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Abstract—Reliable, automated, and user-friendly solu-
tions for the identification of sleep stages in home en-
vironment are needed in various clinical and scientific
research settings. Previously we have shown that signals
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recorded with an easily applicable textile electrode head-
band (FocusBand Technologies, T 2 Green Pty Ltd) contain
characteristics similar to the standard electrooculography
(EOG, E1–M2). We hypothesize that the electroencephalo-
graphic (EEG) signals recorded using the textile electrode
headband are similar enough with standard EOG in order
to develop an automatic neural network-based sleep stag-
ing method that generalizes from diagnostic polysomno-
graphic (PSG) data to ambulatory sleep recordings of tex-
tile electrode-based forehead EEG. Standard EOG signals
together with manually annotated sleep stages from clinical
PSG dataset (n = 876) were used to train, validate, and test
a fully convolutional neural network (CNN). Furthermore,
ambulatory sleep recordings including a standard set of
gel-based electrodes and the textile electrode headband
were conducted for 10 healthy volunteers at their homes
to test the generalizability of the model. In the test set (n =
88) of the clinical dataset, the model’s accuracy for 5-stage
sleep stage classification was 80% (κ = 0.73) using only
the single-channel EOG. The model generalized well for
the headband-data, reaching 82% (κ = 0.75) overall sleep
staging accuracy. In comparison, accuracy of the model
was 87% (κ = 0.82) in home recordings using the stan-
dard EOG. In conclusion, the CNN model shows potential
on automatic sleep staging of healthy individuals using a
reusable electrode headband in a home environment.

Index Terms—Deep learning, electrooculography, sleep,
textile electrodes, wearables, convolutional neural network.

I. INTRODUCTION

N EW technological solutions to screen for sleep disorders in
the home environment are needed to alleviate the workload

of sleep laboratories performing in-laboratory polysomnogra-
phy (PSG) [1], [2]. Some alternatives, such as unattended and
portable Type III sleep studies, are already utilized by many
clinical units worldwide [3] and are especially popular options
for home sleep apnea testing (HSAT) [1], [4]. However, in
comparison to attended in-lab PSG (≥7 channels), type III only
records a limited number of channels (4-7) and does not include
electroencephalography (EEG) [5]. This is a significant limita-
tion, as the EEG recording is currently required for the accurate
determination of sleep structure [6], [7]. However, the clinically
used gel-based EEG electrodes are currently not self-applicable
and are usually not reusable. As a result, the clinical electrodes
are neither suitable for monitoring over multiple nights in a home
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environment nor for patient self-application [8]. In fact, profes-
sional staff is required for accurate positioning and preparation
of the EEG montage. Unfortunately, the EEG electrodes are still
prone to detach, and especially in an unattended environment,
this may lead to failed recording and the need for retesting [9].

Similarly, many research areas are in the need of more reliable
ways to quantify sleep structure from unattended multi-night
home recordings than what is achieved with the currently avail-
able wearable devices without EEG [7]. These needs could be
met by supplementing portable recording devices with reusable
and wearable EEG electrodes. One possible solution is a textile
electrode headband, such as FocusBand (FocusBand Technolo-
gies, Windaroo, Australia) which is a neoprene headband with
integrated textile electrodes for the recording of forehead EEG
[10]. This headband was originally developed for sports training
with associated neurofeedback protocols but could also be used
alongside home sleep recordings, due to its comfortable and self-
applicable design. We have previously shown that the technical
performance of the headband is suitable for home-based sleep
studies [11]. The headband-recorded forehead EEG signals were
found to have significantly lower amplitudes but similar wave-
forms and frequency content as standard EOG and frontal EEG
signals [10], [11]. However, the differences in signal characteris-
tics might make manual sleep staging of the headband recordings
unfeasible. That is because the manual process has specific
rules related to the interpretation of standard EEG, EOG, and
chin-electromyography (chin-EMG) signal features [6]. More
adaptive methods, such as deep learning-based automatic sleep
staging [11], could be the solution to overcome these issues.

The current deep learning-based automatic sleep staging
methods are already as reliable as manual sleep staging when
based on standard PSG recordings [12], [13], [14], [15], [16],
[17]. However, those methods typically utilize neural networks,
that require numerous manually analyzed recordings i.e., the
extensive training data, to be optimized for the task. Collecting a
big dataset that includes both, the signals recorded using a novel
wearable and the standard PSG signals needed for manual sleep
staging is a laborious process. Thus, optimizing the automatic
sleep staging method directly with the wearable-recorded sig-
nals, might not be feasible. Therefore, solutions utilizing large
retrospective datasets such as standard clinical PSG recordings
and transferring the accurate sleep staging achieved on those to
wearable-based data, are of significant interest [18], [19], [20],
[21].

