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Introduction: Visual sleep scoring has several shortcomings, including inter-
scorer inconsistency, which may adversely affect diagnostic decision-making. 
Although automatic sleep staging in adults has been extensively studied, it is 
uncertain whether such sophisticated algorithms generalize well to different 
pediatric age groups due to distinctive EEG characteristics. The preadolescent 
age group (10–13-year-olds) is relatively understudied, and thus, we  aimed to 
develop an automatic deep learning-based sleep stage classifier specifically 
targeting this cohort.

Methods: A dataset (n = 115) containing polysomnographic recordings of Icelandic 
preadolescent children with sleep-disordered breathing (SDB) symptoms, 
and age and sex-matched controls was utilized. We  developed a combined 
convolutional and long short-term memory neural network architecture relying 
on electroencephalography (F4-M1), electrooculography (E1-M2), and chin 
electromyography signals. Performance relative to human scoring was further 
evaluated by analyzing intra- and inter-rater agreements in a subset (n = 10) of 
data with repeat scoring from two manual scorers.

Results: The deep learning-based model achieved an overall cross-validated 
accuracy of 84.1% (Cohen’s kappa κ = 0.78). There was no meaningful performance 
difference between SDB-symptomatic (n = 53) and control subgroups (n = 52) 
[83.9% (κ = 0.78) vs. 84.2% (κ = 0.78)]. The inter-rater reliability between manual 
scorers was 84.6% (κ = 0.78), and the automatic method reached similar 
agreements with scorers, 83.4% (κ = 0.76) and 82.7% (κ = 0.75).

Conclusion: The developed algorithm achieved high classification accuracy 
and substantial agreements with two manual scorers; the performance metrics 
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compared favorably with typical inter-rater reliability between manual scorers 
and performance reported in previous studies. These suggest that our algorithm 
may facilitate less labor-intensive and reliable automatic sleep scoring in 
preadolescent children.

KEYWORDS

Pediatric sleep staging, preadolescent cohort, inter-rater reliability, pediatric sleep-
disordered breathing, community controls, deep learning, recurrent neural network, 

convolutional neural network

Introduction

Sleep is a vital component of health and well-being for children 
and is particularly important for maintaining normal neurocognitive 
functions (1–4). Subsequently, sleep disorders are associated with 
detrimental health consequences such as emotional and behavioral 
problems (5, 6) and attention deficiency (7). Given that sleep disorders 
such as obstructive sleep apnea (OSA) are common in children 
(prevalence of 1%–4%) (8), there is substantial motivation to develop 
efficient and effective diagnostic systems. Accurate sleep stage 
classification is an important step in both the diagnosis of pediatric 
sleep disorders and research investigating normal physiological sleep; 
and is manually scored according to the American Academy of Sleep 
Medicine (AASM) (9) guidelines using electroencephalography 
(EEG), electrooculography (EOG), and submental electromyography 
(EMG) signals recorded using polysomnography (PSG) (9). However, 
manual sleep scoring is expensive and time-consuming (10) and is 
subjective leading to inconsistency between human scorers (11–17). 
While the typical Cohen’s kappa for inter-rater agreement is 0.76–
0.78 in adults, it can be as low as 0.57–0.63 between international sleep 
centers (11, 12); and could be even lower in children due to greater 
variability in EEG signal characteristics (18–21).

Automated sleep staging systems have been proposed to overcome 
the limitations of manual sleep stage classification; and such 
algorithms are already incorporated in some commercial PSG 
software where they provide a preliminary scoring that is verified and 
corrected by a human expert. Numerous published studies have also 
attempted to fully automate the sleep staging process (22–47). Whilst 
historically, these have used feature engineering approaches or hand-
crafted rules (29–32), most recent studies utilize deep learning-based 
algorithms (22–26, 33–46). Although modern deep learning-based 
approaches generally perform well (kappa agreement typically ranging 
between 0.67 and 0.87) (48–51), the majority have focused on adult 
populations (22, 23, 30–39, 41, 43, 45). Due to the continuous 
maturation of the brain, EEG signals in children may vary with age 
(18–20); and therefore, it is uncertain whether the sophisticated sleep 
staging systems designed for adults generalize well to children.

