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Abstract

Machine Learning (ML) is extensively used in diverse healthcare applications to aid
physicians in diagnosing and identifying associations, sometimes hidden, between dif-
ferent biomedical parameters. This PhD thesis investigates the interplay of medical
images and biosignals to study the mechanisms of aging, knee cartilage degeneration,
and Motion Sickness (MS).
The first study shows the predictive power of soft tissue radiodensitometric parameters
from mid-thigh CT scans. We used data from the AGES-Reykjavik study, correlating
soft tissue numerical profiles from 3,000 subjects with cardiac pathophysiologies, hy-
pertension, and diabetes. The results show the role of fat, muscle, and connective tissue
in the evaluation of healthy aging. Moreover, we classify patients experiencing gait
symptoms, neurological deficits, and a history of stroke in a Korean population, reveal-
ing the significant impact of cognitive dual-gait analysis when coupled with single-gait.
The second study establishes new paradigms for knee cartilage assessment, correlating
2D and 3D medical image features obtained from CT and MRI scans. In the frame
of the EU-project RESTORE we were able to classify degenerative, traumatic, and
healthy cartilages based on their bone and cartilage features, as well as we determine
the basis for the development of a patient-specific cartilage profile.
Finally, in the MS study, based on a virtual reality simulation synchronized with a
moving platform and EEG, heart rate, and EMG, we extracted over 3,000 features
and analyzed their importance in predicting MS symptoms, concussion in female ath-
letes, and lifestyle influence. The MS features are extracted from the brain, muscle,
heart, and from the movement of the center of pressure during the experiment and
demonstrate their potential value to advance quantitative evaluation of postural con-
trol response.
This work demonstrates, through various studies, the importance of ML technologies in
improving clinical evaluation and diagnosis contributing to advance our understanding
of the mechanisms associated with pathological conditions.

Keywords: Machine Learning, Biomedical Data-set, Aging, Motion Sickness, Knee
Cartilage, Medical Imaging, Biosignals
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Útdráttur

Tölvulærdómur (Machine Learning eða ML) er algjörlega viðurkennt og nýtt í ýmsum
heilbrigðisþjónustuviðskiptum til að hjálpa læknunum við að greina og finna tengsl
milli mismunandi líffærafræðilegra gilda, stundum dulinna. Þessi doktorsritgerð fjallar
um samspil læknisfræðilegra mynda og lífsmerkja til að skoða eðli aldrunar, niðurbrot
hnéhringjar og hreyfikerfissjúkdóms (Motion Sickness eða MS).
Fyrsta rannsóknin sýnir spárkraft midjubeins-CT-skanna í því að fullyrða staðfest-
ar meðalþyngdarlíkön, þar sem gögn úr AGES-Reykjavik-rannsókninni eru tengd við
hjarta- og æðafræðilega sjúkdóma, blóðþrýstingsveikindi og sykursýki hjá 3.000 þátt-
takendum. Niðurstöðurnar sýna hlutverk fitu, vöðva og tengikjarna í mati á heilbrigð-
um öldrun. Þar að auki flokkum við sjúklinga sem upplifa gangvandamál, taugaein-
kenni og sögu af heilablóðfalli í kóreanskri þjóð, þar sem einstök gangtaksskoðun er
tengd saman við tvískoðun.
Önnur rannsóknin setur upp ný tölfræðisfræðileg umhverfisviðmið til matar á hnéhringju
með samhengi 2D og 3D mynda sem aflað er úr CT og MRI-skömmtum. Í rauninni
höfum við getuð flokkað niðurbrots-, slys- og heilbrigðar hnéhringjur á grundvelli bein-
og brjóskmerkja með raun að sækja niðurstöður í umfjöllun um sjúklingar eftir réttu
einkasniði.
Að lokum, í MS-rannsókninni, notum við myndræn tilraun samþættaða með hreyfan-
legan grundvöll og EEG, hjartslátt, EMG þar sem yfir 3.000 aðgerðir eru útfránn og
greindir til að átta sig á áhrifum MS, höfuðárás hjá konum sem eru íþróttamenn, lífs-
stíl og fleira. Einkenni MS eru aflöguð úr heilanum, vöðvum, hjarta og frá hreyfingum
þyngdupunktsins á meðan tilraunin stendur og sýna mög.

Efnisorð: Tölvulærdómur, Læknisfræðilegt gagnasett, Aldrandi, Ferðaveiki, Hné-
brjósk, Læknisfræðileg myndgreining, Lífsmerki
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Preface

This dissertation is an original work by the author, me, Marco Recenti.
I graduated as a information and telecommunication engineer at Polythecnic Univer-
sity of Torino in April 2019. During my master studies, I did my final thesis at the
Institute of Biomedical and Neural Engineering (IBNE) of Reykjavik University, under
the supervision of Paolo Gargiulo starting September 2018. The master thesis relative
to AGES-Reykjavik Dataset perfectly fit my desire of combining my ICT expertise, my
passion for the biomedical studies, and my big curiosity of living in such a wonderful
country like Iceland.
Thanks to the opportunity that Paolo gave me, from June 2019 I started to work in
IBNE as a researcher and I officially became a PhD candidate in January 2020. I
enjoyed to contribute in the development and success of the Motion Sickness Lab and
of the relative BioVRSea system as well as to contribute in numerous other researches
like the European Restore Project. I had the great opportunity to do an exchange
period of six months between May and October 2022 in Yeosu, South Korea, at the
Chonnam National University where I worked with a elderly population gait dataset
from the Seoul National University Hospital.
The main results achieved in these years are described below in the different chapters
of this thesis.
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Chapter 1

Prologue

This thesis provides Artificial Intelligence (AI) and Machine Learning (ML) technology
tools and illustrate different applications in the digital health and biomedical engineer-
ing fields. The researches are all related to the different study areas of the Institute
of Biomedical and Neural Engineering in the Engineering Department at Reykjavik
University. This dissertation will focus mainly on the use of features extracted from
medical images and biosignals and their application on three main study subjects: ag-
ing, knee osteoarthritis and cartilage degeneration, and motion sickness and postural
control.
The remainder of this thesis is structured in six chapters:

• Chapter 2: firstly introduces briefly the main ML technologies, then shows the
methods, state of the art and the possible various applications in the biomedical
engineering field with a focus on the importance of organizing the research based
on a ML analysis having in mind a clear and specific clinical purpose. Finally
an introduction relative to the specific biomedical areas of study covered in this
thesis is presented.

• Chapter 3: presents the researches relative to the first area of study: healthy
aging. The chapter firstly investigates the AGES-Rekjavik Dataset and the use of
soft tissue radiodensitometric parameters extracted from a mid-thigh CT-Scan
to classify elderly subjects affected by different comorbidities. After proving
that NTRA parameters have a predictive value regarding BMI and ISO, the first
main section relative to AGES dataset presents and discusses the results obtained
studying radiodensitometry and cardiovascular diseases [1]. The second section
about AGES dataset provides the impactful results of NTRA related to healthy
lifestyle of older individuals and their diabetes and hypertension incidence [2].
The chapter finally describes the results of the research on Single and Dual Gait
data analysis based on older Korean Population. The study presented, actually
under review [3], was done at Chonnam National University in Yeosu, South
Korea, under the co-supervision of Prof. Seung-Uk Ko in the frame of the inter-
national exchange program supported by Reykjavik University.

• Chapter 4: presents the research focused on the knee osteoarthritis and car-
tilage degeneration study: it is developed in the frame work of the RESTORE
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European Project, and focus on knee cartilage assessment with the goal of ex-
tracting new metrics to quantify cartilage degeneration. The study presented
points out the benefit of using features from 2D and 3D image analysis com-
bined with ML models to improve the assessment of cartilage degeneration [4].

• Chapter 5: presents the researches performed using biosignals features focus-
ing on motion sickness, concussion and postural control studies. Firstly the
BioVRSea system, its relative protocols, cohorts, biosignals and indexes are
described in details; successively the results obtained with the first cohort is
presented [5]; then the results obtained from a group of professional female ath-
letes with an history of concussion are shown [6]; finally the research focuses
on BioVRSea latest cohort and motion sickness relation to the healthy and un-
healthy lifestyle [7].

• Chapter 6: this final section is dedicated to the general conclusions of the work
with its relative discussion and future developments.



Chapter 2

Introduction

2.1 Artificial Intelligence and Machine Learning
"Can machines do what we (as thinking entities) can do?"

In 1950, Alan Turing, the father of theoretical computer science and artificial intelli-
gence, posed the question that initiated the artificial intelligence revolution of the 21st
century, along with its consequential scientific and philosophical debates that persist
to this day [8].

"Machine learning is the study of computer algorithms that allow computer programs
to automatically improve performances through experience."

Tom Mitchell gave a concise definition of Machine Learning as an application of ar-
tificial intelligence that provides the ability to automatically learn and improve from
experience to make prediction or decisions without being explicitly programmed to
perform the task [9].
Nowadays, Machine Learning (ML) technologies are commonly employed in various
fields, including healthcare applications. They can assist physicians in diagnosis and
the identification of possible hidden links between biomedical parameters from images
or biosignals and the diseases or health status of different groups of individuals.
This PhD thesis aims to explore various applications of Artificial Intelligence (AI) tech-
nologies, particularly ML, in the digital health and biomedical engineering fields. This
chapter provides a brief introduction to the principal ML techniques and technologies
used in this study. Subsequently, the importance of the clinical objective in the digital
health application of ML is discussed, alongside the areas of interest covered in this
thesis, such as aging, cartilage degeneration, and motion sickness studies.

2.1.1 Supervised and Unsupervised Approach

Within the field of AI and ML, two essential approaches exist: supervised and unsu-
pervised learning [10]. The main difference between them is that the former employs
pre-existing results to predict outcomes, while the latter does not.
The goal of supervised learning is to predict an output or a target that is already
known: it uses labeled datasets designed with the specific scope of training an algo-
rithm to classify two or more classes or predict a continuous value in the most possible
accurate way. The model can in this way quantify its efficiency and learn, improving
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over time.
Supervised learning can be split into two problems categories: classification and re-
gression. The first has the scope of assigning the test data to a specific group, defined
as class. Classes can be two (binary classification) or more (multiclass classification).
The regression algorithms predict a continuous value.
Unsupervised learning uses diverse ML algorithms to cluster unlabeled data. They
can explore data hidden patterns in autonomy without the human mediation, that is
why they are called "unsupervised". They are performed for three main tasks defined
as clustering, association and dimensionality reduction.
The design and employment of unsupervised learning models is out of the scope of the
present thesis. The main focus is the design of optimal datasets and ML models for a
supervised (mainly classification) learning analysis: this will be discussed presenting
different biomedical and clinic applications that operate with features extracted from
medical images and biosignals.

2.1.2 Train-Test sets

The train-test split is a commonly used technique for reliably evaluating the perfor-
mance of ML models. This technique involves dividing a dataset into two distinct
subsets. The first subset, known as the train set, is utilized for fitting or training the
ML model. The second subset, known as the test set, is used to assess the model’s fit.
In supervised learning, the input element of the dataset is provided, and the model’s
predictions are compared to the known values.
The primary objective of an optimal train/test division is to evaluate the performance
of the model on new data that the model has not yet encountered during training.
While an 80/20 or 70/30 train/test split is a common approach, the most reliable
technique for estimating model performance is the Cross Validation (CV). Various CV
techniques exist, but they share the same fundamental concept: executing a loop that
initially partitions the data into multiple subsets. Then, a set is held out and used as
the test set while the model is trained on the remaining sets [11].

2.1.2.1 Cross Validation Techniques

K-Fold CV is the most popular and efficient technique used for CV. This procedure
uses a parameter k, which refers to the number of splits applied to the entire dataset,
hence it is called k-fold cross-validation. The dataset is split into k consecutive folds,
where (k − 1) folds are used for training the model, and the remaining 1 fold is used
for testing. The training is done for each combination of folds. The value of k is
chosen such that each train/test group of data samples is large enough to be statisti-
cally representative [11]. It has been demonstrated that an unbalanced dimension of
folds does not allow obtaining reliable results. Kohavi in 1995 [12] has demonstrated
using different datasets that k-fold CV is most efficient when k = 10. However, it is
possible to achieve equally efficient results with different values of k or different fold
combinations. For example, the Leave-One-Out procedure uses k = n, where n is the
number of samples considered. In this procedure only one sample is removed from the
training set, and it is often performed for small dataset analysis [13].
Another application of k-fold CV is the stratified k-fold technique. This method guar-
antees a more balanced distribution of classes in each test set, and it can be optimal for
unbalanced ML problems. This technique works by returning stratified folds, where
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each fold contains approximately the same percentage of samples of each class as the
full dataset [14].
K-Fold CV is applied in all the research presented in the following chapters. In par-
ticular, stratified k-fold CV is performed for the models in Chapter 5.4.

2.1.3 ML Algorithms

At present, there are numerous supervised ML algorithms available in the literature,
and their effectiveness can vary depending on the input features and classification
or regression objectives. Below, you will find a brief description of the algorithms
proposed in this thesis.

2.1.3.1 Tree-Based Algorithms

This group of algorithms is considered very efficient in terms of quality of results and
impact on clinical problems [15]. They are denominated Tree Based because the basic
units on which they are built are regression and classification trees - Decision Trees
(DT) [16]. DT is a greedy algorithm that performs a recursive binary partitioning
of the feature space. The tree predicts the same label for each leaf partition. Each
partition is chosen greedily by selecting the best split from a set of possible splits, in
order to maximize the information gain at a tree node. DT are easy and efficient as
they do not need any normalization of the input data. They offer a regular system
of binning patients, and they are far more efficient if the single tree is expanded to
forests and ensemble trees with the main goal of achieving better classification accuracy
and addressing instability that affects the single trees. Furthermore, clinicians find
them appealing because they can offer a "very human data representation" [17]. The
ensemble learning techniques of randomization, bagging, and boosting can efficiently
be applied to decision trees. DT can be a weak and unstable learner, and ensemble
techniques are useful to improve the performances and reduce the noise in the dataset
[18].

Random Forest The first tree-based ML method employed in this thesis is the Ran-
dom Forests (RF) ensemble learning method, which was firstly introduced by Tin Kam
Ho in 1995 [19] and was subsequently discussed in detail in a book by Leo Breiman
[20]. RF features Decision Trees (DT) that share identical basic properties and the
ability to avoid overfitting. The set of DT used in RF are trained separately so that
the training can be executed in parallel with the others. However, some randomness is
injected into the training process to reduce the variance of the predictions. Random-
ness is introduced by subsampling the original dataset on each iteration to obtain a
different training set, or by considering different random subsets of features to split on
at each tree node. To make a prediction on a new instance, an RF must aggregate the
predictions from its set of DT. In the case of classification, the aggregation is done by
majority vote, where each prediction is counted as a vote for one class, and the label
is predicted to be the class which receives the most votes. In the case of regression,
the mean of the obtained predictions of the individual trees is evaluated as output. A
simplified diagram of the RF classification algorithm is shown in Fig. 2.1.

Extremely Randomized Tree Extremely Randomized Trees (EX-T) take random-
ness one step further in the way splits are computed [21]. Like in RF, a random subset
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Figure 2.1: Random Forest Classification Diagram (N=Number of Decision Trees in
the Forest)

of candidate features is used, but, instead of looking for the most discriminant thresh-
olds, these are drawn randomly for each possible feature, and the best of these random
thresholds is picked as the splitting rule. The random selection of the threshold allows
further reduction of the variance of the model.

Ada-Boost Ada-Boost (ADA-B) is an ensemble method belonging to the boost-
ing family, whose core principle is to strengthen weak learners [22]. During ADA-B
training, only the parameters that improve the predictive power of the model are
selected, reducing model complexity in terms of dimension and thereby improving
execution time. During the boosting iteration, data modifications are applied by as-
signing weights to every training sample, starting with the original training data. For
all other successive iterations, sample weights are modified, and the learning algorithm
is applied again to the data with its new weight. At a given step, samples used for
training that were wrongly predicted by the boosted model in the previous step have
their weights increased, whereas these weights are decreased for examples that were
predicted correctly. As the iterations proceed, samples that are difficult to predict/-
diagnose receive ever-increasing influence. Each sequential weak learner is then forced
to concentrate on samples that were previously missed [23].

Gradient Boosting Gradient Boosting (GB) produces highly competitive and ro-
bust models for both classification and regression tasks. It is especially appropriate
for mining sub-optimally clean data, and the implementation proposed in this thesis
follows the algorithm proposed by Friedman [24]. This method not only employs ran-
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domization and bagging principles but also includes a special form of boosting to build
an ensemble of weak models, specifically decision tree models.

2.1.3.2 K-Nearest Neighbors

K-nearest neighbors (KNN) is a non-parametric classification algorithm that assigns
a class to a new instance based on the class of its k-nearest neighbors in the training
set, where "nearest" is defined by a distance metric [25]. KNN is capable of solving
problems related to overfitting, small datasets, non-linear and/or high-dimensional
data, and can be used for both classification and regression. The algorithm calculates
the distances between the new instance and all the instances in the training set and
selects the k-nearest neighbors. The class of the new instance is then assigned as
the majority class among its k-nearest neighbors. If k=1, the algorithm is called
the nearest neighbor algorithm. A distance metric is used to measure the similarity
between instances. The most common distance metric used is Euclidean distance, but
other metrics, such as Manhattan distance, can be used as well [26].

2.1.3.3 Support Vector Machine

A Support Vector Machine (SVM) is a powerful machine learning algorithm that can be
used for both linear and non-linear classification tasks. The SVM algorithm finds the
best hyperplane that separates the data into different classes based on their distance
from similar training data points [27]. SVM maps the training data as points in space to
maximize the width of the gap between the classes. New data points are then mapped
into this space and classified based on which side of the gap they belong to [28]. To
perform non-linear classification, SVM can use kernel functions to map the data into
higher dimensional feature spaces. The radial basis function (RBF) and the sigmoid
kernels are commonly used kernel functions in practice due to their effectiveness. In
this thesis, both linear and non-linear approaches are proposed, including the use of
the sigmoid kernel for non-linear classification [29].

2.1.3.4 Neural Networks and Multilayer Perceptron

The concept of mimicking the functionality of a biological brain creating Neural Net-
work (NN) was firstly introduced in 1943 by McCullough and Pitts [30]. NN, also
known as Artificial Neural Networks (ANN), are based on a collection of nodes linked
together, the so-called artificial neurons, inspired by the model of neurons in a biolog-
ical brain. Each connection, like the synapses, can transmit signals to other connected
neurons, which then receive the signals and process them. The signal is a real number,
and inside a single neuron, it is computed by some non-linear function of the sum of its
inputs, creating a specific output. Neurons and links have weights that are adjusted
during the learning process. The strength of the signal at each connection increases or
decreases the node weight. Neurons may be artificially generated with thresholds, such
that the signal is only delivered if the aggregate signal crosses the specified threshold.
Typically, neurons are grouped in different layers, which perform different processing
of their inputs (Fig. 2.2). Signals move from the first input layer to the output layer,
traversing the layers in between multiple times [31]. ANN are the basic unit for Deep
Learning (DL) (see paragraph 2.1.8), a ML technique applied in various healthcare
fields like bioinformatics or medical image analysis [32]. While a deep understanding
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of ANN is beyond the scope of this thesis, their mention is necessary given their ex-
treme popularity in various biomedical applications, as the reader will see in the next
chapters.
One of the most representative examples of simplified NN is the Multilayer Perceptron
(MLP), which consists of a multiple layers NN (at least three): an input layer, one or
more hidden layers, and an output layer [33]. All the nodes, excluding the inputs, are
neurons that use a nonlinear activation function, and the training is achieved using
the backpropagation of errors technique or some of its variants [34].

Figure 2.2: Artificial Neural Network Representation with the respective layers, nodes
and links

2.1.4 Evaluation Metrics

Evaluation metrics are used to measure and quantify the quality of performance of an
ML model. These metrics differ between regression and classification problems.

Regression To evaluate the performance of a regression model, several reliable met-
rics can be considered, including the Coefficient of Determination (R2), mean absolute
error (MAE), mean squared error (MSE), and root mean square error (RMSE).
R2 provides a measure of how well future samples are likely to be predicted by the re-
gression model. The best possible score is 1, while the final result can also be negative
(because the regression model can be arbitrarily worse). Therefore, if R2 is unity, all
variation has been explained, and there is a perfect fit. If the coefficient is zero, the
regression does not explain anything, and the prediction is poor [35].
MAE refers to the magnitude of difference between the prediction of an observation
and its true value [36]. MSE is the most common loss function; it is calculated as the
difference between the model’s predictions and the ground truth, squared, and aver-
aged across the whole dataset. RMSE is the square root of the value obtained from
the MSE function. It helps to plot the difference between the estimated and actual
value of a parameter of the ML regression model [37].



2.1. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 9

Classification In a typical biomedical classification problem, where a disease has
to be identified in a group of healthy and unhealthy subjects, the following terms are
defined:

• True Positive (TP): sick people correctly classified as sick

• False Positive (FP): healthy people wrongly classified as sick

• True Negative (TN): healthy people correctly classified as healthy

• False Negative (FN): sick people wrongly classified as healthy

Several classification evaluation metrics are considered in this dissertation. Accu-
racy is defined as the number of correct predictions divided by the total number of
predictions. Precision is the number of patients that we correctly identify as having
the disease out of all the patients classified as sick. Recall (also known as sensitivity)
tells us how many subjects the algorithm correctly identified as having the disease,
out of all the subjects that actually have the disease. F-measure (F1) is defined as the
harmonic mean between precision and recall. Specificity is the probability of identi-
fying a healthy subject, conditioned on the individual truly being healthy [38] (Table
2.1).

Metric Description

Accuracy

TP + TN

TP + TN + FP + FN
(2.1)

Precision
TP

TP + FP
(2.2)

Recall or Sensitivity
TP

TP + FN
(2.3)

Specificity
TN

TN + FP
(2.4)

F1
TP

TP + FP+FN
2

(2.5)

Table 2.1: Classification metrics formulas based on TP, FP, TN, FN definitions

Finally, the Area Under the Curve of the Receiver Operating Characteristics (AU-
CROC) can only be evaluated for binary classifications and measures the probabilistic
performance of the classification. ROC is a probability curve, and AUC represents the
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degree of separability. This metric can indicate how well the ML classification model is
able to distinguish between the two classes. The higher the AUC, the better the model
is at predicting class 0 as 0 and class 1 as 1, meaning that a higher AUC indicates
better ability to distinguish between patients with and without the disease [39].

2.1.5 Tuning of Hyperparameters

In ML, a hyperparameter is a parameter assigned to the algorithmic model itself,
whose value is used to control the learning process [40]. Hyperparameters are related
to the model selection task, rather than the training process, and although they do
not directly affect the model’s performance, they impact the speed and quality of the
learning process. Examples of model hyperparameters include the topology and size
of a neural network, the number or maximum allowable depth of decision trees in a
random forest model, or the kernel used in support vector machines.
The tuning of hyperparameters is the algorithmic process used to select the best hy-
perparameters to obtain the most significant evaluation metrics [41]. The tuning can
be done, for example, to maximize accuracy or recall, as shown in Chapter 5.4.

2.1.6 Data Augmentation

Some supervised learning algorithms, such as decision trees, require a balanced class
distribution to achieve more realistic and accurate classification performance. This
issue is common in biomedical datasets where many classification studies are focused
on rare diseases. If the minority class is significantly smaller than the majority class,
some classification metrics, especially accuracy, can be misleading and not reflect the
real prediction quality, which may be poor. In such cases, data augmentation or re-
duction techniques are employed on the training set to balance the class distribution
and achieve more significant results [42].

SMOTE SMOTE (Synthetic Minority Over-sampling Technique) is one of the most
popular data augmentation algorithms introduced by Chawla et al. in 2002 [43]. It
generates artificial data by extrapolating between a real object of a given class and
one of its nearest neighbors of the same class. Then, it chooses a point along the
line between these two objects and determines new object attributes based on this
randomly chosen point. The minority class is balanced by creating new artificial data.
The implementation and efficiency of this technique are widely discussed in the next
chapters.

2.1.7 Feature Selection

In case of datasets which contain a vast number of features, a reduction of this number
to proceed with the ML model is often needed. This is performed to avoid overfitting,
reduce training and evaluating time, and to improve the reliability of the evaluation
metrics when the most useful features are selected avoiding the redundant ones. Sev-
eral manual or algorithmic approaches can be computed to select the most significant
features [44]. A brief description of the most common algorithmic methods is here
presented.
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Filter Methods In filter methods (see Fig. 2.3), features are selected based on their
performances in various statistical tests [45]. Some of the most popular statistical filter
methods are:

• Pearson’s Correlation: This method measures and quantifies the linear depen-
dence between two continuous variables, with its value ranging from -1 to +1.

• Linear Discriminant Analysis: This method finds a linear combination of features
that defines or separates the classes of a categorical variable.

• Analysis of Variance (ANOVA): Similar to Linear Discriminant Analysis, ANOVA
operates using one or more categorical independent features and one continuous
dependent feature. It provides a statistical test of whether the means of sev-
eral groups are equal or not. An example of the application of ANOVA feature
selection can be found in Chapter 5.4.

• Chi-Square: This method is applied to categorical features to estimate their
correlation tendency by evaluating their frequency distribution.

Wrapper Methods Wrapper methods (see Fig. 2.3) are computationally more
expensive than filter methods, as they test a subset of features in a loop and train
them with a selected algorithm, adding or removing variables from the tested subset
[46]. Some common examples of wrapper methods include:

• Forward Selection: This method begins with no features in the model, and at
each iteration, the most significant features are added to the model until a further
variable addition does not improve the performance anymore.

• Backward Elimination: In contrast to forward selection, this method starts with
all the features present, and the least significant feature is removed at each
iteration until a variable elimination does not improve the performance anymore.

• Recursive Feature Elimination: This method creates models in a loop and keeps
track of the most and least performing feature at each iteration. It builds the
next model with the selected features, ranking them based on elimination order.

Embedded Methods Finally embedded methods merge the qualities of filter and
wrapper methods. LASSO and RIDGE regression are the two most popular algorith-
mic embedded approaches [47].

Principal Component Analysis Principal Component Analysis (PCA) is a widely
used technique for analyzing datasets with a high number of features. It was first the-
orized by Pearson at the beginning of the 20th century [48]. PCA preserves the max-
imum amount of information from the data by transforming it into a new coordinate
system using an orthogonal linear transformation. This creates a new set of N PCA
features. Typically, the number of PCA features N is selected to explain 95-99% of the
variance and its value depends on the number of initial features and their correlation
[49]. An application of PCA can be found in Chapter 5.3.
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Figure 2.3: Filter and Wrapper Feature Selection Diagrams

2.1.8 Deep Learning

Deep Learning (DL) is a subclass of Machine Learning (ML) that uses multiple layers
to extract progressively higher-level features from an input [50]. Based on the Artificial
Neural Networks (ANN) shown in Fig. 2.2, DL can be performed using supervised and
unsupervised learning techniques. DL has shown great potential in several domains,
including computer vision, speech recognition, natural language processing, drug de-
sign, bioinformatics, genomic dataset management, and medical image analysis [51]–
[55].
While DL has become a powerful tool in various fields, this thesis mainly focuses on
the use of ML for medical images and large biomedical datasets. Advanced techniques
of ANN technologies in DL are beyond the scope of this thesis. However, the different
applications of ML in healthcare are discussed in various contexts.

2.1.9 Applications in Healthcare

2.1.9.1 Large Datasets

The investigation of large datasets, commonly referred to as "big data analysis," covers
a vast variety of phenomena, including biomedical big data, which has recently gained
more attention due to its potential for diagnosis, prevention, and rehabilitation [56].
Biomedical big data of academic and scientific relevance can be found in many different
structures, such as aggregated clinical trials [57], bio-genetic and microbiomic sequenc-
ing data [58][59], or digital health records in clinics and hospitals [60]. Big data are
also generated from wearable devices and smartphone health applications or via social
media with the use of increasingly popular "personal health monitoring" technologies
[61]. Such data are mainly stored in virtual research repositories or biobanks, which
can be proprietary or open access [62].
The size of bio-genetic datasets can be in the order of millions or even billions of
features for thousands of patients [63]. For example, the Human Genome Diversity
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Panel, which includes 940 individuals, has a total of 604 million observed genotypes
[64]. The 1000 Genomes Project consists of 1,718 individuals for a total of 3.2 billion
observed genotypes [65], and the Human Origin dataset has 1,941 individuals and 748
million observed genotypes [66]. Another influential example of a large genetic dataset
existing in the literature is the US Million Veteran Program, which includes genomic
data from around 300,000 multi-ethnic participants [67].
The analysis of DNA sequence genomic datasets is generally performed using sophisti-
cated ANN with DL techniques [68] or with the use of specific advanced and optimized
ML algorithm techniques capable of managing millions of inputs in a reasonable time-
frame [69]. For example, Alipanahi et al. [70] developed convolutional neural networks
(CNN) (a class of ANN defined as advanced regularized versions of MLP) that can
identify and visualize damaging genetic and deleterious genomic variants by predict-
ing the sequence specificities of DNA- and RNA-binding proteins from thousands of
sequences of various lengths obtained from experimental data. Listgarten et al. [71]
used ML algorithms to successfully identify a subset of three single nucleotide poly-
morphisms distributed over 45 genes of potential relevance to breast cancer etiology
as key discriminators between breast cancer and control subjects, achieving a 69%
accuracy with a quadratic kernel SVM model.
The study of large datasets is not one of the goals of this thesis. However, we inves-
tigated the AGES-Reykjavik dataset [72], introduced in Chapter 3.1.1, which consists
of a fairly high number of elderly individuals (>3000), but the number of features
considered is considerably less compared to the aforementioned big data repositories.

