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Abstract
In this thesis we explore Lyapunov functions for stochastic differential equations. Lyapunov
functions are a useful tool to study the stability of an equilibrium of such stochastic systems
and long term behaviour of solutions around an equilibrium point. We discuss a method of
estimating, with rigorous lower bounds, what is called the basin of attraction of an equilibrium
by using a combination of local and non-local Lyapunov functions. First we talk about a
generalisation of Lyapunov functions for almost sure exponential stability, to a larger and
more useful class of functions. Second, we describe a method to calculate local Lyapunov
functions by linearising the stochastic system. Third, we calculate non-local Lyapunov
functions using a numerical method called meshless collocation. This approach allows us to
calculate true Lyapunov functions numerically instead of just approximations. We describe
this method and talk about the computational challenges that we faced, which led us to study
Wendland functions and explore different ways to evaluate them numerically. This resulted in
a method to generate Wendland functions in an optimal form and a software library to carry
out meshless collocation using Wendland functions to solve partial differential equations
numerically.





Ágrip
Í þessari ritgerð munum við skoða Lyapunov föll fyrir slembnar diffurjöfnur. Lyapunov föll
eru mjög gagnleg þegar við könnum stöðugleika jafnvægispunkta slembna kerfa, og langtíma
hegðun sérlausna í kringum þá. Við fjöllum um aðferð, til að reikna svokallað aðdráttarsvæði
og nákvæmar neðri skorður, sem felst í því að nota saman staðbundið Lyapunov fall og
óstaðbundið Lyapunov fall. Fyrst fjöllum við um Lyapunov föll, fyrir næstum örugglega
veldisaðfellustöðug kerfi, og alhæfum þau fyrir stærra og gagnlegra fallarúm. Í öðru lagi þá
fjöllum við um aðferð til að reikna staðbundin Lyapunov föll með því að línugera slembna
kerfið. Í þriðja lagi, þá reiknum við óstaðbundið Lyapunov fall með tölulegri aðferð sem kallast
möskvalaus samleguaðferð. Með þessari aðferð getum við reiknað út raunverulegt Lyapunov
fall tölulega í stað þess reikna út tölulega nálgun. Við fjöllum um reiknierfiðleika sem við
tókumst á við, og hvernig í framhaldinu við skoðuðum Wendland föll og mismunandi aðferðir
til að reikna þau tölulega. Niðurstaðan var aðferð sem býr til Wendland föll í hagkvæmri mynd
og hugbúnaður sem nýtir þau til að leysa hlutafleiðujöfnur með mösvkalausri samleguaðferð.





For Stefania.
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1 Introduction
The concept of stability of a classical dynamical system captures the idea that sample paths
with two close starting values will not diverge too far away from each other as time passes.
Specifically, an equilibrium is stable if paths that start close to the equilibrium stay close at all
times.

Aleksandr Lyapunov defined functions to analyse the stability of an equilibrium for deter-
ministic dynamical systems, and a generalisation of these functions play a central role in
our thesis project. Lyapunov functions are comparable to potential energy to some extent.
The idea is, to show that the ‘energy’, or function value, is decreasing along all solution
paths. If that is the case, then all solution paths must tend to a minimum ‘energy level’ at the
equilibrium, so all solution paths tend to the equilibrium. This is a simple but powerful idea
that is the cornerstone for the study of stability of dynamical systems.

The thesis topic, however, is the analysis of the stability of stochastic differential systems
as opposed to deterministic dynamical systems. There are, however, many similarities
between the two different types of systems, and there is a theme of generalising concepts
that work well for the study of deterministic dynamical systems to stochastic ones. One such
generalisation is the previously mentioned Lyapunov function. For stochastic systems we can
not expect to find a function that is decreasing for all sample paths of a given initial value,
as sample paths of stochastic systems can vary wildly. The correct generalisation is then to
look for supermartingales, that is to say functions whose expectation decreases with time.
A complication that arises is that in general we can not expect the Lyapunov functions to
be differentiable at the origin, therefore in paper [Bjornsson and Hafstein 2018a(Paper I)]
we generalise a result on a type of Lyapunov functions to the larger class of functions not
differentiable at the origin.

Another generalisation of a deterministic concept is what we call γ-basin of attraction for our
stochastic system. For deterministic systems given by an autonomous differential equation,
the basin of attraction of an equilibrium is the set of all initial values such that the solutions
tend to the equilibrium as time increases. For the stochastic concept, a γ-basin of attraction is
the set of initial values such that the sample paths tend to the equilibrium as time increases,
with probability at least γ . That is to say, for all initial values inside the γ-basin of attraction,
the paths leave the basin with probability less than 1− γ .

Following the method used in the paper [Gudmundsson and Hafstein 2018] we use a com-
bination of a local and a non-local Lyapunov function to estimate the γ-basin of attraction.
The local Lyapunov function is calculated by finding a Lyapunov function for the linearised
version of the system, as is done in paper [Bjornsson, Giesl, et al. 2018(Paper III)], which
will be a Lyapunov function for the original stochastic system.

The non-local Lyapunov function is calculated numerically using so called meshless colloca-
tion using radial basis functions (RBF). The specific radial basis functions we use are called
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Wendland functions, which are piece-wise polynomials with compact support. The method
aims to solve the Lyapunov PDE boundary value problem, which is a partial differential
equation of the form LV (x) = h < 0 for all x ∈ U , for a domain U , and some fixed boundary
values on ∂U , where L is the second-order differential operator defined in equation (16).
This is done by constructing a function V which satisfies the PDE LV (xi) = h < 0 for a set of
points xi ∈ U , using the radial basis functions. The detailed method is laid out in the paper
[Bjornsson, Hafstein, et al. 2019(Paper II)], which furthermore provides rigorous a-posteriori
estimates on LV (x). This provides us with a method to verify that the approximation is a valid
Lyapunov function, even when the theory of elliptic PDEs does not guarantee the existence of
a solution to our Lyapunov PDE, as is the case if the operator L is not strictly elliptic.

The verification of the non-local Lyapunov function involves evaluating LV (x) in a test
grid, which can have a very high number of points and each point requires us to evaluate
the Wendland RBF and its derivatives up to 4th order. It is therefore essential that these
evaluations of the Wendland functions can be carried out in an efficient and accurate way. This
brings us to the last part of the project which was to investigate different methods of evaluating
Wendland functions, as was done in paper [Bjornsson and Hafstein 2018b(Paper IV)]. The
result was that a specific factorized form of Wendland functions was most efficient. In papers
[Bjornsson and Hafstein 2019b(Paper V)] and [Bjornsson and Hafstein 2019a(Paper IV)] we
provide an algorithm and software to generate the Wendland functions in this factorized format.
We furthermore provide a software library and examples of how to carry out the meshless
collocation using Wendland functions in the specified format. The software is available at
https://gitlab.com/hjortur/wendland-function-generator.

The outline of the thesis is as follows:

In chapter 2 we give a general description of stochastic differential equations, their stability
and a general introduction to Lyapunov functions. We furthermore talk about issues that arise
with differentiability at the origin.

In chapter 3 we talk about using two different Lyapunov functions, local and non-local, and
give a discussion on their use to estimate the γ-basin of attraction.

In chapter 4 we describe meshless collocation, a numerical method to solve partial differential
equations, and specifically how we used this method to calculate non-local Lyapunov functions,
using Wendland radial basis functions. We discuss verification of the Lyapunov function
properties and computational challenges.

In chapter 5 we list the six papers the thesis project is comprised of, and we provide a short
description of each paper.

Finally in chapter 6 we will conclude the thesis with a short discussion on the results obtained.
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2 Stochastic differential equations

2.1 Solutions to SDEs
A stochastic differential equation is an equation in the following form

dX(t) = f (X(t), t)dt +g(X(t), t)dB(t), (1)

where f : Rd × [t0,∞[→ Rd and g : Rd × [t0,∞[→ Rd ×RQ. This is simply a short hand for
the integral equation

X(t) = x0 +
∫ t

t0
f (X(s),s)ds+

∫ t

t0
g(X(s),s)dB(s), t ≥ t0, (2)

where the second integral is a multidimensional Itô integral, see [Øksendal 2010, Def. 3.3.1].

This integral is with respect to a Q-dimensional Wiener process, or Brownian motion
{B(t)}t≥0, which is also sometimes denoted by {W (t)}t≥0.

We say that the process {B(t)}= (B1(t),B2(t), . . . ,BQ(t))}t≥0 is a standard Q-dimensional
Brownian motion if all {B j(t)}t≥0, j = 1, . . . ,Q are 1-dimensional Brownian motions and all
{B1(t)}t≥0, {B2(t)}t≥0, · · · , {BQ(t)}t≥0 are independent. Now for a fixed t, B(t) is a random
variable, but by abuse of notation we often call B(t) a Brownian motion. In this case we are
referring to the whole Brownian motion stochastic process instead of a fixed time t.

The result of the thesis project is mostly concerned with autonomous differential equations,
that is where neither f nor g depend explicitly on the time variable t. In that case we can write
the SDE in the form:

dX(t) = f (X(t))dt +g(X(t))dB(t). (3)

However, we present some of the theory here for the more general case of time dependent
SDEs.

We work in a complete probability space (Ω,F ,P) with a right continuous filtration {Ft}t≥0
such that F0 contains all P null sets. We furthermore assume that the process {B(t)}t≥0 is a
Brownian motion with respect to the filtration {Ft}t≥0. We denote by E the expectation with
respect to the probability measure P. A solution (or strong solution) of the SDE in equation
(1) is a process X(t) that satisfies the following condition:

Definition 2.1. An Rd valued stochastic process X(t) for t0 ≤ t is called a solution of the
SDE in (1) if it has the following properties:

(i) X(t) is continuous and Ft-adapted.

(ii) The processes f (X(t), t) and g(X(t), t) are in L 1 and L 2 respectively.
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(iii) Equation (2) holds for all t in [t0,∞[ with probability 1.

We say that a solution X(t) of (1) is unique if for any other solution Y (t) we have

P
[
X(t) = Y (t) for all t ≥ t0

]
= 1,

that is, X(t) and Y (t) are indistinguishable.

In this thesis we assume that the functions f and g in equation (1) satisfy the conditions
below which are sufficient for the existence of unique strong solutions to the SDE. These
are relatively mild conditions on the functions f and g, and are summed up in the following
theorem, see [Mao 2008; Khasminskii 2012]:

Theorem 2.2. Assume that for every T ≥ t0, there exist two positive constants KT and KT
such that for all x,y ∈ Rd and all t ∈ [t0,T ]:

(i)
∥ f (x, t)− f (y, t)∥2

∨
∥g(x, t)−g(y, t)∥2 ≤ KT∥x− y∥2; (4)

(ii)
∥ f (x, t)∥2

∨
∥g(x, t)∥2 ≤ KT (1+∥x∥2). (5)

Then there exists a unique solution to the SDE in (1) and furthermore that solution belongs to
M 2([t0,∞[,Rd).

Here the symbol ∨ denotes the maximum, i.e. a∨b = max(a,b), and M 2([t0,∞[,Rd) denotes
the set of {Ft}-adapted Rd valued processes h(t) such that

E
∫ T

t0
∥h(t)∥2dt < ∞ for every T ≥ t0. (6)

The conditions given in the previous theorem are known as the Lipschitz conditions and the
Linear growth conditions. These conditions, as well as the assumptions on the probability
space (Ω,F ,P) and filtration {Ft}t≥t0 are called the usual conditions.

The usual conditions guarantee that for any given deterministic initial value X(t0) = x0 ∈ Rd

there exists a unique strong solution to equation (1), with continuous sample paths, denoted
by Xx0,t0 . In integral form

Xx0,t0(t) = x0 +
∫ t

t0
f (Xx0,t0(s),s)ds+

∫ t

t0
g(Xx0,t0(s),s)dB(s), t0 ≤ t. (7)

We often even suppress the initial time t0 from the notation, and simply write Xx0 as the initial
time is just 0 or understood from context.

Finally, we assume that

f (0, t) = 0 and g(0, t) = 0 for all t ≥ t0, (8)

which ensures that the origin is an equilibrium of the SDE and we have the trivial solution
X(t) = 0. Note that this is a necessary condition for the trivial solution to even exist. These
zeros of the functions f and g along with the usual conditions are assumed to hold throughout
this thesis.
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2.2 Stability of SDEs
There are many different versions of stability for SDEs that are in use. Here we review some
of them. For further information we direct the reader to [Khasminskii 2012; Mao 2008;
Kloeden et al. 1992].

Definition 2.3. (Stability in Probability (SiP)) The trivial solution X(t) = 0 of the standard
SDE in (1) is said to be stochastically stable or stable in probability (SiP) if for every r > 0
and 0 < ε < 1 there exists a δ > 0 such that:

∥x∥< δ implies P
{

sup
t>0

∥Xx(t)∥< r
}
≥ 1− ε. (9)

Recall that Xx(t) denotes the solution of equation (1) which satisfies the initial condition
Xx(0) = x, i.e. the solution started at x.

Definition 2.4. (Asymptotic Stability in Probability (ASiP)) The trivial solution X(t) = 0 to
the standard SDE in (1) is said to be stochastically asymptotically stable or asymptotically
stable in probability (ASiP) if it is stochastically stable and in addition for every 0 < ε < 1
there exists a δ > 0 such that:

∥x∥< δ implies P
{

lim
t→∞

∥Xx(t)∥= 0
}
> 1− ε. (10)

A quick explanation of these different conditions is the following: The first condition (SiP)
tells us that if we start close enough to the origin, then the solution stays close to the origin
with as high a probability as we want. The second condition (ASiP) says that starting close
enough the solution not only stays close to the origin but also tends to the zero solution.

In his book [Khasminskii 2012] writes these definitions as the limits

lim
∥x∥→0

P
{

sup
t>0

∥Xx(t)∥ ≤ r
}
= 1 ∀r > 0 SiP (11)

lim
∥x∥→0

P
{

limsup
t→∞

∥Xx(t)∥= 0
}
= 1 ASiP. (12)

The reason we do chose a different representation is that we want to look at the stochastic
analog of what is called basin of attraction (BOA) in deterministic theory. Its motivation is
simple and it aims to answer the following question: How far from the origin can sample
paths start and still approach the equilibrium as t → ∞ with probability greater than a given
confidence γ .

Definition 2.5. (γ Basin of attraction) Consider a system with domain U ⊂ Rd satisfying the
usual conditions. For any 0 < γ ≤ 1 the set Aγ ⊂ U , given by:

Aγ =

{
x ∈ U

∣∣∣∣∣P
{

lim
t→∞

∥Xx(t)∥= 0
}
≥ γ

}
, (13)

is called the γ basin of attraction or the γ-BOA, see (Paper II and Paper III). Here Xx(t)
denotes the unique strong solution of the SDE with initial condition x.
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Now if Aγ is the γ-BOA for an SDE satisfying the usual conditions, then any sample path
started in Aγ will tend towards the origin with probability at least γ .

There is also another type of stability we deal with in this thesis, called almost sure exponential
stability, see e.g. [Mao 2008], which is the following condition:

Definition 2.6. (Almost sure exponential stability) The trivial solution X(t) = 0 of equation
(1) is said to be almost surely exponentially stable if for every initial value x, the solution
Xx(t) to (1) satisfies:

limsup
t→∞

1
t

log∥Xx(t)∥< 0 almost surely. (14)

In contrast to the previous types of stability, this last one says that almost all sample paths of
the solution will tend to the origin exponentially fast.

2.3 Lyapunov functions
For the stochastic differential equation in (1), written here again for clarity,

dX(t) = f (X(t), t)dt +g(X(t), t)dB(t), (15)

there is an associated generator:

Lv(x, t) = ∂tv(x, t)+ f (x, t) ·∇xv(x, t)+
1
2

tr
(

g(x, t)⊤H v(x, t)g(x, t)
)

=
∂v
∂ t

(x, t)+
d

∑
i=1

fi(x, t)
∂v
∂xi

(x, t)+
1
2

Q

∑
q=1

d

∑
i, j=1

gq
i (x, t)

∂ 2v
∂xi∂x j

(x, t)gq
j(x, t)

=
∂v
∂ t

(x, t)+
d

∑
i=1

fi(x, t)
∂v
∂xi

(x, t)+
1
2

d

∑
i, j

[
g(x, t)g(x, t)⊤

]
i j

∂ 2v
∂xi∂x j

(x, t).

(16)

where v : Rd ×R+ is an appropriately differentiable function, and H v(x, t) is the Hessian of
the function x 7→ v(x, t). In this thesis we follow the convention that R+ = {t ∈ R | t ≥ 0}.
Note that this is just the drift term of the stochastic differential for the Itô process t 7→ v(X(t), t)
where X(t) is a process with differential given by (15). We write here the famous Itô’s formula
for completeness [Øksendal 2010, Thm. 4.2.1]:

Theorem 2.7. (Itô’s formula) Let v(x, t) be a function defined on Rd ×R+ that has continuous
partial derivatives up to second order in x and up to first order in t. If X(t) is a d-dimensional
Itô process with differentials given by (1) then the process Y (t) = v(X(t), t) is also an Itô
process with differential given by

dY (t) = dv(X(t), t) = Lv(X(t), t)dt +
d

∑
i

∂v
∂xi

(X(t), t)gi(X(t), t)dB(t)

= Lv(X(t), t)dt +∇xv(X(t), t)g(X(t), t)dB(t).

(17)

Here Lv is the generator given by (16) and ∇xv(x, t) is the gradient with respect to the spatial
coordinate x, written as a row vector.
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We usually just write dv(X(t), t) instead of dY (t) in the theorem above. We remind the reader
that the differential formulation given by Thm. 2.7 is a short hand for writing out the process

v(X(t), t) = v(X(t0), t0)+
∫ t

t0
Lv(X(s),s)ds+

∫ t

t0
∇xv(X(t), t) ·g(X(t), t)dB(t), (18)

and by taking the expectation of both sides we get

E [v(X(t), t] = v(X(t0), t0)+E
[∫ t

t0
Lv(X(s),s)ds

]
. (19)

This is because the stochastic integral part in equation (18) is a martingale with expectation
zero. Let U be some closed bounded domain in Rd and assume that v(x, t)≥ 0 and Lv(x, t)≤ 0
for all (x, t) ∈U × [t0,∞[. Then the process v(X(t), t) is a supermartingale with

E [v(X(τ ∧ t),τ ∧ t) | Fs]≤ v(X(s),s) a.s. (20)

where τ = inf{t | X(t) ∈Uc} is the first exit time from U , and τ ∧ t = min(τ, t). Note that the
above equation furthermore implies

E [v(X(t), t]≤ v(X(t0), t0). (21)

This is the key property that has been used to study stability of SDEs, see e.g. [Mao
2008; Khasminskii 2012], and these type of functions v as described above, with additional
restrictions, are called Lyapunov functions. There are many different definitions of Lyapunov
functions used throughout the literature, see e.g. [Menshikov, Popov, and Wade 2016] for
Lyapunov functions for Random Walks, and [Shaikhet 2013] for Lyapunov functions for
stochastic difference equations. All of these are different variations on the theme described
before.

2.4 Differentiability at the origin
It turns out that the condition that v(x, t) being twice continuously differentiable in the x
coordinate is too strict. Rafail Khasminskii showed in his book “Stochastic Stability of
Differential Equations” [Khasminskii 2012, Chpt. 5.3] that even for the simplest case, 1
dimensional autonomous SDE which is stable and with constant coefficients, there may not
exist such (Lyapunov) v which are smooth at the origin. Indeed the example Khasminskii
uses is

dX = bXdt +σXdB, (22)

where b and σ are constants such that 0 ≤ b < σ2/2. This system is stable (see Definition
2.3) but since b ≥ 0 its deterministic part is unstable, and exhibits the interesting phenomenon
that a deterministic system can be stabilised with noise.

This gives rise to a class of functions denoted C2,1
0 (U ×R+), where we say that a function

v(x, t) is of class C2,1
0 (U ×R+) if it is twice continuously differentiable with respect to x and

continuously differentiable with respect to t for all (x, t) ∈U ×R+, except possibly for the
set x = 0. This is the correct class of Lyapunov functions to consider and the definition here
is the one used by [Khasminskii 2012].
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To make the definitions easier to state we use so called K∞-functions. We say that µ is a K∞-
function, or µ ∈K∞ if µ : [0,∞[→ [0,∞[, is a continuous and strictly increasing function such
that µ(0) = 0, and limx→∞ µ(x) = ∞. We then get the following theorem, see [Khasminskii
2012]:

Theorem 2.8. (Stochastic Lyapunov function) If there exists a function V (x, t)∈C2,1
0 (U×R+),

with V (0, t) = 0, and a µ ∈ K∞ such that:

(i) µ(∥x∥)≤V (x, t) for all (x, t) ∈U ×{t > 0},

(ii) LV (x, t)≤ 0 for all x ̸= 0.

Then the trivial solution of (1) is SiP (see Definition 2.3).

If we replace condition (ii) in the theorem above with LV (x, t) ≤ µ2(∥x∥) for some K∞

function µ2, then the trivial solution of (1) is not just stable in probability but asymptotically
stable in probability (see Definition 2.4).

Note that in the statement of Itô’s formula in Theorem 2.7 we require V to be differentiable at
x = 0. This is not a problem and the function V in Theorem 2.8 is still a supermartingale and
equation (20) still holds. The reason for this is that the set x ̸= 0 is inaccessible.

Definition 2.9. (Inaccessible set) Let X(t) be a solution of the SDE in (1). Let τΓ =
inf{t | X(t) ∈ Γ} be the first hitting time of the set Γ. We say that the set Γ is inaccessi-
ble to the process X(t) if

P{τ
Γ < ∞}= 0. (23)

It is known that for SDEs that satisfy the usual conditions and have an equilibrium at the
origin, that the origin point x = 0 is inaccessible to any sample path Xx0 for x0 ̸= 0, see
e.g. [Khasminskii 2012, Lemma 5.3]. Itô’s formula is then applicable to functions V as in
Theorem 2.8 since they fail to be differentiable at an inaccessible point x = 0. For further
information see [Khasminskii 2012, Chpt. 5.2].

Seeing the different approaches for these Lyapunov functions in the literature and especially
in light of the result that Khasminskii obtained, we looked at results that Xuerong Mao got in
his book [Mao 2008, Thm. 3.3]. Specifically, Mao writes the following theorem:

Theorem 2.10. Assume that there exists a function V ∈C2,1(Rd × [t0,∞[) and constants p > 0,
c1 > 0, c2 ∈ R, c3 ≥ 0, such that for all x ̸= 0 and t ≥ t0,

(i) c1∥x∥p ≤V (x, t),

(ii) LV (x, t)≤ c2V (x, t),

(iii) ∥(∇xV (x, t))g(x, t)∥2 ≥ c3V 2(x, t).

Then
limsup

t→∞

1
t

log(Xx0(t))≤−c3 −2c2

2p
a.s. (24)

for all x0 ∈ Rd . In particular, if c3 > 2c2, the trivial solution of (1) is almost surely exponen-
tially stable, see Definition 2.6.

In our paper [Bjornsson and Hafstein 2018a] we generalise this theorem, and another related
one, to functions V like above that are of class C2,1

0 , i.e. not differentiable at x = 0. We get
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that the above theorem still holds without further modifications if we drop the requirement
that V be differentiable at the origin.
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3 Local and non-local Lyapunov functions
There is a technical problem that arises when trying to solve the partial differential equation
(PDE) LV ≤ 0 numerically on some domain A that contains the origin. The operator L is
elliptic on a domain A if and only if the matrix g(x, t)g(x, t)⊤ from equation (16) is positive
definite, i.e. all of its eigenvalues are strictly positive, see [Gilbarg and Trudinger 2001, Chpt.
3]. Furthermore, L is strictly elliptic if the eigenvalues of the matrix g(x, t)g(x, t)⊤ are larger
than λ for some constant λ > 0 on the entire domain A .

Since g(0, t) = 0 we see that the operator L can not be elliptic on a domain that contains the
origin, and therefore the standard theory of elliptic PDEs does not apply. By cutting out a
small closed set B that contains the origin we can frequently guarantee the strict ellipticity
of the operator L on the domain A \B, and therefore the existence and uniqueness of the
solution to the PDE LV (x, t) = h < 0 on the domain A \B. For this purpose we introduce
the notion of a non-local Lyapunuv function. By solving this PDE instead of LV (x, t) ≤ 0
we can often guarantee that our solution V is a true Lyapunov function instead of just an
approximation to a solution. This is possible even in the case that L is not elliptic, e.g. if
g(x, t) does not have full rank.

Since we have removed the equilibrium point from the domain of the non-local Lyapunov
function, we need to patch-up the hole around the origin to check if the null solution is
actually stable. For this purpose we calculate what we call a local Lyapunov function for
the system in a domain B containing B, using different methods. We then use these two
Lyapunov functions to estimate the probabilistic basin of attraction (BOA, see Definition 2.5).

In this thesis project we are mostly concerned with the autonomous SDEs of the form

dX(t) = f (X(t))dt +g(X(t))dB(t). (25)

Up until now we have presented some of the general theory of Lyapunov functions, but the
results we obtained for local and non-local Lyapunov functions are for autonomous systems.
We therefore assume from now on that we are working with the system in equation (25)
satisfying the usual conditions and that we have an equilibrium at x = 0 (see chapter 2.1).

3.1 Local Lyapunov function
Following the conventions used in the papers [Gudmundsson and Hafstein 2018] and [Bjorns-
son, Hafstein, et al. 2019] we say that a function W is a local Lyapunov function if it satisfies
the following conditions.

Definition 3.1 (Local Lyapunov function). Consider the system (25). A function W ∈C(N )∩
C2(N \{0}), where 0 ∈ N ⊂ Rd is a domain, is called a (local) Lyapunov function for the
system (25), if there are functions µ1,µ2,µ3 ∈ K∞, such that W fulfils the properties :
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(i) µ1(∥x∥)≤W (x)≤ µ2(∥x∥) for all x ∈ N ,

(ii) LW (x)≤−µ3(∥x∥) for all x ∈ N \{0}.

It is difficult to solve the system above for general functions f and g, but paper [Bjornsson,
Giesl, et al. 2018] introduces a method to find such a local Lyapunov function. The idea is to
consider the linearisation of the system in equation (25), i.e.

dX̃(t) = FX̃(t)dt +
Q

∑
q=1

GqX̃(t)dBq(t), (26)

with F = D f (0) and Gq is the Jacobian of the q-th column of g at 0, and dBq(t) is the q-th
component of dB(t). We can look for a local Lyapunov function W for the system in equation

(26) of the form W (x) = ∥x∥
p
2
Q =

(
x⊤Qx

) p
2 where Q is a symmetric positive definite matrix

and ∥·∥Q denotes the Q-norm. Now this function W will also be a local Lyapunov function for
the original system, in equation (25), in some domain around the origin. The paper provides
an explicit lower bound on the domain and shows that W is a local Lyapunov function for the
original system in a domain

D = {x ∈ Rd : ∥x∥Q ≤ ρ}, (27)

where ρ > 0 is obtained by explicit bounds on the second derivatives and Taylor remainders
of the functions f and g. For the full details see [Bjornsson, Giesl, et al. 2018, Thm. 3.4].

There have been other developments for calculating local Lyapunov functions, in the thesis
[Bjarkason 2022] a method to formulate the local Lyapunov function conditions as a bilinear
matrix inequality (BMI) is presented. Additionally they present a program that generates
this BMI, and attempts to solve it, automatically. For a different viewpoint on studying the
dynamics of the stochastic differential equation around the equilibrium see [Arnold 2003].

3.2 Non-local Lyapunov function
Next we introduce a non-local Lyapunov function in the set U as in [Gudmundsson and
Hafstein 2018]. A non-local Lyapunov function satisfies LV < 0 in a large set U , not including
a small neighborhood B of the equilibrium.

Definition 3.2 (Non-local Lyapunov function). Let A ,B ⊂ Rd , B ⊂ A ◦, be simply con-
nected compact neighbourhoods of the origin with C2 boundaries and set U := A \B◦. A
function V ∈C2(U ) for the system (25) such that

(i) b ≤V (x)≤ a for all x ∈ U , V−1(b) = ∂B, V−1(a) = ∂A with b < a, and

(ii) LV (x)< 0 for all x ∈ U ,

is called a non-local Lyapunov function for the system (25). We refer to ∂A as the outer
boundary of U and ∂B as the inner boundary of U .

This is a slight modification of the original definition where we have replaced the original
constants 0 and 1, by b and a respectively.
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To find a non-local Lyapunov function V using a computer we simply look for numerical
solutions of the PDE 

LV (x) = r(x) for x ∈ U ,

V (x) = a for x ∈ ∂A ,

V (x) = b for x ∈ ∂B,

(28)

where we usually set b = 0, a = 1, and r(x) =−h for a sufficiently small positive constant
h. The method chosen to obtain these numerical solutions for this thesis project was to use
meshless collocation using radial basis functions (RBF). This method is described in the next
section.

