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Abstract

Age-related changes in brain structure include atrophy of the brain parenchyma and white

matter changes of presumed vascular origin. Enlargement of the ventricles may occur due

to atrophy or impaired cerebrospinal fluid (CSF) circulation. The co-occurrence of these

changes in neurodegenerative diseases and in aging brains often requires investigators to

take both into account when studying the brain, however, automated segmentation of

enlarged ventricles and white matter hyperintensities (WMHs) can be a challenging task.

Here, we present a hybrid multi-atlas segmentation and convolutional autoencoder

approach for joint ventricle parcellation and WMH segmentation from magnetic resonance

images (MRIs). Our fully automated approach uses a convolutional autoencoder to generate

a standardized image of grey matter, white matter, CSF, and WMHs, which, in conjunction

with labels generated by a multi-atlas segmentation approach, is then fed into a convolu-

tional neural network to parcellate the ventricular system. Hence, our approach does not

depend on manually delineated training data for new data sets. The segmentation pipeline

was validated on both healthy elderly subjects and subjects with normal pressure hydro-

cephalus using ground truth manual labels and compared with state-of-the-art segmentation

methods. We then applied the method to a cohort of 2401 elderly brains to investigate asso-

ciations of ventricle volume and WMH load with various demographics and clinical biomark-

ers, using a multiple regression model. Our results indicate that the ventricle volume and

WMH load are both highly variable in a cohort of elderly subjects and there is an indepen-

dent association between the two, which highlights the importance of taking both the possi-

bility of enlarged ventricles and WMHs into account when studying the aging brain.

Introduction

As we age, the brain undergoes progressive brain atrophy and the risk of neurodegenerative

diseases and cognitive decline increases [1]. Alzheimer’s disease and cerebrovascular diseases
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[2] are two of the most common causes of dementia, although there are many other causes [3].

Many of these diseases cause changes in the brain that may be visible long before onset of

dementia [4]. Neurodegenerative diseases can cause region specific atrophy and lesions that

are visible in structural magnetic resonance images (MRIs) [5]. Changes associated with vascu-

lar dementia include white matter hyperintensities (WMHs) of presumed vascular origin, lacu-

nar infarcts, and enlarged perivascular spaces [6]. Enlargement of the ventricles may occur due

to atrophy or impaired cerebrospinal fluid (CSF) circulation [7]. Both WMHs and enlarged

ventricles are also biomarkers for other conditions, e.g., genetic diseases [8] and autoimmune

diseases, such as multiple sclerosis [9]. Hence, neurodegenerative diseases and normal aging

can cause both WMHs and enlarged ventricles. Early detection of neurodegenerative diseases

by use of neuroimaging biomarkers, such as WMH load or ventricle volume, is important to

aid in understanding the pathogenesis of these diseases, and make strides towards therapeutics

development. Robust detection at early stages enables investigators to start testing possible

therapeutic strategies and select presymptomatic patients for clinical trials [10].

To investigate causes of dementia using brain MRI, various structural biomarkers must be

analysed, including volumes, shapes, and location in the brain. Biomarkers should not be

looked at in isolation when there may be other causes of similar cognitive or physical

impairment that present with different biomarkers in the same subject [11]. Furthermore, it

may be difficult to distinguish abnormal size of structures, such as the ventricles, because the

size may also depend on factors that are not caused by disease, such as age, sex, and intracranial

volume [12]. Information from large data sets of brain MRIs can help elucidate biomarkers that

better predict abnormality.

The use of robust, accurate, and automated brain segmentation methods is crucial when

using specific brain structures as biomarkers, especially at early stages of the disease, when

structural changes may be very subtle and hard to identify visually from MRI. Conventional

whole brain segmentation methods include atlas based methods [13–16], such as multi-atlas

segmentation methods that use deformable registration of multiple annotated atlas images to

the subject at hand. A key challenge when using the multi-atlas segmentation approaches is

that the size and location of WMHs varies greatly between subjects and hence, they cannot be

accurately registered from one subject to another [17–19]. Also, multi-atlas segmentation

methods often rely solely on T1-weighted (T1-w) images, which do not provide as good WMH

lesion contrast as Fluid-Attenuated Inversion Recovery (FLAIR) images. Finally, multi-atlas

segmentation methods can fail when presented with severely enlarged ventricles [20]. Auto-

matic labelling of WMHs and the ventricles can also be challenging using multi-contrast meth-

ods due to pulsation artifacts i.e., hyperintense regions resembling lesions within the

ventricles, which can appear in FLAIR images. Increasing ventricle size and age have been

associated with the severity of these artifacts [21].