2.1.9.2 Medical Imaging

Medical imaging is undoubtedly one of the most efficient diagnostic techniques available
today [73]. A summary of the main medical imaging techniques with brief descriptions
of their key characteristics is provided in the table in Fig. 2.4.
In recent decades, the development of ML and DL has consistently improved the poten-
tial of medical imaging [74][75]. As a result, there are now several hundred publications
on this subject [76]. Advanced DL applications can efficiently segment human anatomy
and predict diseases using various imaging techniques, such as MRI [77], CT-scans [78],
PET [79], and ultrasound [80], and can also generate 3D images [81], useful for identi-
fying patterns in rare conditions [82]. DL has recently been recognized as an efficient
and popular tool for identifying COVID-19 infections using chest imaging of the lungs
and bronchi [83][84].
One example of DL imaging application is presented by Roth et al. [85], who proposed
a method based on CNN for organ- or body part-specific anatomical classification.
Specifically, they trained their deep neural network using 4,298 axial 2D CT images
from 1,675 patients to classify five human body parts: the neck, lungs, liver, pelvis, and
legs. Their experiments achieved an anatomy-specific classification error of 5.9% and
an average AUCROC value of 0.998. Zhang et al. [86] designed different CNN architec-
tures to segment infant brain tissues based on multimodal MRI images, demonstrating
that a DL system can outperform manual segmentation performed by professionals.
DL is primarily applied to images, specifically to the matrices of pixels within those im-
ages. On the other hand, ML techniques, more so than DL techniques, have a greater
impact on the study of radiologic features extracted from medical images themselves
[87]. ML techniques have shown high performance in oncology studies, as seen in Par-
mar et al. [88]. Macyszyn et al. [89] used SVM to predict survival and molecular
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subtype in glioblastoma, achieving a 75% accuracy for the four tumor subtypes classi-
fication and an 88.57% accuracy for the 18-month survival SVM binary classification
model. Similarly, Zhang et al. [90] used multiple feature selection methods and classi-
fication algorithms to successfully predict local and distant failure in nasopharyngeal
carcinoma. Their study utilized 970 radiomics features from 110 patients, with RF and
ADA-B algorithms producing the best classification results with respective AUCROC
values of 0.84 and 0.82.
In the present study, ML analysis is utilized to examine the effect of sarcopenia on
elderly individuals and to assess knee cartilage degeneration using features extracted
from different medical images of the mid-thigh and knee, as described in Chapters 3.1
and 4, respectively.

2.1.9.3 Biosignals

Biosignals are defined as any signal produced by a living organism that can be measured
and quantified scientifically. In human healthcare studies, biosignals refer to electrical
signals, which are changes in electric potential across specific human tissues, organs, or
systems, such as muscles or brain activity [92]. Among the most popular signals used
in biomedical engineering are Electromyography (EMG), Electrocardiography (ECG),
and Electroencephalography (EEG). Advanced feature extraction techniques enable
numerous scientifically significant applications of ML technologies with these signals.

EMG Surface EMG involves the placement of wired or wireless sensors on the skin
to measure the electric potential generated by muscle cells when they are electrically or
neurologically activated after an induced stimulus [93]. Features extracted from EMG
signals are mainly used to investigate possible abnormalities and disorders in postural
and motor control, or to diagnose neuromuscular diseases [94]. Abnormal patterns in
EMG signals have been identified, for example, in patients affected by Parkinson’s dis-
ease [95] or amyotrophic lateral sclerosis [96]. Both ML and DL techniques are widely
used with EMG signals, and they find applications, for example, in improving the per-
formance of prosthetic limbs [97] or in studying sport performances and quantifying
muscle fatigue [98][99]. Another example of its application is presented by Yu et al.
[100], who used both DL and ML techniques (in particular, RF) to distinguish between
287 subjects with and without a history of strokes using EMG features extracted from
thighs and calves, achieving an accuracy of over 90%.

ECG An electrocardiogram (ECG) is a simple and affordable test that is primarily
used to check the heart’s rhythm and electrical activity. A few sensors are attached to
the skin to detect the electrical signals produced by the heart at every beat. ECG is
used to investigate symptoms of potential heart problems and can detect arrhythmia,
coronary heart disease, heart attacks, and cardiomyopathy [101]. Nowadays, AI and
ML technologies facilitate the diagnosis and prediction of different heart diseases or
detection of abnormalities in the heartbeat with ECG signals [102]. Arrhythmia can
be detected with high accuracy using ECG features with both single and ensemble
SVM [103], and also with an ANN with 7 hidden layers [104]. Khosla et al. [105]
demonstrated that "any ECG abnormality" is a highly ranked feature in the longi-
tudinal prediction of strokes, indicating that all ECG abnormalities could be more
indicative of stroke than just the common atrial fibrillation diagnosis. Similar results
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Figure 2.4: Short description of the major diagnostic medical images with brain images
examples [91]

were demonstrated by Rathakrishnan et al. [106], showing that ECG features of elderly
stroke and healthy subjects are of high importance in stroke identification.
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EEG Electroencephalography (EEG) is a technique used to measure brain electri-
cal activity by placing electrodes on the scalp of the head [107]. It provides precise
temporal resolution, allowing the detection of changes in neural activity and rigorous
tracking of brain dynamics and activation [108]. EEG is essential for tracking and
monitoring cognitive events that occur within tens to hundreds of milliseconds [109].
Thousands of different temporal, spectral, and connectivity domains can be extracted
from an EEG signal. EEG systems are relatively cheap, adaptable to mobile and var-
ious acquisition processes. However, they require appropriate electrode positioning,
signal amplification, and intensive training [110]. An example of a basic EEG setup is
shown in Fig. 2.5.
ML models with EEG features find multiple applications in recent scientific literature
[111]. For instance, Mumtaz et al. [112] used EEG-derived synchronization likelihood
features as input data for automatic diagnosis of major depressive disorder and found
that the SVM algorithm was the most effective. Wang et al. [113] used RF to identify
normal and abnormal amplitude integrated EEG in neonatal infants, achieving an ac-
curacy of 91% by raising the minority class weight to handle the imbalanced dataset.
Tuyisenge et al. [114] did not use ML and EEG features to classify a disease but
worked on the signal itself by implementing an ensemble bagging classifier that can
automatically detect bad channels in intracranial EEG signals.

Figure 2.5: Basic EEG setup: EEG cap, amplifier, software and computer, from ANT-
neuro, eegoTM mylab [115]

EMG, EEG and other biosignals from postural control assessment are combined in
a biosignal-dataset and examined in this thesis in the context of the Motion Sickness
studies using the novel BioVRSea acquisition system (Chapter 5).
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Gait Biosignals extracted from gait analysis acquisitions have a significant impact
on biomedical engineering studies. Typically, gait analysis is performed in a specialized
laboratory with several cameras, either video or infrared, placed around a walkway.
Patients are fitted with multiple markers on their body and are asked to walk at a
specified speed on a force platform with floor-mounted load transducers that measure
the Center of Pressure (CoP) [116]. Gait analysis mainly involves temporal/spatial
features, including the computation of speed, step length, pitch, and other features.
ML models have demonstrated high performance in using gait parameters to distin-
guish neurodegenerative disorders, identifying, for example, Parkinsonian symptoms
[117] or Friedreich’s ataxia characteristics [118], as well as identifying various types of
prostheses with SVM [119]. They have also been shown to be efficient for rehabilita-
tion purposes [120], such as in patients affected by knee osteoarthritis [121]. ML has
found numerous applications in the study of Parkinson’s disease using gait features,
one of which is proposed by Rehman et al. [122]. They performed a recursive feature
elimination technique with SVM to classify patients with early-stage Parkinson’s and
healthy subjects, obtaining an accuracy between 73-97% and identifying mean step
velocity, mean step length, step length variability, mean step width, and step width
variability as the most significant temporal/spatial features for the model.
In this thesis, we compute temporal/spatial gait features from single and cognitive
dual tasks to classify individuals of Asian descent with motor or neural problems or a
history of heart attacks in Chapter 3.2.

2.2 Clinical and Diagnostics Applications

In the field of digital health engineering, a precise and optimized system is required
for the implementation of ML approaches, which can be substantially different from
other types of database analyses. For instance, in the network management sector, ML
can be leveraged to aid in the management of live data-traffic or long-range capacity
planning. In finance, ML is widely employed for asset management, risk evaluation,
credit scoring, and loan approval. A significant difference between these domains and
the field of healthcare is that, in most cases, the data used in other fields refer to
fictitious values that do not have a direct correlation to a tangible value, such as the
measurement of muscle tissue density or the frequency of heartbeats. On the other
hand, most of the biomedical features used in AI applications are derived from med-
ical images or biosignals, which were initially developed to support physicians and
medical professionals in making accurate diagnoses or planning rehabilitation or pre-
vention strategies. In this context, AI and ML can significantly augment the impact
of biomedical features and provide clinicians with insights that would not have been
possible with a purely "human" approach.
As depicted in Figure 2.6, an optimal implementation of an ML prediction process in
digital health engineering should begin with a precise and accurate data acquisition
phase that aims to create the most complete and reliable dataset possible. Following
proper data acquisition and rigorous engineering processing of feature extraction, the
resulting database should be subject to deep analysis, with initial attention given to
missing data (NaN) and outliers. Proper NaN management is strongly necessary to
prevent loss of valuable data, and an outlier analysis can be useful to differentiate
between real outliers and inaccurate preliminary feature extraction. Subsequently, a
univariate or multivariate statistical analysis enables an exhaustive statistical view of
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the dataset. In classification processes, frequently utilized in healthcare for identifying
specific diseases or comorbidities, this analysis helps in understanding which features
are statistically significant with respect to the prediction class.
Subsequently, feature selection may be conducted using one of the methodologies de-
scribed earlier, depending on the requirements. In healthcare, Principal Component
Analysis (PCA) may be a viable option for feature selection if feature importance anal-
ysis is not necessary post the ML model. The feature importance analysis provides
valuable insights such as the most influential part of the body or brain region, or the
most significant biosignal in the prediction process, which is carried out immediately
after the regression or classification model. However, if PCA is used, the model’s in-
put features would be artificial and would not reflect the actual biomedical input data.
Thus, the feature importance analysis will not provide any useful clinical information.
Nevertheless, PCA may be useful for dimension reduction.
Successively, the optimal train-test division method is selected based on the number
of subjects and features. For larger datasets, the 10-fold cross-validation method is
widely considered the most effective. ML algorithms are then applied, utilizing the
best strategies for achieving the desired goal. In this PhD study, tree-based approaches
have been demonstrated to be the most reliable in most cases. Additionally, linear and
simplified ANN approaches have also demonstrated a significant impact. Evaluation
metrics are then calculated and a feature importance analysis is performed. This analy-
sis can provide useful insights as some of the features that were considered insignificant
in previous research can turn out to be highly relevant in the new prediction process.
The success of the research significantly relies on the fruitful interaction between medi-
cal professionals and engineers. As emphasized at the beginning of this paragraph, the
ultimate clinical evaluation goal is crucial for making a strong impact in the healthcare
system and improving the daily lives of individuals with health conditions.

In the next sections, the different state of the arts relative to the clinical topics
addressed in this thesis are presented, starting from the healthy aging problem and
continuing with cartilage degeneration and motion sickness study.

2.2.1 Aging Study

2.2.1.1 Sarcopenia and Cardiovascular Pathophysiology

The progressive degeneration of skeletal muscle is consistently identified as an indepen-
dent risk factor for significant morbidity, disability, and mortality in aging individuals
[123][124]. Defined as sarcopenia, recent literature has interrogated its mediating and
moderating roles in a wide range of adverse health outcomes, including its role in the
etiology of cardiovascular pathophysiology [125].
Catabolic inflammatory cytokine production and characteristic adiposity from the pro-
gression of sarcopenia have been linked with the onset of diabetes [126], hypertension
[127], and dyslipidemia [128], all of which are well-established risk factors for CHD
[129] and all-type CVD [130]. CHF patients frequently develop cardiac cachexia [131],
a similar muscle wasting condition whose advanced stage has been implicated as an
accelerated analogue of sarcopenic muscle degeneration [132]. Indeed, the progression
of sarcopenia in older CHF patients may be considerably entangled with embedded
cachexic effects [133]. While literature cites the associations and potential causal mech-
anisms between cardiovascular pathophysiology and downstream changes in skeletal
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Figure 2.6: Workflow for the Machine Learning approach in Digital Health Engineering.

muscle form and function [134], validating standardized predictive models for these
conditions remains debated. Furthermore, incorporating more nuanced quantitative
methods for the non-invasive prediction of these events remains a priority in literature.
Identifying such a methodology would further establish the generalizability of skeletal
muscle research to the early detection of cardiovascular pathophysiology and facilitate
the identification of compensatory targets for clinical intervention.
The concomitant loss of muscle mass and increase in adipose tissue in aging individ-
uals suggest the use of quantitative imaging techniques, such as X-ray CT or MRI to
characterize overall changes in skeletal muscle [135]. These changes altogether present
a reduction in muscle ‘quality’, which has been cited as a significant causal mechanism
in the loss of muscle function - particularly when in conjunction with reduced muscle
mass [136][137]. CT imaging has shown particular utility in quantifying these changes
[135]. This is often performed via the use of radiodensitometric absorption values,
measured in Hounsfield units (HU). Here, changes in segmented cross-sectional areas
have been used to illustrate changes in volume [138][139], and changes in average HU
values have been used to illustrate changes in muscle quality [140]. The utility of mod-
elling entire radiodensitometric distributions from CT cross-sections of the mid-thigh,
highlighting the nonlinear trimodal regression analysis (NTRA) method has been pre-
viously shown [141][142].
The definition and the relative formula of NTRA is presented in section 3.1.1.2. The po-
tential and efficiency of the features extracted from a mid-thigh CT-Scat using NTRA
are discussed in details in the following chapter 3.1 with a focus on cardiovascular
pathophysiologies in chapter 3.1.2.
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2.2.1.2 Healthy Lifestyle in Aging

Leading a healthy lifestyle not only contributes to general psychophysical well-being,
but may also protect against a host of deleterious health outcomes, such as type
2 diabetes mellitus [143], hypertension [144], cancer [145], as well as cardiovascular
[146], liver [147], lung [148], or kidney diseases [149]. While literature associates many
lifestyle factors with these health outcomes, low physical activity and cigarette smok-
ing have shown particularly strong causal evidence for adverse health [150] and in-
creased mortality risk [151]. Indeed, regular exercise and abstinence from smoking
during young adulthood has been consistently associated with reduced blood pressure
and cardiovascular disease risk in aging [152], as further evidenced by increased life
expectancy and fewer years of disability before death [153]. Low physical activity
has also been identified as an independent risk factor for incident diabetes [154], for
which the concomitant effects of cigarette smoking have likewise been well-established
[155]. For example, in a large cohort of middle age Finnish men and women, cigarette
smoking was indicated as the main risk factor for diabetes, even when controlling for
physical activity, coffee consumption, and alcohol use [156]. Furthermore, the recent
work by Reis et al. [143] illustrated that elderly women with a low-risk lifestyle profile,
defined as non-smokers who engage in regular physical activity and moderate alcohol
consumption, had a dramatically lower diabetes incidence risk than subjects with un-
healthy lifestyle profiles.
While the many deleterious consequences of smoking have been well-documented [150]
understanding the protective role of physical activity against aging pathophysiology is
comparatively limited by its complex causal mechanisms and divergent measurement
constructs. For example, while physical activity may be objectively measured using
established methods such as accelerometry or oxygen consumption, these tools may be
unsuitable for individuals of advanced age. For example, oxygen consumption criteria
for measuring fitness has been shown to significantly underestimate cardiorespiratory
fitness in aging individuals [157]. As such, self-reported assessment of physical ac-
tivity is often performed, despite risking bias from faulty recall or social desirability
[158][159]. For these reasons, systematic review literature consistently cites substantial
heterogeneity in physical activity reporting units, which ultimately limits the gener-
alizability of available evidence. Understanding the protective role of exercise against
aging pathophysiology may therefore necessitate a deeper look into the direct and in-
direct effects on health from changes in skeletal muscle.
The effect of the NTRA features on the lifestyle of elderly subjects and on the diabetes
and hypertension is discussed in chapter 3.1.3.

2.2.1.3 Single and Dual Gait Analysis

Walking is one of the most common human physical activities, and its investigation,
through gait analysis, can provide multiple and significant information about physical
and neurological status. Gait analysis involves measurements of temporal and spatial
features of the subject’s walking on a pressure mat without any other action requested:
This is known as single-task gait [160]. The dual-task gait consists of adding a motor
or cognitive task while walking, such as bouncing a basketball or counting a 3-digit
number backward [161]. The dual-task gait has been demonstrated to have a high im-
pact in the performance evaluation of the healthy and unhealthy population [162][163].
Walking has received growing attention in studies on stroke and neurological and mo-
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tor disorders among older adults [164]. Significant abnormalities in gait are found in
patients of Parkinson’s disease, Diplegia, Hemiplegia and Huntington Chorea [165].
Abnormal gait patterns in temporal and spatial features are also evident in patients
with any kind of stroke [166].
Often, gait acquisition on multiple patients is performed to study specific diseases or
degenerations in population of interest and one of the most common approaches for
analyzing these medical datasets is the use of artificial intelligence technologies. These
technologies nowadays offer multiple techniques to interpret biomedical datasets us-
ing ML algorithmic approaches [167]. The tree-based algorithms were demonstrated
as really effective in classifying Parkinson disease using gait features as input [168].
Other ML techniques like SVM, PCA or KNN were also demonstrated to be efficient
starting from single gait features because they can predict mild cognitive impairments
[169], hemiplegia and back and leg pain [170] or even distinguish between age groups
[171].
The application of ML analysis to study elderly Korean subjects and their neurological
and motor status, using single and dual gait analysis, is discussed in chapter 3.2.

2.2.2 Knee Osteoarthritis Study

Osteoarthritis is a prevalent form of arthritis, happening when protective hyaline carti-
lage between bones breaks down through injury or disease [172]. Osteoarthritis of the
knee is one of the main reason for impairment, being a significant burden on healthcare
systems [173] with a greater risk to develop with obesity and aging [174][175].
The study of cartilage thickness is essential to both identify and control the evolution of
osteoarthritis [176]. Diagnosis relies on a clinical assessment and a radiographic exam
of the joint [177]. Magnetic resonance imaging (MRI) is the most advanced imaging
technique for the evaluation of hyaline cartilage, and presented many improvements
in acquisition and image modality in the past years [178][179][180]. MRI gives a vi-
sual evaluation of the cartilage. Extensive examination of MRI sequences for assessing
morphological and structural aspects of knee cartilage are reported in previous studies
[177][178][181]. MRI is able of precisely measuring the thickness of articular cartilage.
MRI also visualize, other tissues involved in osteoarthritis, such as subchondral bone,
meniscus, and soft tissue. It is crucial to understand that osteoarthritis is a disease of
the whole organ, involving multiple joint tissues. Computed tomography (CT) imaging
also presents a great 3D representation of cortical bone, osteophytes, and soft tissue
calcification. It has been used to study changes in the joint, such as trabecular bone
changes, subchondral cysts, and bone sclerosis, that can be osteoarthritis-related al-
terations in the joint [182].
In the scientific literature, there are several applications of ML and DL for MRI of
the knee [183][184]. Liu et al.[185] used DL to detect cartilage degeneration and acute
cartilage injuries within the knee joint while Bien et al.[186] developed an efficient DL
method to detect general abnormalities and specific diagnosis on MRI exams. DL was
also applied for osteoarthritis diagnosis [187] and to predict patients at high risk of
total knee replacement to prevent the surgery with an early-stage diagnosis using both
MRI and non-image features [188]. Kwon et al. [121] used gait data and radiographic
images to multi-classify the severity of osteoarthritis based on the Kellgren–Lawrence
grade system using DL. Different ML algorithms using MRI as an input are also ap-
plied to predict the progression of osteoarthritis using a principal component analysis
(PCA) approach on the extracted features [189] or using plain radiographs and clinical
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data [190].
A detailed description of novel features extracted from 2D and 3D analysis and used
to assess knee cartilage status, is shown in chapter 4.1

2.2.3 Motion Sickness and Postural Control Study

This section will introduce the basics of MS and its relative relation with concussion
and lifestyle, giving the reader a comprehensive overview of the subject. The results
relative to the MS and PC studies are presented in chapter 5.

2.2.3.1 Motion Sickness: pathogenesis theories and ML applications

Postural control (PC) is a central nervous system (CNS) feedback control system that
governs human upright stance and gives a platform for locomotion and task-driven
behavior, as well as several autonomic responses. The PC system works on a subcon-
scious level and is based on continuous CNS input from visual, vestibular, propriocep-
tive, and somatosensory receptors [191]. The CNS then processes this information to
direct (efferent signals) both somatic (muscular) and autonomic (blood pressure etc.)
responses. The PC system can be disturbed in two ways: the first one is a disease dis-
ruption (lost function) at all levels, and the second is a physiological “overstimulation”
(increased function), which gives rise to motion sickness (MS). Motion sickness is ex-
perienced by those who passively travel and is more common in women and at a young
age. Although there are great individual differences, sex and age are both predictors
of MS and motion sickness susceptibility (MSS) in general populations, probably due
to gene–environment interaction [192]. In addition, MS and MSS also fluctuate across
age, i.e., in general, humans from 2 years of age begin to feel motion sick during trav-
eling, peaking at 13 years of age and declining postpubertal [193][194].
One of the best-known manifestations of MS is seasickness [195]. Due to modern
technology, humans have faced new MS situations such as spaceflights (space sickness
[196]) or when playing computer games, including the phenomenon of “cybersickness”
in virtual reality (VR) environments [197]. MS is a polysymptomatic disorder, where
the primary symptoms are nausea and vomiting, but sweating, facial pallor, increased
salivation, drowsiness, and dizziness are also frequent [192]. There is varying suscepti-
bility among the general population, but all those with a fully or partially functional
vestibular system can experience MS. Females report higher incidence in MS history
(higher frequency and severity of symptoms) and are more susceptible to seasickness,
simulator sickness, and visually induced MS than males of the same age [198][199][200].
Two main theories regarding the pathogenesis of MS exist. The “sensory conflict the-
ory” (SCT) [201] states that MS is caused by conflict between visual, vestibular, and/or
somatosensory inputs. In the case of passive travel, such as being a passenger in a car
or on a ship, the physical motion perceived by the vestibular system does not match
the expected signals from the visual system. Sensory conflict can also occur due to a
purely visual stimulus, as can be experienced by people during VR simulations who
may perceive a visual movement, but vestibular signals do not match this. Recent
studies report possible “sensory conflict neurons” in the brainstem and cerebellum
[202][203] and also brain networks that mediate nausea and vomiting [204], which ap-
pear to further support the sensory conflict theory.
The second theory of pathogenesis in MS is the “postural control theory” [205]. It states
that prolonged postural instability precedes the subjective symptoms of MS, i.e., that
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MS is directly brought on by an inability to control the posture during motion rather
than a detection of any sensory conflict. The ability to remain bipedal/upright is
crucial to human survival and MS appears to be closely linked to postural instability;
studies have shown that greater postural instability or increased body sway correlates
with greater MSS [206][207].
Regardless of the underlying pathophysiology, CNS adaptive signals as well as efferent
signals involved in the corrective processes, preceding and during MS, are measurable
via various methods. Koohestani et al. [208] give an overview of objective biosignal
measures in MS research. Some studies have looked into possible correlations between
MS levels and physiological biosignals such as electroencephalography (EEG), electro-
gastrography (EGG), electro-oculography (EOG), skin conductivity, heart rate (HR),
blood pressure, body temperature, and cerebral blood oxygen demand visualized in
functional magnetic resonance imaging. Relationships between the levels of MS expe-
rienced by subjects have been demonstrated in various EEG, EGG, and eye movement
studies. Objective kinematic measures such as center of pressure (COP) are also doc-
umented as having relationships to MS levels in the literature [209][210] as well as
spectral characteristics of spontaneous sway, which have been measured as a possible
objective measurement for a predictive MS parameter [211].
Objective measures can be useful for tracking the onset of MS, as it may be possible
to use biosignals to predict the likelihood of the subject experiencing MS. Therefore,
a subject’s MSS can be linked to measurable physiological or kinematic parameters in
some cases by correlating the objective measurements with a standardized subjective
MSS test/experienced MS level test. This is crucial for all further genetic studies on
MS.
Motion sickness susceptibility is generally assessed by means of a questionnaire: sub-
jective reporting of experienced levels of typical MS symptoms during biosignal mea-
surement is a method used extensively in recent experimental studies [212][213][214].
Correlation of various biosignals and subjective reporting of MS levels is a task to
which ML is contributing. EEG has been used as a technique to correlate biosignal
measurements with MS levels in multiple subjects using ML for VR-related MS [215].
Ko et al. [216] used neural network ML algorithms to estimate patient’s MS level based
on the EEG power spectra from possible stimulated brain areas. Li et al. [217] also
studied EEG, COP, and head and waist motion markers correlated to a subjective MS
questionnaire using ML following visually induced MS. Wang et al. [218] used postu-
ral difference measures pre- and post-visually induced MS calculated with a deep long
short term memory model. These studies used visually induced MS exclusively for es-
timating physiological response in virtual environments. Hell and Argyriou [219] also
used ML to predict MS using a VR rollercoaster simulation tool and a neural network
architecture predicting MS and the intensity of roller coasters in order to improve the
gaming experience.

2.2.3.2 Sport Concussion and its Relation with Postural Control

A concussion, or mild traumatic brain injury (mTBI), is a short-lived functional neu-
rological impairment caused by a blow to the head or by a force transmitted to the
head [220]. Participation in sports is a risk factor for sustaining multiple concussions
[221], with some sports presenting a greater risk than others [222]. The possible acute
symptoms of concussion can include headaches, emotionality, loss of consciousness, am-
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nesia, problems with balance, and sleep/wake disturbance [223]. Although most cases
of concussions resolve spontaneously, they can have persistent psychological, physical,
and cognitive complications and protracted recovery times [223][224].
There is currently no objective way to diagnose a concussion, nor is there a precise, uni-
versal concussion definition [225]. When diagnosing concussions, medical professionals
rely on clinical assessment, which can be problematic as symptoms are non-specific and
could relate to other illnesses, mental or physical. In research, concussion assessments
are usually carried out through questionnaires built around the most recent consen-
sus on the definition of concussion. The Concussion Assessment Tool, fifth edition
(SCAT5), has been useful when assessing symptoms after an incident and tracking
recovery [220]. Although it is easily administered, it should not be used on its own
for diagnosis, not unlike other similar concussion assessment scales [226][227]. Medi-
cal records and clinical interviews are sometimes thought of as the gold standard in
concussion research [228], inevitably resulting in a loss of accuracy as many who suffer
from a concussion do not seek medical assistance [229].
Due to the complex etiology of concussive symptoms, a multi-faceted approach to
concussion assessment and treatment is essential [230], including multiple concussion
measures and techniques. As a part of a multi- faceted approach, virtual reality (VR)
offers a novel way to evaluate and manipulate postural control and cortical activity
[231]. VR gives an option to assess responses in a secure setting while exposing par-
ticipants to a visually and physically demanding task.
ML is widely used in concussion research, and its efficacy has been positively demon-
strated in recent scientific literature. Both supervised and unsupervised ML models
can be used to study concussions [232][233]. An unsupervised clustering approach
has been used to identify and characterize distinct concussion subtypes [234], while
Visscher et al. [235] used a self-organizing map to divide subjects with and without
vestibular disorders after a concussive event. The supervised approach ranges from
deep learning for concussion prediction on professional athletes [236] to fuzzy trees
algorithms to predict post-concussion symptom recovery [237]. Of relevance is the
Castellanos et al. study from 2021 [238] with the use of a large but relatively unbal-
anced dataset with the linear ML approach of the SVM which allowed the prediction
of sport-related concussion risk with good accuracy.