Transfer learning is an effective way to generalize the learning
achieved in one dataset to another by fine-tuning the network
with a limited number of recordings [18], [22], [23]. However,
extensive regularization and freezing parts of the network are
required to avoid overfitting, making it difficult to perform op-
timal fine-tuning [17]. Fortunately, some of the state-of-the-art
neural networks used in sleep staging are shown to be relatively
well generalizable over different datasets even without further
fine-tuning [14], [15], [22]. This could enable an interesting
opportunity to use signals recorded with wearables as an input
for such models. The requirement is that the wearable-based
signals should, at least on some level, correspond to those used
in the training of the network. The level of correspondence that
is required for this method to work accurately in automatic sleep
staging remains to be studied.

Based on our previous study [11], we hypothesize that the
forehead EEG signals recorded using the textile electrode head-
band are similar enough with standard EOG to enable reliable
automatic sleep staging with a deep neural network that is

Fig. 1. A wearable electroencephalography (EEG) electrode head-
band is proposed for home sleep recordings for its comfortable design
and full reusability. In this study, we aimed to develop, test, and validate
an automatic sleep staging method suitable for the visualized protocol.
Figure of the headband courtesy of FocusBand Technologies, Windaroo,
Australia.

optimized using an extensive PSG dataset including standard
EOG signals and manually annotated sleep stages. Therefore,
the aim of this study was to develop and test an automatic sleep
staging method that could generalize from in-laboratory PSG
recordings to forehead EEG recorded using the textile electrode
headband (Fig. 1).

II. METHODS

A. Datasets

This study utilized two different datasets: a large retrospective
clinical dataset of in-lab PSGs (n = 876) and a smaller set (n =
10) of home-based sleep recordings on healthy volunteers. The
clinical dataset was used for training, validation, and testing the
automatic sleep staging model. The dataset consisting of home
sleep recordings was used as a separate test set to investigate
how the automatic sleep staging model performs on the textile
electrode headband recordings (Fig. 2). Ethical clearance for
research use of the collected clinical data was applied from and
granted by The Institutional Human Research Ethics Committee
of the Princess Alexandra Hospital (HREC/16/QPAH/021 and
LNR/2019/QMS/54313). The favorable statement for the proto-
col for home sleep recordings was given by The Research Ethics
Committee of The Northern Savo Hospital District (849/2018)
and all research participants were informed with oral as well as
written instructions and they gave written informed consent.

1) Clinical Dataset: Diagnostic PSG recordings were con-
ducted for 933 individuals with suspicion of obstructive sleep
apnea (OSA) at the Princess Alexandra Hospital, Brisbane,
Australia between the years 2015 and 2017. Only successful
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Fig. 2. The structure of the present study illustrated as a flowchart. The overall aim of the study was to test how a deep neural network-based
automatic sleep staging method generalizes from clinical polysomnographic (PSG) data to textile electrode-based home recordings without fine-
tuning of the network. Abbreviations: EEG = electroencephalography, EOG = electrooculography, EMG = electromyography, REM = rapid eye
movement sleep, N1 = Stage N1 sleep, N2 = Stage N2 sleep, N3 = Stage N3 sleep.

PSGs, 876 in total, were included in the training, validation, and
testing processes. 57 recordings were excluded due to insuffi-
cient amount of total sleep time (<1 h) or poor signal quality.
Recordings were conducted using Compumedics (Abbotsford,
Australia) Grael 4K PSG system. The Compumedics device
records EEG and EOG signals with 1024 Hz sampling fre-
quency. Subject preparation, sensor attachment, and PSG setup
were conducted by medical experts following the standards set
by the American Academy of Sleep Medicine (AASM) [6].

2) Home Recordings: Home sleep recordings were con-
ducted for ten young healthy adults (aged between 23 and 37
years), of which seven were men and three were women. All
subjects slept in their natural sleeping environment and followed
their usual sleeping rhythm. The recordings were conducted
using a portable Nox A1 (Nox Medical, Reykjavik, Iceland) PSG
device. The Nox device has an original sampling rate of 256 kHz
for EEG and EOG signals, but the recording device saves the
signals using 200 Hz. Standard EEG (F4, C4, O2), EOG (E1 and
E2), and chin-EMG signals, as well as the reference potentials
on mastoids (M1 and M2), were recorded with medical-grade
electrodes (Neuroline 720 and 726, Ambu A/S, Copenhagen,
Denmark) (Fig. 3). Self-adhesive and pre-gelled silver/silver
chloride electrodes (Neuroline 720) were used on facial areas
to record the standard EOG and chin-EMG signals as well as for
patient ground. The EEG signals and the reference were recorded
using silver/silver-chloride cup electrodes (Neuroline 726) to
ensure stable skin-electrode contact on hairy areas. The cup
electrodes were attached by investigators following the clinical
practices from Kuopio University Hospital. Nuprep skin prep gel
and Ten20 conductive paste (Weaver and Company, Aurora, CO,

Fig. 3. The device and electrode configurations used in home sleep
recordings. (a) The wearable textile electrode headband and a portable
recording device illustrated on a subject apart from the medical-grade
cup and gel electrodes. (b) Electrode placements on facial area.
(c) Electrode placement on scalp.