A Lyapunov function as in equation (28) lets us estimate the probability that a solution started
in a point x0 ∈ U exits throught the inner boundary ∂B before the outer boundary ∂A . Set
τ as the first exit time from U , then by equation (20) we have

V (x0)≥ E [V (Xx0(τ))] = aP{Xx0(τ) ∈ ∂A }+bP{Xx0(τ) ∈ ∂B}, (29)

since P{τ < ∞}= 1, see [Gudmundsson and Hafstein 2018, p. Lm. 10]. For the case a = 1
and b = 0, this reduces to V (x0)≥ P{Xx0(τ) ∈ ∂A }.

3.3 Estimating the basin of attraction
The next theorem, from paper [Gudmundsson and Hafstein 2018] shows how the local and
non-local Lyapunov functions taken together give us information about the γ-BOA of the
autonomous system in equation (25). We estimate the probability that a solution that starts in
the set U leaves the set through the inner-boundary using the non-local Lyapunov function,
and then using the local Lyapunov function we estimate the probability that they converge to
the origin. The combined probability can then be bounded from below by the γ given in the
next theorem.

Theorem 3.3. Consider the system in (25) and assume that there exists a local Lyapunov
function W : N → R+ as in definition 3.1 and a non-local Lyapunov function V : U → R+

as in Definition 3.2 for the system. Let 0 < β < 1 and b < λ < α < a and the set B from
Definition 3.2 such that

W−1(Wmax)⊂V−1([b,λ ]) and ∂B =V−1(b)⊂W−1([0,βWmax]). (30)

Then the set V−1([b,α])∪B is a subset of the γ-BOA of the origin, where

γ =
(a−α)(1−β )

a−b−β (a−λ )
. (31)
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4 Meshless collocation

4.1 Overview
Recall that to calculate a non-local Lyapunov function we essentially, see equation (28), have
to solve a PDE of the form {

LV (x) = r(x) for x ∈ U ,

V (x) = c(x) for x ∈ ∂U ,
(32)

where r and c are some suitable functions, U ⊂ Rd is a bounded domain with smooth
boundary ∂U and L is the differential operator given in (16). To solve this PDE numerically
we use so called Meshless collocation. The method is an approach to finding norm minimal
solutions to an interpolation problem in a Reproducing Kernel Hilbert Space (RKHS), see
[Wendland 2005, Def. 10.1] which in our case is a Sobolev space [Giesl 2007a, p. Lm. 3.13].

This interpolation problem will guarantee that V satisfies the PDE (32) at the given collocation
points, and furthermore this interpolation problem has a solution [Iske 2018, Thm 8.3] and
[Giesl 2007a, Prop. 3.20], even when there is no solution to (32).

4.2 Interpolation problem
As mentioned in the introduction our goal is to solve, approximately, the PDE (32). Our
solution will be a function in a RKHS, which is a Hilbert space H of functions U → R with
inner product ⟨·, ·⟩H and a kernel Φ : U ×U → R such that

(i) Φ(·,x) ∈ H for all x ∈ U ,

(ii) g(x) = ⟨g,Φ(·,x)⟩H for all x ∈ U and g ∈ H.

In our thesis project we work with radially symmetric kernels Φ(x,y) = ψ(∥x−y∥), where
ψ = ψl,k is a radial basis function (RBF) given by a Wendland function, see chapter 4.3. We
choose points X1 = {x1, . . .xN} ⊂ U and X2 = {ξ1, . . . ,ξM} ⊂ ∂U , and look to solve the
interpolation problem {

LV (xi) = r(xi) for all i = 1, . . .N,

V (ξi) = c(ξi) for all i = 1, . . . ,M.
(33)

The solution V to this interpolation problem is given by

V (x) =
N

∑
k=1

αk(δxk ◦L)y
ψ(∥x−y∥)+

M

∑
k=1

αN+k(δξk
◦L0)y

ψ(∥x−y∥), (34)
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where L0 is the identity operator, δyV (·) =V (y) and superscript y denotes that the operator is
applied with respect to the variable y.

The constants αi are determined as a solution to the linear system

Aα = γ, (35)

where A, called the interpolation matrix, is the symmetric matrix

A =

[
B C

CT D

]
(36)

and the matrices B = (b jk) j,k=1,...,N , C = (c jk) j=1,...,N,k=1,...,M and D = (d jk) j,k=1,...,M have
elements

b jk = (δx j ◦L)x(δxk ◦L)y
ψ(∥x−y∥),

c jk = (δx j ◦L)x(δξk
◦L0)y

ψ(∥x−y∥),
d jk = (δξ j ◦L0)x(δξk

◦L0)y
ψ(∥x−y∥).

The vector γ has components given by

γ j = r(x j), 1 ≤ j ≤ N,

γ j+N = c(ξ j), 1 ≤ j ≤ M.

Using Wendland functions as our radial basis function ensures that the interpolation matrix A
in equations (35, 36) is symmetric and positive definite. Since these Wendland functions have
compact support the matrix A is also sparse. There are other choices for radial basis functions
for the interpolation problem e.g. Gaussian ψ(r) = exp(−r2), but this function does not have
a compact support.

4.3 Wendland functions
The Wendland functions, see [Wendland 2017; Wendland 2005; Giesl 2007a], are compactly
supported radial basis functions that are polynomials on their support, which makes computa-
tions with them simple. They are a family of functions depending on two parameters l,k ∈ N0,
using the same numbering scheme as used in [Giesl 2007a], defined by the recursive relations:

ψl,0(r) = [(1− r)+]
l (37)

and

ψl,k+1(r) =Cl,k+1

∫ 1

r
tψl,k(t)dt, (38)

where (1− r)+ := max{1− r,0} and Cl,k+1 ̸= 0 is a constant. Therefore these functions also
satisfy the relation

−Cl,k+1ψl,k(r) =
d
dr ψl,k+1(r)

r
. (39)

For interpolation using a particular Wendland function as the base function, the value of the
constant Cl,k+1 ̸= 0 is not of importance because the Wendland function appears linearly on
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both sides of a linear equation. Therefore, one can just fix values that are convenient for
the problem at hand and we will do this in the following section. However, when solving
collocation problems, we apply a differential operator, see equations (35) and (36), so we
get terms involving both the original Wendland function and its derivatives. The derivative
of a Wendland function can be written in terms of a lower order Wendland function, using
equation (39), and when doing this it is necessary to keep track of the constants Cl,k+1 for the
derivatives. It is only the constant for the base function that can be chosen arbitrarily. After
the choice has been made, we must keep track of it through all calculations.

The Wendland functions have several important properties, cf. e.g. [Giesl 2007b, Prop. 3.10]:

(i) ψl,k(r) is a polynomial of degree l +2k for r ∈ [0,1] and supp(ψl,k) = [0,1].

(ii) The radial function Ψ(x) := ψl,k(∥x∥) is C2k at 0.

(iii) ψl,k is Ck+l−1 at 1.

Frequently we fix the parameter l :=
⌊d

2

⌋
+ k+1, where d is the spacial dimension we are

working in, and a constant c > 0 to fix the support. By the properties stated above, the radial
function Ψ(x) := ψl,k(c∥x∥) is then a C2k function with supp(Ψ) = Bd(0,c−1)⊂ Rn, where
Bn(0,c−1) is the closed n-dimensional ball around the origin with radius c−1.

4.4 Verification
By using meshless collocation we obtain a function V that satisfies the PDE at each collocation
point, see equation (33).

Let A ,B, and U be as in the definition of non-local Lyapunov functions (Definition 3.2) and
let V (x) be a numerical approximation obtained using meshless collocation as described in
previous sections. Now, by [Bjornsson, Hafstein, et al. 2019, Theorem 4.3] if

ν := max
y∈YU

LV (y)+Cu
d2

4
h2 < 0, (40)

then V is a true non-local Lyapunov function for the system. Here d is the dimension of the
system, h > 0 is a parameter controlling the density of the evaluation grid, and YU is the
evaluation grid that covers U . Finally the constant CU is an upper estimate on the second
order derivatives of our function LV , obtained using Taylor-type estimates, for further details
see [Bjornsson, Hafstein, et al. 2019] and [Mohammed and Giesl 2015].

This means that the equation LV (x)< 0 holds for any point x ∈ U . This, along with a local
Lyapunov function W as described in (Definition. 3.1) allows us to get rigorous estimate of
the stochastic γ-basin of attraction for our SDE.

This method is described in detail in paper [Bjornsson, Hafstein, et al. 2019] which is the
main result of this thesis project.

4.5 Computational challenges
To compute a Lyapunov function using the meshless collocation discussed above, a large
number of evaluations of the RBF function ψ and its derivatives are necessary. When verifying
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the properties of the Lyapunov function we need to do even more evaluations. Therefore it is
essential that these evaluations can be carried out in an efficient and accurate way.

Since we used Wendland functions as our radial basis functions, we studied different methods
to evaluate these functions, which results are summarised in papers [Bjornsson and Hafstein
2019a; Bjornsson and Hafstein 2019b; Bjornsson and Hafstein 2018b (Paper IV,V and VI)]. It
turned out that the most optimal way to evaluate these functions was in a specific factorised
form. Previous methods, see e.g [Argáez, Hafstein, and Giesl 2017], relied on calculating
the coefficients of the expanded polynomials and evaluating the polynomials using Horner’s
method [Burrus et al. 2003] but this turned out to be not optimal.

We instead developed an algorithm and software to calculate the Wendland functions of
arbitrary degree in this factorised format, replacing tedious and error prone calculations by
hand. This method and the corresponding software library is summarised in (Paper IV). The
software library is available at:

https://gitlab.com/hjortur/wendland-function-generator.
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5 Contributions
Here is a list of the papers included in this thesis and a short description of their contributions.

Paper I:

Lyapunov Functions for Almost Sure Exponential Stability. The paper builds up on the
work of [Mao 2008] by generalising theorems on almost sure exponential stability. In
his book, X. Mao shows that a certain Lyapunov function is sufficient for a solution
of a stochastic differential equation to be almost surely exponentially stable. We
generalize this result to a larger class of Lyapunov functions. Chapter 2.3 provides
further discussion.

Paper II:

Computation of the stochastic basin of attraction by rigorous construction of a Lyapunov
function. The paper uses a method to calculate the γ basin of attraction for a stochastic
differential equation by combining two different Lyapunov functions as was done in
paper [Gudmundsson and Hafstein 2018]. Furthermore the paper provides a method
to calculate the non-local Lyapunov function using Meshless collocation and a way to
verify the properties of the resulting function. This gives us rigorous lower bounds on
the γ basin of attraction.

Paper III:

Local Lyapunov Functions for Nonlinear Stochastic Differential Equations by Lin-
earization. The paper shows how a local Lyapunov function for a stochastic differential
equation can be calculated by a linearisation of the SDE. The result is an explicit lower
bound on the domain where the resulting local Lyapunov function is a true Lyapunov
function for the original system.

Paper IV:

Advanced algorithm for interpolation with Wendland functions. The paper builds up on
previous work in [Bjornsson and Hafstein 2019b(Paper V)] and [Bjornsson and Hafstein
2018b(Paper VI)]. The paper describes an algorithm to generate Wendland functions in
an efficient form and a software library that can be used to calculate non-local Lyapunov
functions for both deterministic and stochastic autonomous differential equations.

Paper V:

Algorithm and Software to Generate Code for Wendland Functions in Factorised Form.
The paper describes an algorithm to generate Wendland functions in a specific factorised
form and describes software that generates these Wendland functions, in factorised form.
This software was later improved as described in [Bjornsson and Hafstein 2019a(Paper
IV)].
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Paper VI:

Verification of a Numerical Solution to a Collocation Problem. The paper describes
some of the computational challenges when trying to verify the properties of a non-
local Lyapunov function calculated using meshless collocation of Wendland radial basis
functions. Different methods to evaluate Wendland functions were compared and a
specific factorised form of Wendland functions was found to be the most efficient, both
in terms of speed of evaluation and numerical accuracy.

20



6 Conclusions
In this dissertation we have given an overview of the concept of stability of stochastic
differential equations. We described Lyapunov functions and their application for analysing
the stability of an equilibrium for a stochastic system, and looked at meshless collocation,
which is a numerical method for calculating such Lyapunov functions.

We have made contributions in a few different, but related areas of this project. First of all we
have generalized a previous result on Lyapunov functions for almost sure exponential stability
to a larger class of functions.

We have also contributed to a method to calculate non-local Lyapunov functions numerically
for the purpose of estimating the γ basin of attraction for autonomous stochastic differential
equations. A meshless collocation method delivers us a non-local Lyapunov function in the
form of a sum of Wendland functions, and computational challenges we faced in this project
led us to explore various methods of evaluating Wendland functions.

We found an efficient method to evaluate Wendland functions and designed an algorithm
that generates Wendland functions of arbitrary degree in an efficient form. We developed a
software library that calculates Lyapunov functions using Wendland functions in an efficient
form, for both stochastic and deterministic systems.

Lastly, we contributed to a method of calculating local Lypunov functions for stochastic
differential systems using linearisation.

21



Paper I

Lyapunov Functions for Almost Sure Exponential Stability

Bjornsson, H. and Hafstein, S.

Dynamical Systems in Theoretical Perspective, Springer Proceedings in Mathematics and
Statistics 248

Reproduced with permission from Springer Nature
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Lyapunov Functions for Almost Sure
Exponential Stability

Hjortur Björnsson and Sigurdur Freyr Hafstein

Abstract We present a generalization of results obtained by X. Mao in his book
“Stochastic Differential Equations and Applications” (2008). When studying what
Mao calls “almost sure exponential stability”, essentially a negative upper bound
on the almost sure Lyapunov exponents, he works with Lyapunov functions that are
twice continuously differentiable in the spatial variable and continuously differen-
tiable in time. Mao gives sufficient conditions in terms of such a Lyapunov function
for a solution of a stochastic differential equation to be almost surely exponentially
stable. Further, he gives sufficient conditions of a similar kind for the solution to be
almost surely exponentially unstable. Unfortunately, this class of Lyapunov functions
is too restrictive. Indeed, R. Khasminskii showed in his book “Stochastic Stability
of Differential Equations” (1979/2012) that even for an autonomous stochastic dif-
ferential equation with constant coefficients, of which the solution is stochastically
stable and such that the deterministic part has an unstable equilibrium, there cannot
exists a Lyapunov function that is differentiable at the origin. These restrictions are
inherited by Mao’s Lyapunov functions. We therefore consider Lyapunov functions
that are not necessarily differentiable at the origin and we show that the sufficiency
conditions Mao proves can be generalized to Lyapunov functions of this form.

Keywords Almost sure exponential stability · Lyapunov function · Almost sure
Lyapunov exponent

1 Introduction

Lyapunov methods, as first described in [1], have been widely used to study the
behaviour of various dynamical systems, both real-world examples or purely theo-
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retical ones. This is a very active field due to the complicated dynamics exhibited in
several real-world systems, as for example the wobblestone model presented in [2].
Other specific examples include the dynamics of the double [3] or triple pendulum
[4, 5], where Lyapunov exponents were used to study the chaotic behavior of the
systems. Often it is necessary to modify a dynamical system to include either an
unknown force, or to consider the perturbation of the system by some noise, and that
is where stochastic differential equations (SDEs) are commonly used. Here in this
paper, we are concerned with applying Lyapunov methods for classical dynamical
systems to the stochastic framework, as done by Khasminskii [8].

We work in a complete probability space (Ω,F , P) with a right continuous
filtration {Ft}t≥0 and such thatF0 contains all P null sets. In this paper we consider
strong solutions of the d -dimensional stochastic differential equation

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t) on t ≥ t0 (1)

where B(t) is anm-dimensional Brownian motion. For a more detailed description of
the setting cf. [9, Sec. 2.1].We assume that for any given initial value x(t0) = x0 ∈ Rd

there exists a unique global solution, denoted by t �→ x(t, t0, x0), with continuous
sample paths. Furthermore, we assume that

f (0, t) = 0 and g(0, t) = 0 for all t ≥ t0.

Sufficient condition for the existence of such solutions are, for example, given by
the following statement, cf. [9, Thm. 2.3.6].

For any real number T > 0 and integer n ≥ 1, the following hold true:

1. There exists a positive constant KT ,n, such that for all t ∈ [t0,T ] and all x, y ∈ Rd with
|x| ∨ |y| ≤ n,

|f (x, t) − f (y, t)|2
∨

|g(x, t) − g(y, t)|2 ≤ KT ,n|x − y|2.

2. There exists a positive constant KT , such that for all (x, t) ∈ Rd × [t0,T ]

x�f (x, t) + 1

2
|g(x, t)|2 ≤ KT (1 + |x|2).

Here | · | is the Euclidean norm and the symbols ∧ and ∨ are defined to be the
minimum and the maximum respectively:

a ∧ b := min(a, b) and a ∨ b := max(a, b).

Corresponding to the initial value x(t0) = 0, we have the solution x(t) = 0 for all
t. This solution is called the trivial solution. In this paper we are studying the stability
of the trivial solution and, more specifically, when it is almost surely exponentially
stable. This definition is taken fromMao’s book [9, Def. 4.3.1], see also e.g. [6, 11].
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Definition 1 The trivial solution of (1) is said to be almost surely exponentially
stable if

lim sup
t→∞

1

t
log |x(t, t0, x0)| < 0

almost surely, for all x0 ∈ Rd .

First, we clarify some of the notation used in the paper. For our purposes all
integrals in this paper of the form

∫ · dB(s) are to be interpreted in the Itô sense.
We write bn ↑ a if the sequence bn is increasing and has limit a. We denote by
L 2(R+, Rd×m) the family of all (d × m)-matrix valuedmeasurable {Ft}t≥0-adapted
processes f = {f (t)}t≥0 such that

∫ T

0
|f (t)|2dt < ∞ a.s. for every T > 0

and by M 2(R+, Rd×m) the family of all processes f ∈ L 2(R+, Rd×m) such that

E
{∫ T

0
|f (t)|2dt

}
< ∞ for every T > 0.

Here E denotes the expectation and a.s. is an abbreviation for almost surely as
usual. Let f ∈ M 2(R+, Rd×m) and consider the process

Mt =
∫ t

0
f (s)dB(s)

then there exists a t-continuous version of the processMt . Furthermore the process is
{Ft} adapted and is a square integrablemartingale [10, Thm. 3.2.5]. By the preceding
remark, we will assume that

∫ t
0 f (s)dB(s) refers to a t-continuous version of the

integral.
A sequence of stopping times {τk}k≥1 is called a localization if it is non-decreasing

and τk ↑ ∞ almost surely. A right continuous adapted process M = {Mt}t≥0 is
called a local martingale if there exists a localization {τk}k≥1 such that the process
{Mτk∧t − M0}t≥0 is a martingale for every k ≥ 1. We denote the quadratic variation
of a continuous local martingale M by 〈M ,M 〉t , which is the unique continuous
adapted process of finite variation, such that {M 2

t − 〈M ,M 〉t}t≥0 is a continuous
local martingale which takes the value 0 at t = 0.

Let Mt be a continuous martingale of the form

Mt =
∫ t

0
f (s)dB(s).
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Then the quadratic variation 〈M ,M 〉t is given by

〈M ,M 〉t =
∫ t

0
|f (s)|2ds

almost surely [9, Thm. 1.5.14].
Let τ be a stopping time and let [[0, τ ]] be the stochastic interval

[[0, τ ]] = {(t, ω) ∈ R+ × Ω : 0 ≤ t ≤ τ(ω)}.

We now list a few facts needed to give rigid proofs of our results. For any f ∈
L 2(R+, Rd×m) we can define a sequence of stopping times

τn := n ∧ inf{t ≥ 0 :
∫ t

0
|f (s)|2ds ≥ n}.

It is easy to see that τn ↑ ∞ almost surely. Let IA, for A ⊂ R+ × Ω , be the indicator
function, that is IA(x) = 1 if x ∈ A and zero otherwise. Thenwe can define the process
gn(t) = f (t)I[[0,τn]](t). We see that gn ∈ M 2(R+, Rd×m) so the integral

Jn(t) =
∫ t

0
gn(s)dB(s)

is a martingale. That is to say, the process

J (t) :=
∫ t

0
f (s)dB(s)

is a local martingale with localization {τn}, since for any n ≥ 1

J (t ∧ τn) =
∫ t∧τn

0
f (s)dB(s) =

∫ t

0
f (s)I[[0,τn]](s)dB(s) =

∫ t

0
gn(s)dB(s) = Jn(t)

is a martingale.
In his book [9], Mao considers Lyapunov functions V (x, t) ∈ C2,1(Rd × [t0,

∞[; R+) where C2,1(Rd × [t0,∞[ ; R+) is the set of all continuous functions
Rd × [t0,∞[ → R+, which are continuously differentiable twice in the first coordi-
nate x, with x ∈ Rd , and once in t with t ∈ [t0,∞[ . Now define a differential operator
L associated with (1) by

L = ∂

∂t
+

d∑

i=1

fi(x, t)
∂

∂xi
+ 1

2

d∑

i,j=1

[g(x, t)g�(x, t)]ij ∂2

∂xi∂xj
, (2)
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where [g(x, t)g�(x, t)]ij is the (i, j)-th component of the (d × d)-matrix gg� at (x, t).
If x(t) is a solution of (1) then by Itô’s formula

dV (x(t), t) = LV (x(t), t)dt + Vx(x(t), t)dB(t)

where Vx ∈ R1×d is the derivative (gradient) of V with respect to x.
Khasminskii showed in his book [8, p. 154–155] that even for SDEs with constant

coefficients there cannot exist Lyapunov functions that are differentiable at 0 unless
the deterministic part of the SDE is already stable. Therefore we extend the results
from Mao’s book using the larger class of functions C2,1

0 (Rd × [t0,∞[ ; R+) which
are continuous, continuously differentiable in t, and twice continuously differentiable
in x except at the point x = 0.

Below is a theorem taken from Mao’s book [9] which we will use in the next
chapter. For completeness we give a more worked out proof than in the book.

Theorem 1 [9, Thm.1.7.4]
Let g = (g1, . . . , gm) ∈ L 2(R+, Rd×m), and T , α, β be any numbers ≥ 0. Then

P
{
sup

0≤t≤T

[∫ t

0
g(s)dB(s) − α

2

∫ t

0
|g(s)|2ds

]
> β

}
≤ e−αβ. (3)

Proof Define the process

x(t) = α

∫ t

0
g(s)dB(s) − α2

2

∫ t

0
|g(s)|2ds

and for every integer n ≥ 1, define the stopping time

τn = inf

{
t ≥ 0 :

∣∣∣∣
∫ t

0
g(s)dB(s)

∣∣∣∣ +
∫ t

0
|g(s)|2ds ≥ n

}
.

Then τn is a localization, and since

|xn(t)| ≤ α

∣∣∣∣
∫ t

0
g(s)I[[0,τn]](s)dB(s)

∣∣∣∣ + α2

2

∫ t

0
|g(s)|2I[[0,τn]]ds

≤ αn + α2

2
n = n

2α + α2

2

we see that the process xn(t) := x(t ∧ τn) is bounded.
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Apply Itô’s formula to exp(xn(t)) and we obtain

exp(xn(t)) = 1 +
∫ t

0
exp(xn(s))dxn(s) + α2

2

∫ t

0
exp(xn(s))|g(s)|2I[[0,τn]](s)ds

= 1 +
(

α

∫ t

0
exp(xn(s))g(s)I[[0,τn]](s)dB(s)

−α2

2

∫ t

0
exp(xn(s))|g(s)|2I[[0,τn]](s)ds

)

+ α2

2

∫ t

0
exp(xn(s))|g(s)|2I[[0,τn]](s)ds

= 1 + α

∫ t

0
exp(xn(s))g(s)I[[0,τn]](s)dB(s).

The term inside the integral is bounded by n2 2α+α2

2 almost surely, therefore the
process exp(xn) is a non negative martingale with E {exp(xn(T ))} = 1, for all n ≥ 1.
This construction is known as the Doléans-Dade exponential of the local martingale
Yt := ∫ t

0 g(s)dB(s), see [8, Thm. 26.8].
By Doob’s martingale inequality [9, Thm. 1.3.8] we get that

P
{
sup

0≤t≤T
exp[xn(t)] ≥ eαβ

}
≤ e−αβE {exp(xn(T ))} = e−αβ.

Then it follows that

P
{
sup

0≤t≤T

xn(t)

α
> β

}
≤ e−αβ.

Since this inequality holds for any n ≥ 1, and

lim
n→∞ xn(t) = x(t)

almost surely, we get by the dominated convergence theorem that

P
{
sup

0≤t≤T

x(t)

α
> β

}
≤ e−αβ

and the proof is complete. ��

2 The Theorems and Their Proofs

As discussed above, we state two theorems from Mao’s book [9], more specifically
Theorem4.3.3 andTheorem4.3.5, exceptwe allow theLyapunov functions V to be in
the C2,1

0 space instead of the too restrictive space C2,1, like Mao does. The difference
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is that in the former space the functions are not required to be differentiable at the
origin, while functions in the latter one are smooth everywhere. As already explained
before, this makes the results much more relevant and useful.
First we state and proof Theorem 4.3.3 from [9] with the weaker conditions. Note
that, like above, Vx ∈ R1×d is the derivative (gradient) of V with respect to x.

Theorem 2 (advancement of Thm. 4.3.3 in Mao)
Assume there exists a function V ∈ C2,1

0 (Rd × [t0,∞); R+) and constants p > 0,
c1 > 0, c2 ∈ R, c3 ≥ 0, such that for all x �= 0 and t ≥ t0:

1. c1|x|p ≤ V (x, t),
2. LV (x, t) ≤ c2V (x, t),
3. |Vx(x, t)g(x, t)|2 ≥ c3V 2(x, t).

Then

lim sup
t→∞

1

t
log |x(t; t0, x0)| ≤ −c3 − 2c2

2p
a.s.

for all x0 ∈ Rd . In particular, if c3 > 2c2, the trivial solution of Eq. (1) is almost
surely exponentially stable, see Definition 1.

The proof heremostly followsMao’s original argument, butwith somemodifications,
since the process M (t) below isn’t necessarily a martingale.

Proof Clearly the inequality holds for x0 = 0 since x(t, t0, 0) = 0 for all t. We
only need to show the inequality for all x0 �= 0. Fix any x0 �= 0 and write x(t) :=
x(t; t0, x0). It is well known that 0 is an inaccessible point, cf. e.g. [9, Lemma 4.3.2],
that is to say, x(t) �= 0 for all t ≥ t0 almost surely. Thus one can apply Itô’s formula
and get

log V (x(t), t)

= log V (x0, t0) +
∫ t

t0

LV (x(s), s)

V (x(s), s)
ds + M (t) − 1

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds

≤ log V (x0, t0) + c2(t − t0) + M (t) − 1

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds

where we used condition 2 for the last inequality and

M (t) :=
∫ t

t0

Vx(x(s), s)g(x(s), s)

V (x(s), s)
dB(s).

We claim the process

h(s) := Vx(x(s), s)g(x(s), s)

V (x(s), s)

is in L 2([t0,∞[, Rd ). Indeed, for almost all ω ∈ Ω , the trajectory of x(t)(ω), t0 ≤
t ≤ T , is a compact subset of Rd \ {0}. Hence, for almost all ω, the function h(s)(ω)
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is continuous on the compact set t0 ≤ s ≤ T and thus bounded. Since this holds true
for all T , we have h(s) ∈ L 2([t0,∞[, Rd ).

Fix an arbitrary ε > 0. We can now use Theorem 1 and get for all n ∈ N:

P
{

sup
t0≤t≤t0+n

[
M (t) − ε

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds

]
>

2

ε
log(n)

}
≤ 1

n2

By the Borel Cantelli theorem, cf. e.g. [7, Thm. 3.18], there exists an n0(ω) > 0 for
almost all ω, such that

M (t) ≤ 2

ε
log(n) + ε

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds.

for all t0 ≤ t ≤ t0 + n if n > n0. By condition 3,

log V (x(t), t)

≤ log V (x0, t0) + c2(t − t0) + 1

2
(ε − 1)

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds + 2

ε
log(n)

≤ log V (x0, t0) + c2(t − t0) − 1

2
(1 − ε)c3(t − t0) + 2

ε
log(n)

= log V (x0, t0) − 1

2
((1 − ε)c3 − 2c2)(t − t0) + 2

ε
log(n)

for all t0 ≤ t ≤ t0 + n if n > n0 for almost all ω. Therefore we have for almost all ω,
that

1

t
log V (x(t), t) ≤ − t − t0

2t
[(1 − ε)c3 − 2c2] + log V (x0, t0) + 2 log(n)/ε

t0 + n − 1

if t0 + n − 1 ≤ t ≤ t0 + n and n > n0.
Fix ω and let n → ∞, then

lim sup
t→∞

1

t
log V (x(t), t) ≤ −1

2
((1 − ε)c3 − 2c2)

holds point-wise for almost all ω. Finally using condition 1 we have

lim sup
t→∞

1

t
log |x(t)| ≤ − (1 − ε)c3 − 2c2

2p

for almost all ω. Since ε > 0 was arbitrary we have the conclusion. ��
Now we state and proof Theorem 4.3.5 from [9] with the weaker conditions.
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Theorem 3 (advancement of Thm. 4.3.5 in Mao)
Assume that there exists a function V ∈ C2,1

0 (Rd × [t0,∞); R+), and constants p >

0, c1 > 0, c2 ∈ R, c3 > 0, such that for all x �= 0 and t ≥ t0,

1. c1|xp| ≥ V (x, t) > 0,
2. LV (x, t) ≥ c2V (x, t),
3. |Vx(x, t)g(x, t)|2 ≤ c3V 2(x, t).