2.2.3.3 Lifestyle Influence on Motion Sickness

The effects of lifestyle factors on MS have been widely investigated in literature: the
effects of smoke and nicotine in relation to MS symptoms in particular are studied to
understand why smokers do not suffer of strong postoperative nausea and vomiting
(PONV) [239][240], but the reason is currently still unknown. Golding et al. [241]
were the only ones who studied the effect of smoking nicotine tobacco and its depriva-
tion on MS, demonstrating that nicotine withdrawal promotes MS whereas deprivation
protects from it: the effect of tobacco in smokers is approximately half of the effect
of an anti-motion drug. This may have a link with PONV suggesting that nicotine
withdrawal can help smokers to have reduced risk of these post surgical consequences.
Multiple MS studies are present in literature about physical activity, focusing mainly
on spinning athletic movements and concussion in different sports [242][243]. Elbin et
al [244] reported that young athletes with high MS sensitivity have more vestibular
symptoms and impairments while Caillet et al. [245] were the only ones who studied
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the effect of physical activity on MS sensitivity. Their study showed that people who
have regular physical activity are less dependent on MS visual input and use vestibular
afferences.
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Chapter 3

Aging Study

This chapter is dedicated to the aging studies. It focuses on two main researches:
• The first research is dedicated to the study of soft tissue radiodensitometric param-
eters extracted from a mid-thigh CT-Scan to classify elderly subjects with different
comorbidities including cardiac pathophysiologies, hypertension and diabetes. The
AGES-Reykjavik dataset developed by the Icelandic Heart Association is considered
for these researches described below.
• The second research focus on spatio-temporal gait features used to classify elderly
patient affected by gait symptoms, neurological deficits or with an history of ischemic
or hemorrhagic stroke in a Korean population.

3.1 Soft Tissue Radiodensitometric parameters from
mid-thigh CT Scan

3.1.1 AGES-Reykjavik data-set

The Age Gene/Environment Susceptibility Study (AGES) [72] recruited in Iceland
approximately 3,400 elderly subjects from 66–98 years of age (mean: 77.46) to par-
ticipate in a series of two sets of multimetric assessments separated by approximately
five years, collectively defined as the AGES-I and AGES-II database. Same features
(table 3.1) are present in both AGES-1 and AGES-II. Data are provided by Hjartav-
ernd -Icelandic Heart Association: they cannot be made publicly available, since the
informed consent signed by the participants prohibits data sharing on an individual
level, as outlined by the study approval by the Icelandic National Bioethics Committee.

3.1.1.1 AGES Features

AGES datased includes in total thousands of features: a limited number of them are
considered in this thesis. The main features of AGES Reykjavik include general demo-
graphic information, neurological, and lifestyle parameters measured or surveyed, and
incidence of multiple different comorbidities typical of the aging population. They are
described in table 3.1.

All participants in the AGES-Reykjavík database were scanned twice with a CT-
Scan, the second time approximately after 5 years from the first time, with a 4-row CT
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Feature Description

Age Age of the subject

Sex Sex of the subject

Smoking Status ‘never smoked’ - ‘smoke regularly’ (100 cigarettes or 20 cigars in
lifetime) - ‘current smoker’

Physical Activity Both for past (youth or midlife) and present (within 12 months of
the survey): ‘never’ - ‘rarely’ - ‘occasionally’ - ‘moderate’ - ‘high’

BMI Body Mass Index - Weight/Height2[kg/m2]

ISO Isometric Leg Strength [N] - Max strength in dominant leg

CVD Coronary vascular event before entering AGES (including stroke)

CHD Coronary heart disease event before entering AGES

CHF Coronary heart failure before entering AGES

DM Diabetes Mellitus

HTN Hypertension

Table 3.1: Main features of the AGES Reykjavik data-set

detector system at 120-kV (Sensation; Siemens Medical Systems, Erlangen, Germany).
The localized scanning region extended from the iliac crest to the knee joints; prior
to transaxial imaging, correct positions were determined by measuring the maximum
femoral length on an anterior-posterior localizer image, followed by the localization of
the center of the femoral long axis (Fig. 3.1). After image acquisition, for each subject,
a single 10 mm section was taken from mid-thigh, midway between the acetabulum of
the hip joint and the knee joint. Pixels from this slice were then processed to obtain
subject-specific distributions of radiodensitometric values across the range of -200 to
200 Hunsfield Unit (HU) to extract the eleven Non Linear Trimodal Regression Anal-
ysis features.
For each subject, HU distributions were derived from summing and transforming each
pixel’s CT number value according to the following linear transformation expression:
HU = CT × 2.26625 − 190. Following transformation, HU values were binned into
128 bins, as typical for CT assessment protocols [246]. Resultant histograms were
smoothed by a non-parametric fitting algorithm to obtain underlying empirical prob-
ability density functions (PDF) for each histogram. Each PDF was then exported for
NTRA regression analyses.

3.1.1.2 Non Linear Trimodal Regression Analysis - NTRA

The Non Linear Trimodal Regression Analysis (NTRA) method, firstly introduced by
Edmunds et al. [141] [142] considers each Hunsfield Unit (HU) distribution as a quasi-
probability density function defined by three Gaussian distributions. This definition
resulted from the hypothesis that cross-sectional soft tissue HU distributions are tri-
modal or consisting of three separate tissue types whose linear attenuation coefficients
primarily occupy their own distinct HU domain. These three soft tissue types and
their HU ranges are as follows: adipose or fat tissue [-200 to -10 HU], loose connective
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Figure 3.1: Mid-tigh CT Scan from the AGES data-set: on the right fat is orange,
muscle is red and connective tissue is blue

tissue and atrophic muscle [-9 to 40 HU], and lean muscle [41 to 200 HU]. The general
form of this trimodal quasi-probability density function is defined as:
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where N is the amplitude, µ is the location, and σ is the distribution width. The
skewness term α, captures the inwardly sloping asymmetries of fat and muscle dis-
tributions, while α is considered zero (non-skewed) for the central connective tissue
distribution. This definition allows for the generation of theoretical HU distribution
curves via standard error minimization at each radio-absorption bin using a generalized
reduced gradient algorithm, resulting in the extraction of 11 subject-specific NTRA
parameters. Distributions and relative parameters of fat, muscle and connective tissues
can be visualized in Fig. 3.2.

Figure 3.2: Non Linear Trimodal Regression Analysis - NTRA: visual representation
of the 11 parameters
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AGES I
ALG. Avg R2 Min R2 Max R2 MSE RSME MAE
RF 70.1 62.5 82.1 4.78 2.16 1.67

EX-T 71.1 62.7 82.7 4.64 2.13 1.65
ADA-B 68.5 57.0 81.9 5.01 2.21 1.72

GB 71.4 61.8 81.5 4.55 2.12 1.65
AGES II

ALG. Avg R2 Min R2 Max R2 MSE RSME MAE
RF 74.4 63.9 86.6 4.47 2.10 1.66

EX-T 76.0 69.9 84.8 4.22 2.04 1.62
ADA-B 74.2 67.3 86.2 4.51 2.11 1.67

GB 76.6 69.6 88.9 4.13 2.01 1.59

Table 3.2: The evaluation metrics for the BMI regression prediction

3.1.1.3 Body Mass Index and Isometric Leg Strength

The first methodological studies with AGES dataset aimed at proving that an ML
approach can show the predictive value of the 11 NTRA parameters predicting Body
Mass Index (BMI) and Isometric Leg Strength (ISO). These works were presented in
Coimbra, Portugal at the IFMBE-MEDICON Conference in September 2019 and suc-
cessively published on the dedicated conference special issue in the Health&Technology
journal [247][248].

Regression analysis was performed with four tree-based algorithmic models: RF,
EX-T, ADA-B and GB. Table 3.2 shows the evaluation metrics obtained for the re-
gression on the BMI for each of the 4 tree-based algorithms performed. The highest
R2 is 88.9 and it is obtained with GRAD-B, with an average R2 of 76.6. The most
important features are the NTRA amplitudes: Nconn and Nfat in each possible com-
bination always cover more than 50% of the total importance.
For what concerns ISO prediction the maximum R2 mean value is obtained with EX-T
but the maximum value (66.5) comes from the RF algorithm. Nmusc covers almost
50% of the total feature importance while the connective tissue features, especially
the µ values, have again a significant importance in the prediction. This strengthens
the results obtained with the BMI: connective tissue is highly relevant, and it can be
considered as one of the main prediction factors.

The main limitation that arises in these preliminary studies is the apparent use-
lessness of predicting parameters such as BMI and ISO, that are easily obtainable at
low cost, without an expensive CT scan approach. The power of this methodologi-
cal approach has been further demonstrated (see following chapters 3.1.2 and 3.1.3).
Therefore, the subsequent phase of NTRA parameters with ML is their combination
to predict cardiac risks; indeed, we showed the possibility to employ them to predict
cardiovascular diseases, cardiac heart failure and coronary heart disease as described
in detail in the following section of this thesis (Chapter 3.1.2).
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3.1.2 Cardiovascular Risk Assessment

This section is adapted from the first relevant publication relative to the ML studies
on AGES data-set published on Scientific Report [1]. The main aim of this study is to
highlight the substantial capacity of NTRA-based ML modelling to predict three of the
main cardiovascular health outcomes (Cardiac Vascular Disease (CVD), Chronic Heart
Failure (CHF), Coronary Heart Disease (CHD)). These findings are most evidenced by
the high classification scores of RF models with CHF, findings which are further vali-
dated by the robust predictive performance of CHF incidence from longitudinal data.
The present study altogether serves as a substantial step forward in the construction
of reproducible tools for predicting cardiovascular health in elderly individuals.

In the present study, we compare the integration of the 11 NTRA parameters to
classify elderly at risk for CHD, CVD, and CHF using multivariate logistic regres-
sion modelling and three different tree-based ML algorithms: random forests (RF),
ADA-Boost (ADA-B), and gradient boosting (GB). Accuracy, precision, sensitivity,
specificity, and AUCROC are used as evaluation metrics. Figure 3.3 depicts the study
workflow. Results from each ML model were assembled over a typology of four predic-
tive comparisons: total classification score, classification by tissue type, tissue-based
feature importance, classification by age. Further model validation was compared for
each ML model using longitudinal CHF data.

Figure 3.3: Workflow of the NTRA study on Cardiovascular risk assessment

3.1.2.1 Results

Descriptive AGES-Reykjavik statistics and NTRA parameters Prior to the
construction of the ML models, descriptive statistics and mean NTRA parameters
were assembled from the AGES-I and AGES-II databases. Tables 3.3 and 3.4contains
a summary of these values. From the total sample size of n = 3,157 subjects who were
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AGES-I Dataset
Cardiac Pathophysiology:

Summary measure: CHD CVD CHF No Condition
Sample size (n)* 628 753 59 2394
Age: Mean (SD) 75.5 (4.7) 75.6 (4.8) 76.6 (5.3) 74.6 (4.8)

Sex (Male) 419 464 34 859
Sex (Female) 209 289 25 1535

Mean NTRA (SD)
Tissue: Parameter: CHD CVD CHF No Condition

Fat Amplitude: N 51.5 (28.5) 53.5 (29.1) 54.8 (25.8) 64.6 (33.9)
Location: µ -118.0 (3.8) -117.9 (3.7) -116.6 (4.2) -117.8 (3.2)

Width: σ 9.6 (6.8) 9.2 (6.5) 8.4 (4.8) 7.9 (5.7)
Skewness: α -2.8 (2.2) -2.7 (2.2) -2.3 (1.4) -2.4 (2.0)

Connective Amplitude: N 43.6 (9.0) 43.2 (9.0) 43.2 (10.4) 41.2 (8.2)
Location: µ -14.5 (28.2) -16.7 (28.3) -21.0 (28.2) -26.3 (28.3)

Width: σ 24.3 (6.0) 24.5 (5.9) 24.9 (6.1) 25.3 (5.7)
Muscle Amplitude: N 82.4 (18.9) 81.2 (18.6) 78.3 (19.7) 77.1 (17.6)

Location: µ 61.5 (2.7) 61.4 (2.7) 61.0 (2.9) 61.5 (2.6)
Width: σ 8.5 (2.3) 8.6 (2.2) 8.9 (2.1) 8.6 (2.1)

Skewness: α 2.9 (0.9) 2.9 (0.9) 3.0 (0.7) 2.8 (0.7)

Table 3.3: AGES-I: Summary statistics and nonlinear trimodal regression analysis pa-
rameters with relative standard deviation (SD) by cardiac pathophysiology (coronary
heart disease (CHD), cardiovascular disease (CVD), chronic heart failure (CHF), and
no condition).

present for both studies, there were no changes in subsamples for CHD or all-type CVD
(n = 628 and 753, respectively). However, the number of subjects with CHF increased
from n = 59 to 183 in the five years between these datasets. Mean NTRA parameters
were similar between subjects presenting with cardiovascular pathophysiology, but
amplitude (N), location µ, and width σ parameters differed somewhat for individuals
with no condition.

ML models: Total classification scores: K-fold cross-validation with k =
12 Prior to the generation of ML models, the SMOTE technique was applied for
all cardiac conditions to obtain a balanced data-set with an equal distribution of sick
and healthy people. In this phase, the 11 NTRA parameters were employed to make
the predictions with GB, RF and ADA-B. K-fold cross-validation was employed three
times (k = 8,10, and 12) to compute the pathophysiology predictions; here, the 12-fold
cross-validation was empirically found to be the best option for predicting all three
conditions. The results from k = 12 analyses are summarized in Table 3.5 and the
respective ROC curves are shown in Fig. 3.4.

Regarding the ML analyses, CHF was classified with the highest overall scores;
specifically, the RF method yielded the best results, evidenced by an accuracy of
95.9%, an exceptionally high AUCROC of 0.994, and all additional scores above 95.0%.
Nevertheless, ADA-B likewise surpassed 90.0% accuracy and obtained a high AUCROC
(0.987). Concerning the CHD condition, ADA-B again obtained the second highest
accuracy among all pathophysiologies, and RF was again the best algorithm (85.0% in
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AGES-II Dataset
Cardiac Pathophysiology:

Summary measure: CHD CVD CHF No Condition
Sample size (n)* 628 753 183 2322
Age: Mean (SD) 80.7 (4.7) 80.8 (4.8) 82.3 (5.3) 79.7 (4.8)

Sex (Male) 419 464 96 831
Sex (Female) 209 289 87 1491

Mean NTRA (SD)
Tissue: Parameter: CHD CVD CHF No Condition

Fat Amplitude: N 52.7 (28.9) 54.2 (29.3) 58.8 (29.6) 64.6 (33.9)
Location: µ -117.0 (5.3) -116.8 (5.9) -115.9 (4.5) -117.3 (4.2)

Width: σ 9.1 (6.2) 8.9 (6.0) 8.5 (5.2) 7.9 (5.6)
Skewness: α -2.7 (2.0) -2.6 (2.0) -2.7 (1.8) -2.4 (1.9)

Connective Amplitude: N 43.9 (9.7) 43.4 (9.6) 42.2 (10.2) 41.4 (9.0)
Location: µ -17.7 (27.3) -19.2 (27.6) -27.7 (30.7) -27.6 (28.0)

Width: σ 23.9 (5.5) 24.0 (5.6) 22.2 (5.3) 24.9 (5.5)
Muscle Amplitude: N 76.3 (18.4) 75.0 (18.2) 69.8 (17.7) 72.0 (17.1)

Location: µ 60.9 (2.9) 60.7 (3.0) 59.5 (3.2) 61.0 (2.8)
Width: σ 9.1 (2.5) 9.1 (2.5) 10.1 (3.4) 9.1 (2.6)

Skewness: α 2.9 (0.8) 2.9 (0.8) 3.2 (0.9) 2.9 (0.8)

Table 3.4: AGES-II: Summary statistics and nonlinear trimodal regression analysis
parameters with relative standard deviation (SD) by cardiac pathophysiology (coro-
nary heart disease (CHD), cardiovascular disease (CVD), chronic heart failure (CHF),
and no condition). Note: *From the total sample size of n = 3,157 subjects that
participated in both the AGES-I and AGES-II studies, 585 individuals presented with
more than one cardiac pathophysiology.

Alg Acc Mean Acc Max Sens Spec Prec AUCROC

CHD
GB 75.9 77.7 70.0 81.7 79.3 0.864
RF 85.0 87.4 81.7 88.4 87.6 0.936

ADA-B 79.5 82.2 74.9 84.1 82.4 0.873

CVD
GB 73.1 75.7 67.1 79.1 76.2 0.834
RF 82.1 83.9 78.8 85.5 84.5 0.914

ADA-B 70.2 77.0 63.3 77.2 73.5 0.766

CHF
GB 88.6 90.3 85.0 92.1 91.5 0.962
RF 95.9 96.5 95.0 96.9 96.8 0.994

ADA-B 94.0 95.4 92.1 95.8 95.7 0.987

Table 3.5: The 11 nonlinear trimodal regression analysis parameters were used to assess
cardiovascular risks through machine learning algorithms. The evaluation metrics [%]
by cardiac pathophysiology were computed.



34 CHAPTER 3. AGING STUDY

Figure 3.4: ROC curves for coronary heart disease (CHD), cardiovascular disease
(CVD) and chronic heart failure (CHF) classification with K-fold cross-validation and
nonlinear trimodal regression analysis by k = 12

accuracy and AUCROC of 0.936). CVD was likewise accurately predicted, although
the condition yielded the weakest overall results among the three, with a highest
achieved predictive accuracy of 82.1% obtained from the RF method and AUCROC
of 0.914.

ML Models: NTRA-based classification by tissue type ML analyses were
further employed with features grouped by the three tissue types defined by their
inherent NTRA parameters, as described: N, µ, σ, and α for fat and lean muscle,
and N, µ, and σ for loose connective tissue. Table 3.6 details the evaluation metrics
computed per ML algorithm in this regard, defined by each tissue type and cardiac
pathophysiology.

When predicting cardiac pathophysiology from NTRA defined tissue type (Fig 3.6),
the best results were again obtained from RF models; CHF was predicted with mean
accuracies of 88.4%, 89.6% and 86.6% for fat, muscle, and connective tissue, respec-
tively. Fat’s features, in general, yielded the best overall predictive value for CHF. In
comparison, CHD was predicted with an accuracy of 79.6% by fat and muscle, and
78.4% by connective tissue; all tissues yielded nearly identical overall predictive re-
sults. In predicting CVD, the tissues, commensurate with the previous ML results,
obtained the lowest overall scores (under 80.0%). The highest model performances,
in accordance with AUCROC, were achieved with the prediction of CHF, wherein all
models surpassed the value of 0.9.

ML Models: Tissue-based feature importance Next, feature importance was
computed and grouped again by tissue type defined by NTRA parameters, allowing
for the comparison of the respective contributions from fat, muscle, and connective
tissue NTRA values towards the accuracy of pathophysiology prediction. These tissue
contributions are detailed in Fig. 3.5, alongside an example of a segmented false-color
CT cross-section that illustrates the morphology of each NTRA tissue type.

ML Models: NTRA-based classification by age We additionally sought to il-
lustrate whether the excellent classification scores identified in initial ML analyses held
with respect to age, indicating their relative dependencies. From the original database,
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Tissue Alg Acc Mean Acc Max Sens Spec Prec AUCROC

CHD

Fat
GB 73.8 75.2 69.6 78.0 75.9 0.828
RF 79.6 82.2 76.1 83.1 81.8 0.884

ADA-B 63.9 65.0 52.0 75.8 68.3 0.674

Conn
GB 74.3 77.5 70.0 78.6 76.6 0.824
RF 78.4 80.2 74.4 82.4 80.9 0.876

ADA-B 63.3 65.4 56.3 70.5 65.6 0.680

Muscle
GB 74.0 76.4 69.0 78.9 76.6 0.824
RF 79.6 82.2 76.6 82.6 81.4 0.885

ADA-B 63.6 66 63.3 63.9 63.7 0.673

CVD

Fat
GB 71.0 73.3 66.1 75.8 73.2 0.794
RF 76.8 78.1 73.8 79.8 78.5 0.855

ADA-B 61.5 64.1 50.8 72.2 64.7 0.645

Conn
GB 71.3 74.3 66.0 76.7 73.9 0.792
RF 76.1 78.5 71.8 80.3 78.5 0.846

ADA-B 61.6 63.4 58.3 64.8 62.4 0.654

Muscle
GB 70.2 72.8 65.0 75.5 72.6 0.788
RF 76.8 78.9 73.7 79.9 78.6 0.854

ADA-B 60.7 63.8 56.8 64.6 61.6 0.644

CHF

Fat
GB 83.0 85.0 80.2 85.9 85.0 0.918
RF 88.4 90.0 87.3 89.4 89.2 0.956

ADA-B 85.6 88.7 83.3 88.0 87.4 0.927

Conn
GB 82.4 83.8 80.2 84.6 83.9 0.907
RF 86.6 87.6 86.5 86.7 86.7 0.939

ADA-B 82.9 85.2 80.9 84.9 84.3 0.905

Muscle
GB 84.0 86.5 81.4 86.6 85.8 0.922
RF 89.6 91.2 89.4 89.8 89.8 0.96

ADA-B 87.4 89.1 85.7 89.2 88.8 0.943

Table 3.6: The 11 nonlinear trimodal regression analysis parameters grouped by tissue
type (fat, connective and muscle) were used to assess cardiovascular risks through
machine learning algorithms and evaluation metrics [%] were computed.
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Figure 3.5: Results from tissue-based machine learning feature importance. (A) Ex-
ample of a segmented false-color CT cross-section to illustrate the morphology of fat
(orange), loose connective (blue), and lean muscle (red) tissue. (B) Total model ac-
curacy (%) for each algorithm and cardiac pathophysiology, visually illustrating (with
analogous colors) the compositional accuracy of each model with respect to tissue type.
(C) Compositional accuracy (%) for each model with respect to tissue type.

individuals were classified into three subgroups according to their age: 66–75, 76–84,
and 85–98 years old. Results from these analyses are shown in Table 3.7.

For CVD, the maximum classification accuracy and AUCROC with no age group-
ing were 82.1% and 0.914; splitting into three groups, RF kept on being the best
algorithm and showed an accuracy between 78.0% and 85.4%, and an AUCROC be-
tween 0.875 and 0.937. Concerning CHD, the best accuracy and AUCROC were 85.0%
and 0.937, respectively; subgrouping by age, RF obtained an accuracy above 82.0%
for all subgroups and an AUCROC above 0.9 for each group. Finally, CHF showed
again the best results with an accuracy range between 88.6% and 95.6% and AUCROC
between 0.962 and 0.994 through RF. Despite subgrouping by age, results were still
excellent,presenting an accuracy range of 92.6% to 97.9% and AUCROC between 0.981
and 0.998. These results confirm that ML classification is accurate, independent from
age as a confounder, and considering the operation of these algorithms, it is further
reasonable to assume an analogous classification independence from sex in prediction.
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Age Alg Acc Mean Acc Max Sens Spec Prec AUCROC

CHD

66-75
GB 79.0 81.7 73.6 84.5 82.6 0.883
RF 87.5 90.2 83.7 91.3 90.5 0.953

ADA-B 84.3 89.3 79.5 89.2 88.0 0.920

76-83
GB 75.9 79.7 69.5 82.3 79.7 0.862
RF 85.3 87.4 82.9 87.7 87.1 0.930

ADA-B 77.0 82.3 71.0 83.0 80.7 0.836

84-98
GB 72.8 81.1 79.4 66.2 70.2 0.825
RF 82.0 86.2 86.3 77.7 79.4 0.908

ADA-B 71.3 81.0 81.0 61.7 61.7 0.769

CVD

66-75
GB 76.4 79.6 70.9 81.9 79.6 0.868
RF 85.4 88.0 81.7 89.1 88.2 0.937

ADA-B 78.3 82.1 73.6 83.1 81.3 0.858

76-83
GB 72.0 76.2 66.4 77.6 74.8 0.817
RF 80.6 82.4 78.5 81.9 82.7 0.890

ADA-B 66.1 73.2 61.1 71.2 68.0 0.725

84-98
GB 68.9 76.2 77.2 60.6 66.2 0.786
RF 78.0 88.9 83.7 72.4 75.2 0.875

ADA-B 62.9 67.6 64.3 61.5 62.5 0.659

CHF

66-75
GB 93.8 95.0 91.5 96.0 95.8 0.981
RF 97.9 99.2 97.5 98.4 98.4 0.998

ADA-B 97.5 98.7 96.2 98.8 98.8 0.997

76-83
GB 88.1 90.5 84.6 91.7 91.0 0.963
RF 96.0 97.0 94.7 97.4 97.3 0.995

ADA-B 94.2 96.4 92.2 96.1 95.9 0.986

84-98
GB 82.6 87.8 88.2 76.9 79.2 0.921
RF 92.6 96.4 92.8 92.4 92.4 0.981

ADA-B 89.9 93.5 92.5 87.2 87.9 0.964

Table 3.7: The 11 nonlinear trimodal regression analysis parameters were used to
assess cardiovascular risks on subjects grouped by age [years] through ML algorithms
and evaluation metrics [%] were computed.
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Alg Acc Mean Acc Max Sens Spec Prec AUCROC

CHF
GB 88.3 90.3 85.5 91.2 90.7 0.959
RF 95.5 97.0 93.7 97.3 97.2 0.993

ADA-B 94.3 95.8 96.2 92.3 96.0 0.986

Table 3.8: The 11 nonlinear trimodal regression analysis parameters from AGES-I
were used to predict the presence of chronic heart failure in AGES-II through machine
learning algorithms and evaluation metrics [%] were computed.

ML Models: NTRA-based longitudinal assessment In order to validate the
ML prediction results, a cross sectional dataset obtained between AGES-I and AGES-
II was used; here, only CHF was possible to assess due to no change in the number of
individuals who received a CVD or CHD diagnosis between the two study timepoints.
To test the predictive potential of our ML models against the diagnosis of CHF, an
incidence index was defined; here, the null condition ‘0’ was assigned as a control to
subjects without CHF in either AGES-I or AGES-II, whereas ‘1’ was assigned to those
without CHF in AGES-I but with the condition in AGES-II. This method thereby
removed all individuals presenting CHF at both timepoints. Table 3.8 illustrates the
results from predicting CHF incidence using each of the aforementioned ML models.
As shown in Table 3.8 , the RF method again yielded the best predictive accuracy
(95.2%) and AUCROC (0.993) for the prediction of CHF incidence. In contrast, ADA-
B was analogously second-best in predictive accuracy (94.3%), and GB was the least
accurate of the three (88.3%). Nonetheless, each ML algorithm surpassed an AUCROC
value of 0.95, as well as specificity and precision values greater than 90.0%.

3.1.2.2 Discussion of the main findings

Deleterious changes in skeletal muscle in patients with poor cardiovascular health out-
comes have been discussed in literature. Patients with CHF have been shown to de-
velop significant ultrastructural abnormalities in their skeletal muscle, suggesting poor
muscle oxidative capacity as reflected by decreased exercise capacity [249]. Indeed,
abnormal skeletal muscle function, increased thigh intermuscular fat, and reduced ex-
ercise capacity have been cited as primary chronic symptoms in heart failure patients
with preserved ejection fraction [250]. However, literature on the use of ML-modelling
for the prediction of these conditions remains scarce, despite recent systematic review
evidence that highlights its promising utility in datamining and classifying health out-
comes [251].
At the time of this work, only one study could be found that reports using ML-
modelling of CT images to classify individuals according to cardiovascular health out-
comes. In this study, coronary CT angiography images were combined with ML-
modelling to develop an artificial intelligence-based imaging biomarker to predict my-
ocardial infarction in healthy subjects [252]. However, the use of CT images of skeletal
muscle for classifying cardiovascular health outcomes remains unreported. Further-
more, the methodological heterogeneity between ML-based clinical studies is generally
high, as predictive parameters or ML methods remain largely study-specific and un-
standardized. As such, the present work aimed to explore ML-modelling techniques
to classify individuals diagnosed with CHD, CVD, and CHF using CT-based NTRA
parameters as a quantitative construct for skeletal muscle health.
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It is likewise important to discuss the pathophysiological characteristics of the three
cardiovascular outcomes utilized in this study to interrogate the particular predictive
strength of CHF and relative similarity in prediction of CVD and CHD. Firstly, CVD
is understood as an overarching typology of cardiovascular conditions that includes
CHD alongside a host of other disease types, such as atherosclerosis or myocardial
infarction [253]. As such, the comparative prediction of all-type CVD and CHD may
be expected to be relatively similar. Contrastingly, CVD and CHD have been impli-
cated as a primary etiology of CHF alongside other key comorbidities such as diabetes
[254]. As such, while CHF may be a downstream consequence of CVD or CHD, its
prediction likely relies on additional exogenous factors and may therefore be relatively
independent.
From our ML models, there were again similarities between the classification accu-
racy of CVD and CHD, while CHF classification consistently outperformed the other
two conditions. Nevertheless, all three conditions yielded high overall accuracies and
excellent AUCROC values, suggesting the high general utility of NTRA-based mod-
elling for all outcomes. Regarding tissue-based feature importance (Fig. 3.5), several
key insights are shown, with differences apparent between cardiovascular conditions.
Firstly, fat had a predominate role in classifying CHD (41.0%), while muscle had a
comparatively minor contribution (11.9%). Contrastingly, lean muscle gave the high-
est contribution in classifying CHF (41.0%), while connective tissue yielded the lowest
contribution (24.9%). Finally, fat and connective tissue gave almost the same contribu-
tion in classifying CVD (about 33.2% and 31.3%, respectively), while lean muscle was
comparatively much lower (17.6%). These condition-based differences in classification
indicate the potential specificity of tissue types to each condition, further suggesting
the importance of segmenting classifying parameters by these three tissue types, which
is one of the key features of NTRA computational modelling.

