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Summary

There are concerns about the validation and accuracy of currently available con-

sumer sleep technology for sleep-disordered breathing. The present report provides

a background review of existing consumer sleep technologies and discloses the

methods and procedures for a systematic review and meta-analysis of diagnostic test

accuracy of these devices and apps for the detection of obstructive sleep apnea and

snoring in comparison with polysomnography. The search will be performed in four

databases (PubMed, Scopus, Web of Science, and the Cochrane Library). Studies will

be selected in two steps, first by an analysis of abstracts followed by full-text analy-

sis, and two independent reviewers will perform both phases. Primary outcomes

include apnea–hypopnea index, respiratory disturbance index, respiratory event

index, oxygen desaturation index, and snoring duration for both index and reference

tests, as well as the number of true positives, false positives, true negatives, and false

negatives for each threshold, as well as for epoch-by-epoch and event-by-event

results, which will be considered for the calculation of surrogate measures (including

sensitivity, specificity, and accuracy). Diagnostic test accuracy meta-analyses will be

performed using the Chu and Cole bivariate binomial model. Mean difference meta-

analysis will be performed for continuous outcomes using the DerSimonian and Laird

random-effects model. Analyses will be performed independently for each outcome.

Subgroup and sensitivity analyses will evaluate the effects of the types (wearables,

nearables, bed sensors, smartphone applications), technologies (e.g., oximeter, micro-

phone, arterial tonometry, accelerometer), the role of manufacturers, and the repre-

sentativeness of the samples.
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1 | INTRODUCTION

Sleep-disordered breathing (SDB), especially obstructive sleep apnea

(OSA), is extremely prevalent and has been estimated to affect up to

1 billion adults worldwide (Benjafield et al., 2019). The traditional

diagnosis approach has been overnight polysomnography (PSG) in a

sleep laboratory, although there has been an increasing focus in

recent years on ambulatory studies, often using simplified recording

techniques (Arnardottir, Islind, & Óskarsd�ottir, 2021). Furthermore,

there has been increasing interest in consumer sleep technology

(CST), which refers to any kind of technology or equipment (usually

wearables, nearables, bed sensors, or mobile applications running on

smartphones [apps]) that are marketed directly to consumers, without

a need for prescription by a health professional, allowing individuals

to self-monitor or track their sleep, or to manage or improve a certain

sleep-related condition (Khosla et al., 2018; Schutte-Rodin

et al., 2021). A large portion of those have not been designed with

clinical use in mind (Schmitz et al., 2022). Several CSTs are related to

the screening of SDB, and the number of devices and apps available

for this purpose has been increasing consistently in recent years.

These CSTs are usually directed at detecting either snoring or OSA,

and their sensors and presentations vary considerably (O'Mahony,

Garvey, & McNicholas, 2020). This includes the evaluation of pulse

oximetry, heart rate and heart rate variability, respiratory rate,

breathing-related sounds, and body movements, among others

(O'Mahony et al., 2020; Perez-Pozuelo et al., 2020). The present

paper provides a background review of existing CST devices related

to OSA and snoring, and proposes a protocol for a systematic review

and meta-analysis of existing CST devices regarding their diagnostic

test accuracy (DTA).

2 | BACKGROUND

2.1 | The rise of CST for SDB screening

The increasing use of innovative technologies for SDB screening

(mainly OSA and snoring) might be explained by several factors, from

epidemiological, diagnostic, and commercial aspects. From an epide-

miological perspective, OSA is an increasingly prevalent condition,

ranging from 9% to 42% (Senaratna et al., 2017) and affecting

�936 million people worldwide (Benjafield et al., 2019). From a diag-

nostic perspective, the ‘gold-standard’ diagnosis of OSA is an in-

laboratory PSG recording, which encompasses important limitations

related to its costs, availability, data variability, and patient experience

(Box 1). Also, the diagnosis is limited to a few diagnostic metrics, such

as the apnea–hypopnea index (AHI) and the respiratory disturbance

index (RDI), which often fail to capture all the aspects of OSA severity

(Pevernagie et al., 2020). Finally, the market for consumer-oriented

sleep products has been growing considerably, reaching $2 billion

(American dollars) and growing 18.5% per year (Nester, 2019).

In short, the high prevalence of OSA and snoring creates the

demand for screening and diagnosis, while the limitations of the

traditional PSG diagnosis raise the importance of not only focusing on

new screening tools, but also on patient- or user-experience (including

comfort, usability availability, and affordability). These factors led the

sleep-related market to grow, which stimulates companies to invest,

innovate, design, develop, and improve sleep technologies directly to

consumers, bypassing the role of health professionals, and in some

cases even patients, in the screening process.

2.2 | Overview of technologies available

Type-I PSG is considered to be the gold-standard method for OSA

diagnosis (Kapur et al., 2017). It consists of an in-laboratory overnight

sleep study, which is prepared and monitored by a sleep technologist.

A type-I PSG requires the acquisition and analysis of at least eight bio-

logical signals: an electroencephalogram (EEG), electro-oculogram

(EOG), chin and legs electromyogram (EMG), airflow signals, respira-

tory effort, oxygen saturation, body position, and electrocardiogram,

as described in the regularly updated American Academy of Sleep

Medicine (AASM) manual (Berry et al., 2020).

The scoring of respiratory events in regular type-I PSG depends

on two fundamental aspects: (i) sleep staging and (ii) detection and

quantification of respiratory events. Sleep staging is important to pre-

vent scoring respiratory events during wakefulness and to assess

whether they are associated with a specific sleep stage. In addition,

for some respiratory events, the EEG is required to be able to detect

associated arousals or sleep fragmentation. Regarding the scoring of

respiratory events, current guidelines (Berry et al., 2020) require four

different types of sensors: an oronasal thermal sensor, a nasal pres-

sure transducer, pulse oximetry, and some measure of respiratory

effort (usually thoracoabdominal belts).

The need for all these sensors that require expert setup reinforces

the limitations of type-I PSG (as disclosed in Box 1). Therefore, alter-

native ways to screen for SDB have been used and proposed, includ-

ing the advent of home sleep apnea tests (HSATs), which

encompasses sleep study types II–IV. A type-II PSG uses the same

sensors and montage as a type-I but is thought to be performed unat-

tended and without real-time supervision of a healthcare professional,

therefore allowing the sleep study to be performed outside of a medi-

cal facility (Kapur et al., 2017). Although it might represent some

improvement in the patient-experience in comparison with type-I

PSG, the maintenance of all sensors still represents an important

limitation.

A common strategy to overcome these issues is reducing the

number of sensors, such as in portable cardiorespiratory sleep moni-

tors (including type-III and type-IV sleep studies) (Kapur et al., 2017).

These devices are usually restricted to the monitoring of cardiorespi-

ratory variables, typically not including EEG, EOG, or EMG sensors,

therefore not allowing the performance of sleep staging. Although

reducing the number of sensors has practical benefits, it might lead to

a reduction in diagnostic sensitivity, reducing the ability to rule out

OSA (Caples, Anderson, Calero, Howell, & Hashmi, 2021). It also pre-

cludes the possibility of evaluating other sleep disorders (such as
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periodic limb movement disorder), thus impairing a proper differential

diagnosis. Therefore, simplified sleep studies are useful in cases of

well-grounded clinical suspicion of moderate-to-severe OSA, with no

comorbid medical disorders or risk of other sleep disorders (Collop

et al., 2007; Kapur et al., 2017). Also, just as for any sleep study, its

results alone (i.e., without proper clinical evaluation by a health pro-

vider) are not sufficient for diagnosis, evaluation of clinical efficacy,

and treatment decision (Rosen et al., 2018).

The CST measurement for OSA and snoring screening also

embrace the idea of reducing the number of sensors to the minimum

necessary for accurate results. Of note, as CSTs are marketed directly

to the consumers bypassing the role of the medical professional and

patients, it is more appropriate to consider them as screening devices,

rather than as diagnostic tools at this particular time. In any case, the

evaluation of the accuracy of CSTs in comparison to proper diagnostic

tests is important, in order to assure their reliability.