A smaller number of recent studies have focused on automatic 
sleep staging in children (24–29, 40, 42, 44, 47). Whilst some of these 
focus on two- or three-stage sleep classification (24, 26–28) 
[predominantly those considered infants (26–28)] or using non-EEG-
based approaches intended for limited channel screening (29, 47), 
studies published in parallel with the development of this work using 
electrophysiological channels have demonstrated high sleep 
classification performance (40, 42, 44). However, there are some 

important limitations. Firstly, none of these studies included both 
children with sleep disorders and asymptomatic controls recruited 
from the community. Secondly, there are substantial gaps in the ages 
of the children studied. In particular, the preadolescent children 
(10–13-year-olds) are not well represented, reflecting them being a 
relatively understudied group in sleep research more generally. Given 
the substantial emotional and hormonal changes (52) during this 
period having an automated tool to better facilitate the investigation 
of physiological and pathophysiological sleep in this age group is 
highly desirable.

As such, the overarching aim of this study was to develop a deep 
learning-based method to automate sleep stage classification, 
specifically targeting preadolescent children with sleep-disordered 
breathing (SDB) symptoms and age and sex-matched community 
controls. We hypothesized that a combined convolutional and long 
short-term memory network architecture enables accurate pediatric 
sleep stage classification using raw frontal EEG, EOG, and EMG 
signals. This algorithm was developed and cross-validated using a 
dataset of overnight PSG recordings of Icelandic children. 
Performance relative to human scoring was further evaluated by 
conducting intra-rater and inter-rater agreement analysis in a subset 
of data with repeated scorings from two experienced human scorers.

Methods

Dataset

The dataset utilized in this study comprised 10–13 years old 
Icelandic children from the EuroPrevall-iFAAM birth cohort (53–56). 
Of the Icelandic EuroPrevall (57) study population, children who were 
reported to snore at least three times or have witnessed apneas at least 
once a week (n = 109) were invited to engage in a home PSG. Out of 
the 109 invitees, 55% agreed to participate (n = 60). Additionally, 58 
children with no snoring or apneas were included in the age and 
sex-matched control group. Two of the recordings were not completed 
successfully, and one participant declined the full usage of data. Thus, 
the total study population included 115 children with almost equal 
proportions of SDB-symptomatic (n = 59) and control participants 
(n = 56).

Informed written consent was obtained from parents or legal 
guardians for all children who participated in this study; and data 
collection was approved by the Ethical Committee of Landspitali—the 
National University Hospital of Iceland and the National Bioethics 
Committee of Iceland (VSN 18–206). The PSG device used for this 
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study was Nox A1 (Nox Medical, Reykjavik, Iceland) and was 
configured by two experienced sleep technologists. All the PSG 
recordings were conducted at home over a single night. The sleep 
stages of all 115 PSGs included in the final study population were 
initially scored once manually into categories: W, N1, N2, N3, and R 
by one of two human scorers using the full montage of recommended 
channels in compliance with current AASM guidelines (9). This 
scoring was treated as the “gold standard” and utilized as the reference 
to compare with during the neural network training, validation, 
and testing.

In addition, a subset of this data comprising 10 PSGs was 
rescored once more by the same manual scorer and twice separately 
by the other scorer. This yielded a total of four distinct scorings, used 
solely for the purpose of conducting a separate comparative intra- 
and inter-rater agreement analysis. This was conducted to 
demonstrate the reliability of our algorithm by investigating whether 
our results are comparable to inter- and intra-rater reliability 
between manual scorers.

Software and hardware configurations for 
algorithm development and data-analysis

We used Conda (version 4.8.3) environment with Python 3.6.10, 
Keras API (version 2.3.1), and TensorFlow (version 2.2.0) backend to 
implement the neural network architecture. The training was 
conducted using an AMD Ryzen Threadripper 2990WX CPU, x86_64 
architecture, 128 GB RAM, and NVIDIA GeForce RTX 2080 
GPU. Statistical analyses related to intra-rater and inter-rater 
reliabilities were conducted in Python 3.6.10 with scikit-learn 0.24.2.

Neural network architecture

We adopted an architecture comprised of a combined 
convolutional neural network (CNN) and recurrent neural network 
(RNN) trained in an end-to-end manner that we have previously 
utilized for automated sleep staging in adult populations (22). The 
CNN part was chosen to study the unique features of the sleep stages, 
while the RNN was utilized to learn the temporal distribution. This 
and similar architectures (i.e., variations of CNN-RNN combined 
networks) have previously demonstrated competitive results in adult 
sleep staging (22, 35, 37, 39); and part of our motivation was to 
examine how generalizable such an architecture is to children in the 
preadolescent age group.

The CNN part comprised six 1D convolution layers, each of which 
was followed by batch normalization and a rectified linear unit (ReLU) 
activation function. Two max-pooling layers and a global average 
pooling layer were included in the architecture, each situated after 
every two 1D convolutional layers, respectively (Figure  1). The 
complete network consisted of a time-distributed layer of the entire 
CNN part, followed by a gaussian dropout layer, a bidirectional long 
short-term memory (LSTM) layer, and a time-distributed dense layer 
with softmax activation (Figure 1). A tanh activation function was 
used in the LSTM, and a hard-sigmoid activation was used in the 
recurrent step. The final layer of the complete architecture was a dense 
layer accompanied by a softmax activation function generating the 
output sequence of the sleep stage probabilities.