The value of the present work In general, this work features several key novelties
for the use of skeletal muscle to classify cardiovascular health in advanced age. Firstly,
we describe the NTRA computational modelling method, wherein radiodensitometric
distributions from CT image cross-sections yield 11 subject-specific soft-tissue param-
eters that altogether present a robust and standardizable construct for quantifying
muscle degeneration. This method has shown sensitivity and specificity to lower-
extremity function and nutritional parameters in previous investigations [141][142],
but the present use of these parameters to classify cardiovascular health outcomes is
new. Finally, we validate the ML classification results using longitudinal CHF data to
independently model the prediction of CHF incidence.
Altogether, a key advantage of this methodology is its derivation from CT images.
As a non-invasive and standardized imaging modality that is widely utilized for diag-
nostic applications and pathophysiological monitoring, CT-derived HU distributions
of soft-tissue radiodensity can be directly compared across clinical contexts. As such,
the present use of NTRA-based classification is highly reproducible and can be readily
built into existing CT analysis frameworks for patient evaluation. This tool can be
further adapted into additional ML-based platforms for the detection and monitoring
of adverse health outcomes, like the ones presented in the next chapter 3.1.3. Alto-
gether, the present work serves as a substantial step forward in the construction of
reproducible tools for associating skeletal muscle changes with cardiovascular health
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outcomes in elderly individuals.

Limitations As the AGES-Reykjavik study consisted of otherwise-healthy volun-
teers (presenting with or without various pathologies), standard clinical measurements
of key cardiac functions, such as coronary perfusion or ejection fraction measurement,
were absent from the dataset. However, the validity of our results would be strength-
ened by the classification of these intermediate clinical measurements, as the outcomes
of CVD, CHD, and CHF are largely heterogeneous in nature. The future use of our
reported methods with clinical cardiovascular data would likewise allow for the inter-
rogation of the causal relationship between cardiac health outcomes and changes in
radiodensitometric NTRA values. Further testing of this relationship using indepen-
dent patient cohorts may likewise be needed to further refine our ML models.
Finally, while evidence for the classifying power of ML-modelling continues to grow, its
literature base still lacks a standardized methodology, and the mechanisms governing
some of these classifications may remain unclear. As such, exploring the contextual
value of different ML-modelling algorithms remains essential.

3.1.3 NTRA & Lifestyle factors: Diabetes and Hypertension
prediction

The present section reports the results from the second significant publication relative
to the AGES studies with ML and NTRA parameters. It is adapted from the paper
published on IEEE Journal of Biomedical and Health Informatics [2].

Smoking and low physical activity have been broadly associated with deleterious
health outcomes in aging populations, but it remains unclear whether these relation-
ships may be intercorrelated or modified by the degeneration of skeletal muscle. As
such, the main objective of the present work was to interrogate the relationship be-
tween NTRA parameters and lifestyle health in the prediction of diabetes mellitus
(DM) and hypertension (HTN) using multilevel Machine Learning (ML) classifica-
tion. This work was performed using a large cohort of elderly subjects from the
population-based AGES-Reykjavík Study database. Subjects were first classified by
lifestyle health, followed by DM or HTN comorbidity diagnoses, followed by cardiovas-
cular pathophysiology diagnoses. This classification methodology ultimately yielded
a three-level binary tree. Fig.3.6 shows the workflow of this study: the 11 NTRA
parameters extracted from the CT-scans and the pathologies data fill the database,
which is used to create the binary tree, then ML tree-based algorithms are used to
classify the subjects according to their pathology.

3.1.3.1 Materials and Methods

The cohort for the present work contained 2,943 subjects, yielding a total ‘AGES-I+II’
database size of 5,886 records.

Three-Level binary Tree: Lifestyle Health Index and Comorbidities Classi-
fication Methods To construct the three-level binary tree for the present analyses,



3.1. SOFT TISSUE RADIODENSITOMETRIC PARAMETERS FROM
MID-THIGH CT SCAN 41

Figure 3.6: Workflow of the IEEE Journal of Biomedical and Health Informatics Study

a binary lifestyle health index (‘Healthy’: LSH versus ‘Not Healthy’: LSNH) was
defined using smoking status and self-reported physical activity as key lifestyle param-
eters from AGES-I data.
Subjects were divided into three classes according to their smoking status: ‘never
smoked’, ‘smoke regularly’ (100 cigarettes or 20 cigars in lifetime), and ‘current smoker’.
Next, five categories of physical activity frequency were defined for both past (youth
or midlife) and present levels (within 12 months of the survey): ‘never’, ‘rarely’, ‘occa-
sionally’, ‘moderate’ and ‘high’. LSH individuals (n = 467) were defined as those with
no smoking history who reported, at a minimum, occasional past and present physical
activity, while the LSNH group included all other individuals (n = 2,477).
The second level, ‘DM/HTN Comorbidities’, divides patients with neither a DM or
HTN diagnosis from those with at least one of the two comorbidities. The third level,
‘Cardiac Pathophysiology’, differentiates subjects who received a diagnosis for either
CVD, CHD, or CHF from those without any cardiac pathophysiology.
Altogether, this classification methodology ultimately produced the three-level binary
tree represented in Fig.3.7.

Machine Learning and Evaluation Metrics In the present ML classification
analyses three tree-based algorithms (RF, ADA-B, and GB) were employed. The
performances were evaluated after applying 10-fold cross-validation. Six evaluation
metrics were considered: accuracy (Acc.), precision (Prec.), sensitivity (Sens.), speci-
ficity (Spec.), F-measure (F-Meas.), and Area Under the Curve Receiver Operating
Characteristics (AUCROC). These metrics were computed both with and without
SMOTE.
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Figure 3.7: Three-Level binary tree of the IEEE Journal of Biomedical and Health
Informatics Study

Tissue Parameter LSH [n=467]
Mean ± SD

LSNH [n=2477]
Mean ± SD P-value

Fat

Amplitude: N 63.36 ± 33.85 61.70 ± 33.01 0.288
Location: µ -117.88 ± 2.80 -117.82 ± 3.42 0.593

Width: σ 8.23 ± 6.91 8.28 ± 5.82 0.000***
Skewness: α -2.51 ± 2.23 -2.49 ± 2.05 0.328

Muscle

Amplitude: N 77.82 ± 16.69 78.39 ± 18.23 0.568
Location: µ 61.79 ± 2.49 61.42 ± 2.69 0.008**

Width: σ 8.32 ± 1.96 8.69 ± 2.19 0.001***
Skewness: α 2.70 ± 0.74 2.86 ± 0.76 0.000***

Connective
Amplitude: N 40.47 ± 8.02 42.02 ± 8.50 0.000***

Location: µ -26.60 ± 30.46 -23.45 ± 28.25 0.004**
Width: σ 25.41 ± 5.99 25.04 ± 5.69 0.063

Table 3.9: The Influence Of Lifestyle Health On Ntra Parameters (*p<0.05; **p<0.01;
***p<0.001)

3.1.3.2 Results

Univariate Statistical Analyses Across Binary Tree Levels For all three levels
of the binary tree, univariate statistical analyses between node couples were performed
in order to interrogate the independent roles of each NTRA parameter. All NTRA
parameters underwent a Kolmogorov-Smirnov test and were not found to follow a nor-
mal distribution; as such, Mann-Whitney tests were performed for all comparisons.
Pairwise statistics were first assessed at the topmost level of the binary tree (between
the LSH and LSNH groups), and the results are shown in Table 3.9.
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These results show that, in distinguishing between LSH and LSNH groups, differ-
ences in lean muscle NTRA parameters were preeminent; muscle µ, σ, and α were
all statistically significant (p = 0.008, p = 0.001, and p = 0.000, respectively). In
contrast, two connective tissue parameters were significantly different between groups,
N (p = 0.000) and µ (p = 0.004), along with only one fat tissue parameter, σ (p =
0.000).
Table 3.10 contains the results from pairwise statistical assessment across the second
level of the binary tree, which further separates LSH and LSNH individuals according
to their diagnosis of DM or HTN. There were no significant differences between people
affected by DM or HTN within the LSH group, but this may be primarily due to
the large difference in sample sizes between the sub-groups. On the other hand, in
the LSNH group, there were several significant NTRA parameter differences between
individuals with either comorbidity and those without. In fat tissue, N (p = 0.047)
and µ (p = 0.048) parameters were significantly different, as well as lean muscle σ (p
= 0.011) and connective tissue N (p = 0.000).
Finally, Table 3.11 contains the results obtained from pairwise comparison across the
third level of the tree, in order to assess the potential influence of cardiac pathophys-
iology (CVD, CHD, or CHF). Pairwise comparisons of LSH individuals without an
DM or HTN diagnosis were excluded at this level due to insufficient sample sizes for
meaningful statistical comparison within these sub-groups. Results show that when
distinguishing between individuals with or without a cardiac condition, the most sig-
nificant NTRA differences occur in fat and connective tissues. This is particularly
evidenced in LSNH individuals with diagnosed DM or HTN, where all fat and connec-
tive parameters were significantly different (with the exception of fat µ), compared to
only one muscle parameter, N. In contrast, in LSH individuals, two fat parameters, N
(p = 0.009) and σ (p = 0.006), were significantly different along with two connective
tissue parameters, µ (p = 0.020) and σ (p = 0.000).

Machine Learning Classification Across Binary Tree Levels Results from
ML analyses using SMOTE are presented in Table 3.12. Since the present dataset
was imbalanced across groups, all ML analyses were performed both with and without
SMOTE. The results without SMOTE are shown in Table 3.13.
Regarding LSH and LSNH classification (first level), the RF algorithm achieved the
best results across all evaluation metrics, with an accuracy of 85.4% and AUCROC of
0.935. In contrast, the ADA-B model obtained middling results (80.1% in accuracy
and 0.881 in AUCROC), while the GB model yielded the lowest scores across all eval-
uation metrics.
Concerning the second level classification within the LSH group, the RF algorithm
again resulted excellent classification scores, achieving an accuracy of 90.2% and an
AUCROC of 0.978 for detecting DM or HTN. Similarly, second-level classification in
the LSNH group with the RF algorithm yielded an accuracy of 94.6% and an AU-
CROC of 0.990. However, in both second-level classifications, the ADA-B model gave
similarly high scores to the RF model in accuracy and AUCROC, even outperforming
the RF model in accuracy, sensitivity, and F-measure in the LSH group. Across all
comparisons, the GB algorithm again achieved the lowest scores, with the sole excep-
tion of F-measure for second-level classification within the LSNH group, where the GB
model gave the highest value.
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Tissue Parameter DM or HTN P-value
No [n=30]

Mean ± SD
Yes [n=437]
Mean ± SD

LSHGroup

Fat

Amplitude: N 55.71 ± 30.10 63.89 ± 34.06 0.192
Location: µ -117.58 ± 2.74 -117.90 ± 2.80 0.325
Width: σ 7.94 ± 5.87 8.25 ± 6.98 0.924

Skewness: α -2.35 ± 1.09 -2.52 ± 2.29 0.406

Muscle

Amplitude: N 74.59 ± 16.12 78.05 ± 16.73 0.148
Location: µ 62.08 ± 2.79 61.77 ± 2.47 0.802
Width: σ 7.79 ± 1.57 8.35 ± 1.98 0.071

Skewness: α 2.68 ± 0.53 2.70 ± 0.75 0.940

Connective
Amplitude: N 38.20 ± 7.93 4.63 ± 8.01 0.161
Location: µ -24.96 ± 28.55 -26.71 ± 30.61 0.783
Width: σ 26.74 ± 5.90 25.32 ± 5.99 0.268

LSNHGroup

No [n=116]
Mean ± SD

Yes [n=2361]
Mean ± SD

Fat

Amplitude: N 57.69 ± 34.00 61.90 ± 32.96 0.047*
Location: µ -118.23 ± 3.51 -117.81 ± 3.42 0.048*
Width: σ 8.82 ± 6.56 8.25 ± 5.78 0.570

Skewness: α -2.79 ± 2.78 -2.48 ± 2.01 0.422

Muscle

Amplitude: N 77.47 ± 17.99 78.43 ± 18.24 0.528
Location: µ 61.50 ± 2.08 61.42 ± 2.72 0.933
Width: σ 8.17 ± 1.97 8.71 ± 2.19 0.011*

Skewness: α 2.72 ± 0.76 2.86 ± 0.76 0.053

Connective
Amplitude: N 39.09 ± 8.51 41.16 ± 8.47 0.000***
Location: µ -20.74 ± 30.35 -23.58 ± 28.15 0.357
Width: σ 25.37 ± 6.21 25.02 ± 5.66 0.228

Table 3.10: The Influence of DM And HTN on NTRA Parameters Between LSH And
LSNH Individuals (*p<0.05; **p<0.01; ***p<0.001)
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LSH

Tissue Parameter CVD, CHD, or CHF
No [n=354]
Mean ± SD

Yes [n=83]
Mean ± SD P-value

Fat

Amplitude: N 65.56 ± 34.14 56.77 ± 32.99 0.009**
Location: µ -117.92 ± 2.72 -117.80 ± 3.16 0.776
Width: σ 8.05 ± 7.17 9.10 ± 6.09 0.006**

Skewness: α -2.49 ± 2.29 -2.67 ± 2.31 0.166

Muscle

Amplitude: N 77.23 ± 16.38 81.55 ± 17.81 0.058
Location: µ 61.77 ± 2.44 61.80 ± 2.60 0.920
Width: σ 8.31 ± 1.87 8.55 ± 2.38 0.446

Skewness: α 2.68 ± 0.71 2.81 ± 0.91 0.148

Connective
Amplitude: N 40.39 ± 8.00 41.65 ± 8.01 0.082
Location: µ -28.16 ± 29.17 -20.51 ± 35.66 0.020*
Width: σ 25.83 ± 5.83 23.11 ± 6.20 0.000***

LSNH

No [n=1707]
Mean ± SD

Yes [n=654]
Mean ± SD

Fat

Amplitude: N 64.95 ± 33.97 53.94 ± 28.70 0.000***
Location: µ -117.77 ± 3.28 -117.90 ± 3.75 0.325
Width: σ 7.94 ± 5.50 9.07 ± 6.37 0.000***

Skewness: α -2.41 ± 1.97 -2.66 ± 2.08 0.001**

Muscle

Amplitude: N 77.47 ± 17.93 80.94 ± 18.82 0.000***
Location: µ 61.40 ± 2.71 61.46 ± 2.75 0.536
Width: σ 8.75 ± 2.18 8.62 ± 2.21 0.192

Skewness: α 2.85 ± 0.68 2.91 ± 0.91 0.189

Connective
Amplitude: N 41.71 ± 8.21 43.34 ± 9.02 0.000***
Location: µ -26.02 ± 28.01 -17.21 ± 27.53 0.000***
Width: σ 25.17 ± 5.60 24.63 ± 5.80 0.036*

Table 3.11: The Influence of Cardiac Pathophysiology on NTRA Parameters Be-
tween LSH and LSNH Subjects affected by either DM or HTN (*p<0.05; **p<0.01;
***p<0.001)

LSH and LSNH (first level of the tree)
Alg. Acc. Prec. Sens. Spec. F-Meas. AUCROC
RF 85.4 88.2 81.9 89.0 84.9 0.935
GB 73.8 75.9 69.8 77.8 72.7 0.845

ADA-B 80.1 82.3 76.6 83.6 79.4 0.881
LSH and DM or HTN (second level of the tree)

RF 90.2 96.6 83.3 97.0 89.4 0.978
GB 85.4 89.7 79.9 90.8 84.5 0.929

ADA-B 90.5 94.7 85.8 95.2 90.0 0.973
LSNH and DM or HTN (second level of the tree)

RF 94.6 96.3 92.7 96.4 94.5 0.990
GB 85.5 87.8 82.4 88.6 95.0 0.944

ADA-B 92.5 94.6 90.1 94.9 92.3 0.977

Table 3.12: Evaluation Metrics [%] for RF, GB, and ADA-B Algorithms Applied to
the Present Tree with SMOTE
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LSH and LSNH (first level of the tree)
Alg. Acc. Prec. Sens. Spec. F-Meas. AUCROC
RF 83.9 84.1 99.6 0.04 91.2 0.593
GB 73.2 85.0 82.7 22.7 83.8 0.593

ADA-B 81.4 84.7 95.2 0.09 89.6 0.543
LSH and DM or HTN (second level of the tree)

RF 93.6 93.6 100 0 0.967 0.448
GB 85.4 93.4 90.8 0.07 92.1 0.467

ADA-B 92.7 93.5 99.1 0 0.962 0.451
LSNH and DM or HTN (second level of the tree)

RF 95.3 95.3 100 0 97.6 0.55
GB 89.9 95.5 93.8 9.5 94.6 0.537

ADA-B 94.7 95.3 99.3 0.1 97.3 0.535

Table 3.13: Evaluation Metrics [%] for RF, GB, and ADA-B Algorithms Applied to
the Present Tree without SMOTE

Evaluation metrics for the classification of DM
Alg. Acc. Prec. Sens. Spec. F-Meas. AUCROC
RF 90.0 87.7 93.0 86.9 90.3 0.967
GB 79.7 77.6 83.6 75.8 80.5 0.899

ADA-B 86.2 83.5 90.2 82.2 86.7 0.945
Evaluation metrics for the classification of HTN

RF 86.7 85.2 78.7 93.1 81.8 N/A
GB 79.7 77.7 69.0 90.1 73.0 N/A

ADA-B 81.6 77.6 71.8 89.6 74.6 N/A

Table 3.14: Classification metrics [%] of DM and HTN, Independent from Lifestyle
Index with SMOTE

Independent Classification of DM and HTN To compare the detection of DM
and HTN independent from lifestyle index, analogous ML models were constructed
and compared. Results from these analyses are shown in Table 3.14 (with SMOTE)
and Table 3.15 (without SMOTE).
These scores again suggest that the RF algorithm is optimum for classifying the pres-
ence of either DM or HTN from NTRA parameters, as primarily evidenced by ex-
cellent evaluation metrics in the detection of DM (90.0% and 0.967 for accuracy and
AUCROC, respectively). RF scores were likewise high for the classification of HTN;
however, AUCROC scores were not available for comparison, as HTN was presented
in three classes.

Independent Classification of DM and HTN by Tissue Type In order to
understand the tissue-based importance of NTRA parameters in predicting DM or
HTN, the 11 parameters were grouped by tissue type and used to classify DM and
HTN similarly to what was done previously in the cardiac pathophysiology chapter
3.1.2. Results from these models were then assessed for comparative tissue feature
importance in each classification. These results showing classification by tissue type
are shown in Table 3.16 (with SMOTE) and Table 3.17 (without SMOTE), and tissue
importance is represented in Fig. 3.8
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Evaluation metrics for the classification of DM
Alg. Acc. Prec. Sens. Spec. F-Meas. AUCROC
RF 89.6 0 0 100 NaN 0.655
GB 82.5 17.2 18.5 89.8 17.8 0.597

ADA-B 87.7 18.3 5.6 97.1 8.6 0.589
Evaluation metrics for the classification of HTN

RF 78.4 78.7 0.2 99.4 0.4 N/A
GB 93.3 79.4 90.8 12.3 84.7 N/A

ADA-B 73.3 78.9 91.4 9.5 84.7 N/A

Table 3.15: Classification metrics [%] of DM and HTN, Independent from Lifestyle
Index without SMOTE

The classification of DM by tissue type
Tissue Alg. Acc. Prec. Sens. Spec. F-Meas. AUCROC

Fat
RF 82.9 80.6 86.7 79.1 83.5 0.910
GB 74.7 73.2 78.0 71.4 75.5 0.839

ADA-B 72.0 69.6 78.0 66.0 73.6 0.782

Muscle
RF 82.9 81.2 85.6 80.1 83.3 0.907
GB 74.8 73.2 78.4 71.2 75.7 0.841

ADA-B 68.4 69.1 66.7 70.1 67.9 0.757

Connective
RF 79.7 78.1 82.6 76.8 80.3 0.883
GB 75.4 74.2 78.1 72.8 76.1 0.841

ADA-B 68.6 66.8 73.8 63.3 70.1 0.751
The classification of HTN by tissue type

Fat
RF 76.4 72.1 63.7 87.7 67.7 N/A
GB 72.5 66.6 60.6 84.8 63.5 N/A

ADA-B 72.3 65.6 61.2 83.9 81.7 N/A

Muscle
RF 76.1 73.0 66.1 87.8 69.3 N/A
GB 73.0 69.1 63.9 85.7 66.4 N/A

ADA-B 74.1 67.9 64.9 84.7 66.3 N/A

Connective
RF 73.4 70.0 62.0 86.7 65.8 N/A
GB 70.4 66.1 60.2 84.5 63.0 N/A

ADA-B 71.3 65.1 61.3 83.5 63.1 N/A

Table 3.16: Evaluation Metrics [%] for RF, GB, and ADA-B Algorithms when grouping
NTRA Parameters by tissue type with SMOTE
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The classification of DM by tissue type
Tissue Alg. Acc. Prec. Sens. Spec. F-Meas. AUCROC

Fat
RF 89.6 30.8 1.3 99.7 2.5 61.8
GB 81.5 15.1 17.5 88.8 16.3 0.603

ADA-B 88.9 30.0 6.0 98.4 9.9 0.582

Muscle
RF 89.7 0 0 99.9 NaN 0.506
GB 79.8 7.0 7.9 88.0 7.5 0.479

ADA-B 89.7 0 0 99.9 NaN 0.529

Connective
RF 89.3 16.7 1.0 99.4 1.9 0.583
GB 80.9 13.5 15.9 88.4 14.6 0.571

ADA-B 89.1 11.5 1.0 99.1 1.8 0.605
The classification of HTN by tissue type

Fat
RF 77.7 78.8 98.1 1.8 87.4 N/A
GB 71.7 79.0 89.1 11.7 83.7 N/A

ADA-B 74.1 78.8 92.7 7.2 85.2 N/A

Muscle
RF 78.1 78.9 98.7 1.8 87.7 N/A
GB 73.1 79.0 90.8 10.4 85.5 N/A

ADA-B 75.0 78.9 94.0 6.4 85.8 N/A

Connective
RF 77.6 79.0 98.1 3.0 87.5 N/A
GB 72.6 79.5 89.7 14.3 84.3 N/A

ADA-B 78.3 78.8 99.2 1.1 87.9 N/A

Table 3.17: Evaluation Metrics [%] for RF, GB, and ADA-B Algorithms when grouping
NTRA Parameters by tissue type without SMOTE

Each of the three tissue types generally yielded excellent results for the independent
detection of DM and HTN, albeit with lower evaluation scores than our previous ML
models. Fat and muscle had comparatively higher scores than fat across all algorithms,
and RF models again outperformed GB and ADA-B algorithms across nearly all com-
parisons.
Fig. 3.8 shows differences in feature importance by tissue type defined by NTRA
parameters, which allows for the comparison of the respective contributions from fat,
muscle, and connective tissue values towards the accuracy of DM and HTN prediction.
Results from this assessment indicate that fat holds the strongest role in classifying the
presence of both DM and HTN, respectively contributing 47.14% and 35.83% towards
each model’s accuracy. Connective tissue contributed more towards model accuracy
than muscle in both predictive models. This hierarchical importance of fat and con-
nective tissue over muscle is in agreement with results from our pairwise statistical
comparisons and ML models.

Prediction of DM Incidence from Longitudinal Data Finally, a longitudinal
DM assessment was performed to simulate the prediction of DM incidence. Here,
NTRA parameters computed from AGES-I were used to classify individuals who re-
ceived a DM diagnosis between the two study timepoints. In order to perform this
analysis, an incidence index is created similar to what was done for CHF (chapter
3.1.2.1). Table 3.18 and Table 3.19 contain the evaluation metrics from this assess-
ment with and without SMOTE.
This analysis further supports the predictive utility of NTRA parameters in the detec-
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Figure 3.8: Comparative representation of tissue importance in predicting DM and
HTN from NTRA parameters.

Alg. Acc. Prec. Sens. Spec. F-Meas. AUCROC
RF 94.9 97.5 92.3 97.6 94.8 0.991
GB 88.2 90.5 85.3 91.0 87.8 0.956

ADA-B 93.4 96.0 90.6 96.3 93.3 0.984

Table 3.18: Evaluation Metrics [%] in the Longitudinal Prediction of DM Incidence
from AGES-I to AGES-II tith SMOTE

Alg. Acc. Prec. Sens. Spec. F-Meas. AUCROC
RF 96.2 96.2 100 0 98.1 0.636
GB 92.4 96.4 95.6 9.3 96.0 0.631

ADA-B 95.7 96.2 99.4 0 97.8 0.579

Table 3.19: Evaluation Metrics [%] in the Longitudinal Prediction of DM Incidence
from AGES-I to AGES-II without SMOTE

tion of DM incidence. In particular, a combined accuracy of 94.9% with an AUCROC
of 0.991 from the RF model suggests that NTRA parameters can serve as robust quan-
titative indicators for the onset of DM. The ADA-B algorithm achieved similar results,
combining an accuracy of 93.4% with an AUCROC of 0.984, and the GB model was
again outperformed across every evaluation metric.
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3.1.3.3 Discussion of the main findings

Univariate Statistical Analyses The strong age dependency of many chronic dis-
eases and comorbidities likely reflects the cumulative effects from a variety of risk and
protective factors that occur over one’s life course. This notion has become increas-
ingly explored in the etiology of diseases in aging populations. In the previous chapter
we shown the robust classification of individuals at risk for cardiovascular pathophys-
iology using CT-based NTRA parameters. However, investigating the classification
of DM and HTN from radiodensitometry in this regard remained unexplored, along
with the commensurate modifying roles of smoking status and physical activity as key
lifestyle factors.
For the present binary tree, univariate statistical analyses between node couples re-
sulted in significant differences across all levels. In order to best interpret these differ-
ences, it is first important to outline the hypothesized physiological meaning behind
each of the NTRA parameters and their respective tissue types. The amplitude pa-
rameter (N) largely reflects the relative abundance of CT image HU values for a given
tissue, which may be understood as an indirect quantitative indicator for declining
tissue mass [143]. In contrast, the location (µ), width (σ), and skewness (α) terms
generally serve as a multimetric quantitative construct for myosteatosis, a key charac-
teristic of sarcopenic muscle degeneration defined by the reduction of dense contractile
myofibers and commensurate infiltration of non-contractile adipose tissue [156][152].
In CT imaging, this characteristic adipose tissue infiltration drives what is known as
the Partial Volume Effect (PVE), defined as the loss of fidelity in small regions or mor-
phologies due to limitations in spatial resolution [255]. NTRA parameters uniquely
capture this phenomenon, as the accumulation of pixels subject to PVE due to the
presence of myosteatosis yields an increase in fat and lean muscle HU distribution width
and skewness, as well as an inward shift in fat and muscle peak locations toward 0
HU. This may furthermore result in an increase in loose-connective (water-equivalent)
pixels, resulting in an increased amplitude and decreased width in connective NTRA.
In accordance with this physiological interpretation of NTRA, it is possible to infer
whether myosteatosis indicative changes in these parameters are reflected by the dif-
ferent subgroups in the present binary tree. At the first level, where participants were
sorted into LSH and LSNH groups, all of the observed significant differences in NTRA
parameters indeed indicated that physical activity and abstinence from smoking may
protect against sarcopenia. The LSH group had significantly narrower fat and muscle
peaks, higher muscle µ, reduced muscle α, and a smaller connective tissue peak with
its µ further from 0 HU.
At the second level of univariate statistical analyses, which further divided subjects
according to the presence of DM of HTN, significant differences in NTRA values were
less apparent; indeed, there were no significant differences between any of the LSH
subgroups. While this may have been due to the loss of statistical power from progres-
sively smaller subgroup sample sizes, between-group differences in LSNH individuals
again indicated healthier muscle in subjects without a DN or HTN diagnosis. LSNH
subjects presenting with one of these comorbidities yielded significantly higher fat and
connective tissue amplitudes, as well as significantly wider lean muscle distributions
and a significant shift in fat µ values toward 0 HU.
Finally, at the third level, further division according to cardiovascular pathophysiology
diagnosis yielded significant NTRA differences independent of lifestyle classification,
but dependent upon the presence of DM or HTN. For those diagnosed with either
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comorbidity, individuals with CHD, CVD, or CHF again showed NTRA parameters
that were largely indicative of myosteatosis, compared to those in good cardiovascular
health. However, fat and muscle amplitudes showed an inverse relationship in this
regard, where individuals with cardiovascular pathophysiology had significantly higher
muscle amplitudes and lower fat amplitudes.