The first widespread CST options for SDB screening were proba-

bly smartphone apps for snoring detection. Their technology is simple,

especially for the apps that have no intention to diagnose or correlate

it with OSA severity, as their functions are usually restricted to the

use of a microphone. The apps using a microphone as the main sensor

appear to perform well in the detection of snoring and provide stable

data with overall good accuracy (Camacho et al., 2015; Chiang

et al., 2022; Figueras-Alvarez et al., 2020; Klaus, Stummer, &

Ruf, 2021). However, the specificity might be low in a real-world sce-

nario, as the apps might confound snoring from the bed partner, other

respiratory sounds from the user, and background noise with actual

snoring sounds from the user (Camacho et al., 2015; Stippig, Hübers, &

Emerich, 2015).

Although snoring detection has some clinical usefulness

(Camacho et al., 2015), many companies have tried to improve the

screening capabilities of their CST by estimating OSA based on the

snore events. The use of respiratory sounds and movements has

also been used for this purpose, employing more refined data ana-

lyses (such as spectral analysis of respiratory sounds or using the

smartphone as a sonar for detecting respiratory movements). The

respiratory flow or pattern is estimated from it, and changes to

background patterns are interpreted as possible obstructive

events. Although they perform well in some cases, sensitivity and

specificity are usually <90%, being as low as 60% in some cases

(Cho et al., 2022; Nakano et al., 2014; Narayan et al., 2019; Tiron

et al., 2020).

BOX 1 Limitations on polysomnography-based diagnosis of sleep disorders.

Availability

PSG beds might not be available in many medical centres, especially out of big cities and in rural areas, as it requires

specialised healthcare professionals and an adequate laboratory setting. The higher prevalence of sleep disorders
associated with the unavailability of sleep medicine centres increases the likelihood of underdiagnosis of OSA.

Costs Even when PSG is available it might not be affordable to many patients. It is usually an expensive medical examination, as

its price must encompass costs related to devices, health professionals, and sleep laboratory maintenance. Costs-related

concerns also justify the limited availability of PSG on public health systems and healthcare insurance plans.

Data variability OSA is subjected to an important night-to-night variability. The variation in the AHI is >10 events/h in 65% of the

individuals undergoing PSGs on sequential nights (Bittencourt et al., 2001). As the diagnosis of OSA is usually performed

with a single-night PSG, there is a risk of misclassification due to data variability, which might affect diagnosis, treatment,

and prevalence estimates.

Limitations related to

manual analysis

Manual analysis of a PSG recording is still the ‘gold standard’ method to analyse and score it. It requires a sleep

technologist to overview the whole recording to perform sleep staging and to score other sleep-associated events (e.g.,

respiratory events, arousals, leg movements). This process has three main limitations:

1. Time-consuming: the manual analysis of a PSG usually requires �1.5 h of work from a sleep technologist (Fischer

et al., 2012).

2. Prone to human errors: although good agreement rates among experienced sleep technologists have been reported

(Kuna et al., 2013; Lee et al., 2022; Magalang et al., 2016), the manual analysis might be subjected to a significant

amount of imprecision, especially among unexperienced scorers.

3. Costs: the need for sleep technologists scoring the PSG increases its costs, contributing to its limited affordability.

These limitations could be overcome by improved semi-automatic analysis or by automatic algorithms (as used by many

wearables/nearables devices).

Patient experience Sleeping at a laboratory under constant monitoring might be an uncomfortable experience for many patients. Among the

several aspects that might reduce the patient experience while undergoing a PSG are:

1. Sleeping out of their own rooms with bed and pillows they are not used to.

2. Subjected to environmental conditions different from what they are familiar with (including light, noise, and companion).

3. Unable to follow a usual pre-sleep routine.

4. Different timing for going to bed and waking up than normally.

5. Dealing with the discomfort that the PSG devices might cause; and

6. Being monitored by healthcare professionals at a medical facility.

All these conditions might lead to altered sleep patterns, which are caused by environmental conditions rather than by a

sleep disorder. These effects are especially observed in a first PSG (‘first-night effect’, Ding, Chen, Dai, & Li, 2022),

contributing to the data variability often seen in PSGs.

Abbreviations: AHI, apnea–hypopnea index; OSA, Obstructive sleep apnea; PSG, polysomnography.
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Several other physiological measurements are currently being

used for the portable assessment of OSA, some of them being

included in CSTs. These include ultrasound and radiofrequency sen-

sors, airflow analysis, pulse oximetry, arterial tonometry, photo-

plethysmography, and heart rate variability, among others (Behar,

Roebuck, Domingos, Gederi, & Clifford, 2013; Penzel, Dietz-Terjung,

Woehrle, & Schöbel, 2021; Uddin, Chow, & Su, 2018). Airflow and

pulse oximetry seem to be the most logical variables to be analysed in

CST OSA monitoring (Uddin et al., 2018), as they are more closely

related to OSA pathophysiology. While devices based on direct air-

flow analyses are not often seen, oximetry-based analyses became

more common with the advent of fitness trackers, smartwatches, and

rings. The oximeters embedded into wearable devices seem to be

accurate in detecting hypoxia in multiple conditions, including during

daily life activities, during sleep, and in experimentally induced hyp-

oxia (Jung et al., 2022; Marinari et al., 2022; Santos et al., 2022; Zhao

et al., 2022).

The incorporation of additional data to pulse oximetry analyses

appears to increase the accuracy, with movement, sound, and heart

rate being the most commonly used parameters. Taking that all into

account, the common sense is that single signal-based OSA detection

is less accurate, being only able to differentiate between the presence

or absence of OSA, while multi-signal detection is more accurate,

being useful for detecting different levels of disease severity (Uddin

et al., 2018). However, this might change as technology and data anal-

ysis evolve. As an example, a recent study using artificial neural net-

work analysis of oxygen saturation (SpO2) led to a median absolute

error in the estimation of the AHI of �1 event/h (Nikkonen, Afara,

Leppänen, & Töyräs, 2020).

For consumer-based OSA screening, the most common formats

are smartphone apps and wearables. The usefulness of smartphone

apps depends on a combination of the smartphone apps’ charac-
teristics (and the algorithms embedded in them) and the sensors,

which are embedded in the smartphone (or tablet), with variable

quality depending on the model. There are 100s of smartphone

apps available for OSA detection, but only �3% of them provide

proper validation studies (Baptista et al., 2022). A recent meta-

analysis (Kim, Kim, & Hwang, 2022) concluded that the sensitivity

of smartphone-based tools for the screening of OSA is >80% in all

cases, regardless of the sensors being used. Regarding wearables,

their sensitivity and specificity tend to be higher than what is

observed in smartphones due to the higher number of sensors and

variables being analysed. However, their actual diagnostic accu-

racy, sensitivity, and specificity are subject to great variability,

ranging from �40% to 90%, depending on the device, manufac-

turer, sensor type, and data analysis strategy used (Chen, Wang,

Guo, Zhang, & Xie, 2021; John, Nundy, Cardiff, & John, 2021;

Mokhtaran et al., 2022; Papini et al., 2020).

More recently, some innovative devices have been proposed to

screen for OSA in the home setting, including new bed sensor devices,

nearables, and wearables (Óskarsd�ottir et al., 2022). Their accuracy

might vary depending on the type of the device, the reference test,

and the OSA classification threshold being considered, with sensitivity

estimates ranging from 45.0% to 97.6% and specificity ranging from

51.3% to 97.8% (Rosa, Bellardi, Viana, Ma, & Capasso, 2018). Another

characteristic of these devices is the improvement of the sensors

used, both in their technology and the position where they are

located. Such innovation seems to arise from a concomitant concern

related to inventiveness, patentability, and diagnostic accuracy.

Regarding the position of these devices, fingertip oximeters and rings

are among the most common (Gu et al., 2020; Zhao et al., 2022), but

they also include devices based on neck collars, mandibular movement

monitors (Pepin et al., 2022; Pépin et al., 2020), and surface acoustic

wave sensors (Jin et al., 2017).

2.3 | Problems and concerns regarding CST for
SDB screening

Although a user-centred approach has benefits, there are several con-

cerns regarding the validation and accuracy of CSTs. The first concern

regards the reduction in the number of sensors. Type-I PSG has been

developed in a way that respiratory events can be identified from dif-

ferent perspectives, approaching different pathophysiological mani-

festations of apneas and hypopneas (including airflow limitation,

respiratory effort, desaturations, and arousals). Arguably, there is a

trade-off between a reduced number of sensors and a decrease in

accuracy, which might reflect in things such as variable sensitivity to

detect hypopneas (especially when not associated with desaturation),

and inability to differentiate obstructive and central events, among

others.

