
 
 

 

 

 

 

EM-Driven Miniaturization of High-

Frequency Structures through 

Constrained Optimization  
 

 

 

 

 

 

 

 

Marzieh Mahrokh 

Doctor of Philosophy 

February 2023 

Electrical Engineering  

Reykjavík University 

PhD Dissertation 

 

 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

 

 

EM-Driven Miniaturization of High-Frequency Structures 

through Constrained Optimization 
 

Dissertation of 30 ECTS credits submitted to the Department of Engineering 

at Reykjavík University in partial fulfilment of  

the requirements for the degree of 

Doctor of Philosophy (PhD) in Electrical Engineering 
 

February 2023 

Thesis Supervisors: 

 

Slawomir Koziel, Professor 

Reykjavík University, Reykjavík, Iceland 

 

Anna Pietrenko-Dabrowska, Associate Professor 

Gdansk University of Technology, Poland 

 

Thesis Committee: 

 

Slawomir Koziel, Professor 

Reykjavík University, Reykjavík, Iceland 

 

Anna Pietrenko-Dabrowska, Associate Professor 

Gdansk University of Technology, Poland 

 

Ágúst Valfells, Dean of Department of Engineering 

Reykjavík University, Reykjavík, Iceland 

 

Ubaid Ullah, Assistant Professor 

Al-Ain University, UAE 

 

Thesis Examiner: 

 

Adam Narbudowicz, Senior Research Fellow 

Trinity College Dublin, Ireland 



 
 

 
 

EM-Driven Miniaturization of High-Frequency Structures through Constrained Optimization 

 

Short title: Miniaturization of High-Frequency Structures 

 

Copyright © 2023 Marzieh Mahrokh  

Author ORCID: 0000-0001-8397-5898 

 

This work is licensed under the Creative Commons Attribution-

NonCommercialNoDerivatives 4.0 International License. You may copy and redistribute the 

material in any medium or format, provide appropriate credit, link to the license and indicate 

what changes you made. You may do so in any reasonable manner, but not in any way that 

suggests the licensor endorses you or your use. You may not use the material for commercial 

purposes. If you remix, transform or build upon the material, you may not distribute the 

modified material. The images or other third party material in this thesis are included in the 

book’s Creative Commons license, unless indicated otherwise in a credit line to the material. 

If material is not included in the book’s Creative Commons license and your intended use is 

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder. The use of general descriptive names, registered 

names, trademarks, service marks, etc. in this publication does not imply, even in the absence 

of a specific statement that such names are exempt from the relevant protective laws and 

regulations and therefore free for general use. 

 

Bibliographic information: Marzieh Mahrokh, 2023, EM-Driven Miniaturization of High-

Frequency Structures through Constrained Optimization, PhD dissertation, Department of 

Engineering, Reykjavík University, 165 pp. 

 

ISBN 978-9935-539-16-8 (print version)  

ISBN 978-9935-539-17-5 (electronic version) 

 

  



v 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 

Marzieh Mahrokh 

February 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

 

  



 
 

 
 

 

 

  



ix 
 

EM-Driven Miniaturization of High-Frequency 

Structures through Constrained Optimization 

Marzieh Mahrokh 

February 2023 

Abstract 

The trends afoot for miniaturization of high-frequency electronic devices require integration 

of active and passive high-frequency circuit elements within a single system. This high level 

of accomplishment not only calls for a cutting-edge integration technology but also 

necessitates accommodation of the corresponding circuit components within a restricted space 

in applications such as implantable devices, internet of things (IoT), or 5G communication 

systems.  At the same time, size reduction does not remain the only demand. The performance 

requirements of the abovementioned systems form a conjugate demand to that of the size 

reduction, yet with a contrasting nature. A compromise can be achieved through constrained 

numerical optimization, in which two kinds of constrains may exist: equality and inequality 

ones. Still, the high cost of electromagnetic-based (EM-based) constraint evaluations remains 

an obstruction. This issue can be partly mitigated by implicit constraint handling using the 

penalty function approach. Nevertheless, securing its performance requires expensive guess-

work-based identification of the optimum setup of the penalty coefficients. An additional 

challenge lies in allocating the design within or in the vicinity of a thin feasible region 

corresponding to equality constraints. Furthermore, multimodal nature of constrained 

miniaturization problems leads to initial design dependency of the optimization results. 

Regardless of the constraint type and the corresponding treatment techniques, the 

computational expenses of the optimization-based size reduction persist as a main challenge. 

This thesis attempts to address the abovementioned issues specifically pertaining to 

optimization-driven miniaturization of high frequency structures by developing relevant 

algorithms in a proper sequence. The first proposed approach with automated adjustment of 

the penalty functions is based on the concept of sufficient constraint violation improvement, 

thereby eliminating the costly initial trial-and-error stage for the identification of the optimum 

setup of the penalty factors. Another introduced approach, i.e., correction-based treatment of 

the equality constraints alleviates the difficulty of allocating the design within a thin feasible 

region where designs satisfying the equality constraints reside. The next developed technique 

allows for global size reduction of high-frequency components. This approach not only 

eliminates the aforementioned multimodality issues, but also accelerates the overall global 

optimization process by constructing a dimensionality-reduced surrogate model over a pre-

identified feasible region as compared to the complete parameter search space. Further to the 

latter, an optimization framework employing multi-resolution EM-model management has 

been proposed to address the high cost issue. The said technique provides nearly 50 percent 

average acceleration of the optimization-based miniaturization process. The proposed 

technique pivots upon a newly-defined concept of model-fidelity control based on a 

combination of algorithmic metrics, namely convergence status and constraint violation level. 

Numerical validation of the abovementioned algorithms has also been provided using an 

extensive set of high-frequency benchmark structures. To the best of the author´s knowledge, 

the presented study is the first investigation of this kind in the literature and can be considered 

a contribution to the state of the art of automated high-frequency design and miniaturization. 
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Chapter 1 

1 Introduction 

1.1 Background 

The continuous tendency of shrinking the size of the high-frequency electronic devices, has 

led to emerging of high-level system integration technologies aimed at solving size restrictive 

accommodation challenges. Active and passive high-frequency circuit components are 

employed in applications such as implantable medical devices [1]- [2], autonomous vehicles 

[3], RF ICs, or wireless communication systems [4]. The examples of the relevant space-

occupying passive components include phase shifters [5], beamforming antenna arrays [6], 

artificial transmission lines [7], and couplers/dividers [8]. Innovative circuit-level 

modifications of the conventional design procedures have been successful in obtaining 

compact footprints through the incorporation of electromagnetic wave theory along with 

additional geometrical variations. Among popular circuit-level miniaturization techniques the 

incorporation of meandered traces [9], the use of slotted substrate integrated waveguide (SIW) 

[10], the introduction of half-mode SIW (HMSIW) evanescent mode [11], or the employment 

of shared partial patches [12] may be listed.  

The aforementioned techniques provide reliable means of rendering compact structures 

based on solid grounds of fundamental electromagnetic wave theory. Nevertheless, their 

implementation may require a unique intermingling of design concepts for each case, with 

considerable geometrical alterations. Design complexity and manipulation of additional design 

parameters, being a result of topology modifications, remains a challenge. At the same time, a 

further challenge lies in the contrasting nature of the demands for system performance 

requirements with those for compact size.  Considering the trade-off between the latter and the 

former, optimum arrangement of the numerous geometry parameters can be identified through 

constrained multi-objective local [13]- [14], or global search optimization methods [15], [16], 

[17].  

Fulfilling the system performance requirements (electrical and field performance figures) 

embedded in the form of design constraints, results in algorithmic complexity. The penalty 

function approach [18], [19], [20], [21], [22] offers a convenient workaround by controlling 

the design constraints in an implicit manner. In [19], the penalty function approach was 

accompanied by an adaptive reflection coefficient acceptance threshold. As a result, the 

performance of the algorithm was improved both in terms of controlling the reflection 

coefficient constraint and the achievable size reduction rates as compared to the fixed-



 
 

 
 

threshold penalty function setup. Yet another algorithmic performance challenge lies in the 

nonlinearity of the penalty function due to the parameter sensitivity inconsistencies between 

the structure size and performance-related constraints. The issue has been addressed in [20] by 

introducing an objective relaxation scheme between size and reflection coefficient constraints. 

Other aspects concerning the time and computational expenses are improved by utilization of 

coarse-discretization EM models in [21], or the employment of variable-fidelity EM model in 

[22].  

Each of the aforementioned variations of the penalty function approach provides specific 

performance enhancements as compared to the conventional version. At the same time, a 

common shortcoming resides in the fact that the performance of the optimization process is 

highly dependent on the setup of the penalty terms. Typically, the optimum arrangement of the 

penalty factors is conventionally identified through time and computationally expensive trial-

and-error attempts. An additional challenge appears when applying the penalty function 

approach to specific high-frequency structures with either equality, or a combination of 

equality and inequality constraints. The corresponding individual feasible regions intersect 

over a very thin set of the parameter space resulting in exploration difficulties. The issue of 

appropriate handling of equality constraints is of great significance, as, in high-frequency 

design, this type of constraints is frequently met, and the examples of equality constraints 

include power split ratio or phase shift in power dividers/combiners, couplers, or phase 

shifters.     

Many local optimization-based miniaturization techniques [23], [24], [25], [26], [27] are 

prone to multimodality and thus initial design dependency. Whereas their counterpart global 

methods [28]- [29] exhibit robustness to these issues. Conventional global optimization 

procedures including simulated annealing [30], or population-based metaheuristics 

(evolutionary strategies [31], and particle swarm optimization [32]) are likely to encounter a 

prohibitive computational time and burden of  the evaluation of the expensive objective 

functions.  An alternative approach is surrogate-based optimization (SBO) [13], [33], [34], 

[35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], where the burden is reduced by 

switching to a computationally cheaper surrogate model. In [33], the computational efficiency 

of expensive multi-objective PSO problems was significantly reduced by approximation of the 

Pareto front using a Gaussian process (GP) surrogate model. An acceleration of multi-objective 

microwave device design was proposed in [34] through the employment of nested kriging 

methodology for the identification of the Pareto front. A novel technique developed in [13] 

attempted to address the curse of dimensionality by the construction of a two-level kriging 

surrogate model, resulting in modelling efficiency within wide ranges of both the parameters, 

and the performance figures space. Nevertheless, techniques exploiting surrogate models face 

the problems on their own, such as the aforementioned curse of dimensionality due to which 

models’ usefulness is restricted to components featuring few geometry parameters number of 

relatively narrow ranges. Considerable nonlinearity of responses of high-frequency devices 

poses yet another challenge. Moreover, the additional computational expenses associated with 

the increased number of geometry parameters in unconventional structures, remain a practical 

obstacle.  

Regardless of either the specific optimization technique, or constraint type and their 

corresponding treatment, size reduction remains a time and computationally expensive task. A 

number of algorithmic acceleration techniques has been proposed to improve the 

computational efficiency of the optimization process. These include the incorporation of 
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adjoint sensitivities [46], [47], [48], [49], [50], [51], utilization of sparse sensitivity updates 

[52] and restricted sensitivity updates [53], or the employment of Broyden updating formulas 

[54]. Significant acceleration rates of up to forty [55] and sixty percent [56] have been achieved 

using the abovementioned techniques. An alternative method is the incorporation of variable-

fidelity EM simulation models [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67]. 

Over forty percent CPU time savings were obtained using a set of discrete EM-model fidelities 

[61]. However, the quality of the final optimization results both in terms of constraint 

satisfaction, and achievable size reduction rates is highly dependent on a meticulous selection 

of the EM-model fidelities [65]- [66].  

In light of the abovementioned performance aspects of the optimization-based 

miniaturization—specifically concerning fixed-geometry structures where no topology 

optimization is required—this thesis attempts to address the corresponding challenges of 

simulation-driven size reduction of high-frequency structures in the context of rigorous 

numerical methods. This includes the development of more efficient algorithms which are 

intended to advance the state of the art of high-frequency CAD.  

The consecutive algorithms developed within this thesis form a proper sequence. The first 

technique, i.e., automated adjustment of the penalty functions, based on the concept of 

sufficient constraint violation improvement, eliminates the costly initial trial-and-error stage 

for the identification of the optimum setup of the penalty factors. Further, the correction-based 

treatment of the equality constraints alleviates the difficulty of allocating the design within a 

thin feasible region. Another developed technique for global size reduction of high-frequency 

components not only eliminates the multimodality issue, but also accelerates the overall global 

optimization process by constructing a dimensionality-reduced surrogate model over a pre-

identified feasible region as compared to the complete parameter search space. Further to the 

latter, a multi-resolution EM-model management provides an average 43% acceleration of the 

optimization-based miniaturization process. The proposed technique pivots upon a newly-

defined concept of model-fidelity control based on a combination of algorithmic metrics, 

namely convergence status, and constraint violation level. Numerical validation of the 

abovementioned algorithms has also been provided through an analysis of the results obtained 

for a set of high-frequency benchmark structures. 

1.2 Thesis Contribution 

The contributions of this thesis have been described in five journal publications that 

constitute Chapters 4 through 8. These serve as the overall record of the candidate, prepared 

during her Ph.D. study. Their common theme is the development of more efficient algorithms 

with the major focus on constrained optimization-based size reduction of high-frequency 

structures.  

▪ Paper #1:   The contrasting natures of the demands for compact size and those for 

the electrical and field performance of the high-frequency structures can be 

mitigated through constrained numerical optimization. Although the implicit 

constraint handling provided by the penalty function approach reduces the high 

computational costs of EM-based constraint evaluations, the constraint control and 

size reduction performance aspects of the said approach are strongly dependent on 

the setup of the penalty factors, conventionally identified through costly trial-and-

error efforts. This paper proposed a novel procedure featuring an automated penalty 



 
 

 
 

factor adjustment throughout the optimization run. The adjustment process is based 

on a notion of sufficient constraint violation improvement. The numerical 

validations demonstrated that the proposed algorithm outperforms the fixed penalty 

function approach in terms of constraint satisfaction and achievable size reduction 

rates. 

  

o Bibliographic Note: 

M. Mahrokh and S. Koziel, “Optimization-based antenna miniaturization 

using adaptively-adjusted penalty factors,” Electronics, vol. 10, no. 15, 

paper no. 1751, 2021. 

 

▪ Paper #2: This study was focused on explicit size reduction of high-frequency 

structures with multiple design constraints. The appealing feature of the proposed 

procedure lies in the identification of the most appropriate penalty coefficient levels 

based on the monitored feasibility status and constraint violation levels of the 

consecutive designs in the course of the optimization process. The methodology was 

validated using two circularly polarized (CP) antenna structures. The dynamically 

adjusted penalty coefficients exercised a precise control over multiple design 

constraints while outperforming the manual penalty function setup in terms of the 

final miniaturization rates.  

 

o Bibliographic Note: 

M. Mahrokh and S. Koziel, “Explicit size-reduction of circularly polarized 

antennas through constrained optimization with penalty factor adaptation,” 

IEEE Access, vol. 9, pp. 132390-132396, 2021. 

▪ Paper #3: This study was concerned with an additional challenge of applying the 

penalty function approach to specific high-frequency structures involving equality 

constraints. The corresponding feasible region being a very thin subset of the 

parameter space, results in impediments in the exploration of the feasible region 

boundary. The proposed optimization scheme alleviated this difficulty by a 

correction-based treatment of the equality constraints in conjunction with implicit 

handling of the inequality constraints using the adaptive penalty function approach. 

Numerical verification of the procedure was performed using four microstrip 

couplers involving power split ratio as the equality constraint. The obtained results 

demonstrated superior miniaturization rates along with a precise control of the 

design constraints as compared to the benchmark methods.  

 

o Bibliographic Note: 

S. Koziel, A. Pietrenko-Dabrowska, and M. Mahrokh, „On decision-making 

strategies for improved-reliability size reduction of microwave passives: 

intermittent correction of equality constraints and adaptive handling of 

inequality constraints,” Knowledge-Based Syst., vol. 255, paper no. 109745, 

2022. 

▪ Paper #4: The multimodality issues inherent in constrained optimization-based 

miniaturization result in initial design dependency of the optimization results. At the 
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same time, conducting a global search for the identification of the global optima is 

both computationally time and cost prohibitive. The proposed global size reduction 

technique worked around the abovementioned issues by: (i) eliminating the 

multimodality issue by means of a global search, (ii) expediting the overall 

optimization process by adopting a dimensionality-reduced surrogate model over a 

pre-identified feasible region as compared to the complete parameter space search. 

The framework was benchmarked against gradient-based miniaturization, as well as 

nature-inspired optimization. The obtained results indicated superior size reduction 

rates along with reduced time and computational cost.  

 

o Bibliographic Note: 

S. Koziel, A. Pietrenko-Dabrowska, and M. Mahrokh, „Globalized 

simulation-driven miniaturization of microwave circuits by means of 

dimensionality-reduced constrained surrogates,” Scientific Reports, vol. 12, 

paper no. 16418, 2022. 

▪ Paper #5: The focus of this study was an acceleration of optimization-based 

miniaturization of high-frequency structures. To this end, a variable-fidelity EM-

model fidelity management scheme was proposed. Therein, the model fidelity was 

continuously adjusted based upon a properly defined unified metric for the 

convergence-feasibility status of the design throughout the optimization process. 

The immediate benefit lied in the efficiency of the proposed acceleration procedure 

in terms of the achievable miniaturization rates, as well the quality of the constraint 

control. The proposed procedure was validated using five microstrip antennas 

including broadband and CP structures. The obtained results demonstrated an 

average 43% improvement in the CPU time saving as compared to the fixed-fidelity 

adaptive penalty function approach.  

 

o Bibliographic Note: 

M. Mahrokh and S. Koziel, “Improved-efficacy EM-based antenna 

miniaturization by multi-fidelity simulations and objective function 

adaptation,” Energies, vol. 15, no. 2, paper no. 403, 2021. 

1.3 Thesis Outline  

The remainder of the thesis is organized into eight chapters. Chapter 2 delivers a brief 

background and motivation for high-frequency circuit miniaturization, discusses circuit-level 

miniaturization techniques followed by optimization-based miniaturization, describes how 

circuit characteristics are included as constraints in the optimization problem, and finally 

provides details of the problem formulation for the optimization-based size reduction using the 

penalty function approach. Chapter 3 highlights the algorithmic tools employed in solving EM-

driven miniaturization problems including local and global optimization methods, surrogate-

based optimization and modelling techniques. In Chapter 4, the automated penalty function 

approach is described, and the employed algorithmic tools are discussed. A detailed discussion 

of the sufficient constraint violation improvement is also provided. Moreover, a statistical 



 
 

 
 

analysis of the results is conducted to verify the efficiency of the proposed methodology both 

in terms of the achievable miniaturization rates, and satisfactory constraint control. Chapter 5 

extends the previous design procedure, and introduces an automated penalty factor adjustment 

scheme for the explicit size reduction of high frequency structures with multiple constraints. 

The adjustment procedure involves monitoring of the constraint violation levels and the 

feasibility status of the consecutive designs in the course of the optimization process.  The 

practical utility of the proposed procedure is illustrated through miniaturization of two CP 

antenna structures with constraints defined as maximum in-band axial ratio (AR), and 

reflection coefficient. Chapter 6 introduces a systematic and efficient approach to 

miniaturization of specific high-frequency structures involving equality constraints. The 

included algorithmic details provide a description of how the proposed approach overcomes 

the impediments in the exploration of the thin feasible region where the optimal solutions 

reside. Towards the end, a discussion about the application of the new procedure, as well as a 

comparison of its performance against the standard benchmark methods is provided. Chapter 

7 addresses the multimodality issue inherent to constrained optimization-based miniaturization 

problems by presenting a surrogate-based global optimization procedure.  Further to the later, 

an alleviation of the time and computational burden of the said global procedure is suggested 

through the employment of a dimensionality-reduced surrogate model, as well as proper 

incorporation of multi-fidelity models. In the latter part, a verification of the reliability and the 

efficacy of the proposed methodology is provided by proper benchmarking against gradient-

based size reduction, as well as nature-inspired optimization frameworks. Finally, Chapter 8 

focuses on the acceleration of optimization-based miniaturization problems. Therein, a 

description of a variable-fidelity EM-model management is provided. The underlying 

acceleration mechanism is described as a continuous adjustment of the model fidelity based 

on a proper unification of the defined metrics for the convergence status, and the feasibility 

status of the current design in the course of the optimization process. The significance of the 

proposed acceleration procedure is demonstrated through benchmarking using a number of 

single and multiple-constraint antenna structures.  

Chapter 9 concludes the thesis by stating the main findings of the conducted research over 

the course of this Ph.D. work, as well as discussing the corresponding challenges for potential 

future research directions.  
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Chapter 2 

2 Motivation and Literature Review 

This chapter discusses the motivation for the thesis, including a practical necessity for and 

applications of high-frequency circuit miniaturization. A brief summary of circuit-level 

miniaturization techniques including the incorporation of geometrical modifications, and the 

employment of electromagnetic wave theory constitute a part of the discussion. Subsequently, 

the transition phase from circuit-level to optimization-based miniaturization and the details of 

corresponding problem formulation are described.  

2.1 High-Frequency Circuit Miniaturization 

      Proliferation of the electronic systems has led to accommodation, limited power source, 

and maintenance issues within the emerging application areas including wireless 

communication networks, medical and healthcare systems, manufacturing industry, 

construction management, and home automation. The accommodation issue directly imposes 

size restrictions on the individual modules of the electronic devices, while the power loss can 

be reduced through elimination or shortening of the corresponding interconnection wirings or 

transmission lines. Integration of miniaturized system modules within a unified system not 

only helps further reduce the overall size, but also contributes to power loss reduction. An 

additional benefit lies in facilitation of the system maintenance and troubleshooting resulting 

from a reduced number of externally-connected individual modules. Figure .1 illustrates forty 

percent size reduction of multi-protocol integrated wireless module provided by Innophase 

Incorporation [68]. INP1013 is a smaller version of its counterpart INP1010, including a 

microcontroller, clocks, antenna and passive components; all integrated within a single 

module.  

 

 

 

 

 

 

 

(a) INP1010Area =412.56 mm2 [69]                                  (b) INP1013Area =256 mm2 [68] 

 

 

40% Size 

Reduction 

Figure 2.1:     40 % size reduction of multi-protocol wireless integrated module; (a) INP1010: 

area = 412.56 mm2, (b) INP1013: area = 256 mm2 [68]. 

 



 
 

 
 

2.1.1 Miniaturization: A Practical Necessity 

The emerging trends in size reduction of high-frequency electronic devices give rise to 

higher-level integration requirements of the system components. The resulting size restrictions 

demand not only compact size, but also a juxtaposition of active and passive high-frequency 

circuit elements within a single integrated system. This undertaking has led to the development 

of the state-of-the-art integration technologies in applications such as picosatellites [70], 

implantable medical devices [71], internet of things (IoT) [72], radio frequency identification 

(RFID) [73], or 5G communication systems [74].  Some of the corresponding voluminous 

passive components include power combiners [75], couplers/dividers [76], antenna arrays and 

their feeding networks [77], or filters and phase shifters [78]. While system performance 

requirements persist as a contrasting demand to that of compact size, size reduction becomes 

a practical necessity. 

2.1.2 Circuit-Level Miniaturization Techniques 

Realization of high-frequency circuit miniaturization may be carried out by resorting to 

alterations of the conventional designs. This can be achieved through the employment of 

electromagnetic wave theory along with additional degrees of freedom provided by 

geometrical modifications. Some of the relevant size reduction methods (referred to as circuit-

level miniaturization techniques in this context) include the incorporation of rectangular 

corrugations in the flares of antipodal Vivaldi antenna (AVA) arrays [79], the insertion of 

parasitic patches in close proximity of the driven patch in broadband endfire antennas [80], the 

utilization of multimode SIW beamforming networks in millimeter-wave (MM-wave) endfire 

antenna arrays [81], the introduction of filtering structures with vertical slots in 5G base-station 

antennas [82], the incorporation of slotted SIW in wideband phase shifters [10], the utilization 

of half-mode SIW (HMSIW) in broadband phase shifters [11], the simultaneous employment 

of quarter-wavelength coupled lines and quarter-wavelength transmission lines in phase shifter 

structures [78], the utilization of dual-mode folder circular SIW cavities in filter structures 

[83], the employment of artificial transmission lines (ATL) in MM-wave quadrature hybrid 

coupler structures [84], or the introduction of non-periodic step impedance shunt stub (SISS) 

loaded lines in branch-line coupler structures [85].  

The abovementioned miniaturization techniques have been proven to be efficient for the 

development of the initial circuit topology based on well-established grounds of 

electromagnetic wave propagation and radiation theory. Nevertheless, they lead to design 

complexities both in terms of a need for innovative design procedures specific to the structure 

type, and a following manipulation of additional geometry parameters for the optimum system 

performance. If only a few (say, one or two) variables are of importance, sub-optimal designs 

can be identified even after fabrication, by having implemented adjustable mechanical parts 

based on engineering insight to control the reflection coefficient or other antenna 

characteristics. However, as the structures evolve into more complex geometries described by 

numerous parameters, the tuning process becomes considerably more intricate. The unintuitive 

interconnection between the structure dimensions and the electrical and field performance 

figures, creates critical obstructions in identification of an optimum design using conventional 

tuning techniques. Therefore, the only way to achieve the optimum design is through 

optimization-based size reduction of the structure with all the geometrical parameters being 



9 
 

 
 

optimized simultaneously. This issue will be addressed in more detail in the remaining sections 

of this chapter.  

2.2 Optimization-Based Miniaturization 

     Topological complexity of miniaturized components leads to new design challenges. These 

are mainly associated with the necessity of appropriate and simultaneous adjustment of 

multiple geometry parameters. Traditional trial-and-error strategy falls short of unraveling the 

unintuitive interconnection between the structure dimensions and system performance figures. 

Identification of the optimum design can only be accomplished through rigorous numerical 

optimization of all the structure dimensions in a simultaneous manner. This section provides 

an overview of high-frequency circuit characteristics referred to as performance figures, recalls 

the formulation of constrained optimization-based high-frequency circuit miniaturization, and 

subsequently presents the penalty function approach, as well as the corresponding performance 

challenges.  

2.2.1 High-Frequency Circuit Characteristics 

      The primary purpose of this work is to reduce the physical size of the system while 

maintaining satisfactory levels of the performance figures. The performance figures are 

actually defined as circuit properties relying on circuit responses. This section discusses typical 

types of high-frequency circuit responses within the scope of the thesis.  

     Considering an m-port device, the corresponding scattering parameters can be denoted as  

                                                 |Spq|, p = 1, …, m,  q = 1, …, m.                                        (2.1) 

     Some of the popular circuit figures of interest within the scope of this thesis include 

reflection coefficient, power split ratio, axial ratio (AR), bandwidth (BW), and center frequency 

fc. They are either explicitly, or implicitly related to the scattering parameters given by (2.1).  

• Reflection coefficient: The ratio of the power reflected back from the circuit 

element to the source  

                                                           |Spp| = –20 log ||                                                   (2.2) 

where  is a measure of the impedance mismatch between the source output impedance ZC, 

and the corresponding circuit input impedance ZA, defined as 

                                                        = (ZA – ZC) / (ZA + ZC)                                              (2.3) 

• Power split ratio: The ratio of the output to input power defined as |S31 – S21| 

(applicable to a coupling structure) 

• Axial ratio: The ratio of the orthogonal components of the electric field denoted 

as AR (applicable to CP antennas)  

• Bandwidth: The range of frequencies delimited by a lower fl, and upper 

frequency fu, within which the circuit characteristics needs to meet the desired 

specifications; given by BW =  fu – fl. 

• Center frequency: The arithmetic mean of fu and fl, formulated as fc = (fu + fl)/2 



 
 

 
 

2.2.2 Problem Formulation 

 One of the main challenges of high-frequency circuit miniaturization stems from of a close 

interconnection between the optimal system performance and a specific arrangement of the 

geometry parameters. A large number of geometry parameters resulting from the circuit-level 

miniaturization techniques makes manual or guess-work identification of the optimal 

arrangement of design variables grossly ineffective. Evaluation of the performance figures 

pertinent to the electrical and field characteristics of the high-frequency circuits—later on 

formulated as design constraints— is usually carried out using EM simulations of the scaled 

structure described by the n-element vector of the geometry parameters x = [x1 … xn]
T. The 

optimization-based miniaturization problem can be formulated as  

                                                                

* arg min ( )
X

A


=
x

x x
                                                (2.4) 

where A(x) is the footprint area of the circuit of interest (in a more generic form it can be 

defined as the corresponding volume V(x)), X is the n-dimensional parameter space, and x*is 

the optimum set of geometry parameters to be found. The latter corresponds to the final 

structure dimensions ensuring a satisfaction of all the design constraints which may be of 

equality or inequality type. The equality constraints are formulated as  

                                                   Sineq,k(x) ≤ sk,  k = 1, …, nineq                                             (2.5) 

where sk are the acceptance thresholds for the corresponding constraints. 

Whereas the inequality ones are given as 

                                                       Seq,k(x) = 0, k = 1, …, neq                                               (2.6) 

where nineq and neq count for the number of inequality and equality constraints, respectively. A 

summation of the former and the latter is considered as the total number of constraints, nc = 

nineq + neq. 

For illustration purposes, the examples of the abovementioned constraint formulations 

applied to some of the high-frequency circuit characteristics previously mentioned in Section 

2.2.1 may be described as: 

• Reflection coefficient not exceeding –10 dB defined as an inequality constraint over 

the operational BW, i.e., |Spp(x,f)|  –10 dB for f  [fl  fu] 

• Axial ratio not exceeding 3 dB defined as an inequality constraint over the operational 

BW, i.e., |AR(x,f)|  3 dB for f  [fl  fu] 

• Power split ratio equal to zero defined as an equality constraint over the operational 

BW, i.e., |S31(x,f0)| – |S21(x,f0)| = 0 dB for  f  [fl  fu] 

2.2.3 Constraint Handling 

A prerequisite for handling of the design constraints of any type lies in their proper 

evaluations. In the context of this thesis, the task is normally carried out using the EM-

simulated response of the circuit structure of interest, denoted as R(x). Accordingly, a violation 

of the inequality constraints is measured as  

                                            γineq,k = Sineq,k(x) – sk,  k = 1, …, nineq                                             (2.7) 
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while a violation of the equality constraints is measured as  

                                                   γeq,k = Seq,k(x), k = 1, …, neq                                                                  (2.8) 

A need for satisfaction of these constraints within an optimization process not only imposes 

algorithmic complexity, but also requires numerous system evaluations which usually turn out 

to be numerically cost-prohibitive. Constraint handling methods include explicit, and implicit 

treatment. Among popular explicit techniques the quadratic penalty function methods [86]- 

[87] , augmented Lagrangian methods [87]-[88], and sequential quadratic programming may 

be mentioned. The quadratic penalty function methods formulate the constraints as penalty 

terms consisting of a multiple of the square of the corresponding violations. Besides the 

attraction due to simplicity and intuition, the quadratic penalty functions suffer from ill 

conditioning. This disadvantage is overcome by the succeeding method, namely, augmented 

Lagrangian method. Sequential quadratic programming [87] is one of the most efficient 

explicit constraint handling methods especially when the problem inherits significant 

nonlinearities.   

In this thesis, we specifically adopt an implicit approach offered by the penalty function 

approach [18], [19], [20], [21], [22], where the design constraints are handled in an implicit 

manner not requiring costly system response evaluations.  A detailed formulation of the 

method will be provided in Section 2.2.4. 

2.2.4 Penalty Function Approach 

     The penalty function approach reformulates the constrained optimization-based 

miniaturization problem (1) into an unconstrained one as  

                                                             * arg min ( )p
X

U


=
x

x x                                                (2.9) 

where the objective function takes the form of  

                                2 2

, , , ,1 1
( ) ( ) ( ) ( )

ineq eqn n

P ineq k ineq k eq k eq kk k
U A c c 

= =
= + + x x x x                (2.10) 

     The immediate benefit of (2.10) is the smart distinguishability between the cheap 

geometric-based constraint A(x), and the expensive EM-based electrical-and-field-related 

ones. Therein, an explicit treatment of the former as the main objective is accompanied by an 

implicit treatment of the latter using penalty functions ck(x), k = 1, …, nc. These are typically 

defined as quantifications of the relative constraint violations for the inequality constraints as 

     cineq,k(x) = max{0, γineq,k/sk}, k = 1, …, nineq                                     (2.11) 

and the same way for the equality constraints 

ceq,k(x) = max{0, γeq,k}, k = 1, …, neq                                                       (2.12) 

     The proper contributing proportion of cineq,k(x) and ceq,k(x) to the main objective being the 

circuit size is determined by the penalty coefficients ineq,k and eq,k, respectively.  



 
 

 
 

2.2.5 Challenges 

Simulation-driven miniaturization of high-frequency structures is a computationally 

challenging task. Evaluation of the system responses requires CPU-intensive full-wave EM 

analysis. The corresponding time and computational cost multiplies very fast with the 

increased number of the geometry parameters in more complex structures. The expensive 

electrical and field related constraints inherent to size reduction task, requires an intricate 

treatment. This complexity is further intensified for the design cases involving equality 

constraints. Furthermore, the multimodal nature of constrained miniaturization problems 

results in initial design dependency of the optimization results. Thus, conventional 

optimization-based miniaturization methods are either inefficient or unreliable.   