Then

lim inf
t→∞

1

t
log |x(t; t0, x0)| ≥ 2c2 − c3

2p
a.s.

for all x0 �= 0 in Rd .

The proof again follows the same method Mao used in his book, but here it works
without modifications for our weaker assumptions on the function V . For complete-
ness we, however, give a more worked out proof than given in [9].

Proof Just like in the proof of Theorem 2 we fix some x0 �= 0 and we write x(t) =
x(t; t0, x0). Furthermore we define M (t) and h(s) as in the proof of Theorem 2, and
by Itô’s formula we have that

log V (x(t), t) (4)

= log V (x0, t0) +
∫ t

t0

LV (x(s), s)

V (x(s), s)
ds + M (t) − 1

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds.

By condition 3, we have that |h(s)|2 < c3, so h ∈ M 2(R+, R1×m) and M (t) =∫ t
t0
h(s)dB(s) is a martingale. By Eq. (4) and condition 2

log V (x(t), t) ≥ log V (x0, t0) + c2(t − t0) − c3
2

(t − t0) + M (t)

= log V (x0, t0) + 1

2
(2c2 − c3)(t − t0) + M (t).

(5)

Since M (t) is a martingale with quadratic variation

〈M (t),M (t)〉 =
∫ t

t0

|h(s)|2ds ≤ c3(t − t0),

wehave by the strong lawof large numbers, cf. e.g. [9, Thm1.3.4], that lim
t→∞M (t)/t =

0 a.s. It therefore follows from (5) that

lim inf
t→∞

1

t
log V (x(t), t) ≥ 1

2
(2c2 − c3) a.s.
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Finally by condition 1 then

lim inf
t→∞

1

t
log |x(t; t0, x0)| ≥ 2c2 − c3

2p
.

��
Remark If in the last theorem we have 2c2 > c3, then almost all the sample paths of
t �→ |x(t; t0, x0)| will tend to infinity, and in this case the trivial solution of Eq. (1)
is said to be almost surely exponentially unstable.

Example Consider the 1-dimensional SDE

dX (t) = f (X (t), t)dt + g(X (t), t)dB(t) := 1

4
X (t)dt + X (t)dB(t) (6)

Set V (x, t) = |x|1/2, then V ∈ C2,1
0 and, by Eq. (2), the function LV (x) is given by

LV (x) = 1

4
x · (1/2)|x|−1/2 + 1

2
x2 · (−1/2)(1/2)|x|−3/2 = 1

8
|x|1/2 − 1

8
|x|1/2 = 0.

Furthermore we see that

|Vx(x)g(x, t)|2 = |(1/2)|x|−1/2x|2 = 1

4
(|x|1/2)2 = 1

4
V (x)2.

Fixing constants c1 = 1, p = 1/2, c2 = 0 and 0 < c3 < 1/4, we see by Theorem 2
that for any solution x(t) of Eq. (6) the following inequality holds

lim sup
t→∞

1

t
log |x(t)| ≤ −c3 − 2c2

2p
= −c3 < 0 a.s.

In particular the trivial solution of system (6) is almost surely exponentially stable
(in fact the solution is stable in probability, see [8, Thm. 5.3]), and the function V we
used is not differentiable at 0. Moreover, as shown by Khasminskii [8, p. 154–155],
there cannot exists a Lyapunov function for this system that is differentiable at the
origin.

3 Conclusions

In his book [9] X. Mao states and proves two theorems, Theorem 4.3.3 and Theorem
4.3.5, where he shows that the existence of a certain auxiliary function, so-called
Lyapunov function, implies the almost sure exponential stability or, for a different
kind of function, the almost sure exponential instability respectively of the zero
solution of a SDE. Unfortunately, the class of functions C2,1(Rd × [t0,∞); R+)
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he considers to serve as the foundation for Lyapunov functions is too restrictive as
had already been pointed out in the literature [8, p. 154–155]. The adequate class
of functions is given by C2,1

0 (Rd × [t0,∞); R+) and we formulate and prove Mao’s
theorems for this wider class of functions. This renders these theorems much more
useful for applications.
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Abstract. The γ-basin of attraction of the zero solution of a nonlinear sto-

chastic differential equation can be determined through a pair of a local and

a non-local Lyapunov function. In this paper, we construct a non-local Lya-
punov function by solving a second-order PDE using meshless collocation. We

provide a-posteriori error estimates which guarantee that the constructed func-

tion is indeed a non-local Lyapunov function. Combining this method with the
computation of a local Lyapunov function for the linearisation around an equi-

librium of the stochastic differential equation in question, a problem which is

much more manageable than computing a Lyapunov function in a large area
containing the equilibrium, we provide a rigorous estimate of the stochastic

γ-basin of attraction of the equilibrium.

1. Introduction. In deterministic dynamical systems given by autonomous or-
dinary differential equations (ODE), the basin of attraction of an asymptotically
stable equilibrium is the set of all initial conditions, such that the corresponding
solutions converge to the equilibrium as time tends to infinity. When considering a
stochastic differential equation (SDE), this notion can be replaced by the γ-basin of
attraction, i.e. the set of all initial conditions, such that sample paths will converge
to the equilibrium as time tends to infinity with probability at least γ. This concept
will be defined in Section 2, Definition 2.2.
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It turns out that the γ-basin of attraction can be determined using Lyapunov
functions. In [8], a combination of a local and a non-local Lyapunov function was
used to determine a subset of the γ-basin of attraction. A Lyapunov function
V : Rd → R for a SDE satisfies LV (x) ≤ 0, where L is a second-order differential
operator, which arises from the SDE. A local Lyapunov function is only defined in a
small neighborhood of the equilibrium and can often be determined by linearisation.

A non-local Lyapunov function, however, is defined on a superset Ũ ⊂ Rd of the γ-
basin of attraction apart from a small neighborhood, where the negativity condition
is not necessarily satisfied. Local Lyapunov functions will be defined in Section 2,
Definition 2.3, and non-local ones in Section 2, Definition 2.4.

In this paper, we present a constructive method to compute a non-local Lyapunov
function for a general SDE. In particular, we use meshless collocation to solve a PDE

boundary value problem of the form LV (x) = ν̃ < 0 for all x ∈ Ũ and with fixed

boundary values for V (x) at all x ∈ ∂Ũ . After choosing a kernel, in particular a

Radial Basis Function, as well as collocation points in Ũ and ∂Ũ , the approximate
solution v to the problem is determined by using a certain ansatz and by computing
coefficients by solving a linear equation.

To ensure that the approximation v is itself a valid Lyapunov function, we provide
rigorous a-posteriori estimates on Lv(x). This is achieved by evaluating Lv(x) at
all x in a test grid and using Taylor-type estimates for the points in between. These
make use of the specific ansatz and corresponding estimates. The method is applied
to two examples in one and two dimensions, respectively.

The outline of the paper is as follows: In Section 2 we recall the definition of the
γ-basin of attraction and its determination using a pair of a local and a non-local
Lyapunov function. In Section 3 we discuss meshless collocation for general PDE
boundary value problems and in particular for the PDE related to the SDE under
study. Moreover, we present a-posteriori error estimates based on first and second
derivatives of Lv. Section 4 applies these results to the construction of a non-local
Lyapunov function. Finally, we apply the method to two examples in Section 5.
The appendix contains explicit formulas for the ansatz using meshless collocation,
as well as tables for the estimates.

Note on notations:
If not specified, we use the Euclidean norm of a vector x ∈ Rd, i.e. ‖x‖ := ‖x‖2.

We denote the closed ε-neighborhood with respect to the ‖ · ‖1 norm of a compact
set K ⊂ Rd by

Kε,‖·‖1 = {x ∈ Rd : dist
‖·‖1

(x,K) ≤ ε},

where dist
‖·‖1

(x,K) = miny∈K ‖x− y‖1. We sometimes denote the i-th component of

a vector x− y by (x− y)i to shorten formulas.

2. Stochastic basin of attraction and Lyapunov functions. In this section we
introduce the type of SDE that we study as well as the stochastic basin of attraction
of the zero (trivial) solution. We also recall the definition of (stochastic) Lyapunov
functions; in particular, we will consider an appropriate combination of a local and
a non-local Lyapunov function to determine the stochastic basin of attraction.

We study the stability of the trivial solution of the SDE of Itô type

dX(t) = f(X(t)) dt+ g(X(t))dW(t), (2.1)
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where W(t) is a Q-dimensional Wiener process. The functions f : Rd → Rd and
g : Rd → Rd×Q are Lipschitz continuous on a neighbourhood of the origin O,
i.e. there exists a K > 0 such that

‖f(x)− f(y)‖+ ‖g(x)− g(y)‖ ≤ K‖x− y‖ for all x,y ∈ O.

Moreover, we assume that f(0) = 0 and g(0) = 0, so that X(t) = 0 is a solution of
(2.1) for all t ≥ 0.

Since we are interested in local stability, i.e. γ-basins of attraction within O, we
can extend f and g to Lipschitz continuous functions on Rd and consider strong
solutions to (2.1) on [0,∞). This simplifies technical matters considerably, cf. [8,
§2].

For the SDE (2.1) the associated generator is given by

LV (x) := ∇V (x) · f(x) +
1

2

d∑
i,j=1

[
g(x)g(x)>

]
ij

∂2V

∂xi∂xj
(x), (2.2)

for V : U → R with U ⊂ Rd.

Remark 2.1. If the matrix g(x)g(x)> is positive definite for all x ∈ U in a compact
set U ⊂ Rd, then the second-order linear differential operator L is strictly elliptic in
U . In this (non-degenerate) case, results about the existence of classical solutions
are available, however, in this paper we will discuss the general case and make no
requirement on the positive definiteness of the matrix.

Let us now define the γ-basin of attraction which describes the set of initial
conditions so that sample paths converge to the origin with probability at least γ,
see [8, Definition 2.4].

Definition 2.2 (γ-basin of attraction (γ-BOA)). Consider the system (2.1) and let
0 < γ ≤ 1. We refer to the set{

x ∈ Rd : P
{

lim
t→∞

‖Xx(t)‖ = 0
}
≥ γ

}
(γ-BOA)

as the γ-basin of attraction or short γ-BOA of the origin. Here, Xx(t) denotes the
unique strong solution (stochastic process) of the SDE with initial condition x.

In the following definition [8, Definition 2.5], we introduce a local Lyapunov func-
tion in the set N (see also [8, Theorem 2.7]). A local Lyapunov function U is a
positive definite function such that LU is negative definite in a (small) neighbour-
hood N of 0. This is most conveniently defined using so-called K∞ functions; a
function µ : R+ → R+ is said to be of class K∞ if it is continuous, strictly increasing,
µ(0) = 0, and limx→∞ µ(x) =∞.

Definition 2.3 (Local Lyapunov function). Consider the system (2.1). A function
U ∈ C(N ) ∩ C2(N \ {0}), where 0 ∈ N ⊂ Rd is a domain, is called a (local)
Lyapunov function for the system (2.1), if there are functions µ1, µ2, µ3 ∈ K∞, such
that U fulfills the properties :

(i) µ1(‖x‖) ≤ U(x) ≤ µ2(‖x‖) for all x ∈ N
(ii) LU(x) ≤ −µ3(‖x‖) for all x ∈ N \ {0}

Let Umax > 0 be such that U−1([0, Umax]) is a compact subset of N .

Next we introduce a non-local Lyapunov function in the set U as in [8, Definition
2.9, (2a)]; note that we have replaced 0 by b and 1 by a. A non-local Lyapunov
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function satisfies LV < 0 in a large set U , not including a small neighborhood B of
the equilibrium.

Definition 2.4 (Non-local Lyapunov function). Let A,B ⊂ Rd, B ⊂ A◦, be simply
connected compact neighbourhoods of the origin with C2 boundaries and set U :=
A \ B◦. A function V ∈ C2(U) for the system (2.1) such that

(1) b ≤ V (x) ≤ a for all x ∈ U , V −1(b) = ∂B, V −1(a) = ∂A with b < a, and
(2) LV (x) < 0 for all x ∈ U ,

is called a non-local Lyapunov function for the system (2.1). We refer to ∂A as the
outer boundary of U and ∂B as the inner boundary of U .

The following result from [8, Theorem 2.11] shows how a local and a non-local
Lyapunov function provide information about the γ-BOA. For an illustration of
the various sets, see [8, Figure 1]. The proof uses the non-local Lyapunov function
to estimate the probability that solutions starting in U leave the set through the
boundary ∂B, and then the local Lyapunov function estimates the probability that
they converge to the origin once they are in B. The combined probability can be
bounded by γ.

Theorem 2.5. Consider the system (2.1) and assume there exists a local Lyapunov
function U : N → R+ as in Definition 2.3 with the constant Umax > 0 and a non-
local Lyapunov function V : U → R+ as in Definition 2.4. Let 0 < β < 1 and
b < λ < α < a and the set B from Definition 2.4 be such that

U−1(Umax) ⊂ V −1([b, λ]) and ∂B = V −1(b) ⊂ U−1([0, β Umax]).

Then the set V −1([b, α]) ∪ B is a subset of the γ-BOA of the origin, where

γ :=
(a− α)(1− β)

a− b− β(a− λ)
. (2.3)

Note that the bound (2.3) has a different formula than in [8, Theorem 2.11],
because here ∂B = V −1(b) and ∂A = V −1(a) with b and a not necessarily equal to
0 and 1, respectively. Thus our formula is the formula from [8, Theorem 2.11] with
γ replaced by (γ − b)/(a− b) and α replaced by (α− b)/(a− b).

In this paper, we focus on a general method to compute non-local Lyapunov
functions. Local Lyapunov functions can often be found directly in specific exam-
ples: for example, if the noise is small and the origin is an asymptotically stable
equilibrium of the corresponding deterministic system with no noise, then the de-
terministic Lyapunov function can serve as a local Lyapunov function. Another
way to construct a local Lyapunov function is similar to the construction of local
Lyapunov functions for deterministic systems: by linearising the system around the
origin and constructing a Lyapunov function for the linearised system, which is a
local Lyapunov function for the nonlinear system, see [1].

For the examples in this paper, we are able to construct local Lyapunov functions
with one of these two approaches. For a more general discussion on the construction
of Lyapunov functions for linear systems see also [9].

3. Meshless collocation. In this section we will recall meshless collocation and
its use to approximate solutions of boundary value problems for general linear PDEs
of the form {

LV (x) = r(x) for x ∈ Ω,
V (x) = c(x) for x ∈ ∂Ω,

(3.1)

40



COMPUTATION OF THE STOCHASTIC BASIN OF ATTRACTION 4251

where L is a linear differential operator and Ω is a bounded domain in Rd with
sufficiently smooth boundary. Meshless collocation seeks to find the solution v
of an interpolation problem, which minimises the norm in a Reproducing Kernel
Hilbert Space (RKHS), in our case a Sobolev space. The interpolation problem will
ensure that v satisfies the PDE and the boundary values (3.1) at given collocation
points.

If the PDE boundary value problem has a solution V , then v approximates V and
we have error estimates of ‖V (x)− v(x)‖L∞(∂Ω) as well as ‖LV (x)−Lv(x)‖L∞(Ω).
The error estimates involve the fill distance of the collocation points, measuring
how dense they are in Ω and ∂Ω, respectively. Unfortunately, these estimates also
involve unknown quantities, such as the norm of V . Thus, these error estimates
ensure that by adding more and more collocation points the error converges to
zero, but they do not provide explicit, computable bounds on the error.

We can, however, compute explicit a-posteriori bounds on the errors ‖V (x) −
v(x)‖L∞(∂Ω) as well as ‖LV (x)−Lv(x)‖L∞(Ω) by first computing |LV (x)−Lv(x)|
for a finite, but large set of points Y ⊂ Ω. Taylor’s theorem and estimates on the
first and second derivatives by using the explicit form of v provide us with explicit
bounds on these errors as shown in Section 3.2.

3.1. Meshless collocation: PDE boundary value problems. Meshless collo-
cation, in particular by Radial Basis Functions, is a powerful method to solve linear
PDEs [11, 2, 12]. For a general introduction to meshless collocation and RKHS,
see [14]. Meshless collocation has been applied to the computation of Lyapunov
functions in deterministic systems [4, 7]. For an overview of this and other methods
to compute Lyapunov functions, see the review [5].

In this section, we will outline the method, apply it to our particular case, and
recall known results, in particular error estimates from [4].

We consider a general linear operator L of order m given by

LV (x) =
∑
|α|≤m

cα(x)∂αV (x). (3.2)

In our case, m = 2 and the operator is given by

Lv(x) =
1

2

d∑
i,j=1

mij(x)
∂2

∂xi∂xj
v(x) +

d∑
i=1

fi(x)
∂

∂xi
v(x), (3.3)

where (mij(x))i,j=1,...,d = g(x)g(x)>, i.e. mij(x) =
∑Q
q=1 giq(x)gjq(x). We denote

the q-th column of g by gq.
Hence, our operator is of the form (3.2) with cei(x) = fi(x) and cei+ej (x) =

1
2mij(x). A singular point of L is a point x with cα(x) = 0 for all |α| ≤ 2, see [4,
Definition 3.2].

Let Ω ⊂ Rd be a bounded domain with smooth boundary Γ := ∂Ω. Our goal is
to (approximately) solve the boundary value problem with a PDE given by:{

Lv(x) = r(x) for x ∈ Ω,
v(x) = c(x) for x ∈ Γ.

(3.4)

Our approximation will be a function in a RKHS, which is a Hilbert space H of
functions Ω→ R with inner product 〈·, ·〉H , and a kernel Φ: Ω× Ω→ R such that

1. Φ(·,x) ∈ H for all x ∈ Ω,
2. g(x) = 〈g,Φ(·,x)〉H for all x ∈ Ω and g ∈ H.
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In our case, we choose the radially symmetric kernel Φ(x,y) = ψ(‖x − y‖), where
ψ = ψ`,k is given by a Wendland function [13], see also Table 1. Setting ` =

bd2c+ k+ 1, the parameter k ∈ N is a smoothness index and the function Φ(x,y) is

a C2k function in x for fixed y, and the RKHS with this kernel is norm-equivalent
to the Sobolev space W τ

2 with τ = k + d+1
2 .

Given sets of pairwise distinct points X1 = {x1, . . . ,xN} ⊂ Ω ⊂ Rd, none of
which is a singular point of L, and pairwise distinct points X2 = {ξ1, . . . , ξM} ⊂
Γ = ∂Ω, we seek to find the (unique) solution v to the interpolation problem

Lv(xi) = r(xi) for all i = 1, . . . , N,

v(ξi) = c(ξi) for all i = 1, . . . ,M,

which minimises the norm of the RKHS. It turns out that the solution is given by

v(x) =

N∑
k=1

αk(δxk ◦ L)yψ(‖x− y‖)

+

M∑
k=1

αN+k(δξk ◦ L
0)yψ(‖x− y‖), (3.5)

where L0 = id, δyv(x) = v(y), the superscript y denotes that the operator is applied
with respect to the variable y, and the coefficients αk are computed by solving the
linear system Aα = β, where βk = r(xk) for k = 1, . . . , N and βN+k = c(ξk) for
k = 1, . . . ,M . A = (akl) is a symmetric (N + M) × (N + M) matrix given by

A =

(
B C
C> D

)
with B ∈ RN×N , C ∈ RN×M , D ∈ RM×M , where

for k, l = 1, . . . , N :

bkl = (δxk ◦ L)x(δxl ◦ L)yψ(‖x− y‖),
for k = 1, . . . , N, l = 1, . . . ,M :

ckl = (δxk ◦ L)x(δξl ◦ L
0)yψ(‖x− y‖) = (δxk ◦ L)xψ(‖x− ξl‖),

for k, l = 1, . . . ,M :

dkl = (δξk ◦ L
0)x(δξl ◦ L

0)yψ(‖x− y‖) = ψ(‖ξk − ξl‖).

Explicit formulas for v and Lv are given in the Appendix A.
If the PDE has a solution V , then error estimates imply that the function v is

an approximation to V as stated in Theorem 3.1 below. Note that the mesh norms
measure how dense the points in X1 and X2 are in the domain and boundary,
respectively. The following is [4, Corollary 3.12] adapted to our linear operator.

Theorem 3.1. Let k > 3/2, if d is odd, and k > 2, if d is even. Let fi,mij ∈
W

k−1+b d+1
2 c∞ (Ω) and let the solution V of (3.4) satisfy V ∈ W k+(d+1)/2(Ω). Then

the approximation v as above, for sufficiently small mesh norms, satisfies

‖LV − Lv‖L∞(Ω) ≤ Ch
k−3/2
X1,Ω

‖V ‖
W
k+(d+1)/2
2 (Ω)

, (3.6)

‖V − v‖L∞(∂Ω) ≤ Ch
k+1/2
X2,∂Ω‖V ‖Wk+(d+1)/2

2 (Ω)
, (3.7)

where hX1,Ω = supx∈Ω minxj∈X1 ‖x−xj‖ and the constant hX2,∂Ω is the mesh norm
for the boundary part, for the precise definition see [4].
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3.2. A-posteriori error estimates. Note that, unless L is non-degenerate, we
have no results on the existence of classical solutions and thus we cannot use The-
orem 3.1. Even in that case, the error estimates in Theorem 3.1 contain quantities
that are not known explicitly, such as ‖V ‖

W
k+(d+1)/2
2 (Ω)

.

Hence, in this section we derive estimates that only contain explicitly computable
constants. They do not require us to prove the existence of a solution, but are a
verification that the computed function satisfies an inequality at all points. The
main idea is to evaluate the function at many points on a test grid and then use a
Taylor-type argument in between. As we have an explicit formula for the approx-
imation, we can derive explicit bounds on the derivatives. As these are multiplied
by the mesh norm of the test grid, which can be made arbitrarily small, we can
make the estimate as accurate as necessary.

Let us first present the Taylor-type estimates for a general function u, which
later will be either the approximation v or Lv. These theorems, as well as a more
detailed discussion of a suitable choice of the test grid are taken from [10], see also
[6].

As test grids, we will use the following:

Definition 3.2. Define the following grids in Rd with h > 0 :

• Sh = hZd
• Ch = Sh ∪

(
h
2 1 + Sh

)
, where 1 = (1, . . . , 1) ∈ Rd

The following theorem is based on the mean-value theorem and uses the specific
structure of the grid points Sh.

Theorem 3.3 (First derivative). Let u ∈ C1(Rd,R) and let K ⊂ Rd be compact.
Fix h > 0 and let Y := Ch ∩Kh d/4,‖·‖1 .

Define

eh =
d

4
max

z∈Kh d/4,‖·‖1
max

l∈{1,...,d}

∣∣∣∣ ∂u∂xl (z)

∣∣∣∣h.
Then we have for all x ∈ K that

min
y∈Y

u(y)− eh ≤ u(x) ≤ max
y∈Y

u(y) + eh.

Proof. Let x ∈ K. Then there is a y ∈ Ch with ‖x − y‖1 ≤ d
4h, see [10, Theorem

5.5], and thus y ∈ Y . The mean value theorem shows that there is a θ ∈ [0, 1] such
that

|u(x)− u(y)| = |∇u(θx + (1− θ)y) · (x− y)|
≤ ‖∇u(θx + (1− θ)y)‖∞‖x− y‖1

≤ max
l∈{1,...,d}

∣∣∣∣ ∂u∂xl (θx + (1− θ)y)

∣∣∣∣ d4h .
Note that θx + (1− θ)y ∈ Kh d/4,‖·‖1 , since

‖θx + (1− θ)y − x‖1 = (1− θ)‖y − x‖1 ≤
d

4
h.

This shows the statement.

The next theorem relies on a triangulation of the phase space with vertices in Sh,
Ch, respectively. Using Taylor’s theorem in each simplex, we can derive the esti-
mates below. Note that, as discussed in [10], depending on odd or even dimension,
we use either Sh or Ch to obtain an estimate with as few points as possible.
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Theorem 3.4 (Second derivative). Let u ∈ C2(Rd,R) and let K ⊂ Rd be compact.
Fix h > 0. If d > 1 define

eh =
d2

4
max

z∈Kd h,‖·‖1
max

l,p∈{1,...,d}

∣∣∣∣ ∂2u

∂xp∂xl
(z)

∣∣∣∣h2.

• If d is even, then let Y := Sh ∩Kd h,‖·‖1 .
• If d ≥ 3 is odd, then let Y := Ch ∩K(d−1)h,‖·‖1 .

In the case d = 1 let Y := Ch ∩Kh/2,‖·‖1 and define

eh =
1

4
max

z∈Kh/2,‖·‖1
|u′′(z)|h2.

In all cases we then have for all x ∈ K
min
y∈Y

u(y)− eh ≤ u(x) ≤ max
y∈Y

u(y) + eh.

Proof. We consider the case where d is even. Let x ∈ K. Then there is a simplex S

with vertices {x0,x1, . . . ,xd} ⊂ Sh, such that x =
∑d
i=0 λixi ∈ S, where

∑d
i=0 λi =

1 and 0 ≤ λi ≤ 1. Since maxy,z∈S ‖y − z‖1 = dh, we have S ⊂ Kd h,‖·‖1 and thus
{x0,x1, . . . ,xd} ⊂ Y .

Now we use the following result from [10, Proposition 5.2]: Denote by h∗ :=
maxj=0,...,d ‖x0−xj‖1 the maximal distance from any vertex to the fixed vertex x0.

For w ∈ C2(Rd,R) we have for all 0 ≤ λi ≤ 1 with
∑d
i=0 λi = 1 that∣∣∣∣∣w

(
d∑
i=0

λixi

)
−

d∑
i=0

λiw(xi)

∣∣∣∣∣ ≤ max
z∈S

max
l,p∈{1,...,d}

∣∣∣∣∂2w(z)

∂xp∂xl

∣∣∣∣ (h∗)2. (3.8)

In our case, we can choose the vertex x0 such that h∗ = d
2h. As x ∈ S there are

0 ≤ λi ≤ 1 with
∑d
i=0 λi = 1 such that x =

∑d
i=0 λixi. Hence, by (3.8)∣∣∣∣∣u (x)−

d∑
i=0

λiu(xi)

∣∣∣∣∣ ≤ max
z∈Kd h,‖·‖1

max
l,p∈{1,...,d}

∣∣∣∣ ∂2u(z)

∂xp∂xl

∣∣∣∣ d2

4
h2

and then

u (x) ≤ max
y∈Y

u(y)
d∑
i=0

λi︸ ︷︷ ︸
=1

+ max
z∈Kd h,‖·‖1

max
l,p∈{1,...,d}

∣∣∣∣ ∂2u(z)

∂xp∂xl

∣∣∣∣ d2

4
h2

and similarly for the other inequality.
The result for odd dimensions follows in a similar way, noting that we choose a

simplex S with vertices {x0,x1, . . . ,xd} ⊂ Ch. Since maxy,z∈S ‖y− z‖1 = (d− 1)h

for d ≥ 2 and h
2 for d = 1, and for a simplex with vertices in Ch we can choose the

vertex x0 such that h∗ := maxj=0,...,d ‖x0 − xj‖1 = d
2h, see [10, Theorem 5.8], the

result follows.

