

language pair being aligned, the results provided can be a good indicator for which sentence

alignment system to use. As well as using evaluation sets, we tried manually annotating a

small subset of the data produced by the alignment systems after filtering. While the ranking

of systems in the manual evaluation was a bit different from the ranking produced by BLEU-

evaluation, we calculated correlation between the number of sentence pairs classified as CC

(correct and of good quality) and BLEU scores, both for en→is and is→en. We found the

Kendall’s τ coefficient (Kendall, 1938) for each correlation, 0.45 for the correlation between
en→is and 0.57 for is→en, both statistically significant with p < 0.05. This tells us that
manual evaluation using the taxonomy we employ can also be helpful in determining which

sentence aligner to use, if other resources are not available. By looking at the results, we

see that the top-3 systems in the manual evaluation results rank number 1, 2 and 5 in the

BLEU-evaluation.

In the next chapter, we will investigate methods to mine parallel sentences from compa-

rable corpora. We will also consider if we can mine useful data from what is discarded in

the parallel document sentence alignment process, by using similar methods to those used

when mining comparable corpora.



Chapter 6

Comparable Corpora and Utilizing

Discarded Data

In Chapter 5, we aligned parallel documents at the sentence level and extracted parallel sen-

tence pairs from the alignments. Previously, in Section 4.2.1, we filtered Paracrawl, a corpus

consisting of parallel sentence pairs mined from web-crawled corpora, to extract from it par-

allel sentence pairs beneficial for MT training. In this chapter, we experiment with mining

our own set of parallel sentences from comparable corpora, using cross-lingual information

retrieval (CLIR) and a classifier.

We experiment with extracting data fromWikipedia articles,1 which are a very accessible

source of comparable documents for a wide variety of languages. We compare the results

of our mining experiment to the publicly available Wikimatrix (Schwenk et al., 2021), an

extraction of parallel sentences across multiple languages. We then proceed to investigate

if we can use similar methods to further process parallel sentence pairs in a parallel corpus.

We test the feasibility of the idea on the Samanantar corpus of Indian languages (Ramesh

et al., 2022), looking specifically at English–Bengali which we find to be somewhat noisy.

Finally, we seek to answer the research question we set out for this chapter: RQ4: Are text

segments, discarded during sentence alignment and filtering, suitable as a source for

mining useful sentence pairs forMT training? We investigate whether we can apply com-

parable corpora mining approaches to this often overlooked potential source of comparable

data. For this, we work with the ParIce corpus, particularly sentences that were excluded

from the training set created using our highest-scoring setup in the downstream MT task in

Section 5.3.3.

6.1 Related Work

Comparable corpora have been shown to be a useful source for mining parallel segments that

can help improveMT quality (Wolk et al., 2016; Hangya and Fraser, 2019). Afli et al. (2015)

extract parallel data from a multimodal comparable corpus from the Euronews2 and TED3

web sites. Chu et al. (2015) extract parallel texts from the Chinese and Japanese Wikipedia,

and Ling et al. (2014) employ a crowdsourcing approach to extract parallel text from Twit-

ter data in order to find the translations in tweets. Karimi et al. (2018) describe the ap-

proach for extracting parallel sentences from English–Persian document-aligned Wikipedia

1https://www.wikipedia.org/
2https://www.euronews.com/
3https://www.ted.com/

https://www.wikipedia.org/
https://www.euronews.com/
https://www.ted.com/
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entries. They use two MT systems to translate from Persian to English and the reverse.

The information retrieval (IR) system produces two scores that indicates the relevancy of

any given translation for the original sentences, one for each original English sentence and

Persian→English translations, and another for each original Persian sentence English→Per-

sian translations. These scores are used to calculate similarity scores for each sentence pair.

Multilingual sentence embeddings have also been applied to the problem, obtaining state-of-

the-art performance (Schwenk, 2018; Artetxe and Schwenk, 2019b). Ramesh et al. (2022)

describe the collection of parallel corpora for 11 Indic languages from diverse comparable

corpora using LaBSE embeddings (Feng et al., 2022), a language-agnostic BERT sentence

embedding model trained and optimized to produce similar representations for bilingual sen-

tence pairs that are translations of each other.

Word alignments have previously been used for parallel sentence extraction. Munteanu

and Marcu (2006) experiment with extracting parallel sub-sentences from comparable cor-

pora using word alignments to link words in the source and target language and use log-

likelihood-ratios to estimate probability of all word-to-word links, which they use to de-

termine if two strings of words are parallel. Zariņa et al. (2015) identify parallel sentences

using word alignments, experimenting with five different alignment-based scores. They pre-

sume that if a pair of sentences are equivalent in two languages, there should be many word

alignments between the sentences, and non-parallel sentences should have few or no word

alignments. Stymne et al. (2013) use alignment-based heuristics to filter out sentence pairs,

and Lu et al. (2020) use a word alignment-based translation score as a part of their scoring

ensemble for filtering a noisy parallel corpus. Their translation score is a simplified version

of the translation score introduced by Khadivi and Ney (2005). Azpeitia et al. (2017) and

Azpeitia et al. (2018) describe a method using CLIR and lexical translations obtained using

word alignments, with a simple overlap metric. They obtained the highest results for the

BUCC 20174 and BUCC 20185 shared tasks.

Work on sub-sentential fragment extraction includes that of Hangya and Fraser (2019),

who use bilingual word embeddings to greedily align words in partially parallel sentences,

and then average the word alignment scores and weight them using segment length to decide

if a given segment pair is parallel. However, we are not aware of any work to date attempting

to utilize discarded parallel training data.

6.2 Mining Comparable Corpora for Parallel Sentences

When parallel sentences are extracted from parallel corpora, it can usually be assumed that

the sentence order in the texts is the same. In that case, as described in Chapter 5, extract-

ing parallel sentences becomes a pathfinding, scoring and filtering problem. When dealing

with comparable corpora in two languages, in contrast, we work on the assumption that two

documents in two languages are not mutual translations, but that they share similar content,

domain or theme. Thus, the documents potentially contain semantically equivalent sentences

in the two languages. Parallel sentence candidates can usually come from anywhere in two

comparable documents, i.e. a potential parallel counterpart of one sentence in the source-

language document can be any sentence in the target-language document. If the average

number of sentences in comparable documents is n, the number of potential sentence pairs
that have to be evaluated can be up to n2. This quickly becomes overwhelming as n in-

creases and so it is imperative to reduce the evaluation load, ideally to a maximum of k × n

4https://comparable.limsi.fr/bucc2017/
5https://comparable.limsi.fr/bucc2018/

https://comparable.limsi.fr/bucc2017/
https://comparable.limsi.fr/bucc2018/
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candidates, where k is a constant number of allowed candidates for each sentence in the

comparable documents.

In this section, we describe our work on extracting parallel data from comparable cor-

pora, described in Steingrímsson et al. (2021b).6 Our approach divides the problem into two

main steps. We started by extracting parallel sentence candidates using an inverted index-

based CLIR tool called FaDA (Lohar et al., 2016), that can be applied to documents in any

two languages, provided that a bilingual dictionary for the languages is available. Using the

tool for our experiments we consider each sentence to be one document. In the second step,

we scored the sentence candidates using two different scores: LaBSE, based on contextual-

ized embeddings, and WAScore, based on high-precision word alignments. Then, a logistic

regression classifier selected sentence pairs based on these scores.

We performed three different tests to evaluate our approach. First, we used a BUCC-

style evaluation set and, second, a manually curated set created from all sentences in fifteen

Wikipedia articles. For these sets, we measured precision, recall and F1-scores, based on
the extracted parallel sentences. Third, we measured accuracy in terms of BLEU-score on

a downstream MT task, where the extracted parallel sentences were used as supplemental

data for training NMT systems. The systems were compared to a baseline in order to give

an indication of the usefulness of the supplemental data for NMT training.

6.2.1 Data

Weworked with the English–Icelandic language pair, for which no evaluation sets had previ-

ously been made available for parallel sentence extraction from comparable corpora. There-

fore, we built test sets in order to be able to evaluate our approach.7 We prepared the fol-

lowing data sets for our experiments:

• CompNews: We generated development and test sets for identifying parallel sentences

in news corpora, in the style of the test sets compiled for the BUCC 2017 shared task

on parallel sentence identification (Zweigenbaum et al., 2016). The sets consist of a

small set of known parallel sentences, as well as a larger list of randomly sampled

sentences from monolingual corpora in the same domain, but with no known parallel

pairs. The parallel sentences used are the 2, 000 English–Icelandic/Icelandic–English
sentence pairs made available as development data for the news translation task in

WMT 2021 (Akhbardeh et al., 2021).8 The non-parallel sentences were randomly

selected from News crawl 2018,9 and 2018 news texts in Icelandic sampled from the

IGC. This resulted in two lists of 100,000 sentences each: one list of English sentences

and another list of Icelandic sentences. 2% of the sentences in each list were known

to have a corresponding sentence in the other language. We made a 40/60 split, with
the true parallel sentence pairs equally distributed between the splits. The smaller part

was used as a development set and the larger part as a test set.

6The work described in this section was carried out in cooperation with Pintu Lohar. Pintu Lohar, a re-

searcher at Dublin City University, created the list of parallel sentence pair candidates, using the cross-lingual

information retrieval tool FaDa, while I carried out the second step of scoring and selecting the final sentences,

as well as training and evaluating the MT models.
7All available at: https://github.com/steinst/bucc2021-en-is
8The development set for WMT 2021 contains 1000 sentences in each translation direction. It is available

at: http://statmt.org/wmt21/translation-task.html
9Available at: https://data.statmt.org/news-crawl/en/

https://github.com/steinst/bucc2021-en-is
http://statmt.org/wmt21/translation-task.html
https://data.statmt.org/news-crawl/en/
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• CompWiki: We randomly selected 15 Wikipedia articles available in both Icelandic

and English. The texts were split into sentences and the CLIR tool, FaDA, was used to

obtain translation candidates for each sentence. These sentence pairs were manually

evaluated and marked as parallel, partially parallel, or non-parallel. Out of a total of

10,098 sentences, 86 were marked as parallel and 421 as partially parallel.