The penalty function approach discussed in Section 2.2.4 has made an attempt to simplify 

constraint handling procedures. The said approach not only ensures the efficacy of the 

miniaturization problem by an explicit treatment of the size objective, but also facilitates 

handling of the costly EM-based electrical-and-field-related constraints through their implicit 

treatment. Numerous variations of the penalty function approach have been proposed targeting 

specific performance improvements. Implementation of an adaptive reflection coefficient 

acceptance threshold in [19] not only allowed for a precise control of the reflection coefficient 

constraint, but also resulted in superior miniaturization rates as compared to the fixed-threshold 

penalty function approach. Another performance shortcoming of the penalty function approach 

lies in its nonlinear behavior due to the inconsistency of the parameter sensitivities concerning 

the size and reflection coefficient constraints. The issue has been addressed in [20] by 

incorporation of an objective relaxation scheme between the two types of constraints. Further 

efforts include the improvement of the time and computational expenses of the penalty 

function approach through the employment of coarse-discretization EM models [21], or the 

incorporation of variable-fidelity EM model in [22]. Nevertheless, algorithmic performance 

reliability cannot be ensured without a costly trial-and-error-based identification procedure for 

the optimum arrangement of the penalty factors. Typical performance indicators include 

quality of the final design in terms of the obtainable miniaturization rates, and constraint 

satisfaction. This is because using too high values of the penalty coefficients may result in poor 

size reduction rates, while too low values may lead to poor constraint control.  

Another performance challenge of the aforesaid approach comes into light when targeting 

miniaturization of specific high-frequency structures involving equality constraints. The 

corresponding feasible region that encompasses the optimal solutions is a very thin set of the 

parameter space, which results in impediments in the exploration of the feasible region 

boundary. Examples of the equality constraints include power split ratio or phase shift in power 

dividers/combiners, couplers, or phase shifters.         

A common challenge among the local search routines [23], [24], [25], [26], [27], is 

multimodality or initial design dependency. The penalty function approach as a local 

optimization-based size reduction technique is prone to the same issue.  A workaround can be 

resorting to the global methods [28]- [29]. Relevant conventional optimization routines include 

population-based metaheuristics (evolutionary strategies [31], particle swarm optimization 

[32]), or simulated annealing [30]. Nevertheless, the associated time and computational 

expenses persist as a main obstacle. The computational burden arising mainly from numerous 

expensive EM-based evaluations of the objective functions, can be alleviated through the 

incorporation of SBO routines [13], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], 
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[44], [45]. Here, the principal idea lies in reducing the computational burden by switching to 

a cheaper surrogate model. However, surrogate modeling techniques are not a common choice 

for solving miniaturization tasks.  

In [38], the computational efficiency of yield estimation for antenna structures was 

significantly improved by the incorporation of polynomial chaos-Kriging (PC-Kriging) 

surrogate modeling technique. In [34], an expedited procedure for the multi-objective 

microwave device design was proposed, where the Pareto front was approximated using nested 

kriging surrogate methodology. A novel algorithm presented in [33] attempted to reduce the 

computational burden of multi-objective PSO problems through the identification of the Pareto 

front using a Gaussian process (GP) surrogate model. The curse of dimensionality was 

addressed in [13] by the employment of a two-level kriging surrogate model, where modeling 

efficacy was ensured within wide ranges of the parameters, as well as the performance figures 

space. Nevertheless, SBO encounters additional computational challenges due to the increased 

number of geometry parameters associated with topologically modified structures. Moreover, 

nonlinear characteristics inherent to high-frequency devices tend to impose restrictions in 

practical utility of the surrogate models. 

Restrictions of time and computational resources associated with high-frequency size 

reduction, tend to be generalized to any optimization technique (either local or global search).  

Various algorithmic techniques have been developed to lower the computational burden and 

expedite the optimization process. Among popular acceleration techniques the incorporation 

of sparse sensitivity updates [50]-[54], or the employment of adjoint sensitivities [46], [47], 

[48], [49], [50], [51], may be mentioned. These techniques have successfully reduced the CPU 

time up to forty [55] and sixty percent [56]. Another acceleration technique is the employment 

of variable-fidelity EM simulation models [57], [58], [59], [60], [61], [62], [63], [64], [65], 

[66], [67]. Computational time savings of over forty percent have been obtained using a set of 

discrete EM-model fidelities [61]. Nevertheless, availability of only a few preselected model 

fidelities can lead to shortcomings in constraint satisfaction, and poor miniaturization rates 

[65]- [66]. 

In view of the abovementioned performance challenges of the optimization-based size 

reduction concerning CPU time, computational cost, constraint handling intricacy, and initial 

design dependency, this thesis attempts to address the corresponding issues by the 

development of novel, reliable, and cost-effective algorithms, which are intended to advance 

the state of the art of automated design and miniaturization of high-frequency structures.    

 

 

 

 

 

 

 



 
 

 
 

Chapter 3 

3 Algorithmic Tools Employed in Solving EM-Driven Size 

Reduction Problems 

The problem considered in this work is an automated design optimization of high-frequency 

circuits with emphasis on size reduction. In practice, the design task may be handled through 

the employment of local and global optimization techniques, the computational efficiency of 

either can be significantly improved through utilization of a substitute surrogate model and a 

subsequent surrogate-based optimization (SBO). Depending on the structure type and 

performance characteristics, the existent constraints are embedded in the optimization problem 

as either equality or inequality types. Accordingly, the objective function is formulated in a 

problem-specific manner considering the former and the latter constraint types. Below, a brief 

description of the mathematical and algorithmic tools employed in the development of new 

miniaturization algorithms that exhibit improved efficacy and enable automation of the process 

is provided. The details of the relevant contributions can be in the following chapters of this 

thesis. 

3.1 Local Optimization Methods 

     Local optimization refers to identifying local optima of an objective function within the 

feasible region of the search space. Local search routines principally operate on a single initial 

solution with an iterative refinement towards the optimum solution. They are usually efficient 

in finding reasonable solutions within reasonably defined ranges of the parameter space. The 

examples of popular local optimization techniques include descent methods [89], trust-region 

gradient-based algorithm [87], or Newton and Quasi-Newton methods [88]. The remaining 

part of this section provides a generic formulation of the abovementioned techniques applied 

to the unconstrained optimization problems. Subsequently, the inclusion of the design 

constraints within the corresponding formulations that enables an expansion of the 

applicability of these methods to many practical constrained optimization problems is 

provided.  

3.1.1 Descent Methods 

We will consider iterative methods producing a sequence of vectors x(i), i = 0, 1, 2, … [89]. 

They are supposed to converge to a local minimizer x*  

                                                          * arg min ( )
X

f


=
x

x x                                                   (3.1)                                                   

where f(x) is the given objective function. The descending property is enforced with respect to 

the objective function value, i.e., f(x(i+1)) < f(x(i)). The search for x* starts from the initial solution 

x(0). Subsequent vectors x(i+1) are found along a descent direction such that there is at least a 

local decrease in the value of f. 
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A critical performance metric of an iterative method is the convergence rate. It provides a 

description of how quickly the minimizer x* is approached. The convergence rate measures 

include: 

• Linear convergence defined by   

                                                  ||x(i+1) – x*||  c1||x
(i) – x*||                                                   (3.2) 

             where 0 < c1 < 1 

• Quadratic convergence defined by 

                                            ||x(i+1) – x*||  c2||x
(i) – x*||2                                                  (3.3) 

       where 0 < c2 < 1 

• Superlinear convergence defined by 

                               ||x(i+1) – x*||/||x(i) – x*|| → 0 for i →                                        (3.4) 

     The superlinear convergence is faster than the linear one. However, it is not as good as 

quadratic convergence.  

Given x(0) as an initial solution, a generic descent procedure operates as follows [84]: 

1. Set i = 0; 

2. Find a search direction hd;  

3. Find a step length ;  

4. Set x(i) = x(i) + hd; 

5. Set i = i + 1; 

6. If the termination condition is not satisfied, go to 2; 

7. END 

 

Among the abovementioned steps of the iteration, Steps 2 and 3 are considered as the 

most critical stages of the procedure. These include finding a descent direction hd, and the 

following appropriate step length hd, to be taken along. Therein, hd represents a descent 

direction vector for which f(x)Thd < 0. The value of hd needs to be determined such that 

the descending property of the objective function value is ensured, i.e. f(x(i+1)) < f(x(i)). The 

algorithm can be terminated based on various convergence criteria including:  

• Convergence in argument defined as  

                                                  ||x(i+1) – x(i)||  1,                                                (3.5) 

• Vanishing of the gradient defined as  

                                                    ||f(x(i))||  2,                                                  (3.6) 

• Convergence in the function value defined as 

                                                f(x(i)) – f(x(i+1))  3,                                             (3.7) 

• Combination of the above. 

3.1.2 Trust-Region Gradient-Based Optimization 

An alternative iterative approach to solving the local optimization problem (3.1) is offered 

by trust-region gradient-based framework [87]. Therein, a series of candidate solution vectors 



 
 

 
 

x(i+1) is identified as  

                                           
( )

( 1) ( )

; || ||
arg min ( ), 0,1,

i

i iL i


+

− 
= =

x x x
x x                                        (3.8)     

where  is the trust-region search radius, and L(i)(x) is a first-order Taylor approximation of 

f(x) at x(i) formulated as  

               ( ) ( ) ( ) ( )( ) ( ) ( )( )i i i i TL f f= + −x x x x x                                        (3.9) 

The search radius  is adjusted based on a gain ratio [87] calculated as  
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(3.10) 

In the case of design improvement, i.e., if r > 0, the candidate design x(i+1) is accepted. 

The standard rules pertaining to the adjustment scheme of the trust region size throughout the 

optimization run are delineated in [87], a pseudocode of which may be described as follows: 

 

if r > 0.75 

  2; 

else if r < 0.25 

  /3; 

 else if  0.25<r < 0.75 

  ; 

end 

3.1.3 Newton and Quasi-Newton Methods 

The exploitation of higher-order derivatives can lead to the improvement of the efficacy of 

the trust-region gradient-based search routine. Specifically, the incorporation of the Hessian 

of the objective function, instead of the first-order Taylor approximation as in (3.9), has led to 

the development of a family of Newton and quasi-Newton methods which are described in the 

following.  

Let f(x) be at least twice continuously differentiable objective function. A local 

representation of f(x) using its second-order Taylor approximation is as follows 

                                                                      ( ) ( )f q+ x h h                                      (3.11) 

                                                    
1

( ) ( ) ( ) ( )
2

T Tq f f= +  +h x x h h H x h                         (3.12) 

If the Hessian of f at x meets the conditions for positive-definiteness property, the model 

q(h) leads to a unique minimizer for h described as  

                                                               q(h) = 0,                                                       (3.13) 
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in other words 

                                                       ( ) ( ) 0f + =x H x h                                                (3.14) 

Equation (3.14) provides the basis of the Newton’s method [89]. Therein, the next solution 

is obtained by solving the abovementioned equation as:  

  ( 1) ( ) ( ) 1 ( )[ ( )] ( )i i i if+ −= − x x H x x  
                                   (3.15) 

The procedure (3.15) is well defined if the Hessian H(x) is non-singular. If positive 

definiteness of the Hessian is ensured for all iterations, and the initial solution is sufficiently 

close to the minimizer, the method usually has a very quick quadratic convergence rate. At the 

same time, the basic Newton algorithm suffers from some practical shortcomings including 

lack of global convergence for many problems, possibility of convergence to a saddle point or 

a maximum. Furthermore, besides requiring analytical second-order derivatives, the procedure 

(3.15) may be ill-conditioned.  

The bottleneck in solving (3.15) appears when the Hessian H(x) shows a lack of positive 

definiteness. The damped Newton method works around this problem by a reformulation of 

(3.15) as  

                                               
( 1) ( ) ( ) 1 ( )[ ( ) ] ( )i i i if+ −= − + x x H x I x                                           
(3.16) 

where I represents the identity matrix. An adequately large  > 0 can make the matrix H(x) 

+ I positive definite. The solution of the problem  

                                                      [H(x) + I]h = –f(x)                                            (3.17) 

denoted as h, serves as a minimizer of the model 

                      
1 1

( ) ( ) ( ) ( ) [ ( ) ]
2 2

T T Tq q f f  = + = +  + +h h h h x x h h H x I h                 (3.18) 

The damped Newton‘s method utilizes large values of  in the early stages of the 

optimization process and gradually decreases them as it proceeds towards convergence.  

Sufficiently small value of  occurs when the algorithm is close to the minimizer, i.e. 

defaulting to the original Newton‘s method to identify the minimizer of f. Levenberg-

Marquardt procedure can be referred to as one of the most popular algorithms implementing 

the aforementioned concept.  

While damped Newton methods work around all difficulties of the basic Newton‘s method, 

the high evaluation cost concerning the objective function‘s second-order derivatives remains 

a critical obstacle. Quasi-Newton methods attemp to overcome this shortcoming by an 

approximation of the exact Hessian using proper updating formulas. Broyden-Fletcher-

Goldfarb-Shanno (BFGS) has been considered as the most efficient updating formula 

particularly for this purpose. Therein, the properties of positive definiteness and symmetricity 

of the approximated Hessian is preserved. The BFGS approximation of the Hessian denoted 

by B is formulated as follows:  



 
 

 
 

                                         

1 1
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new T T
= + −B B yy uu

h y h u                                          (3.19) 

where 

                                       
, ( ) ( ),new newf f= − =  −h x x y x x

                                     (3.20) 

and u = Bh. 

Whereas the inverse of the Hessian is formulated as: 

                                                     1 2 ( ),T T T

new  = + − +D D hh hv vh
                                      

(3.21) 

where 
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(3.22)       

3.1.4 Constrained Optimization 

The previously described algorithms permit solving unconstrained optimization tasks. At 

the same time, most practical problems are constrained ones with inequality/equality 

constraints, or lower and upper bounds on the design variables. This section attempts to 

provide some insight into the constrained optimization techniques. For a more detailed 

discussion, the reader can be referred to the numerical optimization textbooks [88] - [90].  

The optimization problem can be formulated similarly to the problem (3.1), however with 

explicitly given constraints as  

                                                             
* arg min ( )f=x x                                                    (3.23) 

which is subject to inequality constraints 

                                                    cineq,k(x)  0, k = 1, …, N                                           (3.24) 

and equality constraints 

                                                    ceq,k(x) = 0, k = 1, …, M                                            (3.25) 

Typical constraint types include box constraints, lb  x  ub, i.e. lower and upper bounds on 

the design variables, geometry constraints that permit avoiding geometrical inconsistency of 

the design along with controlling the circuit footprint area. Moreover, electrical and field 

performance figures can also be controlled through equality or inequality constraints 

depending on their corresponding nature. The examples of the relevant performance figures 

include power split ratio in coupler/divider structures, axial ratio AR in CP antenna structures, 

or reflection coefficient in coupler/divider and antenna structures.  
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The set of vectors satisfying the constraints (3.24) and (3.25) is defined as a feasible region 

where constrained optimization is supposed to identify the minimizer of the function f(x). 

The optimality of the solution of a constrained problem (3.23)-(3.25) is ensured through the 

first derivative tests known as Karush-Kuhn-Tucker (KKT) conditions [91]. Therein, the local 

minimizer x* of f(x) is conditioned to the existence of the constants ζ1, …, ζ N, and 1, 2, …, 

M, such that  

* * *

1 1

, ,( ) ( ) ( ) 0
N M

k k

k

ineq k eq k

k

c cf  
= =

 +  +  = x x x                          (3.26)  

                                  
*

, ,

*
, 1,....,( ) 0, ( ) 0ineq k ineq kk k Nc c = =x x                         

(3.27) 

where 

                                                          , 1,....,0k k N =                                               (3.28) 

provided continuous differentiability of all the objective and constraint related functions.  

The function at the left-hand side of (3.28) is called the Lagrangian function, whereas the 

coefficients ζ and  are referred to as Lagrange multipliers.  

     A simple method to handle constrained optimization is the penalty function approach 

discussed in Section 2.2.4. Therein, the original problem (3.23)-(3.25) is reformulated as   

           , ,

2

1 1

,

2

,arg min ( , , ) arg min ( ) ( ) ( )
ineq eq

ineq eq ineq k ineq eq k eq k

n n

k

k k

U c cf   
= =

  
= + + 

  
 

x x
x x x x          (3.29) 

     As previously mentioned in Section 2.2.4, ineq,k and eq,k are the penalty coefficients 

determining the proper proportion of the corresponding penalty functions cineq,k(x) and ceq,k(x), 

respectively.   

3.2 Global Optimization Methods 

     As opposed to local optimization, global optimization algorithms seek to locate the global 

optimum of the objective function within the entire search space. Depending on the particular 

methods, their principal operation can be either based on a single initial solution as in simulated 

annealing [92], a cluster of initial solutions as in random search [93], or may not require the 

initial solution whatsoever as in population-based metaheuristics [96]. In global optimization 

algorithms, new candidate solutions are generated, evaluated, and updated in an iterative 

manner until the convergence criterion is met. These methods exhibit no restrictions regarding 

properties of the objective functions such as continuity or differentiability, in contrast to the 

counterpart local optimization methods which require continuously differentiable objective 

functions. This section provides a description of the abovementioned global optimization 

techniques along with their detailed operational flow. 



 
 

 
 

3.2.1 Random Search 

     Many local optimization techniques are prone to multimodality due to the presence of the 

objective functions with multiple optima. In other words, the final optimization results are 

dependent on the initial design vector. A global optimization method known as random search, 

avoids being stuck in a local minimum by sampling the parameter space according to a uniform 

distribution. A pseudocode of the method is provided in the Fig. 3.1. 

Random search algorithm:  

fbest = Inf; 

j = 0; 

while j < jmax 

    xnew = generate_random_point(); 

    fnew = f(xnew); 

    if fnew < fbest 

        xbest = xnew; 

        fbest = fnew; 

    end 

    j = j + 1; 

end 

where: 

j – iteration number 

jmax – maximum number of iterations 

fbest – current value of the objective function 

fnew – new value of the objective function 

Figure 3.1: Operational flow of the random search algorithm  

     A modified version of the random search method attempts to enhance its exploitation 

capabilities through biasing of the random samples by the best solution identified so far. 

Therein, the new sample is formulated as 

                                                           xnew= αx+(1- α)xbest                                                                           (3.30) 

with α → 0 for j → jmax (maximum number of function evaluations). 

Therefore, the search tends to become progressively more local in the vicinity of xbest as the 

algorithm moves towards convergence. A pseudocode of the procedure is described in Fig. 

3.2. 

3.2.2 Simulated Annealing   

     Simulated annealing is a probabilistic global optimization technique often applicable to 

problems with a discrete parameter space. The principal operation of this algorithm is based 

on replacing the current solution by randomly selected nearby solution.  The selection criterion 

is a transition probability P(f, fnew, T), that depends on two factors: (i) the difference between 
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the corresponding objective function values i.e. f – fnew, (ii) a global variable referred to as 

temperature T with gradually decreasing trend throughout the optimization process. The 

corresponding formulation is as follows 

Modified random search algorithm:  

xbest = generate_random_point(); 

fbest = f(xbest); 

j = 0; 

while j < jmax 

    xnew = generate_random_point(); 

    xnew = αxnew + (1- α)xbest;  

    fnew = f(xnew); 

    if fnew < fbest 

        xbest = xnew; 

        fbest = fnew; 

    end 

    α = update_alpha(j,jmax); 

    j = j + 1; 

end 

where: 

j – iteration number 

jmax – maximum number of iterations 

fbest – current value of the objective function 

fnew – new value of the objective function 

α – bias coefficient 

Figure 3.2: Operational flow of the modified random search algorithm  
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      Random changes are observed in the current solution at the initial stages of the 

optimization process where T is large, while there is an increasingly downhill behavior as T 

approaches zero. The immediate benefit of the initial random behavior lies in a possibility of 

moving uphill, therefore, reducing the chances of being trapped in a local optimum.  Figure 

3.3 provides the standard procedure for the implementation of the simulated annealing 

algorithm. 

 

 



 
 

 
 

Simulated annealing algorithm:  

xbest = x = x(0); fbest = f = f(x); 

j = 0; 

while j < jmax  

    xnew = neighbor (x); 

    fnew = f(xnew); 

    if fnew < fbest 

        xbest = xnew; fbest = fnew; 

    end 

    if P(f,fnew,temp(j/jmax)) > rand() 

        x = xnew; f = fnew; 

    end 

end 

where: 

j – iteration number 

jmax – maximum number of iterations 

f – current value of the objective function 

fnew – new value of the objective function 

 

Figure 3.3: Standard operating procedure of the simulated annealing algorithm 

3.2.3 Population-Based Metaheuristics 

Population-based metaheuristics are derivative-free global optimization methods inspired 

by natural phenomena such as natural or biological systems involving a cluster of interacting 

individuals. Immediate benefits of this inspiration include the capability of handling 

discontinuous or non-differentiable objective functions, preventing multimodality issues due 

to multiple local optima, and eventually convergence to the global optimum of the system at 

hand. Among the most popular population-based techniques, evolution strategies (ES) [97], 

genetic algorithms (GAs) [98], particle swarm optimization (PSO) [99], evolutionary 

algorithms (EAs) [97], or ant systems (AS) [98] may be mentioned. 

A general flow of a population-based search routine, specifically concerning algorithms 

such as EAs or GAs, is provided in Fig. 3.4 [99].  

The terminology utilized in the above algorithm description is listed in the following. 

• Evaluation:          The process of evaluating the objective function values for the  

                            individuals, 

• Parents:          Individuals creating a new individual, 

• Recombination:  The process in which new individuals are created, 

• Mutation:          The process in which individuals undergo random modification  

                            through local perturbations. 
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Population-based search algorithm:  

initialize population Pµ = {x(1), …, x(µ) } 

while ~termination_condition 

    evaluate individuals in Pµ; 

    choose parent individuals Pλ from Pµ; 

    Pµ.new = recombination(Pλ); 

    Pµ = mutation(Pµ.new) 

end 

where: 

recombination() – recombination operator 

mutation()  – mutation operator 

Figure 3.4: Standard operating procedure of the population-based search algorithm 

Population-based metaheuristics are considered as the preferred techniques for handling 

multimodal design problems with either limited computational resources, or low evaluation 

time of the objective function. A typical example may be, e.g., the automated design and 

optimization of antenna arrays where the objective function is evaluated using analytical 

models for array factor analysis [102], [103]. However, for the design problems where the 

evaluation of the objective function requires performing costly EM simulations, population-

based metaheuristics encounter prohibitive computational burdens.  

3.3 Surrogate Modeling 

3.3.1 Introduction 

     The reliability as well as the efficacy of the optimization algorithms discussed so far has a 

strong dependency on the accuracy of the computational model evaluating the objective 

function values. In the context of this thesis, i.e., miniaturization of high-frequency structures, 

the computational model is most often based on full-wave EM analysis. The costly nature of 

EM simulations, intensified by numerous evaluations inherent to conventional optimization 

algorithms, tends to create a significant computational burden. A workaround is the 

employment of fast replacement models a.k.a. surrogate models [23], [104]. Nevertheless, in 

order to ensure the reliability of the optimization process with the original computational 

model being replaced by a cheaper one, the underlying surrogate needs to exhibit specific 

features including fast computational capability, sufficient accuracy, and analytical 

tractability. While there is a vast variety of surrogate modeling techniques in the literature, 

they can be categorized into two major types including approximation (or data-driven) models, 

and physics-based models, a detailed description of each type is provided in this section.  

3.3.2 Data-Driven Surrogate Modeling 

     Data-driven models do not require any physical insight into the system of interest. They are 

mainly constructed using sampled high-fidelity system evaluations. Therefore, they are 



 
 

 
 

considered as generic surrogate models with the potential to be applied to any type of 

optimization problems. Besides versatility, the approximation models are cheap to evaluate, as 

they are basically constructed in the form of analytical formulas. Nevertheless, their predictive 

power is closely related to the number of high-fidelity training data samples. This section 

provides a detailed mathematical formulation of a number of the selected approximation 

surrogates including polynomial regression [37], radial basis functions [105], kriging [104], 

and artificial neural networks [105].   

3.3.2.1 Polynomial Regression  

 

A simple, yet popular, data-driven surrogate modeling technique is polynomial regression. 

Therein, low-order polynomials are utilized for either local surrogate modeling, or a 

construction of the initial surrogate models with low accuracy to indicate the trends of the 

objective function.  

The corresponding surrogate is formulated as    

1
( ) ( )

M

k kk
s v

=
=x x ,                                                      (3.32) 

where αk are the model parameters and vk are the basis functions. The model parameters αk  can 

be normally determined as a least-square solution to the linear system  

                                                                  F = Xα,                                                            (3.33) 

where α is an M-element vector containing the model parameters as  

                                                           α = [α1 α2 …  αM]T,                                                  (3.34) 

and F is a q-element vector containing the objective function values defined as 

                                                    F = [f(x(1))  f(x(2))  …  f(x(q))]T                                                            (3.35) 

X represents a q  M matrix containing the basis function values at the sample points. If q ≥ M 

and rank(X) = M, the model parameters αk can be found in the form of a solution to the least-

squares problem  

                                                                   α = X+F                                                           (3.36) 

where X + is the pseudoinverse of X defined as 

                                                             X+ = (X T X) -1 X T                                                  (3.37) 

Note that the basis functions do not need to be necessarily polynomials. Depending on the 

application, they can be sinusoidal or exponential as well.  
 

3.3.2.2 Radial Basis Function 

 

Another commonly used technique for the construction of data-driven surrogates is radial 

basis function (RBF) interpolation. Therein, the RBF surrogate is generated using a linear 

combination of radially symmetric functions φ 
( )

1
( ) (|| ||)

M k

kk
s  

=
= −x x w ,                                          (3.38) 

 

where w(k), k = 1, … , M, are the basis function centers, and k are the model parameters the 

values of which can be found using a least-square problem formulation similar to that of the 

previous section  
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                                                                      = φ+F                                                         (3.39) 

where  is an M-element vector containing the model parameters  

                                                               = [1 2 … M]T,                                                (3.40) 

and F is a q-element vector containing the objective function values 

                                                      F = [f(x(1))  f(x(2))  …  f(x(q))]T ,                                    (3.41) 

whereas ϕ + is the pseudoinverse of the qM matrix ϕ = [ϕjl]j = 1,…,q; l = 1,…,M, defined as 

                                                                ϕ += (ϕ T ϕ)-1 ϕ T,                                                (3.42) 

with the corresponding entries ϕjl calculated using 

                                                            
( ) ( )(|| ||)j l

jl = −x w                                              (3.43) 

     If ϕ is a regular square matrix, i.e. q = M, and the centers of the basis functions coincide 

with and the training data points, the vector of the model parameters   can be calculated as  

                                                                         = ϕ –1 F                                                          (3.44) 

A commonly used basis function is a Gaussian one, φ(r) = exp(−r2/22), with  being the 

scaling coefficient. Other basis functions include thin plate spline φ(r) = r2ln(r), multiquadric 

φ(r) = (1 + 2r2)1/2, inverse quadratic φ(r) = (1 + 2r2)–1, or inverse multiquadric φ(r) = (1 + 

2r2)–1/2. 

3.3.2.3 Kriging 

 

Kriging is considered as one of the most widely used surrogate models in the automated 

design of the contemporary engineering systems. A basic kriging model is represented in the 

form of a following function:  

( ) ( ) ( )Tf I= +x c x λ x ,                                                     (3.45) 

where c(x) = [c1(x)  c2(x)  …  cM(x)]T are known constant functions, and λ = [λ1 λ2 … λM]T are 

the unknown model parameters; I(x) is a realization of a normally distributed Gaussian random 

process with zero mean and variance 2. The formulation (3.45) consists of two terms: the first 

is a regression part c(x)Tλ, serving as a trend function for f, and the second term represents 

localized variations denoted as I(x). The covariance matrix of these variations is defined as  

                                      ( ) ( ) 2 ( ) ( )[ ( ) ( )] ([ ( , )])j l j lCov I I R=x x R x x ,                              

(3.46) 

where R is a qq correlation matrix whose entries are the correlation functions between the 

pair of sampled data points x(j) and x(l) 

                                                       Rjl = R(x(j),x(l)). R(x(j), x(l))                                           (3.47)                                      

Gaussian function is the most commonly used correlation function. It is typically represented 

as 

2

1
( , ) exp | |
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i i ii
R x y

=
 = − −
 x y ,                                   (3.48) 

where xi and yi are the ith components of the corresponding vectors x and y, and βi are the 

correlation parameters to be found. The kriging predictor is formulated as 



 
 

 
 

1( ) ( ) ( ) ( )T Ts −= + −x c x λ r x R F Cλ ,                                                 (3.49) 

where C is a qM matrix with Cjl = cl(x
(j)),  F = [f(x(1))  f(x(2))  …  f(x(q))]T, and r(x) = [R(x, x(1)) 

… R(x, x(q))]T. The vector of unknown model parameters λ = (CTR–1C)–1CTR–1F is determined 

in model fitting procedure using maximum likelihood for λi. 

An appealing feature specific to kriging is the availability of the model approximation error 

provided by the random process I(x). This property helps improve the model accuracy by 

locating the highest model errors and accordingly updating the surrogate with additional data 

samples at the corresponding locations.  

3.3.2.4 Artificial Neural Networks 

 

Artificial neural networks (ANNs), also known as neural nets (NNs), constitute a wide and 

versatile research area with their main applications in categorization and classification. 

Nevertheless, they can be discussed as intricate nonlinear regression models in the context of 

this chapter. 

The main idea behind ANN is the imitation of a biological neural network through a first-

order approximation model. A neuron as the main component of ANN, gives rise to a nonlinear 

regression operation [106] as shown in Fig 3.5(a). The corresponding regression coefficients 

include w1 through wn; while β is bias value for the neuron, and T is a slope coefficient. Figure 

3.5(b) demonstrates the most popular NN architecture consisting of a multi-layer feed-forward 

network.  

The two critical stages in the construction of ANN include a selection of a proper NN 

architecture, and a subsequent network training. In the case of a multi-layer ANN as in Fig 

3.5(b), the network flexibility, or in other words, the training data approximation capability, 

has a strong dependency on the configuration of the hidden layers, i.e., the number of the 

hidden layers and the corresponding neurons. In the network training stage, the neuron weights 

are applied values through solving a nonlinear least-squares regression problem. The error 

back-propagation procedure is a commonly used method to solve this specific regression 

problem. Depending on the size and complexity of the network architecture, global 

optimization methods may be required for the identification of the optimal ANN architecture. 

Too simple a network architecture may result in the training data approximation deficiencies, 

whereas an excess in degrees of freedom may lead to poor generalization capability.  

 

         

                              (a)                                           (b) 

Fig. 3.5. Basic concepts of artificial neural networks: (a) structure of a neuron; (b) two-layer 

feed-forward ANN architecture [106] 
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3.3.3 Physics-Based Surrogate Modeling 

     In contrast to data-driven surrogates described in the previous section, physics-based 

models require problem-specific knowledge of the system at hand for their setup [106]. 

Therein, a physics-based description of the system behavior is embedded within a so-called 

low-fidelity surrogate. An iterative correction of the low-fidelity model is carried out using a 

limited number of high-fidelity system evaluations normally by means of either linear or 

nonlinear regression. This section starts by providing a description of low-fidelity models and 

how they are constructed. Subsequently, the selected physics-based surrogate modeling 

techniques including response correction models [106], and feature-based modeling [106] are 

discussed. 

3.3.3.1 Low Fidelity Modeling 

 

     The low-fidelity model, also known as coarse computational model, is the essential element 

of any physics-based surrogate. It is actually a simplified version of the high-fidelity (a.k.a. 

fine) computational model intended to reduce the evaluation costs and therefore speed up the 

optimization process.  While this is accomplished at the expense of lowering the model 

accuracy, a trade-off between the speed and accuracy needs to be assessed in order to guarantee 

the surrogate reliability. The low-fidelity model has to adequately represent the trends of the 

high-fidelity model with respect to design variable changes. Considering a specific 

performance figure of the system of interest being evaluated by both models, if certain variable 

changes make either an upward or downward trend in the high-fidelity model response, the 

low-fidelity model response should follow the same trend. Nevertheless, an offset value is 

allowed, i.e., the performance figures evaluated by the two models do not have to be the same. 

Low-fidelity models can be developed through a number of approaches including simplified 

physics (a.k.a. variable-fidelity physics model), coarse discretization (variable-resolution 

model), relaxed convergence criteria, or a combination of them. The simplified physics method 

involves a replacement of the high-fidelity model equations by a set of simplified ones, 

whereas the coarse discretization method utilizes the same high-fidelity model equations, 

however, with a coarser discretization of the computational mesh grid. The relaxed 

convergence criteria method (a.k.a. variable-accuracy model), as implied, deals with relaxing 

the solver convergence criteria. 

3.3.3.2 Response Correction Models 

 

     Let Rf(x) and Rc(x) denote the high and low-fidelity EM-simulated responses of the system 

of interest, respectively. The response correction surrogate model Rs(x) is constructed by 

applying a proper correction function to the low-fidelity response Rc(x) as follows:  

                                                      Rs(x) = C(Rc(x))                                               (3.50) 

where C: Rn → Rn represents the response correction function. The surrogate is updated 

iteratively throughout the optimization process. Therefore, it is reformulated as Rs
(i)(x) = 

C(i)(Rc(x) ), with C(i) being the correction function at the iteration i. The minimum requirement 

for the correction based surrogates is zero-order consistency between the surrogate and the 

high-fidelity model at the current design x(i), defined as follows  



                                                                 Rs
(i)(x(i)) = Rf(x

(i))                                              (3.51) 

      However, an additional first-order consistency guarantees the convergence of the 

algorithm. The condition is formulated as  

                                                             J[Rs
(i)(x(i))] = J[Rf(x

(i))]                                         (3.52) 

where J[.] represents the model Jacobian.  