Automatic sleep staging

Three channels consisting of frontal EEG (derivation F4-M1), 
EOG (derivation E1-M2), and submental EMG (derivation 

FIGURE 1

Illustration of the combined convolutional neural network (CNN) and 
long short-term memory (LSTM) network architecture. The 
parameters of the 1D convolution layers (Conv1D) are provided as 
(c = number of convolutional filters, k = kernel size, s = stride size). For 
the max pooling, the parameters are given as (p = pool size, s = stride 
size). LSTM and the softmax dense layer have the number of units as 
the parameter (i.e., h = number of hidden/output units in LSTM and 
u = number of nodes in dense layer). The dropout layers were active 
only during the training phase. A sequence of softmax values was 
generated by the model indicating the probabilities of possible sleep 
stages for every epoch. The sleep stage with the highest softmax 
value was estimated as the corresponding sleep stage of that epoch.
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Chin1-Chin2) were used as the input for the final neural network 
architecture. The primary motivations for using these channels were: 
(1) use of frontal channels to make it more practical for the ambulatory 
sleep settings and simplify the overall measurement protocol; (2) to 
maintain consistency with recent literature that is tended towards 
using minimal channels to perform accurate sleep staging utilizing 
deep learning techniques; and (3) for consistency with the AASM 
criteria (9), which explicitly requires EEG, EOG, and EMG signals for 
sleep stage classification. These signals were initially recorded with a 
sampling frequency of 200 Hz but downsampled to 100 Hz to reduce 
the computational load. Signal segments at the beginning and the end 
of the recordings without manual scorings were excluded from the 
final analysis.

The complete dataset was initially divided into two individual sets: 
(1) Analysis set: primary data, which comprised 105 PSGs scored once 
manually and used for the neural network training, validation, and 
testing; and (2) Comparison set: which included the remaining 10 
PSGs that were manually scored four times, i.e., twice each by two 
human experts. The comparison set was held out of training and 
evaluation of the model; and solely used for investigating intra- and 
inter-rater agreements between the two independent manual scorers 
and relative to the automated classification.

10-fold cross-validation was performed with the whole analysis 
set (n = 105) to obtain the best estimate of the non-biased model 
performance. For the cross-validation, the analysis set was first 
randomly separated into 10 equally sized segments. One of these 
segments was utilized as an independent test set, while the remaining 
data were further randomly divided into training (90%) and validation 
(10%) sets to train and choose the optimal model. The test set was held 
intact from the model training and validation and used as an unseen 
data for the model evaluation. This entire process was repeated 10 
times with a different subset representing the independent test set in 
each iteration. The final reported results are for the classification 
performance in the aggregation of the test set from each of the 10 
iterations of the cross-validation (n = 105). Figure 2 presents a data 
flow diagram, which illustrates how the final study data was formed 
and how it was divided and used for the analysis.

The model was trained in a sequence-to-sequence manner with 
an input sequence length of one hundred 30-s epochs, i.e., an input 
sequence of one hundred epochs was mapped to the target reference 
sleep stage sequence of identical length at once to comprehend inter-
epoch dependency. The sequence length was chosen based on initial 
testing and as a compromise between computational load and 
capturing a sufficiently long sleep cycle. A categorical cross-entropy 
loss function, an Adam optimizer with warm restarts (58), and a 
learning rate range of 0.001 to 0.00001 optimized with a learning rate 
finder (59) were used during training. In the training set, an overlap 
of 75% was used to multiply the size of the training data by four when 
forming the sequences. No overlap was applied to validation or test 
sets. The maximum number of training epochs was set to 200. 
However, the training was only conducted until the validation loss 
function value no longer decreased considerably. For this, an early 
stopping callback with a patience coefficient of 20 was used, meaning 
that if validation loss did not improve for 20 consecutive epochs, then 
the training was stopped. This was done to prevent overfitting and to 
avoid wasting computational resources on training a model that is 
unlikely to improve. The final performance of the classifier was 

obtained by aggregating the test set results across all 10 folds. The 
accuracies were evaluated in an epoch-by-epoch manner. As an output 
of the model, the estimated sleep stage was determined to be the one 
with the highest softmax value. Cohen’s kappa coefficient (κ) (60) was 
utilized to assess the scoring consensus between manual and automatic 
scorings. Finally, we investigated the model performance separately 
between the SDB-symptomatic and control groups as well as between 
PSG-quantified clinical pediatric OSA (AHI ≥ 1) and non-OSA 
(AHI < 1). Groupwise performance was assessed by aggregating the 
test set results across all 10 folds and separately calculating the 
accuracies and kappa coefficients for each group.