The second problem relates to the indirectness in the assessment

of sleep-related parameters. The more indirect a given measure, the

higher the chance of this measure not being accurate in the detection

of a given event. The most evident case of indirectness in CST regards

sleep staging, which is primarily a neurobiological variable. CSTs that

do not include an EEG might try to infer sleep stages based on other

variables. Body movements and heart rate variability are the most fre-

quently used variables to approximate sleep stages. Some indirectness

is also observed in the detection of apneas or hypopneas, which is

directly measured via airflow. Current CSTs use variables like respira-

tory movements, snore sounds, oxygen saturation, and mandibular

movements to approximate respiratory events. However, although

they are intimately related to respiratory events, they are not suffi-

cient to diagnose them according to clinical standards (Berry

et al., 2020).

A third problem relates to how data are gathered, stored, trans-

mitted, and analysed using CSTs (Perez-Pozuelo et al., 2020). Patient-

generated health data are not standardised among these technologies

and the algorithms used to analyse data are not frequently available

(Arnardottir et al., 2021; Khosla et al., 2018), so clinicians do not have

a clear picture of how a certain result is reached.

Fourth, most available CSTs have not been tested in comparison

with gold-standard methods nor have been approved by health regu-

latory agencies (Behar et al., 2013; Fino & Mazzetti, 2019; Khosla

et al., 2018), and the sensitivity and specificity are uncertain in many
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cases (Khosla et al., 2018; Schutte-Rodin et al., 2021). The lack of

standards on the validation, proposal, and registration of CSTs causes

a large accuracy variability, as well as uncertainties about their actual

usefulness (Baptista et al., 2022; Fino & Mazzetti, 2019). It has been

argued that some CSTs perform poorly in clinical samples in compari-

son to healthy populations (Baron et al., 2018), which is due to the

lack of proper validation and confirmation studies in samples of indi-

viduals with OSA.

Fifth, many validation studies performed do not provide

epoch-by-epoch or event-by-event analysis, disclosing only whole

night overall statistics (de Zambotti et al., 2022; Menghini, Cellini,

Goldstone, Baker, & de Zambotti, 2021). In these cases, similar

metrics might eventually be reached between a CST and a PSG,

although they might be labelling and scoring different events. This

analysis would be important for a proper performance evaluation

of CST, but they seem rather uncommon (Menghini et al., 2021).

Protocols and recommendations for the evaluation of epoch-by-

epoch and event-by-event analysis have already been published

(Borsky, Serwatko, Arnardottir, & Mallett, 2022; Menghini

et al., 2021).

Finally, the commercial potential of CSTs and the role of compa-

nies in their development might lead to publication bias and selective

outcome reporting, therefore resulting in a partial and biased appraisal

of data reliability (named as ‘industry sponsorship bias’; Holman,

Bero, & Mintzes, 2019). This concern is certainly not true for all new

technologies. However, previous studies have already demonstrated a

negative effect of the involvement of industry on the evaluation of

the efficacy of drugs and medical devices (Lundh, Lexchin, Mintzes,

Schroll, & Bero, 2017; Xie & Zhou, 2022), and the same might happen

to CST.

Considering all these problems, limitations, and uncertainties, a

comprehensive data reassessment of the accuracy of CSTs for the

screening of OSA and snoring is needed, and it could be achieved by

means of a systematic review and meta-analysis. This approach would

help to understand the actual accuracy of new CSTs, being also able

to detect which sensors and outcome variables are the most suitable

for proper screening of OSA and snoring. Therefore, the present pro-

tocol discloses the methods and procedures for a systematic review

and meta-analysis of DTA of CST for the screening of OSA and

snoring.

3 | METHODS

3.1 | Reporting and registration standards

This protocol was prepared according to the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA) –

protocol extension (PRISMA-P) (Moher et al., 2015) and was regis-

tered at the International Prospective Register of Systematic

Reviews (PROSPERO: CRD42022362186). The final report will be

written according to the PRISMA-DTA (Salameh et al., 2020).

3.2 | Research question and basic definitions

The basic definitions of the included articles are specified according

to the PI(R)T strategy (Participants, Index test, Reference test, Target

condition), an adapted version of PICO (Population, Intervention,

Comparison, Outcome) for DTA studies (Leeflang, Davenport, &

Bossuyt, 2022). These four strategy items are defined below and more

details on how each of these items will be addressed and analysed can

be found in the ‘Inclusion and exclusion criteria’ section.

• Participants: individuals aged ≥18 years, regardless of diagnosis or

suspicion of OSA, other sleep disorders, and co-morbidities.

• Index test: consumer-based technology (including devices or apps)

for screening of OSA and/or snoring according to the classification

proposed by the AASM (Schutte-Rodin et al., 2021).

• Reference test: full night type-I or type-II PSG, performed according

to the AASM recommendations (Berry et al., 2020) or equivalent

guidelines.

• Target Condition: OSA and snoring.

Based on these definitions, a list of PI(R)T questions was pre-

pared, by a combination of the target conditions and index tests of

interest, considering two different meta-analytical approaches: DTA

and mean difference meta-analyses (as properly explained in the ‘data
synthesis and analyses section’). The list of PI(R)T research questions

is presented in Table 1.

Of note, although we acknowledge that CSTs cannot be consid-

ered proper diagnostic tools, but rather OSA screening devices, we

prefer to keep using the term ‘diagnosis’ on the research questions

and on the statistical analyses. ‘DTA meta-analysis’ (DTAMA) is an

established meta-analytical approach that has been used whenever

the performance of an index and a reference test are compared.

The same is true for other statistical terms used throughout the

manuscript, including ‘diagnostic threshold’ and ‘diagnostic odds

ratio’ (DOR).

3.3 | Search strategy

A bibliographic search will be performed in four different databases:

PubMed, Scopus, Web of Science, and the Cochrane Library. The pri-

mary search strategy was developed for PubMed and will be adapted

to the syntax and search engines of the other databases.

This search strategy was composed of the combination of two

domains: OSA and snoring (as the target condition) and consumer-

based technology (as the index test). Both search domains were built

by combining Medical Subject Headings (MeSH) terms (available at

www.ncbi.nlm.nih.gov/mesh/) and relevant free terms, including spell-

ing variations, alternative nomenclature, and plural forms. No search

domain regarding PSG (as a reference test) was included, in order to

increase search sensitivity. Any possible search strategy related to

PSG would be redundant with the OSA domain, decreasing the search
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TABLE 1 Population, Index test, Reference test, Target condition (PI(R)T) questions

# Outcome Index tests Research questions

1. Diagnostic test accuracy meta-analyses – Diagnosis of OSA and snoring

1.1 Obstructive sleep apnea (OSA)a

1.1.1 Consumer-based technology What is the diagnostic accuracy of consumer-based

technology (not further specified) in the screening of

OSA in comparison with PSG?

1.1.2 Wearable devices What is the diagnostic accuracy of wearable devices in

the screening of OSA in comparison with PSG?

1.1.3 Nearable devices What is the diagnostic accuracy of nearable devices in

the screening of OSA in comparison with PSG?

1.1.4 Bed sensors What is the diagnostic accuracy of bed sensors in the

screening of OSA in comparison with PSG?

1.1.5 Apps What is the diagnostic accuracy of apps in the

screening of OSA in comparison with PSG?

1.2 Snoring

1.2.1 Consumer-based technology What is the diagnostic accuracy of consumer-based

technology (not further specified) in the detection of

snoring in comparison with PSG?

1.2.2 Wearable devices What is the diagnostic accuracy of wearable devices in

the detection of snoring in comparison with PSG?

1.2.3 Nearable devices What is the diagnostic accuracy of nearable devices on

the detection of snoring in comparison with PSG?

1.2.4 Bed sensors What is the diagnostic accuracy of bed sensors on the

detection of snoring in comparison with PSG?

1.2.5 Apps What is the diagnostic accuracy of apps on the

detection of snoring in comparison with PSG?