The following theorem provides us with explicit bounds on the first and second
derivatives of both v and Lv, as required in Theorems 3.3 and 3.4 for u = v and
u = Lv, respectively. Note that they involve quantities depending on f and g
as well as their first and second derivatives, and the (computed) coefficients αi,
i = 1, . . . , N + M . Moreover, the bounds ψi,k as defined below are calculated for
specific Wendland functions ψ0 in the appendix. Note that the requirement on ψi
is satisfied for Wendland functions with smoothness index k ≥ 6.
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Theorem 3.5. Let v ∈ C4(Rd,R) be given by (3.5) with kernel ψ(r) =: ψ0(r) ∈ C6.
Let C ⊂ Rd be a compact set. Denote

• ψi(r) = 1
r
d
drψi−1(r) for r > 0 and i = 1, . . . , 6 and assume that ψi(r) can be

continuously extended to r = 0,
• ψi,k = supr∈[0,∞) |ψi(r)|rk <∞ for i, k ∈ N0,

• F = maxx∈C ‖f(x)‖,
F1 = maxx∈C maxl∈{1,...,d}

∥∥∥∂f(x)
∂xl

∥∥∥, and

F2 = maxx∈C maxl,p∈{1,...,d}

∥∥∥ ∂2f(x)
∂xp∂xl

∥∥∥.
•

G =
1

2

Q∑
q=1

max
x∈C
‖gq(x)‖2,

G1 =

Q∑
q=1

max
x∈C

max
l∈{1,...,d}

‖gq(x)‖
∥∥∥∥∂gq(x)

∂xl

∥∥∥∥ , and

G2 =

Q∑
q=1

max
x∈C

l,p∈{1,...,d}

[ ∥∥∥∥∂2gq(x)

∂xp∂xl

∥∥∥∥ ‖gq(x)‖+

∥∥∥∥∂gq(x)

∂xp

∥∥∥∥ ∥∥∥∥∂gq(x)

∂xl

∥∥∥∥ ],
where gq(x) ∈ Rd denotes the vector (giq(x))i=1,...,d for all q = 1, . . . , Q.

• α1 =
∑N
k=1 |αk| and α2 =

∑N+M
k=N+1 |αk|.

Then we have the following bounds for all x ∈ C and all l, p ∈ {1, . . . , d} :∣∣∣∣ ∂v∂xl (x)

∣∣∣∣ ≤ α1{G[ψ3,3 + 3ψ2,1] + F [ψ2,2 + ψ1,0]}+ α2ψ1,1,

∣∣∣∣ ∂2v

∂xp∂xl
(x)

∣∣∣∣ ≤ α1{G[ψ4,4 + 6ψ3,2 + 3ψ2,0] + F [ψ3,3 + 3ψ2,1]}

+α2[ψ2,2 + ψ1,0],∣∣∣∣∂Lv∂xl
(x)

∣∣∣∣ ≤ α1

{
G2[ψ5,5 + 10ψ4,3 + 15ψ3,1]

+(2F +G1)G[ψ4,4 + 6ψ3,2 + 3ψ2,0]

+(F1G+ FG1 + F 2)[ψ3,3 + 3ψ2,1]

+FF1[ψ2,2 + ψ1,0]

}
+α2

{
G[ψ3,3 + 3ψ2,1] + (F +G1)[ψ2,2 + ψ1,0] + F1ψ1,1

}
, and

∣∣∣∣ ∂2Lv

∂xp∂xl
(x)

∣∣∣∣ ≤ α1

{
G2[ψ6,6 + 15ψ5,4 + 45ψ4,2 + 15ψ3,0]

+2(F +G1)G[ψ5,5 + 10ψ4,3 + 15ψ3,1]

+(F 2 +GG2 + 2F1G+ 2FG1)[ψ4,4 + 6ψ3,2 + 3ψ2,0]

+(2FF1 + F2G+ FG2)[ψ3,3 + 3ψ2,1]

+FF2[ψ2,2 + ψ1,0]

}
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+α2

{
G[ψ4,4 + 6ψ3,2 + 3ψ2,0]

+(F + 2G1)[ψ3,3 + 3ψ2,1] + (2F1 +G2)[ψ2,2 + ψ1,0]

}
.

Proof. The proof follows directly by differentiation and estimating terms of similar
type, where we use the explicit formulas derived in the appendix. Using formula
(A.1) for v we get

∂v

∂xj
(x)

=
N∑
k=1

αk

{
− ψ2(‖x− xk‖)(x− xk)l〈x− xk, f(xk)〉

−ψ1(‖x− xk‖)fl(xk)

+
1

2

d∑
i,j=1

mij(xk)
[
ψ3(‖x− xk‖)(x− xk)l(x− xk)i(x− xk)j

+ψ2(‖x− xk‖)[δil(x− xk)j + (x− xk)iδlj + (x− xk)lδij ]
]}

+

M∑
k=1

αN+kψ1(‖x− ξk‖)(x− ξk)l

≤
N∑
k=1

|αk|
{
|ψ2(‖x− xk‖)| ‖x− xk‖2F + |ψ1(‖x− xk‖)|F

+
1

2

d∑
i,j=1

Q∑
q=1

giq(xk)gjq(xk)
[
|ψ3(‖x− xk‖)|‖x− xk‖3

+3|ψ2(‖x− xk‖)|‖x− xk‖
]}

+

M∑
k=1

|αN+k| |ψ1(‖x− ξk‖)| ‖x− ξk‖.

This shows the first estimate, using the definitions of α1, α2, and ψl,k. The other
estimates are proved in a similar way.

4. Non-local Lyapunov function. In this section we will present a method to
use meshless collocation, as discussed in the previous section, to compute a non-local
Lyapunov function and combine it with a given, local Lyapunov function.

We seek to find a non-local Lyapunov function v satisfying Lv(x) < 0, see Defi-
nition 2.4. This is done by finding an approximate solution of the PDE LV (x) = ν̃

with ν̃ < 0 in Ũ by meshless collocation and using the a-posteriori estimates for Lv

to show that v satisfies Lv(x) ≤ ν < 0. Note, however, that the boundary of Ũ is
only approximately given by the level sets with level 0 and 1 of v, apart from the

case d = 1. Hence, we compute the minimum of v at the outer boundary of Ũ and

the maximum of v at the inner boundary of Ũ , using the a-posteriori estimates for
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v. Then we can define U = A\B◦ via A and B through the level sets of v with levels
a and b, respectively, and thus show that v satisfies the conditions in Definition 2.4.
Theorem 2.5 applied to v then gives us a rigorous result for the stochastic basin of
attraction of the equilibrium at the origin.

Let v be the approximate solution of the following boundary-value problem:

LV (x) = ν̃ for all x ∈ Ũ◦, (4.1)

V (x) =

{
0 for all x ∈ ∂B̃,

1 for all x ∈ ∂Ã,
(4.2)

where L is given by (2.2), ν̃ < 0 and Ũ = Ã \ B̃◦, where B̃ ⊂ Ã◦ and Ã and B̃ are
both simply connected compact neighborhoods of the origin with C2 boundaries.

We use Theorem 3.3 or Theorem 3.4 with the set K = ∂B̃ and fixed h > 0 for
the function v. We set

m := max
x∈Y

v(x) + eh,

where eh and Y are defined in Theorem 3.3 or Theorem 3.4, respectively.

We use Theorem 3.3 or Theorem 3.4 with the set K = ∂Ã and fixed h > 0 for
the function v. We set

M := min
x∈Y

v(x)− eh,

where eh and Y are defined in Theorem 3.3 or Theorem 3.4, respectively.

Lemma 4.1. In the situation described above, assume that v ∈ C2 and m < M ,
and choose m < b < a < M . Define A = v−1((−∞, a]), B = v−1((−∞, b]) and
U = A \ B◦. Assume that A and B are simply connected compact neighborhoods of
the origin, and assume that Rd\B is connected. Then A and B have C2 boundaries,

B ⊂ A◦, and U ⊂ Ũ .

Proof. The sets A and B have C2 boundaries since v ∈ C2. B ⊂ A◦ follows from
b < a.

We first show now thatA ⊂ Ã. Assuming the opposite, there is a point x∗ ∈ A\Ã
and, since A is a connected neighborhood of the origin, there is a continuous path

from x∗ to the origin within A, which has to intersect with ∂Ã as the origin is in

Ã. Hence, there is a point x ∈ A ∩ ∂Ã. This means that v(x) ≤ a and, because
of Theorem 3.3 or 3.4 and the arguments above, that v(x) ≥ miny∈Y v(y) − eh =
M > a, which is a contradiction.

Next we show that B̃ ⊂ B. Since both B̃ and B are compact, there is a point

x̃ ∈ Rd with x̃ 6∈ B̃ and x̃ 6∈ B. Now assume the opposite to the statement B̃ ⊂ B,

namely that there is a point x∗ ∈ B̃\B and, since Rd\B is a connected neighborhood
of x̃, there is a continuous path from x∗ to x̃ within Rd \ B, which has to intersect

with ∂B̃ as x̃ is in Rd \ B̃. Hence, there is a point x ∈ (Rd \ B) ∩ ∂B̃. This means
that v(x) > b and, because of Theorem 3.3 or 3.4 and the arguments above, that
v(x) ≤ maxy∈Y v(y) + eh = m < b, which is a contradiction.

Now we use Theorem 3.3 or 3.4, respectively, to establish that v is a non-local
Lyapunov function. To estimate CU we use Theorem 3.5 with C = Uh d/4,‖·‖1 .
Together with a local Lyapunov function, we can then use Theorem 2.5 to determine
a γ-basin of attraction.
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Theorem 4.2 (First derivative). Let v ∈ C3 be a function given by meshless col-
location as described above.

Let A = v−1((−∞, a]) and B = v−1((−∞, b]) and assume that B ⊂ A◦ and
that A and B are simply connected compact neighbourhoods of the origin with C2

boundaries. Set U := A \ B◦.
Fix h > 0 and define YU := Ch ∩ Uh d/4‖·‖1 ,

CU := max
z∈Uh d/4,‖·‖1

max
l∈{1,...,d}

∣∣∣∣∂Lv∂xl
(z)

∣∣∣∣
and

ν := max
y∈YU

Lv(y) + CU
d

4
h.

If ν < 0, then v is a non-local Lyapunov function.

Proof. For all x ∈ U we have by Theorem 3.3 for u = Lv

Lv(x) ≤ max
y∈YU

Lv(y) + CU
d

4
h = ν < 0.

Hence, v satisfies the assumptions of Definition 2.4.

Theorem 4.3 (Second derivative). Let v ∈ C4 be a function given by meshless
collocation as described above. Let A = v−1((−∞, a]) and B = v−1((−∞, b]) and
assume that B ⊂ A◦ and that A and B are simply connected compact compact
neighbourhoods of the origin with C2 boundaries. Set U := A \ B◦. Fix h > 0.

• If d = 1, then let

YU := Ch ∩ Uh/2,‖·‖1 and CU := max
z∈Uh/2,‖·‖1

|(Lv)′′(z)| .

• If d is even, then let

YU := Sh ∩ Ud h,‖·‖1 and CU := max
z∈Ud h,‖·‖1

max
p,l∈{1,...,d}

∣∣∣∣ ∂2Lv

∂xp∂xl
(z)

∣∣∣∣ .
• If d ≥ 3 is odd, then let YU := Ch ∩ U(d−1)h,‖·‖1 and

CU := max
z∈U(d−1)h,‖·‖1

max
p,l∈{1,...,d}

∣∣∣∣ ∂2Lv

∂xp∂xl
(z)

∣∣∣∣ .
Let

ν := max
y∈YU

Lv(y) + CU
d2

4
h2

If ν < 0, then v is a non-local Lyapunov function.

Proof. For all x ∈ U we have with Theorem 3.4 for u = Lv

Lv(x) ≤ max
y∈YU

Lv(y) + CU
d2

4
h2 = ν < 0.

Hence, v satisfies the assumptions of Definition 2.4.

Remark 4.4. Note that due to Lemma 4.1 we have U ⊂ Ũ and thus we can replace

U in the previous two theorems by Ũ . However, we can use Theorems 4.2 and 4.3
directly with suitable a and b, without employing Lemma 4.1 as well.
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5. Examples.

5.1. One-dimensional example. We consider the example from [8]:

dx = sinx dt+
3x

1 + x2
dW, (5.1)

where W is a one-dimensional Wiener-process. As sinx and 3x/(1 + x2) are Lip-
schitz, this equation has a unique strong solution. As local Lyapunov function we
take U(x) = |x|1/2 as in [8]. Then

LU(x) = −1

2
|x|1/2

(
32

1
2

2(1 + x2)2
− sin(x)

x

)
and LU(x) < 0 for all x ∈ [−2−1/2, 2−1/2]\{0} =: B\{0}. Therefore we can choose
{±2−1/2} = U−1(Umax) with Umax = 2−1/4.

For the non-local Lyapunov function we just consider x ≥ 0, since the SDE is
symmetric. We use the Wendland function φ7,6 with coefficient c = 2. We set
ρ1 = 10−2 and ρ2 = 8 and determine an approximate solution to the equation

LV (x) = −10−3 on (ρ1, ρ2)

such that V (ρ1) = 0 and V (ρ2) = 1. We have chosen 700 collocation points evenly
spaced in the interval [1.1 · 10−2, 7.99].

The approximating function v and Lv are displayed in Figure 1. We obtain
the values α1 = 653.0140 and α2 = 0.9440. Since in the 1-dimensional case the
boundary values for the approximation are v(ρ1) = 0 and v(ρ2) = 1, we choose
a = 1 and b = 0 and hence U = [ρ1, ρ2]. We first use Theorem 3.5 on any compact
set C with F = F1 = F2 = 1, G = 9/8, G1 = 1.9566, and G2 = 9 to obtain
maxz∈R |(Lv)′′(z)| = 1.6846 · 1012 =: CU ; for the values ψk,l see Table 3.

We now use Theorem 4.3 and choose h = 2.1307 · 10−8, which corresponds to
7.5·108 evenly spaced points YU = Ch∩[ρ1−h/2, ρ2+h/2] = h

2Z∩[ρ1−h/2, ρ2+h/2]

on the interval. We obtain a maximum value of maxy∈YU Lv(y) = −0.281 · 10−3

and thus

ν = max
y∈YU

Lv(y) + CU
h2

4
= −0.281 · 10−3 + 0.19119 · 10−3 < 0.

By Theorem 4.3, v is a non-local Lyapunov function.
Now we need to determine constants 0 < β < 1 and 0 < λ < α < 1, see Theorem

2.5, such that

U−1(Umax) ⊂ v−1([0, λ]) and ∂B = v−1(0) ⊂ U−1([0, βUmax]).

Following calculations from [8] we compute a lower estimate [−r1−β , r1−β ] for the

(1−β)-BOA of the equilibrium, by solving U(r1−β) = βUmax. Thus r1−β = β22−1/2.
Theorem 2.5 requires

ρ1 = v−1(0) ⊂ U−1([0, βUmax]),

which is equivalent to ρ1 = 10−2 < r1−β = β22−1/2, i.e. β > 0.1189. We need to
find λ such that

U−1(Umax) ⊂ v−1([0, λ])

which is equivalent to V (2−1/2) ≤ λ. We now fix β = 0.1247, λ = 0.0421 and we
are free to choose α > λ.
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Figure 1. Above: the computed non-local Lyapunov function v
for system (5.1). Below: the function Lv, approximating −10−3.

Corresponding to our choice of α, we have that the set v−1([0, α])∪B is a subset
of the γ-BOA by Theorem 2.5 (note that b = 0 and a = 1) with

γ =
(1− α)(1− β)

1− β(1− λ)
.

For α = 0.044 we have V −1([0, α]) ∪ B ≈ [−0.803, 0.803] and γ ≈ 0.95.
For α = 0.09 we have V −1([0, α]) ∪ B ≈ [−5.33, 5.33] and γ ≈ 0.90.
Let us compare these results first to the local Lyapunov function: here we obtain

[−0.00177, 0.00177] and [−0.00707, 0.00707] as lower estimates of the 0.95- and 0.90-
BOAs. By comparing those values with the estimates obtained above we see a very
substantial increase.
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Our results are comparable to the results in [8] in that we obtained similarly sized
γ-BOA, however, our method includes a rigorous verification (numerical proof) that
v is indeed a non-local Lyapunov function. This verification is missing in [8] and
one can only hope that the computed non-local function is a Lyapunov function for
the system.

Lastly, we set up a simple Monte-Carlo simulation using the First-order stochastic
Runge-Kutta method to generate 1000 approximate realisations of sample paths,
starting at the point x = 5.33. We then check when they leave the interval [10−4, 8]
and at which end. The result is that 98% of simulations leave through the inner
boundary and 2% through the outer, which is close to what we expected since the
point 5.33 is inside the 0.9-BOA. Note that this a larger value than predicted by our
method. On the one hand, our estimate is indeed just a lower bound and exiting
[10−4, 8] through the lower boundary is not the same as the sample trajectories
converging to the origin as time tends to infinity. It confirms, however, the validity
of our estimate.

5.2. Two-dimensional example. We consider the first example from [3, Section
4], namely

dx = (M + ρ(x)I)xdt+ g(x)dW, (5.2)

where W is a one-dimensional Wiener-process, I is the 2 × 2 identity matrix, and
with

M =

(
0 1
−1 0

)
, ρ(x) = ‖x‖ − 1, and g(x) = θ‖x‖

(
‖x‖ − 1

2

)(
‖x‖ − 3

2

)
x.

To assert the existence of unique strong solutions we use these formulas for f(x) =
(M + ρ(x)I)x and g(x) inside of a ball, centered at the origin and with radius 4
and outside of this ball we extend f and g as Lipschitz functions. For this SDE the
generator is

L :=
1

2

2∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

2∑
i=1

fi(x)
∂

∂xi
, where a(x) := g(x)g(x)>.

By solving the continuous time Lyapunov equation J>P + PJ = −2I for the de-
terministic linearised system

x′ = Jx with J =

(
−1 1
−1 −1

)
= Df(0),

we get the Lyapunov function U(x) = ‖x‖2. For our system this delivers with
x = (x, y):

U(x)

=
1

2
θ2‖x‖2

(
‖x‖ − 1

2

)2(
‖x‖ − 3

2

)2 (
x2 · 2 + xy · 0 + yx · 0 + y2 · 2

)
+[(‖x‖ − 1)x+ y] · 2x+ [−x+ (‖x‖ − 1)y]2y

= θ2‖x‖4
(
‖x‖ − 1

2

)2(
‖x‖ − 3

2

)2

+ (‖x‖ − 1)(2x2 + 2y2)

= −‖x‖2
(

2− 2‖x‖ − θ2‖x‖2
(
‖x‖ − 1

2

)2(
‖x‖ − 3

2

)2
)
.
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(a) The function v for system (5.2).

(b) The function Lv for system (5.2), approximating −10−2.

Figure 2. Non-local Lyapunov function for system (5.2) with θ =
1. The non-local Lyapunov functions looks very similar to the one
computed in [3].

Set

hθ(r) = 2− 2r − θ2r2

(
r − 1

2

)2(
r − 3

2

)2

.

Then LU(x) = −‖x‖2hθ(‖x‖) and routine calculations show that on the interval
[0, 1/2] the function r 7→ r2(r − 1

2 )2(r − 3
2 )2 takes its largest value at r∗ = (4 −
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√
7)/6 ≈ 0.22571 and that hθ(r

∗) > 1.55 − 6.3 · 10−3θ2, so for any 0 ≤ θ ≤ 15.56
the function U(x) = ‖x‖2 is a Lyapunov function for the system on B1/2(0). It is
not difficult to verify that if 0 ≤ θ ≤ 1, then U is a (local) Lyapunov function on
B0.9(0).

Now we calculate the constants for K = {x ∈ R2 : R1 ≤ ‖x‖ ≤ R2} with

R2 = 2. We have, see appendix, F = R2

√
1 + (R2 − 1)2 = 2

√
2, F1 =

√
12, F2 = 2,

G = 9
2θ

2, G1 = 33θ2, and G2 = 197.5θ2.
We used the Wendland function φ8,6 with c = 1, for the system (5.2) with

θ = 1. We choose ρ1 = 0.4 and ρ2 = 1.9 and use a 80 × 80 grid of collocation
points on [−2, 2]×[−2, 2] to calculate a non-local Lyapunov function, approximating
LV (x) = −10−2, see Figure 2. With α1 = 401.4572 and α2 = 5.8372 we obtain
the value CU = 4.3220 · 1012. By evaluating LV on a relatively coarse 1000× 1000
grid of points on [−2, 2] × [−2, 2], we estimated the maximum value of LV not to
exceed −0.005. Hence, we require a checking grid with h = 3.4013 · 10−8 and thus
we need to evaluate LV at (1.1760 · 108)2 ≈ 1016 points. Our current software and
computer setup is not adequate to complete those calculations in a reasonable time
frame, but we note that the verification workload is perfectly parallel which can be
used to speed up the calculations. The necessary estimates for these computations
are included in the appendix for future reference.

Now similarly to Example 5.1, we have to determine constants 0 < β < 1 and
0 < λ < α < 1 (see Theorem 2.5), such that

U−1(Umax) ⊂ v−1([0, λ]) and ∂B = v−1(0) ⊂ U−1([0, βUmax]),

where U(x) = ‖x‖2 is the local Lyapunov function on B1/2(0). We calculate a lower

estimate for the (1−β)-BOA, {x ∈ R2 : ‖x‖ ≤ r1−β}, of the equilibrium by choosing

B1/2(0) = U−1([0, Umax]), i.e. Umax = 1/4, and solving Br1−β (0) = U−1([0, βUmax]).

Thus r1−β =
√
β

2 . Theorem 2.5 requires

v−1(0) ⊂ U−1([0, βUmax])

which is equivalent to 0.4 ≤ r1−β =
√
β2, i.e. β > 0.64. Now we need to find λ

such that

U−1(Umax) ⊂ v−1([0, λ]).

We now fix β = 0.65, λ = 0.005 and we are free to choose α > λ. Corresponding
to our choice of α we have that the set v−1((0, α)) is a subset of the γ-BOA by
Theorem 2.5 (with b = 0 and a = 0) with

γ =
(1− α)(1− β)

1− β(1− λ)
.

For α = 0.01 we have v−1([0, α]) ∪ B ≈ B0.6454(0) and γ ≈ 0.9809
For α = 0.09 we have v−1([0, α]) ∪ B ≈ B0.839(0) and γ ≈ 0.90.
Let us compare these results to the local Lyapunov function: Here we obtain

B0.0707(0) and B0.1581(0) as lower estimates of the 0.98 and 0.90-BOAs. By com-
paring the estimates above we see a substantial increase.

Our results are comparable to the results in [3] in that we obtained similarly
sized γ-BOA. However, our method includes a framework for rigorous verification
(numerical proof) that v is indeed a non-local Lyapunov function, although this
verification could not be performed at this point due to its huge computational
demand.
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Appendix A. Explicit formulas for meshless collocation. We calculate v(x),
Lv(x), and the collocation matrix A for the specific operator L given in (3.3). We
denote recursively ψi+1(r) = 1

r
∂
∂rψi(r) for i = 0, 1, . . . , 5 and ψ0 = ψ, where ψ is a

certain Wendland functions that can be found below in Tables 1 and 2. Recall that
‖ · ‖ = ‖ · ‖2.

We have, see (3.5), that

v(x) =

N∑
k=1

αk

[
− ψ1(‖x− xk‖)〈x− xk, f(xk)〉

+
1

2

d∑
i,j=1

mij(xk)[ψ2(‖x− xk‖)(x− xk)i(x− xk)j

+δijψ1(‖x− xk‖)]
]

+

M∑
k=1

αN+kψ0(‖x− ξk‖). (A.1)

The formula for Lv(x) is, abbreviating β = x− xk,

Lv(x)

=

N∑
k=1

αk

{
− ψ2(‖β‖)〈β, f(x)〉〈β, f(xk)〉 − ψ1(‖β‖)〈f(x), f(xk)〉

+
1

2

d∑
i,j=1

mij(xk)

[
ψ3(‖β‖)〈β, f(x)〉βiβj + ψ2(‖β‖)fj(x)βi

+ψ2(‖β‖)fi(x)βj + δijψ2(‖β‖)〈β, f(x)〉
]

+
1

2

d∑
i,j=1

mij(x)

[
− ψ3(‖β‖)〈β, f(xk)〉βiβj − ψ2(‖β‖)fj(xk)βi

−ψ2(‖β‖)fi(xk)βj − δijψ2(‖β‖)〈β, f(xk)〉
]

+
1

4

d∑
r,s=1

d∑
i,j=1

mrs(x)mij(xk)

[
ψ4(‖β‖)βiβjβrβs

+ψ3(‖β‖)[δijβrβs + δirβjβs

+δisβjβr + δjrβiβs + δjsβiβr + δrsβiβj ]

+ψ2(‖β‖)[δijδrs + δirδjs + δisδjr]

]}
+

M∑
k=1

αN+k

{
− ψ1(‖ξk − x‖)〈ξk − x, f(x)〉
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+
1

2

d∑
i,j=1

mij(x)[ψ2(‖ξk − x‖)(ξk − x)i(ξk − x)j

+δijψ1(‖ξk − x‖)]
}
.

The formulas for the matrix elements are

dkl = ψ0(‖ξk − ξl‖),
ckl = −ψ1(‖ξl − xk‖)〈ξl − xk, f(xk)〉

+
1

2

d∑
i,j=1

mij(xk)[ψ2(‖ξl − xk‖)(ξl − xk)i(ξl − xk)j

+δijψ1(‖ξl − xk‖)],

and, abbreviating β = xk − xl,

bkl = −ψ2(‖β‖)〈β, f(xk)〉〈β, f(xl)〉 − ψ1(‖β‖)〈f(xk), f(xl)〉

+
1

2

d∑
i,j=1

mij(xl)

[
ψ3(‖β‖)〈β, f(xk)〉βiβj + ψ2(‖ β‖)fj(xk)βi

+ψ2(‖β‖)fi(xk)βj + δijψ2(‖β‖)〈β, f(xk)〉
]

+
1

2

d∑
i,j=1

mij(xk)

[
− ψ3(‖β‖)〈β, f(xl)〉βiβj − ψ2(‖β‖)fj(xl)βi

−ψ2(‖β‖)fi(xl)βj − δijψ2(‖β‖)〈β, f(xl)〉
]

+
1

4

d∑
r,s=1

d∑
i,j=1

mrs(xk)mij(xl)

[
ψ4(‖β‖)βiβjβrβs

+ψ3(‖β‖)[δijβrβs + δirβjβs + δisβjβr

+δjrβiβs + δjsβiβr + δrsβiβj ]

+ψ2(‖β‖)[δijδrs + δirδjs + δisδjr]

]
.

Appendix B. Two-dimensional example. In this section we give the details of
the estimates for Fi and Gi of the 2-dimensional example from Section 5.2.

With f(x1, x2) =

(
(‖x‖ − 1)x1 + x2

−x1 + (‖x‖ − 1)x2

)
we obtain

F =

(
(‖x‖ − 1)2x2

1 + x2
2 + 2x1x2(‖x‖ − 1)

+x2
1 − 2x1x2(‖x‖ − 1) + x2

2(‖x‖ − 1)2

)1/2

= ‖x‖
√

(‖x‖ − 1)2 + 1,

∂f

∂x1
=

(
x2
1

‖x‖ + ‖x‖ − 1

−1 + x1x2

‖x‖

)
=

(
2x2

1+x2
2

‖x‖ − 1

−1 + x1x2

‖x‖

)
,

55
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∂f

∂x2
=

(
x1x2

‖x‖ + 1
x2
2

‖x‖ + ‖x‖ − 1

)
=

(
x1x2

‖x‖ + 1
x2
1+2x2

2

‖x‖ − 1

)
,∥∥∥∥ ∂f

∂x2

∥∥∥∥2

=
x2

1x
2
2 + x4

1 + 4x2
1x

2
2 + 4x4

2

‖x‖2
+

2x1x2 − 2x2
1 − 4x2

2

‖x‖
+ 2

≤ x2
1 + 4x2

2 −
x2

1 + 3x2
2

‖x‖
+ 2

= x2
1

(
1− 1

‖x‖

)
+ x2

2

(
4− 3

‖x‖

)
+ 2

≤ x2
1

(
1− 1

R2

)
+ x2

2

(
4− 3

R2

)
+ 2

≤ R2
2 max

(
0,

(
1− 1

R2

)
,

(
4− 3

R2

))
+ 2,

∂2f

∂x2
1

=

 x1(2x2
1+3x2

2)
‖x‖3

x3
2

‖x‖3

 ,

∂2f

∂x1∂x2
=

 x3
2

‖x‖3

x3
1

‖x‖3

 ,

∂2f

∂x2
2

=

 x3
1

‖x‖3

x2(3x2
1+2x2

2)
‖x‖3

 , and

∥∥∥∥ ∂2f

∂x2
2

∥∥∥∥ =

√
x6

1 + 9x4
1x

2
2 + 12x2

1x
4
2 + 4x6

2

‖x‖3

≤
√

4x6
1 + 12x4

1x
2
2 + 12x2

1x
4
2 + 4x6

2

‖x‖3

=

√
4(x2

1 + x2
2)3

‖x‖3
= 2.

We now calculate the estimates for g(x) = θr(r−0.5)(r−1.5)x, denoting ‖x‖ = r.
For r ∈ [0, 2] we have

‖g(x)‖ ≤ θ4 · 3

2
· 1

2
= 3θ.