The majority of current state-of-the-art brain segmentation methods are based on convo-

lutional neural networks (CNNs) [22–28]. The U-net [29] is a frequently used fully convolu-

tional network with skip connections between the downsampling and upsampling paths.

These methods have successfully been used for ventricle segmentation [22, 30] and WMH

segmentation [23–26] separately. They generate results in a fraction of the time of the con-

ventional methods mentioned above [17], which is important when analysing big data sets

and for use in clinical settings, and they can easily incorporate multi-contrast information

for greater accuracy [26, 30]. However, it would be beneficial if methods performed well

using a variety of imaging contrasts in case of missing MRI sequences. CNNs are often

trained on large sets of labeled training data and may not produce as accurate results when

applied to images in data sets with different scanning protocols, MRI scanners, or subject

populations [31]. A manual delineation by an expert in neuroanatomy is still the gold
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standard for ground truth segmentations. Obtaining manually segmented images is labori-

ous and slow, and hence often impractical for generating new training data for different data

sets.

We recently developed the Segmentation AutoEncoder (SegAE [32]), an unsupervised

CNN method for segmentation of the grey matter (GM), white matter (WM), cerebrospinal

fluid (CSF), and WMHs in brain MRIs without the need for manually annotated training data.

We have previously shown that this method produces robust and accurate WMH segmenta-

tions on multi-site data [32]. However, the parcellation of the ventricular system into its four

main compartments, i.e., the left and right lateral ventricles, and the 3rd and 4th ventricles,

depends on human-made naming conventions so manually created atlases are needed to label

these structures.

Here we propose a novel segmentation pipeline comprising a sequential use of SegAE

and a ventricle parcellation CNN, which in conjunction with ventricle labels automatically

generated by a multi-atlas segmentation approach, provides a joint WMH and ventricle seg-

mentation. First, SegAE is used to generate images that represent the proportion of GM,

WM, CSF, and WMHs in each voxel. These are combined into a standardized image with

relatively homogeneous intensities within each tissue class. A ventricle parcellation network,

hereafter referred to as the Ventricle CNN or V_CNN, is trained using the standardized

images as input for robustness to changes in protocol between data sets. We train the SegAE

network on T1-w, T2-w, and FLAIR images to generate the standardized images without

using any training labels. The V_CNN is then trained on standardized images and corre-

sponding ventricle labels generated by the multi-atlas segmentation approach RUDOLPH

[14]. Two major advantages are gained from using the standardized image instead of the

raw MRI sequences as input: First, with the standardized image, we have a single image with

sharp tissue contrast enabling us to fit larger patches into GPU memory than if multiple

images were used as input (i.e., using the chosen patch-size, a larger number of input chan-

nels would not fit into GPU memory); and second, SegAE can produce images with stan-

dardized contrast using MRIs from different scanners or from only a selection of available

sequences (e.g., T1-w only or T1-w and T2-w only), which can be beneficial in data sets

where some of the sequences are not available (see Section Input sequence dependence for

details).

The segmentation of WMHs and the parcellation of the ventricular system into the four

compartments is validated using ground truth manually delineated labels from two different

data sets: The Age, Gene/Environment Susceptibility (AGES) Reykjavik study, a unique longi-

tudinal study of the Icelandic elderly [33]; and an NPH cohort from the Johns Hopkins Hos-

pital, with mild to severe ventriculomegaly, to test the robustness of the method to multi-site

data and severe pathology. We then apply the proposed method to process a total of 2401 sub-

jects, aged 66–93 years old, from the AGES-Reykjavik cohort, including 90 subjects from the

development set. We explore the ventricle volume and WMH load compared to age and sex

to demonstrate the importance of taking both the ventricles and WMHs into account when

analysing brains of elderly subjects and show how information from a large population of

normal subjects can be used to identify abnormal ventricle enlargement or WMH load. For

this analysis we use two separate multiple linear regression models to explore the association

between ventricle volume and WMH load as well as age, sex, body mass index (BMI), CSF