2. Diagnostic test accuracy meta-analyses – epoch-by-epoch and event-by-event accuracyb

2.1 Apneas and hypopneas combined

2.1.1 Consumer-based technology What is the diagnostic accuracy of consumer-based

technology (not further specified) in the detection of

epochs and events of apneas and hypopneas in

comparison with PSG?

2.1.2 Wearable devices What is the diagnostic accuracy of wearable devices in

the detection of epochs and events of apneas and

hypopneas in comparison with PSG?

2.1.3 Nearable devices What is the diagnostic accuracy of nearable devices on

the detection of epochs and events of apneas and

hypopneas in comparison with PSG?

2.1.4 Bed sensors What is the diagnostic accuracy of bed sensors on the

detection of epochs and events of apneas and

hypopneas in comparison with PSG?

2.1.5 Apps What is the diagnostic accuracy of apps on the

detection of epochs and events of apneas and

hypopneas in comparison with PSG?

2.2 Apneas

2.2.1 Consumer-based technology What is the diagnostic accuracy of consumer-based

technology (not further specified) in the detection of

epochs and events of apneas in comparison with

PSG?

2.2.2 Wearable devices What is the diagnostic accuracy of wearable devices in

the detection of epochs and events of apneas in

comparison with PSG?

2.2.3 Nearable devices What is the diagnostic accuracy of nearable devices on

the detection of epochs and events of apneas in

comparison with PSG?
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TABLE 1 (Continued)

# Outcome Index tests Research questions

2.2.4 Bed sensors What is the diagnostic accuracy of bed sensors on the

detection of epochs and events of apneas in

comparison with PSG?

2.2.5 Apps What is the diagnostic accuracy of apps on the

detection of epochs and events of apneas in

comparison with PSG?

2.3 Hypopneas

2.3.1 Consumer-based technology What is the diagnostic accuracy of consumer-based

technology (not further specified) in the detection of

epochs and events of hypopneas in comparison with

PSG?

2.3.2 Wearable devices What is the diagnostic accuracy of wearable devices in

the detection of epochs and events of hypopneas in

comparison with PSG?

2.3.3 Nearable devices What is the diagnostic accuracy of nearable devices on

the detection of epochs and events of hypopneas in

comparison with PSG?

2.3.4 Bed sensors What is the diagnostic accuracy of bed sensors on the

detection of epochs and events of hypopneas in

comparison with PSG?

2.3.5 Apps What is the diagnostic accuracy of apps on the

detection of epochs and events of hypopneas in

comparison with PSG?

2.4 Snoring

2.4.1 Consumer-based technology What is the diagnostic accuracy of consumer-based

technology (not further specified) in the detection of

epochs and events of snoring in comparison with

PSG?

2.4.2 Wearable devices What is the diagnostic accuracy of wearable devices in

the detection of epochs and events of snoring in

comparison with PSG?

2.4.3 Nearable devices What is the diagnostic accuracy of nearable devices on

the detection of epochs and events of snoring in

comparison with PSG?

2.4.4 Bed sensors What is the diagnostic accuracy of bed sensors on the

detection of epochs and events of snoring in

comparison with PSG?

2.4.5 Apps What is the diagnostic accuracy of apps on the

detection of epochs and events of snoring in

comparison with PSG?

3. Mean difference

3.1 Apnea–hypopnea index (AHI)

3.1.1 Consumer-based technology What is the estimated mean difference in the AHI

values between consumer-based technology (not

further specified) in comparison with PSG?

3.1.2 Wearable devices What is the estimated mean difference in the AHI

values between wearable devices in comparison

with PSG?

3.1.3 Nearable devices What is the estimated mean difference in the AHI

values between nearable devices in comparison with

PSG?

3.1.4 Bed sensors What is the estimated mean difference in the AHI

values between bed sensors in comparison with

PSG?

(Continues)
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TABLE 1 (Continued)

# Outcome Index tests Research questions

3.1.5 Apps What is the estimated mean difference in the AHI

values between apps in comparison with PSG?

3.2 Respiratory disturbance index (RDI)

3.2.1 Consumer-based technology What is the estimated mean difference in the RDI

values between consumer-based technology (not

further specified) in comparison with PSG?

3.2.2 Wearable devices What is the estimated mean difference in the RDI

values between wearable devices in comparison

with PSG?

3.2.3 Nearable devices What is the estimated mean difference in the RDI

values between nearable devices in comparison with

PSG?

3.2.4 Bed sensors What is the estimated mean difference in the RDI

values between bed sensors in comparison with

PSG?

3.2.5 Apps What is the estimated mean difference in the RDI

values between apps in comparison with PSG?

3.3 Respiratory event index (REI)

3.3.1 Consumer-based technology What is the estimated mean difference in the REI

values between consumer-based technology (not

further specified) in comparison with PSG?

3.3.2 Wearable devices What is the estimated mean difference in the REI

values between wearable devices in comparison

with PSG?

3.3.3 Nearable devices What is the estimated mean difference in the REI

values between nearable devices in comparison with

PSG?

3.3.4 Bed sensors What is the estimated mean difference in the REI

values between bed sensors in comparison with

PSG?

3.3.5 Apps What is the estimated mean difference in the REI

values between apps in comparison with PSG?

3.4 Oxygen desaturation index (ODI)

3.4.1 Consumer-based technology What is the estimated mean difference in the ODI

values between consumer-based technology (not

further specified) in comparison with PSG?

3.4.2 Wearable devices What is the estimated mean difference in the ODI

values between wearable devices in comparison

with PSG?

3.4.3 Nearable devices What is the estimated mean difference in the ODI

values between nearable devices in comparison with

PSG?

3.4.4 Bed sensors What is the estimated mean difference in the ODI

values between bed sensors in comparison with

PSG?

3.4.5 Apps What is the estimated mean difference in the ODI

values between apps in comparison with PSG?

3.5 Snoring duration

3.5.1 Consumer-based technology What is the estimated mean difference in the snoring

duration between consumer-based technology (not

further specified) in comparison with PSG?

3.5.2 Wearable devices What is the estimated mean difference in the snoring

duration between wearable devices in comparison

with PSG?
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sensitivity, as many studies employing PSG might not use this term in

their titles, abstracts, or keywords. We used a search related to SDB

in general rather than specifically to OSA to increase search sensitiv-

ity. The search strategy for PubMed is disclosed below.

• Search domain #1 (OSA):

� “Sleep Apnea Syndromes”[mh] OR Snoring[mh] OR “sleep-
disordered breathing” OR “sleep-related breathing disorders”
OR (sleep AND (apnea* OR hypopnea* OR apnoea* OR hypop-

noea*)) OR (OSA AND sleep) OR (OSAS AND sleep) OR

(OSAHS AND sleep) OR “Cheyne-Stokes” OR “Upper airway

resistance syndrome” OR snoring* OR snore* OR “apnea-
hypopnea index” OR “apnoea-hypopnoea index” OR (IAH and

(sleep OR apnea OR apnoea)) OR “respiratory disturbance

index” OR (RDI AND (sleep OR apnea or apnoea)) OR “respira-
tory effort related arousal” OR (RERA AND (sleep OR apnea or

apnoea))

• Search domains #2 (consumer-based technologies):

� “wearable electronic devices”[mh] OR “mobile

applications”[mh] OR “software”[mh] OR “smartphone”[mh] OR

“computers, handheld”[mh] OR “remote sensing technology”

OR “wireless technology”[mh] OR (consumer AND sleep[tiab])

OR portable* OR wearable* OR nearable* OR mobile OR smart-

phone* OR “smart phone*” OR smartwatch* OR tablet* OR app

OR apps OR application* OR “bed sensor*” OR “consumer-

based” OR “consumer grade”

Secondary data search includes: (i) checking reference lists of the

included articles, (ii) contacting CST companies, and (iii) searching grey

literature. Regarding reference lists analysis, the list of references of

all included articles will be screened for additional studies not

retrieved in the primary search. Regarding contacting CST companies,

this is a strategy intended to retrieve undergoing, unpublished, or

unretrieved studies that support or were used in the registration of

devices and applications already commercially available. We will

shortlist technology companies and start-ups related to OSA and/or

snoring from two sources: the list of sponsors and exhibitors at the

last three editions of the European Sleep Research Society (ESRS),

World Sleep Society (WSS), and AASM congresses, and the devices

listed in the AASM #SleepTechnology resource. The list of CST com-

panies to be contacted will be properly disclosed and the results pro-

vided will be further explored by means of sensitivity analyses (more

TABLE 1 (Continued)

# Outcome Index tests Research questions

3.5.3 Nearable devices What is the estimated mean difference in the snoring

duration between nearable devices in comparison

with PSG?