For comparison with previous literature, we  also separately 
trained and cross-validated our model to classify sleep into four (W/
N1 + N2/N3/R) and three (W/N1 + N2 + N3/R) stages utilizing the 
analysis set as a secondary analysis. To determine inter-rater 
agreement-related performance between the automatic classifier and 
two manual annotators in the comparison set, we  retrained the 
network using the entire analysis set and evaluated it on the unseen 
comparison set.

Intra- and inter-rater agreement analysis

As a secondary investigation, we performed a separate intra- and 
inter-rater agreement analysis to examine the reliability of the neural 
network model by evaluating its predictive performance relative to 
multiple human scorings. A subset (i.e., the comparison set, n = 10, not 
included in the cross-validated training and evaluation) of the 
pediatric dataset was utilized for this analysis. Two European Sleep 
Research Society-certified sleep technologists from Reykjavik 
University Sleep Institute each scored the 10 PSGs twice (separated by 
at least 2 weeks); thus, producing four different sets of sleep scoring. 
Scorers were blinded to patient identities throughout the analysis. The 
manual scoring was compared with each other and with the neural 
network-predicted scores to evaluate the intra- and inter-rater 
reliabilities. In addition, we also examined how the automatic sleep 
stage classifications compared with the manual scoring when 
considering only the epochs that achieved a scoring consensus 
between both human scorers.

Score match percentage (percent accuracy) and kappa coefficient 
were used to determine the overall intra- and inter-rater agreements 
between different scorings. Sleep stage-specific intra- and inter-rater 
agreements were also calculated. Stage-specific agreements between 
the manual and automatic classifications were calculated with the 
manual scoring defined as the reference. Stage-specific agreements 
between manual classifications were defined as the average of the 
agreements calculated when each of the manual classifications was 
separately treated as the reference.

Results

Characteristics of the study population

A summary of demographic information and characteristics of 
the whole study population (n = 115), SDB-symptomatic subgroup 
(n = 59), and asymptomatic subgroup (n = 56) is presented in Table 1.
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Table 2 depicts the number and the percentage of 30-s epochs of 
each sleep stage in the whole dataset according to the manual 
reference scoring.

Classification performances in analysis set

The neural network-based method yielded overall absolute 
accuracies of 84.6% (κ = 0.78), 82.3% (κ = 0.76), and 84.1% (κ = 0.78) 
in the training, validation, and test sets, respectively, during the 
10-fold cross-validation. There was no meaningful difference in the 

test set (n = 105) performance between individuals recruited with SDB 
symptoms (n = 53) and age and sex-matched controls (n = 52) [83.9% 
(κ = 0.78) vs. 84.2% (κ = 0.78)]. In the analysis set, 24 children fulfilled 
the diagnostic criteria for pediatric OSA (AHI ≥ 1) after PSG. Out of 
these children, 15 were from the originally recruited SDB-symptomatic 
subgroup and the remaining 9 were from the asymptomatic control 
subgroup. There was similarly no meaningful difference in the test set 
performance between children with PSG quantified AHI ≥ 1 (n = 24) 
and those with AHI < 1 (n = 81) [82.9% (κ = 0.77) vs. 84.3% (κ = 0.78)].

Considering the class-specific performance of the deep 
learning-based method, stage N1 had the lowest prediction 

A B

FIGURE 2

Data flow diagram that illustrates (A) how the final study data was formed and (B) how the data was divided and used for the analyses. PSG, 
polysomnography; EEG, electroencephalography.
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accuracy of 17.7%, while the N3 stage attained the highest accuracy 
of 89.8% in the test set. Figure 3 presents the confusion matrix of 
the test set classification performance aggregated across all 10 folds 
of the cross-validation in the analysis set (n = 105, total number of 
epochs = 108,796). Figure 4 shows a summary of the individual-
level automatic sleep stage classification performances of all 
children comprising the aggregated test set across the 10 folds 
during cross-validation (i.e., analysis set, n  = 105). In the 
aggregated test set, our algorithm distinguished sleep epochs from 
wake epochs (references are based on manual scoring) with a 
sensitivity of 97.9% and a specificity of 82.1%. Table 3 presents 
detailed stage-wise classification performance metrics (i.e., 
sensitivity, specificity, positive predictive value, and negative 
predictive value) in the aggregated test set (n = 105).