A basic response correction scheme is defined as 

                                                  C(Rc(x)) = Rc(x) + [Rf(x
(i)) − Rc(x

(i))]                              (3.53) 

where the aforementioned zero-order consistency is obviously satisfied.  

3.3.3.3 Feature-Based Modeling 

 

     Development of the surrogate models for high-frequency structures involves handling of 

complex-valued system output vectors mainly concerning frequency characteristics. As 

mentioned in Section 2.2.1, the high-frequency system characteristics in the context of this 

thesis include reflection coefficient, power split ratio, axial ratio. The nonlinear nature of the 

system responses either as a function of the frequency or geometrical parameters, introduces 

challenges in the construction of the surrogates. Feature-based surrogates work around this 

problem by a meticulous selection of a set of specific points known as response features from 

the entire frequency characteristics. The response features are problem-dependent and may 

include the response minima, the response maxima, the center frequency, or points with 

specific response levels (e.g. –3 dB and –10 dB) all within the operating band of the specific 

structure. They exhibit a much weaker nonlinearity in their functional dependency on either 

frequency or structure parameters as compared to that of the entire frequency characteristics. 

Figure 3.6. illustrates the reflection coefficient |S11| of a bandpass filter [106] with the 

horizontal line as the minimax specifications. Design specifications include |S11(x,f)|  –10 for 

f  [10.55 11.45] GHz as well as |S11(x,f)| ≥ –1 for f  10.55 GHz and f  ≥ 11.45 GHz. A set of 

feature points is considered as response maxima as well as –1 and –20 dB levels, all within the 

filter passband. 

 

Fig. 3.6. Reflection coefficient of a bandpass filter [106]; (—): optimum design, (- - -): 

perturbed design. Feature points are represented by circles and squares corresponding to the 

response maxima, –1 and –20 dB levels, all within the filter passband.  
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     Let Rf: X → Rk, X ⊆ Rm be the high-fidelity EM-simulated response vector of the system of 

interest over a k-element frequency interval [ꞷ1, ꞷk], i.e., Rf(x) = [Rf(x, ꞷ1), …, Rf(x, ꞷk)]
T. 

The task is to construct a fast replacement model Rs that adequately represents Rf within X.  

     We denote by XT = { x1, x2, …, xM} ⊂ X the training data set, meaning that the high-fidelity 

response vectors Rf(x
i), i = 1, …, M at xi are evaluated. The selected feature points are 

represented as the pairs including the frequencies and the corresponding response levels, that 

is fn
p= [ꞷn

p, ln
p]T, n = 1, …, N, p = 1, …, M; where ꞷn

p and ln
p are the frequency and response 

level components of fn
p, N is the number of feature points, and M is the number of the training 

data vectors. The feature-based surrogate model is constructed by approximating the properly 

selected set of feature points of the training data set rather than the entire frequency response. 

This inevitably leads to some loss of the information, yet the amount of information contained 

in the surrogate suffices to employ it for design purposes. 

3.4 Surrogate-Based Optimization 

Surrogate-based optimization techniques (SBO) [37] are intended to facilitate automated 

design optimization problems with costly computational models. Therein, the direct 

optimization of the original high-fidelity model is substituted by an approximate optimization 

problem involving a fast replacement surrogate. The SBO starts with an initial design x(0) and 

subsequently obtains a series of approximate solutions x(i), i = 0, 1, … to the original problem 

(2.9), using a reformulated version as 

                                                   ( 1) ( )arg min ( ( ))i i

p
X

U s+


=

x
x x                                              (3.54) 

where s(i)(x) represents the surrogate model at x(i). It is normally updated at each iteration i 

using the high-fidelity model responses.  

The immediate benefit of SBO are the potential computational savings as compared to the 

conventional optimization methods. Given a fast surrogate, computational cost of solving 

(3.47) can be negligible.  The only contributing factor to the overall cost of the optimization 

process is the number of the high-fidelity model evaluations required to update the surrogate 

at each iteration. Typical SBO procedures converge after a significantly smaller number of 

iterations when solving (2.9) as compared to majority of conventional optimization algorithms.  

This section provides a brief description of data-driven SBO techniques including response 

surface approximations (RSAs), sequential approximate optimization (SAO), and SBO with 

kriging surrogates. 

3.4.1 Response Surfaces 

Response surface approximation (RSA) [37] is a data-driven SBO technique operating 

within two major stages. Stage 1 is responsible for the construction of the initial surrogate, 

while Stage 2 implements a prediction-correction procedure in an iterative manner. The 

purpose of Stage 2 is to determine the promising designs within the search space so that the 

surrogate is updated using high-fidelity model evaluations at the suitable locations. The 

operational flow of the optimization process is as follows: 

1. Sampling of the training data; 

2. Construction of the initial surrogate using the sampled training data; 

3. Identification of a candidate design by optimizing the surrogate model; 



 
 

 
 

4. Evaluation of the high-fidelity model at the candidate solution; 

5. Updating the surrogate by newly evaluated high-fidelity responses; 

6. If the termination condition is not satisfied, go to 3. 

 

The abovementioned procedure generates the new infill points through the optimization of 

the surrogate model. As we will see in Section 3.4.3, enhancing global accuracy of the 

surrogate model can be an important infill criterion.  

3.4.2 Sequential Approximate Optimization 

Sequential approximate optimization (SAO) is one of the most basic data-driven SBO 

techniques. The principal operation is based upon restricting the search to a small region of the 

parameter space and therefore facilitating the use of a low-order local approximation surrogate 

model. The surrogate is optimized and the search region is adjusted iteratively according to 

the newly predicted design in combination with a relocation strategy.  

The optimization flow is as follows: 

1. Set the iteration count i = 0; 

2. Evaluate the high-fidelity response vector Rf at the current design x(i); 

3. Restrict the search space to a small region r(i) using a relocation strategy; 

4. Perform sampling of r(i) based on a proper design-of-experiment (DOE); 

5. Evaluate high-fidelity responses of the sampled designs obtained in Step 4; 

6. Construct the surrogate s(i) using the data set acquired in Step 5; 

7. Perform optimization of the surrogate s(i) within r(i) to obtain a new candidate solution 

x(i+1); 

8. If the termination condition is met, set i = i + 1 and go to 2. 

 

The main advantage of SAO is the small number of training samples required at each 

iteration due to the simplicity of the surrogates. At the same time, it is only capable of 

performing local search routines. 

A critical concept in SAO implementations is the relocation strategy referring to the 

adjustment of the restricted search region r(i) with respect to location and size. A typical 

relocation strategy utilizes the current design x(i) as the center of the subregion r(i) with the 

previous design x(i-1) as its corner point. Further size adjustment of the subregion r(i)  may be 

based on standard TR-based rules [87]. 

3.4.3 SBO with Kriging Surrogates  

A critical aspect of SBO techniques is an appropriate selection of infill (training) points 

[105]. A proper infill point not only reduces the objective function value, but also improves 

the global accuracy of the surrogate.  

The most basic infill strategy applicable to local search routines, selects the optimum of the 

surrogate model as the infill point. The strategy leads to convergence capabilities of the SBO 

at least to a local minimum of the high-fidelity model. Nevertheless, the convergence is based 

upon two assumptions: (i) the SBO is implemented using TR-based framework, (ii) the 

surrogate model is first-order consistent. In order for the infill strategy to improve the global 
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accuracy, the surrogate model requires a feedback on its prediction power as well as on its 

generalization capability. As previously mentioned in Section 3.3.2.3, kriging surrogate 

models feature a random process that provides iterative model approximation errors. 

Therefore, they appear as appealing candidates in this context, as they provide the required 

aforementioned feedback. Popular infill criteria are established based on this particular feature 

of the kriging surrogate models, a brief description of which is as follows: 

1. Maximizing the improvement expected for an untried candidate solution x; 

2. Minimizing the surrogate prediction of the objective function ( )s x , assuming the 

surrogate model has a reasonable global accuracy; 

3. Minimizing ( ) ( ) ( )LB s Qi= −x x x , i.e., the statistical lower bound; where i2(x) is the 

variance, and Q is a user-defined factor; 
4. Maximizing the probability of improvement by identification of the locations with the 

highest likelihood to improve the objective function value; 
5. Maximizing the mean square error through identification of the locations with the 

highest surrogate prediction of the mean square error. 
 

Sampling of the new infill points according to the abovementioned infill criteria calls for a 

global optimization routine, in particular, population-based metaheuristics; a description of 

which has been provided in Section 3.2.3. 

3.5 Thesis Methodology 

This section summarizes the methodology adopted in this thesis work. After a 

comprehensive literature review in the area of high-frequency circuit miniaturization, our 

dissertation is focused specifically on EM-driven size reduction of high-frequency structures 

through constrained optimization.  

The design task may be handled through the employment of local and global optimization 

techniques. Starting with the less complicated and lower cost technique, i.e. local optimization, 

we aim at addressing constraint satisfaction and size-reduction rate-related challenges of 

optimization problems with a single inequality constraint by developing an adaptive penalty 

function approach. Next, we extend the algorithm to a more flexible, sophisticated version, 

applicable to designs with multiple constraints. Subsequently, we develop a convergence-

feasibility-based variable-fidelity EM model management scheme to accelerate the 

optimization process. Later on, a novel correction-based procedure for proper handling of 

equality constraints is developed. Finally, a new surrogate modeling technique is developed 

which enables cost-effective global miniaturization. Figure 3.7 illustrates a flow chart of the 

described methodology adopted in our thesis work. 
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Figure 3.7: Flow chart of the collective methodology adopted in the thesis work.  
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Abstract: The continuing trend for miniaturization of electronic devices necessitates size reduction of
the comprising components and circuitry. Specifically, integrated circuit-antenna modules therein
require compact radiators in applications such as 5G communications, implantable and on-body
devices, or internet of things (IoT). The conflict between the demands for compact size and electrical
and field performance can be mitigated by means of constrained numerical optimization. Evaluation
of performance-related constraints requires expensive electromagnetic (EM) analysis of the system
at hand; therefore, their explicit handling is inconvenient. A workaround is the penalty function
approach where the primary objective (typically, antenna size) is complemented by additional terms
quantifying possible constraint violations. The penalty coefficients that determine contributions of
these terms are normally adjusted manually, which hinders precise control over antenna performance
figures and often leads to inferior results in terms of achieved miniaturization rates. This paper
proposes a novel algorithm featuring an automated adjustment of the penalty factors throughout the
optimization process. Our methodology is validated using three broadband antenna structures. The
obtained results demonstrate that the presented adaptive adjustment permits a precise control over
the constraint violations while leading to better miniaturization rates as compared to manual penalty
term setup.

Keywords: antenna miniaturization; compact antennas; EM-driven design; constrained optimization;
penalty functions; constraint violations

1. Introduction

Accommodation along with the integration requirements of antennas with the circuit
parts has rendered miniaturization a necessity in applications such as wireless communica-
tions, internet of things, or portable and on-body devices [1,2]. As the majority of antenna
performance figures (reflection, gain, bandwidth, radiation efficiency, radiation pattern)
are linked to the physical size [3], a miniaturization task is far from trivial. Miniaturization
techniques based on utilization of high-permittivity substrates [3,4], have been successful
in reducing the antenna size at the expense of degrading the bandwidth. Several other tech-
niques based on geometrical modifications of the antenna structure have been proposed,
including the use of meandered traces [1,5], introduction of corrugations in the ground
plane and the radiator [6,7], or incorporation of L-shaped slits [1].

Although the aforementioned techniques provide degrees of freedom to work out a
compromise between the antenna size and the electromagnetic (EM) performance, they also
contribute to the complexity of the antenna design process, primarily due to an increase in
the number of geometry parameters. The unintuitive interrelations between the antenna
dimensions and the performance figures virtually eliminate the possibility of finding an
optimum design using traditional tuning techniques, especially when multiple objectives
are to be taken into account. The only way to produce the optimum design is through
simultaneous numerical optimization of all geometrical parameters. Depending on the

Electronics 2021, 10, 1751. https://doi.org/10.3390/electronics10151751 https://www.mdpi.com/journal/electronics



Electronics 2021, 10, 1751 2 of 16

antenna type, available initial design, and the design goals and constraints, this can be
done with either global [8–10], quasi-global [11], or local search routines [12,13].

The reliability of the optimization process is strongly correlated with the accuracy of
the computational model, which, most often, is based on full-wave electromagnetic (EM)
analysis. Conventional optimization routines require numerous EM simulations, which
entails significant computational costs. To alleviate this difficulty, a number of techniques
have been proposed, including adjoint sensitivities [14–19], surrogate-based methods in-
volving multi-fidelity simulation models [13,20–22], response surface approximations [23],
several variations of space mapping (SM) [24] (e.g., aggressive space mapping [25], implicit
SM [26]), feature-based optimization [27], but also machine learning methods [28,29], and
surrogate-assisted versions of nature-inspired algorithms [30,31].

In the context of EM-driven antenna miniaturization, explicit reduction of the structure
size (footprint area, volume) is the preferred approach because it enables direct control
over the primary objective. Notwithstanding, the problem becomes a constrained task
as electrical and field performance figures (impedance matching, gain, axial ratio) have
to be controlled so that the appropriate levels thereof are ensured [32–34]. The principal
inconvenience is that the majority of constraints are expensive to evaluate, i.e., require
EM analysis of the antenna. A workaround is to handle the constraints in an implicit
manner using the penalty function approach [34]. Therein, a satisfaction of the constraints
is enforced by complementing the main objective with the contributions proportional to
constraint violations (evaluated using suitable metrics).

The appropriate adjustment of the penalty coefficients is a non-trivial task. A coeffi-
cient that is too small, leads to underestimating the contributions of constraint violations
to the objective function. Conversely, if the penalty coefficient is too large, the objective
function becomes extremely steep in the vicinity of the feasible region boundary, which
may cause a premature termination of the optimization process. A workaround was
proposed in [35], where the acceptance threshold for maximum in-band reflection has
been adaptively adjusted to facilitate exploration of the feasible space. An alternative
constraint-oriented objective function has been adopted in [34] to identify the constrained
optimum in the boundary of the feasible region [34], or to enable objective relaxation by
switching between miniaturization and the electrical performance figures of interest [10].
However, in all cases, the efficacy of the optimization process relies on a manual selection
of the penalty factors.

The discussion above indicates that the appropriate setup of the objective function,
in particular, the penalty terms, is of paramount importance for the reliability and overall
performance of EM-driven antenna miniaturization. This paper proposes a novel algorithm
for explicit antenna size reduction, which features automated adjustment of the penalty
factor values in the course of the optimization process. The adjustment process is focused
on identifying the optimum penalty factor values based on current constraint violations
and eliminates the need for manual, trial-and-error efforts. This, in turn, allows fulfill-
ment of constraint satisfaction (up to the requested tolerance) while leading to improved
miniaturization rates as compared to the conventional approach.

Our methodology is validated using three broadband antenna structures optimized
for minimum size. Extensive benchmarking indicates that the adaptive adjustment of the
penalty factors allows for a precise control over the constraint violations while leading
to overall better results in terms of the achievable miniaturization rates (as compared to
algorithms using fixed penalty terms).

2. Optimization-Based Antenna Miniaturization

This section recalls the formulation of EM-driven antenna miniaturization as a con-
strained numerical problem with explicit size reduction. Subsequently, we present the
reference trust-region-based algorithm, as well as outline the proposed algorithm for
automated adjustment of the penalty factors.
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2.1. Problem Formulation

We will use R(x) to denote the response of the EM simulation model of the antenna
structure of interest. Here, x is a vector of the geometry parameters of the structure,
which are to be adjusted in the course of the optimization process. The optimization
problem at hand is to minimize the antenna size A(x) while ensuring acceptable levels of
performance figures pertinent to electrical and field characteristics of the structure, e.g., of
the standard form.

sj(x) ≤ Sj, j = 1, . . . , k (1)

Note that sj(x) are evaluated based on the simulated antenna response R(x). As
mentioned before, the penalty function approach provides convenient means of handling
the performance constraints, in which case the objective function can be defined as

UA(R(x)) = A(x) + β1c1(x)
2 + . . . + βkck(x)

2 (2)

where k is the total number of constraints, cj(x) is the penalty function quantifying violation
of the jth constraint (1), with βj being the corresponding penalty factor. The penalty
functions only contribute to (2) if the corresponding constraints are violated, i.e., sj(x) > Sj.
A typical definition of the penalty function would be the one measuring a relative violation
of the constraint, i.e.,

cj(x) = max

{
γj

Sj
, 0

}
(3)

where γj is the constraint violation defined as

γj = sj(x)− Sj (4)

The design task is defined as a nonlinear minimization problem of the form.

x∗ = argmin
x∈X

UA(R(x)) (5)

where X is the parameter space, typically determined by the lower and upper bounds
for antenna geometry parameters x. It should be noted that without the penalty func-
tion approach, the design task would be subject to additional constraints (1). Whereas,
when using (1)–(3), it becomes an unconstrained problem, apart from the aforementioned
box constraints.

2.2. Trust-Region Gradient-Based Algorithm

The standard trust-region-based algorithm [33] is employed in this work as the core
optimization engine. The procedure approximates x* with a series x(i), i = 0, 1, . . . , obtained
by solving

x(i+1) = arg min
x; ||x−x(i) ||≤δ

UA(L(i)(x)) (6)

In (6), L(i)(x) is a linear (first-order Taylor) approximation of R(x(i)). The candidate
solution rendered by (6) is only accepted if UA(R(x(i+1))) < UA(R(x(i))). The trust region
radius δ is adaptively adjusted based on a gain ratio calculated as

ρA =
UA(R(x(i+1)))−UA(R(x(i)))

UA(L(i)(x(i+1)))−UA(L(i)(x(i)))
(7)

The algorithm is terminated when the trust region radius is diminished below a certain
user-defined limit δ1, or convergence in the argument is achieved, i.e., ||x(i+1) − x(i)|| ≤ δx.
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3. Size Reduction with Adaptive Penalty Coefficients

Formulation (1) of the objective function offers an efficient way of handling the design
constraints, especially those that are expensive to evaluate (i.e., require EM analysis of the
antenna). Notwithstanding, an appropriate setup of penalty coefficients is a non-trivial
matter and may affect the performance of the optimization process as elaborated on in
Section 1.

This work proposes a novel algorithm incorporating adaptive adjustment of penalty
coefficients in the course of the optimization run. The presented procedure eliminates
the need for trial-and-error objective function setup as well as leads to improved antenna
miniaturization rates, as demonstrated in Section 4. In the following, we discuss the penalty
factor adjustment concept (Section 3.1), the adjustment procedure (Section 3.2), as well as
the complete optimization algorithm (Section 3.3).

This section recalls the formulation of EM-driven antenna miniaturization as a con-
strained numerical.

3.1. Adaptively Adjusted Penalty Factors. The Concept

As mentioned before, an appropriate setup of penalty coefficients is of utmost im-
portance for the performance of the optimization process. On the one hand, having the
coefficients set at too low values will result in excessive violations of the constraints. On
the other hand, the values that are too high make the optimization problem numerically
challenging, especially in the context of size reduction, which requires exploration of the
feasible region boundary.

The objective of the technique presented in this is to automate the process of setting
up the penalty coefficients so that their specific values are based on currently detected con-
straint violations. We use the following prerequisites, which involve the current constraint
violations as well as their possible improvements over the last consecutive iterations:

• If the parameter vector x(i+1) produced at the iteration i is feasible from the point of
view of the jth constraint, the corresponding penalty coefficient βj may be reduced;

• If x(i+1) is infeasible but the violation of the jth constraint was reduced to a sufficient
extent w.r.t. the (i–1)th iteration, the coefficient βj remains intact;

• If x(i+1) is infeasible and there was no improvement of the jth constraint violation or
the improvement was insufficient, the coefficient βj should be increased.

The above can be viewed as a set of rules (applied to each and every constraint), which
are simple, yet allow us to relax the ‘pressure’ from the penalty terms when the algorithm
operates in a feasible region and increase it if the discussed indicators show the lack of
improvement in terms of reducing constraint violations. Furthermore, implementing
these rules facilitates exploration of the feasible region boundary, which is where the
minimum-size design is likely to reside. The notion of the aforementioned sufficient
constraint violation improvement will be specified and discussed at length below, along
with providing a rigorous formulation of the adjustment rules. To clarify the matter,
Figure 1, conceptually illustrates the possible situations and the actions performed.
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Figure 1. The concept of adaptive adjustment of penalty coefficients. Shown are the four possible 
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In order to formalize the set of penalty factor adjustment rules considered in Section 

3.1, we need to quantify the sufficient constraint violation improvement, which will be 
defined, for the jth constraint, as 

Δj = Mγj  (8)

In (8), γj is the absolute violation, cf. (4), whereas 0 < M < 1 is the improvement factor. 
We will elaborate on the selection of the value of M later in this section. Both the violation 
and its improvement are considered in relation to the new parameter vector x(i+1) produced 
in the ith iteration and the previous point x(i), therefore, we will use the superscript i + 1 to 
specify which iteration the above quantities are referring to. In particular, we have γji+1 
and Δji+1 as the constraint violation at x(i+1) and the improvement from x(i) to x(i+1). Similarly, 
the penalty coefficient for the jth constraint at iteration i will be denoted as βji. 

We are now in a position to formulate the adjustment rules in a rigorous manner. 
These are described using the following pseudocode: 

if γji+1 ≤ 0 

 βji+1 = βji/mdecr; 
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  end 

The multiplication factors mdecr and mincr determine the amount of penalty factor mod-
ifications. In our numerical experiments, they are set to mdecr = 1.25 and mincr = 5, but their 
values are not critical. As discussed in Section 3.1, maintaining fixed penalty coefficients 
under sufficient constraint violation improvement (while the design is still infeasible) al-
lows us to maintain stability of the optimization process, i.e., the values of βj do not bounce 
back and forth (i.e., are immediately increased or decreased after the design crosses the 

Figure 1. The concept of adaptive adjustment of penalty coefficients. Shown are the four possible
situations concerning constraint violation, and the actions undertaken.

3.2. Adaptively Adjusted Penalty Factors. The Procedure

In order to formalize the set of penalty factor adjustment rules considered in Section 3.1,
we need to quantify the sufficient constraint violation improvement, which will be defined,
for the jth constraint, as

∆j = Mγj (8)

In (8), γj is the absolute violation, cf. (4), whereas 0 < M < 1 is the improvement factor.
We will elaborate on the selection of the value of M later in this section. Both the violation
and its improvement are considered in relation to the new parameter vector x(i+1) produced
in the ith iteration and the previous point x(i), therefore, we will use the superscript i + 1
to specify which iteration the above quantities are referring to. In particular, we have
γj

i+1 and ∆j
i+1 as the constraint violation at x(i+1) and the improvement from x(i) to x(i+1).

Similarly, the penalty coefficient for the jth constraint at iteration i will be denoted as βj
i.

We are now in a position to formulate the adjustment rules in a rigorous manner.
These are described using the following pseudocode:

if γj
i+1 ≤ 0

βj
i+1 = βj

i/mdecr;
else

if γj
i − γj

i+1 > ∆j
i+1

βj
i+1 = βj

i;
else

βj
i+1 = βj

imincr;
end

end

The multiplication factors mdecr and mincr determine the amount of penalty factor
modifications. In our numerical experiments, they are set to mdecr = 1.25 and mincr = 5,
but their values are not critical. As discussed in Section 3.1, maintaining fixed penalty
coefficients under sufficient constraint violation improvement (while the design is still
infeasible) allows us to maintain stability of the optimization process, i.e., the values of βj
do not bounce back and forth (i.e., are immediately increased or decreased after the design
crosses the feasible region boundary). This facilitates exploration of the boundary and
leads to improved size reduction ratios.

Let us now consider the improvement factor M introduced in (8). Assuming that the
parameter vector x(i) resides in the infeasible region, and sufficient constraint violation
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improvement is observed for a few consecutive iterations, say, from i to i + k, the upper
bound on the constraint violation at the iteration i + k can be calculated as

γi+k
j ≤ Mγi+k−1

j ≤ M2γi+k−2
j ≤ . . . ≤ Mkγi

j (9)

As M < 1, the constraint violation is reduced at a geometric rate, and the improvement
is faster when M is closer to zero. At the same time, satisfaction of the sufficient improve-
ment condition is more demanding for lower values of M. For M = 0.5, as selected in this
work, we get a balance between the rate of approaching the feasible region boundary (e.g.,
the constraint violation is reduced to only about six percent of its original values after only
four iterations), and the difficulty of satisfying the improvement condition (reduction of
only half of the current violation has to be achieved per iteration).

3.3. Optimization Framework

This section provides a summary of the operation of the trust-region gradient-based
algorithm incorporating the adaptive adjustment of penalty coefficients as presented in
Section 3.2. Here is a summary of the control parameters of the algorithm:

• δx, δTR—termination thresholds (cf. Section 2.1);
• minc, mdec—increase and decrease factors for the automated adjustment of penalty

coefficients (cf. Section 3.2);
• M—a factor used to determine sufficient constraint violation improvement (cf. Section 3.2);
• βj

max, βj
min—maximum and minimum values of penalty coefficients; j = 1, . . . , k;

• βj
0—initial values of the penalty coefficients; j = 1, . . . , k;

The algorithm operation has been presented in Figure 2. Additional clarification is
provided in the form of a flow diagram in Figure 3. In the algorithm, Steps 1 and 2 are
used to initialize the optimization procedure. In Steps 3 and 4, the antenna response and
its sensitivity matrix are evaluated using EM analysis. The linear approximation model
L(i)(x) of the antenna responses is constructed in Step 5, along with its corresponding
objective function UA(L(i)(x)) (Step 6). The candidate design is produced in Step 7 by
minimizing UA(L(i)(x)). It is validated in Steps 8 and 9, where the gain ratio is calculated
for the purpose of either accepting or rejecting x(i+1) and computing constraint violation
improvements (Step 10). The latter is then used in Step 11 to update the penalty coefficients.
The termination condition for the procedure is convergence in argument or reducing the
trust region size beyond the user-defined threshold (Step 12).
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4. Verification Case Studies

This section provides the results of numerical experiments conducted to validate the
proposed procedure for adaptive adjustment of penalty coefficients, introduced in Section 3.
The verification studies involve three broadband antennas optimized for minimum size
with the maximum acceptable in-band reflection considered as the only constraint. The
results are compared with those obtained for manually set penalty terms, ranging from
the relaxed to very tight constraint satisfaction conditions. All of the considered antenna
structures have been previously described in the literature and experimentally validated
therein [36–38]. Consequently, no experimental results are provided here.

The remaining part of this section is organized as follows. The experimental setup
is described in Section 4.1, whereas the benchmark antennas are described along with
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the numerical results in Section 4.2, Section 4.3, and Section 4.4, respectively. Section 4.5
provides a detailed discussion.

4.1. Experimental Setup

The objective is to optimize the considered antennas for minimum size, as determined
by the substrate area A(x). The optimization process is subject to a single constraint imposed
on the antenna reflection coefficient |S11(x)|.

More specifically, we have s1(x) ≤ −10, where s1(x) stands for the maximum value of
|S11(x)| within the operating frequency range of the antennas, here, 3.1 GHz to 10.6 GHz.
Correspondingly, a single penalty coefficient is used, denoted as β1. The penalty function c
is defined based on a relative violation of the constraint, cf. (3).

The performance of the algorithm is evaluated statistically through multiple runs
initiated from random starting points. This allows for reducing a possible bias associated
with a particular choice of the initial design. The performance figures include the antenna
size averaged over ten independent runs, and the average value of constraint violation,
both evaluated at the final design yielded by the optimization algorithm.

The proposed algorithm is compared to the standard TR algorithm executed for
different (fixed) values of the penalty coefficients β = 10q, q = 2, 3, 4, 5, 6. The values set for
the control parameters are βj

min = 100, βj
max = 106, and βj

0 = 100. Other parameters are set
as in Section 3.2. The termination thresholds are set to δx = δTR = 10−3.

4.2. Antenna I

Figure 4 shows the geometry of the first benchmark structure (Antenna I) [36]. It is
a broadband monopole antenna operating within the UWB band (3.1 GHz to 10.6 GHz).
The design parameters are x = [L0 dR R rrel dL dw Lg L1 R1 dr crel]T (all dimensions in
mm). The feed line width is fixed to w0 = 1.7 mm. The antenna is implemented on RF-35
substrate with relative permittivity εr = 3.5, and thickness h = 0.762 mm. The computational
model incorporating the SMA connector is simulated in the time-domain solver of CST
Microwave Studio.
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Table 1 provides the data including the average footprint area, average constraint
violation, as well as the standard deviations thereof; the latter is used to quantify the
repeatability of solutions. Figure 5a illustrates the reflection coefficient of Antenna I at
the initial and final designs obtained for a selected run of the proposed optimization
algorithm, whereas Figure 5b shows the evolution of the penalty factor throughout the
optimization process.

Table 1. Optimization results for antenna I.

Performance Figure β = 102

(Fixed)
β = 103

(Fixed)
β = 104

(Fixed)
β = 105

(Fixed)
β = 106

(Fixed)
Adaptive β
(This Work)

Antenna area [mm2] 1 113.7 250.4 318.6 331.6 367.6 222.6
Std(A) 2 9.07 24.0 60.0 63.4 51.9 49.6

Constraint violation γ [dB] 3 8.4 1.2 0.14 0.10 0.05 0.08
Std(γ) 4 0.53 0.5 0.1 0.14 0.11 0.06

1 Average miniaturized antenna area for ten algorithm runs. 2 Standard deviation of the miniaturized antenna area for ten algorithm runs.
3 Average constraint violation for ten algorithm runs. 4 Standard deviation of the constraint violation γ, for ten algorithm runs.
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4.3. Antenna II

The second verification case is a broadband rectangular-slot monopole antenna (An-
tenna II), shown in Figure 6 [37], operating in the UWB range. The design parameters of
the antenna are x = [Lg L0 Ls Ws d dL ds dWs dW a b]T (all in mm). The feed line width is
W0 = 3 mm. The structure is fabricated on FR4 substrate (εr = 4.3, h = 1.55 mm). The compu-
tational model incorporates the SMA connector, and it is simulated using the time-domain
solver of CST Microwave Studio. Table 2 gathers the numerical results. Figure 7 shows
the antenna responses and evolution of the penalty factor for a representative run of the
proposed algorithm.
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Table 2. Optimization results for antenna II.

Performance Figure β = 102

(Fixed)
β = 103

(Fixed)
β = 104

(Fixed)
β = 105

(Fixed)
β = 106

(Fixed)
Adaptive β
(This Work)

Antenna area [mm2] 1 56.1 212.8 225.0 280.1 258.8 180.7
Std(A) 2 3.8 14.3 25.1 47.4 29.6 11.1

Constraint violation γ [dB] 3 8.6 1.0 0.15 0.05 0.00 0.17
Std(γ) 4 0.60 0.4 0.10 0.07 0.01 0.23

1 Average miniaturized antenna area for ten algorithm runs. 2 Standard deviation of the miniaturized antenna area for ten algorithm runs.
3 Average constraint violation for ten algorithm runs. 4 Standard deviation of the constraint violation γ, for ten algorithm runs.
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4.4. Antenna III

Figure 8 shows Antenna III, the third verification structure. It is also a UWB monopole
antenna [38]. The design parameters are x = [L0 g a l1 l2 w1 o]T, (all dimensions in mm).
We also have w0 = 2o + a, and wr = 1.7 mm. The antenna is implemented on FR4 substrate
(εr = 4.3, h = 7.62 mm). The computational model incorporates the SMA connector, and it is
simulated in the time-domain solver of CST Microwave Studio.
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Table 3 shows the numerical results, arranged the same way as for Antennas I and II.
Antenna responses and evolution of the penalty coefficient for a selected algorithm run
have been shown in Figure 9.
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Table 3. Optimization results for antenna III.

Performance Figure β = 102

(Fixed)
β = 103

(Fixed)
β = 104

(Fixed)
β = 105

(Fixed)
β = 106

(Fixed)
Adaptive β
(This Work)

Antenna area [mm2] 1 305.4 318.1 317.7 318.8 320.9 304.43
Std(A) 2 49.7 42.6 42.3 43.3 45.8 37.2

Constraint violation γ [dB] 3 6.7 1.2 0.4 0.05 0.06 0.45
Std(γ) 4 1.7 0.4 0.2 0.07 0.3 0.49

1 Average miniaturized antenna area for ten algorithm runs. 2 Standard deviation of the miniaturized antenna area for ten algorithm runs.
3 Average constraint violation for ten algorithm runs. 4 Standard deviation of the constraint violation γ, for ten algorithm runs.