3.5.4 Bed sensors What is the estimated mean difference in the snoring

duration between bed sensors in comparison with

PSG?

3.5.5 Apps What is the estimated mean difference in the snoring

duration between apps in comparison with PSG?

3.6 Snoring frequency

3.6.1 Consumer-based technology What is the estimated mean difference in the snoring

frequency between consumer-based technology (not

further specified) in comparison with PSG?

3.6.2 Wearable devices What is the estimated mean difference in the snoring

frequency between wearable devices in comparison

with PSG?

3.6.3 Nearable devices What is the estimated mean difference in the snoring

frequency between nearable devices in comparison

with PSG?

3.6.4 Bed sensors What is the estimated mean difference in the snoring

frequency between bed sensors in comparison with

PSG?

3.6.5 Apps What is the estimated mean difference in the snoring

frequency between apps in comparison with PSG?

3.x Other outcomes Other research questions might arise if other

continuous outcomes related to OSA or snoring are

identified (e.g., total absolute number and indices of

respiratory effort-related arousals (RERAs), apneas,

hypopneas, central events, obstructive events, or

time spent with oxygen saturation <90%)

aAll research questions in the 1.1 level will consider six independent diagnostic thresholds (AHI or RDI ≥5, ≥15, and ≥30 events/h).
bAlthough merged into the research questions, epoch-by-epoch and event-by-event analysis will be performed independently whenever possible.
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information on the ‘Analysis plan, subgroup analysis, and sensitivity

analysis’ section). Regarding searching grey literature, which encom-

passes literature available out of the main databases and often in non-

final format, we will search ClinicalTrials.gov and Google Scholar (first

200 records).

All sources of data and the subsequent procedures, including data

screening, extraction, and analysis disclosed in Figure 1.

3.4 | Evaluation and selection strategies

The records retrieved from the search in the four primary databases

(PubMed, Scopus, Web of Science, and the Cochrane Library) will be

exported to Covidence, where deduplication and eligibility analysis

will be performed. Duplicated records will be automatically excluded.

Two independent reviewers will evaluate all non-duplicated records,

in a process based on two steps. The first step consists of reviewing

titles and abstracts only, while the second encompasses full-text anal-

ysis. In each step, the decision considering each article as eligible or

not relies on consensus between both reviewers’ decisions. Disagree-

ments between reviewers will be solved by a consensus, and if the

discordance persists, a third reviewer will be consulted (GNP). Both

reviewing steps will be conducted considering the inclusion and exclu-

sion criteria disclosed below.

By the beginning of the evaluation process, a calibration round of

the eligibility analysis will be performed, and the agreement rates

between each reviewer in comparison with a senior reviewer (GNP)

will be measured. Both the senior reviewer and each of the indepen-

dent reviewers will analyse the titles and abstracts of 200 records.

The Cohen's kappa index between each reviewer and the senior

reviewer will be calculated, and the analysis will continue only if a

kappa value of ≥0.8 is reached (considered as a strong agreement). If

this threshold is not reached, meetings for discussing the inclusion

and exclusion criteria and a new calibration round will be performed

until a 0.8 index is achieved.

3.5 | Inclusion and exclusion criteria

Only studies evaluating the accuracy of consumer-based technologies

related to OSA and snoring screening will be considered eligible,

based on smartphone apps, wearables, nearables, or bed sensors.

There will be no restrictions regarding publication date and language.

The authors are able to handle records published in English, Portu-

guese, Spanish, Finnish, and Icelandic. If studies in other languages are

retrieved, Google Translate will be used for abstract screening and

native speakers will be contacted for assistance with full-text analysis.

The eligibility analysis will be based on the criteria below:

F IGURE 1 Flow diagram disclosing
the sources of data, screening
procedures, and data analysis. Both title
and abstract screening and full-text
analysis will be performed by two
independent reviewers. The meta-
analyses include both diagnostic test
accuracy and mean-difference analyses
(including the respective subgroup and

sensitivity analyses). CST, consumer sleep
technology. GRADE, Grading of
Recommendations Assessment,
Development and Evaluation.
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• Abstracts

� Inclusion: articles that present an abstract, regardless of the

language.

� Exclusion: articles that do not present an abstract.

• Source type

� Inclusion: full original/primary studies, reports, and datasets.

Studies published in non-peer-reviewed sources will also be

considered eligible if the data collection and analysis are com-

plete and precisely described. Uncompleted data sources

(e.g., congress abstracts, patents, and protocols) will be consid-

ered for the systematic review, but not for meta-analyses. In

these cases, the authors will be contacted and inquired about

the availability of the full study report or a complete dataset. In

the case of redundant publications (i.e., secondary or derivative

studies coming from the same dataset or source study), only the

one with the biggest sample size will be considered eligible.

� Exclusion: theoretical articles (including editorials, narrative

reviews, and letters to the editors), systematic reviews, meta-

analyses, and meta-epidemiological studies.

• Participants

� Inclusion: individuals aged ≥18 years, with no restriction regard-

ing sex and presence of concurrent sleep disorders or comorbid-

ities. Studies encompassing paediatric samples will be

considered eligible if it is possible to extract data from a sub-

group of those aged ≥18 years in an independent and unbi-

ased way.

� Exclusion: studies with a sample of participants aged <18 years,

or in cases in which it is not possible to dissociate a subgroup of

those aged ≥18 years.

• Index test

� Inclusion: CSTs intended for screening of OSA or snoring

(Schutte-Rodin et al., 2021). In order to be categorised as a

consumer-grade technology, technology should be accessible

without a prescription, should be compatible with domestic use

(i.e., does not require a clinical facility to function), should be used

unattended (i.e., be able to function regardless of professional

monitoring or scoring), and should be able to deliver a result

directly to the user without the need for professional manual

analysis and scoring. This might include, but is not limited to,

wearable devices, nearable devices, bed sensors, and apps.

� Exclusion: devices and apps that fail to be considered as a CST

according to the definitions provided above, including HSATs.

• Reference test

� Inclusion: full night type-I or type-II PSG, performed according

to the AASM requirements (Berry et al., 2020).

� Exclusion: studies with no PSG or performed with any type of

sleep study other than full-night type-I of type-II (including sleep

studies type-III, type-IV). Such a requirement is needed to

assure that a CST will be compared to gold-standard diagnostic

technologies only.

• Study design

� Inclusion: cross-sectional, within-subject paired, and non-

interventional studies in which both the reference test (type-I or

type-II PSG) and the index test (CST) have been used in a group

of participants in the same period and under the same setting

conditions. Longitudinal studies (including cohorts, case–control

studies, and clinical trials) can be considered eligible if there is a

baseline measure complying with the previous requirements.

� Exclusion: studies in which the reference and index tests have

not been used in the same participants, period, or settings.

Intervention studies in which the participants are subject to any

type of intervention (including for OSA treatment,

e.g., continuous positive airway pressure or intraoral devices).

• Target condition and outcome measures

� Inclusion: OSA or snoring, measured and diagnosed in a full

night type-I or type-II PSG and reporting at least one of the

main outcomes (OSA or snoring diagnosis, AHI, RDI, REI, ODI,

snoring duration, or snoring frequency). Any diagnostic thresh-

old is considered eligible and the association with symptoms or

consequences is not mandatory for the diagnosis of mild OSA.

� Exclusion: no information regarding any of the main outcomes.

Samples in which all individuals are diagnosed with OSA, or

without OSA, cases in which a proper evaluation of specificity is

not possible. No definition of a diagnostic threshold and no pos-

sibility to infer so based on the available data.

Exclusion criteria should be prioritised according to the order

below (based on the criteria above): (i) no abstract, (ii) non-original

article, (iii) wrong population, (iv) wrong index test (not a consumer-

based OSA technology), (v) wrong reference test (not a full-night

type-I or type-II PSG), (vi) no primary outcomes were reported, (vii) no

full text was retrieved, and (viii) redundant study.