USA) were used for the preparation of the electrode attachment
site and to fill the cup electrode. Finally, the cup electrodes were
firmly fixed using EC2 (Natus Medical Inc., Pleasanton, CA,
USA) adhesive electrode cream and skin tape.

The FocusBand textile electrodes were connected to unipolar
EEG channels of the same Nox A1 recording device as the



1872 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 4, APRIL 2023

TABLE I
DEMOGRAPHIC INFORMATION OF THE UTILIZED DATASETS PRESENTED AS MEDIAN (25–75% QUARTILE)

medical-grade electrodes, which might increase signal inference
between the EEG and EOG electrode-recorded signals. The
dry textile electrodes of the headband were applied directly
to the subject’s forehead with no skin preparation. Subjects
could adjust the tightness of the headband for maximizing their
comfort. Following the findings of our previous in-laboratory
study [10], the headband was attached 30 minutes before the start
of the recording to allow the skin-electrode interface to stabilize.

A trained sleep technologist from Reykjavik University Sleep
Institute (Reykjavik, Iceland) manually annotated the sleep
stages based on the standard PSG signals. They used the standard
5-stage classification in compliance with the current AASM
rules [6]. The signals from the textile electrode-based headband
were not used in the manual sleep staging. Demographic infor-
mation of the home sleep recordings is presented in Table I.
Further details can be found in a previous study considering the
technical aspects of the textile electrode headband [11].

B. Neural Network Architecture

A fully convolutional, feed-forward neural network was uti-
lized in this study (Fig. 4). The network architecture was inspired
by the U-time sleep staging model [14], which also serves as
the basis of the U-sleep model [15]. The fully convolutional
structure of U-time was adopted due to its general robustness
and good performance over various datasets without further
fine-tuning of the network.

The encoder-decoder structure of the neural network architec-
ture consists of blocks utilizing one-dimensional convolutions,
batch normalizations, and pooling elements (Fig. 4). Convo-
lutional blocks of kernel size five were implemented with a
different number of filters in the encoder structure. The numbers
of filters were 32, 48, 64, 96, 128, and 256, respectively for the 6
consecutive blocks of the encoder structure. The convolutional
blocks 1-6 included also pooling of sizes of 8, 6, 4, 2, 2, and
1, respectively. Skip connections were implemented between
the encoder and decoder to preserve low-level features. The
connected upsample blocks 1-5 utilized the same kernel sizes

and numbers of filters as the associated convolutional blocks.
Upsampling factor was the same as the respective pooling size
of the connected convolutional block.

The decoder was followed by a segment classifier utilizing
pointwise convolutions, average pooling, and softmax activation
to construct the final representation of label predictions i.e., the
hypnogram. In the segment classifier, class confidence scores
produced in the decoder section for each sample point of the in-
put signal were downsampled with average pooling and trainable
convolutional layers to segments of lower temporal resolution.
Because of the aforementioned aggregation, the architecture is at
this point adjustable to different output resolutions. This enables
performing the sleep stage classification in higher temporal fre-
quency, which can be considered an advantage over traditional
fixed-size 30-second segments of manual sleep staging.

In addition to U-time-derived structures of the network, a
few other state-of-the-art deep learning methods were adapted
in the construction of the model’s architecture. Atrous Spatial
Pyramid Pooling (ASPP) was utilized between encoder and
decoder blocks to segment information on variable scales [24].
ASPP is based on using atrous (or dilated) convolutions with
different dilation rates (6, 12, and 18 in the present study) that
correspond to different receptive fields. The parallel computed
fixed-size feature maps are then fused using pointwise convolu-
tions to learn dependencies between the layers of variable scales
[24]. Furthermore, each convolutional block in the architecture
comprised a squeeze-and-excitation (S&E) adaptive calibration
mechanism at the very end of the block [25]. This method was
chosen for its ability to increase generalizability and improve the
performance of state-of-the-art convolutional neural networks
[25].

The final output of the model consisted of softmax values i.e.,
the probability scores for each of the five sleep stages on a given
temporal resolution (30 seconds in this study). The label with
the highest softmax value was included in the final hypnogram.
Implementation and modifications of the model’s architecture
were conducted in Python, version 3.8.5, with TensorFlow 2.6.0
and Keras application programming interface.
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Fig. 4. Neural network architecture for automatic sleep staging method
visualized as a schematic diagram. See details in the text. Abbrevia-
tions: ASPP = atrous spatial pyramid pooling, Conv = convolutional
layer, Concat = concatenate, BatchNorm = batch normalization, S&E
= squeeze-and-excitation, REM = rapid eye movement sleep, N1 =
Stage N1 sleep, N2 = Stage N2 sleep, N3 = Stage N3 sleep.