Furthermore,

∂g

∂xi
= θ

{
xi
‖x‖

[
3r2 − 4r +

3

4

]
x + r(r − 0.5)(r − 1.5)ei

}
Hence, ∥∥∥∥ ∂g

∂xi

∥∥∥∥ ≤ θ

(∣∣∣∣3r2 − 4r +
3

4

∣∣∣∣ r + |r(r − 0.5)(r − 1.5)|
)

≤ 11θ

for r ∈ [0, 2].
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Finally,

∂2g

∂x2
1

= θ

[
3r2 − 4r +

3

4

](
x2

2

‖x‖3
x + 2

x1

‖x‖
e1

)
+ θ

x2
1

‖x‖2
(6r − 4)x

=
θ

r3

[(
3r2 − 4r +

3

4

)
x2

2 + (6r2 − 4r)x2
1

]
x

+2θ

(
3r2 − 4r +

3

4

)
x1

‖x‖
e1,∥∥∥∥∂2g

∂x2
1

∥∥∥∥ ≤ θmax

(∣∣∣∣3r2 − 4r +
3

4

∣∣∣∣ , ∣∣6r2 − 4r
∣∣)

+2θ

∣∣∣∣3r2 − 4r +
3

4

∣∣∣∣
≤ 25.5θ for r ∈ [0, 2],

∂2g

∂x1∂x2
= θ

[
3r2 − 4r +

3

4

](
−x1x2

‖x‖3
x +

x2

‖x‖
e1 +

x1

‖x‖
e2

)
+θ

x1x2

‖x‖2
(6r − 4)x

=
θ

r3

[
−3r2 + 4r − 3

4
+ 6r2 − 4r

]
x1x2x

+
θ

r

(
3r2 − 4r +

3

4

)
(x2e1 + x1e2), and∥∥∥∥ ∂2g

∂x1∂x2

∥∥∥∥ ≤ θ

∣∣∣∣3r2 − 3

4

∣∣∣∣+ θ

∣∣∣∣3r2 − 4r +
3

4

∣∣∣∣
≤ 16θ.

Appendix C. Wendland functions. In this appendix we give the explicit for-
mulas of the Wendland functions φ8,6 and φ7,6 as well as the corresponding aux-
iliary functions ψi, i = 1, . . . , 6. Furthermore, we give the relevant estimates for
ψk,i = supr∈[0,∞) |ψk(r)|ri.

In particular, in Table 1 and Table 2, we give the formulas for the Wendland func-
tion ψ0(r) = φ8,6(cr) and ψ0(r) = φ7,6(cr), respectively, as well as ψi, i = 1, . . . , 6.
In Table 3 we give the formulas for the expressions ψk,i = supr∈[0,∞) ψk(r)ri, re-
quired for the estimates for the same Wendland functions φ8,6 and φ7,6. Note that
x+ := max{x, 0}.
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ψk,i φ8,6 φ7,6
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Abstract: We present a rigid estimate of the domain, on which a Lyapunov function for the linearization of a nonlinear
stochastic differential equation is a Lyapunov function for the original system. By using this estimate the
demanding task of computing a lower bound on the γ-basin of attraction for a nonlinear stochastic systems is
greatly simplified and the application of a resent numerical method for the same purpose facilitated.

1 INTRODUCTION

When analysing the stability of an equilibrium of a
nonlinear deterministic system ẋ = f(x), f : Rd →Rd ,
one often resorts to linearization around the equilib-
rium. Assuming, without restriction of generality, that
the equilibrium in question is at the origin, then one
analyzes the stability of the origin for the system ẋ =
Ax, where A :=Df(0) is the Jacobian of f at the origin.
Now, if the matrix A is Hurwitz, i.e. the real-parts of
the eigenvalues of A are all strictly negative, then one
can solve the Lyapunov equation A>P + PA = −Q,
where Q ∈ Rd×d is an arbitrary symmetric and pos-
itive definite matrix. The solution P ∈ Rd×d is then
symmetric and positive definite and V (x) = x>Px is
a Lyapunov function for the system, i.e. V has a min-
imum at the equilibrium at the origin and the deriva-
tive of V along solution trajectories of the linearized
system fulfills

∇V (x) •Ax =−x>Qx

and is thus negative on Rd \{0}. The function V will
also be a Lyapunov function for the original nonlinear
system ẋ = f(x) on a neighbourhood N of the origin
where

V ′(x) = ∇V (x) • f(x)< 0 for x ∈N \{0}.
Here V ′ denotes the orbital derivative of the system.
The size of the set N is of great importance because
compact sublevel sets of V that are within N are
lower bounds on the equilibrium’s basin of attraction,
i.e. the set of points which converge to the equilibrium

as time goes to infinity. Explicit bounds for the size of
N are quite easily derived, cf. e.g. (Hafstein, 2004).
In this paper we will derive such an estimate, but for
the considerably more demanding case of stochastic
differential equations.
Notation: We denote by ‖x‖ the Euclidian norm
of a vector x ∈ Rd and for A ∈ Rd×d by ‖A‖ =
max‖x‖=1 ‖Ax‖ the matrix norm induced by the Eu-
clidian vector norm. Vectors are assumed to be col-
umn vectors.We denote by κ(A) := ‖A‖‖A−1‖ the
condition number with respect to the ‖ · ‖ norm of
the nonsingular matrix A ∈ Rd×d . For a symmet-
ric and positive definite Q ∈ Rd×d we define the en-
ergetic norm ‖x‖Q :=

√
x>Qx and the correspond-

ing induced matrix norm ‖A‖Q := max‖x‖Q=1 ‖Ax‖Q.
Recall that a symmetric and positive definite Q ∈
Rd×d can be factorized as Q = ODO> where O ∈
Rd×d is orthogonal, i.e. O>O = O>O = I and D =
diag(λ1,λ2, . . . ,λd) ∈ Rd×d is a diagonal matrix with
0 < λ1 ≤ λ2 ≤ . . . ≤ λd . For every a ∈ R we define
the matrix Qa = Odiag(λa

1,λ
a
2, . . . ,λ

a
d)O

>. It is not
difficult to see that for a > 0 we have ‖Qa‖= λa

d and
‖Q−a‖= λ−a

1 . Further,

‖Q− 1
2 ‖−1‖x‖ ≤ ‖x‖Q =

√
x>Qx

= ‖Q 1
2 x‖ ≤ ‖Q 1

2 ‖‖x‖.
We consider d-dimensional systems and in all sums
where the upper and lower bounds of the sum are
omitted they are assumed to be 1 and d respectively,
i.e. ∑i := ∑d

i=1, ∑i, j := ∑d
i, j=1 etc.

A function α : R+→R+ is said to be of class K ∞

Björnsson, H., Giesl, P., Gudmundsson, S. and Hafstein, S.
Local Lyapunov Functions for Nonlinear Stochastic Differential Equations by Linearization.
DOI: 10.5220/0006944505790586
In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2018) - Volume 1, pages 579-586
ISBN: 978-989-758-321-6
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

579

62



if it is continuous, monotonically increasing, α(0) =
0, and limx→∞ α(x) = ∞.

We write P and E for probability and expecta-
tion respectively. The underlying probability spaces
should always be clear from the context. The abbrevi-
ation a.s. stands for almost surely, i.e. with probability
one, and a.s.

= means equal a.s.

2 THE PROBLEM SETTING

We give a short discussion of the setup and the
problem at hand. For a more detailed discussion
of the setup see (Gudmundsson and Hafstein, 2018,
§2). The general d-dimensional stochastic differen-
tial equation (SDE) of Itô type we consider is of the
form:

dX(t) = f(X(t))dt +g(X(t)) ·dW(t) (1)

or equivalently

dXi(t) = fi(X(t))dt +
U

∑
u=1

gu(X(t)) ·dWu(t)

for i = 1,2, . . . ,d. Thus f = ( f1, f2, . . . , fd)
>, g =

(g1,g2, . . . ,gU ), and gu = (gu
1,g

u
2, . . . ,g

u
d)
>, where

fi,gu
i : Rd → R. We assume that the origin is an

equilibrium of the system, i.e. f(0) = 0 and gu(0) =
0 for u = 1,2, . . . ,U and we consider strong solu-
tions to (1). For deterministic initial value solutions,
i.e. X(0) = x ∈ Rd a.s., we write Xx for the solution,
i.e.

Xx(t) = x+
∫ t

0
f(X(s))ds+

∫ t

0
g(X(s))dW(s),

where the second integral is interpreted in the Itô
sense. As shown in (Mao, 2008) it suffices to consider
deterministic initial value solutions when studying the
stability of an equilibrium.

Numerous concepts are in use concerning the
stability of equilibria of SDEs. Here we will be
concerned with the so-called asymptotic stability in
probability of the zero solution (Khasminskii, 2012,
(5.15)), also referred to as stochastic asymptotic sta-
bility (Mao, 2008, Definition 4.2.1). For a more
detailed discussion of the stability of SDEs see the
books by Khasminskii (Khasminskii, 2012) or Mao
(Mao, 2008). We recall a few definitions:

Definition 2.1 (Stability in Probability (SiP)). The
null solution X(t) a.s.

= 0 to the SDE (1) is said to be sta-
ble in probability (SiP) if for every r > 0 and 0< ε< 1
there exists a δ > 0 such that :

‖x‖ ≤ δ implies P
{

supt≥0 ‖Xx(t)‖ ≤ r
}
≥ 1− ε.

�

Definition 2.2 (Asymptotic Stability in Probability
(ASiP)). The null solution X(t) a.s.

= 0 to the SDE (1) is
said to be asymptotically stable in probability (ASiP)
if it is SiP and in addition for every 0 < ε < 1 there
exists a δ > 0 such that :

‖x‖ ≤ δ implies P
{

lim
t→∞
‖Xx(t)‖= 0

}
≥ 1− ε.

�
Our definitions of SiP and ASiP are equivalent to

the more common

lim
‖x‖→0

P{supt>0 ‖Xx(t)‖ ≤ r}= 1 for all r > 0

for SiP and additionally

lim
‖x‖→0

P

{
limsup

t→∞
‖Xx(t)‖= 0

}
= 1

for ASiP, which can be seen by fixing r > 0 and writ-
ing down the definition of a limit: for every ε > 0
there exists a δ > 0.

The reason for our formulation is that we want to
look at a more practical concept related to such sta-
bility, namely a stochastic analog of the basin of at-
traction (BOA) in the stability theory for deterministic
systems, cf. (Gudmundsson and Hafstein, 2018). In-
stead of the limit ‖x‖ → 0 we consider: Given some
confidence 0< γ≤ 1 how far from the origin can sam-
ple paths start and still approach the equilibrium as
t→∞ with probability greater than or equal to γ. This
is the motivation for the next definition.
Definition 2.3 (γ-Basin Of Attraction (γ-BOA)).
Consider the system (1) and let 0 < γ≤ 1. We refer to
the set{

x ∈ Rd : P
{

lim
t→∞
‖Xx(t)‖= 0

}
≥ γ
}

(γ-BOA)

as the γ-basin of attraction, or short γ-BOA, of the
equilibrium at the origin.

�
Note that a 1-BOA corresponds to the usual BOA

for deterministic systems.
For the SDE (1) the associated generator is given

by

LV (x) := (2)

∇V (x) • f(x)+
1
2 ∑

i, j

[
g(x)g(x)>

]
i j

∂2V
∂xi∂x j

(x)

for some appropriately differentiable V : U→R with
U ⊂ Rd . Notice that this is just the drift term in the
expression for the stochastic differential of the pro-
cess t 7→V (X(t)). The generator for a stochastic sys-
tem corresponds to the orbital derivative of a deter-
ministic system.
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Definition 2.4 (Local Lyapunov function). Consider
the system (1). A function V ∈ C(U)∩C2(U \ {0}),
where 0 ∈ U ⊂ Rd is a domain, is called a (local)
Lyapunov function for the the system (1) if there are
functions µ1,µ2,µ3 ∈K ∞, such that V fulfills the prop-
erties :

(i) µ1(‖x‖)≤V (x)≤ µ2(‖x‖) for all x ∈U

(ii) LV (x)≤−µ3(‖x‖) for all x ∈U \{0}
Remark 2.5. It is of vital importance that V is not
necessarily differentiable at the equilibrium, because
otherwise a large number of systems with an ASiP
null solution do not possess a Lyapunov function,
cf. (Khasminskii, 2012, Remark 5.5).

The following theorem provides the first center-
piece of Lyapunov stability theory for our application,
cf. (Khasminskii, 2012, Theorem 5.5 and Corollary
5.1):

Theorem 2.6. If there exists a local Lyapunov func-
tions as in Definition 2.4 for the system (1), then the
null solution is ASiP. Further, let Vmax > 0 and as-
sume that V−1([0,Vmax]) is a compact subset of U.
Then, for every 0 < β < 1 the set V−1([0,βVmax]) is a
subset of the (1−β)-BOA of the origin.

This concludes our discussion of the setup. In
the next section we discuss Lyapunov functions for
the linearization of (1) and prove the main contribu-
tion of this paper, a lower bound on the area where a
Lyapunov function for the linearization is also a Lya-
punov function for the nonlinear system.

3 MAIN RESULTS

We now consider the linearization of system (1). A
Lyapunov function for the linearized system can then
be constructed, e.g. with the method form (Hafstein
et al., 2018), much more easily than for the nonlinear
system (1). In addition to f and g satisfying the usual
sufficient SDE solution-theory conditions locally Lip-
schitz and the linear-growth conditions, cf. e.g. (Mao,
2008, §2.3) or (Kallenberg, 2002, §21), we assume f
and g are C2 on a convex neighbourhood U ⊂ Rd of
the origin. The second order Taylor expansion for the
components fi of f at x ∈U reads

fi(x) = ∑
j

x jFi j +
1
2 ∑

j,k
x jxkRi

jk(x)

=
(
Fx)i +

1
2

x>Ri(x) x,

and the components gu
i of gu,

gu
i (x) = ∑

j
x jGu

i j +
1
2 ∑

j,k
x jxkRui

jk(x)

=
(
Gux)i +

1
2

x>Rui(x) x

Here

F = (Fi j)i, j ∈ Rd×d with Fi j = ∂ j fi(0)

and

Gu =
(
Gu

i j
)

i, j ∈ Rd×d with Gu
i j = ∂ jgu

i (0)

and the matrices Ri(x) and Rui(x) are the Taylor re-
mainders

Ri(x) =
(

Ri
jk(x)

)
j,k
∈ Rd×d and

Rui(x) =
(

Rui
jk(x)

)
j,k
∈ Rd×d .

By abuse of notation we define the elements of up-
per bound matrices Ri =

(
Ri

jk

)
j,k
∈ Rd×d and Rui =

(
Rui

jk

)
j,k
∈ Rd×d as follows:
∣∣∂2

jk fi(x)
∣∣= |Ri

jk(x)| ≤ Ri
jk and (3)

∣∣∂2
jkgu

i (x)
∣∣= |Rui

jk(x)| ≤ Rui
jk, (4)

for all x ∈ N , where N is a neighbourhood of the
origin to be defined later. Finally we fix the constants
R i and R ui as

R i := ‖Ri‖ and R ui := ‖Rui‖. (5)

The action of the generator (2) of the system (1)
on some V ∈C(U)∩C2(U \{0}) can be written as

LV (x) =
1
2 ∑

i, j
mi j(x)∂2

i jV (x)+∑
i

fi(x)∂iV (x)

= L0V (x)+E(x)

where L0V (x) is the generator of the linearized sys-
tem defined below and E(x) the rest (containing all
the Taylor remainders). We will now work out the
details, first notice that:

mi j(x) =
U

∑
u=1

gu
i (x)g

u
j(x)

= ∑
k,l

xkxl

U

∑
u=1

Gu
ikGu

jl

+
1
2 ∑

k,l,m
xkxlxm

U

∑
u=1

(
Gu

ikRu j
lm(x)+Gu

jkRui
lm(x)

)

+
1
4 ∑

k,l,m,n
xkxlxmxn

U

∑
u=1

Rui
kl(x)R

u j
mn(x).
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We define L0 as the generator associated to the lin-
earization of the system (1), i.e. the system

dX(t) = F X(t) dt +
U

∑
u=1

Gu X(t) dWu(t) (6)

or equivalently

dXi(t) = ∑
j

Fi jX j(t) dt +
U

∑
u=1

∑
j

Gu
i jX j(t) dWu(t)

for i = 1,2, . . . ,d, which means that

L0V (x) = (7)

∑
i, j

Fi jx j∂iV (x)+
1
2 ∑

i, j

(
∑
k,l

xkxl

U

∑
u=1

Gu
ikGu

jl

)
∂2

i jV (x).

We gather together the nonlinear parts of the full SDE
generator into the expression for E(x):

E(x) = ∑
s

Es(x)∂sV (x)
︸ ︷︷ ︸

EF (x)

+
1
2 ∑

r,s
Ers(x)∂2

rsV (x)

︸ ︷︷ ︸
EG(x)

,

where

Es(x) =
1
2 ∑

j,k
x jxkRs

jk(x) and

Ers(x) =
1
2 ∑

k,l,m
xkxlxm

U

∑
u=1

(Gu
rkRus

lm(x)+Gu
skRur

lm(x))

+
1
4 ∑

k,l,m,n
xkxlxmxn

U

∑
u=1

Rur
kl (x)R

us
mn(x).

The plan for the rest of this section is as follows:
With LV (x) broken up into a linear part L0V (x) and a
nonlinear correction E(x), we take the explicit func-
tion

V (x) = ‖x‖p
Q =

(
x>Qx

) p
2

(8)

as the ansatz for the Lyapunov function candidate,
where Q ∈ Rd×d is a symmetric and positive definite
matrix and p > 0. As argued in (Hafstein et al., 2018,
§4) this is the expected form of a Lyapunov function
for the linearized system (6) just as x 7→ x>Px for a
symmetric and positive definite P is the usual form for
a Lyapunov function for a linear deterministic system
ẋ = Ax. Note that typically p < 2 so V is not differen-
tiable at the origin. For this reason take x 6= 0 in the
calculations below. Assuming that we have fixed Q
and p > 0 such that L0V (x) < 0 for all x ∈ Rd \ {0},
we derive a neighbourhood of the origin such that
|L0V (x)|> |E(x)|, which implies LV (x)< 0.

From (Hafstein et al., 2018, Lemma 4.1) we can
state the following: for V (x) = ‖x‖p

Q we have

L0V (x) =−1
2

p‖x‖p−4
Q H(x) for all x ∈ Rd \{0},

where

H(x) =−x>
(

F>Q+QF +
U

∑
u=1

(Gu)>QGu

)
x‖x‖2

Q

+(2− p)
U

∑
u=1

(
1
2

x>(QGu +(Gu)>Q)x
)2

.

This V is a Lyapunov function for the linear system
(6) if there is a constant C > 0 such that

H(x)≥C‖x‖2
Q‖x‖2 for all x ∈ Rd ,

because then

L0V (x)≤−1
2

pC‖x‖p−2
Q ‖x‖2 (9)

for all x ∈ Rd \{0}.
Before we state and prove our results we prove a

simple but useful lemma:

Lemma 3.1. Let A = (Ai j), Ã = (Ãi j)∈Rd×d be such
that |Ai j| ≤ Ãi j for i, j = 1,2, . . . ,d. Then

‖A‖ ≤ ‖Ã‖. (10)

In particular
∣∣∣∣∣∑i, j

xiAi jy j

∣∣∣∣∣≤ ‖Ã‖‖x‖‖y‖ (11)

and ∣∣∣∣∣∑i, j,k
xiQikAk jy j

∣∣∣∣∣≤ ‖Ã‖‖Q
1
2 ‖‖x‖Q‖y‖ (12)

≤ ‖Ã‖κ(Q)
1
2 ‖x‖Q‖y‖Q.

for every symmetric and positive definite Q ∈ Rd×d .
If AQ

1
2 = Q

1
2 A we even have

∣∣∣∣∣∑i, j,k
xiQikAk jy j

∣∣∣∣∣≤ ‖Ã‖‖x‖Q‖y‖Q. (13)

Proof. For x = (x1,x2, . . . ,xd)
> set x̃ =

(|x1|, |x2|, . . . , |xd |)>. Clearly ‖x‖ = ‖x̃‖. The
estimate (10) follows from

‖Ax‖2 = x>A>Ax =

∣∣∣∣∣∑i, j,k
xiAkiAk jx j

∣∣∣∣∣
≤ ∑

i, j,k
|xi| · |Aki| · |Ak j| · |x j|

≤ ∑
i, j,k
|xi| · ÃkiÃk j|x j|= x̃>Ã>Ãx̃ = ‖Ãx̃‖2

≤ ‖Ã‖2‖x̃‖2 = ‖Ã‖2‖x‖2

and thus

‖A‖ := supx6=0
‖Ax‖
‖x‖ ≤ ‖Ã‖.
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The inequality (12) follow from

|∑
i, j,k

xiQikAk jy j|=
∣∣∣∣∣∑i, j

xi

(
∑
k

QikAk j

)
y j

∣∣∣∣∣

= |x>QAy|= |(Q 1
2 x)>Q

1
2 Ay|

≤ ‖Q 1
2 x‖‖Q 1

2 Ay‖= ‖x‖Q‖Q
1
2 Ay‖

≤ ‖x‖Q‖Q
1
2 ‖‖A‖‖y‖

≤ ‖Ã‖‖Q 1
2 ‖‖Q− 1

2 ‖‖x‖Q‖y‖Q

and (11) follows form (12) with Q as the identity ma-
trix. To see (13) just note that if AQ

1
2 = Q

1
2 A we have

‖Q 1
2 Ay‖= ‖AQ

1
2 y‖ ≤ ‖A‖‖Q 1

2 y‖ ≤ ‖Ã‖‖y‖Q

which can be used to improve the estimate above.

Remark 3.2. If A in (12) is symmetric we have

x>QAy = ∑
i, j,k

xiQikAk jy j = ∑
i, j,k

y jA jkQkixi = y>AQx.

Remark 3.3. For vectors x, x̃ ∈ Rd , |xi| ≤ x̃i for
i = 1,2, . . . ,d, we obviously have ‖x‖ ≤ ‖x̃‖, but in
general ‖x‖Q is not necessarily smaller than ‖x̃‖Q.
Take for example x = (1,−1)>, x̃ = (1,1)>, and

Q =

(
2 −1
−1 2

)
. Then ‖x‖Q =

√
x>Qx =

√
6 but

‖y‖Q =
√

2. For this reason one cannot expect |Ai j| ≤
Ãi j to imply ‖A‖Q ≤ ‖Ã‖Q for matrices A, Ã ∈ Rd×d .

We now come to the main contribution of this pa-
per:

Theorem 3.4. Consider the system (1), assume that
V as in (8) is a Lyapunov function for its linearization
(6), and let C > 0 be a constant as in (9). Let ρ∗ > 0
and assume the estimates (3), (4), and (5) hold true
on N = D∗ := {x ∈ Rd : ‖x‖Q ≤ ρ∗}. Define

p∗ := 1+ |p−2|,
R i := ‖Ri‖,

R ui := ‖Rui‖,
R F := ‖(R 1,R 2, . . . ,R d)‖,
R u

G := ‖(R u1,R u2, . . . ,R ud)‖,
R G := ‖(R 1

G,R 2
G, . . . ,R U

G)‖2,

ẼG := ‖Q 1
2 ‖
(

R F + p∗
U

∑
u=1

R u
G‖Q

1
2 GuQ−

1
2 ‖
)
,

Ẽ∗G :=
1
4

p∗κ(Q)R G.

Then
LV (x) = L0V (x)+E(x)

where L0V is defined in (7) and

|E(x)| ≤ 1
2

p‖x‖p−2
Q ‖x‖2 · ‖x‖Q

(
ẼG + Ẽ∗G‖x‖Q

)

for x ∈ D∗ := {x ∈ Rd : ‖x‖Q ≤ ρ∗}. In particular,
V is a Lyapunov function for the nonlinear system (1)
satisfying the condition of Definition 2.4 on

U = D := {x ∈ Rd : ‖x‖Q ≤ ρ},
with

ρ < min

{
ρ∗,

1

2Ẽ∗G

(√
(ẼG)2 +4CẼ∗G− ẼG

)}
.

Proof. Let us first compute ∂sV (x) and ∂2
rsV (x),

∂sV (x) =

(
∑

j
Qs jx j +∑

i
Qisxi

)
p
2

(
∑
i, j

Qi jxix j

) p
2−1

= p∑
i

xiQis‖x‖p−2
Q and

∂2
rsV (x) = pQrs‖x‖p−2

Q + p

(
∑

j
x jQ js

)( p
2
−1
)

×2

(
∑

i
xiQir

)(
∑
i, j

Qi jxix j

) p
2−2

= p‖x‖p−2
Q Qrs + p(p−2)∑

i, j
xix jQirQ js‖x‖p−4

Q

= p‖x‖p−4
Q

(
Qrs‖x‖2

Q +(p−2)∑
i, j

xix jQirQ js

)
.

Now set z = (z1,z2, . . . ,zd)
> with zs := x>Rs(x)x and

then |zs| ≤ R s‖x‖2 and ‖z‖ ≤ ‖x‖2R F for x ∈ D∗.
Then

|EF(x)| ≤
∣∣∣∣∑

s
Es(x)∂sV (x)

∣∣∣∣

≤ p
2
‖x‖p−2

Q

∣∣∣∣∣ ∑
s,i, j,k

x jxkRs
jk(x)xiQis

∣∣∣∣∣

=
p
2
‖x‖p−2

Q

∣∣∣∣∣∑s,i
xiQis

(
∑
j,k

x jRs
jk(x)xk

)∣∣∣∣∣

=
p
2
‖x‖p−2

Q

∣∣∣∣∣∑s,i
xiQis

(
x>Rs(x)x

)∣∣∣∣∣

=
p
2
‖x‖p−2

Q

∣∣∣∣∣∑s,i
xiQiszs

∣∣∣∣∣

=
p
2
‖x‖p−2

Q

∣∣∣x>Qz
∣∣∣

=
p
2
‖x‖p−2

Q ‖Q 1
2 x‖‖Q 1

2 z‖

≤ p
2
‖x‖p−2

Q ‖x‖Q‖Q
1
2 ‖‖z‖

≤ p
2
‖x‖p−1

Q ‖x‖2‖Q 1
2 ‖R F .
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Since EG(x) = 1
2 ∑r,s Ers(x)∂2

rsV (x) and by using
our expressions for Ers and ∂2

rsV (x) we obtain:

|EG(x)| ≤
1
4

p‖x‖p−4
Q

∣∣∣∣∣ ∑
r,s,k,l,m

xkxlxm

×
U

∑
u=1

(Gu
rkRus

lm(x)+Gu
skRur

lm(x))

×
(

Qrs‖x‖2
Q +(p−2)∑

i, j
xix jQirQ js

)∣∣∣∣∣

+
1
8

p‖x‖p−4
Q

∣∣∣∣∣ ∑
r,s,k,l,m,n

xkxlxmxn

×
(

Qrs‖x‖2
Q +(p−2)∑

i, j
xix jQirQ js

)

×
U

∑
u=1

Rur
kl (x)R

us
mn(x)

∣∣∣∣∣.

We now estimate the expression on the right-hand
side term by term: Set zu = (zu

1,z
u
2, . . . ,z

u
d)
>, where

zu
i := x>Rui(x)x, and then |zu

i | ≤ R ui‖x‖2 and ‖zu‖ ≤
‖x‖2R u

G for x ∈D∗. Then

∑
r,s,k,l,m

xkxlxm

U

∑
u=1

Gu
rkRus

lm(x)Qrs‖x‖2
Q

= ‖x‖2
Q

U

∑
u=1

∑
r,s,k

xk

(
∑
l,m

xlRus
lmxm

)
QsrGu

rk

= ‖x‖2
Q

U

∑
u=1

∑
r,s,k

xk

(
x>Rusx

)
QsrGu

rk

= ‖x‖2
Q

U

∑
u=1

∑
r,s,k

zu
s QsrGu

rkxk

= ‖x‖2
Q

U

∑
u=1

(zu)>QGux

= ‖x‖2
Q

U

∑
u=1

(zu)>QGuQ−
1
2 Q

1
2 x

≤ ‖x‖3
Q‖x‖2

U

∑
u=1
‖QGuQ−

1
2 ‖R u

G

≤ ‖x‖3
Q‖x‖2‖Q 1

2 ‖
U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖R u

G

and similarly

∑
r,s,k,l,m

xkxlxm

U

∑
u=1

Gu
skRur

lm(x)Qrs‖x‖2
Q

= ‖x‖2
Q

U

∑
u=1

∑
r,s,k

(
x>Rurx

)
QrsGu

skxk

= ‖x‖2
Q

U

∑
u=1

∑
r,s,k

zu
r QrsGu

skxk

= ‖x‖2
Q

U

∑
u=1

(zu)>QGux

≤ ‖x‖3
Q‖x‖2

U

∑
u=1
‖QGuQ−

1
2 ‖R u

G

≤ ‖x‖3
Q‖x‖2‖Q 1

2 ‖
U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖R u

G.