(excluding ventricles), intracranial volume (ICV), blood pressure, hypertension medication,

diabetes mellitus, and smoking. This may provide clues as to which populations are most at

risk of WMHs or ventricle enlargement and when a robust segmentation of both WMHs and

the ventricles is essential.
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Materials

AGES-Reykjavik study

The AGES-Reykjavik study was initiated in 2002 and was designed to examine risk factors,

including genetic susceptibility and gene/environment interaction, in relation to disease and

disability in old age [33]. The AGES-Reykjavik study cohort comprises 5764 participants

(female and male, age 66–93 at first visit), 4811 of which underwent brain MRI [34]. A total of

2644 out of the 4811 subjects had a second visit on average 5 years later. The MRIs were

acquired using a dedicated General Electrics 1.5-Tesla Signa Twinspeed EXCITE system with

a multi-channel phased array head cap coil. T1-w three-dimensional (3D) spoiled gradient

echo sequence (time to echo (TE): 8 ms, time repetition (TR): 21 ms, flip angle (FA): 30˚, field

of view (FOV): 240 mm; 256 × 256 matrix) with 0.94 × 0.94 × 1.5 mm3 voxel size and 110

slices; Proton Density (PD)/T2-w fast spin echo sequence (TE1: 22 ms, TE2: 90 ms, TR: 3220

ms, echo train length: 8, FA: 90˚, FOV: 220 mm2; 256 × 256 matrix); and FLAIR sequence (TE:

100 ms, TR: 8000ms, time from inversion (TI): 2000 ms, FA: 90˚, FOV: 220 mm; 256 × 256

matrix) with 0.86 × 0.86 × 3.0 mm3 voxel size and 54 slices.

Development set. For developmental purposes we selected 90 subjects (age 67–92) from

the AGES cohort. These subjects were selected based on previously reported total ventricle vol-

umes [34]. The quality of this ventricle segmentation was not assessed systematically, however,

it was sufficient to roughly group subjects into three groups of 30: Group 1 containing the

smallest, Group 2 the medium, and Group 3 the largest ventricle sizes. This way our develop-

ment sample covered the entire spectrum of ventricle sizes of the AGES cohort (smallest to

largest). Out of the development set of 90 subjects, 60 subjects were used for training, 5 for val-

idation of model parameters, and the remaining 25 were used for testing. Each of these subsets

were randomly selected, stratified by each ventricle group.

NPH patients

A second data set from the Johns Hopkins Hospital, Baltimore, USA was used to test the

robustness of the proposed method to a different scanner type and subject population. Brain

MRIs of 80 NPH patients (age range 26–90 years with average age 66.8±15) were acquired

with a 3-Tesla scanner. MPRAGE sequence (TR: 2110 ms, TE: 3.24 ms, FA: 8˚, TI: 1100 ms)

with a 0.9 mm isotropic voxel size, axial T2-w sequence (TR: 6500 ms, TE: 134 ms, TA: 2:38)

with a 3 mm slice thickness, and an axial FLAIR sequence (TR: 9000, TE: 94 ms, TI: 2500 ms,

TA: 2:44) with a 3 mm slice thickness.

Development set. The selection of the SegAE training subjects from the NPH data set was

performed by rating the severity of WMHs in the 80 NPH subjects on a scale from 0 to 3 and

randomly selecting 10 images with a severity of 3. To determine the hyperparameters for

SegAE, 3 subjects were randomly selected for validation. The remaining 77 subjects (including

the 10 training subjects) were used for testing the quality of the ventricle segmentation. Out of

the subjects with a WMH score of more than 0, 10 subjects were randomly selected for testing

the quality of the WMH segmentation.

Preprocessing

The images in the AGES-Reykjavik data set and the NPH data set were pre-processed by

resampling to 0.8 × 0.8 × 0.8 mm3 voxel size using cubic spline interpolation, rigidly register-

ing the baseline T1-w images to the MNI-152 atlas space [35] and, in turn, registering the base-

line T2-w, FLAIR and follow-up images to the corresponding baseline T1-w images in the

MNI-152 atlas space. All images were skullstripped using the skullstripping U-net described in
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S1 File. Since inhomogeneity correction is a part of the training process for SegAE (as

described in [32]), no inhomogeneity correction was needed during pre-processing.