• CompTrain: In order to gain some information on the kind of scores the two scoring

methods, LaBSE andWAScore, give to non-parallel data, on the one hand, and parallel

data, on the other hand, we compiled a dataset with 50,000 randomly sampled pairs

from the two monolingual corpora used for CompNews and added parallel sentences

from version 1 of the ParIce corpus. We selected 2,500 random sentence pairs from a

development set published with the corpus and removed all pairs containing sentences

with five tokens or less. This resulted in 1,743 sentence pairs, marked as positive data

for a classifier. The resulting 51,743 sentence pairs are scored in the same way we

score the parallel sentence candidates (i.e. with LaBSE and WAScore), and used to

train the logistic regression classifier.

6.2.2 Mining Approach

FaDA, the CLIR-based bilingual document alignment tool that we used in the first step of the

mining process, considers each sentence as a separate document and starts by indexing both

the source-language and target-language documents. It then constructs a query that selects

important words in the document (which is a sentence in our case) based on occurrence

count as well as frequency relative to frequency in all documents. The query terms are then

translated, in our case using our English–Icelandic lexicon (see Section 3.6), and the system

searches the translated query terms in the target-language index, returning the top-10 target-

language candidates for each source-language sentence. This process is then repeated in the

other direction. For the CLIR tool we used to obtain parallel pair candidates, a bilingual

lexicon with lexical translation probabilities is needed.

When mining comparable corpora, it can be hard to distinguish between true alignments

and partial alignments. If we try to assign similarity scores between two sentences that are

semantically close, most scoring systems will not detect nuances due to a few extraneous

words on either side of the aligned sentences that do not have an equivalent in the other

sentence. In order to try to help with this problem, we used two different types of scores,

LaBSE and WAScore. As shown in Section 4.2.3, LaBSE can score an English–Icelandic

sentence pair with a good correlation between the score and the likelihood of the pair being

semantically equivalent. By using word alignments and WAScore, we have a mechanism

which lowers the confidence for misaligned pairs, which contain extraneous words that can

not be aligned (see Section 3.2). These scores were used as an input for a logistic regression

CompNews

Set Size Precision Recall F1

Intersection 135k 0.95 0.80 0.87
Union 1860k 0.92 0.86 0.86

Table 6.1: Precision, Recall, F1-measure and number of extracted sentences for a union and inter-

section of the FaDA output.
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CompWiki

Set Precision Recall F1

Parallel 0.39 0.90 0.54
+partially 0.84 0.33 0.47

Table 6.2: Precision, Recall and F1-measure as measured when only looking at the sentence pairs

marked as parallel in the test data, and when the partially parallel have been added to the desired

output.

classifier which determines whether a sentence is parallel or not. The classifier was trained

on our CompTrain dataset, described in Section 6.2.1.

6.2.3 News Data

We started by experimenting on the CompNews dataset, with the simple goal of extracting

as many parallel sentence pairs as could be found from the two lists of 100,000 sentences

in English and Icelandic. After running FaDA, we obtained 10 candidates for each of the

100,000 sentences in each language. We created two different candidate sets, one by taking

an intersection of both directions, en→is and is→en, and the other by taking a union of the

two directions.

As shown in Table 6.1, the intersection returned 135k candidate pairs while the union

set contained a total of 1,860k pairs. We calculated LaBSE scores and WAScore for each of

the candidate pairs and applied a logistic regression classifier trained on CompTrain to the

scores. After applying our classifier, we ended up with 2,034 sentence pairs, of which 1,871

were part of the 2,000 valid sentence pairs in the evaluation dataset. Using the intersection

data, we ran our classifier on 93% fewer sentence pairs, while still obtaining almost as many

of the valid sentence pairs (1,693) from the 1,782 pairs accepted by our classifier. While

the F1-scores for both approaches were similar, using the union data set we obtained higher

recall but using the intersection data set gave better precision.

6.2.4 Extracting Sentence Pairs from Wikipedia Articles

In the same fashion as before, we evaluated our method on Wikipedia data using our Comp-

Wiki evaluation set, this time only working with an intersection of the two translation direc-

tions. The set contains 10,098 sentences, of which our classifier deemed 200 sentence pairs

to be parallel. 77 of these are annotated as parallel in the manually curated test set and 90 as

partially parallel. This means we correctly identified all but 9 of the parallel sentence pairs

while also extracting 90 out of 421 partially parallel ones. Table 6.2 shows precision, recall

and F1 scores for the experiment, both for valid parallel sentence pairs only, and for sentence

pairs either parallel or partially parallel.

6.2.5 Downstream MT Task

After evaluating the accuracy of our approach for extracting parallel sentence pairs from

Wikipedia, we proceeded to collect all parallel sentence pairs we could identify in 35,690

article pairs on the English and Icelandic Wikipedia. The collection contained 412,442 Ice-

landic sentences and 4,259,150 English sentences. Our setup, using FaDA and our classifier,
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Wikipedia Training

Training Supplemental TestEEA TestEMA TestOS Combined

Data Sentences

ParIce50k 0 9.0 9.0 1.6 8.1
ParIce50k+WikiMatrix 313, 875 5.6 5.2 2.3 5.1
ParIce50k+Our approach 55, 744 13.9 15.9 7.0 13.7

Table 6.3: BLEU scores for MT systems trained on parallel data and sentences extracted from com-

parable corpora.

yielded 55,744 sentence pairs that were classified as parallel sentences using an intersection

of both translation directions.

There have been previous efforts in extracting parallel sentences from Wikipedia. One

of the largest such efforts is the WikiMatrix project that mined parallel sentences in 1,620

language pairs. We compared the en–is language pair in WikiMatrix to the output of our

system. The first obvious difference is that the WikiMatrix dataset has a lot more data, al-

most 314,000 sentence pairs compared to our 55,744. To investigate the usefulness of the

datasets, we trained a baseline NMT system, a TransformerBASE model, on 50,000 sentence

pairs randomly sampled from the ParIce corpus. We compared it to systems where WikiMa-

trix was added as supplemental data, and to a system where the results of our approach was

used to supplement the ParIce data, using the same hyperparameters.

We compare BLEU scores for the different setups on a combination of three test sets

(Barkarson and Steingrímsson, 2020), as well as on each of the test sets individually: Test-

EEA – containing sentence pairs from EEA regulatory documents; TestEMA – containing

sentence pairs from medicine descriptions distributed by EMA; and TestOS – containing

sentence pairs from OpenSubtitles. TestEEA and TestEMA, extracted from rather special-

ized texts, generally have long sentences, while TestOS, from a rather open domain, tends

to have shorter sentences. The test sets are used as filtered by Jónsson et al. (2020). All the

sentence pairs in the test sets have been manually checked for correctness.

In Steingrímsson et al. (2021b), our paper on mining comparable corpora, we note that

our classifier accepts some sentence pairs even though they have a very low WAScore. In

order to investigate the effect of using WAScore as a threshold, we train a number of NMT

models where we remove sentence pairs under the threshold score. We find that for this

data, setting a low threshold for WAScore helps us remove sentence pairs detrimental for

training, without losing too many beneficial sentence pairs. In the experiment, this raises

our combined BLEU score by approximately one point, while using only 34k supplemental

parallel pairs for training instead of 56k, as shown in Figure 6.1.

6.3 Re-Evaluating Data That Would Potentially Be

Discarded

When parallel corpora are preprocessed for MT training, a part of the data is commonly

discarded. This can be due to sentence length that is incompatible with the model training

settings, bad alignments, sub-standard translations, or some other cause of faulty data, as

outlined in Chapter 4. For language pairs with limited resources, this can be costly, as in such

casesmodest amounts of acceptable datamay be useful to increase output quality. We carried

out two experiments where we extract useful parallel sentences from discarded data. In the
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Figure 6.1: BLEU score of the combined evaluation sets for NMTmodels trained on 50,000 sentence

pairs from ParIce as well as supplementary sentence pairs mined from Wikipedia, with different

WAScore thresholds.

first experiment, we work with an English–Bengali parallel corpus, split up the sentences

in discarded pairs into a few segments and try to find parallel sub-sentences.10 Our second

experiment with discarded data will be described in Section 6.4.

6.3.1 Extracting Sub-sentences from Discarded Parallel Pairs

First, we work with the English–Bengali parallel corpus from the recently released Samanan-

tar data set (Ramesh et al., 2022). This is a publicly available parallel corpora collection for

11 Indic languages. The English–Bengali training data contains 8.52 million sentence pairs.

When inspecting random samples from the dataset, we found that not all the sentences pairs

are mutual translations, although many contain parallel sub-sentences that can be useful to

acquire translation knowledge.

We begin by calculating LASER, LaBSE and WAScore for each sentence in the corpus,

and, in the same fashion as we carried out in Section 6.2, use a logistic regression classifier

that considers the scores to decide which sentence pairs to filter out. We then order the

remaining sentence pairs in descending order based on LaBSE similarity score and create

differently sized sets of parallel sentence pairs, with one set containing the 500,000 highest-

scoring pairs, another containing the 1,000,000 highest-scoring pairs, and so on as shown

in Table 6.4. Note that the S1 data set represents all the 5.6 million sentence pairs that our
classifier deemed acceptable. The other sets contain a subset of the sentence pairs from S1,

based on the order of similarity score.