Further

∑
r,s,k,l,m

xkxlxm

U

∑
u=1

Gu
rkRus

lm(x)(p−2)∑
i, j

xix jQirQ js

= (p−2)
U

∑
u=1

∑
j,s

(
∑
i,k,r

xiQirGu
rkxk

)

×
(

∑
l,m

xlRus
lm(x)xm

)
Qs jx j

= (p−2)
U

∑
u=1

∑
j,s

(
x>QGux

)(
x>Rusx

)
Qs jx j

= (p−2)
U

∑
u=1

∑
j,s

(
x>QGuQ−

1
2 Q

1
2 x
)(

x>Rusx
)

Qs jx j

≤ |p−2|
U

∑
u=1
‖x‖2

Q‖Q
1
2 GuQ−

1
2 ‖
∣∣∣∣∣∑j,s

zu
s Qs jx j

∣∣∣∣∣

≤ |p−2|‖x‖2
Q

U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖
∣∣∣(zu)>Qx

∣∣∣

≤ |p−2|‖x‖2
Q

U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖‖zu‖‖Q 1

2 ‖‖x‖Q

≤ |p−2|‖x‖3
Q‖x‖2‖Q 1

2 ‖
U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖R u

G
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and similarly

∑
r,s,k,l,m

xkxlxm

U

∑
u=1

Gu
skRur

lm(x)(p−2)∑
i, j

xix jQirQ js

= (p−2)
U

∑
u=1

∑
i,r

(
∑
j,k,s

xiQ jsGu
skxk

)

×
(

∑
l,m

xlRur
lm(x)xm

)
Qrixi

= (p−2)
U

∑
u=1

∑
i,r

(
x>QGux

)(
x>Rurx

)
Qrixi

≤ |p−2|
U

∑
u=1
‖x‖2

Q‖Q
1
2 GuQ−

1
2 ‖
∣∣∣∣∣∑i,r

zu
r Qrixi

∣∣∣∣∣

≤ |p−2|‖x‖3
Q‖x‖2‖Q 1

2 ‖
U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖R u

G.

Further

∑
r,s,k,l,m,n

xkxlxmxnQrs‖x‖2
Q

U

∑
u=1

Rur
kl (x)R

us
mn(x)

= ‖x‖2
Q

U

∑
u=1

∑
r,s

(
∑
k,l

xkRur
kl (x)xl

)
Qrs

×
(

∑
m,n

xmRus
mn(x)xn

)

= ‖x‖2
Q

U

∑
u=1

∑
r,s

zu
r Qrszu

s

= ‖x‖2
Q

U

∑
u=1

(
(zu)>Qzu

)

≤ ‖x‖2
Q

U

∑
u=1
‖Q‖‖zu‖2

≤ ‖x‖2
Q‖x‖4‖Q‖

U

∑
u=1

(R u
G)

2

= ‖x‖2
Q‖x‖4‖Q‖R G

≤ ‖x‖4
Q‖x‖2‖Q−1‖‖Q‖R G

= ‖x‖4
Q‖x‖2κ(Q)R G.

Finally

∑
r,s,k,l,m,n

xkxlxmxn(p−2)∑
i, j

xix jQirQ js

U

∑
u=1

Rur
kl (x)R

us
mn(x)

= (p−2)
U

∑
u=1

∑
i, j,r,s

xiQir

(
∑
k,l

xkRur
kl (x)xl

)
x jQ js

×
(

∑
m,n

xmRus
mn(x)xn

)

= (p−2)
U

∑
u=1

∑
i, j,r,s

xiQirzu
r x jQ jszu

s

= (p−2)
U

∑
u=1

(
∑
i,r

xiQirzu
r

)(
∑
i,r

x jQ jszu
s

)

= (p−2)
U

∑
u=1

(
x>Qzu

)2

≤ |p−2|
U

∑
u=1
‖x‖2

Q‖Q
1
2 ‖2‖zu‖2

≤ |p−2|‖x‖2
Q‖x‖4‖Q‖R G

≤ |p−2|‖x‖4
Q‖x‖2‖Q−1‖‖Q‖R G

= |p−2|‖x‖4
Q‖x‖2κ(Q)R G.

By combining the results from these estimates we get

|EG(x)| ≤
1
4

p‖x‖p−4
Q

∣∣∣∣∣2‖x‖
3
Q‖x‖2‖Q 1

2 ‖
U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖R u

G

+2|p−2|‖x‖3
Q‖x‖2‖Q 1

2 ‖
U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖R u

G

∣∣∣∣∣

+
1
8

p‖x‖p−4
Q

∣∣∣∣∣‖x‖
4
Q‖x‖2κ(Q)R G

+ |p−2|‖x‖4
Q‖x‖2κ(Q)R G

∣∣∣∣∣

=
1
2

p‖x‖p−1
Q ‖x‖2(1+ |p−2|)

×
(
‖Q 1

2 ‖
U

∑
u=1

R u
G‖Q

1
2 GuQ−

1
2 ‖+ 1

4
κ(Q)R G‖x‖Q

)

and we can estimate

|E(x)| ≤ |EF(x)|+ |EG(x)|

≤ 1
2

p‖x‖p−2
Q ‖x‖2 · ‖x‖Q

(
ẼG + Ẽ∗G‖x‖Q

)
,

which proves the first stated inequality.

Local Lyapunov Functions for Nonlinear Stochastic Differential Equations by Linearization

585

68



Since

LV (x) = L0V (x)+E(x)

≤−1
2

pC‖x‖p−2
Q ‖x‖2 +E(x)

≤−1
2

p‖x‖p−2
Q ‖x‖2

[
C−‖x‖Q

(
ẼG + Ẽ∗G‖x‖Q

)]

we have LV (x)< 0 if

‖x‖Q

(
ẼG + Ẽ∗G‖x‖Q

)
<C,

i.e.

‖x‖Q <
−ẼG +

√
(ẼG)2 +4CẼ∗G
2Ẽ∗G

.

Thus for

x ∈D = {x ∈ Rd : ‖x‖Q ≤ ρ}
with

ρ < min

{
ρ∗,

1

2Ẽ∗G

(√
(ẼG)2 +4CẼ∗G− ẼG

)}
,

we have LV (x)< 0, which concludes the proof.

4 CONCLUSIONS

We derived rigid bounds on a domain, on which a
Lyapunov function for a linearized stochastic differ-
ential equation is also a Lyapunov function for the
original nonlinear system. This allows for the deriva-
tion of a lower bound on the equilibrium’s γ-basin of
attraction, i.e. the area in which all started solutions
converge to the equilibrium with probability no less
than γ. Another application is the facilitation of a nu-
merical method to compute Lyapunov functions for
nonlinear stochastic differential equations on a larger
domain as discussed in (Gudmundsson and Hafstein,
2018), because one first needs a local Lyapunov func-
tion at the equilibrium.
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Abstract. We develop and study algorithms for computing Lyapunov
functions using meshless collocation and Wendland functions. We present
a software tool that generates a C/C++ library that implements Wend-
land functions of arbitrary order in a specified factorized form with ad-
vantageous numerical properties. Additionally, we describe the algorithm
used by the tool to generate these Wendland functions. Our factorized
form is more efficient and has higher numerical accuracy than previous
implementations. We develop and implement optimal grid generation
for the interpolation problem using the Wendland functions. Finally, we
present software that calculates Lyapunov functions using these Wend-
land functions and the optimally generated grid. The software tool and
library are available for download with examples of usage.

Keywords: Wendland function, Lyapunov functions, radial basis func-
tions, code generation.

1 Introduction

Interpolation and collocation using Radial Basis Functions (RBF), in partic-
ular compactly supported RBFs, have been the subject of numerous research
activities in the past decades [27, 9, 10, 24, 7, 6, 25, 26]. They are well suited as
kernels of Reproducing Kernel Hilbert Spaces and their mathematical theory is
mature. The authors and their collaborators have applied Wendland’s compactly
supported RBFs for computing Lyapunov functions for nonlinear systems, both
deterministic [11, 12, 14] and stochastic [5], where Lyapunov functions are a use-
ful tool to analyse stability of these systems, cf. e.g. [18, 22, 23, 19, 20]. Various
numerical methods have been used to find Lyapunov functions for the systems
at hand [14, 16]. Meshless collocation using RBFs is one such method and many
different families of RBFs have been studied [25].

In the papers [12–14, 5] and the book [11] meshless collocation is used with
Wendland functions, where the Wendland function family is defined in a recur-
sive way and in order to determine the actual functions to use in a software
implementation many calculations had to be done by hand. In [2] an algorithm

? This research was supported by the Icelandic Research Fund (Rannis), grant number
152429-051, Lyapunov Methods and Stochastic Stability.
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2 H. Bjornsson and S. Hafstein

is proposed that determines the Wendland polynomials in expanded form, that
is: for each pair of integers l, k ≥ 0, it finds a list of numbers a0, a1, . . . ad such
that the Wendland function ψl,k(r) =

∑d
i=0 air

i. However, it was shown in [3]
that the evaluations of these polynomials in this form using typical schemes,
such as Horner’s scheme, can lead to significant numerical errors.

Having the Wendland functions in factorized form [3] is more efficient and
numerically accurate, so we propose an alternate method to determine the func-
tions in factorized form. For that purpose, we have created a software tool that
generates a reusable software library in C/C++, which implements these Wend-
land polynomials in factorized form. A first version of this software library was
presented in [4]. We have now extended it considerably and added more function-
ality, most notably efficient grid generation and algorithms to solve interpolation
problems for generating Lyapunov functions for stochastic and deterministic dy-
namical systems.

2 Background

Meshless collocation with RBFs is a method that can be used to calculate Lya-
punov functions for either stochastic or deterministic dynamical systems. In
paper [5] meshless collocation was used to calculate Lyapunov functions for
Stochastic Differential Equations (SDE); see e.g. [11, 14] for a similar approach
for deterministic systems.

The method revolves around solving a linear Partial Differential Equation
(PDE). Let Ω ⊂ Rn be a given domain and Γ ⊂ Rn its boundary. Then we want
to solve the (PDE) {

LV (x) = h(x) x ∈ Ω
V (x) = c(x) x ∈ Γ,

where L is a certain differential operator, and h and c are some appropriately
chosen functions.

Using meshless collocation to solve the PDE above we choose points X1 =
{x1, . . . ,xN} ⊂ Ω and X2 = {ξ1, . . . , ξM} ⊂ Γ , and solve the interpolation
problem {

LV (xi) = h(xi) for all i = 1, . . . , N

V (ξi) = c(ξi) for all i = 1, . . . ,M.

The solution is then given in terms of a radial basis function ψ,

V (x) =

N∑
k=1

αk(δxk
◦ L)yψ(‖x− y‖) +

M∑
k=1

αN+k(δξk ◦ L0)yψ(‖x− y‖), (1)

where L0 is the identity operator, δyV (·) = V (y) and superscript y denotes that
the operator is applied with respect to the variable y.
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Advanced algorithm for interpolation with Wendland functions 3

The constants αi are determined as a solution to the linear system

Aα = γ, (2)

where A, called the interpolation matrix, is the symmetric matrix

A =

[
B C
CT D

]
(3)

and the matrices B = (bjk)j,k=1,...,N , C = (cjk)j=1,...,N,k=1,...,M and D =
(djk)j,k=1,...,M have elements:

bjk = (δxj
◦ L)x(δxk

◦ L)yψ(x− y)

cjk = (δxj ◦ L)x(δξk ◦ L0)yψ(x− y)

djk = (δξj ◦ L0)x(δξk ◦ L0)yψ(x− y).

The vector γ has components given by

γj = r(xj), 1 ≤ j ≤ N
γj+N = c(ξj), 1 ≤ j ≤M

There are different choices for the radial basis function ψ. We want the inter-
polation matrix A to be symmetric and positive definite and choosing ψ to have
compact support can make A sparse. Under a few mild conditions the choice
of ψ as a Wendland function, i.e. a compactly supported radial basis function,
ensures this [26].

This method works the same way for determining Lyapunov functions for
both deterministic systems and SDEs, the difference is the choice of the differen-
tial operator L. For deterministic systems it is the orbital derivative, a first order
differential operator, and for stochastic systems it is a second order differential
operator.

To compute such a Lyapunov function a large number of evaluations of the
function ψ and its derivatives is necessary, see e.g. the examples given in equa-
tions (16) and (19). To verify the properties of a Lyapunov function for the
function computed, even more evaluations are necessary. Therefore, it turned
out to be essential that these evaluations could be carried out in an efficient and
accurate way.

3 Wendland functions

The Wendland functions are compactly supported radial basis functions that
are polynomials on their support, which makes computations with them simple.
They are a family of functions depending on two parameters l, k ∈ N0 defined
by the recursive relations:

ψl,0(r) = [(1− r)+]
l

(4)
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4 H. Bjornsson and S. Hafstein

and

ψl,k+1(r) = Cl,k+1

∫ 1

r

tψl,k(t)dt, (5)

where (1− r)+ := max{1− r, 0} and Cl,k+1 6= 0 is a constant.
Therefore these functions also satisfy the relation

−Cl,k+1ψl,k(r) =
d
drψl,k+1(r)

r
. (6)

For interpolation using a particular Wendland function as the base function,
the value of the constant Cl,k+1 6= 0 is not of importance because the Wendland
function appears linearly on both sides of a linear equation. Therefore, one can
just fix values that are convenient for the problem at hand and we will do this
in the following section. However, when solving collocation problems, we apply
a differential operator, see equations (1) and (3), so we get terms involving
both the original Wendland function and its derivatives. The derivative of a
Wendland function can be written in terms of a lower order Wendland function,
using equation (6), and when doing this it is necessary to keep track of the
constants Cl,k+1 for the derivatives. It is only the constant for the base function
that can be chosen arbitrarily. After the choice has been made, we must keep
track of it through all calculations.

First, we choose a particular function ψl,k and by abuse of notation we denote
it by ψ0 = ψl,k. Then we define

ψi(r) =
d
drψi−1(r)

r
for i = 1, 2, . . . , k. (7)

The function ψi is then a specific Wendland function of order l, k − i.
Now the functions

Φl,0(r) = [(1− r)+]
l

and (8)

Φl,k(r) =

∫ 1

r

Φl,0(t)t(t2 − r2)k−1dt for k > 0 (9)

also satisfy a relation of the form

−2(k − 1)Φl,k(r) =
d
drΦl,k+1(r)

r
,

for all integers k, l ≥ 0, i.e. a relation identical to equation (6) with Cl,k+1 =
2(k − 1). Just note that

d

dr

∫ 1

r

Φl,0(t)t(t2 − r2)k−1dt = −2r(k − 1)

∫ 1

r

Φl,0(t)t(t2 − r2)k−2dt.

Therefore equation (9) delivers an alternative way to define the Wendland
functions, see [26]. Note that [26] uses a different numbering scheme of the func-
tions than we do in this paper.

The Wendland functions have several important properties, cf. e.g. [11, Prop. 3.10]:
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Advanced algorithm for interpolation with Wendland functions 5

1) ψl,k(r) is a polynomial of degree l + 2k for r ∈ [0, 1] and supp(ψl,k) = [0, 1].
2) The radial function Ψ(x) := ψl,k(‖x‖) is C2k at 0.
3) ψl,k is Ck+l−1 at 1.

Frequently we fix the parameter l :=
⌊
n
2

⌋
+ k + 1, where n is the spacial

dimension we are working in, and a constant c > 0 to fix the support. By the
properties stated above, the radial function Ψ(x) := ψl,k(c‖x‖) is then a C2k

function with supp(Ψ) = Bd(0, c−1) ⊂ Rn, where Bn(0, c−1) is the closed n-
dimensional ball around the origin with radius c−1.

4 Computing formulas for Wendland functions

In this section we introduce a method to generate Wendland functions of arbi-
trary degree. As a first step we discuss polynomial representations in software.

4.1 Polynomials Representation

We represent d-degree polynomials
∑d
i=0 ait

i as a list of coefficients (a0, a1, . . . , ad).
Our implementation uses Python with List objects. Addition and multiplication
of polynomials of this form are easily implemented as:

d1∑
i=0

ait
i +

d2∑
j=0

bjt
j =

max{d1,d2}∑
i=0

(ai + bi)t
i,

where ai = 0 for i > d1 and bj = 0 for j > d2. Multiplication is given by(
d1∑
i=0

ait
i

) d2∑
j=0

bjt
j

 =

d1+d2∑
i=0

cit
i,

where

ci =
∑
k+j=i

akbj .

An anti derivative of a polynomial is given by

(a0, a1, a2, . . . , ad) 7→ (0, a0,
a1
2
,
a2
3
, . . . ,

ad
d+ 1

),

corresponding to ∫ d∑
i=0

ait
idt =

d∑
i=0

ai
i+ 1

ti+1,

and differentiation by

(a0, a1, . . . , ad) 7→ (a1, 2a2, 3a3, . . . , dad).
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6 H. Bjornsson and S. Hafstein

In order to maximise exact calculations up to computer limitations, we store
the coefficients as tuples of Integers, numerator and denominator, avoiding the
floating point approximation. Specifically, we used the Rational class provided in
Python. Polynomials in two variables can be represented as a polynomial in one
of the variables, where each coefficient is a polynomial in the second variable,
and each of those coefficients is a rational number. This gives us then a list of
lists.

4.2 The Method

To calculate a polynomial representing the Wendland function ψl,k on the inter-
val [0, 1] we start by fixing the derivative

p′(t) = (1− t)lt(t2 − r2)k−1,

see (9). This function is a polynomial in two variables, which we represent as a
polynomial in t where each coefficient is a polynomial in r. Following equation
(9), we integrate this function with respect to t, and we obtain a new polynomial
p(t) in t, again with coefficients that are polynomials in r. We evaluate the
polynomial p at t = 1 and at t = r, which in both cases result in a polynomial
in r, and we obtain the polynomial ψ(r) = p(1) − p(r). Note that ψ(r) is a
representative of a Wendland function of order l, k, that is ψ(r) = C1ψl,k(r) for
some constant C1 6= 0.

We factor the polynomial ψ, using long division, into the form

ψ(r) = C2(1− r)l+kpl,k(r) (10)

such that pl,k(r) is a polynomial with co-prime integer coefficients. This is pos-
sible since ψl,0 has a zero of order l at 1, and by using the recursive relation
in equation (5), we see that ψl,k has a zero of order l + k at 1. The Wendland
function ψl,k is only defined up to a multiplication by a non-zero constant, there-
fore we are free to ignore the constant C2 and use ψ(r) = (1 − r)l+kpl,k(r), a
polynomial with integer coefficients, as a starting point for our recursion.

Using the relation in (6) and discarding the constant Cl,k, we see that

ψl,k−1(r) =
d
dr

[
(1− r)l+kpl,k(r)

]
r

(11)

=
1

r
(1− r)l+k−1((1− r)p′l,k(r)− (l + k)pl,k(r)).

Writing the function ψl,k−1, as ψl,k−1(r) = (1− r)l+k−1pl,k−1(r), then we see

pl,k−1(r) :=
ψl,k−1(r)

(1− r)l+k−1
(12)

=
1

r

[
(1− r)p′l,k(r)− (l + k)pl,k(r)

]
.
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Advanced algorithm for interpolation with Wendland functions 7

We know that ψl,k−1 is a polynomial, since it is a Wendland function of order
l, k, therefore d

dr

[
(1− r)l+kpl,k(r)

]
must by divisible by the monomial r. Since

(1−r)l+k−1 is not divisible by r, the right-hand side of (12) must be a polynomial
in r. Therefore pl,k−1 is a well defined polynomial.

By pulling out the common factor bk−1 ∈ Z of the coefficients in pl,k−1 we
obtain a new polynomial p̂l,k−1 and a constant bk−1 such that

pl,k−1 = bk−1p̂l,k−1.

Repeating this step, until we arrive at pl,0, we get a collection of polynomials in
the form

ψi(r) = b1 · · · bi(1− r)l+k−ip̂l,k−i(r), i = 1, 2, . . . , k. (13)

where each of the polynomials p̂l,k−i(r) has co-prime integer coefficients and
each of the constants bi is a negative integer.

The above list follows the notation in [11], where ψ0 is the polynomial given in
(10) and is equal to the Wendland function ψl,k, and ψ1, . . . , ψi are the Wendland
functions given by ψl,k−1, . . . , ψl,k−i respectively, see equation (5). It is important
to keep track of the constants b1, . . . , bi in (13) as they are necessary for correct
evaluation of formula (1).

4.3 Example

We will now demonstrate how the above method determines the Wendland
function ψl,k for l = 6 and k = 4. Here we start with the function p′(t) =
(1− t)6t(t2 − r2)3 and we obtain

ψ(r) =

∫ 1

r

(1− t)6t(t2 − r2)3dt

=
1

280
r14 − 32

1001
r13 +

1

8
r12 − 64

231
r11

+
3

8
r10 − 32

105
r9 +

1

8
r8 − 1

56
r6

+
1

280
r4 − 1

1848
r2 +

1

24024

=
1

120120
(1− r)10(429r4 + 450r3 + 210r2 + 50r + 1).
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8 H. Bjornsson and S. Hafstein

We set ψ0(r) = (1− r)10(429r4 + 450r3 + 210r2 + 50r+ 1). For r ∈ [0, 1] we have
the formulas (recall that ψl,k(r) = 0 if r /∈ [0, 1]):

ψ6,4(r) = ψ0(r)

= (1− r)10(429r4 + 450r3 + 210r2 + 50r + 1);

ψ6,3(r) = ψ1(r) =
d
drψ0(r)

r

= −26(1− r)9(231r3 + 159r2 + 45r + 5);

ψ6,2(r) = ψ2(r) =
d
drψ1(r)

r

= 3, 432(1− r)8(21r2 + 8r + 1);

ψ5,1(r) = ψ3(r) =
d
drψ2(r)

r

= −102, 960(1− r)7(7r + 1);

ψ5,0(r) = ψ4(r) =
d
drψ3(r)

r

= 5, 765, 770(1− r)6.

Note that we have actually computed a lot more useful information than just a
family of Wendland functions ψ5,i, i = 0, 1, 2, 3, 4. In our algorithm, for a fixed
l, k, we have

ψl,k−j = ψj(r) =
d
drψj−1(r)

r

=
d
drψl,k−j+1(r)

r
, for j = 1, . . . , k,

and we have thus delivered all the radial basis functions needed for a collocation
problem. This corresponds to computing a whole table as in [11, Table 3.1],
but for a collocation problem with arbitrary high derivatives. The software tool,
discussed in Section 6, also includes the constant c > 0 in the computations,
which is used to fix the support of the Wendland functions.

5 Meshless collocation using Wendland functions

The method of meshless collocation can be used to calculate Lyapunov functions
for both deterministic dynamical systems and stochastic dynamical systems. We
just choose the operator L and the boundary values appropriately. The next
two sections show some of the explicit formulas involved. We also talk about
the optimal grid for the interpolation problem, and some aspects of solving the
resulting linear systems using software.
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5.1 Deterministic systems

Consider an autonomous deterministic system, that is a dynamical system of the
form

x′(t) = f(x)

with f : Rn → Rn, for which the origin is an asymptotically stable equilibrium.
We can generate a Lyapunov function, V : Rn → R, for this system by solving
the interpolation problem (2) with the differential operator L being given by

LV (x) = 〈∇V (x), f(x)〉,

setting the boundary Γ = ∅ and choosing the function h appropriately. Setting
the radial basis function ψ to be the Wendland function ψ0(r) = ψl,k(r) for some
constants l, k, and then fixing ψ1 and ψ2 according to equation (7), the matrix
obtained in equation (3) is given by elements of the form (see [11]):

bkl = ψ2(‖xk − xl‖)〈xk − xl, f(xk)〉〈xl − xk, f(xl)〉
− ψ1(‖xk − xl‖)〈f(xk), f(xl)〉. (14)

The components of the vector γ are given by

γj = r(xj). (15)

Then the solution to the interpolation problem has the formula, see equation
(1),

V (x) =
N∑
k=1

αkψ1(‖x− xk‖)〈xk − x, f(xk)〉, (16)

where α is the solution of
Aα = γ

and ψ0 and ψ1 are given by equation (7).

5.2 Stochastic Systems

For SDEs of the form

dx(t) = f(x(t))dt+ g(x(t))dW (t), (17)

f : Rd → Rd, g : Rd → Rd×Q, we consider the operator L given by the associated
generator of the SDE:

LV (x) := ∇V (x) · f(x) +
1

2

d∑
i,j=1

[g(x)g(x)>]
∂2V

∂xi∂xj
(x)

= ∇V (x) · f(x) +
1

2

d∑
i,j

mij(x)
∂2

∂xi∂xj
V (x). (18)
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10 H. Bjornsson and S. Hafstein

Here (mij(x))i,j=1,...,d = g(x)g(x)>, that is mij(x) =
∑Q
q=1 giq(x)gjq(x). We

choose a Wendland function ψ0 = ψl,k, for some constants l, k, and set ψ(x) =
ψ0(‖x‖). We define ψi according to equation (7) for i = {1, 2, 3, 4} and we get
that the solution to the interpolation problem is given by, see equation (1),

V (x) =
N∑
k=1

αk

[
− ψ1(‖x− xk‖)〈x− xk, f(xk)〉

+
1

2

d∑
i,j

mij(xk)[ψ2(‖x− xk‖)(x− xk)i(x− xk)j + δi,jψ1(‖x− xk‖)]
]

+
M∑
k=1

αN+kψ0(‖x− ξk‖). (19)

In this formula the vector α is the solution to the linear system in equation (2).
The formulas for the matrix elements are

dkl = ψ0(‖ξk − ξl‖),
ckl = −ψ1(‖ξl − xk‖)〈ξl − xk, f(xk)〉

+
1

2

d∑
i,j=1

mij(xk)[ψ2(‖ξl − xk‖)(ξl − xk)i(ξl − xk)j

+δijψ1(‖ξl − xk‖)], (20)

and, abbreviating β = x− xk,

bkl = −ψ2(‖β‖)〈β, f(xk)〉〈β, f(xl)〉 − ψ1(‖β‖)〈f(xk), f(xl)〉

+
1

2

d∑
i,j=1

mij(xl)

[
ψ3(‖β‖)〈β, f(xk)〉βiβj + ψ2(‖ β‖)fj(xk)βi

+ψ2(‖β‖)fi(xk)βj + δijψ2(‖β‖)〈β, f(xk)〉
]

+
1

2

d∑
i,j=1

mij(xk)

[
− ψ3(‖β‖)〈β, f(xl)〉βiβj − ψ2(‖β‖)fj(xl)βi

−ψ2(‖β‖)fi(xl)βj − δijψ2(‖β‖)〈β, f(xl)〉
]

+
1

4

d∑
r,s=1

d∑
i,j=1

mrs(xk)mij(xl)

[
ψ4(‖β‖)βiβjβrβs

+ψ3(‖β‖)[δijβrβs + δirβjβs + δisβjβr

+δjrβiβs + δjsβiβr + δrsβiβj ]

+ψ2(‖β‖)[δijδrs + δirδjs + δisδjr]

]
. (21)
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5.3 Generating the grid

The optimal grid in Ω ⊂ Rn for the interpolation problem (2) was studied in [17].
The grid that delivers the smallest fill-distance, the parameter which determines
the accuracy of the solution, is defined using the basis vectors w1, w2, . . . , wn ∈
Rn, where (the eis denote the usual orthonormal basis in Rn)

wk =

k−1∑
j=1

εjej + (k + 1)εkek and εk =
1√

2k(k + 1)
.

The grid-points Gα,z = {gi : i ∈ Zn} ⊂ Rn with fill=distance parameter
α > 0 and offset z ∈ Rn are then given by

gi := z + α
n∑
k=1

ikwk, i = (i1, i2, . . . , in) ∈ Zn.

Given two vectors a, b ∈ Rn such that ai < bi for i = 1, 2, . . . , n, we want to
compute the coordinates of the grid-points gi ∈ Gα,z that are in the cube

Ca,b := [a1, b1]× [a2, b2]× · · · × [an, bn].

By observing that wn is the only basis vector with a nonzero entry in its last
component, wn−1 and wn are the only basis vectors with nonzero entries in their
second to last component, etc. , these can be computed efficiently in a recursive
manner. Let us illustrate this with n = 3, the general strategy can be read from
the code below.