C. Neural Network Training

The clinical dataset was divided patient-wise into training,
validation, and test sets. First, a sample of 88 PSGs (10% of all)
was randomly chosen as a completely separate test set. Then a
validation set (n= 79) was chosen randomly from the remaining
788 PSGs. Finally, the remaining 709 recordings were used in
the training of the model. The demographic information of each
of the datasets is shown in Table I.

As our goal was to generalize the model for the headband-
recorded forehead signals, we used single-channel EOG
(E1-M2) signals in the training process. This decision was

based on previous findings of the high similarity of the textile
electrode-recorded forehead EEG signals and the simultane-
ously recorded EOG signals [11]. Moreover, we first tested to
generalize the model on clinical EEG data, and then further on
the headband-recorded forehead EEG. The preprocessing steps
applied to all signals before training and testing the model were
the following: re-sampling to 64 Hz, high pass filtering with a
0.3 Hz cutoff, and standardization with an interquartile range.
A fifth-order type II Chebyshev high pass filter with a 40 dB
minimum attenuation in the stopband was chosen for filtering
to allow a smooth passband for the filtered signals. Patient-wise
interquartile range standardization i.e., subtracting the median
of the signal and dividing by the 25–75% interquartile range,
was utilized to exclude the effect of high-amplitude artifacts on
the signal standardization process.

Stochastic gradient descent with momentum and decou-
pled weight decay regularization was used as the optimization
method for the neural network’s weights [26]. Categorical cross-
entropy was utilized as the objective function to be minimized in
the training process. A disciplined approach for hyper-parameter
selection was adopted following the method described in the
literature [27]. This method was used for selecting the optimal
learning rate, batch size, momentum, and weight decay for
well-balanced training. Setting the initial and maximum learning
rates, between which the disciplined approach was used, was
based on a learning rate range test [27]. This method resulted in
0.05 and 0.5 as the initial and maximum learning rates, respec-
tively. Furthermore, the network was trained for 100 training
epochs, each including iteration over the whole training data.
The recordings were shuffled and randomly sampled into smaller
batches between the epochs to avoid local minima during weight
optimization. For iterating over each epoch, batches of eight
recordings were chosen from randomly shuffled PSGs until the
whole set was used. From each recording, a two-hour length
segment, starting on a randomly chosen 30-second epoch, was
fed to the network at a time.

D. Performance Evaluation

The performance of the automatic model was evaluated in
both datasets against the manual sleep staging. To allow compar-
ison with other studies, commonly used agreement metrics were
computed; accuracy, F1-scores, Cohen’s kappa (κ), precision,
and recall. Both, the overall metrics as well as the sleep stage-
specific metrics for 5-stage classification were computed. For
analyzing the classification results in a more detailed manner, we
computed confusion matrices between the compared methods.
In addition, performance metrics (accuracy, F1-score, and κ)
were computed in a subject-by-subject manner for the home
recordings to give more insight into the variability of the perfor-
mance metrics between subjects. Finally, Bland-Altman plots
were utilized to compare widely used sleep parameters (total
sleep time, sleep latency, and wake after sleep onset (WASO))
values derived from automatically versus manually conducted
sleep staging for the home recordings.

III. RESULTS

A. Model Performance in Clinical Dataset

The model’s overall accuracy in 5-stage classification was
80% (κ = 0.73, F1-score = 0.74) based on standard single-
channel EOG in the test set of the clinical dataset (Table II).
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TABLE II
OVERALL RESULTS AND SLEEP STAGE SPECIFIC METRICS FOR AUTOMATIC

SLEEP STAGING ON EOG-BASED MODEL IN THE TEST SET (N = 88)
OF THE CLINICAL DATA

From all sleep stages, Wake and REM were detected with the best
performance (F1-scores = 0.88) using the automatic method.
Stages N2 and N3 were also classified with good performance
i.e., with F1-scores of 0.79 and 0.80, respectively. The model
detected Stage N1 with a moderate precision (0.58), but with a
poor recall (0.26), leading to an F1-score of 0.36.

The model’s accuracy was 76% (κ = 0.68, F1-score = 0.72)
when tested in a direct transfer manner using standard EEG
(C4-M1) (Table II). In particular, the model detected Wake, N2,
and N3 sleep with good performance (F1-scores > 0.75), and
N1 and REM with moderate performance (F1-scores 0.47 and
0.69, respectively).

B. Model Performance on Home Recordings

1) Forehead EEG – Textile Electrode Headband: Compared
to manual sleep staging, the automatic model reached an 82%
(κ = 0.75, F1-score = 0.72) overall accuracy on 5-stage clas-
sification based on the textile electrode headband (Table III).
Most of the uncertainties in the automatic scoring of the sleep
stages were related to Stage N1 misclassification (Fig. 5). The
model’s performance on the detection of Stage N1 sleep was
poor (F1-score = 0.27), however, the model performed well

in detecting all other sleep stages: Wake, N2, N3, and REM
(F1-scores > 0.80) using the forehead EEG.