The test set accuracies obtained for four- and three-stage 
classifications were 85.4% (κ = 0.80) [W: 81.8%, N1 + N2: 85.2%, N3: 
85.5%, R: 86.9%] and 92.6% (κ = 0.84) [W: 79.8%, N1 + N2 + N3: 
95.3%, R: 87.3%] respectively.

Performance relative to intra- and 
inter-rater agreement in comparison set

The classification model retrained using the whole analysis set and 
evaluated on the comparison set for the purpose of comparing the 
automatic scoring with different manual scorings yielded an overall 
training accuracy of 87.2% (κ = 0.81) and an overall accuracy of 84.5% 
(κ = 0.78) in the unseen test set (i.e., the comparison set).

The overall inter-rater reliability between the two manual scorers 
was 84.6% (κ = 0.78) in the comparison set and the neural network-
based automatic approach achieved similar agreements with scorers 
individually: 83.4% (κ = 0.76) and 82.7% (κ = 0.75). The intra-rater 
scoring consensuses were highest for sleep stage R for both scorers. In 
contrast, inter-rater agreements were highest for N3. As expected, the 
intra- and inter-rater agreements were lowest for N1 (Table 4). The 
neural network approach agreed with at least one of the manual 
scorers in 89.8% of the epochs. Similarly, when considering only the 
epochs with a scoring consensus between the manual scorers, 90.4% 
(κ = 0.86) of those epochs were also scored as the same sleep stage by 
the automatic classifier. The sleep stage-specific agreement in this 
instance were W: 88.2%, N1: 28.4%, N2: 93.0%, N3: 91.1%, and R: 
89.7%. Figure  5 illustrates an example comparison between 
hypnograms of an individual annotated by manual scorers and the 
automatic classifier. The performance of the automated classifier in 
this individual was close to the population average (i.e., κ = 0.78 with 
manual scorer 1 and κ = 0.77 with scorer 2).

Discussion

The overarching aim of this study was to develop a deep learning-
based automatic sleep stage classification system for preadolescent 
children. As such, we developed a combined CNN-LSTM architecture 
utilizing a dataset containing overnight PSGs of Icelandic 
preadolescent children with SDB symptoms and age and sex-matched 
controls. The cross-validated sleep stage classification performance 
was evaluated with a 3-channel input (i.e., frontal EEG + EOG + chin 
EMG). In addition, to further evaluate the performance relative to 
human scoring and to examine the reliability of the model, 
we conducted a separate intra- and inter-rater agreement analysis in 
a subset (n = 10) of data with repeated scorings from two expert 
human scorers. Overall, our algorithm achieved a high classification 
accuracy and substantial agreement with both manual scorers. The 
performance metrics compared well with previous automated sleep 

TABLE 1 The demographics and characteristics of the study population.

Whole 
population

SDB-
symptomatic 

group

Control 
group

n (boys %) 115 (66.1%) 59 (67.8%) 56 (64.3%)

Age (years), 

mean ± SD 11.8 ± 0.8 11.7 ± 0.8 11.9 ± 0.8

BMI (kg/m2), 

median 

(range) 19.7 (13.5–31.9) 20.6 (15.5–28.7) 18.9 (13.5–31.9)

AHI 

(events/h), 

median 

(range) 0.5 (0.0–6.3) 0.6 (0.0–6.3) 0.3 (0.0–3.2)

TST (min), 

mean ± SD 479.6 ± 54.1 471.3 ± 59.7 488.3 ± 46.5

Sleep 

efficiency (%), 

mean ± SD 93.1 ± 4.2 93.1 ± 4.0 93.1 ± 4.4

SD, Standard deviation; BMI, Body mass index; AHI, Apnea-hypopnea index; TST, Total 
sleep time; SDB, Sleep-disordered breathing.

TABLE 2 Number and percentage of 30-s epochs of each sleep stage in the pediatric dataset based on initial manual reference scoring.

Sleep 
stage

Whole dataset (n = 115) SDB-symptomatic group (n = 59) Control group (n = 56)

Number Percentage (%) Number Percentage (%) Number Percentage (%)

W 8,469 7.1 4,455 7.4 4,014 6.8

N1 3,724 3.1 1,657 2.8 2,067 3.5

N2 28,880 24.3 14,170 23.6 14,710 25.0

N3 54,786 46.1 28,055 46.8 26,731 45.5

R 22,917 19.3 11,649 19.4 11,268 19.2

Total 118,776 100 59,986 100 58,790 100

W, Wakefulness; R, Rapid eye movement sleep; N1, N2, N3, Three different levels of non-rapid eye movement sleep; SDB, Sleep-disordered breathing.
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staging methods and with inter-rater reliability between manual 
scorers both in this population and those reported in the literature 
(14). Moreover, the individual-level automatic classification accuracies 
and kappa values were consistent across both children with SDB 
symptoms and non-diseased controls. These findings indicate that our 
model enables accurate and reliable automatic sleep stage classification 
for preadolescent children.