4.5. Discussion

The analysis of results provided in Section 4 allows for several conclusions regard-
ing the importance of the automated adjustment of the penalty factors, as well as the
performance-wise advantages of the proposed adaptive algorithm over the fixed-setup
approach. To facilitate the interpretation, a graphical illustration of the data from Tables 1–3
has been provided in Figure 10. Therein, the average antenna footprint area along with
the average constraint violation is shown versus the penalty coefficient for fixed-setup
optimization runs. The horizontal lines represent the antenna area and constraint violation
obtained for the automated adjustment procedure. The range of these lines is representative
of the span in which the penalty coefficient varies throughout the optimization iterations.
As it can be seen, not only the optimum value of the penalty coefficient, but also the span
is problem-dependent and may not even reach the maximum set value in some cases. The
following observations can be formulated:

• Although the optimum value of penalty coefficient in the fixed-setup optimization
seems to be about β = 104 for Antenna I, between β = 103 and β = 104 for Antenna II,
and between β = 104 and β = 105 for Antenna III, considering the achievable minia-
turization rates along with sufficient constraint satisfaction, the optimum value of
penalty coefficient is problem-dependent. The optimum values should be identified
for particular iterations of the optimization process and they are generally dependent
on the status of constraint violation.

• In both fixed and automated adjustment setups, using a penalty coefficient lower than
the optimum value, results in significant constraint violation. As for the former, the
violation can easily become as high as five times of the tolerance threshold or even
more. Antennas I and II are representative examples of this design quality degradation.

• Automated adjustment of penalty coefficients seeks to improve the final design quality
by the optimum value of penalty coefficients at the level of iterations of the optimiza-
tion process. This, in turn, permits a better control of constraint violations along with
better achievable miniaturization rates.

• The performance improvements are significant. For the corresponding levels of
constraint violations, the procedure proposed in this work leads to antenna footprints
that are smaller by 110, 44, and 13 mm2 for Antenna I, II, and III, respectively.
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Figure 10. The average antenna footprint (left panel), and the average constraint violations (right
panel) versus discrete values of the penalty coefficient utilized by the fixed-setup algorithm. The
horizontal lines on the left show the average antenna footprint, whereas the ones on the right denote
the average constraint violation for the designs obtained using the proposed automated adjustment
algorithm. Defining the same constraint violation levels as the comparison criterion, the proposed
algorithm outperforms the fixed-setup algorithm in terms of the achievable miniaturization rates,
even under the optimistic scenario of having set beforehand the optimum value of β for the latter:
(a) Antenna I, (b) Antenna II, (c) Antenna III.

5. Conclusions

This paper proposed a novel algorithm for optimization-based antenna miniaturiza-
tion using local trust region gradient search routines. Our methodology incorporates the
frameworks employing a penalty function approach for handling design constraints in an
implicit manner. Therein, the appropriate adjustment of the objective function, specifically
the penalty terms, has a strong correlation with the reliability as well as the efficacy of the
optimization process, both in terms of the achievable miniaturization rate and constraint
satisfaction. The proposed methodology effectively eliminates the need for trial-and-error
efforts by automated adaptive adjustment of the penalty coefficients. The latter is based on a
sufficiency of constraint violation improvement between consecutive iterations throughout
the entire optimization process. The optimum values of penalty coefficients are identified
for particular iterations and consequently enabling the optimization process to realize a
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precise control over the constraint violations while leading to overall better results in terms
of the achievable miniaturization rates as compared to the fixed adjustment setup.

The proposed procedure has been validated using three broadband antenna struc-
tures optimized for minimum size with constraints imposed on their maximum in-band
reflection coefficient. Benchmarking the against the fixed penalty coefficient setups indi-
cates superiority of automated adaptive adjustment setup in terms of achieving smaller
size with a precise control over the constraint violations. The future work will involve
a more comprehensive validation of the methodology in applications featuring multiple
constraints, e.g., circularly polarized antennas, high-gain antennas, etc.
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4.1     Design Feasibility 

 

This section elaborates on how feasibility is defined in each chapter, specifically Chapters 

4 to 8. The aim is to clarify discrepancies between seemingly different feasibility definitions 

in different scenarios. To this end, an exemplary parameter space is shown in Fig. 4.1 with 

feasible and infeasible region indicated along with the boundary region marked in gray. The 

feasible region corresponds to a region in the parameter space where there is no violation of 

the constraints. In the case of the presence of multiple constraints, a specific region can be 

feasible with respect to the constraint, which is inactive, or in other words, there is no violation. 

At the same time, the same region can be infeasible with respect to the other constraints, for 

which the violations are present. 

In Chapter 4, the developed algorithm is applied to benchmark structures with only a single 

constraint present. Therefore, the feasible region is simply defined as the specific region of the 

parameter space where the constraint is inactive.  

 

 

Figure 4.1:     An exemplary parameter space with indicated feasible and infeasible regions. 

The boundary is shown in gray.  

Chapter 5 utilizes a similar definition of the feasibility. The only distinguishing factor is the 

presence of more than one constraint in the benchmark examples. In this case, the overall 

feasible region of interest is defined as the intersection of the individual feasible regions 

corresponding to each constraint. The resulting feasible region is the one where all the existing 

constraints are inactive, i.e., there is no violation of any of the constraints therein.  

Similar definition of the feasible region is used in Chapter 6. However, a novel metric is 

defined that measures how the current design approaches or moves away from the feasible 

region in a relative manner. In other words, the metric provides a quantification of the 

feasibility status using an exponential function with the exponent accounting for aggregated 

constraint violation level. The exponent is formulated as a maximization problem where it 

takes the value of the maximum constraint violation among all the constraints. This 

quantification is used as a criterion for model fidelity selection. Further details are provided in 

the corresponding chapter.   

In Chapters 7 and 8, the optimization problem is to handle a combination of equality and 

inequality constraints. The general description of the feasibility provided for Chapter 5 is 

applicable to Chapters 7 and 8 as well. The only difference is the specific geometry of the 



feasible region corresponding to the equality constraints, which is a thin subset of the 

parameter space. Therefore, the intersection of the feasible regions corresponding to the 

inequality constraints, and the ones corresponding to the equality constraints, represents a thin 

subset of the design space. 

4.2      Selection of Multiplication Factors for Penalty Factor Adjustment 

This section provides an elaboration on how the values of the multiplication factors 

employed in our approach are chosen in the proposed algorithm concerning adaptive penalty 

factor adjustment.  

The abovementioned multiplication factors mdecr and mincr determine the amount of penalty 

factor modifications throughout the optimization process. In our experimental setups, the 

corresponding values are set to mdecr = 1.25 and mdecr = 5. However, the selection of the specific 

values can fall within a reasonable range such that a back and forth bouncing of βi does not 

occur. For further elaboration on the algorithmic stability considerations of the proposed 

procedure, we provide a specific example with the values mdecr = 5 and mdecr = 10: this can be 

considered as an extreme selection of the values as the large multiplication factors will result 

in abrupt changes in penalty factor values, i.e. when the design is feasible, the penalty factor 

value decreases rapidly to a much lower value, resulting in the design to bounce deep back in 

the infeasible region in the next iteration. On the other hand, when the design is infeasible, 

there will be an abrupt large increase in the penalty factor value, resulting in the design to 

bounce forward in the feasible region in the next iteration. The back-and forth switching of the 

feasible and infeasible regions will result in instability of the optimization process. Therefore, 

the selection of the multiplication factors should be done in such a way that it avoids immediate 

increase or decrease of βi after the design crosses the feasible region boundary. This facilitates 

exploration of the feasible region boundary and leads to improved size reduction ratios.  
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ABSTRACT Modern communication systems of high data capacity incorporate circular polarization (CP) as
the preferred antenna radiation field configuration. In many applications, integration of the system circuitry
with antennas imposes size limitations onCP radiators, whichmakes their development process a challenging
endeavor. This can be mitigated by means of simulation-driven design, specifically, constrained numerical
optimization.Majority of the performance-related constraints are expensive to evaluate, i.e. require full-wave
electromagnetic (EM) analysis of the system. Their practical handling can be realized using a penalty
function approach, where the primary objective (antenna size reduction) is complemented by contributions
proportional to properly quantified constraint violations. The coefficients determining the contribution
of the penalty terms are normally set up using designer’s experience, which is unlikely to render their
optimum values in terms of the achievable miniaturization rates as well as constraint satisfaction. This paper
proposes a procedure for automated penalty factor adjustment in the course of the optimization process. Our
methodology seeks for the most suitable coefficient levels based on the detected constraint violations and
feasibility status of the design. It is validated using two CP antenna structures. The results demonstrate a
possibility of a precise constraint control as well as superior miniaturization rates as compared to the manual
penalty term setup.

INDEX TERMS Circular polarization antennas, compact antennas, constrained optimization, penalty
functions, simulation-driven design.

I. INTRODUCTION
With the growing demands for reliable high-capacity data
transfer, an increasing attention has been given to incor-
poration of CP antennas into modern communication sys-
tems. The orthogonal radiation field configuration can assure
the reliability of these systems due to attractive features,
including a reduction of polarization mismatch and mul-
tipath losses [1], as well as mitigation of the Faraday’s
effect [2]. The continuing trend towards miniaturization
enforces CP antennas to be compatible with space constraints
in applications such as Aerospace and Synthetic Aperture
Radar (SAR) [3], Global Positioning System (GPS) [4],

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

picosatellites [5], 5G communication systems [6], or wear-
able and on-body devices.

While preservation of high CP purity along with satisfy-
ing other electrical and field performance requirements is
already challenging, ensuring compact size is an additional
contribution to the design complexity. Several miniaturiza-
tion techniques based on topological modifications of the
antenna structure have been proposed, including the use of
slots and fractals [7], defected ground structure [8], frac-
tal metasurfaces and fractal resonators [9], or mushrooms
and reactive impedance surfaces (RIS) [10]. These tech-
niques have been successful in working out a compromise
between the compact size and performance figures of CP
antenna. Notwithstanding, the evolution of antenna topology
into complex multi-parameter geometries hinders the process
of finding an optimum design, especially with conventional,
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manual or trial-and-error efforts. A workaround is numerical
optimization, which, depending on the nature of the design
problem and available resources, may resort to either global
[11]–[13], or local search [14], [15]. Full-wave EM analysis
is most often used as the computational model, the accu-
racy of which determines the reliability of the optimization
process. Yet, EM models tend to be expensive to evalu-
ate. Cost-efficient optimization methods have been devel-
oped to mitigate this problem, including space mapping [16],
incorporation of adjoint sensitivities [17]–[19], data-driven
surrogate-based methods [15], [20]–[22], and machine learn-
ing approaches [23], [24].

EM-driven miniaturization is the most efficient when size
reduction is explicitly handled as the primary objective.
On the other hand, the need for ensuring the appropriate lev-
els of electrical performance figures necessitates constrained
optimization, with the constraints being expensive to eval-
uate. A convenient way of constraint control is the penalty
function approach [25]. Therein, properly quantified con-
straint violations appear as additional terms complementing
the main objective. The efficacy of this approach relies on
the proper adjustment of the penalty factors. Setting these too
large leads to an extreme steepness of the objective function
in the vicinity of the feasible region boundary. Having them
too small results in excessive constraint violations. A possible
workaround is adaptive adjustment of the acceptance thresh-
old for the maximum in-band reflection level [26]. Other
approaches include feasible space boundary exploration pro-
cedure [25], or alternating the size-reduction- and constraint-
improvement-oriented search steps [26]. However, in all these
cases, the performance of the optimization process depends
on a proper manual selection of the penalty factors.

In the context of constrained optimization using genetic
algorithm, the aforementioned problem has been mitigated
by incorporating an adaptive, tune-free penalty function [27],
non-stationary penalty function [28], or a self-adaptive
penalty function [29]. The abovementioned methods have
been demonstrated successful in identifying feasible solu-
tions without any manual tuning of the penalty function.

This paper proposes a novel procedure for explicit size-
reduction of antenna structures featuring an automated
penalty factor adjustment throughout the optimization pro-
cess. The adjustment process employs monitoring of the
feasibility status of the current design and the constraint
violation levels. Our methodology is validated using two
CP antenna structures miniaturized under reflection and
axial ratio constraints. Extensive benchmarking demonstrates
superior size reduction rates along with a possibility of pre-
cise control over the design constraints as compared to the
manual penalty term setup.

II. EXPLICIT SIZE-REDUCTION THROUGH
CONSTRAINED OPTIMIZATION
This section recalls a formulation of EM-driven antenna
size reduction problem, as well as outlines the standard

trust-region-based algorithm employed as the main optimiza-
tion engine.

A. PROBLEM FORMULATION
We denote byR(x) the response of the EM simulation antenna
model, where x is a vector of the geometry parameters.
The task is to minimize the antenna size A(x), subject to
performance-related constraints of the form

sj(x) ≤ Sj, j = 1, . . . , k (1)

The constraints are handled implicitly, using the penalty
function approach. The objective function takes the form of

UA(R(x)) = A(x)+
∑k

j=1
βjcj(x)2 (2)

The penalty function cj quantifies relative violation of the
jth constraint as cj(x) = max{ζj/Sj, 0}, with the absolute
violation defined as

ζj = sj(x)− Sj (3)

The penalty coefficients βj determine the contribution of
the cj-measured violation to (2).

The design problem is formulated as

x∗ = argmin
x∈X

UA(R(x)) (4)

B. TRUST-REGION GRADIENT BASED ALGORITHM
Our core optimization procedure utilizes the standard trust-
region gradient-based algorithm [30], therein, a series of
candidate solutions to (4) are obtained as

x(i+1) = arg min
x; ||x−x(i)||≤δ

UA(L(i)(x)), i = 0, 1, . . . (5)

where L(i)(x) is a first-order Taylor approximation of R(x)
at x(i), constructed using the antenna response sensitivities
estimated using finite differentiation. The vector x(i+1) is
accepted if UA(R( x(i+1))) < UA(R( x(i))). The standard TR-
based rules [32] are employed to adjust the search radius δ
upon each iteration.

III. AUTOMATED PENALTY FACTOR ADJUSTMENT
Formulation (2) facilitates handling of performance-related
constraints yet the efficacy of this approach relies upon appro-
priate adjustment of the penalty coefficients (cf. Section I).
This paper proposes a procedure for automated penalty fac-
tor adjustment, which eliminates the need for the trial-and-
error, or experience-based penalty term setup, and leads to
a more precise control of constraint violations as well as
improved size reduction rates, as demonstrated in Section IV.
This section discusses the underlying concept, the adjustment
procedure, and the overall optimization algorithm.

A. AUTOMATED PENALTY FACTOR ADJUSTMENT
The setup of the penalty terms is instrumental in achieving
top performance of the optimization process. Having the
penalty coefficients too small results in excessive constraint
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violations, whereas keeping them too large leads to numerical
challenges in exploring the feasible region boundary.

Our technique aims at automating the penalty term setup
using a set of rules, derived from current constraint violations
along with a notion of sufficient improvement in successive
iterations (i.e., between x(i), and x(i+1)):
• If x(i+1) is feasible w.r.t. the jth constraint, reduce βj;
• If x(i+1) is infeasible but there is sufficient improvement
of the jth constraint violation w.r.t that of x(i), keep βj
intact;

• If x(i+1) is infeasible and there is either no improve-
ment or insufficient improvement of the jth constraint,
increase βj;

Sufficient constraint violation improvement for the jth con-
straint, is defined as1j = Mζj, whereM is the improvement
factor elaborated on below. In the following descriptions,
ζ i+1j is the jth constraint violation at x(i+1) calculated as in (3),
whereas 1i+1

j is defined for the last two consecutive vectors
x(i+1) and x(i). Similarly, β ij stands for βj at iteration i.
Rigorous formulation of the adjustment rules is provided in

Step 4 of the pseudocode in Fig. 1. Therein, mincr and mdecr
are the modification factors for penalty coefficient modifica-
tions (here, set to mincr = 5 and mdecr = 1.25). Keeping the
penalty coefficient unchanged upon detecting sufficient con-
straint violation improvement allows for improving stability
of the optimization process, i.e., avoiding over-multiplication
of βj, which would otherwise bounce back and forth through-
out the optimization process.

FIGURE 1. Operation of the proposed antenna size reduction algorithm
with automated penalty factor adjustment.

The aforementioned improvement factor M is selected as
follows. Let us assume that the vector x(i) is infeasible, and a
sufficient constraint violation improvement is observed for n
consecutive iterations, from i to i+n. AsM < 1, this results in

FIGURE 2. Operating flow of the proposed antenna size reduction
algorithm with automated penalty factor adjustment.

a geometrical decrease of constraint violation, for which the
upper bound at the iteration i+ n can be calculated as ζ i+nj ≤

Mζ i+n−1j ≤ Mζ i+n−2j ≤ · · · ≤ Mζ ij . The improvement
rate becomes faster as M gets smaller. On the other hand,
the fulfillment of the sufficient improvement becomes more
demanding. A value of M = 0.5 is chosen as a compromise.

B. OPTIMIZATION FRAMEWORK
The operation flow of the complete optimization algorithm
has been shown in Fig. 1. The control parameters δx and
δTR are the termination thresholds. Step 1 of the algorithm
initializes the optimization procedure. Step 2 produces the
candidate design byminimizingUA(L(x(i))). Step 3 calculates
the gain ratio, used to decide about the acceptance of rejection
of x(i+1). Subsequently, constraint violation improvements
are computed, which are used to update the penalty coeffi-
cients in Step 4.

IV. DEMONSTRATION CASE STUDIES
This section provides numerical validation of the automated
adjustment procedure introduced in Section III. The verifica-
tion case studies include two CP antennas optimized for mini-
mum size with the constraints imposed on their axial ratio and
reflection responses. The obtained results are compared to
those produced with the fixed penalty coefficient setups rang-
ing from the very relaxed to tight conditions regarding con-
straint satisfaction. The benchmark structures, experimental
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setup, numerical results and their detailed discussion, are
provided in Sections IV. A through IV. C , respectively.

A. VERIFICATION EXAMPLES AND EXPERIMENTAL SETUP
Figure 3 shows the geometries of the two benchmark struc-
tures (Antenna I [31], and Antenna II [32]) employed for
verification purposes. Antenna I is a stacked microstrip patch
structure supposed to be optimized within the frequency band
5.36 GHz to 5.9 GHz, whereas, Antenna II is a circular
patch structure with annular and rectangular slots, to be opti-
mized within a frequency band from 8.1 GHz to 8.3 GHz.
Table 1 provides the details of the substrate materials, des-
ignable variables, as well as the initial design vectors of both
antennas. The computational models are simulated using the
time domain solver of CST Microwave Studio. The initial
designs have been obtained by an auxiliary optimization pro-
cess so as to provide a reasonable margin for both the axial
ratio and reflection coefficient constraints, thereby creating
room for size reduction.

FIGURE 3. Geometries of the benchmark CP antennas: (a) Antenna I,
(b) Antenna II.

The goal is to optimize the considered CP antennas for
minimum size, defined as the substrate area A(x). The con-
straints are imposed on the axial ratio AR(x), and the reflec-
tion coefficient |S11(x)| of the antennas. In particular, we have
sAR(x)≤ 3 and sS11(x)≤−10, where sAR(x) and sS11(x) stand
for the maximum value of AR(x) and |S11(x)| respectively.

TABLE 1. Benchmark antenna structures.

Correspondingly, the two penalty coefficients are defined as
βAR and βS11. Note that descriptive subscripts AR and S11 are
used here rather than numerical ones (cf. Section III) to allow
for a better clarity.

The proposed procedure is compared with the standard
trust-region-based algorithm executed with fixed values of
both of penalty coefficients i.e. βAR = 10y, y= 1, 2, 3, 4, and
βS11 = 10z, z = 2, 3, 4, 5. The values set for the termination
thresholds are δx = δTR = 10−3.

B. RESULTS
Figures 4 and 5 show the axial ratio and reflection coeffi-
cient responses along with the evolution of their correspond-
ing penalty factors throughout the optimization process for
Antennas I and II, respectively. Table 2 provides the optimiza-
tion results of both the fixed and the automated adjustment
setups for the two antennas. The data includes antenna size
along with constraint violations of the axial ratio and the
reflection coefficient, denoted by ζAR and ζS11, respectively.
The final optimized design vectors are x = [2.96 3.16 8.74
14.10 16.34 13.32 16.15 15.80 1.02 1.00 24.28] (mm) and
x = [1.77 0.66 19.32 12.20 2.97 9.28 52.56 1.41] (mm) for
Antenna I and Antenna II, respectively. Further discussion of
the results can be found Section IV. C .

C. DISCUSSION
The analysis of the results reported in Table 2 allows for
drawing several conclusions regarding the importance of the
automated penalty factor adjustment, as well as the perfor-
mance superiority of the proposed automated procedure over
the conventional approach.

The major observations are as follows:

• The optimum values of the penalty coefficients are prob-
lem dependent, therefore, finding the appropriate setup
beforehand is a matter of a guess work. Clearly, this
affects the performance of the optimization process and
increases its computational cost (e.g., if the initially
adopted setup turns out to be sub-optimal).

• Using a penalty factor higher than the optimum value
results in degradation of the performance in terms of the
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FIGURE 4. Antenna I: optimization results using the proposed automated
penalty factor adjustment procedure: (a) reflection coefficient at the
initial (- - -) and the optimized design (—); (b) axial ratio at the initial (- - -)
and the optimized design (—); (c) evolution of the reflection coefficient
penalty factor throughout the iterations of the optimization process;
(d) evolution of the axial ratio penalty factor throughout the iterations of
the optimization process.

achievable size reduction rates, whereas too low values,
leads to significant constraint violation.

• The (fixed) penalty coefficient setup, which is optimum
from the point of view of constraint violation, is still
inferior in terms of achievable antenna size as compared
to the proposed adaptive approach.

• Automated penalty factor adjustment allows to improve
the quality of the final design by identifying the optimum
values of the penalty coefficients for every iteration

FIGURE 5. Antenna II: optimization results using the proposed automated
penalty factor adjustment procedure: (a) reflection coefficient at the
initial (- - -) and the optimized design (—); (b) axial ratio at the initial (- - )
and the optimized design (—); (c) evolution of the reflection coefficient
penalty factor throughout the iterations of the optimization process;
(d) evolution of the axial ratio penalty factor throughout the iterations of
the optimization process.

throughout the optimization process. The history of
the iteration-wise penalty factor adjustment for the
reflection constraint, ζS11, of Antenna I is illustrated
in Fig. 4(b). It starts with the minimum value of βS11 and
continues with a decreasing trend for two subsequent
iterations, i.e., as long as there is no constraint viola-
tion. The sudden increase of βS11 that can be observed
between the fourth and the fifth iteration, is representa-
tive of constraint violation of the design obtained at the
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TABLE 2. Optimization results for antennas I and II.

fourth iteration. The following decreasing trend up to
the last iteration indicates a lack of constraint violation
for the corresponding iterations. Similar trends can be
observed for axial-ratio-related penalty factor, as well
as for Antenna II. The current values of both βS11 and
βAR are set to either reduce constraint violation or to
maintain the solution in the vicinity of the feasible region
boundary.

In general, the described automated adjustment procedure,
in turn, enables improved size reduction rates along with a
better control over constraint violations.

V. CONCLUSION
This paper proposed a novel methodology for optimization-
based antenna size reduction using local trust-region-based
search routines. Our procedure can be incorporated into
frameworks involving a penalty function approach for
implicit handling of design constraints. Therein, the proper
adjustment of the penalty factors strongly correlates with the
efficacy as well as the reliability of the optimization process,
both in terms of constraint satisfaction and the achievable size
reduction rates, yet it is difficult to be identified beforehand.
The proposed procedure virtually eliminates the need for

manual, or guess-work efforts by an automated penalty factor
adjustment. The latter is conducted based sufficient constraint
violation in successive iterations and consequently allowing
for better size reduction rates while leading to a precise
control over the design constraints as compared to the fixed
penalty coefficient setup.

The proposed methodology has been validated using two
CP antenna structures optimized for minimum size, with
the constraints imposed on their axial ratio and reflection
responses. Benchmarking against fixed penalty factor setups
indicates superior performance of the automated adjustment
in terms of the achievable size reduction rates and a precise
control of the design constraints.
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Abstract: The growing demand for the integration of surface mount design (SMD) antennas into
miniaturized electronic devices has imposed increasing limitations on the structure dimensions.
Examples include embedded antennas in applications such as on-board devices, picosatellites, 5G
communications, or implantable and wearable devices. The demands for size reduction while
ensuring a satisfactory level of electrical and field performance can be managed through constrained
numerical optimization. The reliability of optimization-based size reduction requires utilization of
full-wave electromagnetic (EM) analysis, which entails significant computational costs. This can be
alleviated by incorporating surrogate modeling techniques, adjoint sensitivities, or the employment
of sparse sensitivity updates. An alternative is the incorporation of multi-fidelity simulation models,
normally limited to two levels, low and high resolution. This paper proposes a novel algorithm for
accelerated antenna miniaturization, featuring a continuous adjustment of the simulation model
fidelity in the course of the optimization process. The model resolution is determined by factors
related to violation of the design constraints as well as the convergence status of the algorithm.
The algorithm utilizes the lowest-fidelity model for the early stages of the optimization process; it
is gradually refined towards the highest-fidelity model upon approaching convergence, and the
constraint violations improve towards the preset tolerance threshold. At the same time, a penalty
function approach with adaptively adjusted coefficients is applied to enable the precise control of
constraints, and to increase the achievable miniaturization rates. The presented procedure has been
validated using five microstrip antennas, including three broadband, and two circularly polarized
structures. The obtained results corroborate the relevance of the implemented mechanisms from the
point of view of improving the average computational efficiency of the optimization process by 43%
as compared to the single-fidelity adaptive penalty function approach. Furthermore, the presented
methodology demonstrates a performance that is equivalent or even superior to its single-fidelity
counterpart in terms of an average constraint violation of 0.01 dB (compared to 0.03 dB for the
reference), and an average size reduction of 25% as compared to 25.6%.

Keywords: antenna miniaturization; surface mount design (SMD); constrained optimization;
EM-driven design; multi-fidelity simulations; penalty coefficients

1. Introduction

The emerging trends in integrated wireless communication technology require the
integration of surface mount design (SMD) antennas with other on-chip system components.
This, in turn, imposes miniaturization requirements in applications such internet of things
(IoT), portable and implantable devices [1,2], or 5G communication systems. Several
antenna size-reduction techniques involving topological alterations of the basic geometries
have been proposed, including the use of corrugations in the radiator and the ground
plane [3,4], the introduction of meandering slits and fractals [5], or incorporation of slots
and slits [6].
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The abovementioned techniques offer degrees of freedom to facilitate reaching a com-
promise between the compact size and the electromagnetic (EM) performance. Notwith-
standing, as antenna topology evolves into more complex geometries due to topological
modifications of the structure, manual or trial-and-error efforts fall short of identifying the
optimum design. This shortcoming is more pronounced when multiple objectives need to
be handled.

Fulfilling the stringent demands concerning the electrical and field performance of the
system, along with miniaturization of the comprising structures, can be handled through
constrained numerical optimization. Depending on the antenna type, specifications, and
the available design database, this can be accomplished using local [7,8], quasi-global [9],
or global search routines [10–12]. Maintaining the reliability of optimization-based antenna
miniaturization requires an accurate computational model, which is most often based
on full-wave EM analysis. The bottleneck is high computational cost of EM models.
Numerous evaluations are required by the optimization routines, especially for complex
geometries, thus this cost may become prohibitive, even in the less challenging case of
local optimization, e.g., those realized using pattern search [13], or gradient-based [14,15]
algorithms.

Addressing the aforementioned issues of optimization-based antenna size reduction
necessitates the development of CPU-efficient numerical techniques. Based on a compre-
hensive analysis of the available literature, the methods used to mitigate the computational
burden of EM-driven design can be categorized into two groups. The first is strictly
oriented toward algorithmic improvements that primarily target faster evaluation of an-
tenna response gradients. These include utilization of adjoint sensitivities [16–21], or the
employment of sparse sensitivity updates [22]. The second group involves the utiliza-
tion of surrogate modeling techniques including both data-driven [23] and physics-based
models [24].

Data-driven surrogates either replace the high-cost EM simulations altogether upon
initial construction, or gradually develop and train a statistical model of the system using
sequential sampling techniques throughout the optimization process [25]. Examples of
the modeling techniques include kriging [26], artificial neural networks [27], support
vector regression [28], or fuzzy systems [29]. Unfortunately, the application of data-driven
surrogates is impeded by a typically considerable nonlinearity of high-frequency system
responses (sharp resonances [30]), and additionally, by the curse of dimensionality.

Physics-based surrogates typically embed problem-specific knowledge of the system at
hand in an underlying low-fidelity model (equivalent networks [31], coarse-discretization
EM simulations [32]). A few popular modeling techniques include feature-based optimiza-
tion [33], response correction methods [34], or space mapping [35].

While global optimization routines are important in application areas such as synthesis
of array antennas [36], beam-shaping and beam-steering [37], local optimization routines
are employed in the majority of scenarios such as design closure (final parameter tuning),
or optimization-based antenna miniaturization. This is due to the availability of reasonably
good initial designs, obtained as a result of the early stages of topological developments in
the antenna design process. As previously mentioned, gradient-based search routines can
be greatly expedited using adjoint sensitivities. However, the availability of this technology
in commercial software packages is limited. Variable-fidelity techniques including response
correction methods [38,39], or space mapping [40,41], and variations thereof [42,43], can
also be employed to improve the cost efficiency. Notwithstanding, the efficacy of these
techniques relies on the meticulous selection of the model-fidelity and response-type de-
pendent correction techniques [44]. Other alternatives include the employment of restricted
sensitivity updates [45], incorporation of updating formulas (e.g., Broyden [9]), also in
conjunction with response feature techniques [46]. These methods offer up to forty [46]
or even sixty percent acceleration [47] without minor degradation of the design quality
compared to that of the reference algorithms. Further benefits in terms of accelerating EM-
based optimization processes can be obtained through the incorporation of multi-fidelity
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simulation models. They can be either incorporated into the above-mentioned sensitivity-
based speedup mechanisms to boost the acceleration, or applied in the different context
of expediting antenna miniaturization procedures while maintaining precise constraint
control and the efficacy of the miniaturization process, which is the main focus of this paper.
Nevertheless, proper management of the model fidelity is far from trivial [48].

Another issue is the efficacy of the optimization-based antenna size reduction in terms
of achievable miniaturization rates. Efficient miniaturization requires explicit treatment
of the antenna size as the primary objective. At the same time, satisfaction of the design
constraints necessitates their appropriate handling, which is realized implicitly by means of
the penalty function approach [49]. The formulation of the penalty function includes setting
up the values of penalty coefficients that determine the contributions of the constraint
violations to the main objective. Optimum determination thereof is a challenging task.
Excessively high or low values may result in low efficacy in terms of miniaturization
rates or constraint violation control. Further details of the formulation will be discussed
in Section 2.1. A workaround is the adaptive adjustment of the penalty factors [50,51],
which meticulously identifies the optimum setup based on the level of the constraint
violations throughout the optimization process. This approach is adopted in this work as
the constraint control mechanism. This paper proposes a novel procedure for accelerated
miniaturization of antenna structures, incorporating variable-fidelity EM models with a
continuous adjustment of the model fidelity throughout the optimization process. The
model resolution is controlled by factors related to violation of the design constraints
as well as the convergence status of the algorithm. The procedure utilizes the lowest-
fidelity model in the early stages of the optimization process, which permits a cost-efficient
exploration of the design space. The reliability is ensured by a gradual refinement of
the model resolution towards the highest-fidelity model as the constraint violations are
reduced beyond the preset tolerance threshold, and the optimization process approaches
convergence. These mechanisms are supplemented by a penalty function approach with
adaptive penalty coefficient adjustment to enable the precise control of constraints, and
to achieve better miniaturization rates. The presented procedure addresses parameter
tuning of the existing designs with fixed topologies, meaning the adjustment of geometry
variables (antenna sizing) without changing the basic topology. The entire antenna design
process, especially the development of antenna geometry, is outside the scope of this
work. Our methodology was validated through miniaturization of five microstrip antennas,
including two circular polarization (CP) ones, and three broadband structures. An average
computational speedup of over forty percent was achieved across the benchmark set as
compared to the reference algorithm, while ensuring the precise control of the constraints
and improved miniaturization rates.

The originality and the technical contributions of this paper include (i) the devel-
opment of a multi-fidelity model management scheme based on the design constraint
violations and the convergence status of the optimization process, which permits a reliable
low-cost optimization-based miniaturization of antenna structures, (ii) integration of the
local gradient-based search with the multi-fidelity model management scheme as well as a
penalty function approach with an adaptive penalty coefficient adjustment, and (iii) demon-
stration of a significant speedup in the miniaturization process that can be attained using
the presented framework along with precise control over the constraint violations. The
main feature that distinguishes this work from previous attempts to utilize multi-fidelity
models, especially in the context of EM-driven miniaturization, is a continuous adjustment
of the model fidelity based on both the convergence status and constraint violation levels.
Operating over a continuous spectrum of model resolution avoids the experience-based
model fidelity setup. The main advantages of this approach include a considerable speedup
of the miniaturization process along with precise constraint control, along with improved
quality of miniaturization as compared to the single-fidelity adaptive penalty function
approach. According to the authors’ knowledge, the presented methodology is the first
rigorous approach to simulation-based size reduction that integrates model resolution
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and constraint management schemes into a single algorithmic framework. The remaining
part of the paper is organized as follows. Section 2 discusses the details of EM-based an-
tenna miniaturization and the underlying mechanisms, which include the penalty function
approach (Section 2.1), trust-region algorithm (Section 2.2), adaptive penalty coefficient
approach (Section 2.3), variable-fidelity model management (Section 2.4), and finally, the
proposed constraint–convergence-based procedure is discussed in Sections 2.5 and 2.6.
Section 3 provides the numerical validation of the proposed optimization frameworks, in-
cluding a description of the benchmark antenna structures, the experimental setup, results
and their discussion. Section 4 concludes the paper.