Subject-by-subject computed performance metrics showed
that the kappa values of the automatic sleep stage prediction were
on a high level (κ > 0.78) for most of the subjects (subjects #1,
#2, #3, #4, #5, #8) when using the forehead EEG as an input (Ta-
ble IV). Accuracy was over 70% (κ > 0.58) for all subjects with
successful recordings (9/10), and 67% (κ= 0.54) for subject #10
who reported electrode movement due to excessive loosening of
the headband during the night of recording. Compared to stan-
dard EOG, the utilization of forehead EEG signals as an input
led to better results on one subject (subject #2, Table IV). The
mean difference (±1.96 standard deviations) between manually
and automatically (from the forehead EEG) derived total sleep
time was −2.65 (−23.73–18.43) minutes. Similarly, the mean
difference in sleep latency was 8.8 (−10.96–28.56) minutes, and
in the amount of wakefulness after sleep onset (WASO), it was
−6.15 (−37.23–24.93) minutes.

2) Standard EOG – Clinical Electrodes: When using the
standard EOG signal from the home recordings, the model’s
overall accuracy was 87% (κ=0.82, F1-score=0.78) for 5 sleep
stages (Table III). The F1-score of 0.36 for predicting Stage N1
sleep was again the lowest of the stage-specific results. However,
the agreement between the automatic and manual classification
of other sleep stages was on a high level (F1-scores > 0.86)
using the standard EOG as an input.

Subject-by-subject computed metrics showed that the kappa
values were 0.79 or higher for 8 subjects, and 0.75 and 0.69 for
subjects #6 and #9, respectively (Table IV). The mean differ-
ences in the automatically and manually derived sleep parame-
ters were also computed for the standard EOG signals (Fig. 6).
The mean difference in total sleep time was −3.5 (−25.91–
18.91) minutes, in sleep latency it was 11.65 (−60.17–83.47)
minutes, and in the amount of WASO, −8.15 (−74.73–58.43)
minutes.

IV. DISCUSSION

The aim of the study was to develop and test a deep learning-
based sleep staging method based on a wearable forehead EEG
headband. Due to a limited number of home recordings collected
for testing of the headband, we used a separate dataset i.e.,
diagnostic PSG recordings for training the deep learning model.
Standard EOGs from the PSG recordings were first used in the
training of the network, leading to 80% (κ = 0.73) accuracy in
sleep staging in the test set of the clinical dataset against manual
sleep staging.

The trained fully convolutional neural network generalized
well for the home recordings; the model achieved potential per-
formance using the headband-recorded forehead EEG (accuracy
=82%,κ=0.75) and standard EOG (accuracy=87%,κ=0.82)
against manual sleep staging in young healthy adults. Over-
all, the achieved accuracies surpassed those of non-EEG-based
wearables [7], [28].

A. Performance of the Model

The performance of the automatic sleep staging model was on
par with the inter-rater agreement of manual sleep stage scoring
(κ between 0.71–0.81) [29]. As deep learning methods rely
on manual annotations, the performance of the proposed sleep
staging model is somewhat limited to the inter-rater agreement
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TABLE III
OVERALL RESULTS AND SLEEP STAGE SPECIFIC METRICS FOR AUTOMATIC SLEEP STAGING ON HOME RECORDINGS (N = 10)

Fig. 5. Confusion matrixes between the manual sleep staging (true label) and automatic sleep staging (predicted label) on home recordings.
Forehead EEG (Fp1-Fp2) was recorded with the textile electrode headband and standard EOG (E1-M2) using medical-grade wet electrodes.
Abbreviations: EEG = electroencephalography, EOG = electrooculography, Wake = wakefulness, N1 = Stage N1 sleep, N2 = Stage N2 sleep,
N3 = Stage N3 sleep, REM = rapid eye movement sleep.

of manual scorers [30]. However, our model is trained by sleep
annotations from several individual scorers. Following this, a
comparison against an individual scorer might not be the best
practice, and using the consensus of multiple scorers as the true
labels of the sleep stages would be more optimal for performance
evaluation [31]. On datasets utilized in this study, each recording
was manually analyzed only once, excluding the possibility of
the aforementioned inspection. Nevertheless, the current results
illustrate a similar performance of automatic sleep staging com-
pared to manual sleep staging.