In the present study, the classification performance metrics of all 
sleep stages except for N1 were excellent (Figure 3; Table 3), and the 
overall performance of this method compares well to the previously 
published studies involving pediatric populations (24–29, 40, 42, 44). 
However, direct comparison to previous studies is difficult due to 

different datasets and age variations. Previously, Huang et al. (25) 
adopted a timestamp-based segmentation strategy with a 
deconvolutional neural network for automatic sleep staging in 
children aged 5–10 years and achieved an accuracy of 84.3%. However, 
a considerably smaller dataset (n = 21) and a complex 11-channel 
input (i.e., 6 EEG + 2 EOG + 3 EMG) were used in that study (Table 5). 
In comparison, our study achieved a similar performance with a larger 
pediatric cohort using only a 3-channel input. In parallel with the 
development of our work, other studies have also focused on sleep 
staging including pediatric patients and have demonstrated similar 
performance metrics (40, 42, 44). Notably, Wang et al. (42) achieved 
high classification performance (with slightly lower kappa values 
compared to the present study when using a similar 3-channel input) 
with a modularized network utilizing a clinical pediatric dataset of 344 
SDB patients with age 2–18 years (Table 5). Similarly, Phan et al. (44) 
demonstrated that different deep learning-based algorithms with good 
performance in adults also generalized well to 5–10-year-old children 
with SDB in the Childhood Adenotonsillectomy Trial dataset (62) 
(Table 5). Likewise, a large-scale study conducted by Perslev et al. (40) 
utilized multiple adult and pediatric datasets (i.e., PSG recordings 
from 15,660 participants of 16 clinical studies, including PSGs from 2 
public pediatric sets) to train and evaluate a U-net architecture and 
attained high sleep stage classification accuracies. While our algorithm 
achieves similar or slightly higher performance to these previous 
studies, it makes two important unique contributions. Firstly, our 
study is the first to evaluate and demonstrate equivalent performance 
in children with both suspected SDB and community controls, thus 
demonstrating this important aspect of generalizability. Secondly, 
we specifically focus on preadolescent children, which are either not 
represented or are under-represented in previous works. This not only 
confirms the generalizability of such approaches to this age group; but 
also provides a tool to investigate sleep in this cohort in more detail. 
This is a period of substantial emotional and hormonal changes (52), 
and a better understanding of how sleep changes during this period 
would be highly desirable.

Our algorithm also performed comparably with the state-of-
the-art sleep staging methods developed for adults (22, 23, 30–39, 41, 
43, 45), which typically achieve kappa performance in the range of 
0.67–0.87 (48–51). We  previously demonstrated that a similar 
CNN-LSTM architecture for sleep staging works well in adult 
populations and outperformed previously published methods at the 

FIGURE 3

Confusion matrix of the test set classification performance 
aggregated across all 10 folds of the cross-validation in the primary 
analysis set (n = 105, total number of epochs = 108,796). Each row of 
the matrix represents the instances in the manual reference scoring 
while each column represents the instances in the neural network-
predicted sleep scoring. The diagonal of the matrix shows all correct 
predictions. Values presented inside parentheses denote the number 
of epochs in each predicted class. W, Wakefulness; R, Rapid eye 
movement sleep; N1, N2, N3, Three different levels of non-rapid eye 
movement sleep; κ, Cohen’s kappa coefficient.

A B

FIGURE 4

A summary of the individual-level automatic sleep stage classification performances: (A) Accuracies in percentage (range: 73.3%–90.4%) and 
(B) Cohen’s kappa (Range: 0.69 to 0.84) of all children comprising the aggregated test set (n = 105) across the 10 folds during cross-validation.
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time (22). The accuracy and kappa values achieved in the present 
study considering a preadolescent cohort are almost identical to the 
performance metrics obtained in adult cohorts utilized by Korkalainen 
et  al. (22). Therefore, our findings confirm that the considered 
architecture generalizes well to preadolescent children with SDB and 
non-diseased controls.