Machine Learning Classification The differing specificities of NTRA parameters
across levels of the present binary tree motivates the use of more sophisticated classi-
fication methods, such as the three different ML algorithms explored in this work. In
this regard, overall classifications scores from ML analyses consistently indicated that
the GB algorithm performed the poorest of the three, while the RF model scores were
consistently the highest. This is in accordance with our previous ML classification
work with NTRA and cardiovascular diseases, suggesting that the learning technique
of randomization and bagging is optimum for NTRA classification.
ML classification generally yielded high evaluation scores across the first and second
levels of the present binary tree, but with the best performance achieved at the second
level for the classification of LSNH individuals diagnosed with DM or HTN. In par-
ticular, the RF model sensitivity, specificity, and accuracy exceeded 90.0%, indicating
the model’s high capacity for disseminating comorbidity presence in LSNH individu-
als. Furthermore, RF model AUCROC values were largely higher than 0.9, suggesting
these models are highly capable of distinguishing between binary tree classes. Finally,
independent classification performed worse across all evaluation metrics than second-
level classification following LSH and LSNH group designation. This suggests that the
classification of individuals according to lifestyle health served to improve the predic-
tive capacity of NTRA-based assessment.
The predictive value of the NTRA parameters extracted from a CT scan has already
been demonstrated, and the specific importance of connective tissue in classification
has been underlined before but not with such significant results. Physiological assess-
ment of loose connective tissue is often considered at a microscopic level rather than
from a CT scan, where lean muscle and adipose tissues are largely considered primary
targets for analysis. In this work, we have shown how connective NTRA parameters
are not only statistically significant in distinguishing subject lifestyle health, but also
in the identification of subjects with cardiovascular pathophysiology. Our ML models
further demonstrate the impact of connective tissue in the classification of patients
with DM or HTN. Indeed, DM classification models illustrate the comparatively high
importance of connective tissue compared to lean muscle or adipose tissue, despite
having one less NTRA parameter. Taken together, these results contribute to the no-
tion that connective tissue may serve an important role in CT-based analyses.
Regarding tissue-based feature importance, several important differences are appar-
ent when comparing cardiovascular pathophysiology classification. Firstly, fat was the
predominate tissue when classifying individuals with CHD (41.0%), while muscle gave
a comparatively minor contribution (11.9%). Contrastingly, lean muscle contributed
the most in classifying CHF (41.0%), while connective tissue yielded the lowest contri-
bution (24.9%). Finally, fat and connective tissue gave nearly the same contribution
in classifying CVD (about 33.2% and 31.3%, respectively), while lean muscle was
comparatively much lower (17.6%). These condition-based differences in classification
indicate the potential specificity of tissue types to each condition, further suggesting
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the importance of segmenting classifying parameters by these three tissue types, which
is one of the key features of NTRA computational modelling.
Finally, the present longitudinal assessment from AGES-I to AGES-II showed that
NTRA assessment can be considered not only for the predictive assessment of aging
individuals according to their lifestyle and comorbidities, but also for the real predic-
tion of DM. In particular, a combined accuracy of 94.9% with an AUCROC of 0.991
from the RF model suggests that NTRA parameters can serve as robust quantitative
indicators for DM incidence.

Strengths and Limitations Altogether, the present work further extends our ex-
isting research on the assessment of health outcomes featuring the NTRA method
and serves as an important milestone towards understanding the comparative roles
of lifestyle factors and muscle health in promoting healthy aging. This represents, to
our knowledge, the first time that NTRA-based radiodensity, or a similar approach,
has been utilized in predictive models of DM and HTN. While this indeed represents
a novel approach, the comparative value of our methods against traditional metrics
for predicting risk has yet to be established, presenting an important direction for
future investigation. Nevertheless, the primary strengths of this work stem from the
use of ML classification within the large sample size offered by the population-based
AGES-Reykjavik study. In this regard, this work is situated within the general context
of the ‘big data’ movement in medical science research. A primary objective of this
movement is to match the rapidly-accruing body of clinical or biological data with
commensurate methods for pattern identification and computational modelling, such
as the ML classification methods described here [256]. This data-oriented approach
to clinical research represents an emergent yet growing field that continues to show
promise in defining new tools for prognostic or diagnostic evaluation.
The main limitation of this research stems from the characterization of our lifestyle
health index; while smoking status and physical activity are both robust indicators
for health outcomes in aging, it may be important in future works to investigate addi-
tional lifestyle factors, such as Geriatric Depression Score, dietary intake, and alcohol
use. Likewise, the consideration of key demographic data, such as income or educa-
tion, may elucidate whether the observed relationship between NTRA parameters and
comorbidities is partially modified by other factors. Some of these aforementioned
lifestyle factors will be included in chapter 5.4 where they will be considered to study
Motion Sickness using biosignals from brain, muscle and center of pressure acquisi-
tions.
Finally, the main methodological limitation in this study is the use of SMOTE to bal-
ance the dataset. Nevertheless, the implementation of ML algorithms without SMOTE
showed that the imbalance in sample size across tree nodes necessitated oversampling
in order to perform most of the present analyses. Indeed, this imbalance between sub-
groups occurred primarily at the second level – especially for LSNH subjects, where
subjects without diagnosed DM or HTN accounted for only 116 out of the total sam-
ple of 2477 individuals. At the third level, it is furthermore important to note that
the highest number of subjects (n = 693) presenting with at least one of the three
cardiovascular pathologies was in the unhealthiest overall group, LSNH with DM or
HTN. These differences were further reflected in the statistical analyses of the NTRA



3.2. SINGLE AND DUAL GAIT ANALYSIS IN OLDER KOREAN POPULATION53

parameters relating to the subgroups considered.

Conclusion finally we can say that this work serves as an important milestone to-
ward the construction of predictive imaging tools for assessing the impact of lifestyle
factors in promoting aging health. Our findings discussed here extend our existing
work on NTRA-based soft tissue radiodensity assessment through ML-based classifi-
cation, demonstrating the value of image features from CT scans to predict DM onset
and, particularly, the comparative importance of lean muscle, adipose, and connective
tissues toward promoting healthy aging.

3.2 Single and Dual Gait Analysis in Older Korean
Population

3.2.1 Seoul National University Hospital Gait Dataset

In this chapter spatio-temporal gait features are taken in consideration to classify
elderly patient affected by gait symptoms, neurological deficits or with an history
of ischemic or hemorrhagic stroke. The data were obtained at the Department of
Neurology and Critical Care of the National University Hospital in Seoul, South Korea.
The work was done between May and October 2022 at Chonnam National University,
in Yeosu, South Korea with the supervision of Prof. Seung-Uk Ko in the frame of
the PhD exchange program supported by Reykjavik University. The following text is
adapted from the manuscript actually under review in the journal Gait&Posture.

In the current study, we examined single and dual gait performance tests and used
these gait characteristics to perform tree-based ML algorithms to classify patients with
history of strokes, motor, and neurological disorders. Our study approach strengthens
the importance of the ML analysis and the tree-based approach in medical datasets
when using gait characteristics (with a considerable emphasis on dual-task features)
to predict physical and neurological impairments among Korean older adults with
specific disease history. Our findings may further help clinicians and therapists to
diagnose motor and neurological disorders as well as to provide additional information
to rehabilitation strategies planning for stroke patients.

3.2.1.1 Materials and Methods

The dataset contains 122 non-hospitalized older adults of Korean origin with an average
age of 76.08 ± 7.98 years (age range 60-96). All the patients were diagnosed by
the doctors during their first visit in the clinic with a neurological disease, including
movement disorders, peripheral disease, headache, dizziness, and stroke.

Gait Acquisition Single and a dual-task gait tests were performed at the Depart-
ment of Neurology and Critical Care of the Seoul National University Hospital in Seoul,
South Korea. Gait tests (both single and dual-task) were conducted using the gait an-
alyzer system Tango STEP Lite (Tango+ Life Design, Gwangju, South Korea), with
a sampling frequency of 60 Hz on a 6 meters mat while participants were walking in a
straight line at a normal speed. Spatio-temporal features including gait speed, stride
length, and stride width were calculated in bundle by Tango STEP Lite, and all of
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them were manually checked by a technician using custom made software written in R
as previously applied [18]. Dual-task gait in the current study consisted of a cognitive
assignment in which participants were asked to walk while saying out loud the days of
the week in reverse order.

Gait Features Gait features include mean Step Length [meters] (StepL) and StepL
ratio.StepL ratio is calculated and normalized between 0 and 1 with the quotient of
the left and right leg measures. The same mean and ratio calculation is computed for
Stride Length [meters] (StrideL) and Speed [meters/second]. In addition, Step Width
[meters] and Cadence [steps/minute] are extracted. These 8 features are calculated for
both single and dual gait, making a total of 16 input features for the ML analysis.
“PO” prefix will distinguish the dual-task features from the single-task ones in the
nomenclature of this manuscript.

Demographic and Clinical Characteristics Demographic and clinical character-
istics (13 features) were collected by the clinicians during the visit before the gait test
acquisition. Three clinical features were identified: Stroke (ST), gait symptoms (GS),
and Neurological Sequelae (NS) based on the clinical history of diagnosis and symp-
toms. ST, GS, and NS are the features considered for the binary classification (yes=1,
no=0) with ML algorithms.
Stroke (ST): Patients who reported history of ischemic or a hemorrhagic stroke (90
subjects) were defined as having ST.
Gait Symptoms (GS): Patients who reported suffering from gait and movement dis-
orders including imbalance, shuffling, staggering, freezing, or ataxia were defined as
having GS (72 subjects).
Neurological Sequelae (NS): Patients who reported suffering from focal neurological
deficit including limb weakness (hemiparesis, monoparesis), sensory symptoms, dizzi-
ness, and imbalance related to neurological diseases were defined as having NS (49
subjects).
Not all the patients were able to successfully complete the dual-task saying out loud
all the days of the week in the inverse order, so a binary task error feature is added:
56 subjects failed to correctly enunciate the names of the days backwards. Moreover,
an additional feature is the binary musculoskeletal pain, which consists of 32 subjects
suffering any kind of pain related to muscles or bones. Symptoms Side is the side of
lower extremities associated with gait abnormality which can be left, right, bilateral,
or absent.
Supplementary features include age, sex, and comorbidities like hypertension (HT), di-
abetes (DM), atrial fibrillation (AF), coronary artery disease (CAD) and dyslipidemia
(DL). There are in total 29 features for each patient including gait, demographic, and
clinical data (data not shown).
All the features listed in this paragraph are denominated as “clinical data” in the text.

Statistics and Machine Learning To study the independent roles of the gait fea-
tures all of them underwent a Kolmogorov Smirnov test. The results show that none
follow a normal distribution. Therefore, Mann Whitney tests was performed to under-
stand which features can be considered statistically significant (p-value <0.05).
In this ML analysis three different tree-based ML algorithms were performed for the
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classification analysis: Random Forest (RF), Gradient Boosting (GB) and ADA Boost-
ing (ADA-B). These algorithms exploit different ensemble learning techniques and they
were executed with the same random seed and with the default hyperparameters pro-
posed by the Python SciKit-Learn library [257].
A feature importance investigation was performed on the ML model which was the
most representative with regard to classification metrics.

Cross-Validation and Classification Evaluation Metrics For a complete classi-
fication performance evaluation k-fold cross validation is computed. A repeated strat-
ified 10-fold cross validation is here implemented: the k-fold is repeated 3 times pro-
ducing different splits in each repetition and the stratification produces sets of patients
having approximately the same percentage of samples of each target class. A tuning
on 10 different k-fold random seeds is computed to obtain the highest possible mean
accuracy.
The following evaluation metrics are computed: accuracy mean and accuracy max (re-
ferred to the maximum accuracy achieved in a single cross validation fold), precision,
recall, F-Score (F1), and Area Under the Curve Receiver Operating Characteristic
(AUCROC).

Features selections Two sets of features are used to classify ST, GS, and NS in the
Korean older population. The first set consist of all the 16 gait features (single and
dual gait) plus the clinical data mentioned above. For the ST prediction all the features
are considered, a total of 28 plus the ST class. For the GS and NS classification the
Symptoms Side is excluded as it caused an algorithmic overfitting, so the final total
of features is 27 plus the prediction class. The second set of features considers the 16
gait features solely.

3.2.1.2 Results

Gait features by the history of ST, GS, and NS. The summary of the descrip-
tive characteristics according to the history of ST, GS, and NS is presented in Table
3.20. Table 3.21 shows statistically significant gait features in group of ST, GS, and
NS (significant p-value <0.05).
For the ST, only three gait features had a p-value below 0.01 and all of them were
from the dual-task set (Step Length, Stride Length and Speed). The same features for
the single-task gait had p-value below 0.05.
For the GS the same 5 features were statistically significant both for the single and
the dual-task gait (Step Length, Step Length_ratio, StepWidth, Stride Length and
Speed), making a total of 10 out of 16 significant features.
The statistically significant gait features for distinguishing NS were 5 from single gait
and 3 from dual gait. Cadence was significant only for this NS prediction class, even if
with a p-value of only 0.047, and just two features had a p-value <0.001 (Step Length
and PO_Step Width).
Ratio features were significant only for the GS, and between them only the Step Length
Ratio, single and dual, had a p-vales <0.05.

Machine Learning – Classification Table 3.22 shows the evaluation metrics
obtained from the tree-based ML models for ST, GS, NS binary classification. For
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ST GS NS
No Yes No Yes No Yes

Subject, N 32 90 50 72 73 49
Age, yo, (SD) 76.13 (8.03) 76.07 (7.98) 76.23 (8.00) 76.00 (8.04) 77.27 (7.98) 74.31 (8.05)
Male, N 13 61 27 47 40 34
Female, N 19 29 23 25 33 15
ST: Stroke, GS: Gait Symptom, NS: Neurological Sequelae

Table 3.20: Sex differences and mean age in respect to ST, GS, and NS binary features

ST GS NS
Statistically Significant Features p-value
Step Length 0.039* 0.000*** 0.001***
Step Length Ratio - 0.001*** -
Step Width - 0.002** 0.002**
Stride Length 0.038* 0.000*** -
Speed 0.030* 0.000*** 0.001**
PO Step Length 0.009** 0.001*** 0.004**
PO Step Length Ratio - 0.005** -
PO Step Width 0.013* 0.001*** 0.001***
PO Stride Length 0.006** 0.000*** 0.004**
PO Speed 0.004** 0.004** -
"-": Not Significant, *p<0.05; **p<0.01; ***p<0.001

Table 3.21: The influence of ST, GS, and NS on GAIT features

all the three binary classes the features selection which includes both gait and clinical
data resulted the most efficient between the two considered, especially in terms of
accuracy mean and AUCROC. RF can be considered the most effective algorithm
while ADA-B was the worst. GB had slightly lower metric than RF and overcome
it in accuracy only for NS classification with gait and clinical features. For the ST
classification the highest recall of all Table 3.22 (91.9) was reached with RF and gait
and clinical selection: the same model reached the maximum mean accuracy of 73.5.
Same algorithm with only gait features as input had almost 70 of accuracy but a low
AUCROC of 0.53. The best metrics were achieved for the GS classification, RF and
gait and clinical features: the accuracy mean was almost 80 and relevant 85.1 of F1
and 0.8 of AUCROC were registered meaning that the model can distinguish correctly
both the positive and negative GS subjects. Decent results were also gained for the
NS classification but only when we used the gait and clinical features together: GB
was here the best model with 78.2 of accuracy and 0.81 of AUCROC. At the opposite,
the gait features can barely reach an accuracy of 60 classifying NS.

Machine Learning – Features Analysis The features importance was calculated
for all the RF models, as this algorithm resulted the most reliable between the three
considered, for all the classification performed. In only one occasion GB had a higher
mean accuracy (NS prediction with Gait and Clinical features, Table 3.22). Table
3.23 shows the percentage of importance for each of the groups in the classification
process while in Table 3.23 are printed the 8 most important features for each of the
RF models.



3.2. SINGLE AND DUAL GAIT ANALYSIS IN OLDER KOREAN POPULATION57

Class Feat Select Alg. Acc. Mean
[%]

Acc. Max
[%]

Rec
[%]

Prec
[%]

F1
[%] AUCROC

ST

Gait and Cli
RF 73.5 83.3 91.9 77.2 83.9 0.691
GB 72.6 91.7 86.7 78.6 82.5 0.746

ADA-B 73.0 91.7 83.7 81.1 82.4 0.720

Gait
RF 69.3 91.7 87.0 75.4 80.8 0.530
GB 68.6 83.3 85.2 75.8 80.2 0.496

ADA-B 62.4 83.3 76.7 72.9 74.8 0.515

GS

Gait and Cli
RF 78.7 100 90.7 80.1 85.1 0.800
GB 74.8 91.7 84.5 79.5 81.9 0.771

ADA-B 69.9 91.7 79.0 75.4 77.2 0.703

Gait
RF 71.9 91.7 82.7 76.6 79.5 0.721
GB 68.4 91.7 80.6 73.9 77.1 0.662

ADA-B 63.2 91.7 73.3 71.1 72.2 0.597

NS

Gait and Cli
RF 76.2 100 61.7 79.0 69.3 0.810
GB 78.2 92.3 68.1 76.1 71.9 0.810

ADA-B 74.7 91.7 67.5 72.8 70.0 0.790

Gait
RF 62.6 83.3 44.7 54.2 49.0 0.621
GB 59.7 91.7 42.0 51.8 46.4 0.573

ADA-B 59.0 83.3 46.2 53.1 49.4 0.607

Table 3.22: ML learning models evaluation metrics for the ST, GS, NS, binary classi-
fication

Features Select ST GS NS
Impo [%] Impo [%] Impo [%]

Gait+clinical
Single-Task Gait 37.05 42.84 35.33
Dual-Task Gait 39.75 36.38 37.8

Clinical Data 23.2 20.78 26.87
Gait
Single-Task Gait 52.47 52.68 50.75
Dual-Task Gait 47.53 47.32 49.25

Table 3.23: Features groups relevance in % for all the RF classification models
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Gait + Clinical Features
ST GS NS

neurologicalsequelae 7.30 StepL 8.21 PO_StepWidth 5.89
PO_Cadence 6.81 StrideL 7.95 gaitsymptom 5.69
StepL_ratio 5.63 PO_StrideL 5.98 Speed 5.61
PO_StepL_ratio 5.38 Speed 5.96 StepWidth 5.50
PO_StepWidth 5.31 StepL_ratio 5.84 PO_Speed_ratio 5.42
PO_Speed 5.21 PO_StepL_ratio 5.49 PO_StepL_ratio 5.29
StepL 5.10 PO_StepL 5.05 PO_StepL 5.24
Speed 4.96 musculoskeletalpain 5.00 age 4.79

Table 3.24: Most important features and relative importance in % for all the RF
classification models using Gait + Clinical Features Selection

Gait Features
ST GS NS

PO_StepWidth 8.12 StepL 9.24 PO_StepWidth 8.28
PO_Cadence 8.09 StrideL 8.54 StepWidth 7.75
PO_Speed 7.36 StepL_ratio 8.18 Speed 7.74
StepL_ratio 7.20 PO_StrideL 7.82 PO_StepL_ratio 7.01
PO_StepL_ratio 6.66 PO_StepL_ratio 7.48 Cadence 6.57
StepL 6.33 Speed 7.45 PO_StrideL_ratio 6.36
StepWidth 6.24 PO_StepWidth 6.92 PO_Speed_ratio 6.34
PO_StrideL 6.20 PO_StepL 6.33 StepL_ratio 6.32

Table 3.25: Most important features and relative importance in % for all the RF
classification models using Gait Features Selection

It is possible to notice that the distribution of importance in percentage of the groups
of features was quite similar for all the three classes: the single and dual-task gait
had approximately the same half importance if the only gait features were used and
the clinical data had an impact between the 20 and 26% in the classification processes
using the whole features set (Table 3.23). On the opposite, between each predicted
class, the most relevant single features were rather different (Table 3.24 and Table
3.25). Comorbidities like HT, DM, AF, CAD, and DL did not have a high importance
for the considered tree-based ML models (data not shown).
To better study the relation between the gait features and the age in the different
binary groups of people affected by ST, GS, and NS, scatterplots with regression lines
are presented for the most relevant features (Fig. 3.9, 3.10 and 3.11). It is noteworthy
that the step width, both for single and dual gait, increased with age in patients with
NS while decreased in patients without NS. The same feature (dual gait) had quite a
different regression line for patient with and without ST, as it had quite similar values
for younger and older subjects. Speed considerably dropped with age in subjects
having NS and not having GS, while cadence, despite the high importance in the
classification model, did not change much with age. The other features showed a more
or less evident decline with age.
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Figure 3.9: Scatterplots with regression lines for four of the most significant features
in the classification of subjects with and without an history of strokes in relation to
age.

3.2.1.3 Discussion

The current study examined Korean older adults performing tree-based ML algorithms
to predict stroke and neurological and motor disorders using temporal and spatial gait
features both from single and dual-task acquisition. Cognitive dual-task gait features
proved their substantial importance in the classification process and ML tree-based
algorithms results again of great efficiency when applied on biomedical datasets, also
with a reduced number of patients like the present study In recent research ML was
performed to assess neurological disease like Parkinson [258] and Huntington Chorea
[259] from gait features, or to predict possible strokes in older population with a gait
monitoring system [260]. By the authors knowledge, no studies were published in
relation to classification of ST in patients of older age group or with other disorders,
using both single and dual gait except for Matsuura et al. [261]: they stated that
both single and dual-task features were effective to predict a cognitive dementia score
reaching a specificity of 0.799.
From our research’s results we can state that dual-task gait assumes a significant
relevance in the classification process to distinguish healthy and unhealthy subjects.
Dual-task features always contribute for half of the importance with RF algorithms
and for the ST classification, four out of six the most important features are from
the dual gait analysis. Dual-task gait alone was implemented successfully to improve
balance and physical performances in patient with stroke history [262], underlying
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Figure 3.10: Scatterplots with regression lines for four of the most significant features
in the classification of subjects with and without gait symptoms in relation to age.

that motor and cognitive task can have different effects [263]. Our results indicate
that a cognitive dual-task gait performance is not simply an addition to the normal
gait but can be considered as necessary together with the single-task in the analysis of
older population, especially for those with an history of stroke. We also observed that
clinical data were highly relevant as a group in the overall classification process, but
individually they do not assume a high importance compared to the gait features except
for the NS status in the ST classification. This would give a stronger importance to
the prediction power of both single and dual gait features. From a ML point of view,
the classification metrics indicate that tree-based algorithms, in particular RF and
GB, are not only good and of easy understanding for clinicians [17], but significantly
efficient if performed on biomedical dataset, also with a few numbers of subjects like
the present one.
The current study has some limitations which includes the small number of subjects
and the absence of healthy-control subjects. Improvements of these limitations would
not only increase the meaning of the already significant classification metrics but would
also allow physicians to compare healthy and unhealthy older adults. Previous studies
highlighted some differences in gait features between Asian and Western population
[264] [265] underling peculiar characteristics of Korean population: for example, Ryu
et al. [266] found that stride length and speed are lower in Korean subjects. A possible
future study can include the acquisition through the same gait system of older people of
different ethnicity to understand which can be the abnormal gait differences in patients
with strokes or motor and neurological diseases and different genetic characteristics.
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Figure 3.11: Scatterplots with regression lines for four of the most significant features
in the classification of subjects with and without focal neurological deficit in relation
to age.

In conclusion, the results of present study underline the importance of combining
single and dual-task gait for the study of older adults with an history of stroke, motor,
or neurological diseases. Furthermore, they can be of help for doctors and medical
workers in the cure and diagnosis for these disorders and in the possible rehabilitation
for stroke patients. Finally, they can also be of interest from a ML point of view,
validating the great efficiency of the tree-based algorithms in the bio-medical dataset
analysis.
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Chapter 4

Knee Osteoarthritis Study

This chapter is dedicated to the medical imaging features analysis focuses on the use
of novel and gold-standard parameters elaborated using knee CT Scans and MRI both
from a 2D medical image and from a 3D rendering of the scans using advanced medical
imaging softwares, in particular MIMICS, Materialize. These gold-standard and novel
features were used to classify subjects with different knee cartilage conditions aiming
to the development of new therapies for knee osteoarthritis treatment. The research
is done in the frame of the European Union funded Horizon 2020 RESTORE Project.

4.1 European Union Horizon 2020 RESTORE
Project

In the frame of the EU Horizon 2020 project Restore, Reykjavik University developed
the 1st European database of chondral lesions morphometric and associated 3D models
(https://restore-project.ru.is/) with the final scope of developing nanoenabled
solution for personalised cartilage regeneration. In collaboration with the Icelandic
University Hospital Landspitali in Reykjavik, 47 people’s knees have been scanned.
Three different categories of subjects have been evaluated: 25 degenerative (D), 14
traumatic (T), and 8 considered healthy as control (C). The database, available for
free online, contains information regarding the different type of chondral lesions and
the behaviour of the knee cartilage, based on Computed Tomography (CT) and Mag-
netic Resonance (MRI) images.
Measurements and features where extracted from the 2D images and from the 3D
elaboration of the medical images. To have a exhaustive overview of the patient’s
condition from MRI and CT Scans, multiple 2D features were elaborated using a solid
and well known radiological approach. Those includes thickness, grading of the car-
tilage, as well as the presence of medical pathologies like for instance cysts and bone
attrition. Medical images were then exported and elaborated from a 3D point of view
with an high performing medical imaging software (Materialise, MIMICS) to segment
and dissociate the knee’s sections including femur, tibia and patella. These features
were then used as input in ML models to classify the different knee cartilage status.

The following section will relate to the study recently published on Cartilage [4].
This section will focus mainly on the use of 2D and novel 3D features from knee
cartilage analysis to classify, using ML models, the traumatic, degenerative and con-

https://restore-project.ru.is/
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Category Degenerative Traumatic Control
# Female 12 9 3

Mean age (Std) 66 (12) 39 (11) 29 (5)
# Male 11 7 5

Mean age (Std) 66 (7) 29 (7) 37 (16)

Table 4.1: Description of the patients demographics (age, sex) by group

trol subjects. The detailed description of the features extraction can be read on the
RESTORE published literature [4][267].

The main scope of ML technologies in this research is to study and understand
the predictive potential of the features elaborated from the image analysis and their
ability in distinguish degenerative, traumatic, and healthy subjects, with a focus on
the features that contribute the most in the classification process. This study com-
pares different cartilage assessment metrics, developing a novel workflow to 3D model
bone and cartilage and, moreover, analyzing new features for a more sensitive carti-
lage assessment, currently required as a support element toward more patient-specific
treatment development.

4.1.1 Materials and Methods

Figure 4.1 shows the work done in this manuscript starting from the pupulation re-
cruitment to the data acquisition, analysis, and computation of the feature importance.

Figure 4.1: Graphical Abstract of the Cartilage Journal manuscript

4.1.1.1 Participants

Participants were recruited as part of the European project RESTORE (https://
restoreproject.eu/), whose objective is to develop solutions for personalized carti-
lage regeneration. The aim of our research group is to develop a database of morpho-
metric chondral lesions with associated 3D models (clDB). The function of the clDB
is to provide accurate 3D models of chondral status, bones, and soft tissue to develop,
design, test, and validate 3D printed microtissues that can fit patient-specific lesions.

https://restoreproject.eu/
https://restoreproject.eu/
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Recruitment 47 subjects (24 females, 23 males, age = 50 ± 19 years) underwent
CT and MRI scans of a single knee at Landspitali University Hospital in Reykjavik,
Iceland, using standardized acquisition protocols and patient positioning. From the
total of patients, 23 subjects (12 females, 11 males, age = 64 ± 12 years) were suffering
from degenerative (D) cartilage. They were examined by an orthopedic doctor due to
pain from osteoarthrosis and were placed on the waiting list for treatment with total
knee arthroplasty (TKA). Sixteen (9 females, 7 males, age = 35 ± 11 years) suffered
from a knee trauma (T) with possible cartilage injury. The emergency clinic provided
an alert when there is a patient with suspected ligament injury and patella dislocation.
They underwent plain x-ray to exclude fracture. Then, they were called to exclude any
history of knee injuries or problems. The alert was received within a week, and the
patients underwent CT and MRI during the second week from the day of the trauma.
Finally, 8 subjects (3 females, 5 males, age = 34 ± 14 years) were involved in the study
as control (C) subjects (no symptoms of history of knee trauma/degeneration). For
D and T group, in addition to the CT and MRI, X-ray data were also available, as a
part of the routine clinical evaluation detailed above. The X-rays were not performed
for the C group.
Table 4.1 sums up the demographics of the patients.