2. Accelerated Antenna Miniaturization by Model Fidelity and
Constraint Management

This section introduces the proposed procedure for accelerated miniaturization of
antenna structures, involving multi-fidelity simulation models and penalty functions with
adaptive coefficient adjustment. The methodology presented here is based on two earlier
works: accelerating EM-driven design through multi-fidelity model simulations [52] and
the adaptive penalty function approach [50]. The incorporation thereof leads to results that
were unattainable by any other method currently available. Utilization of the multi-fidelity
models is widespread in high-frequency CAD (as elaborated on in Section 1). However,
it has never been used in the context of constrained size reduction. In other words, we
exploit this specific algorithmic tool and incorporate it into our algorithm to achieve further
computational benefits. Additionally, the multi-fidelity scheme is adopted for our particular
setup where the fidelity level is controlled based on the factors related to the feasibility
status as well as the convergence status of the algorithm. The adjustment of the model
fidelity based on the feasibility status is a novel concept and is used for the first time. This
particular setup is different than the one in the prior work.

The optimization engine is a trust-region-based algorithm. A continuous adjustment
of the EM analysis fidelity is realized by altering the model resolution based on factors
related to the constraint violations and the convergence status of the algorithm. Utilization
of the lowest-fidelity model in the initial stages of the optimization process enables a
fast exploration of the parameter space. Reliability is ensured by gradually refining the
model resolution towards the final stages of the optimization process. This section starts by
recalling a formulation of the EM-based antenna miniaturization task using fixed penalty
coefficients (Section 2.1). Antenna miniaturization with adaptive penalty coefficients is
outlined in Section 2.2. Section 2.3 discusses the standard trust-region gradient-based
procedure as the main optimization engine. Section 2.4 elaborates on multi-fidelity EM
models, whereas Sections 2.5 and 2.6 formulate the operating flow for the complete size
reduction procedure.

2.1. EM-Based Antenna Miniaturization with Penalty Functions

We will use R(x) to designate the response of the EM simulation model of the antenna
structure of interest. Here, x denotes a vector of geometry parameters to be adjusted
throughout the optimization process. The miniaturization problem at hand is to minimize
the antenna size A(x), subject to constraints related to the electrical and field performance.
The constraints are defined as

sj(x) ≤ Sj, j = 1, . . . , k (1)

where sj(x) is a scalar function representing a given figure of interest (e.g., maximum in-
band reflection over a frequency range of interest), whereas Sj is a user-defined acceptance
threshold.

Evaluation of sj(x) is computationally expensive as it requires EM simulation of the
antenna. The penalty function approach [49] facilitates constraint handling by turning
the problem into an unconstrained one. This is achieved by supplementing the objective
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function UA (here, corresponding to antenna size minimization) with a linear combination
of penalty functions cj (j = 1, . . . , k) quantifying constraint violations. We have

UA(R(x)) = A(x) + β1c1(x)
2 + . . . + βkck(x)

2 (2)

In this work, relative penalty functions are employed

cj(x) = max{ζj/Sj, 0} (3)

ζj = sj(x) − Sj (4)

stands for absolute violations. Note that (3) ensures that the contribution of cj is non-zero
only if violation of the jth constraint occurs. The corresponding penalty coefficient ¦Âj
determines the proportion of the aforementioned contribution to (2).

The size reduction task is formulated as

x∗ = argmin
x∈X

UA(R(x)) (5)

The solution to problem (5) is subject to constraints (1). The parameter space X is
determined by the lower and upper bounds for geometry parameters (entries of vector x).

2.2. Trust-Region Gradient-Based Algorithm

The optimization framework proposed in this paper builds on the standard trust-
region (TR) gradient-based algorithm [53]. It solves problem (4) iteratively by generating
approximations x(i), i = 0, 1, . . . , to the optimum solution x* through constrained opti-
mization of a first-order Taylor approximation model L(i) of the antenna responses R(x).
We have

x(i+1) = arg min
x; x(i)−δ≤x≤x(i)+δ

UA(L(i)(x)), i = 0, 1, . . . (6)

Note that the solution of (5) is constrained to the interval [x(i+1) − δ(i), x(i+1) + δ(i)],
referred to as the trust region. This arrangement accounts for different ranges of the
geometry parameters. The new design x(i+1) is only accepted if UA(R(x(i+1))) < UA(R(x(i))),
i.e., the objective function is improved. Otherwise, the TR size vector δ(i) is reduced [53]
and the current iteration is repeated. The procedure is terminated if ||δ(i)|| is reduced
below a preset limit δTR, or if ||x(i+1) − x(i)|| ≤ δarg (convergence in argument).

2.3. EM-Based Antenna Miniaturization and Adaptive Penalty Coefficients

As discussed in Section 2.1, the penalty function approach offers a convenient way of
handling constraints. At the same time, the efficacy of the optimization process relies upon
a proper adjustment of the penalty factors βj. A workaround is the adaptive adjustment
of the penalty factors [49,50], which eliminates the costly stage of trial-and-error-based
penalty term setup. Additionally, adaptive adjustment allows for the precise control
of the constraints, which leads to improved size-reduction rates [49]. This technique is
incorporated into the optimization framework proposed in this work. The formulation of
adaptive penalty factor adjustment is based upon the concepts of constraint violation as in
(3), as well as sufficient constraint violation improvement defined as

∆j = Mζj (7)

where ζj is the absolute constraint violation, cf. (3), whereas 0 ≤M ≤ 1 is the improvement
factor; here, it is set to 0.5 as recommended in [49].

The adjustment of the penalty factor βj is governed by the following rules:

• if x(i+1) produced in the ith iteration of (5) is infeasible from the point of view of the
jth constraint but constraint violation is improved by at least ∆j w.r.t x(i), ¦Âj is kept
intact;
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• if x(i+1) is feasible w.r.t. the jth constraint, βj is reduced;
• if x(i+1) is infeasible w.r.t the jth constraint and there is either insufficient improvement

or no improvement in the constraint violation, βj is increased.

The quantification details concerning penalty factor decrease/increase can be found
in [49].

2.4. Multi-Fidelity EM Simulation Models

Section 2.3 addressed the issue of efficient handling of design constraints, which is of
primary importance for ensuring the reliability aspects of the optimization process. Another
issue is its computational cost. In this paper, in order to expedite size reduction while
retaining generality, we employed variable resolution EM simulations. Reducing the fidelity
level of the structure results in a faster analysis at the expense of certain accuracy loss.
Because they share the same underlying physics, coarse discretization models are normally
well correlated with their high-fidelity counterparts, which has been widely explored in the
literature to speed up optimization processes [32]. An alternative is utilization of simplified-
physics representations, e.g., equivalent networks [31] or even analytical models. Yet, to
specifically address antennas, reducing the resolution of EM analysis is the only universal
option [32]. Regardless of the low-fidelity model origin, only two resolution levels are
typically used [54]. The low-fidelity model is typically refined by using an appropriate
response-type dependent correction technique [44], and it is employed as a substitute
to the high-fidelity model. Popular approaches of this class include response correction
methods [34] or space mapping [35]. Low-fidelity models can also offer a cost-efficient
initial exploration of the design space within variable-fidelity modeling techniques (co-
kriging [55]) or machine learning frameworks [56]. Notwithstanding, the reliability and the
efficacy of these techniques rely on the meticulous selection of the model-fidelity [44].

Figure 1 illustrates the geometry of a circular polarization antenna along with its
reflection and axial ratio responses for various fidelity levels. The dimensions of the antenna
are as given in Table 1. The model resolution is adjusted using a lines per wavelength
(LPW) parameter in the mesh properties setup, thus controlling the discretization density
of the structure in the Time Domain Solver of CST Microwave Studio. The LPW parameter
is adjusted according to the strategy described in Section 2.4, and the evaluation time
corresponding to each LPW is accounted for while computing the overall CPU cost of the
optimization process. The required range of LPWs is defined in the code as discrete values.
They are communicated to CST through a MATLAB-CST socket one at a time. The socket
actually connects the code to the CST environment. Figure 1b shows a relationship between
model fidelity and the simulation time.

Note that relaxing the accuracy criteria to the lowest usable level reduces the antenna
evaluation time by a factor of about three. Although the accuracy is compromised when
reducing model resolution, the lower-fidelity model still preserves the overall response
shape. Therefore, it can be successfully used for initial design space exploration in the
antenna miniaturization process.
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Figure 1. Circularly-polarized patch antenna; EM responses for various simulation model fidelities:
(a) antenna structure, (b) the increasing trend of the simulation time as proceeding towards higher
fidelities, (c) reflection responses for various fidelity levels, (d) axial ratio responses for various
fidelity levels.

The lowest practical LPW denoted by Fmin can be established by inspecting the an-
tenna responses for various fidelity levels. Similarly, the highest LPW (denoted by Fmax)
corresponds to the high-fidelity model, which renders the system characteristics with
sufficient accuracy. In this work, the objective is to accelerate the size reduction process by
continuous control of the model fidelity within the range Fmin ≤ F ≤ Fmax. The following
section provides a description of a set of prerequisites based on which the model-fidelity
adjustment scheme was developed.

Table 1. Benchmark antenna structures.

Antenna I [57] Antenna II [58] Antenna III [59] Antenna IV [60] Antenna V [61]

Substrate I RF-35
(εr = 3.5 h = 0.762 mm)

RF-35
(εr = 3.5 h = 0.762 mm)

FR4
(εr = 4.3 h = 1.55 mm)

Arlon AD250
(εr = 2.5 h = 3.8 mm)

Arlon
(εr = 2.2 h = 1.575 mm)

Substrate II − − − Air (εr = 1.08,
h = 2 mm)

Air (εr = 1,
h = 3.8 mm)

Designable parameters
(mm) x = [L0 g a l1 l2 w1 o]T x = [L0 dR R rrel dL dw Lg

L1 R1 dr crel]T
x = [Lg L0 Ls Ws d dL ds

dWs dW a b]T x = [r g Lg d ρ Ls α x1]
x = [xf yf l1 l2 Wp Wd Lp

Ld w2 w1 Lg]
Other parameters (dB) w0 = 2o + a, wf = 1.7 w0 = 1.7 W0 = 3 − −

Target operating
bandwidth 3.1 GHz to 10.6 GHz 3.1 GHz to 10.6 GHz 3.1 GHz to 10.6 GHz 8.1 GHz to 8.3 GHz 5.36 GHz to 5.9 GHz

Design constraints |S11| ≤ −10 dB |S11| ≤ −10 dB |S11| ≤ −10 dB |S11| ≤ −10 dB,
AR ≤ 3 dB

|S11| ≤ −10 dB,
AR ≤ 3 dB

Initial design (mm) x = [20.23 18.62 9.23 6.67
5.64 3.84 2.29]

x = [8.74 0.66 4.59 0.75
4.75 1.84 10.00 5.94 3.67

0.49 0.79]

x = [8.53 12.35 9.68 0.33
3.90 1.72 1.04 1.48 1.95

0.37 0.57]
x = [1.58 0.48 21.7 12.46

3.40 9.40 52.40 1.52]
x = [4.16 3.09 8.26 12.08
17.23 12.93 17.70 15.96

1.15 0.89 26.04]

2.5. Constraint–Convergence-Based Model Management

The model management scheme employed in this work seeks to control the fidelity
level of the EM simulation model throughout the optimization process. The trust-region
procedure of Section 2.2 is employed as the main optimization engine. The fidelity level,
represented here using a parameter F, is adjusted within the range Fmin ≤ F ≤ Fmax as
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defined in Section 2.4. The decision concerning the value of F is based upon a set of
prerequisites as follows (see also Figure 2):

• Fidelity level is set to the lowest value Fmin in the early stages of the optimization
process (away from convergence). The decision is made regardless of the feasibility
status of the solution. This permits a cost-efficient initial search within the design
space;

• Fidelity is set to the highest value Fmax upon convergence. This allows to ensure
reliability of the final solution;

• Fidelity selection in the transition phase, either from infeasible to feasible, or ap-
proaching convergence, is based upon both the feasibility status of the solution (to be
formulated later), and the convergence status of the procedure;

• The fidelity is selected from a continuous range of F-values, which improves the
stability of the procedure. In particular, it allows for a smooth transition between
model fidelities throughout the optimization process.

Energies 2022, 14, x FOR PEER REVIEW 8 of 20 
 

 

corresponds to the high-fidelity model, which renders the system characteristics with suf-
ficient accuracy. In this work, the objective is to accelerate the size reduction process by 
continuous control of the model fidelity within the range Fmin ≤ F ≤ Fmax. The following 
section provides a description of a set of prerequisites based on which the model-fidelity 
adjustment scheme was developed. 

2.5. Constraint–Convergence-Based Model Management 
The model management scheme employed in this work seeks to control the fidelity 

level of the EM simulation model throughout the optimization process. The trust-region 
procedure of Section 2.2 is employed as the main optimization engine. The fidelity level, 
represented here using a parameter F, is adjusted within the range Fmin ≤ F ≤ Fmax as defined 
in Section 2.4. The decision concerning the value of F is based upon a set of prerequisites 
as follows (see also Figure 2): 
• Fidelity level is set to the lowest value Fmin in the early stages of the optimization process 

(away from convergence). The decision is made regardless of the feasibility status of the 
solution. This permits a cost-efficient initial search within the design space; 

• Fidelity is set to the highest value Fmax upon convergence. This allows to ensure reliability 
of the final solution; 

• Fidelity selection in the transition phase, either from infeasible to feasible, or approaching 
convergence, is based upon both the feasibility status of the solution (to be formulated 
later), and the convergence status of the procedure; 

• The fidelity is selected from a continuous range of F-values, which improves the stabil-
ity of the procedure. In particular, it allows for a smooth transition between model fi-
delities throughout the optimization process. 

 
Figure 2. Conceptual illustration of the constraint–convergence-based model-fidelity adjustment. 
The six possible situations concerning feasibility status and convergence status, as well as their cor-
responding actions are shown. 

The feasibility status is quantified using an exponential function e─τ(i), with τ(i) being 
the aggregated constraint violation at the ith iteration, defined as 

τ(i) = max{j = 1, …, k: τj(i)}, (8) 

where 

τj(i) = ζj/τcj (9) 

The normalization factors τcj are selected to have τj(i) equal to unity when constraint 
violation reaches a user-defined threshold, which is constraint-specific. In our numerical 

Figure 2. Conceptual illustration of the constraint–convergence-based model-fidelity adjustment.
The six possible situations concerning feasibility status and convergence status, as well as their
corresponding actions are shown.

The feasibility status is quantified using an exponential function e−τ(i), with τ(i) being
the aggregated constraint violation at the ith iteration, defined as

τ(i) = max{j = 1, . . . , k: τj
(i)}, (8)

where
τj

(i) = ζj/τcj (9)

The normalization factors τcj are selected to have τj
(i) equal to unity when constraint

violation reaches a user-defined threshold, which is constraint-specific. In our numerical
experiments, this threshold is set to 2dB for reflection-related constraint and 1 dB for
axial-ratio-related one, cf. Section 3.

The convergence status is quantified based on two convergence criteria, namely, the
distance between consecutive vectors ||x(i+1) – x(i)|| ≤ δarg, and the difference between
consecutive objective function values |UA(R(x(i+1))) – UA(R(x(i)))| ≤ δobj, where δarg and
δobj are the respective termination thresholds. We define

Q(i)(δarg, δobj) = max
{

Carg, Cobj

}
(10)

where Carg and Cobj represent relative convergence factors, computed as

Carg =
δarg∣∣∣∣x(i+1) − x(i)

∣∣∣∣ (11)



Energies 2022, 15, 403 9 of 20

and

Cobj =
δobj∣∣UA(R(x(i+1)))−UA(R(x(i)))

∣∣ (12)

The model fidelity adjustment rules have been implemented in the form of the updat-
ing formula

F(i+1) =

{
Fmin if Q(i)(δarg, δobj) ≤ δth

max
{

F(i), Fmin + (Fmax − Fmin)e−τ(i)Q(i)
L

}
otherwise

(13)

where F(i) is model fidelity at the ith iteration of the optimization process, and δth is
a threshold for initiating an increase in model fidelity. In (13), QL

(i) is the aggregated
convergence status defined as

Q(i)
L =

[
1−

log(Q(i)(δarg, δobj))

log δth

]
(14)

Note that QL
(i) changes between zero (for Q(i) equal to δth) and one (upon algorithm

convergence, i.e., when Q(i) reaches a unity), which enables model fidelity adjustment
between Fmin and Fmax. Notwithstanding, formulation (14) does not account for an unex-
pected termination of the algorithm without reaching the high-fidelity discretization level.
This may occur due to a reduction in the TR search radius below the termination thresholds.
A workaround is an additional termination mechanism as suggested in [51]. Therein, the
TR search radius δ(i) is forcefully increased upon the convergence of the algorithm to

δ(i+1) =
Mδδ(i)δarg∣∣∣∣δ(i)

∣∣∣∣ (15)

whereas the fidelity level is set to the highest value, F(i+1) = Fmax. This allows for finalizing
the search process at the high-fidelity level, thereby ensuring reliability.

Figure 3 visualizes the dependence between the simulation model fidelity and the
convergence status Q, as well as the aggregated constraint violation τ. The said dependence
is monotonic with respect to both control factors, except from the early stages of the
algorithm and when close to convergence.
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Figure 3. The dependence between the model fidelity and the convergence status Q, as well as
aggregated constraint violation τ, cf. (13) and (14). Except from the initial stages of the optimization
process and when approaching convergence, this dependence is a monotonic function of both control
factors. The surface plot is created for exemplary model resolution levels Fmin = 10, Fmax = 30,
assuming δth = 5 × 10−3.
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2.6. Proposed Miniaturization Procedure

The proposed expedited miniaturization algorithm combines the constraint–convergence-
based model adjustment process of Section 2.5 and the adaptive penalty factor adjustment
of Section 2.3.

The control parameters include:

• δarg, δobj, δTR—termination thresholds (cf. Sections 2.2 and 2.5);
• δth—a threshold used to initiate an increase in the model fidelity (cf. Section 2.5);
• M—sufficient constraint violation improvement factor (cf. Section 3.3);
• Mδ—a multiplication factor used to increase the TR search radius in (15) (upon conver-

gence);
• τcj—constraint violation normalization factors in (8).

The termination thresholds are set to δarg = δobj = δTR = 10−3, which corresponds
to a typically expected optimization process resolution, whereas the TR search region
multiplication factor is selected as Mδ = 10, as suggested in [51]. The values for other
control parameters are as mentioned in the previous sections. Additionally, for any given
antenna structure under design, a grid convergence study is conducted to determine the
values of the lowest-fidelity model Fmin, and the high-fidelity model Fmax.

As mentioned earlier, the threshold value δth is used discriminate whether the opti-
mization process is away from the convergence or in the transition phase to convergence,
which corresponds to an increase in model fidelity.

Figure 4 provides a pseudocode of the algorithm. Steps 1 and 2 set the required
values for the control parameters of the algorithm to initialize the miniaturization process.
In Step 3, antenna response R(x(i)) is acquired at the current fidelity level F(i). Step 4
uses finite differentiation to evaluate antenna sensitivity matrix J(x(i)) at F(i). In Step 5, a
linear approximation model of antenna responses L(i)(x) at the current design vector x(i)

is identified, whereas in Step 6, the objective function UA(L(i)(x)) is constructed based on
the linear approximation of antenna responses. The candidate design is found in Step 7
by minimizing UA(L(i)(x)). The antenna responses and the objective function at the new
design x(i+1), R(x(i+1)) and UA(x(i+1)) are evaluated in Steps 8 and 9, respectively. The TR
search radius is updated in Step 10 (cf. [53]), whereas adaptive adjustment of the penalty
coefficients is conducted in Step 11 [51]. Steps 12 determines whether to accept or reject x(i+1).
If it is accepted, the new model-fidelity F(i+1) is computed using (13). Subsequently, the
termination conditions are checked in Step 13. If the algorithm converges while the model
fidelity has not reached its maximum value, we set F(i) = Fmax, and the TR search radius
is increased using (15). For additional explanation, Figure 5 provides a block-diagram
illustration of the algorithm operation.

The algorithm is implemented in the MATLAB programming environment. The
antenna models are simulated in the time-domain solver of CST Microwave Studio. A
Visual-Basic-based MATLAB-CST socket is used to connect the algorithm to CST. The
new design vector produced by the algorithm is submitted to CST through this socket.
The antenna model is updated accordingly, and the responses are evaluated by the CST
solver. Subsequently, the aforementioned responses are post-processed in MATLAB. This
procedure continues until the convergence of the algorithm.
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dure continues until the convergence of the algorithm. 
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straint defined as maximum in-band reflection coefficient. The other two structures are 
CP antennas with two constraints, maximum in-band reflection coefficient, and axial ratio 
response. The optimization results of the proposed miniaturization procedure with con-
straint-convergence-based model management scheme is compared to those of the bench-
mark algorithm incorporating a single-fidelity adaptive penalty-factor procedure. 
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Figure 5. Operational flow of the proposed miniaturization procedure incorporating constraint–
convergence-based model-fidelity adjustment scheme.

3. Verification Examples

This section provides numerical results of the proposed procedure conducted on
five verification case studies. These include five benchmark structures optimized for
minimum size. The benchmark structures include three broadband antennas with a single
constraint defined as maximum in-band reflection coefficient. The other two structures
are CP antennas with two constraints, maximum in-band reflection coefficient, and axial
ratio response. The optimization results of the proposed miniaturization procedure with
constraint-convergence-based model management scheme is compared to those of the
benchmark algorithm incorporating a single-fidelity adaptive penalty-factor procedure.

The remaining part of this section is organized as follows. Section 3.1 provides a de-
scription of the benchmark antenna structures. Section 3.2 includes the experimental setup of
the algorithm. Numerical results and their discussion are discussed in Sections 3.3 and 3.4,
respectively.

3.1. Benchmark Antenna Structures

Figure 6 shows the verification antenna structures considered in this work. These
include:
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• A monopole antenna with L-shaped ground plane stub [57], Antenna I;
• A monopole antenna with a radiator slot and modified ground plane [58], Antenna II;
• A monopole antenna with two radiator slots and elliptical ground plane slit [59],

Antenna III;
• A stacked circular polarization antenna with circular and annular slots [60], An-

tenna IV;
• A stacked circular polarization antenna with a cross-shaped radiator slot [61], An-

tenna V.
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Figure 6. Topologies of the benchmark antennas: (a) Antenna I, (b) Antenna II, (c) Antenna III, (d)
Antenna IV, (e) Antenna V.

The relevant data for all structures is shown in Table 1. This includes the target
operating bandwidths as well as design constraints. The reflection constraints are set to
|S11| ≤ –10 dB for all considered examples, which is a standard threshold commonly
used in antenna design tasks. However, the presented method is generic and allows for
setting up any limit as required by the user (cf. Sj in Equation (1)). Table 2 provides
information about the simulation times associated with the lowest-fidelity model Fmin, and
the high-fidelity model Fmax for Antennas I–V. As mentioned before, these levels were
decided upon through grid convergence studies (cf. Section 2.6).

Table 2. Antenna simulation time vs. model fidelity.

Benchmark Antenna Structure Model Fidelity
[Fmin Fmax]

Simulation Time
[TFmin TFmax]

[s]

Antenna I [1130] [145 466]

Antenna II [12 20] [49 124]

Antenna III [10 24] [31 164]

Antenna IV [11 20] [38 219]

Antenna V [11 22] [82 236]

3.2. Experimental Setup

The performance of the proposed procedure was evaluated by carrying out size
reduction under the constraints listed in Table 1. The starting points were selected to be
feasible for all antennas. This demonstrates that in all cases, there is a margin for size
reduction as minimum-size designs are always allocated at the feasible region boundary.
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As the primary contribution of this work is the incorporation of variable-fidelity
models, the benchmark procedure is the algorithm employing the adaptively adjusted
penalty coefficient scheme using a single (high-fidelity) EM model. The performance figures
of interest include the antenna size, the levels of constraint violations, and the CPU cost
of the optimization process. The latter is expressed in (i) absolute CPU time in hours, (ii)
relative cost expressed in terms of the number of equivalent high-fidelity model evaluations,
and (iii) relative computational savings enabled by the proposed algorithm as compared to
the benchmark algorithm.

3.3. Result

Table 3 provides a comparison of the performance of the proposed and the benchmark
procedure. As mentioned before, the performance figures include antenna size, constraint
violation levels, and the computational cost of the optimization process. Figures 7–11
show—for Antennas I through V—the reflection responses at the initial and the optimized
designs, along with the evolution of the model fidelity in the course of the algorithm run.

Table 3. Numerical results for Antennas I–V.

Performance Figures
Antenna I Antenna II Antenna III Antenna IV Antenna V

Adaptive
β

This
Work 4

Adaptive
β

This
Work

Adaptive
β

This
Work

Adaptive
β

This
Work

Adaptive
β

This
Work

Area A (mm2) 293 284 207 215 176 177 590 615 372.7 368

Constraint violation
ζS11

1 (dB) 0.08 0.04 0.02 0 0.06 0 0 0 0 0.02

Constraint violation
ζAR

2 (dB) _ _ _ _ _ _ 0.07 0.01 0 0

CPU Time

Absolute
(h) 6.5 4.7 6.8 3.2 12.3 7.2 13.9 6.6 8.8 4.7

Relative
to Rf

3 144 104 150 70 2.4 119 108 51 135 72

Saving
(%) _ 28 _ 53 _ 33 _ 53 _ 47

1 Reflection coefficient constraint violation. 2 Axial ratio constraint violation. 3 High fidelity model. 4 Adaptive
penalty function approach incorporating variable-fidelity model management.
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Figure 7. Numerical results obtained for Antenna I using the proposed algorithm incorporating multi-
fidelity model management and adaptive penalty coefficients: (a) reflection responses, (b) evolution
of the model fidelity. The horizontal line represents the design specifications.
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Figure 8. Numerical results obtained for Antenna II using the proposed algorithm incorporating multi-
fidelity model management and adaptive penalty coefficients: (a) reflection responses, (b) evolution
of the model fidelity. The horizontal line represents the design specifications.
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Figure 9. Numerical results obtained for Antenna III using the proposed algorithm incorporat-
ing multi-fidelity model management and adaptive penalty coefficients: (a) reflection responses,
(b) evolution of the model fidelity. The horizontal line represents the design specifications.
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Figure 10. Numerical results obtained for Antenna IV using the proposed algorithm incorporating
multi-fidelity model management and adaptive penalty coefficients: (a) reflection responses, (b)
axial ratio responses, (c) evolution of the model fidelity. The horizontal lines represent the design
specifications.
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3.4. Discussion

The numerical results lead to several conclusions concerning the efficacy of the pro-
posed miniaturization algorithm incorporating the variable-fidelity EM model management
scheme, and the adaptive penalty function approach. These can be briefly characterized as
follows:

• The proposed variable-fidelity procedure allows for a considerable acceleration of the
miniaturization process as compared to the single-fidelity adaptive penalty function
approach, by about 28 to 53 percent and by 43 percent on average.

• The designs rendered by the proposed procedure are of a quality comparable to that
produced by the single-fidelity procedure, both in terms of constraint satisfaction and
achievable size reduction rates. For Antennas I–V, all constraint violations are kept
at the same level of 0.0 dB, whereas the achieved antenna footprint area is smaller by
9 mm2, larger by 8 mm2, larger by 1 mm2, degraded by 25 mm2, and smaller by about
5 mm2, respectively. In practical terms, these differences can be considered minor.

• The reliability of the miniaturization process is ensured by conducting the final itera-
tions of the optimization process at the level of a high-fidelity model, which gives an
accurate account of antenna characteristics. This can be observed in the plots showing
the evolution of the model fidelity, as included in Figures 7–11. As can be observed in
Figure 7, the initial design is allocated in the feasible region to demonstrate the margin
for size reduction. It can be seen that the design moves towards the boundary of the
feasible region as the final allocation of the optimized design, at which the reflection
constraint is active. Figure 7b shows the evolution of the model fidelity across the
iterations of the optimization process. It is set to the lowest value in the first few
iterations, as the algorithm is away from convergence. There is a gradual increase in
the model fidelity between iterations 5 and 13, corresponding to the transition phase
either from infeasible to feasible, or due to approaching convergence. This increase
is based on the feasibility and the convergence status of the optimization process as
formulated in (13). The model fidelity is set to the highest level at the last iteration of
the optimization process, when approaching convergence.

In brief, the proposed variable-fidelity miniaturization procedure demonstrably yields
significant CPU time savings, while producing designs that are of comparable quality
to those obtained with the single-fidelity adaptive penalty function approach. Further
acceleration can be realized by the incorporation of sparse sensitivity updates [22], which
will be a part of our future work.

4. Conclusions

This paper proposes a novel procedure for expedited EM-driven miniaturization of
antenna structures. Our methodology incorporates a constraint-violation and convergence-
based model management, combined with the adaptive penalty function procedure. The
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model fidelity is continuously adjusted using the control factors related to violation of
the design constraints as well as the convergence status of the algorithm. The proposed
procedure enables a cost-efficient exploration of the design space by utilizing the lowest-
fidelity level at the early stages of the optimization process. The model-fidelity is gradually
refined towards the highest-fidelity level in the final stages of the optimization process.
Comprehensive numerical verification involving five microstrip antenna structures demon-
strated the advantages of the presented approach, primarily a considerable speedup of
the optimization process. The average computational savings are as high as 43 percent
with respect to the benchmark algorithm. At the same time, no quality degradation was
observed. Our future work will focus on the development and incorporation of further
acceleration mechanisms, including sparse sensitivity updates, as well as dimensionality
reduction methods.
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6.1     Chu’s Limit and Antenna Miniaturization 

This section provides an elaboration on how Chu’s lower bound [107] imposes a 

fundamental limit on antenna miniaturization, as well as a comparison of the quality factor, Q, 

of the optimized antennas with Chu’s limit.  

Chu’s limit defines a lower bound for the antenna quality factor formulated as 
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where r is the radius of the assumed virtual sphere enclosing the antenna structure, k = 2π/λ, 

and λ is the wavelength. 

The aim is to provide a comparison of the initial antenna quality factor, Qinitial, the 

miniaturized antenna quality factor, Qminiaturized, and Chu’s lower bound, QChu. The values of 

Qinitial and Qminiaturized are obtained using CST based on the corresponding antenna dimensions, 

while QChu is obtained analytically using equation (6.1) based on the dimensions of the initial 

antenna.  

Figures 6.1 to 6.5 illustrate values of Qinitial, Qminiaturized, and QChu for the first ten propagation 

modes corresponding to the five microstrip antennas optimized for minimum size, including 

Example I: UWB monopole antenna, Example II: UWB rectangular monopole antenna, 

Example III: UWB rectangular-slot monopole antenna, Example IV: stacked patch CP 

antenna, Example V: circular patch CP antenna with annular and rectangular slots. It is 

noteworthy to say that Qinitial, Qminiaturized are scaled down by a factor of 103 for illustration 

purposes. 
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Figure 6.1:     A comparison of Qinitial, Qminiaturized, and QChu for Example I: UWB monopole 

antenna.  
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Figure 6.2:     A comparison of Qinitial, Qminiaturized, and QChu for Example II: UWB rectangular 

monopole antenna.  
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Figure 6.3:     A comparison of Qinitial, Qminiaturized, and QChu for Example II: UWB rectangular-

slot monopole antenna.  
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Figure 6.4:     A comparison of Qinitial, Qminiaturized, and QChu for Example II: stacked patch CP 

antenna.  
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Figure 6.5:     A comparison of Qinitial, Qminiaturized, and QChu for Example II: circular patch CP 

antenna with annular and rectangular slots.  
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a b s t r a c t

Design optimization of passive microwave components is an intricate process, especially if the
primary objective is a reduction of the physical size of the structure. The latter has become an
important design consideration for a growing number of modern applications (mobile communications,
wearable/implantable devices, internet of things), where miniaturization is imperative due to a limited
space allocated for the electronic circuitry. Optimization-based size reduction is a heavily constrained
task, with several acceptance thresholds imposed on electrical characteristics of the system. The
challenges are pronounced whenever equality constraints are involved (e.g., related to power split
ratio requirements), in which case the feasible space is a thin set, thereby difficult to be explored
throughout the optimization process. This feature makes conventional methods, such as penalty
function approaches or algorithms with explicit constraint handling, of limited reliability. In this paper,
we introduce a novel technique for reliable control of equality constraints in simulation-driven size
reduction of microwave components. Our methodology involves an intermittent optimization-based
correction of equality constraints. This is essentially a knowledge-based decision-making strategy
implemented as a supplementary optimization stage, and launched before each iteration of the core
algorithm. Constraint violation is reduced without being detrimental to the remaining figures of merit,
in particular, the circuit size and inequality constraints. Meanwhile, inequality constraints are handled
using a penalty function approach with adaptive adjustment of penalty coefficients. The proposed
technique facilitates exploration of the feasible space, and allows for achieving reduced miniaturization
rates in comparison to the benchmark methods, while ensuring a reliable control of the design
constraints. These advantages have been demonstrated using four microstrip couplers, with consistent
results obtained for all considered circuits.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Compact size has become an important prerequisite in the
design of contemporary high-frequency components, including
passive microwave devices. The underlying reason is a limited
physical space allocated for electronic circuitry in an increased
number of application areas, some of which include internet
of things [1], mobile communications [2], autonomous vehi-
cles [3], energy harvesting [4], wearable [5] and implantable
devices [6], as well as medical imaging [7]. Miniaturization of
passive components is hindered by the fact that their dimensions
are related to the guided wavelength, therefore, downscaling

∗ Corresponding author.
E-mail addresses: koziel@ru.is (S. Koziel), anna.dabrowska@pg.edu.pl

(A. Pietrenko-Dabrowska).

requires the employment of dedicated techniques, e.g., transmis-
sion line (TL) meandering [8,9], multi-layer implementations [10],
employment of the slow-wave phenomenon [11] (e.g., compact
microwave resonant cells, CMRCs [12]), or the application of high-
permittivity substrates [13]. Other methods include geometrical
alterations (stubs [14], slots [15], defected ground structures [16],
substrate-integrated waveguides [17], shorting pins [18], etc.).
The circuits designed using these methods are geometrically
more complex, and often feature dense layouts. For reliability
reasons, they have to be evaluated using full-wave electromag-
netic (EM) analysis (e.g., to account for EM cross-coupling effects)
rather than equivalent network models.