The inter-rater agreements achieved in this dataset are comparable 
to the consensus between manual scorers, where kappa is typically 
0.76–0.78  in adult populations (14, 17). Considering the separate 
inter-rater reliability analysis conducted in the comparison set, the 
sleep stage-specific agreements obtained for the automatic method 
well exceeded the consensus between the two manual scorers in 
scoring sleep stage N2; were near-identical for W, N3, and R; but were 
modestly lower for stage N1 [possibly reflecting the relatively small 
(3.1%) proportion of N1 in this dataset] (Table 4). Nonetheless, our 
neural network-based approach showed substantial agreements (61) 
with both manual scorers and matched the concordance between 
human scorers. Moreover, the automatic approach matched with at 
least one of the two manual scorers in 89.8% of the epochs, while the 
match percentage between the manual scorers was only 84.6%, further 
emphasizing the reliability of the proposed algorithm relative to 
manual scoring.

Incorporating a reliable and accurate deep learning-based 
automatic sleep staging system to support the current clinical 

procedure could significantly benefit pediatric sleep disorder 
diagnosis. As elucidated in several studies (11–16), the traditional 
sleep scoring may lack adequate inter-rater reliability and manifest 
high variability. However, once trained, deep learning-based 
approaches, including the proposed model, would always classify 
sleep stages uniformly for the same data. This can be a substantial 
advantage of our model compared to visual sleep scoring as it 
eliminates limitations such as human-scorer vigilance-related 
errors. Finally, manual scoring is laborious, time-consuming, and 
expensive. The proposed method can perform quickly once trained 
(i.e., typically well within a minute per overnight study) and would 
significantly improve the efficiency of the sleep stage 
classification process.

The main performance limitation of the proposed algorithm is the 
low classification performance and inter-rater agreements of stage N1 
(Figure 3; Tables 3, 4). As expected, the overall accuracy in classifying 
stage N1 was poor (only 17.7%), and N1 sleep was most frequently 
confused with N2, and then with wake (Figure 3). One explanation for 
this is the relatively small amount of N1 epochs in the dataset (only 
3.1%) and therefore the algorithm is relatively poorly trained on this 
stage. However, inter-human-rater agreements for N1 were similarly 
low in both our study and published literature where N1 agreements 
range between κ = 0.19–0.31 (11, 12). This suggests that even for 
experienced manual sleep scorers, N1 is the hardest sleep stage 
to identify.

The mean (± SD) total sleep time (TST) of 479.6 ± 54.1 min 
observed in this dataset is lower than the typical average TST in this 
age group (63, 64). Similarly, we identified that the proportion of R 
sleep is slightly lower than what is usually observed in preadolescent 
children (64). There are two possible explanations for this discrepancy. 
Firstly, for other scientific purposes, the children wore a double EEG 
setup with two devices, a scoop cannula over their mouth, and an 
additional electrodermal activity (EDA) sensor (65); and this may 
have caused them to wake up earlier than usual and take the 
equipment off and consequently may have affected the TST and R 
sleep proportion. Second, this study was performed in Iceland during 
the summer months with an unusual amount of daylight, which may 
also have possibly caused early awakenings.

TABLE 3 Detailed stage-wise classification performance metrics in the 
test set aggregated across the 10-fold cross-validation in the primary 
analysis set (n = 105).

Sleep 
stage

Sensitivity Specificity PPV NPV

W 82.1% 97.9% 74.9% 98.6%

N1 17.7% 99.0% 37.4% 97.4%

N2 82.1% 88.9% 70.4% 93.9%

N3 89.8% 95.1% 94.0% 91.6%

R 84.4% 97.5% 89.1% 96.3%

W, Wakefulness; R, Rapid eye movement sleep; N1, N2, N3, Three different levels of non-
rapid eye movement sleep; PPV, Positive predictive value; NPV, Negative predictive value.

TABLE 4 Intra-rater and inter-rater reliability metrics for individual and overall sleep stage comparisons between manual scorers and the automatic 
method in a holdout subset of n = 10 (i.e., the comparison set).