4.1.1.2 2D features

An exhaustive radiological examination was performed on the bones and articular
cartilages of the knee joint to assess their condition. These observations were based
on the 3 types of 2D medical imaging aforementioned: X-ray, CT and MRI. The
assessment was done on femur and tibia from both the medial (MC) and lateral (LC)
compartments as well as on the patella and femoral trochlea within the femoropatellar
compartment (FPC) of the scanned knee.

Bone Figure 4.2 sums up examples and brief definitions of the pathologies observed
on the femur, tibia, and patella. The subfigures on the left (A, C, E, G and I) corre-
spond to CT scans while the right subfigures (B, D, F, H, and J) correspond to MRI
scans. As observed in Figure 4.2, some pathologies could be found in both CT and
MRI, while others (I, J) had a particular 2D image. Going into more details of the
features shown in Figure 4.2, we can describe the multiple bone observations. (A, B)
Subchondral bone cysts are typically spherical or ellipsoidal fluid-filled cavities within
the subchondral bone region. (C, D) Osteophytes are cartilage-capped bony prolif-
erations (spurs) that most commonly develop at the margins of a synovial joint as a
response to articular cartilage damage. (E, F) Bone attrition is the result of flatten-
ing or depression of the articular surfaces, probably because of bone remodeling. (G,
H) Osteonecrosis is a generic term referring to the ischemic death of the constituents
of the bone and is observed as if the bone is missing a piece. (I) Subchondral bone
sclerosis is a thickening of the bone seen in joints affected by OA. it is observed as a
“whitening” of the bone only in Ct. (J) Subchondral bone edema is a build-up of fluid
in the bone marrow as a response to an injury or Oa condition visible on MRI but not
on CT.

Cartilage and Join Space Figure 4.3 contains visual examples of the gold standard
observations made on the cartilage and the joint space. Except for the Ahlbäck grading,
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Figure 4.2: Bone observations.

which was observed on an X-ray, the rest of the observations were made on MRI
scans. The features from the cartilage and joint space observed in Figure 4.3 are the
following. (A, B, C, D) Ahlbäck grading is a classification system that focuses on
the reduction of the joint space as an indirect sign of cartilage loss. (A) grade 0:
normal. (B) grade 1: joint space narrowing (less than 3 mm). (C) grade 2: joint
space obliteration (elimination). (D) grade 3: minor bone attrition (0-5 mm). (E,
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Figure 4.3: Cartilage and joint space observations.

F, G, H, I) iCrS (international Cartilage repair Society) grading is the most used
score system for quantification of existing cartilage defects at the knee. (E) grade
0: normal cartilage. (F) grade 1: nearly normal cartilage. Superficial lesions; soft
indentation and/or superficial fissures and cracks. (G) grade 2: abnormal cartilage.
lesions extending down to <50% of cartilage depth. (H) grade 3: severely abnormal
cartilage. Defects extending down to >50% of cartilage depth; down to calcified layer
but not through the subchondral bone. Blisters. Defects more visible toward the
medial area of the patella. (I) grade 4: severely abnormal. lesions extending down
through the subchondral bone. (J, K, L) Meniscal pathology is associated with an
elevated prevalence of Mri-detected cartilage damage. there are 3 types of pathology;
(J) degeneration: not acute as a tear, this injury is a more gradual onset and tends to
occur as we get older. (K) rupture: is a tear in the lateral or medial meniscus due to
rotational forces directed to a flexed knee. (L) protrusion: when the location of the
outer edge of a meniscus is beyond the tibial articular surface. (M) Synovitis—effusion.
While synovitis is the inflammation of the synovium; effusion is when excess synovial
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fluid accumulates in or around the knee joint. it is observed generally in the FPC as
a white stain.

Articular Cartilage Thickness The measure of the articular cartilage thickness
(ACT) were manually performed on an MRI scan of the knee following gold-standard
methods proposed in literature [268] (Fig. 4.4).
From the same slices used to measure the femoral ACT in the medial and lateral com-
partments, the tibial ACT was measured (Fig. 4.5).
Femoropatellar compartment cartilage thickness measurements are shown in Figure
4.6.

Figure 4.4: Femoral cartilage thickness measurements, medial and lateral compart-
ments. Fitting cylinder method to obtain 3 regions of interest, anterior (-30o-0o),
medial (0o-30o) and posterior (30o-60o) in the lateral compartment (A) and the me-
dial compartment (B).

Figure 4.5: tibial cartilage thickness measurements. anterior, middle and posterior
points are measured along the tibial cartilage in medial (A) and lateral (B) compart-
ments.

Cumulative Index Based on Bone Conditions A cumulative index (CI) from 0
to 6 was used to quantify the bone anomalies present in each bone, that is, subchon-
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Figure 4.6: Cartilage thickness measurements, femoropatellar compartment. Measure-
ment of the articular cartilage thickness at 3 points on the patella (A) and articular
cartilage thickness of the femoral trochlea on 2 different points (B).

dral cysts, subchondral sclerosis, osteophytes, bone attrition, osteonecrosis, and/or
subchondral edema, regardless of the compartment for each patient. Hence, for an ob-
served pathology (either in CT or MRI) a 1 was assigned and consequently, the index
was the sum of pathologies present in a certain bone of a certain patient. Sometimes,
when the CI is compared against observations made within a compartment such as the
Ahlbäck grading (AG) or the International Cartilage Repair Society (ICRS) score, the
index is then considered for the bone in question within a compartment.

4.1.1.3 3D features

Figure 4.7 describes the 3D features process workflow. It was repeated and evaluated
3 times by 3 biomedical engineers (co-authors of the paper), under the supervision of
a senior engineer and an expert radiologist, to obtain the most accurate segmentation.
From the CT scans, 4 objects were 3D calculated: the femur, the tibia, the patella,
and the fibula (all bones). From the MRI, 4 objects were also 3D calculated: the
femoral cartilage, the medial tibia cartilage, the lateral tibia cartilage, and the patellar
cartilage.
From the final file of the MRI objects combined with the CT objects, the radiodensity
of each part (bone and cartilage), was extracted in Hounsfield Units (HU). The bone
mineral density (BMD) (in g/cm3) was computed from the radiodensity using a linear
formula determined empirically based on phantoms. The cartilage radiodensity was
then extracted from a final mask (Fig. 4.8). The volume (in mm3) and the surface (in
mm2) were also computed from each 3D object.

4.1.1.4 Machine Learning

In the present ML analysis, 2 tree-based algorithms were applied to the multi-classification
of the degenerative, traumatic, and healthy (control) patients: random forest (RF) and
gradient boosting (GB). RF was performed using the same random seed for every model
and the same hyper-parameters (number of trees = 100, split criterion = Information
Gain Ratio, maximum 3 depth = 10, and minimum node size = 1). The same was
done with GB (number of trees=100, maximum 3 depth = 4, and learning rate = 0.1).
The 10-fold cross validation was performed. Accuracy, precision, recall, and F1 have
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Figure 4.7: Segmentation workflow for 3D analysis

Figure 4.8: 3D model from the registration for the 3 groups of patients (A) Degener-
ative (B) traumatic (C) Control.

been considered as classification metrics.
Table 4.2 shows the features’ sets used as input for the ML algorithms.

4.1.2 Results

4.1.2.1 2D and 3D Features

Table 4.3 shows the 2D features presence in the subjects as percentage for each group
while the results shown in Table 4.4 display the average and standard deviation of the
ICRS, cumulative index, and ACT for each group of patients.
The results shown in Table 4.5 display the average bone mineral density, as well as
radiodensity, volume, and surface from each cartilage after tissue segmentation. The
results were calculated for each group (D, T, and C). T group has the highest density
of all the bones. D group and C group have similar values for the femur density, while
D group has higher density in tibia, and lower in patella. D group has the lowest
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Feat Selection N of Feat Source
Tot Feat 96 All the available features from MRI, CT, and 3D elaboration
2D Feat 78 Features from MRI (52 in total) and CT (26 in total)

3D Feat 18
Features of cartilage volume and density

(and its standard deviation)
from 3D elaboration

Ct - Scan Feat 26 Features from CT – part of the 2D group
MRI Feat 52 Features from MRI – part of the 2D group

Bone Feat 50
Features of Bone from CT and MRI

(subchondral bone cysts, sclerosis and edema,
osteophytes, osteonecrosis, and bone attrition)

Cartilage Feat 26
Features of Cartilage from MRI

(ICRS grades, meniscal pathology, synovitis-effusion,
and measurements of thickness)

Table 4.2: Feature Selection Sets used as inputs for the ML analysis

density in the femoral cartilage, the highest in the patella, and a slightly lower but
similar values than C group in both lateral and medial tibia cartilage. D group has the
highest cartilage volume for every part. C group has a higher volume than T group for
the patella and the lateral tibia. D group has the highest cartilage surface for every
part. T group has a higher surface than the C group for the patella and the medial tibia.
It can be noted that for the patella, D group has the lowest bone density, the lowest
cartilage density, the highest volume, and the highest surface. In general, results do
not show a significant trend among patient groups due to high interpatient variability;
however, patient-specific 3D measurements are used in the machine learning part to
enlarge the set of features predicting the subjects’ knee cartilage status.

4.1.2.2 Machine Learning

Table 4.6 shows all the results of the ML analysis. The best accuracy value is 89.4,
which is obtained with RF using the whole feature set and the 2D measurements fea-
ture set. F1 score is high for the degenerative patients (always around 90%), while it
is slightly lower for the other 2 groups. These F1 scores are due to the higher number
of degenerative patients but also demonstrate that with the selected features, it is
efficient to classify patients with degenerative cartilage using RF and GB. The best
metrics for the classification of control subjects are obtained with the 2D feature set,
while all 96 features give the best F1 score for classifying traumatic patients using RF.
In terms of accuracy, good results are obtained with MRI, bone, and cartilage feature
selections, especially with the RF algorithm, while 3D selection is the worst, with a
maximum of 76.6 accuracy with GB. With RF, the bone features give better results
in all 3 classes compared to the cartilage feature set. Using GB and cartilage feature
set, only control subjects are classified with higher metrics. We can state that RF is
the most efficient of the 2 tree-based algorithms.
Tables 4.7 and 4.8 show respectively the 12 most important features and the percent-
age of importance of all the different feature groups for the RF classification ML model
using the 96 total features as input. This model was selected for the feature impor-
tance analysis because it can be considered the most significant in terms of accuracy
(89.4 is the highest). It allows for a complete overview of the full set of features and
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Pathology Compartment/ Bone D T C

Subchondral bone cysts

Medial / Femur 34.78% 18.75% 0%
Medial / Tibia 60.87% 6.25% 0%
Lateral / Femur 17.39% 6.25% 0%
Lateral / Tibia 26.09% 12.5% 0%
Femoropat /Fem. Trochlea 26.09% 18.75% 12.5%
Femoropat / Patella 30.43% 6.25% 12.5%

Osteophytes
Medial 91.3% 6.25% 12.5%
Lateral 95.65% 0% 0%
Femoropat 91.3% 25% 25%

Bone Attrition

Medial / Femur 30.43% 0% 0%
Medial / Tibia 26.09% 0% 0%
Lateral / Femur 0% 0% 0%
Lateral / Tibia 0% 0% 0%
Femoropat/Fem. Trochlea 0% 0% 0%
Femoropat/Patella 0% 0% 0%

Osteonecrosis

Medial / Femur 4.35% 25% 0%
Medial / Tibia 17.39% 12.5% 0%
Lateral / Femur 21.74% 37.5% 12.5%
Lateral / Tibia 21.74% 25% 12.5%

Subchondral bone
sclerosis

Medial / Femur 86.96% 37.5% 12.5%
Medial / Tibia 100% 97.35% 87.5%
Lateral / Femur 34.78% 31.25% 25%
Lateral / Tibia 21.74% 12.5% 0%
Femoropat/Fem. Trochlea 13.04% 6.25% 0%
Femoropat/Patella 69.57% 93.75% 75%

Subchondral bone
edema

Medial / Femur 52.27% 31.25% 25%
Medial / Tibia 65.22% 12.5% 0%
Lateral / Femur 26.09% 68.75% 25%
Lateral / Tibia 13.04% 6.25% 0%
Femoropat/Fem. Trochlea 17.39% 50% 0%
Femoropat/ Patella 4.35% 50% 0%

Meniscal pathology Medial 100% 18.75% 0%
Lateral 26.09% 37.5% 0%

Synovitis - Effusion 95.65% 100% 75%

Table 4.3: 2D measurements: Summary of bone pathologies, meniscal pathology and
synovitis-effusion as percentages for each group of patients.
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Pathology Compartment/ Bone D
Avg(SD)

T
Avg (SD)

C
Avg (SD)

ICRS

Medial / Femur 3.26 (0.67) 1 (1.41) 0.63 (0.70)
Medial / Tibia 3.17 (1.31) 1.13 (1.05) 0 (0)
Lateral / Femur 1.96 (1.37) 1.63 (1.11) 1.38 (0.70)
Lateral / Tibia 2.22 (1.41) 1.75 (1.25) 0.75 (0.83)
Femoropat/Fem. Trochlea 2.36 (1.37) 0.94 (1.09) 0.75 (1.09)
Femoropat/ Patella 3.09 (0.79) 2.69 (0.58) 1.75 (0.66)

Cumulative
Index

Femur 3.83 (1.19) 2.38 (0.96) 1.13 (0.83)
Tibia 4.09 (1.24) 1.69 (0.79) 1.25 (0.46)
Patella 2.04 (0.93) 1.75 (0.93) 1.13 (0.83)

Articular
Cartilage
Thickness

Medial / Femur 1.5 (0.71) 2.63 (0.56) 2.64 (0.67)
Medial / Tibia 1.63 (0.76) 2.3 (0.45) 2.48 (0.42)
Lateral / Femur 2.44 (0.63) 2.7 (0.54) 2.9 (0.38)
Lateral / Tibia 2.4 (0.81) 2.9 (0.73) 3.06 (0.65)
Femoropat/Fem. Trochlea 2.21 (0.77) 1.97 (0.77) 2.31 (0.29)
Femoropat/Patella 2.29 (0.61) 2.78 (0.7) 2.7 (0.32)

Table 4.4: 2D measurements: Average values of the ICRS grading, CI and ACT for
each group (and standard deviation between parentheses) and their location (compart-
ment/bone).

Degenerative Traumatic Control
Bone Mineral Density (g/cm3)
Femur bone 1,32 (1,13) 1,33 (1,14) 1,32 (1,12)
Tibia bone 1,32 (1,13) 1,35 (1,15) 1,29 (1,16)
Patella bone 1,36 (1,12) 1,40 (1,14) 1,41 (1,11)
Radiodensity (HU)
Femur cartilage 85,19 (57,47) 88,67 (49,90) 93,53 (54,37)
Lateral Tibia cartilage 87,84 (51,10) 88,69 (44,97) 91,19 (49,21)
Medial Tibia cartilage 98,49 (55,92) 93,63 (44,14) 103,79 (52,82)
Patella cartilage 78,36 (50,68) 81,56 (44,97) 99,09 (55,45)

Volume (mm3)
Femur cartilage 17303 (5530) 12460 (2710) 11276 (4505)
Lateral Tibia cartilage 2851 (2336) 1100 (439) 1501 (1927)
Medial Tibia cartilage 1915 (1638) 907 (566) 552 (362)
Patella cartilage 2761 (830) 2589 (781) 2703 (705)

Surface (mm2)
Femur cartilage 14381 (2636) 12610 (1496) 11809 (2791)
Lateral Tibia cartilage 2435 (1503) 1415 (499) 2073 (2530)
Medial Tibia cartilage 2016 (1367) 1301 (550) 967 (407)
Patella cartilage 2602 (760) 2574 (488) 2495 (390)

Table 4.5: 3D measurements: The results show the average variable for each group
(with standard deviation between parentheses)
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Feat Select Alg. Acc. Re D Pr D F1 D Re T Pr T F1 T Re C Pr C F1 C

Tot [96] RF 89.4 95.9 92.0 93.9 93.3 82.4 87.5 62.5 100 76.9
GB 87.2 91.7 95.7 93.6 93.3 73.7 82.4 62.5 100 76.9

2D [78] RF 89.4 91.7 91.7 91.7 86.7 86.7 86.7 87.5 87.5 87.5
GB 87.2 91.7 91.7 91.7 80.0 80.0 80.0 87.5 87.5 87.5

3D [18] RF 74.5 83.3 83.3 83.3 66.7 66.7 66.7 62.5 62.5 62.5
GB 76.6 87.5 84.0 85.7 66.7 76.9 58.8 62.5 55.6 58.8

CT-Scat [26] RF 80.9 91.7 95.7 93.6 66.7 71.4 69.0 75.0 60.0 66.7
GB 74.5 87.5 84.0 85.7 60.0 75.0 66.7 62.5 50.0 55.6

MRI [52] RF 87.2 95.8 95.8 95.8 87.6 76.5 81.2 62.5 83.3 71.4
GB 87.2 91.7 88.0 89.8 80.0 85.7 82.8 87.5 87.5 87.5

Bone [50] RF 85.1 91.7 91.7 91.7 86.7 76.5 81.2 62.5 83.3 71.4
GB 76.6 87.5 95.5 91.3 73.3 64.7 68.8 50.0 50.0 50.0

Cart [26] RF 83.0 91.7 88.0 89.8 73.3 73.3 73.3 75.0 85.7 80.0
GB 83.0 91.7 88.0 89.8 67.7 76.9 71.4 87.5 77.8 82.4

Table 4.6: classification metrics (Recall (Re) Precision (Pr) and F1 [%]) for the 2 differ-
ent tree-based ML algorithms and the seven different features selections (Degenerative
(D) - Traumatic (T) - Control (C)

TibCartLatVOL [mm3] 4,804
TibCartMedVOL [mm3] 4,631
CT Lat Osteophytes 4,594
MRI Med Cart Thick FEM [mm] - Med 4,262
MRI Med Menisc Pathol 3,909
MRI Lat Osteophytes 3,805
FemCartVOL [mm3] 3,644
TibCartLatSTD 2,543
MRI Lat Cart Thick FEM [mm] - Ant 2,491
MRI Med Cart Thick FEM [mm] - Post 2,402
MRI Lat Cart Thick TIB [mm] - Med 2,352
CT Med Osteophytes 2,343

Table 4.7: 12 most important features [%] for the RF classification model with 96 Tot
Features

their respective importance in the classification process. The highest importance is
attributed to 2 features from the 3D collection (the volume of the tibialis cartilage
lateralis and medialis). The 3D features set contribute 33% of importance despite
being only 18 compared to the 78 2D features. The cartilage set of features has higher
importance compared to the bones. In contrast, the CT scan features contribute to
only 14.39% of the importance having only 2 of them in the first 12 most important
features (lateral and medium osteophytes).

4.1.3 Discussion

This work developed a methodology to evaluate cartilage degeneration: it uses a mul-
timodal image approach and 3D models to segment bones and cartilages from the knee
area. Indeed, the MRI provides information about pathologies, morphology of the car-
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2D 66,08%
MRI (part of 2D features) 51,69%
CT (part of 2D features) 14,39%
3D 33,12%
BONE (from CT and MRI) 28,29%
CARTILAGE (from MRI) 37,79%

Table 4.8: Importance of the groups of features [%] for the RF classification model
with 96 Tot Features

tilages, and a geometric representation of the tissue damage, while CT data present
a good overview of bone pathologies, especially in boundary regions. The combina-
tion of both imaging techniques gives a 3D representation of the knee, and additional
information about bone and cartilage. These data overview makes the definition of
96 features possible, which demonstrated various levels of significance with regard to
contribution toward the cartilage quality evaluation.
ML results of Table 4.6 underline significant recall and precision, as well as F1, espe-
cially on the classification of degenerative patients, reaching a maximum recall value of
95.9 using the total and MRI feature selections, having almost 90% accuracy. The use
of all the 96 features gives the best classification metrics and allows a complete feature
importance analysis which gives new significant hints for studying the degeneration
condition of the knee cartilage.
Noteworthy are the results obtained with the single Bone and Cartilage feature se-
lections. While a good accuracy value is expected for the latter as we are classifying
subjects relative to their cartilage status, the classification metrics obtained with the
bone selection are of high impact. Cartilage status is highly dependent on the bone’s
condition, as has been demonstrated by Cai et al., [269] which observed changes in
the subchondral bone with OA progression. Moreover, Bonakdari et al. [270] recently
used bone features to predict cartilage volume loss obtaining a correlation coefficient
of more than 0.78.
Similarly, we demonstrated that bone has high importance in the classification process.
Still, if combined with cartilage and 3D features, the metrics significantly increase, in-
dicating that with the contribution of all these sets of features, a more in-depth view
of the knee cartilage status can be given. If we consider 3D features or cartilage fea-
ture sets alone for the classification process, the metrics are not significant due also to
the limited number. But they assume a significant relevance if we consider the whole
complete set (the 2 most relevant features, volume of the tibialis cartilage lateralis
and medialis, are from the novel 3D group). 3D features contribute one-third of the
importance despite the limited number. At the same time, they give the lowest accu-
racy of 74.5 if considered the only input to the tree-based algorithms. The 26 cartilage
features alone can give a decent 83% accuracy but, if taken together with the other 70,
contribute to the classification for almost 40% of total importance. We can conclude
that the complete set of features gives the best input for future developments of this
study: all the 96 bone, cartilage, and 3D features together could be used to develop
new clinical solutions like the design of a patient-specific cartilage status profile which
will help the clinicians and the researchers in an easier and objective classification of
the cartilage status and an evaluation of the degeneration level. This novel method-
ology, combining 2D and 3D measurements, is of interest to assess cartilage quality.
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By designing indexes of pathology and combining it with other parameters such as
radiodensity, it is possible to categorize cartilage into a group condition. This study
should be pursued with a larger range of subjects to ensure its efficiency.
ML analysis presents some limitations. The number of subjects is not particularly
high; this could affect the classification performances and a partial overfitting may oc-
cur in some models. Moreover, the multi-class approach can significantly decrease the
classification metrics: for future work, a binary classification option can be performed
to study the prediction potential of the features to distinguish degenerative patients
from all the others. A higher number of control subjects could also potentially be the
starting point for a binary classification between degenerative vs healthy or traumatic
vs healthy subjects.
In conclusion, we developed a cartilage segmentation and 3D modeling procedure that
can be used as benchmark for 3D bioprinting design and to advance cartilage assess-
ment in the frame of the RESTORE project. Based on a cumulative index of bone
properties (CI), we demonstrate the importance of bone condition and the sensitivity
of these measurements on medial and femoropatellar compartments. Moreover, we
show that a combination of 2D radiological measurements and 3D measurements re-
vealed potential biomarkers of cartilage degeneration, especially from medial femur.
This work is a first step toward a patient-specific cartilage profile based on the combina-
tion of CT and MRI datasets. This could be crucial for improving cartilage assessment.
Indeed, when evaluating patients with knee pain either following trauma or with acute
or chronic illness, the patient’s symptoms are always the cornerstone in the treatment
decision, whether medical or surgical. Following plain x-ray, a CT scan and most often
also MR scan are the best tools in elucidating the interior of the knee joint. The CT
scan is both easy to get and fast to execute but uses ionizing radiation. It reveals, how-
ever, best all the bony structures and injuries. It may also give some clues about the
bone marrow and surrounding soft tissues. The MR, however, is the best examination
to evaluate the status of both the cartilage and the ligaments. The drawback is both
the long time until it can be executed and long running time which can sometimes
be impossible in patients with severe pain. When merged, these 2 examinations give
the most superior evaluation ever for the knee joint and should always be chosen prior
to invasive arthroscopy. Our study shows the feasibility of extending the cartilage
assessment using existing and new parameters from both image modalities.



Chapter 5

Motions Sickness and Postural
Control Study

The following chapter of the thesis explores the study of Postural Control and Mo-
tion Sickness begun in summer 2020 with the creation of the Motion Sickness Lab in
the Engineering Department of Reykjavik University. BioVRSea system led to several
publications relative to the prediction and assessment of MS using multiple bio-metric
features from Electroencephalography (EEG), Electromyography (EMG), Center of
Pressure (CoP), Heart Rate (HR) combined with data from the Motion Sickness Sus-
ceptibility Questionnaire (MSSQ).
The three main researches presented in the present chapter will focus on three different
cohorts of healthy subjects who underwent the BioVRSea experiment. They focus on
motion sickness prediction, concussion on female athletes and lifestyle influence on MS
symptomatology.

5.1 Introduction

5.1.1 BioVRSea definition

BioVRSea is a bio-measurement system established in 2020 in the Motion Sickness Lab
at Department of Engineering of the Reykjavik University to study PC and MS. This
system is a sailing simulator that records, in synchronized fashion, multiple bio-signals
from brain, heart and muscle. The participants wear the VR goggles showing a rough
sea scenario. The movement of the ship over the waves in the VR scenario is coupled
to the moving platform and the frequency and amplitude of the VR wave motion is
synchronized with the platform motion. Different "sea sounds" can be heard trough
the headphones of the VR googles. Subjective and objective MS levels are assessed
by a questionnaire while biosensors measure EEG, electromyography (EMG), and HR
of the subject. The creation of a database allows the implementation of various sta-
tistical and ML algorithms with the aim of correlating the biometric results with new
indexes that combine the various symptoms of MS, having as main novelty the EEG
application and interpretation in association with VR and moving platform inducing
MS, linked to other biosignals.
The VR software (Virtualis, VR, France) dynamically visualizes a virtual environ-
ment as if the subject is out on the open sea on a little boat. A moving plat-
form (Virtualis VR, France) mimics the waves according to the simulated environ-
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Figure 5.1: A subject on the BioVRSea platform wearing the VR googles during the
sea virtual simulation in the Motion Sickness Lab at Reykjavik University

ment. The operator can set frequency (between 0.5 and 3 Hz) and amplitude of the
waves (from 0 to 2). During the simulation, we vary the amplitude of the platform
movements from 0% up to 100%. The platform allows fast (tailored) movements in
0◦,−45◦,−90◦,−135◦,−180◦,−225◦,−270◦,−315◦,−360◦ (linear acc. not available)
coupled to synchronized visual VR movements.
Of course, the VR view that the investigated individual visualizes standing on a virtual
small vessel is not a true scenario of working environment at sea but is nevertheless
capable of creating real MS sensation at least in experienced sailors (verbal statements
after being on platform).
Fig. 5.1 shows a subject on the BioVrSea platform during the experiment.

5.1.2 BioVRSea Acquisition’s Protocol

The whole acquisition, including the preparation before the simulation, can lasts
around 40-50 minutes. The experiment itself has a duration of 320 seconds and it
is split in 6 different sections (Fig. 5.2).
The first section is the baseline segment, where the participant only sees a static moun-
tain panorama through the VR goggles. During this time, the platform does not move,
and the participant stands with the hands by the side while observing a virtual moun-
tain scene for a total of 120 s. After the Baseline section, the VR scene changes to the
sea environment and the subject sees her/himself on a small boat at rough sea. The
second section lasts 40 s and it is denominated PRE section. During this phase, the
platform does not move, and the participant remains still with hands by the side. In
the following third section, the participant holds on to the safety bars and the platform
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Figure 5.2: BioVrSea Acquisition’s Protocol

moves in a synchronized manner with the waves seen in the VR environment. During
these 40 s, the platform moves at 25% of the maximum amplitude. In the fourth
and fifth section, the platform increases the intensity to 50% and 75%, respectively
for 40 s each. In the last section, denominated POST section, the movement of the
platform stops while the VR simulation continues. The participant takes their hands
off the safety bar and stands quietly trying to maintain equilibrium watching the VR
sea scene. After 40 s, this section is over and so is the entire acquisition. The eyes
must be open during all the experiment.
Table 5.1 summarizes the VR/platform synchronization protocol.

Time (s) Section VR Scene Hands’ Position Platform

0-120 Baseline Mountain By Side Stationary
120-160 PRE Sea By Side Stationary
160-200 25% Sea On Bars Moving
200-240 50% Sea On Bars Moving
240-280 75% Sea On Bars Moving
280-320 POST Sea By Side Stationary

Table 5.1: VR/platform synchronization protocol

Concerning the waves’ frequency and amplitude, two protocols are randomly se-
lected for the experiment:

• Soft: Frequency: 0.1 Hz - Amplitude: 0.6

• Hard: Frequency: 0.3 Hz - Amplitude: 0.5

The selection of these frequencies was based on two main reasons. The first reason
is to only act upon one of MS etiologic theory: multiple theories have been listed to
explain MS, and the SCT is easily the leading perspective. Frequencies below 1 Hz
are not considered because they might act upon the additional Postural Instability
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Theory, which is rooted in perception of lower <0.5 Hz frequencies [205]. The second
reason is to ensure that an easy scenario (1 Hz) is available to reduce the risk of falling,
as well as a harder one (3 Hz) to ensure sufficient movement to trigger MS.

5.1.3 Biomedical Data Acquisition

Figure 5.3: BioVRSea Biosgnals setup: EEG wet cap and EMG sensors, gastrocnemius
lateral, and soleus muscles.