Achieving the best possible performance of a circuit requires
careful tuning of its geometry parameters. Modern structures,
especially those developed using the techniques described in
the previous paragraph, are described by larger numbers of pa-
rameters than conventional ones (e.g., typically, CMRC features

https://doi.org/10.1016/j.knosys.2022.109745
0950-7051/© 2022 Elsevier B.V. All rights reserved.
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four to six parameters as compared to two for a conventional
TL). In the case of compact circuits, the primary objective is to
minimize the circuit size, whereas maintaining appropriate levels
of electrical parameters (centre frequency, bandwidth, power
split ratio, matching, port isolation, phase response) become de-
sign constraints. Parameter tuning under these circumstances
is an intricate task that requires the employment of rigorous
numerical optimization. Unfortunately, EM-driven optimization
entails considerably computational costs. Local algorithms (both
gradient-based [19] and derivative-free [20]) may require tens
or even hundreds of EM analyses depending on the problem
size. Global optimization (e.g., [21–23]) is nowadays most often
performed using nature-inspired algorithms, e.g., [24–26]. Glob-
alized search, but also multi-objective design [27–30], as well
as statistical design (e.g., yield optimization [31,32]) is typically
associated with significantly higher CPU costs.

Needless to say, improving computational efficiency of the
optimization procedures has attracted a great deal of atten-
tion. Among many techniques developed to alleviate the cost-
related difficulties, one can mention adjoint sensitivities [33,34],
restricted Jacobian updating strategies [35–37], mesh deforma-
tion methods [38], as well as utilization of surrogate modelling
methods [39–52]. The major advantage of surrogate-based op-
timization is that shifting the computational burden onto fast
replacement models may lead to a remarkable reduction of the
running costs of the algorithm in the way unattainable for other
methods [53]. However, surrogate modelling faces difficulties
on its own. For example, data-driven models (kriging [54], ra-
dial basis functions [55], neural networks [56], Gaussian process
regression [57]) are greatly affected by the curse of dimension-
ality. Combining them with machine learning methods [58,59]
and sequential sampling procedures [60], mitigates these issues
to some extent, yet, for systems featuring highly-nonlinear re-
sponses (e.g., narrow- and multi-band structures [61]), only a few
parameters can be handled in an efficient manner. Physics-based
surrogates (space mapping [62], response correction [63–65])
are more immune to dimensionality problems but are also less
generic, and more dependent on an appropriate selection and
setup of lower-fidelity representations [66].

In the context of simulation-based circuit miniaturization, CPU
expenses incurred by EM-driven optimization constitute only
one of the practical problems. Another one is the enforcement
of constraints imposed on electrical performance figures. Size
reduction normally leads to a degradation thereof (e.g., reduction
of the circuit bandwidth), meaning that the constraints are active
at the minimum-size designs [67]. Exploration of the feasible
region boundary is a challenging task [68]. At the same time,
evaluation of the constraints is costly (as it necessitates executing
EM analysis of the circuit), which aggravates the problem. A com-
monly used workaround is an implicit constraint handling using a
penalty function approach [69], with the principal objective (size
reduction) being augmented by additional terms proportional to
violations of the conditions imposed on the S-parameters [70].
This approach simplifies the problem by turning it into a formally
unconstrained one, but the reliability of the optimization process
is contingent upon appropriate selection of the penalty coeffi-
cients, which is non-trivial [71]. Recently, algorithms with the
adaptive adjustment of penalty factors have been proposed, and
demonstrated superior over the manual setup [71,72]. A method
with explicit constraint handling was also suggested, leading to
comparable benefits [73].

In the case of a size reduction of microwave passive compo-
nents, it is the equality constraints that are particularly trouble-
some. Representative examples are coupling structures with the
performance requirements formulated for the power split ratio.
The feasible space for equality constraints is a ‘‘thin’’ (measure

zero) set, which is difficult to be explored because any deviation
from the required power division level results in the design being
infeasible. This is in contrast to inequality constraints, where
the feasible region is of full dimensionality. Consequently, the
operation of the optimization process is more sensitive to the
treatment of equality-rather than inequality-type of performance
conditions. This work proposes a novel approach to constrained
miniaturization of microwave components, which involves dedi-
cated decision-making strategies concerning constraint handling.
In particular, we develop an intermittent optimization-based cor-
rection of equality constraints, where a separate optimization
sub-problem is executed after each iteration of the algorithm,
aiming at reduction of the equality constraint violation before
proceeding with the core size-reduction procedure. The correc-
tion is arranged not to degrade the primary objective (circuit
size) nor the inequality constraints. The inequality constraints are
controlled by means of a penalty function approach with adaptive
penalty coefficients, similarly as in [71]. As demonstrated using
several microstrip couplers, the proposed technique offers a con-
sistent control over both equality and inequality constraints, and
results in improved miniaturization rates with regard to a penalty
function method with manual coefficient setup.

The originality and the technical contribution of this work can
be summarized as follows: (i) the development of the concept of
optimization-based equality constraints control, (ii) the develop-
ment of a management scheme with optimization-based correc-
tion of equality constraints and adaptive handling of inequality
constraints for reliability-enhanced EM-driven size reduction of
microwave passives, (iii) corroborating a possibility of a precise
correction of potential violations of the equality constraints dur-
ing the optimization run, (iv) demonstrating the improvement
of the performance and reliability of the size-reduction process,
which manifests itself in yielding smaller footprints of microwave
circuits while maintaining the target values of electrical perfor-
mance figures. To the best knowledge of the authors, none of
these have been reported so far in the literature.

2. Size reduction of microwave passives with correction-based
handling of equality constraints

This section outlines the optimization-based size reduction
procedure proposed in the work. We begin by recapitulating
the formulation of the EM-driven miniaturization problem with
the emphasis on design constraints (Section 2.1), then, a brief
characterization of a penalty function approach is given
(Section 2.2). An outline of the adaptive adjustment of penalty
coefficients, utilized here to handle inequality constraints, is pro-
vided in Section 2.3. In Section 2.4, we introduce the optimization-
based correction scheme, developed to control equality constraint
violations, whereas Section 2.5 summarizes the entire framework.

2.1. EM-driven miniaturization task

The size reduction task is formulated here as a nonlinear
minimization problem of the form

x∗
= argmin

x
A(x) (1)

where A(x) is the circuit size (e.g., footprint area), and x is the
vector of circuit (typically, geometry) parameters, x = [x1 . . .
xn]T . The problem (1) is subject to constraints, which can be of
inequality

gk(x) ≤ 0, k = 1, . . . , ng (2)

or equality type

hk(x) = 0, k = 1, . . . , nh (3)

2
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Table 1
Example constraints in size-reduction of microwave components and possible formulations of penalty functions.
Constraint Type Analytical descriptiona Penalty function

Input matching |S11| not
exceeding −20 dB over the
operating bandwidth [f1 f2]

Inequality |S11(x, f )| ≤ −20 dB
for f ∈ [f1 f2]

c(x) =

[
max {max f1 ≤ f ≤ f2 : |S11(x, f )| + 20, 0}

20

]2

Port isolation |S41| not exceeding
−20 dB over the operating
bandwidth [f1 f2]

Inequality |S41(x, f )|≤ −20 dB
for f ∈ [f1 f2]

c(x) =

[
max {max f1 ≤ f ≤ f2 : |S41(x, f )| + 20, 0}

20

]2

In-band transmission ripple not
exceeding 0.2 dB over the
operating bandwidth [f1 f2]

Inequality |S21(x, f )|≥ −0.2 dB
for f ∈ [f1 f2]

c(x) =

[
max {−min f1 ≤ f ≤ f2 : |S21(x, f )| − 0.2, 0}

0.2

]2

Power split ratio between output
ports 2 and 3 equal to KP at the
centre frequency f0

Equality |S31(x, f )| − |S21(x, f )|=KP
at f = f 0;

c(x) = [|S31(x, f0)| − |S21(x, f0)| − KP ]2

Phase difference between output
ports 2 and 3 equal to 90◦ at the
centre frequency f0

Equality ̸ S31(x, f ) − ̸ S21(x, f )=90◦

at f = f 0;
c(x) = [̸ S31(x, f0) − ̸ S21(x, f0) − 90◦]2

aThe symbol |S jk(x,f )| stands for the modulus of the S-parameter S jk at the design x, and frequency f.

Table 1 provides a few examples of constraints pertinent to
microwave passive components. In Section 3, we will consider
a number of specific microwave coupler examples, where the
equality constraint is formulated for the power split ratio of the
circuit (cf. the second-but-last row of Table 1).

2.2. Constraint handling using penalty functions

In this work, the primary way of handling constraints is the
penalty function approach [70]. It allows for reformulating the
design problem (1) into a formally unconstrained task by supple-
menting the main objective with a linear combination of appro-
priately quantified constraint violations. The reformulated prob-
lem is

x∗
= argmin

x
UP (x) (4)

where cost function UP is defined as

UP (x) = U(x) +

ng+nh∑
k=1

βkck(x) (5)

The penalty functions ck(x) quantify violations of the require-
ments imposed on particular circuit characteristics, whereas βk
are the penalty coefficients. Typically, the penalty functions are
defined to assess relative violation of the constraints, e.g., with
respect to the assumed acceptance threshold for the inequal-
ity constraints. Table 1 provides a few possible formulations of
penalty functions.

One of practical issues of the above approach is the adjust-
ment of penalty coefficients, which may have a profound effect
on the efficacy of the size reduction process. In particular, the
penalty terms should be sufficiently large to enforce satisfaction
of constraints within acceptable tolerance. Yet, they cannot be
excessively large, in which case exploration of the feasible region
boundary becomes problematic, as the objective function land-
scape becomes extremely nonlinear at and around the feasible
region boundary [68]. A manual adjustment of βk usually leads to
sub-optimal results [71]. Recently, adaptive adjustment of penalty
coefficients has been proposed [71,72] to overcome this issue.
One of these schemes, [71], will be employed in this work to
control inequality constraints.

It should be noted that formulation (4), (5) has a loose re-
semblance to the weighted-sum approach, which is commonly
used at the presence of multiple objectives [74]. According to
this popular method, a scalar cost function is composed as a

linear combination of the individual goals, with the weighting fac-
tors representing the user preferences for those goals (i.e., more
important goals are distinguished by assigning higher weight val-
ues). The approach is often used in multi-criterial design, where
the weights are swept in order to yield a family of solutions rep-
resenting distinct Pareto-optimal parameter vectors [75]. Using
the above terminology, the primary objective (footprint area of
the optimized circuit) is always associated with the weighting
factor of unity, whereas the remaining ‘goal’ (here, constraints),
are associated with the weights equal to βk, k = 1, . . . , ng + nh.

Notwithstanding, what we really have here is a single objec-
tive, which is to be minimized (with the optimum value unknown
beforehand), and one or several constraints, which are not to
be optimized, but merely set at their boundary values, which is
zero. As soon as the constraint value reaches zero (whether it is
inequality or equality one), no further changes are intended, as
the design entered the feasible region or is allocated on its bound-
ary. Furthermore, the typical values of the penalty coefficients
are much larger than unity because the objective is to enforce
constraints to be close to zero. More specifically, in Section 3,
combinations of penalty factors are considered, which take the
values between ten and ten thousand.

2.3. Adaptive penalty factors for inequality constraint control

In this work, we employ the adaptive adjustment of penalty
factors proposed in [71] to control the inequality constraints.
These are generally easier to handle as compared to equality
constraints. As mentioned earlier, formulation (5) is convenient
because it presents a formally unconstrained task. However, the
penalty coefficients have to be set up properly: the values too
small may result in excessive constraint violations, whereas coef-
ficients being too large may incur numerical problems associated
with high nonlinearity of the merit function in the neighbourhood
of the feasible region boundary. Here, we exploit the penalty term
management scheme proposed in [71], in which the values of
βk are automatically adjusted depending on current constraint
violation but also on the algorithm convergence status.

The main components of the management scheme of [71] have
been provided in Table 2. Note that the optimization algorithm is
assumed to be an iterative procedure that produces a series x(i),
i = 0, 1, . . . , of approximations to the problem (4), (5). The adjust-
ment of the penalty coefficients is based on the relation between
the current constraint violation tolerance threshold Dk.t

(i+1) and
the actual violation Dk(x(i)) at the current iteration point x(i). The
details of the adjustment procedure can be found in Fig. 1.

3
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Table 2
Main components of the penalty coefficient management scheme of [71].
Component Analytical description Comments

Termination conditions
of the optimization
algorithm

∥x(i+1)
− x(i)∥ < εx

OR
|UP(x(i+1)) − UP(x(i))| < εU

Convergence in argument OR convergence in
objective function value; typically,
εx = εU = 10−3

Violation of the kth
constraint at the design x Dk(x) =

{
0 if ck(x) ≤ 0
ck(x) otherwise

Returns non-zero value only in the case of a
violation

Tolerance for kth
constraint violation

Dk.max User-defined value

Tolerance multiplication
factor

Mk > 1 User-defined, determines the maximum
tolerance MkDk.max for the kth constraint
violation that may occur during the
optimization process

Convergence metric
C (i)(εx, εU ) =

max
{

εx

∥x(i+1) − x(i)∥
,

εU

|UP (x(i+1)) − UP (x(i))|

}
Estimates convergence stage of the
optimization process w.r.t. the assumed
termination criteria

Current violation
tolerance of the kth
constraint for the (i+1)th
iteration of the
optimization algorithm

D(i+1)
k.t =⎧⎪⎪⎨⎪⎪⎩
MkDk.max if C (i)(εx, εU ) ≤ MC

max

⎧⎨⎩
Dk.max,MkDk.max+

Dk.max (1 − Mk)

[
1 −

log(C (i)(εx, εU ))
logMC

]⎫⎬⎭

D(i+1)
k.t = MkDk.max if C (i)(εx , εU) ≤ MC , where

(user-defined) MC determines the initialization
of tolerance adjustment (here, we use
MC = 10−2);
Upon convergence, D(i+1)

k.t → to Dk.max .

Fig. 1. Adaptive adjustment of penalty coefficients. The explanation of terms can be found in Table 2.

2.4. Optimization-based equality constraint correction scheme

The main contribution of this work is an optimization-based
correction scheme developed to facilitate reliable handling of
equality constraints. As discussed earlier, miniaturization under
equality constraints is challenging primarily due to the fact that
the feasible region for such constraints is a thin set, i.e., its
dimensionality is normally lower than the dimensionality of the
parameter space. Consequently, exploration of this region aim-
ing at identification of the minimum size design is difficult. In
particular, when using a penalty function approach, any design
relocation from the feasible region leads to the increase of the
objective function, which is in contrast to inequality constraints,
where the feasible space interior is non-empty, and the design
may stay feasible for a significantly larger number of parameter
vectors, as shown in Fig. 2.

In this work, the equality constraints are corrected after each
iteration of the optimization process, using an auxiliary search
step, as described below. Let x(i+1) be the new design produced
in iteration i. Let S(x) denote the EM-simulated circuit responses,
and JS(x) stand for the Jacobian matrix of S(x). Assuming that

the core optimization procedure is a gradient-based routine, the
matrix JS(x(i)) is known at the design x(i) (cf. Section 2.5). Consider
the linear expansion model

L(i)
A (x) = S(x(i+1)) + J S(x(i)) · (x − x(i+1)) (6)

which is established at x(i+1) but using the sensitivity data at x(i).
The latter is to reduce the cost of establishing L(i)A by re-using
the Jacobian JS(x(i)) (the subscript A is to indicate the mentioned
approximation). Note that upon convergence of the optimization
process JS(x(i)) will converge to JS(x(i+1)), so that the model L(i)A
becomes increasingly closer to the true Taylor expansion at x(i+1).

Consider the following minimization sub-problem

xcorr (M) = arg min
x,∥x−x(i+1)∥≤M

max
{
h1(L

(i+1)
A (x)), . . . , hnh (L

(i+1)
A (x))

}
(7)

with constraints

A(x) ≤ A(x(i+1)) (8)

4
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Fig. 2. Design relocation from feasible region boundary for inequality and equality constraints: (a) inequality constraint: the designs produced from the current
design x(i) may be located in either feasible or infeasible region, (b) equality constraint: essentially all designs produced from x(i) are infeasible due to feasible region
being a thin set. Consequently, exploration of the feasible space is more difficult for the equality constraints than the inequality ones.

gj(x) ≤ gj(x(i+1)), j = 1, . . ., ng (9)

Here, the notation hk(LA(i+1) (x)) has been introduced to emphasize
the fact that the constraints are evaluated based on the linear
model LA(i+1) rather than on EM simulation results. The corrected
design is rendered as

x(i+1)
c = argmin

M

{
max

{
h1

(
L(i+1)
A (xcorr (M))

)
, . . . , hnh(

L(i+1)
A (xcorr (M))

)}
≤ εh

}
(10)

where, for any givenM, xcorr (M) is obtained using (7)–(9), whereas
εh is a small positive number (here, εh = 10−3). Also, M ≤ Mmax,
where the upper bound Mmax (here, set to Mmax = 0.1) is set up
in order to limit the design relocation | |x(i+1) – x(i+1)

c | due to the
underlying approximations (i.e., the usage of the linear model (6)
rather than EM simulation).

In plain words, the corrected design is the one that reduces
the violation of equality constraints (in the minimax sense) as
much as possible, without increasing the circuit size, and without
degrading inequality constraints. At the same time, for the sake of
reliability, the design relocation is limited by reducing the search
radius M as much as possible. In effect, the correction procedure
is a knowledge-based decision-making strategy, which fosters
design relocation towards the feasible region while accounting
for the remaining figures of merit (here, the primary objective
and the inequality constraints).

Formally (cf. (10)) identification of the corrected design is
handled as optimization of the parameter M, i.e., seeking for the
smallest possible M, for which equality constraints at xcorr (M) are
below εh. If satisfying the condition

max
{
h1

(
L(i+1)
A (xcorr (M))

)
, . . . , hnh

(
L(i+1)
A (xcorr (M))

)}
≤ εh (11)

is not possible for M ≤ Mmax, the corrected design is assigned
to be x(i+1)

c = xcorr (Mmax), regardless of the equality constraint
values therein. It should be noted that when the algorithm con-
verges, the expected relocation of the iteration points ||x(i+1) –
x(i)|| becomes smaller, which improves the accuracy of the linear
model LA(i) , along with the likelihood of satisfying (11) for M <
Mmax. The proposed optimization-based correction scheme for
efficient control of equality constraints is shown graphically in
Fig. 3.

2.5. EM-driven size reduction. Algorithm summary

This section summarizes the entire size reduction procedure
with optimization-based correction of equality constraints intro-
duced in Section 2.4. The underlying optimization algorithm is
a trust-region (TR) gradient-based search with numerical deriva-
tives [76]. The TR algorithm yields approximations x(i), i = 0,
1, . . . , to the solution of the problem (4), (5), with x(0) being the
starting point. We have

x(i+1)
= arg min

x;∥x−x(i)∥≤d(i)
U (i)
L (x) (12)

The objective function U (i)
L is defined as similarly as the function

(5)

U (i)
L (x) = A(x) +

ng∑
k=1

β
(i)
k cL.k(x) +

nh∑
k=1

βng+kcL.ng+k(x) (13)

In (13), the penalty functions cL.k, corresponding to both in-
equality and equality constraints, are not evaluated from the
EM-simulated circuit responses S(x) but using the linear model
L(i)(x), defined as

L(i)(x) = S(x(i)) + J S(x(i)) · (x − x(i)) (14)

where JS(x(i)) is a Jacobian matrix of S at x(i), computed by means
of finite differentiation.

The penalty terms β
(i)
k for the inequality constraints are adap-

tively adjusted using the procedure of Section 2.3. The penalty
coefficients βng+k are fixed at low values (e.g., βng+k = 10, k = 1,
. . . , nh), because the enforcement of the equality constraints is
mainly realized using the correction procedure of Section 2.4. The
penalty terms are employed only to avoid excessive violations
that might occur especially at the initial steps of the optimization
process (the scheme of Section 2.4 is intended for correcting
smaller violations).

The trust region size d(i) is re-adjusted before each algo-
rithm iteration (12) based on the gain ratio r = [U (i)

L (x(i+1)) –
U (i)
L (x(i))]/[UP (x(i+1)) – UP (x(i))] (EM-evaluated versus model-

predicted merit function improvement). The standard TR rules
are applied [76]. Upon producing the candidate design x(i+1),
the correction procedure of Section 2.4 is launched to yield the
corrected design x(i+1)

c . If UP (x
(i+1)
c ) < UP (x(i+1)), then x(i+1)

c replaces
x(i+1). The new design is only accepted if UP (x(i+1)) < UP (x(i)). If r
< 0, d(i) is shrunk, and the iteration is executed again. Also, in
the TR framework, the termination condition of Table 2 (the first

5
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Fig. 3. Optimization-based correction scheme for efficient control of equality constraints: (a) the concept: design x(i+1) obtained in the ith iteration of the optimization
algorithm, starting from x(i) , is infeasible; it is brought closer to a feasible space using the procedure (7)–(10), without neither degrading inequality constraints nor
the circuit area; the corrected design x(i+1)

c features reduced equality constraint values hk(x
(i+1)
c ) < hk(x(i+1)), k = 1, . . . , nh , as well as A(x(i+1)

c ) ≤ A(x(i+1)), and gj(x
(i+1)
c )

≤ gj(x(i+1)), j = 1, . . . , ng , (b) graphical illustration of the intermittent equality constraint correction throughout the optimization run.

Table 3
Microwave structures used for verification of the proposed size reduction procedure.

Case study

Circuit I Circuit II Circuit III Circuit IV

Substrate AD300
(εr = 2.97, h = 0.76 mm)

RO4003
(εr = 3.38, h = 0.762 mm)

FR4
(εr = 4.4, h = 1.0 mm)

FR4
(εr = 4.4, h = 1.0 mm)

Design parameters x = [g l1r la lb w1 w2r w3r
w4r wa wb]T

x = [l1 l2 l3 d w w1]T x = [G g1 g2 g3 w1 w3 L1
L2]T

x = [W w1_r w2_r w3 w4 L
L1_r L2_r L3 L4 L5_r s]T

Other parameters L = 2dL + Ls , Ls = 4 w1+
4g + s + la + lb , W =

2dL + Ws , Ws = 4w1+ 4g
+ s + 2wa , l1 = lb l1r ,
w2 = wa w2r , w3 = w3r
wa , and
w4 = w4rwa,wc = 1.9 mm

d1 = d + |w − w1|, d =
1.0, w0 = 1.7, and
l0 = 15 mm

L = 4w1 + 10w3 + 15g3
+ 2L2 , W = 4w3 + 2L1 +

G + 2g1 + 2g3

–

Operating
parameters
(design scenario I)

f0 = 1.5 GHz
F = [1.45 1.55] GHz

f0 = 1.0 GHz
F = [0.9 1.1] GHz

f0 = 1.0 GHz
F = [1.0] GHz

f0 = 2.0 GHz
F = [2.0] GHz

Operating
parameters
(design scenario II)

f0 = 1.5 GHz
F = [1.47 1.53] GHz

f0 = 1.0 GHz
F = [0.95 1.05] GHz

N/A N/A

Inequality
constraint

|S11| ≤ −20 dB and |S41|
≤ −20 dB over the
bandwidth F

|S11| ≤ −20 dB and |S41|
≤ −20 dB over the
bandwidth F

|S11| ≤ −20 dB and |S41|
≤ −20 dB at f0

|S11| ≤ −20 dB and |S41|
≤ −20 dB at f0

Equality constraint |S31| −|S21| = 0 at f0 |S31| −|S21| = 0 at f0 |S31| −|S21| = 0 at f0 |S31| −|S21| = 3 dB at f0
Initial design x(0) = [0.45 0.69 6.25

10.32 0.96 0.39 0.14
0.57 4.62 0.60]T

x(0) = [5.27 13.33 21.51
0.96 0.89 0.90]T

x(0) = [1.0 1.0 0.6 0.25 2.4
0.25 9.0 3.75]T

x(0) = [15.0 0.63 0.93 3.45
3.0 12.4 0.42 0.81 1.50 1.0
0.9 0.5]T

row thereof) is supplemented by the condition d(i) < εx, which is
necessary in order to stop the procedure upon sufficient reduction
of the TR size even if the latest iteration was unsuccessful.

The operating flow of the entire algorithm can be summarized
in the form of the pseudocode as follows:

Fig. 4 shows the flow diagram of the proposed optimiza-
tion framework. The initial values of penalty coefficients are not
critical, typically set anywhere between 102 and 103 (will be
automatically adjusted during the optimization procedure).

3. Demonstration examples

In this section, we validate the size reduction framework intro-
duced in Section 2, and compare it to optimization-based minia-
turization involving a penalty function approach. The latter is
executed in several setups different in terms of the assumed val-
ues of penalty coefficient. The numerical experiments are based
on four compact couplers. The major performance figures utilized
for the evaluation of the algorithm efficacy are the final circuit

footprint area, as well as violation of inequality and equality
constraints.

3.1. Case studies

Fig. 5 shows the geometries of four miniaturized microstrip
couplers, Circuit I through IV, utilized as case studies. In all cases,
the EMmodels are implemented and simulated in CST Microwave
Studio, using the time-domain solver. Table 3 contains relevant
data concerning all circuits, including the substrate information,
design variables, target operating frequencies, etc. In all cases,
the primary objective is a reduction of the circuit footprint A(x),
under the two constraints:

• Inequality constraint for matching and port isolation, g1(x)
= max{f ∈ F : max{|S11(x, f )|, |S41(x, f )|}} + 20 dB, which
corresponds to a condition that both |S11(x, f )| and |S41(x, f )|
should be not higher than −20 dB over the operating band
F ;
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Fig. 4. Flow diagram of the proposed size reduction framework with adaptive adjustment of penalty terms for inequality constraints and optimization-based correction
of equality constraints.

• Equality constraint for the power split ratio: h1(x) = ||S31(x,
f0) – S21(x, f0)|| – KP , where KP is the required power split
(in dB);

For Circuit I and II, we consider two scenarios corresponding to
different operating bandwidths. For Circuit III and IV, we consider
one scenario with design specifications setup up over a single
frequency, i.e., F = f 0 (target operating frequency).

3.2. Numerical results

The optimization procedure introduced in Section 2 has been
applied to reduce the size of Circuits I through IV. For the first two
circuits, we consider two design scenarios, corresponding to dif-
ferent target operating bands for circuit matching and isolation.
For Circuits III and IV, we are only interested in the perfor-
mance at the centre frequency f0. For comparison, all circuits are

8
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Fig. 5. Microstrip components utilized as test cases for verification of the proposed size-reduction procedure: (a) compact branch-line coupler (Circuit I) [78], (b)
rat-race coupler with folder transmission lines (Circuit II) [79], (c) branch-line coupler with microstrip cells (Circuit III) [80], (d) compact branch-line coupler with
unequal power division (Circuit IV) [81].

Table 4
Setup of the benchmark size reduction algorithm.
Setup component Value/description

Core algorithm Trust-region gradient-based search (cf. Section 2.5)

Objective function U(x) = A(x) + β1c1(x)2 + β2c2(x)

Penalty functionsa c1(x) =

⏐⏐⏐ h1(x)
0.1

⏐⏐⏐, c2(x) = max
{
0, g1(x)+20

20

}
Penalty coefficients for equality
constraintb

β1 ∈ {10, 100, 1000, 10000}

Penalty coefficients for inequality
constraintb

β2 ∈ {10, 100, 1000, 10000}

aEquality constraint is normalized to 0.1 dB.
bThe benchmark algorithm is run for all combinations of β1 and β2 .

also optimized using the penalty function approach with fixed
penalty coefficients, as well as particle swarm optimizer (PSO),
a representative nature-inspired algorithm [77].

The details concerning the benchmark algorithm with adap-
tive penalty factors setup can be found in Table 4. It has been
executed sixteen times, for all combinations of the β1 and β2
listed in the Table. This allows us to demonstrate the impor-
tance of the penalty coefficient arrangements, along with the fact
that identifying the optimum combination is a non-trivial task
with profound effects on the optimization process performance.
Whereas for PSO algorithm, we have: swarm size Ns = 10, maxi-
mum number of iterations kmax = 100, and weight coefficients for
velocity updating: χ = 0.73, c1 = c2 = 2.05 [77]. Because of the
high computational cost, six independent runs of PSO procedure

have been executed. For each run, the computational budget has
been set to 1,000 objective function evaluations.

Tables 5 through 7 contain the numerical results for the intro-
duced and the benchmark algorithms. Figs. 6, 7, 8, and 9, show
the circuit S-parameters at the initial and optimized designs. We
also illustrate the evolution of the circuit size and constraint
violations, along with the evolution of the penalty factor for the
inequality constraint.

3.3. Discussion

The results in Tables 5 through 7 contain comprehensive data
allowing us to investigate the properties of the proposed size re-
duction algorithm, and compare it to the benchmark techniques.

9
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Table 5
Optimization results for Circuit I.
Optimization approach Performance parameters

Method Penalty coefficient
values

Design scenario I (F = [1.45 1.55] GHz) Design scenario II (F = [1.47 1.53] GHz)

Footprint area
A [mm2]

Violation of
constraint h1 [dB]

Violation of
constraint g1 [dB]

Footprint area
A [mm2]

Violation of
constraint h1 [dB]

Violation of
constraint g1 [dB]

Implicit
constraint
handling
(penalty
function
approach)

β1 = 101 , β2 = 101 241 0.03 6.8 264 0.07 3.5
β1 = 101 , β2 = 102 259 0.06 5.3 264 0.07 3.5
β1 = 101 , β2 = 103 301 −0.01 1.9 272 0.02 2.1
β1 = 101 , β2 = 104 325 0.01 0.2 293 0.02 0.2
β1 = 102 , β2 = 101 247 −0.05 6.6 264 0.07 3.5
β1 = 102 , β2 = 102 258 −0.02 5.7 276 0.00 1.7
β1 = 102 , β2 = 103 318 0.01 1.0 292 −0.01 0.5
β1 = 102 , β2 = 104 319 0.00 0.3 297 −0.08 0.3
β1 = 103 , β2 = 101 247 −0.04 7.1 333 −0.00 0.5
β1 = 103 , β2 = 102 264 −0.03 53 335 −0.01 1.0
β1 = 103 , β2 = 103 318 −0.01 1.3 322 −0.02 −1.1
β1 = 103 , β2 = 104 319 0.00 0.2 301 −0.05 0.1
β1 = 104 , β2 = 101 242 0.00 6.9 323 −0.00 0.5
β1 = 104 , β2 = 102 258 −0.05 5.7 292 −0.06 0.8
β1 = 104 , β2 = 103 310 −0.03 1.4 325 −0.00 0.0
β1 = 104 , β2 = 104 317 0.00 0.4 302 −0.07 0.1

PSO 534 1.2 0.8 527 0.9 2.9

Size reduction with
optimization-based equality
constraint correction (this work)

304a 0.02 0.1 286a 0.02 0.2

aThe best solution for the respective design scenario considering the combination of the constraint violation (the smaller the absolute value, the better) and the
obtained footprint area (the smaller, the better). In other words, the design can be considered optimum if and only if all constraints are satisfied (or close to be
satisfied). Otherwise, the design is not optimum regardless of the obtained circuit size.