3.6 | Data extraction

Data extraction will be performed using Covidence by two indepen-

dent reviewers and checked by a senior reviewer (GNP). Before actual

data extraction, both reviewers will undergo a training session with

the senior reviewer. Disagreements in the data extraction between

both reviewers will be solved by consensus, and if discordance per-

sists, the senior reviewer will be consulted (GNP). If the senior

reviewer is not able to solve the discordance, the article's authors

might be contacted.

Numeric outcome data will be extracted as mean ± standard devi-

ation (SD). When a study discloses the standard error of the mean

(SEM) rather than SD, SD will be calculated by multiplying the SEM by

the square root of the sample size. When it is not possible to deter-

mine if data dispersion is displayed in SEM or SD, we will assume

them as SD.

The only mandatory items for the analyses are metadata, sample

size, type of device/app, and at least one main outcome. When

needed, data will be extracted from graphs using a digital ruler (Plot

Digitizer, plotdigitizer.sourceforge.net/). In case of missing data not

extractable from charts or doubts regarding any specific result or

methodological aspect, authors will be contacted and will be asked to
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provide information about their protocol, results, or raw data. Two

contact attempts will be made and if no successful response is

obtained, the article might be excluded from the sample (when they

fail to provide one of the mandatory items) or from a specific sub-

group analysis.

In the case of longitudinal studies, data from all available nights

will be extracted, provided that both the reference and the index tests

were used concomitantly. The unit of analysis in this systematic

review is not the articles, but studies within the articles. Therefore,

when an article has two or more separate and fully independent stud-

ies, data may be extracted more than once from the same article. In

studies evaluating two or more index tests, each of them will be con-

sidered as a separate study, even considering that they are compared

with the same reference test group (data corrections might be needed

for continuous outcomes).

The following variables will be extracted:

Descriptive information

� Metadata: full reference string, including first author, title, publica-

tion year, and publication source (journal).

� Country: defined as the country in which the sample was recruited.

In international multicentric studies, the proportion of participants

from each country will be extracted. In these cases, and for descrip-

tive purposes, the study will be considered as belonging to the

country that contributed the most to the sample.

Participants

� Sample size: considering only the final sample, composed of those

participants subjected to both tests.

� Sex: it could be filled as ‘men’, ‘women’, ‘both’ or ‘not disclosed’.
In the case of ‘both’, the proportion of each sex in the final sample

will be extracted.

� Age: both the recruitment age range and the mean age (±SD) will

be extracted.

� Body mass index.

� Self-reported ethnicity and Fitzpatrick skin colour scale. The propor-

tion of each ethnicity and phototype will be extracted, whenever

available.

� Exclusion criteria: every criterion is taken for considering a potential

participant as ineligible.

� Concurrent health conditions: any health condition or descriptive

characteristic considered as part of the population description in a

study (i.e., only individuals presenting a specific disease were

included). For example, studies evaluating the accuracy of OSA

apps among individuals with hypertension or with morbid obesity.

� Pre-test assessment OSA risk: average score and the number of indi-

viduals considered as having a high risk of OSA according to

screening questionnaires for OSA risk (Małolepsza et al., 2021),

namely the Berlin (Chung et al., 2008b), the STOP-BANG (Chung

et al., 2008a) or the NoSAS (Marti-Soler et al., 2016)

questionnaires.

Study design and description

� Sample representativeness: population-based study, probabilistic sam-

pling, non-clinical convenience sample, or clinical convenience sample.

Index test:

� Commercial name (when available).

� Manufacturer (when available).

� Version of the device/app (when available).

� Type of device/app: it could be filled as ‘wearable’, ‘nearable’, ‘bed
sensors’, ‘app’, or ‘other’. Wearable devices are defined as any

device that is worn or used in close and conditional contact with

the participant's body. For technologies considered wearables,

additional information about their mode of use and presentation

will be extracted (e.g., ring, wristband, smartwatch, fitness tracker,

headband, or chest belt). Nearables are considered as any device

positioned close to the participant, but with no contact with its

body, not being worn nor composing the bed and bed linen. For

devices considered as nearables, information regarding their posi-

tion will be extracted (e.g., on the nightstand, below the bed, or the

headboard). Bed sensor devices include all devices integrated into

the linen and other fabric materials that are not worn by the partic-

ipants, but that compose the sleeping environment. For devices

considered bed sensors, they will be categorised according to their

use (e.g., mattresses, pillows and pillowcases, linen, or blanket).

Apps are defined as software integrated and conditionally used in a

smartphone or tablet. Although it might be seen as a nearable

(as the smartphone or tablet should be positioned near the individ-

ual), its main feature is the software, while the nearables have the

hardware as their main feature. Any other device will be cate-

gorised as ‘other’, and a further explanation will be provided. New

categories not foreseen in this protocol might be considered

depending on the characteristics of the retrieved studies.

� Variables detected to measure OSA or snoring: any physiological or

environmental variable used to detect OSA and snoring (and to

measure sleep time or sleep stage when those data are integrated

into the detecting algorithm). For example, oxygen saturation, heart

rate variability, respiratory rate, body temperature, movements,

sound, and chest movements.

� Equipment used to measure the intended variables: the embedded

technology or sensors that are primarily responsible for data acqui-

sition. For example, an oximeter, microphone, arterial tonometry,

and accelerometer.

� Diagnostic threshold: any diagnostic threshold using any variable to

diagnose OSA or categorise its severity. More than one diagnostic

threshold can be extracted per study.

Reference test:

� Diagnostic criteria for apneas: the exact definition of the event

(e.g., ≥90% reduction in oronasal thermal sensor amplitude, lasting

at least 10 s) and/or the scoring guideline considered (e.g., the

AASM manual 2020).

� Diagnostic criteria for hypopneas: the exact definition of the event

(e.g., ≥30% reduction in nasal pressure amplitude, lasting at least

10 s and associated with either a ≥3% desaturation or an arousal)

and/or the scoring guideline considered (e.g., the AASM manual

version 2.6 – recommended criteria).

� Diagnostic threshold: any diagnostic threshold using any variable

used to diagnose OSA and snoring, or categorise its severity. More
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than one diagnostic threshold can be extracted per study. For the

PSG-based diagnosis, the expected thresholds include AHI or RDI

of ≥5, ≥15, or ≥30 events/h, but the least used thresholds (such as

AHI ≥20 events/h) or diagnosis based on variables other than AHI

or RDI will also be extracted.

� PSG scoring approach: although the AASM recommendations

require manual scoring, the use of automatic approaches is becom-

ing increasingly common. The PSG scoring approach will be

extracted, being categorised as manual or automatic.

� Number of technologists scoring the PSG recording: the accuracy of a

diagnostic test depends not only upon the sensitivity and specific-

ity of the index test but also on the precision of the reference test.

PSGs are always subjected to inter-rater variability (Kuna

et al., 2013; Lee, Lee, Cho, & Choi, 2022; Magalang et al., 2016),

and the bigger it is, the harder it will be for an index test to reach

high accuracy. Having more than one technician scoring each PSG

is a strategy to increase diagnostic accuracy within the refer-

ence test.

Main outcomes:

� Number of true positives (TP), false positives (FP), true negatives

(TN), and false negatives (FN) for each diagnostic threshold. These

variables are traditionally used to compose contingency tables from

which specificity and sensitivity and other derivate measures are

calculated. When these variables are not provided, they will be cal-

culated or estimated, as suggested by Taylor et al. (Taylor, Mah-

tani, & Aronson, 2021) and Dinnes et al. (Dinnes, Deeks,

Leeflang, & Li, 2021). When these data are provided in contingency

tables larger than 2 � 2 (such as disclosing all OSA severity groups),

data will be grouped in a way that 2 � 2 tables can be built for

each diagnostic threshold (as demonstrated in Figure 2).

� Number of TPs, FPs, TNs, and FNs for epoch-by-epoch and event-

by-event detection of obstructive events, apneas, hypopneas, and

snoring.

� AHI for both index and reference tests (mean ± SD).

� RDI for both index and reference tests (mean ± SD).

� REI for both index and reference tests (mean ± SD).