6.3.2 Model Training and Evaluation

We use all of the differently sized data sets in Table 6.4 to train TransformerBASE models, as

described in Chapters 4 and 5, and evaluate them separately. We train each model on a single

10The work in this section was joint work with Pintu Lohar. Pintu inspected the English–Bengali corpus

and found that it contains some problematic sentence pairs, as well as splitting up the data.
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Dataset Size en→bn bn→en

(#sentence pairs ×106) BLEU time BLEU time

Samanantar 8.52 18.1 29h27m 27.9 20h2m

S1 5.6 19.0 14h33m 27.8 19h5m

S2 5 19.1 15h43m 28.5 11h22m

S3 4 18.9 16h32m 27.2 9h8m

S4 3 19.5 7h32m 26.6 6h38m

S5 2 18.7 5h57m 25.6 5h37m

S6 1 17.3 1h29m 23.3 1h43m

S7 0.5 14.9 1h6m 19.9 37m

Final 3.84 (2+fragments) 19.7 10h52m 26.8 10h32m

Table 6.4: BLEU scores, evaluated on the FLORES evaluation set, for models trained on different

sets of selected data until convergence. Scores in bold and italics are highest and significantly higher

than other scores.

A100 GPU and use early stopping with the patience set to 5 epochs, the same approach as
Ramesh et al. (2022) when they train TransformerBASE models to compare against their large

model. We evaluate the models using BLEU scores calculated on the FLORES evaluation

set (Goyal et al., 2022). We use SacreBLEU (Post, 2018) following the process carried out

by Ramesh et al. (2022). For Bengali–English, we use the default mteval-v12a tokenizer,

but since the SacreBLEU tokenizer does not support Bengali we first tokenize using the

IndicNLP11 tokenizer before running SacreBLEU. SacreBLEU signatures for en→bn12 and

bn→en13 are provided in footnotes.

6.3.3 Baseline System

We trained models for both translation directions on the full Samanantar dataset of 8.52

million sentence pairs and set that as a baseline for our experiment. The models achieved

18.1 and 27.9BLEU for en→bn and bn→en, respectively (see Table 6.4), which is somewhat

below the scores of 20.3 and 32.2 reported for IndicTrans (Ramesh et al., 2022), trained on
the same data. This is most likely due to the model size. We train TransformerBASE models

with ≈ 60, 000, 000 parameters, while IndicTrans is a very large transformer model with
≈ 400, 000, 000 parameters.

When we evaluate and compare the models trained on different amounts of data, where

the smallest datasets have only the highest-scoring sentence pairs in terms of the similarity

score used, we find that the BLEU score rises when sentence pairs are added, but only up to a

point, when it starts going down again. We speculate that this results from the data becoming

more and more noisy, eventually hindering performance. These turning points are different

for each language direction, which could be for a number of reasons. For example, the noise

might be more prevalent in one language than the other or generating text in one language

may need more data than in the other due to complex morphology or other systemic factors.

In our experiment, the turning point is lower for the en→bn dataset, with the highest

BLEU for a subset of 3,000,000 sentence pairs. As we do not know whether a more fine-

grained turning point would be below or above the 3,000,000 sentence pair mark, we use the

2,000,000 highest-scoring sentence pairs for our final system and process further the other

11https://github.com/AI4Bharat/indicnlp_catalog
12BLEU+numrefs.1+case.mixed+tok.none+smooth.exp +version.2.2.0
13BLEU+numrefs.1+case.mixed+tok.13a+smooth.exp +version.2.2.0

https://github.com/AI4Bharat/indicnlp_catalog
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Type of #sentence/segment

selection/discarding pairs

Whole pairs selected 1.25M
Whole Bengali and Partial English 79K
Whole English and Partial Bengali 88K
Both partial 456K
Discarded 1.74M

Table 6.5: Result of sub-sentential selection

3.6million sentence pairs, deemed acceptable by the initial classifier. In order to extract from

them data likely to be useful, we split up the sentences in both languages using commas and

conjunctions as delimiters. In English, we use ‘and’ and ‘or’, and ‘ও’ and ‘এবং’ in Bengali.
This results in pairs of sentence parts, with more than half the sentences in each language

containing only one or two parts, but approximately 200, 000 Bengali sentences and 400, 000
English sentences with five parts or more. From these parts we create new segments by

creating all possible combinations of up to six adjoining sentence parts for each language,

as well as the original full sentence, on the condition that the combination contains five or

more words. We then pair each new segment against all segments in the other language for

any given pair. This results in a total of ≈ 115 million segment pairs.
As before, we use LaBSE to estimate semantic similarity for all segment pairs. Feng et al.

(2022) use the threshold 0.6 for selecting sentence pairs mined from CommonCrawl, as they

find pairs scoring higher than or equal to this threshold likely to be at least partial translations

of each other. Partial translations are often an effect ofmisalignment and, according toKoehn

et al. (2018), including them in a training set can be detrimental to the resulting MT quality.

Our aim is to reduce the number of partial translations in our training set and extract from

them better mutual translations. Thus, we decide to set our threshold even higher, to 0.75.
Furthermore, we proceed to find the best segment pair created from each sentence pair, and

only include that one in our training set, so that a given segment pair cannot produce more

than one new segment pair. The resulting pairs can be the original sentence pair or a sub-

sentence from one or both sides. Out of the 3.6million sentence pairs, more than 1.7million
were discarded, over 1.2million sentence pairs were accepted unchanged, and the remaining
sentences were accepted when a part had been removed from either one or both languages,

as listed in Table 6.5. Using this approach, we produce 1.84million segment pairs which we
add to our foundation training set of 2, 000, 000 sentence pairs. We then use this combined

data to train a new translation model to investigate whether this processing approach affects

the quality of translations, as measured by BLEU.

6.3.4 Evaluation

In order to evaluate if our methodology works to increase translation quality of an NMT sys-

tem, we train a new model using the same hyperparameters as before and calculate BLEU

scores. Table 6.4 shows how using our method gives us the highest BLEU score for en→bn,

which is the translation direction we used to decide what data we should process for sub-

sentence selection. This indicates that the added segment pairs add more value than if the

same number of unchanged sentence pairs would have been added to the training data. By

processing the dataset using our methodology, we reduce the training time by 65% while

raising the BLEU score by 1.6, from 18.1 to 19.7. A statistical significance test shows that

our improved system, trained on less data, is significantly better than the baseline, training
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English Icelandic

Without alignments 482, 975 563, 381
Discarded in filtering 350, 964 364, 267
1. Total discarded 833, 939 927, 648
2. Min. three words + Deduplication 234, 835 242, 456
3. After sentence splits 2, 793, 254 2, 279, 111

Table 6.6: Number of discarded sentences used in the experiment and the resulting number of sen-

tence segments, which are candidates for new alignments.

on all of Samanantar, with p < 0.01. It is also noteworthy that our system is only 0.6 BLEU
below that of IndicTrans, reported in Section 6.3.3, which is almost seven times larger in

terms of parameters and trained on the whole Samanantar dataset. We also tested for statis-

tical significance between our system and IndicTrans and found that there is no statistically

significant difference between the systems for this translation direction.

Our experimental result shows that the extracted segment pairs can contribute to improv-

ing the BLEU score when added as additional data set for training. This has the added benefit

of faster convergence, in our case reducing training time by 65%. While our segmentation

approach is simple, we show that parallel sub-sentences are useful to acquire translation

knowledge and extracting them can lead to significant improvement in performance.

6.4 Discarded Data

In our final experiment using comparable corpora mining methods, we further process the

English–Icelandic ParIce data, aligned in Section 5.3.3. We use the highest-scoring approach

in terms of BLEU score, where SentAlign was used to align after anchoring the dataset using

an ensemble of aligners. The training data resulting from that experiment will be used as a

baseline in this experiment. We then use a combination of the approaches in the two previous

sections to extract parallel sentences from the data that was discarded in the alignment and

filtering process. We add these (discarded) sentence pairs to the training data sets and train

new models to investigate if they improve the accuracy of the models in terms of BLEU

score.

6.4.1 Data Selection and Pre-processing

Using the highest-scoring alignment approach, we obtain 903,692 sentence pairs from ParIce

to train our MT system. We collect all unique sentences that were discarded somewhere in

the process, either by not obtaining an alignment by the sentence alignment algorithm or if it

was a part of a pair not accepted by our filters. In total, we have over 833,000 discarded sen-

tences in English and over 927,000 in Icelandic, as shown in Table 6.6. After deduplication,

and removing all sentences that have less than three tokens that only contain alphabetical

characters, we are left with approximately 235,000 and 242,000 sentences for English and

Icelandic, respectively.

Next, we split all sentences into segments as we did with the English–Bengali data in

Section 6.3. As before, we used conjunctions, ‘and’ and ‘or’ for English and ‘og’ and ‘eða’

for Icelandic. Additionally, we used punctuation for splitting, the same symbols for both

languages: .,;:?!()-”’|. We combined the segments into larger sentence parts and created all

possible combinations of adjoining segments, from single segments up to recreating the orig-
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Processing Step No. Pairs left

FaDA 2, 777, 429
Acceptable Overlap 1, 878, 202
LaBSE minimum 542, 344
Remove identical 542, 240
Logistic regression filter 342, 066
Multiple translations removed 91, 249
Subsentence removal 55, 371
Language filter 36, 200

Table 6.7: Sentence pairs remaining after each step of processing pairs mined from the discarded

data.

inal sentence, provided the combinations had a minimum length of three words, maximum

length of 120 words, and that 70% of the tokens only contained alphabetical letters. This

resulted in 2,793,254 unique Icelandic sentences and sentence parts and 2,279,111 English

ones.