Intra-rater 
agreement: S1

Intra-rater 
agreement: S2

Inter-rater 
agreement: S1 

versus S2

Inter-rater 
agreement: S1 

versus Auto

Inter-rater 
agreement: S2 

versus Auto

W 88.6% 89.6% 83.6% 80.8% 81.3%

N1 44.3% 63.1% 32.6% 24.9% 14.2%

N2 77.3% 81.4% 72.7% 83.8% 87.3%

N3 91.5% 92.5% 91.5% 87.7% 89.5%

R 92.7% 93.0% 90.7% 86.7% 86.2%

Overall 87.5% 89.3% 84.6% 83.4% 82.7%

κ 0.82 0.85 0.78 0.76 0.75

Remark Almost Perfect Almost Perfect Substantial Substantial Substantial

Agreements between manual and automatic classifications were calculated using manual scoring as the reference. Agreements between manual classifications were obtained by averaging 
agreements calculated with each manual classification as the reference. The remarks on the agreements are based on the guidelines by Landis and Koch (61) for Cohen’s kappa values. S1, 
Human scorer 1; S2, Human scorer 2; Auto, Automatic method; κ, Cohen’s kappa coefficient; W, Wakefulness; R, Rapid eye movement sleep; N1, N2, N3, Three different levels of non-rapid eye 
movement sleep.
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The study population consisted of Icelandic preadolescent 
children with symptoms of SDB (n = 59) and age and sex-matched 
controls (n = 56). However, there were no meaningful differences in 
the demographic characteristics between these two subgroups. Post 
PSG, 26 children fulfilled the diagnostic criteria for pediatric OSA 
(AHI ≥ 1) [17 from the SDB symptomatic subgroup and 9 from the 
asymptomatic control subgroup]; out of which, only one individual 
was deemed to have moderate pediatric OSA (AHI ≥ 5). Severe OSA 
was not found, and the study population did not explicitly include 
children with other sleep disorders. Different sleep disorders have 
distinct characteristics and could cause significant sleep architectural 
changes and deteriorated sleep quality. For example, OSA patients 
usually have more light sleep stages and less N3 and R sleep (66), 
whereas narcolepsy patients usually have fragmented sleep and 
abnormal and frequent sleep stage R occurrences (67). As such, 
further investigations are required to confirm the generalizability of 
our algorithm in these other groups, including those with more 

moderate and severe OSA. We believe these results must be generalized 
with caution to other heterogeneous clinical populations or centers 
internationally where participant characteristics may vary 
substantially; also to children with age range out of that in the present 
study. Similarly, this was well-curated scientific data. However, in 
practice, the algorithm would need to cope with artefact typical of 
clinical sleep studies; and further validation is required to examine the 
performance of this algorithm in these conditions. Further, it is likely 
that modern deep learning-based automated sleep classifiers have 
already achieved near-saturated performance metrics (68). Therefore, 
to be incorporated into clinical practice, future studies must focus 
more on improving the generalizability, reliability, uncertainty 
quantification, and interpretability of deep learning-based sleep 
staging models (44, 48, 51). Finally, to date, this and other studies 
focused on the classification of sleep stages without consideration of 
arousal events. Given the significant physiological overlap between 
arousal and wake stage, there are likely to be significant advantages to 

A

B

C

FIGURE 5

An example comparison between hypnograms of an individual annotated by (A) Manual scorer 1, (B) Manual scorer 2, and (C) Automatic classifier. The 
performance of the automated classifier in this individual was close to the population average (i.e., κ = 0.78 with manual scorer 1 and κ = 0.77 with scorer 
2).

TABLE 5 Performance comparison of the present study with previous deep-learning-based pediatric sleep staging.

Cohort size (n) Community control 
group included (Y/N)

Age range Stages Accuracy [kappa 
(κ)]

Present work 115 Y 10 to 13 years

5 (W/N1/N2/N3/R) 84.1% (0.78)

4 (W/N1 + N2/N3/R) 85.4% (0.80)

3 (W/N1 + N2 + N3/R) 92.6% (0.84)

Jeon et al. (24) 218 N - 3 (W/N1/N2) 92.2% (0.88)

Huang et al. (25) 21 N 5 to 10 years 5 (W/N1/N2/N3/R) 84.3% (−)

Wang et al. (42) 344 N 2 to 18 years

5 (W/N1/N2/N3/R) 82.6% (0.76)

4 (W/N1 + N2/N3/R) 85.8% (0.79)

3 (W/N1 + N2 + N3/R) 91.4% (0.81)

Phan et al. (44) 1,216 N 5 to 10 years 5 (W/N1/N2/N3/R) 88.8% (0.85)

Only studies utilizing deep learning techniques with EEG-based channels and specifically targeted at pediatric populations excluding infants are included. Y, Yes; N, No.

https://doi.org/10.3389/fneur.2023.1162998
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Somaskandhan et al. 10.3389/fneur.2023.1162998

Frontiers in Neurology 10 frontiersin.org

incorporating arousal event scoring within the same algorithm as 
sleep stage classification.

Conclusion

Pediatric sleep disorders are prevalent, and manual sleep stage 
classification has significant challenges. As such, incorporating an 
accurate and reliable automatic sleep staging method in clinical 
practice would greatly assist in improving the efficiency of pediatric 
sleep disorder diagnosis. The proposed deep learning-based 
classification algorithm enables fast, accurate, and reliable automatic 
sleep staging based on frontal EEG, EOG, and chin EMG signals in 
preadolescent children. Our findings favor the utility of deep learning-
based approaches for sleep staging over the traditional manual method.
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