Table 6
Optimization results for Circuit II.
Optimization approach Performance parameters

Method Setup Design scenario I (F = [0.9 1.1] GHz) Design scenario II (F = [0.95 1.05] GHz)

Footprint area
A [mm2]

Violation of
constraint h1 [dB]

Violation of
constraint g1 [dB]

Footprint area
A [mm2]

Violation of
constraint h1 [dB]

Violation of
constraint g1 [dB]

Implicit
constraint
handling
(penalty
function
approach)

β1 = 101 , β2 = 101 124 0.01 16.8 114 0.00 16.6
β1 = 101 , β2 = 102 104 0.02 17.0 90 0.00 17.6
β1 = 101 , β2 = 103 464 0.27 3.2 439 0.21 2.9
β1 = 101 , β2 = 104 508 0.17 −0.1 364 −0.09 0.2
β1 = 102 , β2 = 101 593 0.04 −3.4 593 0.04 −5.2
β1 = 102 , β2 = 102 593 0.04 −3.4 593 0.04 −5.2
β1 = 102 , β2 = 103 538 0.07 −1.9 593 0.04 −5.2
β1 = 102 , β2 = 104 593 0.04 −3.4 593 0.04 −5.2
β1 = 103 , β2 = 101 595 0.04 −3.4 595 0.04 −5.2
β1 = 103 , β2 = 102 595 0.04 −3.4 595 0.04 −5.2
β1 = 103 , β2 = 103 595 0.04 −3.4 595 0.04 −5.2
β1 = 103 , β2 = 104 595 0.04 −3.4 595 0.04 −5.2
β1 = 104 , β2 = 101 595 0.04 −3.4 595 0.04 −5.2
β1 = 104 , β2 = 102 595 0.04 −3.4 595 0.04 −5.2
β1 = 104 , β2 = 103 595 0.04 −3.4 595 0.04 −5.2
β1 = 104 , β2 = 104 595 0.04 −3.4 595 0.04 −5.2

PSO 551 −1.1 0.3 547 0.5 0.8

Size reduction with
optimization-based equality
constraint correction (this work)

477a 0.05 0.2 349a 0.0 0.2

aThe best solution for the respective design scenario considering the combination of the constraint violation (the smaller the absolute value, the better) and the
obtained footprint area (the smaller, the better). In other words, the design can be considered optimum if and only if all constraints are satisfied (or close to be
satisfied). Otherwise, the design is not optimum regardless of the obtained circuit size.

It should be emphasized that, in order to appropriately assess
the obtained optimization results, one needs to take into account
both the device footprint area and the constraint violations. In
other words, for the best design, the combination of the minia-
turization rate and the constraint violation should be the most
advantageous. Formally speaking, any design that violates either
of the constraints cannot be considered optimum.

The following properties and performance indicators of our
method can be highlighted:

• The results obtained for all considered circuits and all de-
sign scenarios are consistent. In particular, the proposed
procedure enables accurate control over both the equality
and inequality constraints. For the power split, the average
constraint violation is about 0.03 dB, whereas for the match-
ing and isolation constraint, it is about 0.2 dB. Furthermore,
it can be observed that the equality constraint violation
is kept close to zero for the majority of the optimization
run duration, which indicates that the correction procedure
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Table 7
Optimization results for Circuit III and IV.
Optimization approach Performance parameters

Method Setup Circuit III (f0 = 1.0 GHz) Circuit IV (f0 = 2.0 GHz)

Footprint area
A [mm2]

Violation of
constraint h1 [dB]

Violation of
constraint g1 [dB]

Footprint area
A [mm2]

Violation of
constraint h1 [dB]

Violation of
constraint g1 [dB]

Implicit
constraint
handling
(penalty
function
approach)

β1 = 101 , β2 = 101 73 0.01 13.8 130 0.03 2.1
β1 = 101 , β2 = 102 75 0.01 13.8 135 0.06 1.8
β1 = 101 , β2 = 103 305 1.12 2.3 121 1.75 −0.3
β1 = 101 , β2 = 104 334 1.22 0.2 146 0.02 0.1
β1 = 102 , β2 = 101 73 0.01 13.8 114 0.02 4.7
β1 = 102 , β2 = 102 73 0.01 13.8 141 0.04 2.9
β1 = 102 , β2 = 103 382 0.20 2.4 135 0.01 0.5
β1 = 102 , β2 = 104 428 0.08 −0.1 152 0.01 0.1
β1 = 103 , β2 = 101 73 0.01 13.8 141 0.00 1.1
β1 = 103 , β2 = 102 268 0.03 11.5 140 0.09 1.2
β1 = 103 , β2 = 103 324 0.07 3.7 142 0.02 1.3
β1 = 103 , β2 = 104 414 0.04 0.2 148 0.01 0.2
β1 = 104 , β2 = 101 262 0.00 11.7 164 0.00 1.3
β1 = 104 , β2 = 102 303 0.00 9.6 200 0.00 −6.1
β1 = 104 , β2 = 103 448 0.00 0.0 203 0.01 −5.0
β1 = 104 , β2 = 104 419 0.01 0.3 207 0.01 −0.3

PSO 417 0.8 1.4 225 3.17 1.2

Size reduction with
optimization-based equality
constraint correction (this work)

362a 0.03 0.2 129a 0.03 −0.4

aThe best solution for the respective circuit considering the combination of the constraint violation (the smaller the absolute value, the better) and the obtained
footprint area (the smaller the better). In other words, the design can be considered optimum if and only if all constraints are satisfied (or close to be satisfied).
Otherwise, the design is not optimum regardless of the obtained circuit size.

works as expected. At the same time, adaptive adjustment
of the penalty coefficient for the inequality constraint seems
essential because the optimum value thereof is very much
dependent on the circuit but also design specifications, and
can vary from 100 to almost 104.

• Optimization-based correction of equality constraints seems
to be important for achieving competitive miniaturization
ratios, because it facilitates the exploration of the feasible
region. This can be concluded by comparing the results ob-
tained for the proposed algorithm with the procedure with
fixed penalty factors, executed with the penalty coefficient
values close to the optimum ones. For these, the optimiza-
tion process is either stuck at the designs corresponding
to relatively large footprint areas (especially for Circuits I
and II) or ends up at the designs that violate the inequality
constraint (Circuit III) or are allocated deeply in the feasible
region (Circuit IV).

• It can be observed that, in contrast to the proposed ap-
proach, the performance of the algorithm exploiting fixed
penalty factors is immensely dependent on the penalty co-
efficient setup. Only few (typically one to three) combina-
tions of penalty coefficient values lead to reasonable results,
which are still inferior to those rendered by our procedure,
especially in terms of the final circuit size.

• The results obtained using PSO algorithm feature signifi-
cantly poorer miniaturization rates than that of the pro-
posed procedure for all the considered microwave struc-
tures. The average values of the footprint area of each device
are from fifteen percent to over eighty percent larger than
that of our approach (around fifty percent on average).
Moreover, the constraint violations obtained with PSO are
worse than that of our procedure, especially for Circuit I, III
and IV, which are more challenging in terms of the number
of designable parameters examples.

The scrutiny of the results shown in Figs. 6 through 9 allow
us to draw additional conclusions on the performance of the
proposed size reduction framework. First, all of the optimal de-
signs for the considered benchmark microwave structures satisfy

the design specifications and also feature satisfactory footprint
areas. In all cases, the constraint violations have been diminished
throughout the algorithm run: from the initial infeasible values
exceeding 1 dB to nearly zero (for the equality constraints), and
small fractions of dB (for the inequality ones). Moreover, the
values of the penalty coefficients for the inequality constraints
are shown to be problem-specific to a large extent, which cor-
roborates the relevance of employing the adaptive adjustment of
penalty factors scheme. An important advantage of the proposed
algorithm with correction-based control of equality constraints
is that – for all the considered circuits and for all the design
tasks – the ultimate equality constraint violation at the optimal
design has been close to zero, which is in contrast with the results
rendered by the benchmark algorithm.

It should be emphasized that the presented verification of the
algorithm of Section 2 is comprehensive (four circuits, six design
scenarios altogether), which makes the aforementioned obser-
vations conclusive. The proposed methodology ensures superior
miniaturization rates while effectively addressing the problem
of precise control over both inequality and equality constraints.
At the same time, the extra cost related to equality constraint
correction is only one EM analysis per algorithm iteration. Fur-
thermore, the algorithm is straightforward to set up, and it does
not require problem-specific tuning (in contrast to the benchmark
procedure). The latter normally involves engineering experience
and incurs additional computational expenses.

4. Conclusion

This work introduced a novel algorithm for EM-driven size re-
duction of microwave components. The distinctive feature of our
methodology is the optimization-based procedure for correcting
possible violations of the equality constraints, which facilitates
exploration of the feasible space. The latter is normally chal-
lenging due to the geometry of feasible sets associated with the
equality constraints. At the same time, the correction is realized
at a reduced computational cost of only one extra EM analysis
per iteration. Furthermore, the presented algorithm incorporates
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Fig. 6. Initial (grey) and optimized (black) S-parameters of Circuit I. The vertical and horizontal lines mark the target operating bandwidth and the acceptance level
for the matching |S11| and isolation |S41| responses. Also shown is the evolution of the circuit size and constraint violations (in case of feasibility, violations shown
as zero), as well as evolution of the penalty coefficient for the inequality constraint: (a) design scenario I (bandwidth 1.45 GHz to 1.55 GHz), (b) design scenario II
(bandwidth 1.47 GHz to 1.53 GHz).

adaptive adjustment of penalty coefficients for accurate con-
trol of the inequality constraints. The developed mechanisms
are based on the intrinsic knowledge of numerical challenges
pertinent to both types of design constraints, combined into
decision-making strategies selecting the best possible arrange-
ments in terms of the specific approaches to constraint handling.
The latter include the adjustment of the search region for equality
constraint correction, and proportionality coefficient values for
inequality constraint enforcement. The presented technique has
been comprehensively validated with the use of four microstrip
couplers with acceptance thresholds imposed on their matching

and isolation characteristics, as well as the power division ratios.
The obtained results demonstrate consistent performance, with
respect to constraint handling and the achievable size reduction,
both being superior to the benchmark procedures. The algorithm
proposed in this paper can be considered a viable alternative to
the conventional optimization techniques, especially whenever
precise handling of design constraints of both equality and in-
equality type is required. The future research will be concerned
with the application of the procedure for other challenging design
cases (e.g., simultaneous control of several equality conditions
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Fig. 7. Initial (grey) and optimized (black) S-parameters of Circuit II. The vertical and horizontal lines mark the target operating bandwidth and the acceptance level
for the matching |S11| and isolation |S41| responses. Also shown is the evolution of the circuit size and constraint violations (in case of feasibility, violations shown
as zero), as well as evolution of the penalty coefficient for the inequality constraint: (a) design scenario I (bandwidth 0.9 GHz to 1.1 GHz), (b) design scenario II
(bandwidth 0.95 GHz to 1.05 GHz).

such as power split and phase difference), as well as its further
improvements in terms of the computational efficiency.
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Fig. 8. Initial (grey) and optimized (black) S-parameters of Circuit III. Also shown is the evolution of the circuit size and constraint violations (in case of feasibility,
violations shown as zero), as well as evolution of the penalty coefficient for the inequality constraint. The vertical line shows the target operating frequency of
1.0 GHz.

Fig. 9. Initial (grey) and optimized (black) S-parameters of Circuit III. Also shown is the evolution of the circuit size and constraint violations (in case of feasibility,
violations shown as zero), as well as evolution of the penalty coefficient for the inequality constraint. The vertical line shows the target operating frequency of
2.0 GHz.
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7.1     Incorporation of Phase Difference in the Correction-Based Equality 

Constraint Handling Scheme 

This section provides a discussion on the extension of the proposed correction-based 

equality correction scheme. The extended version incorporates coupler phase difference as an 

additional equality constraint, a formulated description of which is provided in the following. 

In most of the presented cases, the main optimization engine in the proposed procedure is 

the TR algorithm.                           
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where the objective function takes the form of  
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The penalty term for the inequality constraints βineq,k are determined using the adaptive penalty 

factor adjustment procedure described in Section 2.4 of Paper # 4. The penalty factors βineq,k 

are fixed at low values (e.g., βineq,k = 10, k = 1, …, neq), because the enforcement of the equality 

constraints is mainly realized using the correction procedure of Section 2.4 of the paper, breifly 

described here as well. 

Equation (7.2) is a generic form of the objective function which can take any number of either 

inequality or equality constraints.  

Turning the focus on the equality constraints, the verification examples in the paper consider 

power split ratio as the only equality constraint. The corresponding correction scheme includes 

a single equality constraint formulated as the following minimization sub-problem 

                                                 
( 1)

( 1)

1
, || ||

( ) arg min ( ( ))
i

i

corr A
M

M h L
+

+

− 
=

x x x
x x                                     (7.3) 

with constraints 

                                               ( 1)( ) ( )iA A +x x                                                            (7.4) 

                                       
( 1)( ) ( )i

j jg g +x x ,     j = 1, …, ng                                                 (7.5) 

The corrected design is obtained as  

                              ( )  ( 1) ( 1)

1arg min ( ( ))i i

c A corr h
M

h L M + += x x                                   (7.6) 

The extended version includes phase difference between ports 2 and 3 as an additional equality 

constraint defined as h2(x) = S31(x,f) – S21(x,f) = 90. 

The corresponding minimization sub-problem is reformulated as  

                             
( 1)

( 1) ( 1)

1 2
, || ||

( ) arg min max ( ( )), ( ( ))
i

i i

corr A A
M

M h L h L
+

+ +

− 
=

x x x
x x x                      (7.7) 



with constraints (7.4) and (7.5). 

    

The corrected design is obtained as  

       ( ) ( )  ( 1) ( 1) ( 1)

1 2arg min max ( ( )) ,..., ( ( ))i i i

c A corr A corr h
M

h L M h L M + + += x x x                (7.8) 

 

 

 

 

 



 
 

 
 

Chapter 8 

8   Paper # 5 

 

 

Slawomir Koziel, Anna Pietrenko-Dabrowska, and Marzieh Mahrokh 

Globalized Simulation-Driven Miniaturization of Microwave Circuits by Means of 

Dimensionality-Reduced Constrained Surrogates 

Published: Scientific Reports, vol. 12, paper no. 16418, 2022. 

DOI: https://doi.org/10.1038/s41598-022-20728-0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16418  | https://doi.org/10.1038/s41598-022-20728-0

www.nature.com/scientificreports

Globalized simulation‑driven 
miniaturization of microwave 
circuits by means 
of dimensionality‑reduced 
constrained surrogates
Slawomir Koziel1,2, Anna Pietrenko‑Dabrowska2* & Marzieh Mahrokh1

Small size has become a crucial prerequisite in the design of modern microwave components. 
Miniaturized devices are essential for a number of application areas, including wireless 
communications, 5G/6G technology, wearable devices, or the internet of things. Notwithstanding, 
size reduction generally degrades the electrical performance of microwave systems. Therefore, 
trade-off solutions have to be sought that represent acceptable compromises between the ability 
to meet the design targets and physical compactness. From an optimization perspective, this poses 
a constrained task, which is computationally expensive because a reliable evaluation of microwave 
components has to rely on full-wave electromagnetic analysis. Furthermore, due to its constrained 
nature, size reduction is a multimodal problem, i.e., the results are highly dependent on the initial 
design. Thus, utilization of global search algorithms is advisable in principle, yet, often undoable in 
practice because of the associated computational expenses, especially when using nature-inspired 
procedures. This paper introduces a novel technique for globalized miniaturization of microwave 
components. Our technique starts by identifying the feasible region boundary, and by constructing a 
dimensionality-reduced surrogate model therein. Global optimization of the metamodel is followed 
by EM-driven local tuning. Application of the domain-confined surrogate ensures low cost of the entire 
procedure, further reduced by the incorporation of variable-fidelity EM simulations. Our framework 
is validated using two microstrip couplers, and compared to nature-inspired optimization, as well as 
gradient-based size reduction. The results indicate superior miniaturization rates and low running 
cost, which make the presented algorithm a potential candidate for efficient simulation-based design 
of compact structures.

Design of contemporary microwave passive circuits is a non-trivial endeavour. Performance and functionality 
demands have been continuously growing to satisfy the needs of the emerging application areas such as mobile 
communications1, internet of things2, remote sensing3, microwave imaging4, energy harvesting5, autonomous 
vehicles6, or implantable device7. Some of the requirements include multi-band operation8, reconfigurability9, 
harmonic suppression10, or custom phase characteristics11. Furthermore, many applications impose constraints 
on the physical size of the devices, which fosters miniaturization12–15. Miniaturization is essentially a two-stage 
process. Initially, a basic circuit architecture is selected to ensure compact dimensions16,17, often with the use 
of techniques such as transmission line (TL) folding/meandering18, utilization of the slow-wave phenomenon19 
(typically, in the form of compact microwave resonant cells, CMRCs20), multi-layer realizations21, or incor-
poration of various supplementary components (stubs22, defected ground structures10, substrate-integrated 
waveguides23, shorting pins24). All of these methods result in geometrically complex structures, whose accurate 
evaluation requires full-wave electromagnetic (EM) analysis due to the presence of cross-coupling effects in 
densely arranged circuit layouts. At the same time, geometrical modifications lead to the increase of the num-
ber of parameters that have to be simultaneously tuned in order to control both the circuit size and electrical 
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figures of merit. As size reduction is detrimental to electrical performance of the system, any practical design 
is a trade-off between compactness and functionality. Initial circuit dimensions can usually be obtained using a 
combination of equivalent networks and parametric studies, yet rigorous numerical optimization is indispensable 
to significantly enhance the system performance.

Nowadays, parameter tuning is more and more often carried out using rigorous numerical optimization meth-
ods, which is recommended due to their ability to handle multiple parameters, objectives and constraints25–27. 
Optimization is not only used for the purpose of design closure (final tuning of geometry parameters, often 
using local algorithms28), but also multi-criterial design29, uncertainty quantification (tolerance analysis30, design 
centering31), and global optimization32. Whatever the purpose, microwave circuit optimization is a challeng-
ing endeavor. Perhaps the most significant bottleneck is its high computational cost when executed at the level 
of EM simulation models, otherwise necessary to ensure reliability of the process. While the costs are often 
manageable in the case of local (e.g., gradient-based) tuning, global or multi-objective optimization, as well as 
statistical design, are considerably more demanding33,34. Consequently, there have been numerous techniques 
developed to improve computational efficiency of EM-driven optimization. Some of these methods include utili-
zation of adjoint sensitivities35,36, restricted sensitivity updates37–39, the employment of (fast) dedicated solvers40, 
mesh deformation approaches41, feature-based optimization42, or cognition-driven design43. Yet, one of the most 
important developments in making simulation-based design more practical in terms of CPU expenses, has been 
the incorporation of surrogate modeling methodologies44–47.

Surrogate-assisted optimization (SBO) has attracted a considerable attention in the design of high-frequency 
circuits, including microwave and antenna components, primarily because of its ability to accelerate simulation-
based procedures, including local48, and global optimization49, robust design50, or multi-criterial optimization51. 
Surrogate-assisted procedures utilize both data-driven52 or physics-based metamodels53. Data-driven techniques 
are versatile and readily transferrable between the problem domains54, which make them the most popular class 
of modeling methods. Specific approaches often employed in the context of high-frequency engineering include 
kriging55, radial basis functions56, many variations of artificial neural networks57–59, support vector regression60, 
Gaussian process regression61, or polynomial chaos expansion (PCE)62. Data-driven models are cheap to evalu-
ate, but they are affected by the curse of dimensionality: the number of training data samples necessary to con-
struct reliable models quickly grows with the number of parameters and parameter ranges, and may become 
unmanageable even for medium-size problems. Physics-based surrogates are constructed using a lower-fidelity 
representation of the system of interest (e.g., equivalent network63, or coarse-discretization EM analysis64). The 
problem-specific knowledge embedded in the low-fidelity model enhances generalization capability of the sur-
rogates of this class65. At the same time, it limits the applicability range because each problem requires its own 
low-fidelity model. Some of popular techniques include space mapping66, and response correction methods67–69, 
most of which are typically used for local optimization purposes. Surrogate-assisted frameworks allowing for 
solving expensive constrained optimization problems have been recently proposed in70 and71.

As mentioned earlier, size reduction constitutes a prerequisite in the design of contemporary microwave 
components. It is normally addressed at the level of selecting the circuit architecture72–74, yet appropriate param-
eter tuning plays just as important part. From numerical perspective, size reduction is a constrained task with 
expensive constraints that require evaluating through EM analysis (e.g., acceptance thresholds imposed on the 
circuit bandwidth, power split ratio, or phase responses)75. As size reduction is detrimental to electrical perfor-
mance, at least some of the constraints remain active at the optimal solution, which emphasizes the role of feasible 
region boundary exploration in the search process76. These challenges can be addressed by implicit constraint 
handling using a penalty function approach77, where the problem is reformulated into a formally unconstrained 
one. However, performance of the optimization process turns out to be contingent upon the appropriate choice of 
penalty coefficients78, which are normally selected by trial and error. This gave rise to adaptive penalty coefficient 
strategies79,80. Recently, explicit constraint handling methods have been proposed81, along with the techniques for 
customized treatment of equality constraints, based on correction procedures82. Another approach to constraint 
handling in the context of design of antennas and antenna arrays using evolutionary algorithms that allows for 
circumventing the issue of an appropriate setting of the penalty coefficients, has been proposed in83,84.

The optimization techniques outlined in the previous paragraph are local search procedures, which are highly 
dependent on the available starting points. At the same time, miniaturized microwave components are often 
developed using transmission line meandering85, CMRCs20, or various geometrical modifications86,87, which leads 
to parameter redundancy (e.g., a typical number of geometry parameters of CMRC is four to six versus two for 
a conventional TL). The increased number of degrees of freedom enables the necessary flexibility; yet, its han-
dling calls for global optimization. Conventional global search methods (e.g., nature-inspired population-based 
algorithms88,89) are not suitable for the purpose due to poor computational efficiency. This work proposes a novel 
procedure for globalized miniaturization of passive microwave circuits, which is designed to lessen the cost of 
the search process while maintaining reliability. The presented technique is a multi-stage process, which starts 
by (roughly) approximating the feasible region boundary using a set of randomly generated parameter vectors 
coupled with initial (local) optimization runs. Subsequently, a reduced-dimensionality domain is established in 
the feasible boundary region, along with a fast surrogate model, the latter utilized to conduct a globalized size 
reduction. The search process is concluded by final miniaturization-oriented parameter tuning of the circuit. 
The abovementioned dimensionality reduction is achieved using the spectral analysis of the pre-optimized 
parameter vectors. The initial steps of the search process are executed using low-fidelity model to lower the CPU 
cost even further. Our methodology has been validated using a compact rat-race coupler and a dual-band power 
divider. The numerical results demonstrate superior performance of the proposed routine, with regard to both 
the computational efficiency and reliability, as well as constraint control, as compared to the nature-inspired 
optimization and multiple-start local search.
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The primary technical contributions of the paper can be summarized as follows: (i) the development of a novel 
framework for globalized EM-driven miniaturization of passive microwave circuits, which incorporates several 
mechanisms (variable-fidelity EM analysis, surrogate modelling, and dimensionality reduction), (ii) a demonstra-
tion of the competitive performance of the presented method as compared to the state-of-the-art methods (both 
local and global), also in terms of achievable miniaturization rates, (iii) a demonstration of the search process 
reliability, especially low variance of the optimization results (equivalent to consistent repeatability). According to 
the authors’ knowledge, the literature does not offer any size-reduction framework featuring comparable proper-
ties and performance. Consequently, the proposed approach may become an interesting alternative to existing 
methods, particularly in terms of combining computational efficiency and achievable miniaturization rates.

Globalized EM‑driven miniaturization using variable‑fidelity models and spectral 
analysis
This section provides the details of the globalized optimization procedure for passive microwave components 
introduced in the paper. The EM-driven size reduction problem is formulated in "EM-driven size reduction: 
problem statement" Section. The concept of the optimization algorithm is described in Globalized size reduction: 
explanation of the concept Section. "Feasible Region boundary approximation" Section elaborates on feasible 
region boundary approximation, one of the keystones of the presented methodology. The surrogate modeling 
stage is outlined in "Surrogate model construction",  "Surrogate model optimization for size reduction" Sections. 
delineates global optimization of surrogate model, whereas "Final parameter adjustment" Section discusses the 
final (gradient-based) design closure. The entire optimization framework is summarized in "Globalized EM-
driven size reduction: complete procedure" Section using a pseudocode and a flow diagram.

EM‑driven size reduction: problem statement.  Design of compact microwave components consists 
of the two major stages: (i) a selection of the circuit geometry, and (ii) parameter tuning. The first stage is 
essential to ensure structural miniaturization (e.g., by replacing TLs with their abbreviated counterparts such as 
CMRCs90), whereas the second allows for exploring further the size reduction potential of the chosen architec-
ture, in particular, to push the design as much as possible towards feasible region boundary, where the electrical 
performance parameters are barely satisfied in exchange for additional reduction of the circuit physical dimen-
sions.

In the following, we will use x = [x1 … xn]T for a vector of design variables, and by A(x) the circuit size (e.g., 
footprint area). The miniaturization problem is simply stated as 

where Xf is a feasible space, i.e., the region in which all design constraints are satisfied. The constraints can be 
of inequality type, gk(x) ≤ 0, k = 1, …, ng (e.g., acceptance threshold for the circuit operating bandwidth), and 
equality constraints hk(x) = 0, k = 1, …, nh (e.g., target power split ratio).

The constraints imposed on electrical characteristics of the circuit are expensive to evaluate (require EM 
simulation). Consequently, their explicit handling might be problematic, although some recent strategies dem-
onstrated promising results (e.g.81,). A convenient alternative is implicit handling using a penalty functions77. 
According to this approach, the original objective function is supplemented by scaled constraint violations. We 
have

where the merit function U is given by

The second term in (3) consist of penalty functions ck(x) and proportionality coefficients βk; nc = ng + nh is the 
overall number of constraints. Table 1 provides a few examples of constraints that may be encountered in size 
reduction tasks. Table 2 shows example definitions of the penalty functions, often expressed through relative 
violations. It should be noted that the formulation (2), (3) corresponds to soft constraint handling, i.e., it does 
not guarantee their exact satisfaction. As a matter of fact, the constraint control is reliant on coefficients βk, 

(1)x
∗ = arg min

x∈Xf

A(x)

(2)x
∗ = argmin

x
U(x)

(3)U(x) = A(x)+
∑ng+nh

k=1
βkck(x)

Table 1.   Example constraints in size-reduction of microwave components. $ The symbol |Sjk(x,f)| stands for the 
modulus of the S-parameter Sjk at the design x, and frequency f.

Constraint Type Analytical description$

Input matching |S11| not exceeding –20 dB over the operating bandwidth[f1 f2] Inequality |S11(x,f)|≤ − 20 dB for f ∈ [f1 f2]

Port isolation |S41| not exceeding –20 dB over the operating bandwidth [f1 f2] Inequality |S41(x,f)|≤ − 20 dB for f ∈ [f1 f2]

In-band transmission ripple not exceeding 0.2 dB over the operating bandwidth [f1 f2] Inequality |S21(x,f)|≥ − 0.2 dB for f ∈ [f1 f2]

Power split ratio between output ports 2 and 3 equal to KP at the center frequency f0 Equality |S31(x,f)|–|S21(x,f)|= KP at f = f0;

Phase difference between output ports 2 and 3 equal to 90° at the center frequency f0 Equality ∠S31(x,f)–∠S21(x,f) = 90° at f = f0;
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which should be adjusted appropriately. Too low values result in an insufficient control over constraint violations, 
whereas the values that are too high lead to numerical problems as the objective function becomes very steep at 
the feasible region boundary. This issue has been addressed by adaptive coefficient adjustment schemes78,80, where 
the values of βk are changed based on currently-detected violations, as well as the algorithm convergence status78.

Globalized size reduction: explanation of the concept.  Miniaturization of microwave components 
is typically obtained by appropriate selection of the circuit architecture (line folding18, slow-wave phenomenon19, 
defected ground10). Any deviation from conventional structures results in increasing the number of geometry 
parameters, and creating complex relations between those parameter and electrical characteristics, which are 
often counter-intuitive. From the perspective of optimization as considered in  "EM-driven size reduction: prob-
lem statement" section, this leads to multimodal tasks potentially exhibiting a number of local optima. Appro-
priate treatment of such problems requires global search methods. However, as mentioned in "Introduction" 
section, conventional algorithms (e.g., population-based metaheuristics91) are just too expensive. On the other 
hand, surrogate-assisted methods92 are hindered by dimensionality issues and high-nonlinearity of microwave 
component responses. This paper proposes an alternative methodology, designed to improve the efficacy of 
the optimization-based size reduction process, which includes making the search less dependent on the initial 
design quality as compared to local methods.

The central concept of the proposed technique is the boundary Xb of the feasible region Xf. We have the fol-
lowing definitions (here, X is the space of design parameters, usually, delimited by lower and upper bounds):

and

As miniaturization generally degrades the circuit performance (e.g., reduces the operating bandwidth), 
minimum-size designs normally reside in Xb as at least one of the constraints is active. Therefore, (approximate) 
identification of the spatial allocation of Xb allows for narrowing down the part of the parameter space that needs 
to be explored. The exploration involves surrogate modeling techniques, as well as final EM-driven parameter 
tuning. Figure 1 shows the overall concepts of the proposed optimization methodology. Figure 2 briefly explains 
the search stages. Detailed description will be provided in the remaining parts of this section.

To improve computational efficiency of the process, Stages 1 through 3 are carried out using the low-fidelity 
model Rc, which is based on coarse-discretization EM analysis. At these stages, the accuracy is not of a major 
concern. Stages 5 and 7 are executed using the high-fidelity model Rf, which is to ensure reliability of the search 
process. "Feasible region boundary approximation" Section through "Final parameter adjustment" provide the 
details of how all the stages are implemented. "Globalized EM-driven size reduction: complete procedure" sec-
tion summarizes the complete framework.

Feasible region boundary approximation.  The parameter space for the microwave circuit of interest 
is conventionally assumed to be an interval X = [l u]. Therein, the vectors l and u represent the lower and upper 
parameter bounds. At the component level it may be written as lk ≤ xk ≤ uk, k = 1, …, n. Stages 1 through 3 of the 
search process (cf. Fig. 2) are arranged as follows. We start by generating N1 random observables xr

(j) that satisfy 
the following conditions: 

•	 xr
(j) ∈ X = [l u];

•	 A(xr
(j)) ≤ A1;

•	 A(xr
(j)) ≥ A2;

•	 xr
(j) satisfy other possible constraints (problem dependent).

Therein, A1 and A2 are optional maximum and minimum circuit size values. These might be available from 
the previous design work with the same circuit, and give the idea of what level of physical sized are achievable 
for the circuit.

(4)Xf =
{

x ∈ X : gk(x) ≤ 0 for k = 1, . . . , ng AND hk(x) = 0 for k = 1, . . . , nh
}

(5)Xb =

{

x ∈ X : gk(x) = 0 for at least one k = 1, . . . , ng
OR hk(x) = 0 for at least one k = 1, . . . , nh

}

Table 2.   Possible formulation of penalty functions for constraints of Table 1.

Constraint Penalty function

Input matching |S11| not exceeding − 20 dB over the operating bandwidth [f1 f2] c(x) =
[

max {max{f1≤f≤f2 :|S11(x,f )|}+20,0}
20

]2

Port isolation |S41| not exceeding − 20 dB over the operating bandwidth [f1 f2] c(x) =
[

max {max{f1≤f≤f2 :|S41(x,f )|}+20,0}
20

]2

In-band transmission ripple not exceeding 0.2 dB over the operating bandwidth [f1 f2] c(x) =
[

max {−min{f1≤f≤f2 :|S21(x,f )|}−0.2,0}
0.2

]2

Power split ratio between output ports 2 and 3equal to KP at the center frequency f0 c(x) =
[

|S31(x, f0)| − |S21(x, f0)| − KP

]2

Phase difference between output ports 2 and 3 equal to 90° at the center frequency f0 c(x) =
[

∠S31(x, f0)−∠S21(x, f0)− 90◦
]2
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In other words, having such data, we may initially filter out samples that correspond to circuit sizes that are 
clearly too small or too large. One may also impose additional constraints for the sake of restricting the parameter 
space regions to be sampled even further. Such constraints should be based on the designer’s knowledge and/or 
available data. The number of samples N1 is a user-defined control parameter, typically set to 500.

Having the set of samples, the low-fidelity model is evaluated to obtain the circuit characteristics Rc(xr
(j)), j = 1, 

…, N1. The best subset of N2 samples, {xi
(j)}j=1,…,N2 ⊂ {xr

(j)}j=1,…,N1 is selected based on the corresponding values 
of penalty-based objective function (3). Here, we set N2 = 20. This number is a reasonable trade-off between the 
computational cost of subsequent stages and the data on the feasible region boundary Xb that can be obtained 
therefrom.

The parameter vectors xi
(j) are used as initial designs for EM-driven size reduction at the low-fidelity model 

level. Thus, for j = 1, …, N2, we solve

(6)x
(j)
c = argmin{x : U(x)}

Infeasible

region

Parameter space

Feasible

region

Feasible region

boundary Random observables

(a)                                                     (b)

Size-reduced designs

(low-fidelity)
Dimensionality-

reduced surrogate

model domain

(c)                    (d)

Training data

allocation

Surrogate model

optimum

Final design

(locally tuned

at high-fidelity)

(e)                                                     (f)

Figure 1.   Conceptual illustration of the proposed globalized size reduction procedure involving variable-
resolution EM models and dimensionality reduction: (a) Exemplary parameter space with feasible and infeasible 
region indicated along with the boundary region marked in grey, (b) Stage 1: allocation of random observables; 
the acquired EM data will be used to approximate the feasible region boundary, (c) Stages 2 and 3: selected 
observables are optimized for size reduction at low-fidelity EM level, (d) Stage 4: spectral analysis of the pre-
optimized observables is used to define the domain of the surrogate model in the boundary area, (e) Stage 5: 
training data is allocated in the domain, and kriging interpolation model is constructed, (f) Stages 6 and 7: the 
design obtained through global optimization of surrogate model is finally tuned at high-fidelity level using 
gradient-based routine.
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Again, U is the objective function (3) incorporating the penalty terms. Because the accuracy is not of the 
fundamental importance at this stage, the problem (6) uses relaxed termination criteria to reduce the CPU cost. 
In this work, the underlying optimization method is a trust-region (TR) gradient-based algorithm94; the circuit 
response sensitivity is estimated using finite differentiation95 (cf. "Final parameter adjustment" section).