• Brain electrical activity is measured with wet 64-electrode EEG cap (Sampling
frequency 4096 Hz, ANTNeuro, Hengelo, The Netherlands) (Fig. 5.3 shows the
conductivity gel injection process).

• Muscle electrical activities from the lower limbs is acquired using six wireless
EMG sensors (sampling frequency of 1600 Hz) placed on the tibialis anterior
(TA), gastrocnemius lateral (GL), and soleus (S) muscles of each leg (Kiso ehf,
Reykjavik, Iceland) (Fig. 5.3 shows the application of EMG wireless sensors on
GL, and S muscles).

• Heart rate is measured using a chest heart sensor (Polar Electro, Kempele, Fin-
land, sampling frequency 1000 Hz).
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• Force Plate measurements are made using 4 sensors located under each foot
platform. The sensors give information about the center of mass in the Antero-
posterior and Medio-Lateral axis (Virtualis, Clapiers, France, sampling frequency
90 Hz) (Fig. 5.4).

Biomedical-data detailed process description goes beyond the scope of the present
thesis and therefore it will not be explained in depth here. More exhaustive information
can be found in the BioVRSea current literature [5][6][7][271][272][273][274].

Figure 5.4: Force Plates and VR googles on the moving platform of BioVRSea

5.1.4 BioVRSea cohorts

From 2020 almost 400 people underwent the BioVRSea experiment and acquisitions
are still ongoing at the time of this text drafting. Three different cohorts are considered
in this thesis:

• 28 subjects (age: 23.8 ± 1.2), 22 women and 6 men. Each participant is mea-
sured with both soft (1Hz) and hard (3Hz) protocols as well as with the baseline
(denominated in this case 0Hz protocol). This initial cohort is considered in [5]
and the relative results are detailed in section 5.2;

• Participants are all female athletes (N = 54), competing at the highest level
in Iceland in basketball (16.7%), handball (35.2%), soccer (38.9%), ice hockey
(5.6%), or martial arts (3.7%). Mean age is 38.4 (SD = 7.7). Mean years
since retirement was 4.3 years (SD = 4.9). This second cohort is used for the
Concussion study using BioVRSea published in [6] and described in detail in
section 5.3;

• The largest cohort considered for the researches this thesis is composed of total
of 262 subjects (age 36.18 ±15.66), 152 women and 110 men. It is used to study
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lifestyle influence on MS and BioVRSea paradigms: the results where presented
at IEEE MetroXRAINE Conference in Rome [7] and are detailed in section 5.4.

At the time of writing of this dissertation 355 healthy subjects were measured, plus
11 Early-Parkinson subjects. For the indexes introduced in the following paragraph
5.1.6, all the various numbers refer only to the healthy population of 355 subjects.

5.1.5 Motion Sickness Questionnaire

Each participant before and after the acquisition answers a Motion Sickness Question-
naire inspired by the Motion Sickness Susceptibility Questionnaire (MSSQ) proposed
by Golding [275], considered a gold standard in the evaluation of symptoms and prone-
ness relative to MS.
General info like age, gender, weight, and height are initially asked. Consequently
Body Mass Index is calculated from weight and height of each subject.
Then, information about everyday life are asked: physical activity, intake of food, caf-
feine, nicotine, and alcohol.
Numbers relative to the age and gender of the 355 subjects are shown in the pie charts
of Fig. 5.5.

Figure 5.5: Age and Gender piecharts relative to MSSQ answers from 355 subjects

Successively the questionnaire focus on MS susceptibility and predisposition. Par-
ticipants are asked about their past experiences relative to experience MS on transport
and entertainment systems on a scale from 0 to 3 (Never, Rarely, Sometimes, Often
felt sick). The transport and entertainment systems are the following:

• Car

• Bus

• Train
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• Aircraft

• Small Boat

• Ship

• Swing in playgrounds

• Roundabout in playgrounds

• Funfair ride, big dipper

A fifth option is available in case the subject has never travelled or experienced one of
the previous listed systems. In case the subject stated that she/he has never travelled
on cars, busses or airplanes, the answers has been considered not valid and substitute
with never felt sick. If the participant stated that she/he has never travelled on trains,
the answer is considered valid as no railways are present in Iceland and most of the
participants are from Iceland.

Afterwards, before to start the virtual experience, the subject will answer about
how does she/he feels at the moment rating on a scale from 0 to 3 (None, Slight,
Moderate, Severe) the following typical MS symptoms:

• General Discomfort

• Fatigue

• Headache

• Fullness of Head

• Eye Strain

• Difficulty focusing or concentrating

• Increased salvation

• Burping

• Stomach Awareness

• Sweating

• Nausea

• Blurred Vision

• Vertigo or Dizziness

The participant self-evaluate the same symptoms at the end of the sea simulation after
the POST segment of the experiment.
The first cohort of participants were able to rate their symptoms on scale from 0 to 2.

5.1.6 Motion Sickness and Lifestyle Indexes

Using the data extracted from the MSSQ multiple different indexes are computed
relative to lifestyle habits, MS proneness and symptoms.
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Lifestyle Index The Lifestyle Index (LSI) is a three classes index based on BMI,
Sport Activity, Nicotine, Caffeine, and Alcohol assumption.
Participants are assigned 1 point if the behavior is considered healthy, and no points
otherwise following these next criteria:

• BMI: Unhealthy [0] if ≥ 25 - Healthy [1] if <25

• SPORT Activity: Unhealthy [0] if <3 times a week - Healthy [1] if ≥ three times
a week

• Nicotine (on daily basis): Unhealthy [0] if YES - Healthy [1] if NO

• Caffeine (today): Unhealthy [0] if YES - Healthy [1] if NO

• Alcohol: Unhealthy [0] if Today or Yesterday - Healthy [1] if NO or more than
two days ago

The summation (LS_Sum) of the points is then computed and the three classes
LSI is defined as follow:

• RED if LS_Sum=0 or 1

• YELLOW if LS_Sum=2 or 3

• GREEN if LS_Sum=4 or 5

The results relative to the three classes LSI from the 355 subjects are shown in the
piechart of Fig. 5.6.

Figure 5.6: Three classes LSI piechart from 355 subjects

A specific Lifestyle Index is developed for the study of paragraph 5.4. It takes in
consideration for each patient the BMI, smoking status and physical activities exclud-
ing alchool and caffeine info. A person is considered healthy if two of those charac-
teristics are considered healthy. On the total of 262 participants of the third cohort,
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196 has been considered with an healthy lifestyle while the remaining 66 do not have
a healthy lifestyle.

Motion Sickness Proneness Index The Motion Sickness Proneness Index (MSPI)
is a binary index based on the answers relative to MS susceptibility and predisposition
on transport and entertainment systems. For each category a point from 0 to 3 is
assigned. The summation of these points is computed and divided to the answer given
(maximum of 9 categories): the results is defined as (MSP_Sum).
The MSPI classes are defined as follow and relative percentages are shown in Fig. 5.7:

• MS Prone [1] if MSP_Sum ≥ 9

• Not MS Prone [0] otherwise

Figure 5.7: MSPI piechart from 355 subjects

Motion Sickness Index The Motion Sickness Index (IMS) is a binary index that
refers to the 13 MS symptoms listed previously. These symptoms are grouped as
follow and computed for the PRE (before the simulation) and the POST (after the
simulation). Binary indexes referred to these groups of symptoms are created following
these steps: first, we compute the average from the individual responses of each index;
second, we calculate the maximum among the averages; and third, we divide the
cohort into two groups (below and above 1/3 of the maximum). For IGenDis and
IDizz, we apply only steps 2 and 3 using the direct response instead of the average.
The symptoms groups are the following:

• Stomach Index (Isto): Avg [Salivation, Sweating, Nausea, Stomach Awareness,
Burping]

• Fatigue Index (Ifatig): Avg [Fatigue, Eye Strain, Diff. Focusing]
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• Head Index (Ihead): Avg [Headache, Blurred Vision, Fullness of Head]

• General Discomfort (IGenDis): includes only General Discomfort

• Dizziness-Vertigo (IDizz): includes only Dizziness-Vertigo

Moreover, we established two more indexes: Physiological/Vegetative Index (IPV)
and Neurological/Muscle Strain Index (INM). IPV is based on the responses from
sweating, salivation, nausea, burping, stomach awareness, and general discomfort con-
ditions. Similarly, the INM is based on fatigue, eye strain, difficulty focusing, headache,
fullness of head, blurred vision, and again general discomfort conditions.
IMS is here defined as the weighted sum (SumMS) of all the MSSQ answers (Eq. 5.1):

SumMS = (0.2 ∗GenDisc+ 0.2 ∗Dizz&V ert+

+ 0.2 ∗
∑

(StomAwe,Nausea, Sweat, Saliv, Burp)+

+ 0.2 ∗
∑

(Fatigue, EyeSt,DiffFocus)+

+ 0.2 ∗
∑

(Headache, FullHead,BlurrV is)) (5.1)

BioVRSea Effect Index For each symptom group defined before the difference be-
tween POST and PRE is computed (if negative is considered 0). If the difference is >0
the Symptom Group Binary Difference (SG_BinDiff) is =1, otherwise SG_BinDiff=0.
SG_BinDiff is computed for each of the five groups and then summed up creating
MS_Diff_Sum. If MS_Diff_Sum=1 it means that 1 symptom group has increased
from before (PRE) the simulation to after (POST) it. If MS_Diff_Sum=5 it means
that all the symptom group has increased, if MS_Diff_Sum=0, there are no changes
in the MS symptoms after the simulation.
BVSEI is binary defined splitting the population in two considering MS_Diff_Sum=1.
BVSEI differs people who had a single change in the symptoms (or more than one)
between before and after the experiment, from people who did not suffer any symp-
toms.
Out of the 355 subjects, as shown in Fig. 5.8, 233 (65.63%) did have a symptom effect
on the BioVRSea experiment (BVSEI=1), 122 (34.37%) did not have any symptom
changes (BVSEI=0).

The following tables show the percentages of the 355 subjects when combining
the three main indexes: table 5.2 shows the percentages and relative gender and age
information related to LSI and MSPI, table 5.3 do the same in relation to LSI and
BVSEI, and finally table 5.4 shows the information relative to MSPI and BVSEI.

5.1.7 Sport Concussion Assessment Questionnaire

Participants of the second (concussion) cohort, were read before the BioVRSea ac-
quisition a concussion definition and were asked if they had sustained a concussion.
The definition was based on the Berlin Consensus statement on concussion in sport
from 2016. All participants completed the symptoms scale from The Sport Concussion
Assessment Tool 5 (SCAT5) before the experiment. The overall score is calculated by
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PRONE NOT PRONE

RED 1.97% 3.94%
AGE: 40,43 +- 14,82
Female: 7 - (100%)
Male: 0 - (0,00%)

AGE: 41,14 +- 14,41
Female: 6 - (42,86%)
Male: 8 - (57,14%)

YELLOW 12.96% 29.01%
AGE: 37,74 +- 14,12
Female: 29 - (63,04%)
Male: 16 - (34,78%)
NotSpec: 1 (2,17%)

AGE: 35,29 +- 14,07
Female: 38 - (36,89%)
Male: 64 - (62,14%)
NotSpec: 1 (0,97%)

GREEN 15,77% 36,34%
AGE: 29,54 +- 14,27
Female: 48 - (85,71%)

Male: 8 - (14,29%)

AGE: 28,87 +- 14,18
Female: 70 - (54,26%)
Male: 59 - (45,74%)

Table 5.2: Percentages of subjects related to Lifestyle Index and Motion Sickness
Proneness Index

BioVRSea Influenced BioVRSea Not Influenced

RED 3.94% 1.97%
AGE: 40,50 +- 14,82
Female: 11 - (78,57%)

Male: 3 - (21,43%)

AGE: 41,71 +- 14,38
Female: 2 - (28,57%)
Male: 5 - (71,43%)

YELLOW 26.19% 17.77%
AGE: 32,82 +- 14,08
Female: 48 - (51,61%)
Male: 44 - (47,31%)
Not Spec: 1 (1,08%)

AGE: 41,07 +- 14,16
Female: 20 - (35,71%)
Male: 35 - (62,50%)
Not Spec: 1 (1,79%)

GREEN 35.49% 16.61%
AGE: 28,54 +- 14,21
Female: 88 - (69,84%)
Male: 38 - (30,16%)

AGE: 29,70 +- 14,18
Female: 30 - (50,85%)
Male: 29 - (49,15%)

Table 5.3: Percentages of subjects related to Lifestyle Index and BioVRSea Effect
Index

BioVRSea Influenced BioVRSea Not Influenced

Prone 25.35% 40.29%
AGE: 32,01 +- 14,37
Female: 74 - (82,22%)
Male: 15 - (16,67%)

Not Spec: 1 - (1,11%)

AGE: 30,30 +- 14,09
Female: 73 - (51,05%)
Male: 70 - (48,95%)

Not Prone 5.35% 29.01%

AGE: 39,41 +- 14,38
Female: 11 - (57,89%)

Male: 8 - (42,11%)

AGE: 34,62 +- 14,06
Female: 41 - (39,81%)
Male: 61 - (59,22%)

Not Spec: 1 - (0,98%)

Table 5.4: Percentages of subjects related to Motion Sickness Proneness Index and
BioVRSea Effect Index
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Figure 5.8: BVSEI piechart from 355 subjects

the sum of each participant’s responses. The scale has 22 items, each item scoring
from 0 to 6, indicating the severity of the symptom. In our study, it was hypothesized
that the Icelandic versions of the SCAT5 symptoms checklist, could be used to dif-
ferentiate between concussed and non-concussed athletes, it was used to validate the
self-reported concussion status and assess for each group the changes of some physio-
logical conditions associated with our experiment.
Almost half of the participants had a history of concussion/s, 48.1% (n = 26), the
remaining 51.9% (n = 28) reported no concussion history.

5.2 Motion Sickness prediction with first cohort

The present section reports the results from the first significant publication relative
to the BioVRSea MS studies. It is adapted from the paper published on Frontiers in
Bioengineering and Biotechnology [5].
Fig. 5.9 shows the BioVRSea set-up for the present study.

5.2.1 BioVRSea Setup for first cohort study

5.2.1.1 Biomedical Features

Fig. 5.10 lists and describes the 19 biometric parameters for each acquisition proto-
col. For the acquisition process please refer to paragraph 5.1.3 with the exception of
EEG measurement: brain electrical activity is here acquired using a 64-channel dry
electrode cap (sampling frequency of 500 Hz) from AntNeuro, Hengelo, Netherlands.
Fig. 5.11 shows the objective physiological measurement differences for all the subjects
between the first static protocol and the other two, the light one (1 Hz) in green and
the hard one (3 Hz) in red. The arrows show how the values of the single EEG, EMG,
and HR data rise or fall during the protocols. For example, it is possible to notice how
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Figure 5.9: BioVRSea structure for the present study: the moving platform, is com-
bined with a rough sea VR scenario and with EEG, EMG, and HR bio-signal acquisi-
tion to predict MS using ML.

the EMG values for both legs at low frequencies increase for the most patients, while
they decrease at high frequencies. On the opposite, the EEG values do not follow such
a regular trend.

In Fig. 5.12, it is possible to see the percentage of MSSQ answers and indexes for
the entire cohort. It is possible to identify general discomfort, sweating, nausea, and
vertigo as the most significant indexes with over 20% of responses being the highest
possible value. Salivation and burping, conversely, are the least significant with a
percentage lower than 5% providing a response of highest value. Fig. 5.13, similarly to
Fig. 5.11, shows the increase or decrease of the value of the subjective given answer to
the questionnaire using the colored arrows. It is possible to see that some patients, like
numbers 10, 11, 14, and 22, have an increase of the symptom for both the 1-Hz and
the 3-Hz protocols while others do not show any significant difference. Subject number
16 shows an increase only with the 3-Hz protocol, confirming the strong influence of
the wave frequency on the body.

5.2.1.2 Statistical Analysis and ML tools

All the parameters extracted from EEG, EMG, and HR underwent a non-parametric
statistical univariate explorative analysis in order to understand whether there was a
statistically different grouping by IGenDis, IDizz, IStom, IHead, IFatig, IPV, INM, and
IMS. All the indexes underwent univariate statistical analysis through the Mann–Whitney
test.
The following algorithms were implemented: Random Forests (RF), Gradient Boosting
tree (GB), Ada-Boosting of decision tree (ADA-B), Support Vector Machine (SVM),
K Nearest Neighbor (KNN), and Multilayer Perceptron (MLP).
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Figure 5.10: Description of the 19 biometric parameters that compose the database.

The following evaluation metrics were used to assess the performance of the algo-
rithms into the classifications tasks: accuracy, sensitivity, specificity, and Area Under
the Curve Receiver Operating Characteristics (AUCROC). All these metrics were com-
puted using the K-Fold Cross Validation with k = 10 using 10 different seeds.
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Figure 5.11: Difference of the objective brain, muscle, and health bio measurements
between the first static protocol and the light (1 Hz – green) and the hard one (3
Hz – red) for all the patients (the one that did not perform the 3-Hz protocol is not
included).

Figure 5.12: Percentage of the MSSQ answers for each symptom, and percentage of
zeros and ones for the eight computed indexes.

5.2.2 Results

5.2.2.1 Statistical Analysis

Fig. 5.14 shows the results of the statistical tests that assess the significance of the
19 parameters with the eight binary MSSQ indexes. Interestingly, only 4 out of 19
parameters never show a significance.
The EEG Beta and LG showed significance only for the individuals suffering from
headache, fullness of head, and blurred vision (IHead), while no other significances
were found for an EEG parameter.
The amplitude/area of EMG on both sides achieved a significance for all the conditions
except for General Discomfort (IGenDis). Similarly, excluding a few cases, the power
spectrum of the EMG obtained a significance for almost all the conditions except in
the band of 132–224 for the left side, which is never significant.
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Figure 5.13: Difference of the subjective MS symptoms between the first static protocol
and the light (1 Hz – green) and the hard (3 Hz – red) for all the patients (the one
that did not perform the 3-Hz protocol is not included).

The HR Average was significant according to all indexes excluding IStom, IFatig, and
IHead while HR std showed statistical significance only according to IGenDis.
The IGenDis index was the index that showed the least number of significances for the
analyzed parameters; only EMG–R 40–132 and 132–4 Hz and HR parameters achieved
significant results according to this index. On the other hand, IHead, IDizz, and INM
were the indexes according to which the biometric parameters show the greatest num-
ber of significant results (respectively, 13 and 12).
Finally, 11 out of 19 parameters show a significant result according to the overall IMS:
10 EMG-related features, 1 HR- related feature, and no EEG feature.

Figure 5.14: Significance of the 19 biometric parameters calculated with the univariate
statistical analysis (Mann–Whitney test) for all the eight indexes.
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Index Alg Acc Sens Spec AUCROC

IPV

RF 75.9 77.5 74.4 0.815
GB 74.7 75.0 74.4 0.705

ADA-B 75.9 85.0 67.4 0.781
SVM 60.2 62.5 58.1 0.603
KNN 57.8 60.0 55.8 0.573
MLP 49.4 77.5 23.3 0.642

INM

RF 79.5 74.3 83.3 0.832
GB 69.9 71.4 68.8 0.711

ADA-B 73.5 80.0 68.8 0.746
SVM 60.2 51.4 66.7 0.590
KNN 67.5 65.7 68.8 0.694
MLP 45.8 80.0 20.8 0.737

IMS

RF 74.7 59.4 84.3 0.801
GB 72.3 68.8 74.5 0.803

ADA-B 71.1 71.9 70.6 0.765
SVM 55.4 43.8 62.7 0.532
KNN 67.5 59.4 72.5 0.670
MLP 53.0 40.6 60.8 0.681

Table 5.5: Evaluation metrics [%] after the classification ML analysis for IPV, INM,
and IMS. (The bold values are the most significant results)

IPV INM IMS
EEG – Delta 3,74 2,37 2,47
EEG – Theta 5,46 4,84 5,87
EEG – Alpha 2,78 1,97 2,16
EEG – Beta 7,18 6,71 4,29
EEG – LG 2,68 1,48 2,16
EMG – L area 5,56 8,88 4,23
EMG – R area 9,39 12,54 14,77
EMG – L 40-132 6,51 6,12 6,04
EMG – L 132-224 3,07 2,76 4,06
EMG – L 224-316 2,49 5,92 3,56
EMG – L 316-408 7,85 4,24 4,18
EMG – L 408-500 5,17 3,95 6,16
EMG – R 40-132 8,52 7,7 7,9
EMG – R 132-224 7,28 3,26 5,36
EMG – R 224-316 2,11 7,5 4,96
EMG – R 316-408 6,9 5,92 4,78
EMG – R 408-500 5,36 3,85 2,57
HR average 4,89 4,54 7,72
HR std 3,07 5,43 6,76

Table 5.6: Feature importance (%) for IPV, INM, and IMS using Random Forest
algorithm. (The marked values are the three most significant features for each index
classification)
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Figure 5.15: Feature importance (%) for IPV, INM, and IMS using Random Forest
algorithm.

5.2.2.2 Machine Learning

The ML analysis focuses on the binary classification of physiological, neurological, and
general MS conditions based on the MSSQ responses. We performed the classification
of the following index previously defined:

(1) ThePhysiological/VegetativeIndex(IPV),

(2) The Neurological/Muscle Strain Index (INM),

(3) The MS Index (IMS).

We assessed these conditions using six different algorithms, finding RF to yield the
best results (Table 5.5).
As regards IPV and INM, the RF was the best algorithm for classifying both indexes;
an accuracy of 75.9% with an AUCROC of 0.815 was achieved for IPV while an ac-
curacy of 79.5% with an AUCROC of 0.832 was obtained. The highest sensitivity
(85.0%) was obtained by the ADA-B for the physiological index, while the highest
sensitivity was achieved by RF (74.4%). As regards the neurological index, the best
sensitivity (80.0%) was achieved by the ADA-B while the best specificity (83.3%) was
obtained by RF. The MLP was the worst algorithm to perform both the classifications
since it reached the lowest accuracy (respectively, 49.4 and 45.8%) while the lowest
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AUCROC was reached by KNN for the physiological index (0.573) and by SVM for
the neurological index (0.590).
The feature importance analysis (Fig. 5.15) shows that parameters extracted from
EMG were the most important ones by far for the classification of both indexes. The
first EEG-based features can be found in the 5th place in the ranking while the first
HR-based features can be found after the 10th place. Moreover, it has to be high-
lighted that the top three features in Fig. 5.15 for these indexes are all statistically
significant also in the previous univariate analysis (Fig. 5.14).
Concerning IMS, the overall model for the indexes is good enough considering accura-
cies greater than 70.0%, AUCROC greater than 0.800, and the number of trials (equal
to 83) that does not allow us to analyze a large dataset; indeed, a greater number of
subjects would allow the improvement of the evaluation metrics of the models.
The feature importance analysis (Fig. 5.15 and Table 5.6) highlighted novel results for
IMS: the seasickness can be strongly linked to features extracted from EMG (the top
two were area and frequency analysis in the range 40–132) and HR-based (average and
standard deviation were at the third and fourth place). On the other hand, another
important and surprising result is the low importance of all the features extracted
from the EEG, they were below the seventh place in the final ranking (this also for
the other indexes except EEG-Beta which is quite relevant for IPV and INM). This
can be explained by the fact that a dry cap EEG was used for the acquisition. More
noise was detected and led to a lower signal quality. Channels had to be rejected and
could not be interpolated, leading to an averaged PSD on less channels. This can be
one of the reasons of the low significance related to EEG features.

5.2.3 Discussion

PC is central in governing upright posture in humans. PC failure is dual, firstly patho-
logical disruption leading to clinical difficulties where symptoms of vertigo, dizziness,
imbalance, and falling are prominent [276]. Secondly, an overstimulation of the PC
system may precipitate a series of symptoms of discomfort known as MS [213]. As in
PC diseases, there are many objective measurements to be used in the diagnosis of
these diseases. On the other hand, there are limited ways to objectively measure MS.
Questionnaires are used to evaluate the incidence of subjective symptoms associated
with MS, most often nausea, pallor, vomiting, sweating, headache, lightheadedness,
and body discomfort [277]. There is an urgent need for objective measurement to
evaluate MS, as it threatens human well-being when one is situated in a motion-rich
environment. It is also critical to objectively distinguish people into MS-prone and
non-MS-prone individuals. This is possible using questionnaires [275], but having an
objective way to discriminate these two groups is of great value when comes to genetic
research.
In this study, we use the BioVRSea research setup and focus on EEG, EMG, and
HR bio-signals associated with subjective MS symptoms. Our EEG-coupled results
show significant difference in brain neural networking in individuals indicating subjec-
tive symptoms of headache, fullness of the head, and blurred vision (IHead). In an
earlier study, we showed that open eyes trials reflect a greater number of significant
differences in EEG absolute spectral power across all bands during both adaptation
and habituation. This suggests that following both acute and prolonged propriocep-
tive perturbation, cortical activity may be up-regulated with the availability of visual
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feedback [278]. These results generally support our prior hypothesis that the visual
recognition of instability may play a critical role in governing cortical processes req-
uisite for PC [279]. These results underline the importance of visual information in
PC and simultaneously open up the VR afferent link in PC perturbations. Being able
to couple these subjective symptoms, i.e., headache, fullness of the head, and blurred
vision, to objective intracranial activity is crucial in clinical context and opens up ways
for VR-coupled biosignal evaluation of PC pathologies [280]. This is in keeping with
many other studies performed on motion and CNS triggers of head-related symptoms.
Jang et al. [281] identified that the alpha band was linked to VR sickness, with a
decrease of the absolute power during the experiment, followed by an increase during
the recovery, highlighting a negative correlation with the MSSQ score. Kim et al. [282]
detected that in the case of cybersickness, the severity of the symptoms was positively
correlated with the delta wave, and negatively with the beta waves. It is interesting
to see that, in our study, despite the low significance of EEG regarding the different
indexes chosen, the power associated to the beta band is the parameter presenting
the most importance in IPV and INM. This corroborates the fact that beta band is
related to MS symptoms and is a feature that should be investigated in MS studies.
Our results do not enable to drawing of hypotheses regarding the other power bands.
Our observations have indicated that definite vection does not necessarily result in
visually induced MS (you can have very compelling vection but no visually induced
MS), but at the same time, most participants who get sick also report vection. Our
intentions are to verify the relationship between MS and visually induced MS, although
there are some participants that get sick on the platform but never experience MS in
the real world. They probably have not experienced enough rough waters and there-
fore we do not expect false positive/negative.
To be able to evaluate the relationship between BioVRSea biosignals and subjective
MS symptoms, the use of ML was necessary. This study clearly shows the benefit of
ML; indeed, it allowed us to achieve two aims: first, the possibility to model several
biometric parameters extracted from three types of signals (EEG, EMG, and HR) in
order to be able to classify/distinguish patients suffering from seasickness according to
these features; second, the feature importance analysis allowed us to further confirm
the statistical results by ranking the features according to their contribution to the
classification task. Moreover, as regards the ML models, the RF was the most reliable
among all the implemented ones (Table 5.5).
The amplitude of the EMG signals in both legs showed significant difference regard-
ing all conditions except general discomfort (IGenDis). That indicates that almost
all subjective symptoms of MS showed correlation with changes in EMG. This is in
context with the fact that all human efforts initiated to prevent falls, i.e., acute or
long-term vertigo and dizziness, are mediated through postural stabilizing muscles
[283]. Some studies used EMG measurements to analyze the behavior related to MS,
with sensors placed on the abdominal muscles [284] and EMG combined with cervical
vestibular myogenic potential to study the effect of scopolamine for the seasickness
treatment [285]. As far as we know, no study found significance related to EMG in the
lower limbs to quantify MS. This is an important piece of information regarding our
BioVRSea research setup and is a promising single tool to objectively extract MS suf-
ferers. On the other hand, this is not surprising as the prime effector in PC is aimed
at muscles maintaining the upright posture and simultaneously avoiding falls. Our
BioVRSea research setup might answer several clinical questions related to strategies
used to prevent falls in patients with PC pathologies.
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The HR parameters were significantly associated with the symptom of General Dis-
comfort (IGenDis). The General Discomfort symptom is general in its nature and
does not specifically point to MS. On the other hand, the triggered MS discomfort
relates to an escalated sense of generalized panic in severe MS conditions, which is
well capable of creating extreme cardiovascular deviations [286]. This is expected as
HR is probably the best-known biosignal associated with numerous physical as well as
pathological conditions, particularly of a PC nature.
These results can be used to have quite a whole vision of the body reaction to induced
MS. This total vision can be used to help the pathological patients and the people
that are more prone to MS planning an eventual rehabilitative therapy. Future ideas
are to use more physiological measurements like blood oxygenation, skin sweating, and
force used on the legs for the equilibrium. All these actual and future body parame-
ters coupled with the BioVRSea system and ML are of value in further evaluation of
PC disruptions, which are probably the most disturbing and costly health conditions
affecting humans.
Of course, the study has some limitations. The first is the small number of subjects
of this first cohort that limits the possibility of obtaining higher evaluation metrics
in the ML analysis. The second is the type of population that has been analyzed in
this research because it was limited regarding mainly age; all the subjects were young
students. Further studies will increase the number of subjects, which would allow
improvements in the performance of ML and include in the population more diverse
subjects. We use for this cohort dry electrodes in the EEG acquisition process result-
ing in high noise signal, which we believe has limited the value of the associated EEG
parameters in both statistical significance and ML. The use of a wet cap EEG will
show significant improvements in the quality of the signals.