6.4.2 Mining for Sentence Pairs in the Discarded Data

As in Section 6.2 we run FaDA to create sentence pair candidates. We use our English–

Icelandic lexicon (see Section 3.6) and generate 10 candidates for each Icelandic and English

sentence. We then take an intersection of the two generated sets and work further only with

sentence pairs suggested for both directions. This results in 2,777,429 pairs to be inspected

further, applying the following cleaning steps:

• We remove all sentence pairs with major overlap, in which more than 60% of the

tokens in either language are also present in the other.

• We calculate LaBSE score for all pairs and discard pairs that have a lower score than

0.3, because they have a very low chance of being correct (as we found out in Section

4.2.3).

• If two sentence pairs are identical, apart from symbols and numbers, we select the one

having the higher LaBSE score.

• We calculate LASER, NMTScore and WAScore for the sentences and classify them

using our logistic regression classifier.

• We check if there is more than one pair for each English or Icelandic sentence. If so,

only the highest-scoring pair in terms of LaBSE is selected.

• For each sentence pair A, we check for other sentence pairs where the sentences are
subsentences of A, such that the subsentence is between 67% and 100% of the length

of the original one. If we find another sentence pair, B, having an Icelandic sentence
Bis that is a substring of Ais and an English sentence Ben which is a substring of Aen,

we select the pair that has a higher LaBSE score and discard the other one. This way,

we remove nearly identical sentence pairs originating from the same sentences.

• Finally, we run our pairs through a fasttext language filter, the same one we used in

Chapter 4.
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Dataset en→is is→en

BLEU BLEU

903,692 pairs (no discarded data) 43.4 54.0

939,892 pairs (including discarded data) 43.9 54.3

Table 6.8: Best BLEU scores for models trained with and without the sentence pairs mined from

discarded data. The score in bold, representing the training set for is→en including the discarded

data, are higher but not significantly higher (p>0.05) than the score obtained without the discarded
data in the training set. The score in bold and italic, representing the training set for en→is including

the discarded data, are significantly higher than the score obtained without the discarded data in the

training set.

In Table 6.7, we show the number of remaining sentence pairs after each processing

step. After the final step, only 36,200 sentence pairs remain. We add these pairs to the

training data previously acquired by sentence alignment and filtering, resulting in a total of

939,892 sentence pairs. We train TransformerBASE models using the same settings as before,

with patience set to 10 epochs, and calculate BLEU scores for the system with best loss on

the in-domain EEA development set from the ParIce 21.10 dev/test splits (Barkarson et al.,

2021), compiled from held-out documents from the same source as the ParIce corpus. We

compare the results to the systems trained without the supplemental sentence pairs mined

from discarded data.

Table 6.8 shows the results of our experiment. We obtain higher scores for both trans-

lation directions, but only the en→is translation is significantly higher (p<0.05) when the
training data is supplemented with the sentence pairs mined from the discarded data. With

regards to the low number of sentence pairs retrieved using this approach the results should

not be surprising, but it is still an indicator of this approach being able to give some additional

benefits to a training set for MT.

6.5 Conclusions

Our experiments have shown that our method, combining cross-lingual information extrac-

tion, contextualized embeddings-based scoring, and a classifier based on multiple different

scoring mechanism, is efficient at finding parallel segments in comparable corpora. Our ex-

periments reveal that we can expect a part of the mined pairs to be partially parallel, and that

by splitting the sentences up and investigating which parts of the sentences are most appro-

priate for pairing with other sentences or sentence parts, we can improve the quality of our

parallel corpora, leading to better quality MT models trained on the data.

Regarding our research question, our experiments indicate that there is a potential in

taking a second look at data that would usually be discarded. Such data can be considered to

be comparable corpora and treated as such for mining parallel sentence pairs. While it does

not result in a very large number of sentence pairs in our experiments, it does have a positive

effect on a downstream MT task.

In the next chapter, we will conclude by training MT models on the combined data pro-

duced by our experiments, and comparing them to models trained on only the ParIce corpus.

We will compare the models using automatic metrics on the WMT evaluation sets, as well

as having professional translators and linguists carry out manual evaluation using two eval-

uation methodologies.



Chapter 7

Putting It All Together: Evaluation

In Chapter 6, we mined comparable corpora for parallel sentence pairs, refined a parallel

corpus by removing extraneous data from partially parallel sentence pairs, and took a sec-

ond look at data discarded during the compilation phase of a parallel corpus. In previous

chapters, we have developed approaches to improve alignment and filtering of parallel data.

We evaluated MT output by computing BLEU scores using different evaluation sets. For

general comparison, we have used the evaluation data set for English–Icelandic from the

WMT21 news translation task. We have also used our own evaluation sets, which we cre-

ated by sampling and manually revising sentence pairs from ParIce subcorpora: EEA texts,

Open Subtitles, ESO, EMA and news from the Nordic Council of Minsters. We trained our

models using the TransformerBASE architecture.

In this chapter, we will put all of our approaches together, combining training data com-

piled using the highest-scoring methods, and recruit translation professionals and linguists

to manually evaluate the output of MT systems trained on that data. The purpose of the

manual evaluation is to investigate whether our methods for compiling training data have a

measurable effect on the output of MT systems, as perceived by humans.

While BLEU is an easy to use indicator of translation quality and can be useful for di-

agnosing whether MT systems improve or deteriorate when hyperparameters are changed in

training, or when training data changes, the evaluation metric has been criticized for hav-

ing low correlation with human judgements for most of the time it has been in use, see e.g.

Callison-Burch et al. (2006) and Freitag et al. (2022). Nonetheless, it is still used in most MT

research and is thus a convenient, although somewhat flawed, way of comparing different

MT systems (using the same tokenization). Indeed, a wide range of automatic metrics have

been developed. We experiment with a recent one, COMET-22, which was shown to have

a high correlation with human judgment in the WMT22 metrics shared task (Freitag et al.,

2022).

We evaluate output from MT systems, trained on differently compiled datasets for dif-

ferent translation directions using both a classic fluency evaluation approach and Multidi-

mensional Quality Metrics (MQM), a framework created as part of the EU QTLaunchPad

and QT211 projects.

We aim to investigate whether the approaches we have developed for preparing MT

training data are useful, and that they produce data that leads to betterMT output as perceived

by human users. We will compare systems trained on ParIce version 21.10 to a version of

ParIce aligned and filtered using our best approaches, as well as a dataset composed of all

1www.qt21.eu

www.qt21.eu
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the datasets we have created in the preceding chapters. We use two model architectures:

TransformerBASE as before, and mBART (Liu et al., 2020b), fine-tuned on our datasets.

In Section 7.1, we give an overview of relevant related work and Section 7.2 provides a

description of our final models. In Section 7.3, we evaluate the systems’ output automatically

using the two previously mentioned metrics. Section 7.4 describes the human evaluation and

its results, and Section 7.5 concludes the chapter with discussions about the results and their

significance.

7.1 Related Work

Ever since the first MT systems were developed, there have been efforts to evaluating their

quality in terms of how well they convey the intent of the original text, fluency in the tar-

get language, style, tone, consistency and other factors. Efforts were made to standardize

the measurement procedure in the ALPAC report (ALPAC, 1966), assessing “intelligibil-

ity” (how natural the text reads) and “fidelity” (how precisely the translation comprehends

the meaning intended) on nine-point scales. In the early 1990s, methodologies were de-

veloped within an ARPA-sponsored MT research program (White et al., 1994), suggesting

three measures for evaluating MT: Adequacy (can the information in a professional transla-

tion be found in the MT output), fluency (does the translation read like good English) and

comprehension (the degree to which a translated text can be understood).

For the first two WMT shared translation tasks, MT output was evaluated in terms of ad-

equacy and fluency, rated on five-point scales (Koehn and Monz, 2006). Vilar et al. (2007)

pointed out drawbacks to these measures, arguing that they were subjective, evaluators could

be biased, and the results were not reproducible. They suggested ranking MT systems in-

stead. Ranking-based approaches became the officialWMTmetrics in 2008 (Callison-Burch

et al., 2008) and remained so until 2016. Graham et al. (2017) argue that as consistency lev-

els are low for these methods and researchers who assess the systems have been shown to

slightly favour their own, other methods of human evaluations are needed. Graham et al.

(2013) had previously suggested using a continuous scale in the range of 0–100, allowing

for scores to be standardized to eliminate individual judge preferences, resulting in higher

inter-annotator agreement. Callison-Burch et al. (2007) found that adequacy and fluency

evaluations are highly correlated. In light of this, Bojar et al. (2016) explored evaluating MT

by asking annotators to provide an assessment of the direct quality of a system’s output rela-

tive to a reference translation. This is called direct assessment (DA) and has been employed

for evaluations at WMT since 2017.

Some of the shortcomings identified for DA include that scores have been found to cor-

relate poorly with more fine-grained MT evaluation and to exhibit weaker preference for

human translations compared to machine output (Freitag et al., 2021b). Moreover, non-

professional crowd-sourced workers are typically used for DA, requiring robust vetting.

Freitag et al. (2022) point out that 63% of annotations for WMT22 were removed due to

failing quality control, and Bentivogli et al. (2018) find that they exhibit a reference-bias,

with evaluators scoring correct translations lower if they deviate from the reference text.