The automatic sleep staging model presented in this study
performed on a similar level as other state-of-the-art automatic
methods utilizing only single-channel EOG signal (accuracies
between 76%–91%) [32], [33], [34]. It also reached similar F1-
scores as what has been reported with another U-time-derived
network i.e., the U-sleep utilizing one EOG channel combined
with one forehead EEG channel (F1-scores = 0.76–0.77) [15].
Moreover, our model surpassed another state-of-the-art network
(SeqSleepNet) in direct transfer without any finetuning, tested
between EEG and EOG channel mismatches (accuracies 81%
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Fig. 6. Mean-difference plots of the selected sleep parameters. Parameters are computed using hypnograms derived from automatic sleep
staging, which was based on forehead EEG (Fp1-Fp2) recorded using the textile electrode headband or standard EOG (E1-M2) signal recorded
using medical-grade wet electrodes, and those derived from manual sleep staging. The differences are computed subject-wise (n = 10) by
subtracting the automatically derived parameter from the manually derived one. Abbreviations: TST = total sleep time, WASO = wake after sleep
onset, EEG = electroencephalography, EOG = electrooculography, SD = standard deviation.

and 52% for EEG->EEG and EEG->EOG channel mismatches,
respectively) [23].

B. Generalizability of the Model

The current results show the generalizability of the developed
automatic sleep staging method from EOG to EEG channel
and to a different recording environment as well as with the
headband-recorded signals. Contrary to the general trend
reported in the literature [17], [18], [22], [23], [31], [35], [36]
the performance of the neural network seems to increase when
evaluated across a separate test set. This increase is, however,
most likely due to only having ten healthy subjects in the home
recordings; a performance drop more similar to that observed in
the literature would be most probably seen with a larger and more
diverse population. The subjects in the home recording dataset
had, on average, notably less N1 sleep, less WASO, and higher
sleep efficiency (Table I). Therefore, as these factors usually
affect positively the performance of automatic sleep staging
solutions [37], this must be acknowledged when interpreting

the results against those achieved in the clinical populations
with suspected sleep disorders. When generalizability was
tested in the clinical population from EOG to EEG channel, the
performance drop (κ decreases from 0.73 to 0.68) was more
consistent with the trend in the literature. In addition, [35]
and [36] use z-score normalization for preprocessing (subtract
mean and divide by standard deviation). In our experiments,
we noticed similar degradation in performance when using
z-score normalization. However, when we used medians and
interquartile ranges to normalize the signals, the performance
on cross-domain predictions remained high. We believe this
is related to the effect of high-amplitude artifacts, which can
drastically alter the mean and standard deviation, but have only
a minor effect on the median and interquartile range.

Although the model shows considerable performance in gen-
eralizability from EOG to EEG signals, it must be noted that
this might be related to recording settings. The underlying
physiological phenomena behind EOG and EEG are different,
and if these would be recorded in an ideally isolated setting or
separated later with signal processing, the model might be unable
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TABLE IV
SUBJECT-BY-SUBJECT PERFORMANCE METRICS OF THE AUTOMATIC

SLEEP STAGING ON HOME RECORDINGS

to generalize between the two signals. However, in practical
settings where surface electrodes are used, neural as well as
corneo-retinal activities are both picked up in the recordings,
enabling cross-channel predictions.

C. Textile Electrode Headband

The performance of our wearable headband-based automatic
sleep staging model is not directly comparable to previous
studies on wearable devices due to differences in the test set
demographics, recording environments, and lack of comparable
performance metrics for the automatic scoring method. How-
ever, by acknowledging these differences, comparable solutions
can be found in the literature. One of the earliest self-applicable
EEG recording devices, called QUISI, already utilized a neural
network with only two hidden layers for automatic sleep stag-
ing, and with relatively promising results [38]. More recently,
Casciola et al. validated a Cognionics 2-channel EEG headband
(Cognionics, San Diego, CA, USA) combined with a deep
learning-based sleep staging approach, which resulted in 74%
sleep staging accuracy on the headband-based in-lab recordings
[39]. Another wearable headband called The Dreem Headband
(Dreem, Paris, France) was reported to reach 84% ± 6% (κ =
0.75 ± 0.10, n = 25) accuracy against the consensus of five
manual scorers with its integrated automatic sleep staging algo-
rithm [40]. Advanced Brain Monitoring (Carlsbad, California,
United States) also has a multichannel frontopolar EEG device
called Sleep Profiler. It has been tested in home environment

for sleep-disordered patients, and has reached a kappa value
of 0.67 between automatic and manual sleep staging [41]. A
similar headband solution utilizing silicone-based dry sensors
was introduced by Lin et al. [42], reporting an overall accuracy
of 77% (κ = 0.69, n = 10) in automatic sleep staging against
the manual one.

In addition to headbands, textile electrodes have been inte-
grated into sleep eye-masks for automatic sleep staging [43],
[44]. The eye-mask solution with eight healthy participants
has been reported to result in 87% accuracy against manual
4-stage sleep staging [44]. A different design is utilized in in-ear
EEG devices that have been tested in automatic sleep staging,
reaching an accuracy of 74% [45] and kappa values of 0.61
and 0.73 on healthy subjects [45], [46]. Furthermore, Popovic
et al. [47] have validated the use of forehead EEG (Fp1-Fp2)
channel in automatic sleep staging on healthy subjects reaching
an overall accuracy of 81% (κ = 0.75) in a test set comprising
nap recordings and nocturnal PSG recordings from a controlled
laboratory environment. In conclusion, our method performs on
a higher or similar level as the previously proposed portable and
user-friendly systems for automatic sleep staging. Furthermore,
the headband is suitable for self-application and for measuring
over several nights, overcoming the limitations of clinically used
standard EEG electrodes.