Methods

Two different CNN architectures were used for two sequential tasks in the pipeline; the seg-

mentation autoencoder (SegAE) for unsupervised tissue and WMH segmentation and a U-net

specifically designed for parcellating the ventricular system (i.e., the V_CNN) using standard-

ized images made from the SegAE segmentations as input. Fig 1 shows the complete segmenta-

tion pipeline. Pretrained weights for the pipeline, and code, programmed in Python and with

the Keras/Tensorflow framework, are publicly available on GitHub. (See https://github.com/

lmellingsen/Ventricle_WMH_segmentation/).

Ethics statement

The data underlying the results of this study come from a large ongoing retrospective study of

medical records and archived samples in Iceland (AGES-Reykjavik study). Participants under-

went a broad written informed consent, approved by the Icelandic National Bioethics Com-

mittee and the Icelandic Data Projection Authority, that allows future studies to be performed

on this data set without additional Institutional Review Board applications if they fulfil certain

restrictions. Our study was specifically approved by the Data Regulatory Board of the Icelandic

Heart Association to meet those criteria. All data were fully anonymized before we were given

access to this widely used database. All protocols for the NPH data were approved by the Insti-

tutional Review Boards at the Johns Hopkins University School of Medicine. For all study par-

ticipants, written informed consent was obtained and all data were fully anonymized before

we were given access.

Generation of training data and CNN architecture

SegAE, described in [32], is a CNN architecture that learns tissue and lesion segmentation in

an unsupervised manner, by reconstructing multi-contrast MRI sequences as weighted combi-

nations of the predicted tissue proportions. Using appropriate regularization and iterative

inhomogeneity correction during training, the tissue proportions converge to a meaningful

classification that represents WMHs and tissue classes. We then generate segmentations of the

WMHs, GM, WM, CSF, and the meninges (the meninges were discarded in subsequent steps),

using the T1-w, T2-w, and FLAIR images as input to SegAE.

The resulting CSF segmentations sometimes contained unwanted signal decay due to pulsa-

tion artifacts, which appeared bright as WMHs within the ventricles in FLAIR images (see the

3rd ventricle in Fig 2(a)). This sometimes resulted in the pulsation artifact being classified as

WMHs. We corrected for these artifacts using a pulsation artifact segmentation obtained with

an element-wise multiplication of the CSF and WMH segmentations from SegAE. The pulsa-

tion artifact segmentation was then added to the CSF segmentation and subtracted from the

WMH segmentation. Results from this correction procedure are shown in Fig 2.

RUDOLPH [14] is a hybrid multi-atlas segmentation method that was specifically devel-

oped for subjects with hydrocephalus. The method combines multi-atlas segmentation and

patch-based tissue classification in a special relaxation scheme that corrects the anatomical

atlas priors in regions where accurate registration of the images is unachievable due to severely

enlarged ventricles. RUDOLPH provides a robust segmentation and parcellation of the ven-

tricular system into the left and right lateral, third, and fourth ventricles. We ran the

RUDOLPH algorithm on the development set of 90 subjects from the AGES-Reykjavik data

set and the ventricle labels for the left and right lateral ventricles and the 3rd and 4th ventricles
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were isolated. The RUDOLPH ventricle labels corresponding to subjects in the training set

were manually inspected and in 25 images, lateral ventricle labels erroneously appearing in the

sulcal CSF were manually removed. Subsequently, the CSF segmentation from SegAE was

multiplied with the RUDOLPH ventricle labels to generate parcellated ventricle training labels

that were consistent with the tissue segmentation from SegAE. This improved the quality of

the training labels due to RUDOLPH’s consistent over-segmentation of the ventricles. The

new ventricle labels were further processed with morphological closing to fill holes in the seg-

mentation of the ventricles due to the brighter choroid plexus within the ventricles (see Fig 3).

Morphological closing was performed with a 3 × 3 × 3 cube for two iterations in the lateral and

third ventricles.

The input into the ventricle segmentation network was a weighted combination of the soft

segmentation outputs from SegAE

Istandard ¼ 1 � SCSF þ 2 � SGM þ 3 � ðSWMH þ SWMÞ

where Istandard is the standardized image and SCSF, SGM, SWMH and SWM are the soft segmenta-

tions of the CSF, GM, WMHs, and WM, respectively. Scalar multiplication (�) with the weights

1, 2, and 3 is used to distinguish the tissues when they are combined into one image. Doing

this allows us to use a single homogeneous image with a sharp tissue contrast as input (see Fig

4(c)), fit larger patches into GPU memory than if all the SegAE segmentations or MRI

sequences were used as input, and to standardize tissue contrast when different sequences or

Fig 1. The proposed pipeline for joint ventricle and WMH segmentation. SegAE is used to decompose T1-w, T2-w

and FLAIR images into four images, where the proportion of CSF, GM, WM, and WMHs is represented in each voxel.