Way (2018) argues that there is no single ‘gold standard’ measure of quality for MT, and

that it needs to be evaluated in the context of the use-case for which it is intended. He empha-

sises that human evaluation of MT output is crucial if system developers are to improve their

systems. Läubli et al. (2020) and Toral et al. (2018) make identical recommendations for

best practices when evaluating MT, based on empirical evidence from their research. These

include using original source texts and not source texts that are translations themselves, eval-
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uating whole documents and not just sentences, evaluating both fluency and adequacy, and

choosing professional translators as raters.

A wide range of other different approaches have been suggested. Scarton and Specia

(2016) propose using a corpus of reading comprehension tests, evaluatingmachine-translated

documents based on answers to questions by fluent speaker of the target language. Forcada

et al. (2018) suggest gap-filling as a cheaper alternative to reading comprehension approaches

when evaluating the usefulness of MT for gisting.

The MQM framework was developed to be flexible and suitable for evaluating any sort

of translated text, human or machine translated (Lommel et al., 2014). It is not a one-size-

fits-all metric, but rather a model for declaring multiple metrics, a fine-grained approach to

quality evaluation allowing the results for error types to be compared. It is language neutral

and therefore applicable to any language pair.

7.2 The Final MT Models

In order to test the feasibility of our approaches, we train models using different datasets,

described in Table 7.1. They are: 1) ParIce 21.10; 2) a refined version of ParIce, realigned

and filtered using our highest-scoring methods for each translation direction, as well as par-

allel sentence pairs mined from the discarded data; and 3) a training set containing all the

data we processed, ParIce using the alignment approaches from Chapter 5, filtering from

Chapter 4 and discarded data refined in Chapter 6, ParaCrawl using the filtering approaches

from Chapter 4 and sentence pairs from Wikipedia collected using the comparable corpora

mining approaches described in Chapter 6.

We train our final models using two different architectures: TransformerBASE models

(as in Section 3.5), and mBART25 fine-tuned on our datasets. mBART25 is an LLM (≈
610, 000, 000 parameters) pre-trained on 25 languages, including English but not Icelandic.
The model has been successfully adapted to translating between English and Icelandic (Sí-

monarson et al., 2021). We use fairseq (Ott et al., 2019) to train the models. The models are

fine-tuned on a desktop computer running an i5-12600K processor, with 64 GB of memory

and a GeForce RTX 3090GPU.We train for 500,000 updates, taking approximately 50 hours

for each model. We use the same hyperparameters as Liu et al. (2020b), except that we do

10,000 warm-up steps. We validate the models every 25,000 steps in terms of BLEU score

Dataset Description en→is #pairs is→en #pairs

ParIce 21.10 ParIce parallel corpus, version 21.10 1,864,679 1,864,679

ParIce refined Realigned and refiltered ParIce corpus 1,495,524 1,505,706

+ sentence pairs extracted from the

discarded data.

All data ParIce refined + ParaCrawl 2,277,023 2,754,596

+ Wikipedia sentence pairs

Table 7.1: Description of data sets used for training the final models. We realigned and refiltered the

whole ParIce corpus using the highest-scoring filtering approaches for each translation direction, as

described in Chapter 4, and the highest-scoring alignment approaches, as described in Chapter 5. We

then mined for more parallel pairs in the discarded data, as described in Section 6.3. For the largest

training set, we added ParaCrawl as filtered for each translation pair in Chapter 4 and the parallel

Wikipedia sentence pairs mined in Section 6.2.4.
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en→is is→en

ParIce 21.10 20.0 25.9

mBART ParIce refined 20.8 27.9

All data 23.0 34.1

ParIce 21.10 19.2 25.7

TransformerBASE ParIce refined 19.6 26.3

All data 23.0 33.5

Table 7.2: BLEU scores for the final models. Scores in bold are highest and significantly higher

(p<0.05) than other scores in the same group.

on the development set from the en–is shared task at WMT21, and finally select the best

checkpoint based on validation BLEU. We do this for each dataset and translation direction

and evaluate the best models on the WMT21 en–is evaluation set. For one of the models,

the one fine-tuned on the largest dataset containing all of our processed data and translating

is→en, the best checkpoint was the last one, indicating that the model could possibly im-

prove even further with more updates. For other models, the highest-scoring checkpoints

were from 100,000 (ParIce 21.10: is→en) to 400,000 (All data: en→is).

7.3 Automatic Evaluation

In the preceding chapters, we have evaluated MT output by calculating BLEU scores on dif-

ferent evaluation data sets. For general comparison, we have used the evaluation data set

for English-–Icelandic from the WMT21 news translation shared task. We also used that for

evaluating our final systems in this chapter. Furthermore, we also evaluated the output using

COMET-22 (Rei et al., 2022), a COMET model that has been shown to have a high corre-

lation with human evaluation (Freitag et al., 2022). COMET (Rei et al., 2020) is a neural

framework for MT evaluation. The framework builds on pre-trained cross-lingual language

models such as multilingual BERT (Devlin et al., 2019) or XLM-RoBERTa (Conneau et al.,

2020). The framework is based on an estimator model and a translation ranking model. The

estimator model is trained onmanually evaluated sentence pairs to minimize the mean square

error between predicted scores and quality assessments (such as DA or MQM). The transla-

tion rankingmodel receives the source sentence, hypothesis and a reference, obtains sentence

embeddings from a pre-trained LM and uses the harmonic mean between the distance from

the hypothesis to the source and from the hypothesis to the reference to calculate a similarity

score.

We compared our systems and checked if there was statistical significance between our

model scores, using paired bootstrap resampling for BLEU and paired T-tests for COMET.

Table 7.2 gives the BLEU scores for all our models. For both types of models and both

translation directions, the models trained on all the data are significantly better than the other

models. For all but TransformerBASE en→is, the models trained on ParIce Refined are also

significantly better than the ones trained on ParIce 21.10.

We compared our models to similar models submitted to the WMT21 shared task for

translating the English–Icelandic language pair. Allegro.eu (Koszowski et al., 2021) based

their models on the TransformerBIG architecture. They trained their models using 3,900,000

parallel sentence pairs from ParIce, ParaCrawl and WikiMatrix, and 2,900,000 synthetic

pairs (back-translations). They obtained a BLEU score of 22.7 for en→is and 33.3 for is→en.
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en→is is→en

ParIce 21.10 0.7953 0.7768

mBART ParIce refined 0.8000 0.7858

All data 0.7961 0.8245

ParIce 21.10 0.7431 0.7540

TransformerBASE ParIce refined 0.7563 0.7638

All data 0.7740 0.8130

Table 7.3: COMET-22 scores for our final models. Scores in bold are the highest, but not signifi-

cantly higher than scores in italic, according to the results of the t-test presented in Table 7.4 (p<0.05).

This is slightly less than even our best TransformerBASE models, which are trained on consid-

erably fewer sentence pairs (see Table 7.1) and do not take advantage of any back-translated

data. Icelandic NLP company Miðeind fine-tune mBART25 for their submission (Símonar-

son et al., 2021). They use a filtered version of ParIce, as well as additional data from the

JW300 corpus (Agić and Vulić, 2019) and a small corpus of theses abstracts (Símonarson

and Snæbjarnarson, 2021). Furthermore. they use back-translations, over 30,000,000 sen-

tence pairs for each translation direction. They trained on sixteen 32GB nVidia V100 GPUs

for 4 days, reaching BLEU scores of 22.7 for en→is and 32.9 for is→en. This is lower than

the scores of our mBART models, trained on thoroughly aligned and filtered data, obtained

in 2 days on one GeForce RTX 3090 GPU, which is less than 50% more powerful than one

V100 GPU, according to common benchmarks. Símonarson et al. (2021) then used these

models to generate new back-translations and use these to continue training, reaching 24.3

en→is and 33.5 for is→en. While their en→is model outperforms ours in terms of BLEU,

their is→en model does not. We conjecture that this is due to our data processing methods,

making the data better suitable for NMT training.

We have mentioned some of the criticism of BLEU. Recently, neural metrics have been

said to be better and more robust and the title of the overview paper for the WMT22 met-

rics shared task calls for researchers to stop using BLEU (Freitag et al., 2022). COMET-22

has been shown to be one of the metrics having the highest correlation with human evalua-

Model X / Model Y Tied X wins Y wins p-value

mBART

PI 21.10 / PI refined 12.7% 6.3% 81% 0.0350

en→is PI 21.10 / All data 15.7% 34.7% 49.7% 0.7157

PI refined / All data 14% 73.7% 12.3% 0.1551

PI 21.10 / PI refined 1.7% 0% 98.3% 0.0001

is→en PI 21.10 / All data 0% 0% 100% 0.0000

PI refined / All data 0% 0% 100% 0.0000

TransformerBASE

PI 21.10 / PI refined 0.7% 0% 99.3% 0.0000

en→is PI 21.10 / All data 0% 0% 100% 0.0000

PI refined / All data 0% 0% 100% 0.0000

PI 21.10 / PI refined 2% 0% 98% 0.0003

is→en PI 21.10 / All data 0% 0% 100% 0.0000

PI refined / All data 0% 0% 100% 0.0000

Table 7.4: T-test results of COMET-22 scores for our final models. A p-value in bold means that
there is significant difference between the systems, with p < 0.05.
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tion. Before we proceed with the manual evaluation of our models, we compute COMET-22

scores for our models.

We chose to use the COMET-22 model (Rei et al., 2022) because it was one of two

models having the highest correlation with human judgements in theWMT22 metrics shared

task. The other high correlating metric, MetricX XXL, is not publicly available. Table 7.3

shows the COMET-22 scores for our models. The scores are mostly in line with the BLEU

scores. The mBART models score slightly higher than the TransformerBASE models and the

is→en models score higher than the en→is models. The greatest deviation from the BLEU

results are for the mBARTmodels trained for en→is, where the score for all models are very

close, and the ParIce refined model scores the highest.