The headband used in this study can be attached to any
portable PSG recording device that utilizes standard 1.5 mm
(DIN 42 802) touch-proof sockets, making it a universal solu-
tion for many users. A similar idea has been earlier adopted
with some self-applicable electrode sets proposed for ambu-
latory sleep recordings [48], [49]. An accuracy of 76% (κ =
0.66) in the manual inter-rater agreement has been reported
for a novel flexible electrode set produced using advanced
screen-printing techniques [48]. Although this electrode set
expresses a more comprehensive facial montage compared to
the headband utilized in the present study, for example for the
detection of sleep bruxism events in addition to sleep staging
[50], it comprises self-adhesive, hydrogel-coated silver/silver
chloride electrodes that cannot be reused. In another study, the
applicability of knitted silver-coated textile electrodes (Dryo-
deTM, IDUN Technologies, Zürich, Switzerland) on nocturnal
in-home recordings were tested with five healthy subjects [51].
They reported inter-scorer reliability of κ = 0.66 (accuracy =
78%) in manual scoring between the textile-based and standard
electrodes.

Our sleep staging model’s accuracy on home recordings was
around 5% lower using the headband-recorded forehead EEG
compared to using the standard EOG (82% vs. 87%) as an input
signal. Similarly, sleep stage-specific F1-scores were systemat-
ically higher (0.05 units or more) for the standard EOG predic-
tions. The decreased performance, when comparing forehead
EEG and standard EOG, can result from a lower signal quality
of the textile electrode-recorded signals or generalizability of
the model from standard EOG to forehead EEG. Therefore,
it might be possible to further increase the performance for
the forehead EEG headband, using signals recorded from the
exact positions of the textile electrodes (Fp1, Fpz, Fp2) in the
training of the neural network. In our clinical dataset, these
signals were not available for testing this approach. However,
both of the used signals enable reliable automatic sleep staging,
and when considering the benefits of the headband, the decrease
in performance between the forehead EEG and standard EOG
is acceptable.
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Sleep stage-specific results for the automatic method showed
that Stage N1 sleep produced most misclassifications relative
to the number of epochs. This was expected due to the lower
amount of Stage N1 sleep compared to other sleep stages in all
datasets. Furthermore, demographic information of the datasets
shows a lower amount of Stage N1 sleep for home recordings
of healthy subjects compared to training data (medians: 2.7%
vs. 11.1% of TST). Moreover, only fair inter-rater reliability
(κ ≈ 0.24) is reached also among expert human scorers in the
detection of Stage N1 sleep [29]. As we had separate scorers
from different sleep laboratories i.e., clinical PSGs were manu-
ally analyzed at the Sleep Disorders Center, Princess Alexandra
Hospital (Brisbane, Australia) by several scorers, and home
recordings were analyzed at the Reykjavik University Sleep
Institute (Reykjavik, Iceland) by one scorer, there are most
probably differences in practices of scoring Stage N1 sleep
between these two institutions/scorers as well, which is a more
general issue [52]. These issues are most probably reflected in
the agreement of Stage N1 classification between the automatic
and manual methods.

Performance metrics computed in a subject-by-subject man-
ner allowed interpreting the variance in the scorings of individual
subjects. The results showed that the automatic sleep staging
method combined with the headband-recorded forehead EEG
performed well on most of the subjects. However, notably
lower performance was found in two of the subjects (#6 and
#10). For subject #6, the automatic method predicted an excess
amount of Stage N2 sleep. Most likely, subject #6 was hard
to analyze because of the subject’s movement and recurring
sleep-wake transitions. Subject #10 reported movement of the
headband after loosening the Velcro strap too much during
the recording night. This led to textile electrode movement,
which induced artifacts in the recorded forehead EEG signals.
Therefore, the latter half of the recorded night was at some
points not technically analyzable based on the forehead EEG
but all manually scorable epochs of the recording were included
in the analysis to have a fair comparison against manual sleep
staging. Similarly, as for subject #6, the automatic method
classified other sleep stages incorrectly into Stage N2 sleep.
These are probably caused by model uncertainty, while Stage
N2 is the majority class in the training data; when the deep
learning model is uncertain about the predictions, it tends to
output higher softmax scores for the majority class, since this
policy minimizes the categorical cross-entropy loss used during
training. In these cases, the automatic sleep staging method
would be more interpretable with uncertainty quantification,
which has already been implemented for example in [13]. Due
to movement-related misclassifications, the automatic method
might benefit from additional actigraphy-like input or contin-
uous skin-electrode contact impedance monitoring. Moreover,
artifact detection could be beneficial in some extreme cases but
is not yet widely implemented alongside automatic sleep staging
[17].