� ODI for both index and reference tests (mean ± SD).

� Snoring duration for both index and reference tests (mean duration

[s] ± SD).

� Snoring frequency for both index and reference tests (mean

[s] ± SD).

Secondary outcomes

� Any other sleep-related respiratory variable reported in the article,

including but not limited to absolute number and indices of respira-

tory effort-related arousals (RERA), apneas, hypopneas, central

events, obstructive events; time spent with SpO2 >90%

(mean ± SD).

Role of sponsors:

� Study commissioned or sponsored by a device/app manufacturer

(yes/no)

� One or more authors directly affiliated with the device/app manu-

facturer (yes/no)

F IGURE 2 Contingency table with
hypothetical values for different
obstructive sleep apnea (OSA) diagnostic
thresholds between polysomnography
(PSG) and an index test. (a) Contingency
table with results between PSG and an
index test considering all common
classification thresholds. (b–d) Derived
contingency tables, converting values into

different classification thresholds. This
figure allows comparing the actual
sensitivity and specificity according to
different classification thresholds. In this
hypothetical example, the sensitivity is
high and stable in all classification
thresholds defined based on the apnea–
hypopnea index (AHI) (i.e., there is a low
risk of false negatives), while the
specificity grows from mild to severe
OSA. mod, moderate.
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3.7 | Publication bias

Publication bias will be assessed using Deeks’ test, which was specifi-

cally designed for systematic reviews of DTA (Deeks, Macaskill, &

Irwig, 2005) and performs better than the Begg and Egger test in

these cases (van Enst, Ochodo, Scholten, Hooft, & Leeflang, 2014). It

is based on plotting the DOR in natural logarithmic form (lnDOR)

against the inverse of the effective sample size.

3.8 | Quality assessment and risk of bias

Quality assessment within the included studies will be evaluated using

the revised version of the Quality Assessment of Diagnostic Accuracy

Studies (QUADAS-2) (Whiting et al., 2011). This tool was specifically

designed for quality assessment of diagnostic accuracy studies and is

the most recommended option for risk assessment in systematic

reviews. It consists of four domains, related to participant selection,

index test, reference standard, and flow and timing. Each of these

domains is evaluated in two independent ways: risk of bias and con-

cerns regarding applicability (except for ‘flow and timing’, which is

judged only about the risk of bias). Each item is judged as having low

risk, high risk, or unclear risk. As common for quality and bias assess-

ment, no summary statistics or final scores are provided. The results

will be displayed in tables, disclosing the results of the assessment for

each included article, and in charts, disclosing the percentage of low,

high, and unclear risk for each item.

Additionally, the procedures used for the validation of point-of-

care OSA screening devices in each included article will be evaluated

by using the rating system proposed by Tangudu et al. (2021). This

method evaluates 11 aspects related to validation studies: the number

of PSG readers/scorers, subject conditions (SDB diagnosis), subject

data (patient history), caffeine and alcohol restrictions, daytime sleepi-

ness evaluation, instructions for self-application of home-based

devices, sleep metrics under analysis, methods for data extraction,

methods for quantitative analysis, methods for qualitative analysis,

and data protection and security issues. Each item is rated from 1 to

3 based on the appropriateness of the methods employed in each

study, leading to a final score ranging from 1 to 33.

3.9 | Data synthesis and analyses

Meta-analyses will be performed whenever three or more studies can

be grouped using the same outcome measure. Two different types of

meta-analysis will be performed in this study: DTA meta-analyses and

mean difference meta-analyses.

3.9.1 | Diagnostic test accuracy meta-analyses

The DTA meta-analyses will be performed for outcomes for which

2 � 2 contingency tables were extracted. It includes both studies

assessing diagnostic accuracy (PI(R)T questions #1) and studies

employing epoch-by-epoch or event-by-event analyses (PI(R)T ques-

tions #2). Independent analyses will be performed for each diagnostic

threshold, and no analyses will be performed by adding data from dif-

ferent diagnostic thresholds. For each study, the number of TP, FN,

FP, and TN will be used, and summary statistics will be calculated

using the random effects bivariate binomial model of Chu and Cole

(Chu & Cole, 2006). This model allows the calculation of a summary

estimate for both sensitivity and specificity among the whole sam-

ple. The estimated sensitivity and specificity (and their 95% confi-

dence interval [95% CI]) for each included study will be displayed

in Forest plots, and the summary estimate for the whole sample

will be displayed in a summary receiver operating characteristics

(ROC) curve (SROC curve), plotted using the sensitivity against the

FP rate (1-specificity). No heterogeneity tests will be performed

(such as the I2 index), as they do not perform well in DTA meta-

analyses (Leeflang, 2014). All DTA meta-analyses will be per-

formed using the MetaDTA application (Freeman et al., 2019;

Patel, Cooper, Freeman, & Sutton, 2021).

3.9.2 | Mean difference meta-analysis

Mean difference meta-analysis will be performed for continuous out-

comes (mean ± SD), in cases in which both the index and the reference

tests provide results in the outcome and use the same unit of measure-

ment (PI(R)T questions #3). These meta-analyses are not commonly per-

formed in systematic reviews of diagnostic accuracy, but in the present

study, they will be used to explore the concordance of the index and

the reference tests in detecting a continuous numeric variable used for

screening purposes, regardless of the diagnostic threshold. For each

study, the mean difference (Mindex test – Mreference test) will be calculated

for each included study. Meta-analyses will be performed using the

DerSimonian and Laird random-effects model. Heterogeneity will be

assessed using both the I2 index and the Cochran's Q test. Data will be

presented as effect size ± 95% CI in Forest plots. Statistically significant

results (p ≤ 0.05) with effect size ± 95% CI greater than zero will be

interpreted as cases in which the index test overestimates the reference

test measure, while effect size ± 95% CI less than zero and p ≤ 0.05 will

be interpreted as an underestimation of the index test in comparison

with the reference test. Non-significant results (p > 0.05) with effect

size ± 95% CI crossing the zero line will be interpreted as an equiva-

lence between the index and the reference tests for a given outcome.

All mean difference meta-analysis will be performed using the Compre-

hensive Meta-Analysis software.

3.9.3 | Analysis plan, subgroup analysis, and
sensitivity analysis

The primary level analysis will include all possible studies for each

given outcome, regardless of the device/app category and technology

used. Although it is likely to result in highly heterogeneous analyses, it
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will be useful to conclude the general accuracy of OSA and snoring

screening devices and apps.

Second-to-fourth-level analyses correspond to subgroup analysis

with an increasing level of methodological homogeneity. Second-level

analyses will group studies by the type of devices/app (wearables,

nearables, bed sensors, smartphone apps). Third-level analyses will

group studies by the technology and equipment used to detect OSA

or snoring (e.g., oximeter, microphone, arterial tonometry, and acceler-

ometer). Fourth-level analyses will group studies by the exact com-

mercial presentation (including commercial name and manufacturer).

To evaluate whether the accuracies of CSTs have increased over

time, the stratified analysis will be performed according to the publica-

tion year, grouping studies in blocks of 5 years. To evaluate the accu-

racies of CSTs between individuals with different skin colours,

subgroup analysis will be performed considering self-reported ethnic-

ity and phototypes (based on the Fitzpatrick skin phototype scale

whenever available). To evaluate the possible differential accuracy

results of CSTs validated against manual scoring, stratified analyses

will consider the PSG-scoring approach (manual, semi-automatic, or

automatic). Other subgroup analyses might be performed depending

on the number and characteristics of the included studies.

Sensitivity analyses will be performed considering the representa-

tiveness of the samples (excluding all convenience samples), the

role of the manufacturer (excluding cases in which the manufac-

turer sponsored the study or when authors are directly affiliated

with the manufacturer), source of data (excluding articles provided

by manufacturers), concurrent health conditions (excluding sam-

ples with populations with comorbidities), pre-test assessment of

OSA (excluding studies in which the sample was considered as high

risk of OSA at the baseline). Other sensitivity analyses might be

performed depending on the number and characteristics of the

included studies.