We carried out paired t-tests to test for statistical significance. Table 7.4 gives the results
of the paired t-tests. For all model pairs in groups of models/translation directions, there is
a statistically significant difference between all model outputs, except for mBART/en→is.

There, the ParIce refinedmBARTmodel is significantly better than the ParIce 21.10mBART

model, but there is no significant difference between the other two model pairs.

7.4 Manual Evaluation

While there is no consensus on the best approaches to human evaluation of MT output, the

best approach may often be task-based and depend on the purpose of the translations (Way,

2018). In our case, we want to investigate whether training MT models on the different

datasets, compiled using different approaches, affects the output of the models in such a way

that human evaluators perceive the difference. Firstly, we want to see if the translations be-

come more natural when we process the training data with methods we expect to be more

appropriate for the dataset and translation direction. Secondly, we want to know if the trans-

lations are more accurate, with fewer mistranslation or other kinds of effects detrimental to

correctly representing the meaning of the source sentence in the target language.

Our evaluation was twofold. First, we collected subjective reports of the fluency of the

target sentences using the approach employed for the first shared translation tasks at WMT,

and described by Koehn and Monz (2006). They evaluate fluency on a five-point scale,

shown in the evaluator instructions in Figure 7.1. To evaluate translation accuracy, we opted

for using MQM which is very flexible and we can use it to gain an insight into what kind

of errors are prevalent in each model. The errors are grouped in four main categories, with

each of the main categories having a number of subcategories. For a given evaluation task

a subset of the categories can be chosen. Freitag et al. (2021a) argue that a fine-grained

evaluation schema like MQM is needed when the difference in quality of the MT systems is

narrowing. Although we expected there to be quality differences in our models depending on

how the training data was processed, some of the models (ParIce 21.10 and ParIce refined)

use training sets extracted from the same parallel corpus. We thus wanted our evaluation

approach to be able to discern small differences and opted for using MQM.

We wanted the output of each model to be evaluated by multiple evaluators. We also

wanted the coverage to be high enough to be meaningful. However, manual evaluation is

time-consuming and we had to recruit volunteers to carry out the task. We had four groups of

models that we wanted to compare, two types of architecture and two translation directions,

with three models in each group – a total of 12 models to evaluate. As we wanted the evalu-

ations to be carried out in a professional manner, we set a requirement for our evaluators to

be either professional translators or linguists educated in an English-speaking country. We
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Instructions for evaluators

Fluency

The translation assessment is twofold. First, you will evaluate the fluency of the target sentence on a five point scale. For that you

should only consider the target sentence and not the source sentence. If the sentence is flawless, it should get a rating of 5, and if

it is incomprehensible it should get a rating of 1, as described below:

5 - Flawless English/Icelandic (depending on the target language in each case)

4 - Good English/Icelandic

3 - Non-native English/Icelandic

2 - Disfluent English/Icelandic

1 - Incomprehensible

Note, that the fluency measure is only for indicating whether the translation is well-formed and reads like a good English/Icelandic

sentence, without reference to the source sentence.

Error analysis

In the second part you will assess translations at the segment level, where a segment may contain one or more sentences. Each

segment is aligned with a corresponding source segment, and both segments are displayed. Annotate segments in natural order, as

if you were reading the document. You may return to revise previous segments.

Please identify all errors within each translated segment, up to a maximum of five. If there are more than five errors, identify

only the five most severe.

When identifying errors, please be as fine-grained as possible. For example, if a segment contains two words that are each

mistranslated, two separate mistranslation errors should be recorded. If a single stretch of text contains multiple errors, you only

need to indicate the one that is more severe. If all have the same severity, choose the first matching category listed in the error

typology (e.g. Accuracy, then Linguistic Conventions, then Terminology, etc). If there is something odd in the source segment that

is replicated in the target sentence, you should ignore it. An example of this can be a single quotation mark at the start or end of a

source sentence:

”Please continue, you’re doing good!

or other minor flaws in the source.

The error types are the following:

1) Accuracy: Addition

(Additional content in the target language segment, not present in the source)

2) Accuracy: Omission

(Content is missing in the target segment, present in the source)

3) Accuracy: Mistranslation

(Target content that does not accurately represent the source content)

4) Linguistic Conventions: Grammar

(Errors that violate the grammar rules of the target language)

5) Linguistic Conventions: Punctuation

(Punctuation incorrect for the locale or style.)

6) Linguistic Conventions: Spelling

(A word is misspelled)

7) Terminology: Wrong term

(The word is correct, but not the one usually used in that domain.)

8) Style: Awkward or unnatural

(Style that is grammatical, but unnatural and does not read like a newspaper.)

9) Other: Any other errors

0) Valid Sentence

There are no errors in the target language segment.

Errors in translating names of people or places should be classified as a minor mistranslation. If a word in the target text has passed

untranslated from the source text, but should be translated, it should be classified as 9) other.

For each error, severity should be assigned. There are two severity levels: Minor - for imperfections that do not hinder the correct

understanding of the segment, andMajor, true errors that may confuse the reader and prevent from the correct understanding of

the segment.

Figure 7.1: Instructions given to evaluators for the manual evaluation task. They were asked to read

this thoroughly before starting and ask for clarification if something was not clear.

managed to attract seven evaluators that meet these requirements.2 All of the evaluators are

native Icelandic speakers, fluent in English.
2We would like to thank the evaluators for their hard work. They are: Björn Halldórsson, Einar Freyr

Sigurðsson, Finnur Ágúst Ingimundarson, Hilmar Hilmarsson, Þór Tryggvason, Þórdís Úlfarsdóttir and Ölvir

Gíslason.
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We decided to evaluate 300 sentence pairs for each model. The sentences were randomly

chosen from the WMT21 English–Icelandic evaluation sets, with original English sentences

as source for en→is translations and original Icelandic sentences as source for is→en trans-

lations. We split the evaluation sets into batches of 50 sentences in a row, and selected six

random batches, but with the same source sentences chosen for each model. By selecting

multiple sentences in a row, we obtained multiple translations in a row from the same news

articles, giving the evaluators some context for the translated sentences.

We used the same 300 sentence pairs for each model and divided them between four

evaluators. Each evaluator assessed sentence pairs for three model types, in both directions,

thus evaluating a total of 225 sentence pairs for each direction, 450 sentence pairs in total.

The evaluation time varied between the evaluators, from approximately 6 hours for the fastest

one, to approximately 10 hours for the one who took the most time to finish the task of

evaluating 450 sentence pairs. One of the evaluators evaluated twice as much as the others,

75 sentences for all the models, 900 sentence pairs in total.

We loaded the sentence pairs into a Google Sheets document, one pair in a row. The

sentence pairs are followed by drop-down lists from which the evaluator selected one of the

correct categories, both for fluency and for theMQMcategories. Separate sheets, represented

in Figure 7.2, were prepared for each evaluator. Each sentence pair was only evaluated by

one evaluator.

When manually evaluating translation output, it is important that the evaluators follow

the same procedure when evaluating and have the same understanding of the task. We pre-

pared guidelines, shown in Figure 7.1. The guidelines for MQM were modeled after Freitag

et al. (2021a) and following Mariana et al. (2015).

7.4.1 Fluency

Fluency results are given as the average of the raw judgement scores, rated on the scale of 1-5.

We also normalize the scores for each evaluator, using Equation (7.1) to obtain standardized

scores, and give averaged standardized scores for each model.

z =
x− µ

σ
(7.1)

Model Average Average z

mBART

PI 21.10 3.11 0.026

en→is PI Refined 3.14 0.065

All data 2.99 -0.092

PI 21.10 3.64 -0.049

is→en PI Refined 3.60 -0.090

All data 3.85 0.139

TransformerBASE

PI 21.10 2.22 -0.174

en→is PI Refined 2.49 0.106

All data 2.46 0.068

PI 21.10 2.81 -0.221

is→en PI Refined 3.03 -0.047

All data 3.43 0.268

Table 7.5: Results of fluency evaluation. The higher the scores, the more fluent the output.



104 CHAPTER 7. PUTTING IT ALL TOGETHER: EVALUATION

Severity Category Weight

Major All 5

Minor Linguistic Conventions: Punctuation 0.1

All others 1

Table 7.6: Weights given to errors for the error categories used in our MQM evaluation.

In the equation, µ is themean of all fluency scores given by the evaluator and σ is the standard
deviation.

The results of the fluency evaluation are given in Table 7.5. The TransformerBASE is→en

model has the clearest results, with clear difference between models trained on ParIce 21.10,

ParIce refined and all data, and fluency improving with more processed data and then more

data. This is in line with both the BLEU and COMET-22 scores. The evaluations for the

other model groups do not reveal such a clear trend. TransformerBASE en→is shows more

fluency when trained on ParIce refined rather than ParIce 21.10, but the model trained on all

the data scores slightly less than ParIce refined. The mBART model also shows somewhat

different results with the ParIce 21.10 model scoring slightly higher than ParIce Refined for

the mBART is→en model and the model trained on all the data scoring lowest for mBART

en→is.

7.4.2 MQM

We adapted the MQM framework to our needs and selected the error categories we believed

most relevant for our comparison. We asked the evaluators to classify the errors into eight

error types, and to mark the error as “other” if it did not fit any of the selected categories.