Upon solving (6) for j = 1, …, N2, an N3- element subset of {xc
(j)}j=1,…,N2 is selected that consists of designs being 

of sufficient quality in terms of constraint violation. This is to filter out designs for which (6) was unsuccessful. 
Later on, the selected subset will be referred to as {xc

(j)}j=1,…,N3.

Surrogate model construction.  In the proposed global optimization framework, the surrogate model is 
constructed to represent the circuit responses. As the objective function (3) is a function of these responses, the 
surrogate-predicted response is employed for its evaluation. Next, global optimization of the surrogate model 
is carried out, and the approximate design is rendered, which further undergoes a local refinement as shown in 
Fig. 1f.

The vectors xc
(j), j = 1, …, N3, have been obtained by optimizing the circuit for minimum size. Also, due to 

the definition of the objective function, they exhibit low constraint violations. Consequently, these designs 
reside in the vicinity of the boundary Xb of the feasible region. Based on {xc

(j)}, we will set up the domain of the 
surrogate model to be employed for global search purposes. Further, using the spectral analysis of the set {xc

(j)}, 
the dimensionality of the domain will be reduced as compared to the dimensionality of the original parameter 
space X, which is to limit the computational cost of the surrogate model rendition.

Figure 3 summarizes the process of defining the surrogate model domain. It follows the procedure proposed 
in96 for domain-confined modelling of high-frequency devices. The main idea is to define the domain of the 
surrogate model as the smallest set spanned by the most dominant eigenvectors that contains all vectors in {xc

(j)}. 
In practice, the designs xc

(j) are strongly correlated (in the spatial sense), therefore, the dimensionality p of the 
domain can be kept small without losing too much of information. In this work, we keep p = 3 for the verification 
circuits considered in  "Demonstration examples" section. Dimensionality reduction is essential for reducing the 
number of training data samples (here, denoted as N4) necessary to build the surrogate model. In this work, we 
set N4 = 200, which results in good predictive power of the model (at the level of a few percent of relative RMS 
error). The training data is obtained from the high-fidelity EM model Rf. Figure 4 provides a graphical illustra-
tion of the surrogate model domain definition.

The surrogate model is constructed using kriging interpolation54, although a particular selection of the mod-
eling method is not critical. The training samples, denoted as xB

(j) ∈ Xp, j = 1, …, N4, are distributed using Latin 
Hypercube Sampling (LHS)97. The design of experiments procedure (cf. Fig. 5) has to account for the fact that 
the domain is not aligned with the coordinate system axes. The surrogate model will be used to perform global 
optimization of the circuit within its domain Xp.

Surrogate model optimization for size reduction.  The domain of the surrogate model covers the 
vicinity of the feasible region boundary along the most important directions, as determined using the spectral 

Stage Name Action undertaken

1
Allocation of random 

observables

Allocation of random vectors in the parameter space. Circuit responses at 

these vectors are evaluated through EM analysis, cf. Fig. 1(b)

2 Sample selection

A small subset of observables generated in Stage 1 are selected based on 

their distance to the feasible region boundary, e.g., by evaluating the values 

of design constraints therein

3 Pre-optimization
The designs selected in Stage 2 are optimized for minimum size according 

to (2), (3) at the level of low-fidelity EM model; cf. Fig. 1(c)

4

Spectral analysis and 

surrogate model 

definition

The pre-optimized designs obtained in Stage 3 undergo spectral analysis 

(here, using principal component analysis [90]), and the reduced-

dimensionality subset is defined as the domain of the surrogate model to be 

constructed, cf. Fig. 1(d). The domain is spanned by the most dominant 

eigenvectors of the pre-optimized design set

5

Data acquisition and 

surrogate model 

construction

The training data is allocated in the domain, and kriging interpolation model 

representing circuit responses is identified therein, cf. Fig. 1(e)

6
Global optimization 

of the surrogate
The surrogate model is optimized for minimum circuit size within its domain

7 Final tuning
Local (gradient-based) tuning of the circuit parameters is performed to yield 

the final design

Figure 2.   Conceptual stages of globalized size reduction of microwave components.
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analysis described in "Surrogate model construction" section (cf. Fig. 3). Having the surrogate, the next stage is 
to optimize it in a global sense within Xp. Due to low dimensionality of the domain, the search process is con-
ducted in two phases:

Exhaustive search on the grid Mp given in the form of a complete set of vectors 

Step Action Comment

1
Define the center of gravity xm = N3

–1
j = 1,…,N3xc

(j)

of the set {xc
(j)}

-

2

Define covariance matrix 
3

( ) ( )

13

1
( )( )

1

N
j j T

mcmcc
jN

S x x x x
It is assumed that N3 > n (parameter space 

dimensionality)

3

Perform spectral analysis of Sc to yield eigenvectors 

(principal components) ak, k = 1, …, n, of {xc
(j)}, and 

the corresponding eigenvalues k

Eigenvalues represent the variance of 

{xc
(j)} in the eigenspace; the eigenvalues 

are arranged in a descending order, i.e., 

we have 1 … n 0

4 Define matrices Ak = [a1 … ak]

5 Compute expansions ( )

1

nj
c jk kk

bx a Expansion is unique as {ak} forms a basis 

in the parameter space X

6

Define: 
nim.xam. max{ : }, min{ : }j kj j kjb k b b k b , 

.min .max

.0
2

j j
j

b b
b , j = 1, …, n,

-

7
Define: 

0 1.0 .0...
T

nb bb and 
1 ...

T
b bnbλ with bj

= (bj.max – bj.min)/2
-

8 Define the center point xc = xm + Anb0 -

9

Define p-dimensional model domain: 

1
(2 1)

0 1, 1,...,

k

p
c k b kk

p

k

X
k p

The set Xp contains all vectors xc(j), j = 1, 

…, N3, in the directions a1 through ap

Figure 3.   Definition of reduced-dimensionality surrogate model domain.

x1

x2x3

Xxc
a1 a2

X2

Figure 4.   Conceptual illustration of reduced-dimensionality surrogate model domain. Here, a two-dimensional 
domain X2 spanned by the two most dominant eigenvectors a1 and a2; the gray circle represents the center point 
xc (cf. Figure 3).
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where K is the grid resolution (we use K = 20). The initial design xg
(0) is found by solving

Note that xg
(0) is the design that minimizes (surrogate-evaluated) U over the intersection of the search grid 

and parameter space X (in general, Xp may extend beyond the original domain X);
Local size-reduction-oriented optimization of the surrogate within Xp ∩ X, according to (2). The optimization 

algorithm is a trust-region gradient search described in "Final parameter adjustment" section. For notational 
simplicity, the design found at this stage will be also denoted as xg

(0).

Final parameter adjustment.  The final stage of the global optimization procedure proposed in this paper 
is a local tuning of the circuit parameter. For accuracy reasons, it is performed at the level of the high-fidelity 
model Rf. This step is again executed using the trust-region (TR) gradient-based routine94, which was also used 
for initial tuning ("Feasible region boundary approximation" section), and surrogate optimization (" Surrogate 
model optimization for size reduction" section). The formulation of the TR algorithm has been recalled in Fig. 6.

Globalized EM‑driven size reduction: complete procedure.  This section puts together the build-
ing blocks of the globalized size reduction algorithm discussed in " Globalized size reduction: explanation of 
the concept" section through "Final parameter adjustment", and summarizes the operating flow of the entire 
framework. The algorithm control parameters are gathered in Table 3, their meaning has been already elaborated 
on earlier. Here we provide general guidelines for their setup. Four parameters of Table 3, i.e., N1 through N4, 
pertain to the computational budget of the entire optimization framework. The number N1 of samples used for 
initial approximation of the feasible region boundary is typically set to 500, because, in most practical cases, this 
value is sufficient and allows for a satisfactory estimation of the said boundary. The next parameter, N2, i.e., the 
number of samples for which optimization-based size reduction is carried out, is typically set to 20. This value 
constitutes a reasonable trade-off between the computational cost of subsequent tuning these deigns and the 
precision of assessing the surrogate domain. The number N3 of the refined designs of sufficient quality should 
somewhat exceed a half of N2, as this allows for discarding the designs for which the tuning procedure has failed. 
The fourth parameter controlling the computational budget, i.e., the number N4 of data samples used for setting 

(7)Mp =

{

x = xc +
∑p

k=1
(2�k − 1)�bkak

�k ∈ {0, 1/K , 2/K , . . . , 1}, k = 1, . . . , p

}

(8)x
(0)
g = argmin

{

x ∈ Mp ∩ X : U(x)
}

Design of experiments (domain Xp):
1. Allocate normalized samples z(j) = [z1(j) … zp(j)]T in the p-dimensional unity interval 

XU = [0 1] … [0 1] = [0 1]p (i.e., 0 zj 1, j = 1, …, p) using LHS [94];
2. Define mapping h : XU Xp as h(z) = xc + k = 1,…,p(2zk – 1) ak, where the 

coefficients k are as in the definition of Xp (cf. Fig. 3);
3. Obtain xB(j) = h(z(j)) for j = 1, …, N4.

(a)

Unit hypercube

z

x1

x2x3

X

X2
h(z)

h

(b)

k

Figure 5.   Design of experiments (data sampling) in reduced-dimensionality domain (here, two dimensional): 
(a) sampling procedure, (b) graphical illustration: normalized samples are uniformly distributed in the unity 
interval using LHS, and mapped into X2 using the transformation h.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16418  | https://doi.org/10.1038/s41598-022-20728-0

www.nature.com/scientificreports/

up the surrogate model, should be adjusted to ensure the required accuracy of this model (e.g., at the level of a 
few percent of relative RMS error).

As for the last parameter p, which refers to the surrogate domain dimensionality, it should be kept small (of 
around one third or half of the number of design variables) to maintain the training data acquisition cost at a 
reasonable level. The values provided in the Table 3 will be used in the verification experiments of "Demonstra-
tion examples" section. The pseudocode of the algorithm can be found in Fig. 7, whereas Fig. 8 shows the flow 
diagram of the method.

It should also be emphasized that while utilization of the low-fidelity EM model at the early stages of the 
search process leads to certain inaccuracies (including identification of the feasible region boundary, where the 
constrained optimum is normally allocated), these are corrected at the final stages, where the high-fidelity EM 
model is employed to fine-tune the geometry parameters of the circuit.

Demonstration examples
The proposed globalized size reduction framework is validated with the use of two examples of microstrip 
circuits, a rat-race coupler (RRC) and a branch-line coupler (BLC). The structures are designed for minimum 
size, under the constraints imposed on their operating frequency, operating bandwidth, and power split ratio. 
The performance of the algorithm is compared to nature-inspired optimization using particle swarm optimizer 
(PSO), as a representative technique of this category, as well as multiple-start gradient search. This remainder 
of this Section is arranged in a following manner. "Test cases and experimental setup" Section delineates the test 

1. Initial design: x(0) = xg(0);
2. Set iteration index i = 0 and the TR radius d(0);
3. Define the first-order Taylor model L(i) as

( ) ( ) ( ) ( )( ) ( ) ( ) ( )i i i i
f fL x R x J x x x

where the Jacobian matrix J(x(i)) of Rf at x(i) is computed using finite 
differentiation;

4. Obtain candidate design 
( ) ( )

( )

|| ||
arg min ( )

i i

i
Lpmt

d
U

x x
x x

where UL(i) is defined as in (3); however, using L(i)(x) instead of Rf(x);

5. Compute gain ratio  
( )

( ) ( ) ( )

( ) ( )
( ) ( )

i
tmp

i i i
L tmp L

U U
r

U U
x x
x x

;

6. Update TR radius: if r > 0.75 then d(i+1) = 2d(i); if r < 0.25 then d(i+1) = d(i)/3;
7. If r > 0, set x(i+1) = xtmp and set i = i + 1;
8. If termination condition is not satisfied, go to 3; else END.

Figure 6.   Formulation of the trust-region gradient-based algorithm. The termination condition is based on 
convergence in argument, ||x(i+1)–x(i)||< ε, and reduction of the TR radius, d(i) < ε (whichever occurs first). The 
termination threshold ε is set to 10−3 for final tuning of the high-fidelity model, but it is relaxed to 10−2 for low-
fidelity optimization runs.

Table 3.   Control parameters of the proposed globalized size reduction algorithm.

Parameter Meaning Recommended value

N1
The number of random observables generated to obtain initial approximation of the feasible region 
boundary ("Feasible region boundary approximation" section) 500

N2
The number of observables selected to conduct size reduction optimization runs at low-fidelity level 
("Feasible region boundary approximation" section) 20

N3
The number of designs selected from the outcome of low-fidelity model optimization runs, and used 
to define the surrogate model domain ("Feasible region boundary approximation" section)  > ⌈N2/2⌉

N4
The number of training data samples for surrogate model construction ("Surrogate model construc-
tion" section) 200

p Dimensionality of the surrogate model domain ("Surrogate Model Optimization for Size Reduction" 
section) 3
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cases and the most important experimental settings. "Numerical results" section gathers the numerical results. 
"Discussion" section contains a discussion that includes qualitative comparisons between the introduced and 
the benchmark techniques concerning reliability and computational efficiency.

Test cases and experimental setup.  Verification of the proposed algorithm involves two microstrip cir-
cuits, both shown in Fig. 9, and referred to as Circuit I and II, respectively. The evaluation models are rendered in 
CST Microwave Studio, and simulated with the use of its time-domain solver. The design task is posed as follows:

•	 Minimize the footprint area A(x) of the circuit under design;
•	 Satisfy inequality constraint for matching and port isolation, g1(x) = max{f ∈ F : max{|S11(x,f)|, |S41(x,f)|}} + 2

0 dB;
•	 Satisfy equality constraint for the power split ratio: h1(x) =| |S31(x,f0)|–|S21(x,f0)| |= 0 (both transmission 

responses are in dB);

The first constraint corresponds to a condition that both |S11(x,f)| and |S41(x,f)| should not be greater 
than − 20 dB over the operating band F. The second constraint requires the circuit to maintain an even power 
split ratio at its operating frequency f0. The objective function is formulated as in (3) with the penalty functions 
defined as in Tables 1 and 2. Table 4 provides essential parameters for both circuits, including design variables, 
parameter spaces, operating frequencies, etc.

1. Define the parameter space X and design constraints (cf. Sec�on 2.1);
2. Generate N1 random observables xr

(j) within the parameter space X (cf. 
Sec�on 2.3);

3. Evaluate low-fidelity responses Rc(xr
(j)), j = 1, …, N1;

4. Select N2-element subset {xi
(j)}j=1,…,N2 {xr

(j)}j=1,…,N1 to be used as ini�al 
designs for size reduc�on; selec�on based on constraint viola�on levels 
(the smaller, the be�er);

5. For each j = 1, …, N2, find xc
(j) = argmin{x : U(x)} star�ng from xi(j);

6. Select an N3-element subset of {xc(j)}j = 1,…,N2 based on the lowest constraint 
viola�on (cf. Sec�on 2.5);

7. Use designs {xc(j)}, j = 1, …, N3 to construct the surrogate model domain Xp
(cf. Sec�on 2.4):

Define covariance matrix Sc (cf. Fig. 3);
Perform spectral analysis of Sc;
Use p most significant eigenvectors ak of Sc to define domain Xp (cf. 
Table 3);

8. Perform design of experiments in Xp (cf. Sec�on 2.4);
9. Acquire training data and iden�fy the kriging surrogate model using high-

fidelity EM model (cf. Sec�on 2.4);
10. Perform global size-reduc�on-oriented surrogate model op�miza�on 

(Sec�on 2.5):
Define search grid Mp as in (7);
Obtain global surrogate model op�mum found as 

;

Improve xg(0) through local gradient-based op�miza�on;
11. Find the final design x* through final parameter tuning using the TR 

algorithm; op�miza�on is performed using high-fidelity EM model Rf

(cf. Sec�on 2.6);
12. END.

(0) argmin : ( )pg M X Ux x x

Figure 7.   Operating flow of the proposed globalized size reduction algorithm.
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Parameter space X

EM Solver

Low-

fidelity

High-

fidelity

Design constraints X

Generate random observables xr
(j) X, j = 1, ..., N1

Evaluate low-fidelity responses Rc(xr
(j)), j = 1,…,N1;

Select N2-element subset of {xr
(j)}j=1,…,N1; 

for each j = 1, …, N2, find xc
(j) = argmin{x : U(x)}

Select N3-element subset of {xc
(j)}j = 1,…,N2 based on 

lowest constraint violation

Use {xc
(j)}j = 1, …, N1 to define surrogate model 

domain Xp

Sample domain Xp, acquire training data, 

and identify surrogate model

Globally optimize the surrogate for minimum size

Fine-tune high-fidelity EM model for minimum size

Final design x*

Figure 8.   Flow diagram of the proposed globalized size reduction framework.
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Figure 9.   Microstrip structures employed as test cases for verification of the proposed size reduction 
framework: (a) compact branch-line coupler (Circuit I)98, (b) rat-race coupler with folded transmission lines 
(Circuit II)99.
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The low-fidelity models of both verification circuits are obtained by reducing discretization density of the 
structure. The proportion of simulation times between the high- and low-fidelity model is 2.2 and 2.9 for Cir-
cuit I and II, respectively, which will carry over to computational savings of the entire optimization procedure.

It should be emphasized that the search spaces are large in terms of the ranges of geometry parameters 
(average upper-to-lower bound ratio is almost seven in the case of Circuit I and over thirty for Circuit II). 
Furthermore, both circuits feature parameter redundancy, i.e., additional variables related to the specific circuit 
geometries (utilization of CMRCs for Circuit I, and transmission line meandering for Circuit II). Both factors 
make the design tasks multimodal, in particular, size reduction outcome will very much depend on the initial 
design. At the same time, global search methods are likely to exhibit limited repeatability of solutions due to the 
parameter space dimensionality and overall size. In order to take this into account, verification experiments are 
carried out in a statistical sense, by running multiple instances of the proposed and benchmark algorithms, and 
comparing statistical moments of the outcomes. More specifically, each algorithm is run ten times. The figures 
of interest to be compared are average circuit size along with the standard deviation of the size, as well as average 
violation of design constraints (and the corresponding standard deviations). Another factor to be compared is 
the computational cost of the optimization process. Table 5 briefly outlines the two benchmark methods utilized 
in this work, multiple-start gradient search, and the particle swarm optimizer (PSO).

Table 4.   Essential parameters of Circuits I and II of Fig. 9.

Circuit I98 II99

Substrate AD300
(εr = 2.97, h = 0.76 mm)

RO4003
(εr = 3.38, h = 0.762 mm)

Designable Parameters
[mm] x = [g l1r la lb w1 w2r w3r w4r wa wb]T x = [l1 l2 l3 d w w1]T

Other Parameters [mm] L = 2dL + Ls, Ls = 4w1 + 4 g + s + la + lb, W = 2dL + Ws, Ws = 4w1 + 4 g + s + 2wa, l1 = lbl1r, w2 = waw2r, w3 = w3rwa, 
and w4 = w4rwa, wc = 1.9 mm d1 = d +|w–w1|, d = 1.0, w0 = 1.7, and l0 = 15 mm

Parameter space X l = [0.4 0.1 3.0 3.0 0.4 0.1 0.1 0.1 2.0 0.2]T

u = [1.0 0.99 15.0 25.0 1.5 0.99 0.9 0.9 12.0 1.0]T
l = [0.1 5.0 5.0 0.2 0.2 0.5]T

u = [15.0 30.0 50.0 2.0 2.0 2.0]T

Operating parameters f0 = 1.5 GHz
F = [1.45 1.55] GHz

f0 = 1.0 GHz
F = [0.95 1.05] GHz

Low-fidelity EM model  ~ 24,000 mesh cells
Simulation time 110 s

 ~ 50,000 mesh cells
Simulation time 55 s

High-fidelity EM model  ~ 160,000 mesh cells
Simulation time 240 s

 ~ 200,000 mesh cells
Simulation time 160 s

Table 5.   Benchmark algorithms.

Algorithm Description

I Local gradient-based size reduction using the trust region algorithm (cf. "Final parameter adjustment" section). The optimiza-
tion problem is formulated as in (2), (3)

II
Particle swarm optimizer (PSO)100, employed as a representative nature-inspired technique. The algorithm setup is as follows: 
swarm size of 10, maximum number of iterations 100, standard setup of control parameters (χ = 0.73, c1 = c2 = 2.05), cf.100. The 
problem formulated as in (2), (3)

Table 6.   Optimization results for Circuit I. 1  Optimized footprint area of the circuit averaged over ten 
algorithm runs. 2  Standard deviation of the optimized footprint area averaged over ten algorithm runs. 3  
Violation of inequality constraint, defined as D1 = max{f ∈ F : max{|S11(x,f)|, |S41(x,f)|}} + 20 dB, averaged over 
ten algorithm runs. 4  Standard deviation of the constraint violation D1, averaged over ten algorithm runs. 5  
Violation of equality constraint, defined as D2 =| |S31(x,f0)|–|S21(x,f0)| | dB, averaged over ten algorithm runs. 6  
Standard deviation of the constraint violation D2, averaged over ten algorithm runs. 7  Cost expressed in terms 
of equivalent number of high-fidelity EM analyzes. Numbers in brackets correspond to the running time in 
hours.

Optimization algorithm

Performance figure

Circuit size A [mm2] 1 Std(A) 2
Inequality constraint Equality constraint

CPU cost7Violation D1 [dB] 3 Std(D1) [dB] 4 Violation D2 [dB] 5 Std(D2) [dB] 6

Algorithm I 295.1 24.7 3.6 1.9 0.2 0.1 77 × Rf [5.2 h]

Algorithm II 541.5 240.4 5.5 6.8 0.7 0.1 1,000 × Rf [66.7 h]

Globalized search with dimensionality 
reduction (this work) 301.8 3.9 0.4 0.2 0.1 0.03 852 × Rf [56.8 h]
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Table 7.   Optimization results for Circuit II. 1  Optimized footprint area of the circuit averaged over ten 
algorithm runs. 2  Standard deviation of the optimized footprint area averaged over ten algorithm runs. 3  
Violation of inequality constraint, defined as D1 = max{f ∈ F : max{|S11(x,f)|, |S41(x,f)|}} + 20 dB, averaged over 
ten algorithm runs. 4  Standard deviation of the constraint violation D1, averaged over ten algorithm runs. 5  
Violation of equality constraint, defined as D2 =| |S31(x,f0)|–|S21(x,f0)| | dB, averaged over ten algorithm runs. 6  
Standard deviation of the constraint violation D2, averaged over ten algorithm runs. 7  Cost expressed in terms 
of equivalent number of high-fidelity EM analyzes. Numbers in brackets correspond to the running time in 
hours.

Optimization algorithm

Performance figure

Circuit size A [mm2]1 Std(A) 2
Inequality constraint Equality constraint

CPU cost7Violation D1 [dB] 3 Std(D1) [dB] 4 Violation D2 [dB] 5 Std(D2) [dB] 6

Algorithm I 378.0 59.3 4.5 4.3 0.2 0.2 63 × Rf [2.8 h]

Algorithm II 543.1 86.8 − 1.0 1.6 0.1 0.1 1000 × Rf [44.4 h]

Globalized search with dimensionality 
reduction (this work) 370.7 20.8 0.0 0.8 0.1 0.05 584 × Rf [25.9 h]

(a)                                                      (b)

Figure 10.   Circuit I: EM-simulated scattering parameters for two selected designs obtained using the proposed 
size reduction algorithm: (a) design 1 (footprint area 305.1 mm2), (b) design 2 (footprint area 302.4 mm2). 
Target operating frequency and bandwidth indicated using the vertical and horizontal lines, respectively.

(a)          (b)

Figure 11.   Circuit II: EM-simulated scattering parameters for two selected designs obtained using the proposed 
size reduction algorithm: (a) design 1 (footprint area 370 mm2), (b) design 2 (footprint area 364 mm2). Target 
operating frequency and bandwidth indicated using the vertical and horizontal lines, respectively.
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The reason for incorporating gradient search is to demonstrate multi-modality of the considered design 
tasks. On the other hand, PSO is employed to verify whether the proposed algorithm is capable to bring any 
advantages over nature-inspired procedures, both in terms of computational efficiency and design quality. Note 
that the computational budget of PSO has been limited to 1000 EM simulations, which is clearly insufficient from 
numerical perspective, yet this number can be considered borderline from the perspective of practicality: even 
for relatively low-cost computational models of Circuit I and II, the PSO runs take a few days each.

Numerical results.  The results obtained for the proposed framework and the benchmark algorithms have 
been gathered in Tables 6 and 7 for Circuit I and II, respectively. Figures 10 and 11 show the circuit S-parameters 
at the final designs found during the selected runs of the proposed procedure. As mentioned earlier, the data 
contains the mean values of the circuit size, violations of the inequality and equality constraints, as well as stand-
ard deviations thereof, all computed over the ten runs of each algorithm. The mean figures can be viewed as 
performance metrics, whereas standard deviations quantify the repeatability of solutions. 

Discussion.  The performance analysis of the proposed algorithm, and the comparison with the benchmark 
methods will be carried out using the results contained in Tables 6 and 7. One can formulate the following 
observations:

•	 The results obtained using Algorithm I (multiple-start gradient-based optimizer) demonstrate that the con-
sidered design problems are indeed multimodal. The standard deviation of the footprint area is close to ten 
percent of the average area (Circuit I), and it exceeds fifteen percent (Circuit II). This means that the optimiza-
tion results are highly dependent on the initial design, which—in turn—indicates the need for global search. 
It should also be noted that although Algorithm I produces designs that exhibit small size on the average, the 
constraint control is poor. In particular, a typical violation of the first constraint is around four decibels.

•	 The performance of nature-inspired optimization (here, using PSO) is poor. The circuit sizes achieved with 
Algorithm II are significantly larger than for the remaining methods with high standard deviation. Also, 
constraint control is inferior and inconsistent between the algorithm runs. These results are partially associ-
ated with a limited computational budged assigned for Algorithm II (1000 objective function evaluations). 
It appears that achieving usable results would require significantly larger budgets, probably at the level of 
5000 to 10,000 EM simulations, which is not practical.

•	 The proposed algorithm exhibits the best consistency out of the entire benchmark set. The average circuit 
size is small (and comparable with Algorithm I); however, the average constraint violations are much smaller 
(only 0.4 dB and 0.0 dB for the first constraint, and 0.1 dB for the second constraint, on the average). At the 
same time, the standard deviation of the circuit area is considerable lower than for the benchmark methods: 
it is only about 1.3 percent (in relation to the average size) in the case of Circuit I, and only about five percent 
in the case of Circuit II. This corroborates truly global search capabilities of the presented method.

•	 Computational overhead of the presented algorithm is clearly much higher than that of local optimization, yet 
it is lower than for Algorithm II. As mentioned earlier, achieving reasonable results with the PSO algorithm 
would require increasing its computational budget by a factor five to ten, which means that the cost of the 
proposed algorithm can be estimated as one order of magnitude lower than for the nature-inspired methods.

The overall efficacy of the proposed size reduction procedure is superior over the benchmark. Within reason-
able computational budget, the algorithm produces consistent results in terms of the circuit footprint areas with 
remarkably low standard deviation over the set of repetitive runs. At the same time, it exhibits excellent control of 
the design constraints: the average violations are around a small fraction of a decibel. Competitive computational 
cost is a result of employing variable-resolution EM models but also due to dimensionality reduction at the stage 
of constructing the surrogate model for globalized search stage of the optimization process.

Conclusion
In this work, we introduced a technique for EM-driven miniaturization of passive microwave components. The 
foundation of the presented methodology is parameter pre-screening and initial optimization runs (both carried 
out using low-fidelity simulation model), oriented towards identification of the special location of the feasible 
region boundary. The reduced-dimensionality surrogate model established in this region is employed to perform 
global size reduction, followed by gradient-based parameter tuning. The last two stages are executed using high-
fidelity EM model for reliability reasons. The combination of the developed algorithmic approaches results in an 
optimization framework that enables globalized size reduction at low computational expenses. Comprehensive 
validation involving two microstrip couplers corroborates the efficacy of the proposed technique, and its superi-
ority over local (gradient-based) parameter tuning as well as nature-inspired optimization, here, represented by 
the particle swarm optimization algorithm. The numerical results demonstrate global search capability, as well 
as consistent results, both in terms of the achieved circuit footprint, constraint control, and the computational 
cost. The latter is a consequence of the implemented mechanisms, i.e., dimensionality reduction and variable-
fidelity EM simulations. One of the objectives of the future work will be to improve the feasible region boundary 
identification stage of the algorithm, as well as extending the range of applicability to include a larger variety of 
microwave components and antenna structures.
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8.1      Dimensionality Reduction Using Principal Component Analysis 

This section provides a detailed description of the surrogate model dimensionality 

reduction using principal component analysis (PCA) as well as how the dominant dimensions 

are determined.  

Consistent with the notation used in Paper # 5, the vectors xc
(j), j = 1, …, N3 includes the 

designs resulted from the circuit optimization for minimum size. They all feature low 

constraint violations based on the objective function definition used in the optimization 

process. Therefore, they are located in the vicinity of the feasible region boundary Xb. Using 

this fact, we determine the domain of the surrogate model based on a spectral analysis of the 

set{xc
(j)}.  

Let us denote  

                                                  
1 ( )

3 31,..., j

m cN j N−= =x x                                          (8.1) 

as the center of gravity of the set {xc
(j)}. The covariance matrix of the set is defined as  
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Let us also denote the eigenvectors and eigenvalues of the set {xc
(j)} as vk and λk, k = 1, 

…, n. The matrix Vp = [v1, …, vp] contains the first p eigenvectors as columns, where p is the 

selected number of the principal components. The surrogate model domain Xp will be 

constructed using the information contained in Vp. Given a fast decrease as the typical 

behavior of the eigenvalues, it is usually sufficient to use p = 3 or 4 without the risk of missing 

important information. Defining Xp requires an expansion of the design vectors {xc
(j)}using 

the principal components 
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The coefficients bjk are calculated as follows 
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Using the following notation 
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The center point is defined as  



                                                                      0c m= +x x Vb                                                (8.10) 

The surrogate model domain, Xp, can be therefore defined as 
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Chapter 9 

9    Summary of Findings 

This chapter represents a brief discussion on the findings of the thesis and outlines 

potential future directions that might originate from the work carried out so far. The latter 

includes a number of open problems related to the automated design optimization and 

miniaturization of high-frequency circuit structures. 

9.1      Conclusion 

The main focus of this work was to develop cost-efficient and reliable algorithms for 

optimization-based size reduction of high-frequency circuits which are intended to contribute 

to the state of the art of high-frequency CAD. The obtained numerical results demonstrate 

that the goals of this thesis have been accomplished, and the proposed procedures have been 

positively verified. 

As demonstrated, the developed solutions in the form of an appropriate adjustment of the 

penalty functions and proper treatment of the equality constraints, as well as the employment 

of fast-to-evaluate surrogate models and variable-fidelity simulations, allow for improving 

the reliability and efficiency of simulated-driven size reduction of high-frequency structures. 

Furthermore, a variety of high-frequency benchmark structures that have been employed as 

verification case studies validate the performance efficacy of the proposed algorithmic 

methodologies as compared to the existing size reduction algorithms. 

It should be emphasized that the simulation-driven size reduction algorithms developed 

in this study offer several advantages over the conventional procedures. These include 

superior performance in terms of the obtainable size reduction rates, precise control over the 

design constraints (both equality or inequality type), time and computational efficiency, and 

low-cost global search capability. Furthermore, the developed size reduction algorithms 

permitted to obtain significant miniaturization rates of high-frequency circuit components of 

various types, namely branch-line and rat-race couplers, narrowband CP antennas, and UWB 

antennas.  

9.2     Future Directions 

The research conducted under this project can be expanded in many different directions. 

Some of potential extensions include: 

1. Widening the range of applicability of the methods developed so far. A 

representative example would be origami-based antennas, which can be optimized 
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for minimum volume with degrees of freedom provided by the configuration of 

the origami folds and fold angles in addition to those of the geometry/material 

parameters. Another example is optimal design of wideband electromagnetic field 

(EMF) probes with a travelling-wave antenna as the EM sensor. Given the flatness 

of the reflection coefficient response as one of the critical EMF probe performance 

figures, the constraints could include maintaining the target level of the reflection 

coefficient as well as minimum variability thereof over the entire desired operating 

band. 

2. An enhancement to the proposed correction-based treatment of the equality 

constraints. Here, one of potential options would be to expand the utility of the 

algorithm to more complex high-frequency circuit elements with multiple equality 

constraints. These include but are not limited to power coupler/divider structures 

with equality constraints on their phase shift, and power split ratio.  

3. Incorporation of acceleration mechanisms into the optimization procedures. One 

of such mechanisms, already implemented, was the employment of variable-

resolution EM simulations. Others include restricted sensitivity updating schemes, 

as well as utilization of response features. 
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