5.3 Female Athletes Concussion Cohort

A second relevant study about BioVRSea was published on Scientific Reports [6]. It
is focused on defining biomarkers from the BioVRSea features for the evaluation of
sport-concussion in female athletes. The article ranges between pshycological and bio-
logical studies done in collaboration with the Psychology Department of the Reykjavik
University.
This paper aimed to validate concussion/non-concussion classification and quantita-
tively assess different physiological responses during postural control tasks associated
with concussion symptoms. The study was conducted on a homogeneous cohort of
female athletes with a background in sports with high impact contact. The athletes’
self-reported concussion history was used to divide them in two groups: concussions
and non-concussion. We first validated concussion history by asking them about con-
cussion symptoms, using the SCAT5 questionnaire. Next, concussion groups were
assessed with BioVRSea (Fig. 5.16). We computed the different measurements for
each individual using ML techniques with the aim of classifying concussions based on
self-reported and measured parameters. We hypothesized that (1) The Icelandic ver-
sions of the SCAT5 symptoms checklist, although not a diagnosis tool, can be used
to differentiate between concussed and non-concussed athletes (2) Changes of CoP,
heart rate, EMG and EEG data can quantitatively measure concussion and concus-



98 CHAPTER 5. MOTIONS SICKNESS AND POSTURAL CONTROL STUDY

Athletes with a history
of concussion (N=26)

Athletes with no history
of concussion (N=28)

Age mean (s.d.) 30.5 (6.9) 29.8 (8.2)
Retired %(n) 69.2 (18) 57.1 (16) *
Active %(n) 30.8 (8) 39.3 (11)

Table 5.7: Age and athletic status of participants. *One athlete without a history of
concussion did not clarify if she was retired or still active (3.6%).

sion symptoms, (3) ML techniques using SCAT5 and neurophysiological parameters
can improve assessment of concussion.

Figure 5.16: BioVRSea experimental Setup for the Present Concussion Study

5.3.1 BioVRSea Concussion Experiment Setup

Participants info previously listed in paragraph 5.1.4 are shown in Table 5.7.
BioVRSea protocol is the one described in paragraph 5.1.2. During each protocol,
muscle, brain, heart, and CoP data were acquired. The data from each measurement
were divided into 6 segments, corresponding to each stage of the protocol. Data for the
EEG, EMG and CoP were analyzed by calculating POST–PRE (POST minus PRE)
paradigm.
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Signal Phase Description Tot N

HR

Pre

Average Heart Rate 5
25
50
75
Post

EMG

Pre 6 Muscles
Areas 12Post

Pre 6 Muscles
Median Frequency 12Post

EEG Pre Alpha – Beta – Theta –
Delta – Low-Gamma 10Post

CoP Pre TOTEX – MDIST_AP- MVELO –
Ellipse_Main_Axis – SD_AP- Postero_Magnitude 12Post

Table 5.8: The 51 selected features from the BioVRSea measurements.

Figure 5.17: Feature Selection and Machine Learning Workflow. 51 features are se-
lected from Brain, Muscles and Heart signal and on them, the PCA is performed to
obtain 9 PCA features used to the binary classification of the concussion assessment
using different ML algorithms; 22 SCAT5 features are then used as well as features for
the concussion classification; the 22 SCAT5 and 9 PCA are then combined and used
together to classify concussed and non-concussed subjects.

The Machine Learning analysis was performed to binary classify the participants
who self-reported concussion and those who had not (Fig. 5.17). The feature extracted
from the BioVRSea measurement provides a total of 51 features (Table 5.8). They are
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Figure 5.18: Symptoms (SCAT5) reported by all participants before and after VR
acquisition. Overview of concussion symptoms reported by all participants before VR
acquisition.

the 5 HR average for each experiment phase, the 10 EEG features (Delta, Theta,
Alpha, Beta and Low Gamma for the PRE and POST phase), the 24 EMG features
(PRE and POST areas for each of the six muscles sensors and the PRE and POST me-
dian frequencies in each muscle), and the 6 most significant CoP features (Table 5.8).
On these selected 51 features, the Principal Component Analysis (PCA) is performed:
this algorithm generates 9 PCA features used as input for the binary classification of
the concussion participants (Fig. 5.17). The 22 Severity Score Features, SCAT5 (Fig.
5.18), are also used for the concussion classification. Finally, the 22 SCAT5 and the 9
PCA are combined, obtaining in total three different feature selections as input to the
binary classification ML models:

1) 9 PCA features from brain, muscles, heart, and CoP signals from the BioVRSea
measurements

2) 22 SCAT5 features from the concussion questionnaire

3) 31 PCA + SCAT5 features

Tree-based, linear-based and simplified artificial neural networks algorithms were used
to consider different algorithmic strategies for the classification (same of paragraph
5.2) with a 10 k-fold cross validation.

5.3.2 Results

Table 5.9 shows the accuracy, sensitivity and specificity obtained with the 9 PCA
features: the highest accuracy of 72.7 was reached with a RF model. In contrast, the
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PCA Features (9)
Alg Acc Sens Spec
RF 72.7 68.4 76.0
SVM 61.4 30.8 92.0
ADA-B 68.2 57.9 76.0
MLP 70.5 63.2 76.0
GB 63.6 73.7 56.0
SCAT5 Features (22)
RF 88.6 84.2 92.0
SVM 88.6 84.2 92.0
ADA-B 84.1 73.7 92.0
MLP 81.8 89.5 76.0
GB 77.3 78.9 76.0
PCA + SCAT5 Features (31)
RF 90.9 89.5 92.0
SVM 95.5 94.7 96.0
ADA-B 93.2 94.7 92.0
MLP 90.9 96.0 86.0
GB 79.5 78.9 80.0

Table 5.9: Concussion classification evaluation metrics for the three different feature
selections proposed: The 9 PCA features; the 22 SCAT5 features; the 31 combined
features of PCA and SCAT5.

most heightened sensitivity of 57.9 was achieved with GB, another tree-based model.
Table 5.9 shows the results from the SCAT5 features models, with RF and the linear-
based SVM model having the highest accuracy of 88.6 and the simplified artificial
neural networks of the MLP model having the highest sensitivity of 89.5. The best
results were achieved by merging the two features sets (Table 5.9) with all the models
exceeding 90 in accuracy except (GB), getting a significant 95.5 with SVM and 93.2
ADA-B (Fig. 5.19). All the sensitivity and specificity results for all the models with
the combined feature selection are noteworthy. It is also worthy of underlining that
the linear model SVM is the one from which the best accuracy is obtained with the 31
features. At the same time, the algorithm based on the artificial neural network MLP
gives the best sensitivity of 96.0. Tree-based models work with good results apart from
the GB, which, in all cases, is the one with the least significant accuracy results.

5.3.3 Discussion

The results of this study support a novel method in concussion assessment by eval-
uating self-reported concussion symptoms and history against neural and postural
responses acquired in a BioVRSea environment, with ML used to demonstrate the
classification ability of this model. We hypothesized that (1) The Icelandic versions of
the SCAT5 symptoms checklist, although not a diagnosis tool, can be used to differ-
entiate between concussed and non-concussed athletes, (2) changes of CoP, heart rate,
EMG and EEG data can quantitatively measure concussion and concussion symptoms,
and (3) machine learning techniques using SCAT5, and neurophysiological parameters
can improve assessment of concussion.
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Figure 5.19: The results of 5 different algorithms (RF- Random Forest, SVM—Support
Vector Machine, ADA-B— Adaptive Boosting , MLP- Multilayer Perceptron, GB-
Gradient Boosted) and combinations of features. Highest accuracy in all algorithms
is achieved using both the PCA and SCAT5 features, but highest accuracy overall
(95.5%) when computed with an SVM algorithm.

ML results are promising and demonstrate that concussion can be assessed by the
biometric measurements from BioVRSea and SCAT5, especially if combined. The use
of only neurophysiological measures allows a decent classification accuracy of almost
73% with RF, which demonstrate the ability of the BioVRSea multi-biometric system
not only to evaluate sick and not motion sick people as previously discussed 5.2 but
also to individuate concussed and not concussed female athletes. These results increase
if the BioVRSea features are combined with the SCAT5 features. The latter alone can
produce an 88.6% accuracy, which is remarkable but not innovative. The novelty of
the results is the successful combination of measured and self-reported parameters as
seen in Fig. 5.9, with an accuracy of 95.5%. Furthermore, the combination of these
two different measurement approaches provides a novel tool that can be implemented
also for monitoring effect of treatment, to develop rehabilitation strategies, or even to
support insurance assessment.
Discussing the different algorithmic approaches, we can state that the linear system
works better when the SCAT5 features are involved. In [238], SVM was also used
for a similar purpose with a larger but unbalanced dataset. Our dataset is smaller
and includes fewer features, but they are quicker to assess, and the balanced number
of concussed and not-concussed subjects strengthens the obtained classification accu-
racy. SVM was also successfully performed in [287] for an individual-level concussion
detection starting from only EEG features: this can suggest that as a probable future
development of the ML concussion analysis, a focus on more specific EEG features
can be performed to understand better how the BioVRSea system can eventually mit-
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igate or improve concussion influence on the brain. The tree-based algorithmic models
confirm that the BioVRSea multimetric measurements can be better processed with
this approach, like shown in the previous chapter. The simplified neural network MLP
suggests us that a more complicated neural network model can be, with a larger pop-
ulation, worth trying to increase the classification ability of the model.

As participants were all actively or historically involved in contact sports and as such,
this is a group at elevated risk for receiving sub-concussive injuries throughout their
careers [288][289]. The comparison between the concussion and non-concussion groups
is not a comparison between a concussion group and a normal population. Both groups
will likely have received repeated head and body impacts, with possible sub-concussive
blows.
The limited number of participants limits the ML algorithm’s predictive capabilities,
but the balanced number of concussed and not-concussed subject is a strength. Re-
cruitment of more participants in the future could improve the results in terms of
accuracy, and more complicated algorithmic models can be implemented.

We demonstrated that we can discriminate between concussion and non-concussion
groups using the BioVRSea setup and particularly, symptoms associated with concus-
sion, especially with balance problems, follow a pattern that can be quantified. This
study shows the value of a subject-specific multi-faceted PC assessment. This study
also proves that the ML application on BioVRSea paradigms can be of great value not
only for the MS classification but also for different studies related to PC disorders, like
concussion classification or the lifestyle assessment discussed in the following chapter.

5.4 Lifestyle prediction with EEG and CoP signals

The present section is adapted from a further study relative to MS using BioVRSea
which was presented at the IEEE Metrology for eXtended Reality, Artificial Intelligence
and Neural Engineering (MetroXRAINE) International Conference in Rome, October
2022 [7]. The paper discusses the influence of positive and negative lifestyle on the
MS symptoms using BioVRSea paradigms and the cohort of 262 people described in
paragraph 5.1.4.
The paper was awarded as "Best PhD Contibution" by the IEEE MetroXRAINE com-
mittee.

In this paper, following the results of [241][245], we study the differences of healthy
and not healthy subjects on BioVRSea predicting, using ML techniques, a lifestyle
index (section 5.1.6 based on the one previously introduced in [2][290][291] where we
explored the lifestyle and physical activity influence using the AGES Icelandic database
(champter 3.1.3)). A similar approach, using as input features the EMG and CoP data
from BioVRSea, is here implemented to understand which of these features are the
most relevant to distinguish healthy and unhealthy subjects (Fig. 5.20).

5.4.1 BioVRSea Features for MS Lifestyle study

For this study EMG and CoP data are taken into consideration.
The muscle electrical activity has as final output seven features computed in the fre-
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Figure 5.20: BioVRSea: workflow for the study presented in Rome at IEEE MetroX-
RAINE Conference, October 2022.

quency domain and thirty-five features in the time domain (a total of forty-two (42))
for each muscle and each experiment’s segment.
The sensors to measure the CoP produce Thirty-five (35) parameters extracted from
the stabilogram to evaluate the PC response of the subject before (PRE), during (25%,
50%, 75%) and after (POST) the movements of the simulation platform and the visual
input provided by the VR goggles.

Considering all the 6 different segments of the experiment plus the difference be-
tween POST and PRE, POST and BASELINE, and PRE and BASELINE, all the
EMG sensors with their respective 42 features extracted and the 35 features calcu-
lated from the CoP sensors a total of almost 2500 features are present in the database.
Therefore, a feature analysis with respective selection of the most relevant features for
the lifestyle index classification is needed.
Three different groups of features are considered to perform the binary lifestyle index
classification: the first comprehends all the EMG features, the second comprehends all
the CoP features and the third one combines the first two groups considering all the
available features (EMG+CoP).
For the feature selection the Analysis of Variance (ANOVA) f-test is performed: it
consists in a parametric statistical hypothesis test for determining whether the means
from two samples of data (can be also three or more) come from the same or a dif-
ferent distribution. The scikit-learn function GridSearchCV with stratified 5 folds is
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Feat. Selection Alg Acc Max Acc Mean Rec AUCROC

CoP

RF 0.83 0.72 0.40 0.59
SVM-sig 0.78 0.72 0.36 0.39

KNN 0.73 0.67 0.60 0.58
MLP 0.77 0.55 0.42 0.46
GB 0.72 0.68 0.35 0.61

EMG

RF 0.79 0.73 0.36 0.55
SVM-sig 0.77 0.75 0.09 0.55

KNN 0.77 0.68 0.45 0.54
MLP 0.77 0.58 0.36 0.54
GB 0.74 0.62 0.33 0.52

CoP+EMG

RF 0.80 0.76 0.22 0.55
SVM-sig 0.81 0.77 0.16 0.57

KNN 0.74 0.65 0.44 0.52
MLP 0.79 0.58 0.40 0.49
GB 0.73 0.67 0.32 0.62

Table 5.10: ML Results on Different Feature Groups with Tuning Based on Recall

Feat. Selection Alg Acc Max Acc Mean Rec AUCROC

CoP

RF 0.80 0.76 0.13 0.64
SVM-sig 0.78 0.77 0.00 0.38

KNN 0.83 0.78 0.13 0.61
MLP 0.79 0.77 0.05 0.42
GB 0.74 0.69 0.34 0.60

EMG

RF 0.81 0.76 0.13 0.58
SVM-sig 0.77 0.76 0.00 0.50

KNN 0.83 0.71 0.11 0.55
MLP 0.79 0.77 0.11 0.54
GB 0.79 0.67 0.18 0.45

CoP+EMG

RF 0.83 0.77 0.18 0.57
SVM-sig 0.79 0.78 0.00 0.45

KNN 0.79 0.78 0.00 0.49
MLP 0.79 0.77 0.09 0.51
GB 0.76 0.74 0.26 0.57

Table 5.11: ML Results on Different Feature Groups with Tuning Based on Accuracy

performed to select the best 5,10 and 15 features. For the lifestyle index classification
task a stratified 5-fold cross validation is performed using four different algorithms:
RF, SVM with sigmoid kernels, KNN, MLP, and GB. As evaluation metrics accuracy,
recall (reference class is the not-healthy group) and AUCROC are calculated. For the
tuning of the hyperparameters both accuracy and recall are taken in consideration.

5.4.2 Results

Table 5.10 shows the results of the lifestyle index classification with the tuning of the
hyperparameters on the recall while Table 5.11 is similar to Table 5.10, but the tuning
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Ellipse Main Axis Length PRE

MVELO TOTAL PRE

TOTEX TOTAL PRE

MVELO TOTAL 25

MVELO AP PRE

TOTEX ML 25

MVELO ML 25

Magnitudo Antero 25

TOTEX ML 50

Table 5.12: Most Significant CoP Features for the highest accuracy and recall with
KNN algorithm

is done on the accuracy.
Table 5.10 shows the best recall result (0.60) and a significant AUCROC of 0.58 with
KNN and the CoP features. KNN is the best algorithms in terms of recall, while
tuning the parameters on the recall the maximum accuracy is obtained with RF (0.83
with CoP features) and the highest mean accuracy is with SVM algorithm and CoP
and EMG features together (0.77).
In table 5.11 it is possible to see that the accuracy max and mean is clearly better
than in Table 5.10 at the expanse of the recall which is at its max 0.34 and sometimes
also null. The best algorithm is here KNN reaching a max average accuracy of 0.78
with the CoP and CoP+EMG features. The max accuracy is again with KNN and
CoP (0.83). It results the best approach in term of accuracy mean and max together
with RF and all the features together. The big difference between table 5.10 and 5.11
is mainly the accuracy mean which increase if the parameters are tuned on it, at the
opposite the recall values significantly decrease in table 5.11. The best AUCROC value
is reached with the CoP feat selection and RF (Table 5.11 - 0.64). MLP in both tables
can be considered the algorithm with the worst metrics.
Table 5.12 shows the most important features for the highest accuracy combination of
algorithms and features which is for both Tables 5.10 and 5.11 KNN algorithm with
CoP features. The feature from the POST phase are rarely selected as higly important
for the lifestyle index binary classification while PRE and 25% segments contribute
with higher relevance in the ML model. TOTEX is the summation over the elementary
movement between consecutive samples on the support plane. MVELO is the mean
velocity of point on the support plane computed as TOTEX/Total Time. Magnitudo
is the furthest point in the plane, in the case of Table 5.12 in the anterior portion of
the plane. AP means Anterior-Posterior axis while ML is for Medio-Lateral axis.
The box-plot in Fig 5.21 shows the distribution of the 3 first features included in Table
5.12 underling the differences between the healthy and unhealthy people who under-
went the BioVRSea experiment.
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Figure 5.21: Boxplot for the 3 most important features for the lifestyle index clas-
sification. The red indicates the unhealthy people while green is referred to healthy
participants.

5.4.3 Discussion

The results from BioVRSea are again highly satisfactory and we can say that these
features, originally thought to study MS, are of high potential also to identify people
with an healthy or unhealthy lifestyle. CoP features in particular, shows relevance
in the classification model and it is clear, also from Fig. 5.21, that their distribution
is different for the two classes of people. The most relevant features for the classifi-
cation are from the PRE and 25% segment of the experiment: this means that it is
the lifestyle itself that influences the performances on the platform and not only the
virtual simulation. From these results we can state that a bad lifestyle will have a
relevant negative influence on the final MS symptoms results.
The present study can be used as preliminary work to study the influence of lifestyle
behavior not only in physical tasks on the virtual platform, but also in terms of MS
symptoms understanding if smoking, physical activity, and BMI differs in people with
strong nausea or dizziness at the end of the different BioVRSea segments.
A possible future improvement to this research can be studying the lifestyle influence
on BioVRSea biometric paradigms on Parkinsonian people, as 11 people affected by
early stage Parkinson disease already underwent the BioVRSea protocol. It is known
in literature that PC task can show high difference between healthy and Parkinso-
nian people [292] [293], but the influence of lifestyle was not studied yet in relation
to induced MS. A clear difference in behavior can be assumed between healthy and
neuro-degenerative patients starting from the results proposed here.
We can then conclude from our results, as similarly mentioned in literature by Golding
et al.[241] and Caillet et al.[245], that an unhealthy lifestyle influences, in a negative
way, the performances of a person in terms of equilibrium and balance in an induced
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MS task.



Chapter 6

Conclusion and Future Development

In the clinical context, biomedical images and signals have been demonstrated to be
essential tools for diagnostic and clinical investigations: their features, combined with
modern AI and ML tools, have had a significant impact on the scientific community
[294][295]. This dissertation shows the work and the impact of the medical images and
biosignal features. Firstly, in the aging study, we examined soft tissue radiodensitomet-
ric features extracted from mid-thigh CT scans of elderly populations and used them
to train ML models to classify cardiac pathophysiologies and comorbidities such as di-
abetes and hypertension. Single and dual gait features were also examined and found
to be highly relevant in classifying elderly Korean patients with a history of stroke
or motor and neurological deficits. Secondly, 2D and 3D features from multiple knee
medical images were used to assess cartilage degeneration in the knee osteoarthritis
study. Finally, the novel BioVRSea system and its brain, muscle, and postural stabil-
ity biosignals extracted from different cohorts of healthy and concussed subjects raised
significant impact for clinical advances in motion sickness and postural control studies.
However, from these studies, some limitations emerges.

Dataset Dimension One limitation of the studies discussed is the size of the datasets,
including both the number of features and the number of subjects. In the aging study,
although the AGES dataset has a significant number of subjects, only eleven features
are considered in the models to classify a single comorbidity. Increasing the number
of soft tissue features, possibly with the aid of ANN applied to the CT scans, while
maintaining the high number of subjects, could provide further clinical insights into
the effects of muscle, fat, and connective tissue on comorbidities such as cardiac status,
diabetes, and hypertension, and potentially allow for feature selection.
In contrast, the MS study faces a different dimensional limitation. Although the
BioVRSea dataset has thousands of features per acquisition when considering all the
biosignals and MSSQ information, the number of subjects is still limited compared to
AGES. To overcome this limitation, ongoing data acquisition for the BioVRSea study
aims to include approximately 1,000 subjects, both healthy and pathological, to make
it one of the most representative databases for PC and MS studies. With a larger
number of subjects, it would be possible to obtain a more population-representative
view of the symptoms of an induced MS environment, and potentially identify patterns
that could have a significant scientific impact in quantifying MS levels or in identifying
PC pathologies and other disorders.
In the knee osteoarthritis study, the 96 total features are a considerable number, given
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the time-consuming extraction process, but the high cost of CT and MRI acquisitions
partially limits the potential of the study as it may be difficult to obtain images from
thousands or even hundreds of degenerative, traumatic, or healthy subjects.

Dataset Imbalance The imbalance of the dataset classes can be consider a further
limitation. It can only be partially addressed by data augmentation techniques such
as SMOTE. The potential of SMOTE has been widely discussed in the literature and
is currently a trending topic in the field [296][297]. During training, SMOTE gener-
ates a larger set that balances the minority class, leading to higher evaluation metrics.
However, these metrics may not necessarily reflect the actual values of the original
biomedical data since they are based on an augmented set. Therefore, to effectively
apply these techniques, the metrics from the "real" dataset and the "augmented" one
must be compared. The evaluations of SMOTE metrics must be scrutinized scientif-
ically, as discussed in the lifestyle study on NTRA in Chapter 3.1.3. In that study,
the use of SMOTE was necessary to achieve the clinical goal of correlating the ra-
diodensitometric features with the classified comorbidities. The results without the
augmentation technique demonstrated typical outcomes of an unbalanced set (high
accuracy and sensitivity, very low specificity), which was not useful in obtaining a
significant view of the impact of ML technologies on the clinical goal. However, in all
other study cases, the use of SMOTE was unnecessary or would have led to results
that were not truly representative of significant clinical impact. Although the RE-
STORE dataset had a small number of control patients, it could have been applied,
but the total number of patients and the goal of multiclassification would have led to
excessively high results that were not scientifically significant. Data augmentation is
an efficient tool for studying unbalanced datasets, but when working with biomedical
data, caution must be taken, and evaluation metrics should be compared with the
"original" ones to obtain a clear view of the effect of the oversampling.

Deep Learning Potential Additionally, DL techniques were not considered in this
thesis. In the aging study, NTRA features were extracted indirectly from the CT-Scan,
as the 128 densitometric HU bins were used to generate distribution curves (refer to
section 3.1.1.1). Directly working with the CT itself presents an opportunity for em-
ploying DL algorithms to derive new features from soft tissues and incorporate them
with the NTRA in the development of new ML classification models. In the investi-
gation of knee osteoarthritis, DL could also prove to be a valuable tool for generating
highly precise 2D and 3D features. Nevertheless, a significant increase in the number
of patients is required in this scenario to thoroughly evaluate the impact of the ANN
on knee cartilage image elaboration.

Future Development NTRA radiodensitometric features were initially developed
as a tool to provide insight into the optimal diagnosis and quantification of soft tis-
sue degeneration in sarcopenia [142]. This thesis demonstrates their strong predictive
value and their effect on comorbidities such as diabetes, hypertension, and cardiovas-
cular outcomes that may not, at first glance, appear related to the soft tissue status
of a mid-thigh CT scan. The results reveal significant predictive potential and a high
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impact in aging studies. Similarly, research utilizing a radiodensitometry approach
from thigh and abdominal CT scans with the same AGES population demonstrated
that skeletal muscle attenuation decreases while adipose tissue attenuation increases
with aging, confirming the robust clinical impact of the radiodensitometric approach
[298].
Ongoing and future developments of the NTRA research include the extraction of ra-
diodensitometric features from both legs of the AGES subjects, as the AGES dataset
contains mid-thigh CT-scans of both the left and right leg. The main goal is to study
how the asymmetry between soft tissues in the legs can be related to BMI or comor-
bidities that have already been predicted by NTRA, such as cardiac pathophysiologies,
diabetes, and hypertension. Asymmetry can also influence gait performance and has
been shown to deteriorate with age. Ongoing research is analyzing the direction of
the asymmetry (left or right) to understand if it follows the dominant leg trend or if
it is determined by any life factors and eventually changes with age. While muscle
asymmetry has been studied in top professional athletes [299] or to improve sports
performance [300], there are no relevant studies in the scientific literature focused on
aging, mobility, and asymmetry studied on soft tissue. The novelty of this asymme-
try study could have a significant impact on aging and gerontology, strengthening the
scientific impact of the NTRA features and the single predictive value of muscle, fat,
and connective tissue radiodensitometric parameters.
The NTRA approach has potential for application to other CT scan images, such
as those included in different datasets like the one created for the RESTORE project.
This European project, which is continuing in the SinPain consortium, aims to develop
a patient-specific multiscale and sensitive knee bone/cartilage profile by analyzing spe-
cific features of the 2D and 3D set, including a larger number of subjects, especially
in the healthy control group. ML technologies will make a substantial contribution to
the feature analysis, and unsupervised techniques could also be implemented to cluster
patients according to the cartilage status described by the novel profile.
Furthermore, gait features extracted from the Seoul University Hospital dataset have
demonstrated promising potential. The acquisition protocol used in this study could
be adapted and implemented on Icelandic subjects at Lanspitali University Hospital
to investigate potential differences with the Korean population. Additionally, a motor
dual-task component could be incorporated into the existing cognitive dual-task pro-
tocol to enable further analysis on the significance of dual-task gait in the classification
of pathologies that commonly affect elderly individuals.
Regarding biosignal analysis in MS studies, the BioVRSea approach has shown sig-
nificant impact in the field and has been recognized by Keshavarz and Golding as
one of the most significant examples in the literature of ML application to predict
the presence of MS [301]. A possible future developments is the inclusion of subjects
with anxiety, and furthermore, ML techniques could be used to identify the most sig-
nificant features for quantifying the reaction of symptoms in an induced MS virtual
environment. Ongoing studies are also focusing on the use of EMG, EEG, and CoP
features to classify early-stage Parkinson’s disease or subjects with neurodegenerative
diseases. Professional athletes, with or without concussion, could also be included in
the study to understand how possible PC disorders or biosignal-related abnormalities
can affect sports performance. In addition, a clustering unsupervised approach could
be developed to study the potential of biosignal features to distinguish two or more
clusters of subjects that hypothetically correspond to MS index groups and to healthy
and pathological subject groups. The involvement of seamen could also be a future
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implementation with a significant impact on the improvement of health and safety dur-
ing long sea voyages. Additionally, it could be useful in preventing the symptomatic
effects of "mal du debarquement" (sickness of disembarkment) [302].

The impact of the digital revolution on the healthcare system is very extensive, and
it is leading to significant cultural and technological progress and substantial changes
in clinical approaches across various healthcare domains. At the core of the success and
efficacy of these approaches lies a fundamental shift in the data acquisition mentality,
which emphasizes the attainment of precise clinical goals, offering a broader view of
the problem by analyzing a more diverse group of individuals. This translates in design
and use of health data structure that immediately allows optimal implementation of
ML algorithms. Therefore, the interdisciplinary synergistic collaboration between en-
gineers and medical professionals is vital in achieving effective research planning that
prioritizes the long-term vision of the clinical problem at hand, rather than focusing
solely on engineering objectives to attain high evaluation metrics. Disregarding the
real clinical problem can lead to a significant loss of scientific value in research projects.
Ultimately, the goal is to employ digital technologies and foster multidisciplinary syn-
ergies within the newly digitized society to improve clinical evaluation and diagnostics,
leading to a tangible impact on people’s daily lives.
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