Sleep is often quantified with hypnogram-derived parameters,
such as the TST, sleep latency, and WASO. Thus, the automatic
sleep staging method needs to produce also reliable estimation
of these measures. Therefore, we compared the aforementioned
parameters derived from automatic versus manually scored
hypnograms. Although biases on these parameters were min-
imal, slight differences between automatic and manual meth-
ods can be seen. On average, the automatic method predicts
shorter sleep latency and more wake after sleep onset. This

might indicate that automatic sleep staging does not have as
strong a smoothing effect as manual sleep staging tends to have
for hypnograms i.e., overlooking sudden sleep-wake transitions
[53]. Only one subject (#2) represented automatically predicted
sleep parameters significantly differing from the manually de-
rived ones. These were related to sleep stage predictions from
standard EOG signals, not from textile electrode-recorded fore-
head EEG signals, and can be seen as individual outliers in the
mean-difference plots of sleep latency and WASO (Fig. 6). It is
worth noting, that even a misclassification of a single epoch at the
beginning of the recording can have a significant effect on these
two parameters e.g., if there is a long period of wakefulness at the
start of the recording. On subject #2, these differences originated
from this type of minor misclassification, and the hypnogram
was otherwise predicted with good overall performance (κ =
0.80, Table IV). Apart from those results, TST was quantified
with excellent accuracy using the automatic method. Therefore,
this method could be used to easily increase the accuracy of
HSAT, in which total recording time is currently used as the
estimate of TST [54].

D. Limitations

A major limitation of the present study is that the home record-
ings comprised only a limited set of healthy subjects. Automatic
sleep staging methods tend to perform better when analyzing
healthy individuals compared to analyzing sleep-disordered pa-
tients [37]. One reason for this is sleep fragmentation, which
makes sleep staging more difficult with patients suffering from
sleep-disordered breathing (SDB) and consequential arousals
[52]. However, we believe the neural network model has the
potential to generalize also to patients suffering from SDB as
the model has been trained on diagnostic recordings of suspected
OSA patients. The model already had good performance (accu-
racy = 80%, κ = 0.73, F1-score = 0.74) in the test set of the
clinical data (median AHI = 19.0 events/hour) using only the
single-channel EOG as an input. In addition, the performance
in the test set was also good when EEG signals were used to
test instead of EOG (accuracy = 76%, κ = 0.68, F1-score =
0.72). This shows that the model can at least generalize from
EOG to EEG channel in the clinical population. Moreover, sleep
efficiency is usually better for the same subject in home-based
PSG compared to in-lab one [55], making it generally easier
for the model to analyze home-based recordings. Moreover,
a practical limitation of the method in medical use could be
disinfection and washing of the headband. It has not been
tested how long-term repetitive disinfection or washing would
affect the textile electrodes and therefore the quality of the
recording. Finally, another problem could arise from nocturnal
sweating, which is a common symptom among SDB patients
[56]. Although textile electrodes are considered to require some
moisture and sweat in the formation and functioning of the
skin-electrode interface [10], excessive sweating might induce
unwanted potential fluctuations disturbing the recorded signals.
Therefore, a follow-up study of the headband with SDB patients
needs to be conducted in the future to continue the validation of
this method.

In the present study, the textile electrode headband, Focus-
Band, was attached to a portable PSG device. Therefore, there
is no evidence of how the FocusBand works with its inte-
grated recording device in sleep recordings. The current results
only show potential in generalizability to Nox A1 devices, and
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e.g., possibly differing analog prefiltering settings, as well as
other hardware specifications, can affect the generalizability
to different devices. The analog pre-filtering settings of the
devices used in this study were not disclosed by manufacturers.
The integrated recording device makes the headband wireless
and could therefore be a more comfortable option for sleep
recordings as well. With this option, the headband could also be
used independently from the chest-mounted PSG if other PSG
signals are not needed. However, the option to use the headband
with almost any portable EEG/PSG device is a valuable feature.
That is because the headband could easily be used to substitute
standard EEG electrodes in various research and diagnostic mea-
surements, where a reliable and objective assessment of sleep
structure outside the sleep laboratory is needed. In addition,
recording over multiple consecutive nights without visiting the
sleep laboratory between the nights could be possible due to the
reusability of the headband.

V. CONCLUSION

The developed deep learning-based sleep staging model gen-
eralized from clinical studies to textile-based forehead EEG. The
model enables reliable, automatic assessment of sleep structure
and shows potential to quantify sleep structure in home-based
sleep recordings with a reusable and self-applied textile elec-
trode headband on similar reliability as what is achieved with
in-lab attended PSG and manual sleep staging.
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