The list of error types is given in Figure 7.1. For each error, we asked the evaluators to

assign a severity class,Minor for imperfections that do not hinder the correct understanding

of the segment, and Major for errors that may confuse the reader and prevent the correct

understanding of the segment. The error types and severity are used to calculate an MQM

score for each segment. We exported our results from the Google Sheets documents and

used MQM Viewer3 to calculate the scores for each model. For calculating the scores, we

used the default weights in MQM viewer, given in Table 7.6. These weights were found by

Freitag et al. (2021a) to give good stability over two language pairs they evaluated, en–de

and en–zh, while also matching system-level rankings from professional translators rating

segments on a seven-point Likert-type scale.

Table 7.7 gives the results for the MQM evaluation. For all model groups, except one,

the trend is the same as with the BLEU scores. The ParIce 21.10 models have the most errors

and the models trained on all the data have the fewest errors. The only exceptions are the

TransformerBASE en→is models, where the ParIce Refined model has a slightly worse score

than ParIce 21.10. Upon further inspection, the evaluation of these models also differs in

another respect. The evaluations of one of the four evaluators score almost twice as high

(worse) as the average for the other three evaluators, with 11.063 per segment. The evalu-

ator giving the lowest scores (best) has an average of 5.249 per segment. Furthermore, the

high-score evaluator rates the models so that their rankings are different from the rankings

produced by all other evaluators. In other cases, the difference is never that pronounced.

3https://github.com/google/wmt-mqm-human-evaluation

https://github.com/google/wmt-mqm-human-evaluation
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Model MQM Major Minor Acc. Ling. conv. Other

mBART

PI 21.10 7.819 6.850 0.967 5.873 1.553 0.393

en→is PI Refined 5.991 4.983 1.003 4.437 1.378 0.177

All data 5.675 4.600 1.070 3.633 1.782 0.260

PI 21.10 4.938 4.200 0.737 4.143 0.638 0.157

is→en PI Refined 4.446 3.667 0.777 3.593 0.652 0.200

All data 3.094 2.450 0.643 2.137 0.917 0.040

TBASE

PI 21.10 7.648 6.650 0.997 6.590 0.871 0.187

en→is PI Refined 7.827 6.900 0.923 6.513 1.163 0.150

All data 6.973 5.933 1.040 5.760 1.133 0.080

PI 21.10 5.110 4.283 0.827 4.397 0.667 0.047

is→en PI Refined 4.084 3.333 0.750 3.360 0.678 0.047

All data 2.357 1.757 0.590 2.023 0.314 0.020

Table 7.7: Average MQM score per segment. The lower the score, the fewer and less severe the

errors are. The table also gives average scores for each severity class, and for supercategories of the

error classes.

This may skew the results somewhat, which is one of the dangers of having few evaluators

and few evaluated sentence pairs.

7.4.3 Limitations

We only evaluated 300 sentence pairs for each model and each sentence pair was only eval-

uated by one evaluator. This means that if one model has just a few more sentences than

the next model, that are short, simple and translate well and a few less sentences that are

long, complicated and receive poor translations, the score balance can change substantially.

Although we have not noticed such issues in the evaluated data, such an effect may still be

present. Another bias that a small evaluation can bring about, is that of one evaluator be-

having markedly different from the others, as we may be seeing with the TransformerBASE
en→is models discussed in the previous section. We do not check for consistency or stan-

dardize the MQM evaluation scores in any way, and so just one evaluator may skew the

results substantially. Furthermore, as each sentence pair is only evaluated by one evaluator,

we cannot measure inter-annotator agreement. Thus, we cannot say for sure that one of the

evaluators is annotating in a markedly different way from the others. It is a possibility that

this deviation is because of real issues in the translations.

One more limitation worth noting is that although all the evaluators are fluent English

speakers, have lived in an English-speaking country and/or worked as professional transla-

tors translating to and from English, none of them are native English speakers. This may

affect their evaluations, particularly the is→en ones.

7.5 Discussion

We have evaluated our final systems using four approaches, two automatic: BLEU and

COMET-22, and two manual: fluency and MQM. The BLEU scores all rise when the data is

processed using our methods and when we add more processed data to the training set. This

was expected as we had already seen these effects in our previous experiments, where we
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based our decisions on the BLEU score. The other automatic metric we use, COMET-22,

shows similar outcomes, although in one case they are not as significant, with no significant

difference between using all our data to fine-tune an mBART model for en→is translation

or just the refined dataset.

The manual MQM evaluation, on the other hand, shows more differences, especially

for the error types in the accuracy category. The linguistic conventions category, which

contains grammar, punctuation and spelling errors, does not show the same results and is

more in line with the fluency evaluation, with little marked difference between the models

in terms of fluency, but ParIce refined scoring a little better than the others. An inspection

of the results shows that the majority of the translations into Icelandic have fluency issues,

commonly caused by problems with inflection and other morphological problems. As the

manual scores indicate, both for fluency and MQM, this is a slightly smaller problem for the

mBART models than for the TransformerBASE models. Due to these problems, it may also

be problematic to discern other errors. We speculate that it may be harder to make proper

use of MQM as translation quality is reduced and that, when there are multiple errors in

most sentences, the evaluators tend to focus on fewer error groups and select just the most

prominent errors.

With the is→en models, the MQM results are more clear. There are larger differences

between the MQM scores and both BLEU and COMET-22 agree with the results. The flu-

ency results are not quite as clear, with little noticeable difference between the ParIce 21.10

and ParIce Refined mBART models. In that case, the fluency results are in line with the

linguistic conventions results for mBART, indicating that there may not be much difference

between the models in that regard. In contrast, translation accuracy is higher when our pro-

cessing methods have been applied to the training data. Fluency is higher for the mBART

models than for the TransformerBASE models, which seems to be the greatest benefit of using

the mBART models. More training data is probably needed in order to improve fluency for

these models, when translating into a morphologically rich language such as Icelandic. Tang

et al. (2021) show that the largest improvements mBART models show in terms of BLEU,

as compared to training MT models from scratch, are in low-resource scenarios. Detailed

error analysis of these models would be interesting to see if the improvements are, as in our

case, mostly in terms of fluency rather than accuracy.

In this chapter our aim was to investigate whether the approaches we have developed for

preparing training data for MT is useful to produce better quality MT systems. While not all

of the metrics and evaluation approaches applied agree all of the time, they generally agree

that ParIce refined produces better MTmodels than ParIce 21.10, and using all our processed

datasets, as described in Section 7.2, produces better MT models than ParIce Refined. Our

evaluation indicates that this may be more true for translation accuracy than for fluency.



Chapter 8

Conclusions and Future work

This thesis aimed to explore approaches for making better use of available parallel data when

training MT systems.

For the vast majority of the world’s languages, parallel data is scarce. When building

MT systems for these languages it is highly important to be able to extract all useful sentence

pairs from the available data. It has been argued that unsupervised methods can be key for

building MT systems when parallel data is scarce. However, recent work has shown poor

results for low-resource languages, questioning the role of unsupervised NMT for dissimilar

languages and open-domain MT (Kim et al., 2020). Recent efforts have been made to extend

accessibility of MT to 200 languages (Costa-jussà et al., 2022), but this still leaves out the

vast majority of the world’s languages and over one billion native speakers of these languages

(Joshi et al., 2020). Furthermore, even though more languages have access to MT, it may

not be up to the standard required if it is trained on defective data. While the technology is

sensitive to using noisy data, there is a risk of losing potential for better quality MT if proper

measures are not taken to prepare the data using the best approaches possible.

In this thesis, we have studied this problem by analyzing how to improve individual steps

in parallel corpora compilation and in preparing training sets forMT. After having developed

the necessary tools and datasets for our research, we experimented with multiple approaches

for filtering parallel corpora and aligning parallel documents, before we set out to mine data

from comparable corpora. We then applied comparable corpora mining techniques to extract

useful parallel sentence pairs from what are normally classified as defective sentence pairs,

as well as from data discarded during the parallel corpora compilation phase. Finally, we

manually evaluated our combined approaches on a downstream MT task and compared the

results to a baseline.

At the start of this thesis, we put forward four research questions concerning the impor-

tance of improved selection of training data for MT, and how we can ensure that our training

sets are as good as possible. In the following section we will revisit these questions and

review how we addressed them.

8.1 Research Questions

The aim of our thesis was to address the following four main research questions, set forward

in Chapter 1:

RQ1: How can we filter parallel corpora to minimize noise, and still lose little or no

useful data from the original texts?
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In Chapter 4 we addressed this question. We looked at different filtering mechanisms for

scoring and classifying sentence pairs, as well as traditional shallow filtering approaches.

We manually annotated samples of data at different stages of filtering as well as computing

BLEU scores for MT systems trained on the data. Our results indicate that applying shallow

filtering is not sufficient and that mechanisms calculating scores for semantic equivalence

should be included in the filtering process. There are various approaches available for min-

imizing noise, but when they return filtered data with little or no noise, the majority of the

rejected sentence pairs are usually also acceptable and potentially useful for MT training, as

we found in our manual evaluation of filtered data. This means there is still potential for

extracting more sentence pairs which are potentially useful for MT training. When working

on RQ4 we revisit this problem, especially focusing on rejected and discarded data.

We compared our results to the results of two systems, participating in the WMT 2021

news translation task, trained in a very similar manner to our systems. The comparison

indicates that even our smaller TransformerBASE achieves comparable translation quality,

using fewer resources and only a fraction of the training time. We also see from our results

in Chapter 4 that models that have been filtered more thoroughly seem to converge faster.

We can deduce from this that training data that is better filtered, not only improvesMT output

quality, but is also in line with a call for greener and more sustainable models of AI which

consume less electricity and output fewer emissions, see e.g. Yusuf et al. (2021) and Jooste

et al. (2022).