3.10 | Grading of Recommendations Assessment,
Development and Evaluation (GRADE) assessment

The GRADE system is a methodology increasingly used to assess the

certainty of evidence and to decide about the strength of recommen-

dations in systematic reviews and guideline development (Guyatt

et al., 2008), especially when related to therapeutic questions. Initial

methodological suggestions have been made to adapt the GRADE

system to questions related to DTA (Brozek et al., 2009; Schünemann

et al., 2008). However, the use of the GRADE system has been proven

to be challenging, mostly due to the lack of proper and explicit guid-

ance on how to perform it (Gopalakrishna et al., 2014). More recent

guidelines are being implemented, which will be used in this system-

atic review (Schünemann et al., 2019; Schünemann et al., 2020a,

2020b).

The GRADE assessment in this review will apply only to the cate-

gorical outcomes assessed in terms of their accuracy (including TP,

FN, FP, and TN), as the continuous outcomes are analysed from a

more exploratory perspective. For each question, sensitivity (TP and

FN grouped) and specificity (TN and FP grouped) outcomes will be

assessed independently. The certainty of the evidence for each out-

come can be considered as high, moderate, low, or very low. Cross-

sectional within-subject paired studies will start being considered as

high-certainty evidence, as this design can be considered appropriate

to assess test accuracy (Schünemann et al., 2020a). Based on this ini-

tial assessment, the level-of-evidence certainty can be decreased

based on five criteria (risk of bias, indirectness, inconsistency, impreci-

sion, and publication bias) (Schünemann et al., 2020b). Certainty of

evidence can also increase based on three criteria (consistent

sensitivity–specificity relationship, large estimates of test accuracy,

and minimal plausible bias and confounding). However, rating up the

certainty of the evidence is discouraged for test accuracy outcomes,

as there is no consensus regarding this procedure for DTA systematic

reviews and it still warrants further methodological development. All

GRADE assessments will be performed with GRADEpro GDT (https://

www.gradepro.org/).

4 | DISCUSSION AND EXPECTED RESULTS

Several CSTs related to OSA and snoring screening are commercially

available and are becoming increasingly popular. As these technolo-

gies are designed for being used directly by the customers, usually

without supervision or assistance from medical professionals, it is

important to assure their results and reports are reliable and accurate.

One of the main concerns regards sensitivity, as FN results would

refrain a user from seeking professional assistance and treatment

when it is needed.

The present protocol describes the methods and procedures for a

systematic review and meta-analysis, which will evaluate the accuracy

of CSTs for the screening of OSA and snoring. Other systematic

reviews have already been performed to evaluate CSTs for other

sleep-related conditions, such as for digital cognitive behavioural ther-

apy for insomnia (Cheng & Dizon, 2012; Edinger et al., 2021; Seyffert

et al., 2016; Ye et al., 2016; Zachariae, Lyby, Ritterband, &

O'Toole, 2016) and sleep scoring (Haghayegh, Khoshnevis, Smolensky,

Diller, & Castriotta, 2019). In all cases, the meta-analyses have been

useful to assure a proper assessment of the validity, usefulness, and

reliability of CSTs, although in conditions different from OSA.

The use of CST for OSA screening has already been reviewed and

subjected to comprehensive theoretical analyses (Baptista

et al., 2022; Baron et al., 2018; Fino & Mazzetti, 2019; Korkalainen

et al., 2021; Uddin et al., 2018). At least two meta-analyses regarding

CST for the screening of OSA have already been published (Kim

et al., 2022; Rosa et al., 2018). Rosa et al. (2018) evaluated a sample

of 18 studies including all CST types. The authors concluded that both

contactless devices and bed-mattresses devices have the greatest

sensitivity to detect OSA, especially in moderate and severe cases,

while other devices showed low sensitivity and specificity. Kim et al.

(2022) evaluated the accuracy of smartphones in the detection of

OSA based on a sample of 11 studies and reached a sensitivity of

>80% in all cases. Both studies were well performed and were
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meritorious in evaluating the usefulness of these technologies.

Although we acknowledge an overlap between these two previous

meta-analyses and the present protocol, we understand they can be

complementary. In addition, the present systematic review improves

the knowledge by addressing points that were not addressed in the

previous studies:

• Updated analysis: CSTs are improved at a fast pace and new tech-

nologies are constantly being developed, which includes new sen-

sors, algorithms, and devices. Therefore, constant monitoring and

evaluation of the reliability of these tools are needed, until safe

and stable conclusions regarding their usefulness are reached. Rosa

et al. (2018) was published 5 years ago and substantial develop-

ment in CSTs has been made seen since then. Kim et al. (2022) is

more recent, but their narrower focus led to not analysing the rele-

vant improvements in technologies other than those linked to

smartphones.

• Broadness on the definition of CST: sleep technologies are pre-

sented in many formats, and the reliability of one type of device

might not be extrapolated to others. Rosa et al. (2018) have used a

similar approach to ours, intending to include CSTs of multiple

types, but it might have missed devices that were developed in the

last couple of years. On the other hand, the recent study by Kim

et al. (2022) focused on smartphone detection only, therefore not

allowing us to conclude anything regarding wearables and

nearables.

• Detailed strategy to analyse data: as the technology on these tools

and devices varies considerably, a solid strategy to analyse data is

needed to encompass the most important sources of variability

and heterogeneity. In our analysis plan, we have included analyses

related to different outcome measures (including but not limited to

AHI, RDI, REI, ODI, snoring duration, and snoring frequency), cate-

gories of devices (wearables, nearables, bed sensors, and smart-

phone apps), technologies (e.g., oximeter, microphone, arterial

tonometry, and accelerometer), sample representativeness, and the

role of manufacturer, among others.

• Concerns regarding sponsorship: most research on new sleep

technologies are directly sponsored or even primarily performed

by the manufacturers. This is an important source of potential bias,

increasing the likelihood of publication bias and selective outcome

reporting. For this reason, we intend to broaden our search strat-

egy by contacting manufacturers directly. Also, the role of the

manufacturers will be included in subgroup analyses.

• Specific methodology for DTA meta-analysis: this is a very specific

type of meta-analysis, for which the methodology is under con-

stant improvement. The previous meta-analyses have encom-

passed some of the DTA-specific methodologies, but a few aspects

might have been overlooked. The present protocol aims to encom-

pass the most recent methodology for DTA meta-analysis.

• Sample size: the previous meta-analyses have been performed

with a limited number of studies, especially when subgroup ana-

lyses are considered. We believe that with our enlarged search

strategy and by contacting manufacturers and companies directly,

we might have a larger sample of studies, therefore increasing our

external validity on conclusive potential.

As currently understood, CSTs are not intended to be used for

diagnosis, but rather for screening of sleep disorders, as most of

them are marketed to be used autonomously by a consumer/user

without medical prescription or supervision. However, two move-

ments in the development of new CSTs have been observed. First,

their overall diagnostic accuracy seems to be increasing, as new

technologies are used, and more refined algorithms are implemen-

ted. Second, transitional technologies, which lie somehow in

between CSTs and clinical-grade devices, are becoming increasingly

common. Our results will help to assess whether the diagnostic

accuracy of OSA-related CSTs is adequate, therefore bringing

screening and diagnosis closer one to another. However, it should

be kept in mind that diagnosis is not restricted to the measurement

of certain diagnostic measures (such as AHI, RDI, or ODI), and it

might involve a proper differential diagnosis or the assessment of

comorbidities and other concomitant conditions. Both issues are

highly dependent on a throughout clinical evaluation, therefore

being overlooked when a device is used directly by the consumer

regardless of a medical professional.

The meta-analyses resulting from this protocol will help to

direct future technologies, assisting in the process of continuous

technological development in the field of sleep medicine. This

growth should be achieved both by focusing on consumer needs

and data reliability. However, meta-analyses such as the one pro-

posed here are limited by the fact that they analyse previously

published data, therefore serving as a post hoc appraisal tool. It

also focuses specifically on the accuracy of diagnostic accuracy of

studies, not intending to evaluate other aspects related to the reli-

ability of CSTs, such as personal data security, data protection, and

data storage. The knowledge arriving from the present and other

meta-analyses, as well as from the mutual collaboration between

manufacturers, healthcare professionals, and sleep researchers,

should be reverted into practical achievements and definitions that

should be implemented before new devices become commercially

available, impacting the way they are designed, developed, regis-

tered, and evaluated by health agencies, and promoted to the gen-

eral public.
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