Given the offset vector z = (z1, z2, z3) ∈ R3 and a3 < b3, we see that only
those i = (i1, i2, i3) ∈ Z3 with i3 fulfilling

a3 ≤ z3 + i3 · α · (3 + 1)
1√

2 · 3 · (3 + 1)
= z3 + i3 · α

√
3 + 1

2 · 3
≤ b3,

i.e. ⌈
a3 − z3
α

√
2 · 3
3 + 1

⌉
≤ i3 ≤

⌊
b3 − z3
α

√
2 · 3
3 + 1

⌋
, (22)

have to be considered, because all other choices of i3 deliver an entry in the third
component that is not in the interval [a3, b3]. For each i3 fulfilling this inequality,
let us denote it i∗3, we can generate appropriate i2 components by observing that
gi with i = (0, 0, i∗3) has the entry

z∗2 := z2 + α · i∗3 · ε2 = z2 + α · i∗3 ·
1√

2 · 2 · (2 + 1)

in its second component. The appropriate i2s for i∗3 are thus given by considering
the formula for w2 and are easily seen to fulfill

a2 ≤ z∗2 + α · i2 · (2 + 1)ε2 = z2 + α · i∗3 · ε2 + α · i2 · (2 + 1)ε2 ≤ b2,
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12 H. Bjornsson and S. Hafstein

which can be written similarly to before as⌈
a2 − z∗2
α

√
2 · 2
2 + 1

⌉
≤ i2 ≤

⌊
b2 − z∗2
α

√
2 · 2
2 + 1

⌋
. (23)

Now, having fixed an i∗3 fulfilling (22) and subsequently an i∗2 for this i∗3 fulfilling
(23), we can in a similar manner compute appropriate i1s. The vector gi with
i = (0, i∗2, i

∗
3) has the entry

z∗1 := z1 + α · (i∗2ε1 + i∗3ε1) = z1 + α · (i∗2 + i∗3) · 1√
2 · 1 · (1 + 1)

in its first component. Similarly to before the appropriate i1s in (i1, i
∗
2, i
∗
3) are

read from an inequality:

a1 ≤ z∗1 +α · i1 ·(1+1)ε1 = z1 +α ·(i∗2 + i∗3) · 1√
2 · 1 · (1 + 1)

+α · i1 ·(1+1)ε1 ≤ b1

or ⌈
a1 − z∗1
α

√
2 · 1
1 + 1

⌉
≤ i1 ≤

⌊
b1 − z∗1
α

√
2 · 1
1 + 1

⌋
.

This recursive procedure computes all grid vectors gi ∈ Gα,z in the cube Ca,b
and is implemented in C++ using the Armadillo library [21] is given in Listing
1.1.

Listing 1.1. Code in C++ that generates the optimal grid

1 list<arma::vec> HexaGridnew(arma::vec a, arma::vec b, ...
double c, int N) {

2 a = a(span(0, N - 1));
3 b = b(span(0, N - 1));
4 double tol = 1e-10; // add a small tolerance to the cube
5 a -= tol*ones<vec>(N);
6 b += tol*ones<vec>(N);
7 list<vec> Ret;
8 unsigned int i, k;
9 vec e(N, fill::zeros);

10

11 for (k = 1; k <= N; k++) {
12 e(k - 1) = sqrt(1.0 / (2.0*k*(k + 1)));
13 }
14 vector<vec> w(N);
15 for (i = 1; i <= N; i++) {
16 vec v(N, fill::zeros);
17 for (int k = 1; k < i; k++) {
18 v(k - 1) = e(k - 1);
19 }
20 v(i - 1) = (i + 1)*e(i - 1);
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21 w[i - 1] = v;
22 }
23

24 function<void(int, vec)> ML = [&](int r, vec x) {
25 for (int i = int(ceil((a(r) - x(r)) / (c*(r + ...

2)*e(r)))); i <= int(floor((b(r) - x(r)) / ...
(c*(r + 2)*e(r)))); i++) {

26 if (r == 0) {
27 Ret.push back(x+i*c*w[r]);
28 }
29 else {
30 ML(r - 1, x + i*c*w[r]);
31 }
32 }
33 };
34 ML(N - 1, 0.5*c*w[N-1]);
35 return Ret;
36 }

5.4 Solving the linear system

The linear system of equations that we obtain when solving the interpolation
problem is defined by a symmetric and positive definite matrix A, see equation
(3). LAPACK [1] has specific methods for solving these types of equations, that
use the Cholesky decomposition of the matrix A = U>U , where U is upper
triangular with positive diagonal entries. The function DPOSV overwrites the
contents of the matrix A with the Cholesky decomposition U and solves the
system Aα = γ. The acronym is understood in the following way, D stands for
Double, PO stands for Symmetric or Hermitian positive definite and SV stands
for solve. This has much better numerical properties than solving the system
with e.g. LU-decomposition.

It is also possible to store the matrix A in packed format, that is, since A
is a symmetric matrix, we can store just the upper triangular part of it. This
saves a considerable amount of memory. LAPACK has functions for computing
the Cholesky decomposition of the matrix A in packed format. The function
DPPTRF calculates the Cholesky decomposition of A in packed format, over-
writing the contents of matrix A, and the function DPPTRS solves then the
system Aα = γ using the Cholesky factor computed by DPPTRF. Here the let-
ters PP stand for Symmetric or Hermitian positive definite in packed storage,
TRF means factorize to a product of triangular matrices, and TRS stands for
solving the factorized system using forward or backwards substitution.

For ease of usage we have implemented functions that calculate the interpo-
lation matrices described before, i.e. equations (3),(14),(20) and (21), for both
stochastic and deterministic dynamical systems. These are available in the soft-
ware repository.
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6 Software library

We have implemented the algorithm described in Section 4.2 in a software tool1

that generates C/C++ code versions of the Wendland functions in factorized
form. In a previous work [3], we determined that the most efficient and accurate
way to evaluate these Wendland functions was to use this factorized form. Eval-
uating these polynomials in fully expanded format using Horner’s scheme [8],
can lead to very large numerical errors as shown in [3]. We give a brief summary
of these results in a later section and in Table 1. Below in Listing 1.2 is a part of
the library generated by our tool, which shows the family of Wendland functions
obtained when starting with Ψ0(x) = ψ5,4(c‖x‖), where c > 0 is the constant
that controls the support of the radial function Ψ .

Listing 1.2. Generated code for the ψ6,4 family

1 double wendlandpsi 6 4 0(double x, double c){
2 double t= ipow((1.0-x),10);
3 t=1.0*t*(((((429)*x + 450)*x + 210)*x + 50)*x + 5);
4 return t;
5 }
6 double wendlandpsi 6 4 1(double x, double c){
7 double t= ipow((1.0-x),9);
8 t=-26.0*t* ipow(c,2)*((((231)*x + 159)*x + 45)*x + 5);
9 return t;

10 }
11 double wendlandpsi 6 4 2(double x, double c){
12 double t= ipow((1.0-x),8);
13 t=3432.0*t* ipow(c,4)*(((21)*x + 8)*x + 1);
14 return t;
15 }
16 double wendlandpsi 6 4 3(double x, double c){
17 double t= ipow((1.0-x),7);
18 t=-102960.0*t* ipow(c,6)*((7)*x + 1);
19 return t;
20 }
21 double wendlandpsi 6 4 4(double x, double c){
22 double t= ipow((1.0-x),6);
23 t=5765760.0*t* ipow(c,8)*(1);
24 return t;
25 }

Note that wendlandpsi 6 4 j corresponds to ψj in the example, but with
x = cr as argument.

When starting with Ψ0(x) = ψ6,3(c‖x‖) instead, the relevant definitions are
given in Listing 1.3.

1 The tool is available at https://gitlab.com/hjortur/wendland-function-generator/
with example outputs.
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Listing 1.3. Generated code for the ψ6,3 family

1 double wendlandpsi 6 3 0(double x, double c){
2 double t= ipow((1.0-x),9);
3 t=1.0*t*((((231)*x + 159)*x + 45)*x + 5);
4 return t;
5 }
6 double wendlandpsi 6 3 1(double x, double c){
7 double t= ipow((1.0-x),8);
8 t=-132.0*t* ipow(c,2)*(((21)*x + 8)*x + 1);
9 return t;

10 }
11 double wendlandpsi 6 3 2(double x, double c){
12 double t= ipow((1.0-x),7);
13 t=3960.0*t* ipow(c,4)*((7)*x + 1);
14 return t;
15 }
16 double wendlandpsi 6 3 3(double x, double c){
17 double t= ipow((1.0-x),6);
18 t=-221760.0*t* ipow(c,6)*(1);
19 return t;
20 }

Note that the polynomials wendlandpsi 6 3 1 and wendlandpsi 6 4 2 differ
only by a multiplication of a constant and a power of c, and both polynomials
are a representative of the Wendland function ψ6,2.

The function ipow(x,i) evaluates xi where x is a double and i is a positive
integer. We have “flattened” the functions wendlandpsi x y z in the sense that
their domain is [0, 1]. They require the user to pre-multiply the x value with
the chosen RBF-constant c > 0, that is for Ψ(x) = ψl,k(c‖x‖), the user needs
to pass in the value c‖x‖ and c after ensuring that c‖x‖ ∈ [0, 1]. A possible
implementation using the Armadillo library [21] can be see in listing 1.4.

Listing 1.4. Example usage

1 double psi3(const arma::vec &x, double c){
2 double cx=c*arma::norm(x,2);
3 return ( cx < 1.0 ) ? wendlandpsi 6 4 3(cx,c) : 0.0;
4 }

The tool is a simple Python script named wendlandfunctions.py. When the
script is run it outputs text for code- and header-files, which contain the Wend-
land function definitions. The user can supply the script with a parameter --l

and an integer value m ≥ 2, in order to output code for Wendland functions
from ψ2,1 up to ψm,i for all 0 ≤ i < m.

6.1 Example Lyapunov functions

Included in the repository are example outputs and example programs that
calculate Lyapunov functions for deterministic and stochastic systems, using the
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16 H. Bjornsson and S. Hafstein

software library that our tool generates and functions that generate the optimal
interpolation grid and the interpolation matrices. Figures 1, 2, 3, and 4 show
graphs of Lyapunov functions obtained from these example programs, where the
systems considered are:[

x′(t)
y′(t)

]
=

[
y(t)

−x(t)− (1− x(t)2)y(t)

]
, (24)

[
x′(t)
y′(t)

]
=

[
y(t)

−x(t) + 1
3x(t)3 − y(t)

]
, (25)

and the stochastic systems

dx = sin(x)dt+
3x

1 + x2
dW, (26)

dx =

[
‖x‖ − 1.0 1.0
−1.0 ‖x‖ − 1.0

]
xdt+ ‖x‖(‖x‖ − 0.5)(‖x‖ − 1.5)x dW. (27)

For the systems in the above equations we have used the optimal grid as
described in Section 5.3 as the collocation/interpolation points. Denoting by
B2(x, r) the 2 dimensional open ball around x with radius r and

Γr(N) =

{
r

(
cos

(
j2π

N

)
, sin

(
j2π

N

))
| j ∈ {1, . . . , N}

}
⊂ R2,

we used the following data to calculate the Lyapunov functions:

– Collocation grid on [−2, 2]× [−2, 2] \ B2(0, 0.1) with fill-distance parameter
α = 4

15 , LV (x) = −‖x‖, and ψ0(x) = ψ6,4(‖x‖) for the system in equation
(24);

– Collocation grid on [−1.4, 1.4]× [−1.4, 1.4] \ B2(0, 0.1) with fill distance pa-
rameter α = 2.8

20 , LV (x) = −‖x‖ and ψ0(x) = ψ5,3(‖x‖) for the system in
equation (25);

– Collocation grid on [0.1, 8.0] with fill distance parameter α = 1
400 , LV (x) =

10−4, V (0.1) = 0, V (8.0) = 1.0 and ψ0(x) = ψ7,6(2‖x‖) for the system in
equation (26);

– Collocation grid on [−2, 2]× [−2, 2] \ B2(0, 0.4) with fill distance parameter
α = 1

25 , LV (x) = 10−2, V (ξj) = 0 and V (βj) = 1 for all ξj ∈ Γ0.4(4) and
all βj ∈ Γ1.9(80). Furthermore we set ψ0(x) = ψ6,4(‖x‖), for the system in
equation (27).

Note that the resulting Lyapunov functions for the systems in equations (26)
and (27) in figures 3 and 4 are comparable to the results obtained in [5] and [15].

6.2 Comparison of evaluation methods

In the paper [3] we compared different methods of evaluation for Wendland
functions at a point. The methods used where:
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Fig. 1. Lyapunov function for the system in equation (24)
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Fig. 2. Lyapunov function for the system in equation (25)

– Having them in factorized form, as our software tool provides, see Listing
1.2;

– Fully expanded polynomials and evaluated using Horner’s Scheme, as in [2];
– Pre-computing the function in high precision (see below) at 107 evenly spaced

points on the interval [0, 1] and using them as a lookup table. That is, round
to the closest value;
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Fig. 3. Lyapunov function for the stochastic system in equation (26)
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Fig. 4. Lyapunov function for the stochastic system in equation (27)

– Using the same lookup table but additionally linearly interpolate between
two nearest neighbours to improve accuracy.

Table 1 shows time elapsed to evaluate the Wendland function ψ7,2 at 107

different points on the interval [0, 1], and the scale of the relative error obtained
on this interval. For further analysis see [3].
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Method / Processor i5-8250U i7-4790K Rel.error

Factorized form 171.5ms 107ms 10−13

Horner’s scheme 548.1ms 395ms 1

Lookup table 125.8ms 105ms 10−5

Lookup table with interpolation 165.5ms 128ms 10−9

Table 1. Evaluation of ψ7,2 at 107 different points, for different CPUs

7 Conclusion

In this paper we have presented a software tool for generating Wendland’s com-
pactly supported Radial Basis Functions in an optimal form. This tool generates
a C/C++ library for Wendland functions of arbitrary degree in factorized form.
Furthermore, this tool generates an entire family of these functions, used for
solving collocation problesm, for each initial Wendland function ψl,k. We have
also presented an algorithm that this software tool uses for generating Wendland
functions in this factorized form, for accurate and efficient evaluations. Finally,
we have created a software library for calculating Lyapunov functions for both
stochastic and deterministic dynamical systems, using these factorized Wendland
functions that our tool generates. All the software, with example usage, is avail-
able for download at https://gitlab.com/hjortur/wendland-function-generator/.

Acknowledgement: This research was supported by the Icelandic Research
Fund (Rannis), grant number 152429-051, Lyapunov Methods and Stochastic
Stability.
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Abstract: In this paper we describe an algorithm to determine Wendland’s Radial Basis Functions in a specific factorized
form. Additionally, we present a software tool that uses this algorithm to generate a C/C++ library that
implements the Wendland functions with arbitrary parameters in factorized form. This library is more efficient
and has higher numerical accuracy than previous implementations. The software tool is written in Python and
is available for download.

1 INTRODUCTION

Interpolation and collocation using Radial Basis
Functions (RBF), in particular compactly supported
RBFs, has been the subject of numerous research
activities in the past decades (Wu, 1992; Floater
and Iske, 1996; Franke and Schaback, 1998; Wend-
land, 1998; Buhmann, 2003; Buhmann, 2000; Wend-
land, 2005; Wendland, 2017). They are well suited
as kernels of Reproducing Kernel Hilbert Spaces
and their mathematical theory is mature. The au-
thors and their collaborators have applied Wend-
land’s compactly supported RBFs for computing Lya-
punov functions for nonlinear systems, both deter-
ministic (Giesl, 2007; Giesl, 2008; Giesl and Haf-
stein, 2015) and stochastic (Bjornsson et al., 2019).
Lyapunov functions are a useful tool to analyse sta-
bility of various dynamical systems, either determin-
istic or stochastic, cf. e.g. (Khalil, 2002; Sastry, 1999;
Vidyasagar, 2002; Khasminskii, 2012; Mao, 2008).
Various numerical methods have been used to find
Lyapunov functions for the systems at hand (Giesl and
Hafstein, 2015; Hafstein et al., 2018). Meshless col-
location using RBFs is one such method and many
different families of RBFs have been studied (Wend-
land, 2005).

In the papers (Giesl and Hafstein, 2015; Bjorns-
son et al., 2019) meshless collocation with so called
Wendland functions is used. The Wendland functions
are compactly supported radial functions, that are
polynomials on their support. The Wendland function

a https://orcid.org/0000-0003-0073-2765

family is defined in such a way that many tedious and
error prone calculations have to be done by hand in or-
der to obtain formulas for the functions to be used in
the software implementation in (Giesl and Hafstein,
2015; Bjornsson et al., 2019). In (Argaez et al., 2017)
an algorithm is proposed that determines the Wend-
land polynomials in expanded form, that is: for each
integer l,k ≥ 0 finds a list of numbers a0,a1, . . .ad
such that the Wendland function ψl,k(r) = ∑

d
i=0 airi

on its compact support. However, it was shown in
(Bjornsson and Hafstein, 2018) that the evaluations of
these polynomials in this form using typical schemes,
such as Horner’s scheme, can lead to significant nu-
merical errors.

Evaluating the Wendland functions in factorized
form (Bjornsson and Hafstein, 2018) is more effi-
cient and numerically accurate, so we propose an al-
ternate algorithm to determine the functions in factor-
ized form. In addition to developing the algorithm,
we implemented it and created a software tool that
generates a reusable software library, which imple-
ments these Wendland polynomials in factorized form
in C/C++.

2 BACKGROUND

In the paper (Bjornsson et al., 2019), meshless collo-
cation using RBFs was used to calculate Lyapunov
functions for various Stochastic Differential Equa-
tions (SDE). This included computing, for a given do-
main Ω⊂Rn and a boundary Γ⊂Rd , a solution to the
Partial Differential Equation (PDE)
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{
LV (x) = h(x) x ∈Ω

V (x) = c(x) x ∈ Γ,
(1)

where L is a certain second-order differential op-
erator, and h and c are appropriately chosen functions.
A numerical solution to the above problem was deter-
mined by choosing points X1 = {x1, . . . ,xN} ⊂Ω and
X2 = {ξ1, . . . ,ξM} ⊂ Γ and solving the interpolation
problem{

LV (xi) = h(xi) for all i = 1, . . . ,N
V (ξi) = c(ξi) for all i = 1, . . . ,M.

The solution to this interpolation problem is given by

V (x) =
N

∑
k=1

αk(δxk ◦L)y
ψ(‖x− y‖)

+
M

∑
k=1

αN+k(δξk
◦L0)y

ψ(‖x− y‖), (2)

where δyV (x) = V (y), the superscript y denotes that
the operator is applied with respect to the variably y,
and the operator L0 is the identity operator. Here the
function ψ is a compactly supported RBF (Wendland,
2017). The constants αi are determined as a solution
to the linear system Aα = γ, where A is the symmetric
and positive definite matrix

A =

[
B C

CT D

]
and the matrices B = (b jk) j,k=1,...,N , C =
(c jk) j=1,...,N,k=1,...,M and D = (d jk) j,k=1,...,M have
elements:

b jk = (δx j ◦L)x(δxk ◦L)y
ψ(x− y)

c jk = (δx j ◦L)x(δξk
◦L0)y

ψ(x− y)

d jk = (δξ j ◦L0)x(δξk
◦L0)y

ψ(x− y).

To compute such a Lyapunov function a large num-
ber of evaluations of the function ψ and its derivatives
is necessary. To verify the properties of a Lyapunov
function for the function computed, even more eval-
uations are necessary. Therefore, it turned out to be
essential that these evaluations could be carried out in
an efficient and accurate way.

3 WENDLAND FUNCTIONS

The Wendland functions are a family of functions, de-
pending on two parameters l,k ∈ N0 defined by

ψl,0(r) = [(1− r)+]
l (3)

and

ψl,k+1(r) =Cl,k+1

∫ 1

r
tψl,k(t)dt, (4)

where (1− r)+ := max{1− r,0} and Cl,k+1 6= 0 is a
constant. For interpolation and collocation using a
particular Wendland function, the value of the con-
stant Cl,k+1 6= 0 is not of importance because the
Wendland function appears linearly on both sides of a
linear equation. Therefore, one can just fix values that
are convenient for the problem at hand and we will do
this in the following section. These functions satisfy
the relation

−Cl,k+1ψl,k(r) =
d
dr ψl,k+1(r)

r
. (5)

It is not difficult to verify that the functions

Φl,0(r) = [(1− r)+]
l and (6)

Φl,k(r) =
∫ 1

r
Φl,0(t)t(t2− r2)k−1dt for k > 0 (7)

also satisfy a relation of the form

−2(k−1)Φl,k(r) =
d
dr Φl,k+1(r)

r
,

for all integers k, l≥ 0, i.e. a relation identical to equa-
tion (5) with Cl,k+1 = 2(k−1). Just note that

d
dr

∫ 1

r
Φl,0(t)t(t2− r2)k−1dt

=−2r(k−1)
∫ 1

r
Φl,0(t)t(t2− r2)k−2dt.

Therefore (7) delivers an alternative way to de-
fine the Wendland functions, see (Wendland, 2017).
Note that (Wendland, 2017) uses a different number-
ing scheme of the functions than we do.

The Wendland functions have several important
properties, cf. e.g. (Giesl, 2007, Prop. 3.10):

1. ψl,k(r) is a polynomial of degree l + 2k for r ∈
[0,1] and supp(ψl,k) = [0,1].

2. The radial function Ψ(x) := ψl,k(‖x‖) is C2k at 0.

3. ψl,k is Ck+l−1 at 1.

Frequently we fix the parameter l :=
⌊ n

2

⌋
+ k+1,

where n is the space dimension we are working in, and
a constant c > 0 to fix the support. By the properties
stated above, the radial function Ψ(x) := ψl,k(c‖x‖)
is then a C2k function with supp(Ψ) = Bd(0,c−1) ⊂
Rn, where Bn(0,c−1) is the closed n-dimensional ball
around the origin with radius c−1.
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4 ALGORITHM

We represent d-degree polynomials ∑
d
i=0 ait i as a list

of coefficients (a0,a1, . . . ,ad). Our implementation
uses Python with List objects. Addition and multipli-
cation of polynomials of this form are easily imple-
mented as:

d1

∑
i=0

ait i +
d2

∑
j=0

b jt j =
max{d1,d2}

∑
i=0

(ai +bi)t i,

where ai = 0 for i > d1 and b j = 0 for j > d2. Multi-
plication is given by(

d1

∑
i=0

ait i

)(
d2

∑
j=0

b jt j

)
=

d1+d2

∑
i=0

cit i,

where
ci = ∑

k+ j=i
akb j.

An antiderivative of a polynomial is given by

(a0,a1,a2, . . . ,ad) 7→ (0,a0,
a1

2
,

a2

3
, . . . ,

ad

d +1
),

corresponding to∫ d

∑
i=0

ait idt =
d

∑
i=0

ai

i+1
t i+1,

and differentiation by

(a0,a1, . . . ,ad) 7→ (a1,2a2,3a3, . . . ,dad).

In order to maximize exact calculations up to com-
puter limitations, we store the coefficients as tuples
of Integers, numerator and denominator, avoiding the
floating point approximation. Specifically, we used
the Rational class provided in Python. We can repre-
sent polynomials in two variables as a polynomial in
the first variable where each coefficient is a polyno-
mial in the second variable (of which each coefficient
is a rational number).

4.1 Construction

To calculate a polynomial representing the Wendland
function ψl,k on the interval [0,1] we start by fixing
the derivative

p′(t) = (1− t)lt(t2− r2)k−1,

see (7), which we represent as a polynomial in t with
each coefficient a polynomial in r. We integrate with
respect to t and obtain a new polynomial p(t) in t,
again with coefficients that are polynomials in r. We
evaluate the polynomial p at t = 1 and at t = r, which
in both cases result in a polynomial in r, and we obtain

the polynomial ψ(r) = p(1)− p(r). Note that ψ(r) =
C1ψl,k(r) for some constant C1 6= 0.

By using a long division algorithm we factor ψ

into the form

ψ(r) =C2(1− r)l+k pl,k(r) (8)

such that pl,k(r) is a polynomial with integer coeffi-
cients with no common factors. This is possible since
ψl,0 has a zero of order l at 1, and by using the recur-
sive relation in equation (4), we see that ψl,k has a zero
of order l + k at 1. Since ψl,k is essentially only de-
fined up to a multiplicative non-zero constant, we dis-
card the constant C2 and use ψ(r) = (1− r)l+k pl,k(r),
a polynomial with integer coefficients, as a starting
point for our recursion.

Using the relation in (5), ignoring the constant
Cl,k, we see that

ψl,k−1(r) =
d
dr

[
(1− r)l+k pl,k(r)

]
r

(9)

=
1
r
(1− r)l+k−1((1− r)p′l,k(r)− (l + k)pl,k(r)).

Therefore we have

pl,k−1(r) :=
ψl,k−1(r)

(1− r)l+k−1 (10)

=
1
r

[
(1− r)p′l,k(r)− (l + k)pl,k(r)

]
.

We know that ψl,k−1 is a polynomial, therefore
d
dr

[
(1− r)l+k pl,k(r)

]
must by divisible by the mono-

mial r. Since (1− r)l+k−1 is not divisible by r, the
right-hand side of (10) must be a polynomial in r.
Therefore pl,k−1 is a well defined polynomial.

By pulling out the common factor bk−1 ∈ Z of
the coefficients in pl,k−1 we obtain a new polynomial
p̂l,k−1 and a constant bk−1 such that

pl,k−1 = bk−1 p̂l,k−1.

Repeating this step, until we arrive at pl,0, we get a
collection of polynomials in the form

ψi(r) = b1 · · ·bi(1− r)l+k−i p̂l,k−i(r), i = 1,2, . . . ,k
(11)

where each of the polynomials p̂l,k−i(r) has integer
coefficients and each of the constants bi is a negative
integer.

The above list follows the notation in (Giesl,
2007) were ψ0 is the polynomial given in (8) and is
equal to the Wendland function ψl,k, and ψ1, . . . ,ψi
are the Wendland functions given by ψl,k−1, . . . ,ψl,k−i
respectively, see equation (4). It is important to keep
track of the constants b1, . . . ,bi in (11) as they are nec-
essary for correct evaluation of formula (2).
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4.2 Example

To see how the algorithm works let us consider how
it computes the Wendland function ψl,k for l = 5 and
k = 4. Here p′(t) = (1− t)5t(t2− r2)3 and we obtain

ψ(r) =
∫ 1

r
(1− t)5+4t(t2− r2)3dt

=− 16
3003

r13 +
1

24
r12− 32

231
r11 +

1
4

r10− 16
63

r9

+
1
8

r8− 1
42

r6 +
1

168
r4− 1

924
r2 +

1
10296

=
1

72072
(1− r)9(384r4 +453r3 +237r2 +63r+7)

and set ψ0(r) = (1− r)9(384r4 + 453r3 + 237r2 +
63r+ 7). For r ∈ [0,1] we have the formulas (recall
that ψl,k(r) = 0 if r /∈ [0,1]):

ψ5,4(r) = ψ0(r)

= (1− r)9(384r4 +453r3 +237r2 +63r+7)

ψ5,3(r) = ψ1(r) =
d
dr ψ0(r)

r
=−156(1− r)8(32r3 +25r2 +8r+1)

ψ5,2(r) = ψ2(r) =
d
dr ψ1(r)

r
= 3,432(1− r)7(16r2 +7r+1)

ψ5,1(r) = ψ3(r) =
d
dr ψ2(r)

r
=−82,368(1− r)6(6r+1)

ψ5,0(r) = ψ4(r) =
d
dr ψ3(r)

r
= 3,459,456(1− r)5

Note that we have, indeed, computed a lot more useful
information than just a family of Wendland functions
ψ5,i, i = 0,1, . . . ,4. In our algorithm, for a fixed l,k,
we have

ψl,k− j = ψ j(r) =
d
dr ψ j−1(r)

r

=
d
dr ψl,k− j+1(r)

r
, for j = 1, . . . ,k,

and we have thus delivered all the radial basis func-
tions needed for a collocation problem. This corre-
sponds to computing a whole table as in (Giesl, 2007,
Table 3.1), but for a collocation problem with arbi-
trary high derivatives. In the software tool, discussed
in the next section, also the constant c > 0 used to fix
the support of the Wendland function, is included in
these computations.

5 SOFTWARE LIBRARY

We have implemented the above algorithm in a soft-
ware tool1 that generates C/C++ code versions of the
Wendland functions in factorized form. In a previous
work (Bjornsson and Hafstein, 2018), we determined
that the most efficient and accurate way to evaluate
these Wendland functions was to use this factorized
form. Evaluating these polynomials in fully expanded
format using Horner’s scheme (Burrus et al., 2003),
can lead to very large numerical errors as shown in
(Bjornsson and Hafstein, 2018). Below is a part of the
library generated by our tool, which shows the family
of Wendland functions obtained when starting with
Ψ0(x) = ψ5,4(c‖x‖), where c > 0 is the constant that
controls the support of the radial function Ψ.

Listing 1: Generated code for the ψ5,4 family.

1 do ub l e w e n d l a n d p s i 5 4 0 ( do ub l e x , ...
do u b l e c ) {

2 do ub l e t = i p o w ( ( 1 .0 - x ) , 9 ) ;
3 t =1 . 0 * t * ( ( ( ( ( 3 8 4 ) *x + 453) *x + ...