RQ2: To what degree should we consider filtering parallel corpora for MT training to

be independent of the dataset and languages being filtered, and the intended translation

direction of the MT system being built?

This question was also addressed in Chapter 4. Our results clearly indicate that different

filtering approaches suit different datasets. We studied two very different corpora, compiled

in different ways. After using similar shallow filtering approaches, we compared the quality

of the data using a number of scoring mechanisms and found that the scoring mechanisms

should have different acceptability thresholds depending on the dataset. We did not try to

investigate why this is the case, but speculate that it may in part be due to different levels

of prevalence of domain-specific texts in the data. Texts in some domains may, for exam-

ple, commonly have more rare words or loan words from other languages, distinct syntactic

structures, or other factors that lead to lowering the confidence in scoring the sentence pairs.

We suggest that the most suitable filtering approaches are chosen after a careful analysis of

what is most viable for the given dataset.

In relation to the question on translation direction, our results clearly indicate that it is not

necessarily best to train L1 →L2 using the same data as when training L2 →L1. Considering

our experiments, there is a clear argument for applying special filtering approaches for each

translation direction. In our case, when translating into Icelandic, we seem to need more

thorough filtering, and hypothesise that the morphological complexity of the target language

may play a role. MRLs have a large number of word forms that may create an OOV-problem

when training data is scarce, and, in such cases, tend to be more sensitive to flawed or er-

roneous sentences. As we discuss in Section 8.2, more work is needed to understand this

issue.

RQ3: Is sentence alignment accuracy important for the results of a downstream MT

task, or is effective filtering of the training data enough?

In Chapter 5, we aligned a corpus of EEA regulatory documents using various sentence

alignment tools, as well as building our own. We also tried using ensembles of aligners in a
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two-step approach. After alignment, we filtered our data using the best filtering approaches

for the dataset and translation direction as determined by our experiments in Chapter 4. We

obtained significant results as measured by BLEU in downstreamMT tasks, confirming that

some alignment approaches are better than others, with our own tool, SentAlign, showing

the best results. However, the scores of all the best-performing systems are in a rather small

range so the effect may not be very large. To answer our research question, we conclude that

sentence alignment accuracy is important, but effective filtering is necessary.

RQ4: Are text segments discarded during sentence alignment and filtering suitable as

a source for mining useful sentence pairs for MT training?

In Chapter 6, we experimented with two approaches to make better use of discarded or de-

ficient data. In Section 6.3, we re-evaluated sentence pairs that were more likely than other

sentence pairs to be only partially aligned and contain erroneous data. We looked for better

alignments by segmenting the sentence pairs and scoring pairs on the sub-sentential level.

Using this method, we replaced some of the sentence pairs in the training data with more

accurate alignments, raising BLEU scores for translations into Bengali, an MRL, but not for

translations into English. As with our work on RQ3, this raises the question about whether

NMT is more sensitive to noise in the training data when the target language is a MRL, ex-

plaining why cleaning the training data has more positive effect on translating into the MRL

than into English.

In Section 6.4, we mined parallel sentence pairs from data discarded during the compi-

lation phase of a parallel corpus. We collected sentences in both languages that either did

not obtain an alignment from the sentence aligner or were discarded by a filter. We treated

the collection of discarded sentences in the two languages as comparable corpora and looked

for potential parallel candidates for each sentence in all the data discarded in the other lan-

guage. After selecting the best candidates and again filtering the pairs, we acquired a small

set of additional sentence pairs. We added that set to the previous training data and measured

BLEU scores on a downstream MT task, finding that the BLEU scores improved. While the

gain was small, it was statistically significant.

In light of these two experiments, we conclude that there is potential in exploiting dis-

carded data and re-evaluating low-confidence sentence pairs in a parallel corpus. These

results can also serve as a partial answer to RQ1, as an approach to minimize the useful data

lost from a parallel corpus when we use it to compile training data for MT.

8.2 Future Work

We have explored multiple aspects of compiling training data for MT and the development

of tools and data to support that work. In this section, we will discuss possible paths for

expanding our research. There are immense possibilities for further studies in this area and

we will give a few concrete examples.

8.2.1 Filtering

While we see some general tendencies in our filtering experiments, they do not show us

what data exactly are detrimental and which are beneficial. In our manual evaluation of

the filtered data, we used the taxonomy by Kreutzer et al. (2022) developed for evaluating

web-crawled corpora, but it may not necessarily make clear distinctions between sentence

pairs that can be beneficial for MT training and those that are not. In future work, we want
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to delve deeper into this issue and investigate if the differences between the datasets used

for training in our work can give us an idea of which sentence pairs are most important

to filter out. We intend to do this by investigating the pairs discarded by our filters, to

compare what is being thrown away, both when it leads to higher quality models and when

it leads to lower quality models. This could lead to insights that help with constructing

filters that work on a more fine-grained level when that is needed. We would also like to

carry out similar experiments for other language pairs, with both morphologically complex

languages and more simple ones, to see if our results hold. In doing so, we might also

explore whether more filtering benefits morphologically complex target languages more than

morphologically simpler target languages.

We experimented with a GPT-2 model to identify sentences that do not look like the

typical Icelandic sentences the model is trained on. The training set we used is quite limited,

only 10,000 sentences, and in the training set there is a clear difference between admissible

and inadmissible sentences. Enlarging the training dataset and adding a category for sen-

tences that have minor flaws, such as spelling or grammatical errors, may be useful if these

errors are only in the intended source language of the training data set and not in the target

language. This could make the filter more flexible, depending on the quality we need for the

task, or translation direction, at hand.

Finally, studying more filtering approaches may help us produce even better training

sets, especially if we can learn more about what kind of sentence pairs we want to keep

in our training data and which we want to leave out. In Chapter 7, we experimented with

automatic evaluation models based on cross-lingual LLMs. Advances have been made in

building such models that do not need any references (Agrawal et al., 2021; Rei et al., 2021).

Studying whether they could help with filtering training data could be worthwhile.

8.2.2 Alignment

Our results indicate that SentAlign is the best-performing system out of the ones we evalu-

ated. While the results are statistically significant, all our scores are in a rather small range.

This may be an effect of the homogeneity of our data. We are selecting from millions of

lines of EEA regulatory texts and the advantages of gaining a marginal amount of quality

sentence pairs may not be great. To better confirm the edge SentAlign seems to have on the

other systems, aligning more datasets and comparing the results would be useful.

While using a contextualized sentence-embedding-based scoring mechanism such as

LaBSE seems to be very useful for the task of sentence alignment, it would also be interesting

to experiment with replacing it with another one, e.g. lexical or translation-based, to further

study our alignment algorithm and compare it against approximation algorithms in different

scenarios. Our experiments also show that using the lexical-based Hunalign system aided

by an external dictionary can give good results. To improve the accuracy of our sentence

alignment approaches even further, we would like to investigate whether combining these

approaches in some way could improve the results.

Finally, we would like to have a better look at the effect of partial alignments on down-

streamMT. If we canmeasure the effects of various misalignments, it could help us construct

more effective methods to align and filter parallel corpora for MT. We thus want to investi-

gate how different kinds and levels of misalignments in a parallel corpus affect quality, the

extent to which they are useful, and when they become detrimental.
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8.2.3 Re-evaluating Discarded Data

In our work on re-evaluating discarded and deficient data, we noticed that when translating

into English we did not see the same benefit as when translating into one of the two MRLs

we experimented with, Bengali and Icelandic. This may indicate that most of the newly

added data is already in the existing training set; as Bengali and Icelandic are MRLs with

fewer examples of each word form, the coverage of the data (and the resulting MT systems)

are extended by adding more data. Furthermore, this may imply that there is a difference

in noise tolerance depending on language pairs or translation directions, with English being

more noise tolerant and therefore better able to take advantage of noisy data than the MRLs.

We want to test this hypothesis using more language pairs and more training datasets.

In refining the discarded data, we used a simple segmentation technique, segmenting

on conjunctions and punctuation. We want to explore other methods of segmentation for

these purposes, such as constituency parsing, that may produce more useful segmentation.

Furthermore, it would be useful to investigate what types of sub-sentences help and which

hinder performance.

8.2.4 Evaluation

Manual evaluation is an expensive and time-consuming effort. Therefore, doing a large

and proper evaluation is hard. Recently, automatic metrics that have been shown to have a

high correlation with human evaluation have been published. We used one of these metrics,

COMET-22. Looking further into the correlation with the language pair we mostly work

with, English–Icelandic, could be useful, as well as looking into fine-tuning the metric for

use with that language pair.

Our results indicate that using mBART as the base system may improve translation qual-

ity more by improving fluency than improving translation accuracy. It would be interesting

to perform comparisons on other language pairs, and perhaps do larger evaluation experi-

ments, to see if the same effect will be exhibited. It would also be interesting to see whether

further improving our translation models, e.g. by including the use of back-translations and

checkpoint averaging, would improve some aspects of quality more than others by evaluating

the results of such models using MQM.

8.3 Final Remarks

Our results show that, at least in some cases, more can be made of data that has been prepared

for training MT systems. This is important because it means that better systems can be built

using what we have available, sometimes even though we train smaller models, as indicated

by our comparison with two submissions to the WMT21 shared translation task. This is also

important because it means better systems can be built for languages with scarce resources, if

proper care is taken to use the available resources well. In our experiments, we have explored

a number of ways to do so, and, in this chapter, we have suggested paths for further research

in this area.

With this thesis we wish to draw the attention to the importance of focusing on well-

designed and purposeful ways of building resources for training MT systems. To build high-

quality MT systems for the languages that have been left behind, we believe that compre-

hensive approaches, allowing for making the most of available data, are fundamental.
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