237) *x + 63) *x + 7) ;
4 r e t u r n t ;
5 }
6 do ub l e w e n d l a n d p s i 5 4 1 ( do ub l e x , ...

do u b l e c ) {
7 do ub l e t = i p o w ( ( 1 .0 - x ) , 8 ) ;
8 t = -156 . 0 * t * i po w ( c , 2 ) * ( ( ( ( 3 2 ) *x ...

+ 25) *x + 8) *x + 1) ;
9 r e t u r n t ;

10 }
11 do ub l e w e n d l a n d p s i 5 4 2 ( do ub l e x , ...

do u b l e c ) {
12 do ub l e t = i p o w ( ( 1 .0 - x ) , 7 ) ;
13 t =3432 . 0 * t * i po w ( c , 4 ) * ( ( ( 1 6 ) *x ...

+ 7) *x + 1) ;
14 r e t u r n t ;
15 }
16 do ub l e w e n d l a n d p s i 5 4 3 ( do ub l e x , ...

do u b l e c ) {
17 do ub l e t = i p o w ( ( 1 .0 - x ) , 6 ) ;
18 t = -82368 . 0 * t * i po w ( c , 6 ) * ( ( 6 ) *x ...

+ 1) ;
19 r e t u r n t ;
20 }
21 do ub l e w e n d l a n d p s i 5 4 4 ( do ub l e x , ...

do u b l e c ) {
22 do ub l e t = i p o w ( ( 1 .0 - x ) , 5 ) ;
23 t =3459456 . 0 * t * i po w ( c , 8 ) * ( 1 ) ;
24 r e t u r n t ;
25 }

Note that wendlandpsi 5 4 j corresponds to
ψ j in the example, but with x = cr as argument.

When starting with Ψ0(x) = ψ5,3(c‖x‖) instead,
the relevant definitions are:

1The tool is available at https://gitlab.com/hjortur/
wendland-function-generator/ with example outputs.
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Listing 2: Generated code for the ψ5,3 family.

1 do ub l e w e n d l a n d p s i 5 3 0 ( do ub l e ...
x , d o ub l e c ) {

2 do ub l e t = i p o w ( ( 1 .0 - x ) , 8 ) ;
3 t =1 . 0 * t * ( ( ( ( 3 2 ) *x + 25) *x + ...

8) *x + 1) ;
4 r e t u r n t ;
5 }
6 do ub l e w e n d l a n d p s i 5 3 1 ( do ub l e ...

x , d o ub l e c ) {
7 do ub l e t = i p o w ( ( 1 .0 - x ) , 7 ) ;
8 t = -22 . 0 * t * i p o w ( c , 2 ) * ( ( ( 1 6 ) *x ...

+ 7) *x + 1) ;
9 r e t u r n t ;

10 }
11 do ub l e w e n d l a n d p s i 5 3 2 ( do ub l e ...

x , d o ub l e c ) {
12 do ub l e t = i p o w ( ( 1 .0 - x ) , 6 ) ;
13 t =528 . 0 * t * i p o w ( c , 4 ) * ( ( 6 ) *x ...

+ 1) ;
14 r e t u r n t ;
15 }
16 do ub l e w e n d l a n d p s i 5 3 3 ( do ub l e ...

x , d o ub l e c ) {
17 do ub l e t = i p o w ( ( 1 .0 - x ) , 5 ) ;
18 t = -22176 . 0 * t * i po w ( c , 6 ) * ( 1 ) ;
19 r e t u r n t ;
20 }

Note that the polynomials wendlandpsi 5 3 1
and wendlandpsi 5 4 2 differ only by a multipli-
cation of a constant and a power of c, and both poly-
nomials are a representative of the Wendland function
ψ5,2.

The function ipow(x,i) evaluates xi where x is
a double and i is a positive integer. A possible efficient
implementation is given by:

Listing 3: Exponentiation routine.

1 / / F u n c t i o n f o r f a s t s q u a r i n g t o ...
i n t e g e r power

2 / / P o s t e d by u s e r E l i a s Yarrkov on ...
S t a c k o v e r f l o w .

3 s t a t i c do u b l e i p o w ( d o u b l e base , ...
i n t exp ) {

4 do ub l e r e s u l t = 1 . 0 ;
5 f o r ( ; ; ) {
6 i f ( exp & 1)
7 r e s u l t *= b ase ;
8 exp >>= 1 ;
9 i f ( ! exp )

10 b r e a k ;
11 b ase *= bas e ;
12 }
13 r e t u r n r e s u l t ;
14 }

The functions wendlandpsi x y z have been
“flattened” in the sense that their domain is [0,1].
They require the user to premultiply the x value with
the chosen RBF-constant c > 0, that is for Ψ(x) =

ψl,k(c‖x‖), the user needs to pass in the value c‖x‖
and c after ensuring that c‖x‖ ∈ [0,1]. A possible im-
plementation using the Armadillo library (Sanderson,
2010) could, for example, be:

Listing 4: Example usage.

1 d o u b l e p s i 3 ( c o n s t arma : : vec &x , ...
do ub l e c ) {

2 d o ub l e cx=c * arma : : norm ( x , 2 ) ;
3 r e t u r n ( cx < 1 . 0 ) ? ...

w e n d l a n d p s i 5 4 3 ( cx , c ) ...
: 0 . 0 ;

4 }

The tool is a simple Python script named wend-
landfunctions.py. When the script is run it outputs
text for code- and header-files, which contain the
Wendland function definitions. The user can supply
the script with a parameter --l and an integer value
m≥ 2, in order to output code for Wendland functions
from ψ2,1 up to ψm,i for all 0≤ i < m.

5.1 Performance

In previous work (Bjornsson and Hafstein, 2018)
we have compared different method to evalute these
Wendland functions. The methods used for point
evaluation were:

• Having them in factorized form, as our software
tool provides, see Listing 1.

• Fully expanded polynomials and evaluated using
Horners Scheme, as in (Argaez et al., 2017).

• Precomputing the function in high precision (see
below) at 107 evenly spaced points on the interval
[0,1] and using them as a lookup table. That is,
look up the closes value.

• Using the same lookup table but additionally lin-
early interpolate between two nearest neighbours
to improve accuracy.

Figure 1 shows the performance of evaluating ψ7,2
at 107 different points on the interval [0,1], and Figure
2 shows the highest relative error at these points, with
these four different methods. To estimate the relative
error we calculated the value of the polynomial ψ7,2 in
Matlab using variable precision arithmetic (VPA), up
to 32 significant digits, then rounded the value to the
closest double precision floating point number. Note
that the factorized form and Lookup-table are close
in speed, but the factorized form gives much greater
accuracy.
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Figure 1: Running time of evaluating ψ7,2 at 107 points.

Factorized Horner Lookup Lookup-interp

Method of evaluation

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

Figure 2: Relative error of evaluations of ψ7,2. Note the
logarithmic scale of the y-axis.

6 CONCLUSION

We have developed an algorithm and created a tool to
generate a C/C++ library for Wendland’s compactly
supported Radial Basis Functions with arbitrary
parameters in a factorized form. This allows for the
efficient and numerically accurate evaluation of these
functions. This is desirable since previously they
were generated in a non-optimal form or had to be
evaluated by hand, which is a tedious and error prone
process. Additionally, the software generates a whole
family of Wendland functions suitable for solving
collocation problems for each initial Wendland
function ψl,k and its support radius c−1. The tool
takes less than a second to output the .c and .h files
for all the Wendland function families up to and
including order 8.
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Verification of a Numerical Solution to a Collocation Problem
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Abstract: In a recent method to compute Lyapunov functions for nonlinear stochastic differential equations a subsequent
verification of the results is needed. The theory has been developed but there are several practical difficulties in
its implementation because of the huge amount of function evaluations needed during verification. We study
several different methods and compare their accuracy and efficiency.

1 INTRODUCTION

We will discuss numerical solutions to Partial Dif-
ferential Equations (PDE) that arise when computing
Lyapunov functions for Stochastic Differential Equa-
tions (SDE) and, in particular, how the validity of the
computed Lyapunov functions can be verified numer-
ically. In a novel numerical method (Bjornsson et al.,
2018) we obtain a numerical solution to a PDE, and
that solution is supposed to be a Lyapunov function
for a certain SDE. To guarantee that the numerical so-
lution is in fact a Lyapunov function, we have an error
estimate which states that if the value of the numerical
solution on a certain grid of points is lower then some
constant, then the numerical solution is indeed a Lya-
punov function for the system. The theory support-
ing this novel method was developed in (Gudmunds-
son and Hafstein, 2018; Hafstein et al., 2018), and in
(Bjornsson et al., 2018) the method is developed and
it is shown that it converges to a true Lyapunov func-
tion if the collocation grid used for the numerical so-
lution of the PDE is sufficiently dense. However, one
must verify a posteriori on an evaluation grid that the
collocation grid was indeed adequate. An issue with
the method is that the evaluation grid is so dense that
we need to evaluate the computed Lyapunov function
at typically 109, and even up to 1016, points. Note
that the Lyapunov function is computed using Radial
Basis Functions (RBF) and to evaluate it at a point,
one must sum over all the RBFs used in the compu-
tation, i.e. the sum contains a number of terms that
is equal to the number of the collocation points used.
Here we will compare the numerical errors and per-
formances of various methods used for this nontrivial
and involved evaluation.

2 BACKGROUND

For completeness we give a quick background with
many of the details omitted. For full details see (Gud-
mundsson and Hafstein, 2018; Hafstein et al., 2018;
Bjornsson et al., 2018). We consider a d-dimensional
SDE of the form

dX(t) = f (X(t))dt +g(X(t))dW (t), (1)

where f : Rd→Rd , g : Rd→Rd×Q, f (0) = g(0) = 0,
and W (t) is a Q-dimensional Brownian motion. We
are specifically interested in the stability of the trivial
solution X = 0 of the system.

Let Ω ⊂ Rd be a bounded domain with a smooth
boundary Γ = ∂Ω. We solve numerically the bound-
ary problem of the PDE given by:

{
LV (x) = r(x) for x ∈Ω,

V (x) = c(x) for x ∈ Γ,
(2)

where L denotes the following differential operator
associated with the system given in equation (1):

LV (x) =
1
2

d

∑
i, j=1

mi j(x)
∂2v

∂xi∂x j
(x)+

d

∑
i=1

fi(x)
∂v
∂xi

(x), (3)

where (mi j(x))i, j = g(x)g(x)>. For suitable functions
r(x) and c(x) the solution to this PDE will be a Lya-
punov function asserting the asymptotic stability in
probability of the trivial solution and we can use it to
estimate its probabilistic basin of attraction.

To solve this PDE numerically we use the RBF
method similar to (Giesl, 2007; Giesl, 2008; Giesl
and Wendland, 2007), where Lyapunov functions are
computed for deterministic ordinary differential equa-
tions (ODEs), but adapted to SDEs. Given a set
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of points X1 = {x1, . . . ,xN} ⊂ Ω ⊂ Rd and X2 =
{ξ1, . . . ,ξM} ⊂ Γ, we solve the interpolation problem

{
LV (xi) = r(xi) for all i = 1, . . . ,N,

V (ξi) = c(ξi) for all i = 1, . . . ,M.
(4)

The solution to the interpolation problem is given by

V (x) =
N

∑
k=1

αk(δxk ◦L)yψ(‖x− y‖)

+
M

∑
k=1

αN+k(δξk
◦L0)yψ(‖x− y‖)

(5)

where δyV (x) = V (y) and the superscript y denotes
that the operator is applied with respect to the vari-
able y, L0 = id and ψ = ψl,k is a so-called Wend-
land function, which are compactly supported RBFs
(Wendland, 1998). The constants αk in equation (5)
can be determined as the solution to a certain linear
system Aα = γ, where the matrix A is symmetric and
positive definite; see (Bjornsson et al., 2018) for full
details on the matrix A and the vector γ.

2.1 Lyapunov Function

The method described in the preceding section is
used to compute a certain Lyapunov function for
the system (1), whose domain does not include the
equilibrium at the origin, hence the name non-local
Lyapunov function. Again see (Gudmundsson and
Hafstein, 2018; Hafstein et al., 2018; Bjornsson et al.,
2018) for details.

Definition (Non-Local Lyapunov Function). Let
A ,B ⊂ Rd , B ⊂ A◦, be simply connected compact
neighbourhoods of the origin with C2 boundaries
and set U := A \B◦. A function V ∈ C2(U) for the
system (1) such that

(1) 0≤V (x)≤ 1 for all x ∈U,

(2) LV (x)< 0 for all x ∈U, and

(3) V−1(0) = ∂B and V−1(1) = ∂A ,

is called a non-local Lyapunov function for the
system (1), and we refer to ∂B and ∂A is the inner
and outer boundary of U, respectively.

To compute a non-local Lyapunov function for the
system (1) we look for solutions of the PDE (2) with
r(x) = −h where h > 0 is a small constant, c(x) = 1
for x ∈ ∂A and c(x) = 0 for x ∈ ∂B . Because we
compute a numerical approximation to the solution

of the system we can not expect LV (x) = −h to hold
for all x ∈ U, but since the definition of a non-local
Lyapunov function only requires LV (x) < 0, our nu-
merical approximation will still be a true Lyapunov
function as long as there is no point in x ∈ U with
LV (x) ≥ 0. In this paper we are concerned with the
numerical verification of the condition that LV (x)< 0
holds for all x ∈ U. The theory for this verification
is developed in (Bjornsson et al., 2018). Here we are
interested in the nontrivial technical details of its effi-
cient implementation.

2.2 Explicit Formulas

For the explicit computations of our Lyapunov func-
tion, one must choose a specific Wendland function
ψk,l(x), where the indices k, l are non-negative inte-
gers. In the one dimensional case we have used ψ7,6
and for two dimensional cases we used ψ8,6. Note
that there are certain restriction on the indices of the
Wendland function for the problem at hand and in our
computations we need at least these rather large in-
dices.

For example, assuming we are using the Wend-
land function ψ7,6 and the RBF constant c > 0, we
define by some abuse of notation ψ0(r) := ψ7,6(cr)
for r ≥ 0. Then we define ψi+1(r) = 1

r
∂
∂r ψi(r) re-

cursively for i = 0,1,2,3. Finally, we define Wi(x) =
ψi(x/c). The formulas for the functions Wi starting
with ψ0 := ψ7,6 are the following:

W0(x) = (1− x)13(4096x6 +7059x5 +5751x4

+2782x3 +830x2 +143x+11),
(6)

W1(x) = −38c2(1− x)12(2048x5 +2697x4

+1644x3 +566x2 +108x+9),
(7)

W2(x) = 10336c4(1− x)11(128x4

+121x3 +51x2 +11x+1),
(8)

W3(x) = −62016c6(1− x)10(320x3

+197x2 +50x+5), and
(9)

W4(x) = 3224832c8(1− x)9(80x2 +27x+3). (10)

Note that these formulas are only valid for 0 ≤ x ≤ 1
and for x > 1 we have Wi(x) = 0. The parameter c is
referred to as the RBF constant and is used to control
the size of the support of the functions Rd→Rd , x 7→
ψi(‖x‖), i.e. the support is a ball of radius 1/c around
the origin.

The explicit formulas for V (x) and LV (x) from our
numerical solution to the interpolation problem (4),
and by writing β = x−xk for brevity, are given by the
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following expressions:

V (x) =
N

∑
k=1

αk

[
−ψ1(‖β‖)〈β, f (xk)〉

+
1
2

d

∑
i, j=1

mi j[ψ2(‖β‖)βiβ j

+δi jψ1(‖β‖)]
]

+
M

∑
k=1

αN+kψ0(‖β‖) (11)

and

LV (x)

=
N

∑
k=1

αk

[
−ψ2(‖β‖)〈β, f (x)〉〈β, f (xk)〉

−ψ1(‖β‖)〈( f (x), f (xk))〉

+
1
2

d

∑
i, j=1

mi j(xk)

[
ψ3(‖β‖)〈β, f (x)〉βiβ j

+ψ2(‖β‖) f j(x)βi

+ψ2(‖β‖) fi(x)β j +δi jψ2(‖β‖)〈β, f (x)〉
]

+
1
2

d

∑
i, j=1

mi j(x)
[
−ψ3(‖β‖)〈β, f (xk)〉βiβ j

−ψ2(‖β‖) f j(xk)βi

−ψ2(‖β‖) fi(xk)β j−δi jψ2(‖β‖)〈β, f (xk)〉
]

+
1
4

d

∑
r,s=1

d

∑
i, j=1

mrs(x)mi j(xk)

[
ψ4(‖β‖)βiβ jβrβs

+ψ3(‖β‖)[δi jβrβs +δirβ jβs

+δisβ jβr +δ jrβiβs +δ jsβiβs +δrsβiβ j]

+ψ2(‖β‖)[δi jδrs +δirδ js +δisδ jr]

]]

+
M

∑
k=1

αN+k

[
−ψ1(‖ξk− x‖)〈ξk− x, f (x)〉

+
1
2

d

∑
i, j=1

mi j(x)[ψ2(‖ξk− x‖)(ξk− x)i(ξk− x) j

+δi jψ1(‖ξk− x‖)]
]
. (12)

In these formulas α = (α1,α2, . . . ,αN+M)> is the so-
lution to Aα = γ associated with the interpolation
problem (4) and βi is the i-th component of the vector
β = x− xk. Note the above formulas are independent
of which Wendland function ψk,l we start with in the
beginning.

3 VERIFICATION

Let A ,B , and U be as in the definition of non-local
Lyapunov functions and let V (x) be a numerical ap-
proximation like is described afterwards. Now by
(Bjornsson et al., 2018, Theorem 4.3), if

ν := max
y∈YU

LV (y)+Cu
d2

4
h2 < 0, (13)

then V is a non-local Lyapunov function for the sys-
tem. Here d is the dimension of the system, h > 0
is a parameter controlling the density of the evalua-
tion grid, and YU is the evaluation grid that covers
U. Finally the constant CU is an upper estimate on
the second derivatives of our function LV , for further
details see (Bjornsson et al., 2018; Mohammed and
Giesl, pted).

3.1 One Dimensional Example

For an explicit example let us consider the one dimen-
sional SDE from (Bjornsson et al., 2018)

dx(t) = sin(x(t))dt +
3x(t)

1+ x(t)2 dW (t), (14)

where W is a one dimensional Brownian motion. We
determine an approximate solution to the PDE:





LV (x) =−10−3 for 10−2 < x < 8,
V (x) = 0 for x = 10−1,

V (x) = 1 for x = 8.
(15)

The approximate solution was determined using the
Wendland function ψ7,6, the RBF constant c = 2, and
700 evenly spaced collocation points on the interval
[1.1 ·10−2,7.99]. Figure 1 shows the numerical solu-
tion to PDE (15), for the system in equation (14). For
this system and these values the estimate CU is equal
to 1.6846 ·1012.
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Figure 1: Numerical solution of V (x) in equation (15).
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By estimating through rough computations that
the maximum value of our numerical approximation
to LV (x) is 0.3× 10−3, we get by setting ν = 0 in
equation (13)

h =

√
4 ·0.3 ·10−3

1.6846
= 2.6 ·×10−8.

To give us some safety, which is needed since ν has to
be strictly negative, we choose h = 2.18 · 10−8. This
corresponds to evaluating the function LV at 7.5 ·108

evenly spaced points YU on the interval [10−2−h,8+
h]. This large number of points that needs to be evalu-
ated takes about 10 seconds on a normal desktop com-
puter (i7 4790k). The maximum value of LV found on
this grid is −0.281 ·10−3 and thus

ν =−0.281 ·10−3 +0.19119 ·10−3 < 0,
so our approximation is a non-local Lyapunov func-
tion.

3.2 Two Dimensional Example

For a second explicit example consider the two di-
mensional system from (Grüne and Camilli, 2003)
also studied in (Bjornsson et al., 2018), given by

dx(t) = (M+ρ(x(t))I)x(t)dt +g(x(t))dW (t), (16)
where W is a one dimensional Brownian motion, I the
2×2-identity matrix,

M =

[
0 1
−1 0

]
, ρ(x) = ‖x‖−1,

and

g(x) = ‖x‖
(
‖x‖− 1

2

)(
‖x‖− 3

2

)
x.

We find an approximate solution to the PDE, LV (x) =
−10−2, on an annulus around the origin with inner
radius 0.4 and outer radius 1.9 with V (x) = 0 for
‖x‖ = 0.4 and V (x) = 1 for ‖x‖ = 1.9. To calcu-
late the approximation we used the Wendland func-
tion ψ8,6 and a grid of 80× 80 points evenly spaced
on the annulus. Figure 2 shows the resulting numer-
ical approximation for the system in equation (16).
For this system, and using ψ8,6, the constant CU is
determined to be 4.3220 ·1012, and following similar
calculations as in the preceding section we estimate
the maximum value of LV to be ≈−0.005, this gives
us h = 3.4013 ·10−8, so we need to evaluate LV on a
grid with (1.1760 ·108)2 ≈ 1016 points.

3.3 Comparison of Methods

In the inner-most loop of our program we have to
evaluate Wi, i = 1,2,3,4. For simplicity we con-
sider only the polynomials resulting from the Wend-
land function ψ7,6 given by equations (7)-(10) and we

-0.5

2

0

1 2

0.5

1

1

0

1.5

0
-1

-1

-2 -2

Figure 2: Numerical solution of V (x) for the two dimen-
sional system (16).

fixed c = 2; the function (6) is unused as LV does
not depend on it. We tried different Wendland func-
tions but the results were comparable. Fast evaluation
of these functions is critical for the performance of
our verification, therefore we tested 5 different eval-
uation methods: having these functions hardcoded in
factorized form as in (7)-(10), expanding the polyno-
mials and using Horner’s method for the evaluation,
using Lookup-tables, using a Lookup-table and addi-
tionally applying linear interpolation, and combining
the two previous approaches on different subintervals.
All tests were written in C and compiled using gcc
with optimization flag -O2. The figures in the fol-
lowing section only show function (10) since it has
the largest numerical errors. The errors for the other
functions, i.e. (7)-(9), are qualitatively identical but of
lower magnitude.

3.3.1 Evaluation with Hardcoded Functions

We hardcoded the polynomials as they are written in
equations (7)-(10).
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Figure 3: Absolute error as a function of x of W4 using Hard-
coded Functions. Note the scale on the y-axis is ×10−6.
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Figure 4: Relative error as a function of x of W4 using Hard-
coded Functions. Note the scale on the y-axis is ×10−14.

Figures 3 and 4 show the absolute and relative
error, respectively, of the function W4 compared to
the values obtained from infinite precision arithmetic
truncated to 64-bit floating point values. These fig-
ures show us that this method, i.e. having hardcoded
functions, gives us the best accuracy out of all of the
methods tested.

3.3.2 Evaluation using Horner’s Method

We expanded the polynomials, i.e. obtained coeffi-
cients an,an−1, . . . ,a0 such that

Wi(x) = anxn +an−1xn−1 + · · ·+a0.

Obviously the coefficients ai depend on which Wend-
land function ψk,l we started with. Having the poly-
nomials in expanded form allows us to evaluate them
at any point x using the following scheme (Horner’s
method):
Horner(x, [a_n])

acc:=0;
for(i=n;i>=0;i--)

acc=acc*x;
acc=acc+a_i;

return acc;

By taking advantage of SIMD-instructions (Sin-
gle Instruction, Multiple Data) we can evaluate two of
these polynomials at a time in double precision arith-
metic, or even all four at the same time on machines
that support 256-bit wide SIMD registers (AVX2 or
later).

Since the polynomial functions have a high or-
der zero at x = 1, and the coefficients are relatively
large, we get significant absolute errors in the evalua-
tion when x is close to 1, see figure 5. For the func-
tion W4 the relative error close to x = 1 explodes, as
the value of the function is close to 0 there. Using
higher values for the Wendland RBF constant c exag-
gerates this behaviour, so it is virtually impossible to
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Figure 5: Absolute error as a function of x of W4 using
Horner’s method. Note the scale on the y-axis is ×10−4.
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Figure 6: Relative error as a function of x of W4 using
Horner’s method. Note the scale on the y-axis is ×100.

use Horner’s method to evaluate the polynomials with
sufficient accuracy with c = 10 or higher.

Figure 6 shows us how the relative error of the
Horner’s method explodes the closer we get to x = 1.

3.3.3 Evaluation using Lookup-tables

We pre-evaluate the polynomials at K = 107 evenly
spaced points, x0, . . . ,xK between 0 and 1, using infi-
nite precision arithmetic and then truncate and store
the results. At runtime we evaluate Wj(x) by find-
ing i such that xi is the closest value to x and return
Wj(x)≈Wj(xi). Here is a pseudo-code of the full pro-
cedure:

//j selects W_j
Lookuptable(x, j)

i=round(x*(K-1));
return W_j[i];

The tables are constructed in such a way that we
can use the same index to get the values of all of the
Wj functions, and furthermore by weaving the tables
together we can evaluate all four of them by read-
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Figure 7: Absolute error as a function of x of W4 using
Lookup-table. Note the scale on the y-axis is ×100.
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Figure 8: Relative error as a function of x of W4 using
Lookup-table. Note the scale on the y-axis is ×10−5.

ing twice from memory, or even once on AVX2 capa-
ble machines. This is a significant performance boost
compared to the Horner’s method, see table 1. As for
the absolute error see figure 7. This kind of sawtooth
shape is typical for Lookup-tables, however, note that
the absolute error is high for x close to 0 but stabilizes
when x gets closer 1. Since the true value of the func-
tion W4 close to 0 is very high, this translates to a low
relative error around 0, see figure 8.

3.3.4 Lookup-tables with Linear Interpolation

One improvement on the Lookup-table method de-
scribed in the previous section is to use linear interpo-
lation between the lookup values to get more accurate
evaluations at the cost of some processing time. Here
is a pseudo-code for the procedure:

Lookuptable_interpolate(x,j)
i=floor(x*(K-1));
interpolant:=(x-x_n[i])/ ...

...(x_n[i+1]-x_n[i]);
return W_j[i] + ...

...interpolant*(W_j[i+1]-W_j[i]);
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Figure 9: Absolute error as a function of x of W4 using
Lookup-table with interpolation. Note the scale on the y-
axis is ×10−5.
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Figure 10: Relative error as a function of x of W4 using
Lookup-table with interpolation. Note the scale on the y-
axis is ×10−10.

There is a significant increase in accuracy, see fig-
ure 9, but this method requires more memory access
than the previous method.

3.3.5 Combination of Lookup-table Methods

As noted in the previous sections, the accuracy of the
Lookup-table method is quite good when x is close
to 1, therefore we propose the following method: we
start by selecting a cutoff value b between 0 and
1, then when we evaluate Wj(x) we use the simple
lookup method if x≥ b, otherwise we use the Lookup-
table with interpolation.

Lookuptable_combined(x,j)
if(x>=b)

return Lookuptable(x,j);
else

return Lookuptable_interpolate(x,j);

Note the large absolute error around the value
x = 0.8 in figure 11 translates to a low relative error of
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Table 1: Total execution time to evaluate the functions Wi, i = 1,2,3,4, at 107 different points, using a single thread.

Method / Processor i5-8250U i5-3210M i5-2500k i7-4790K
Horner’s method 548.1ms 721ms 657.8ms 395ms

Simple Lookup-table 125.8ms 152.7ms 146.7ms 105ms
Lookup-table interp. 165.5ms 231.9ms 216.9ms 128ms
Lookup-table comb. 148.2ms 187.6ms 172.5ms 105ms

Hardcoded 171.5ms 214.8ms 199.8ms 107ms
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Figure 11: Absolute error as a function of x of W4 using
Lookup-table with b = 0.8. Note the scale on the y-axis is
×100.
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Figure 12: Relative error as a function of x of W4 using
Lookup-table with b = 0.8. Note the scale on the y-axis is
×10−6.

8 ·10−6, see figure 12. The value of b = 0.8 was em-
pirically determined to give the best tradeoff between
speed and accuracy.

4 CONCLUSIONS

We compared different methods to evaluate poly-
nomials stemming from Wendland’s compactly sup-
ported radial basis functions. In our application for
rigidly verifying the negativity of Lyapunov functions

computed for stochastic differential equations these
polynomials have to be evaluated at numerous points
and this has to be done with sufficient accuracy. Table
1 shows how long it takes to evaluate the polynomials
W1, W2, W3, and W4 at 107 different points on different
processors. The fastest method is to use a Lookup-
table, but it is too inaccurate for practical use, at least
in our application. Using linear interpolation between
the lookup-values produced much more accurate re-
sults, but the method is considerably slower. A more
efficient method that is sufficiently accurate is to use
linear interpolation between the lookup-values in the
most troublesome areas of the Lookup-table, and just
use simple Lookup-table otherwise. Hardcoding the
polynomials in factorized form as in equations (7)-
(10) is both very fast, although not as fast as using
a Lookup-table, and very accurate. Horner’s method
should be avoided since it produces inaccurate results
and is slow. The inaccuracy is supposedly due to the
multiple zero at 1 of the functions Wi.
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