These are in turn used to create a standardized image from which the Ventricle CNN parcellates the ventricular system

into the left and right lateral ventricles, and the 3rd and 4th ventricles.

https://doi.org/10.1371/journal.pone.0274212.g001

Fig 2. Identification and removal of pulsation artifact. Image (a) shows a FLAIR image with a pulsation artifact in

the third ventricle (yellow arrow). Images (b) and (c) show the corresponding CSF and WMH output, respectively,

from SegAE before thresholding. Image (d) shows a pulsation artifact segmentation obtained with element-wise

multiplication of the CSF and WMH outputs (non-binarized). Image (e) shows the CSF segmentation that has been

corrected for pulsation artifacts by adding the pulsation artifact segmentation shown in (d).

https://doi.org/10.1371/journal.pone.0274212.g002
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MRIs from different scanners are used. The CNN architecture for the combined SegAE and

V_CNN pipeline can be seen in Fig 5.

Training and prediction

AGES-Reykjavik data set. The SegAE network was trained using T1-w, T2-w and FLAIR

images from 30 subjects, as described in [32]. For the evaluation of input sequence dependence

in Section Input sequence dependence, two other trained SegAE networks were prepared

using the same method: One SegAE network was trained using only T1-w images as input,

and another using only T1-w and T2-w images as input to the network. All three SegAE net-

works still use the same three inhomogeneity corrected MRI sequences, i.e. T1-w, T2-w and

FLAIR, for calculation of the loss function during initial training, since inhomogeneity correc-

tion is a part of the training process for SegAE (as described in [32]). However, after the SegAE

network has been trained, the missing input sequences for the two special networks are not

needed for prediction of new subjects (see details of this sequence dependence experiment in

Section Input sequence dependence).

Standardized images were created from the SegAE segmentations of the AGES-Reykjavik

training set and 128 × 128 × 128 voxel patches were extracted with a 40 voxel stride. The

Fig 3. Preparation of training labels. Image (a) shows a slice of a FLAIR image showing choroid plexus in the right

lateral ventricle (yellow arrow). Image (b) shows the corresponding ventricle segmentation from RUDOLPH, and (c)

shows the corresponding CSF segmentation from SegAE. Image (d) shows a ventricle segmentation obtained by

element-wise multiplication of each label from RUDOLPH with the CSF segmentation in (c) and a morphological

closing of the lateral and third ventricles. (e) shows a corresponding manual delineation.

https://doi.org/10.1371/journal.pone.0274212.g003

Fig 4. The MRI sequences vs. the standardized image. Images (a) and (b) show T1-w and a FLAIR images of a

subject, respectively, and image (c) shows a standardized image made of SegAE segmentations, which is free of

inhomogeneity artifacts and WMHs.

https://doi.org/10.1371/journal.pone.0274212.g004

PLOS ONE A joint ventricle and WMH segmentation from MRI for evaluation of changes in the aging brain

PLOS ONE | https://doi.org/10.1371/journal.pone.0274212 September 6, 2022 7 / 23

https://doi.org/10.1371/journal.pone.0274212.g003
https://doi.org/10.1371/journal.pone.0274212.g004
https://doi.org/10.1371/journal.pone.0274212


V_CNN was trained on standardized images and corresponding ventricle labels from 60 sub-

jects. The SegAE network trained using T1-w and T2-w images as input, did not show the

strong pulsation artifacts that were apparent in the SegAE CSF segmentation when FLAIR

images were used as input. Therefore, the SegAE network using only T1-w and T2-w images

as input was used for post-processing of the RUDOLPH ventricle labels that were used for

training the V_CNN. The V_CNN was trained using a Dice loss for 200 epochs (due to mem-

ory constraints, 15 subjects were selected 4 times to train for 50 epochs) with a learning rate of

1�106, using the Adam optimizer [36] with Nesterov momentum [37] with β1 = 0.9, β2 = 0.999,

schedule decay of 0.004, and a batch size of one. The learning rates were chosen manually with

six tries and comparisons with the validation set of 5 subjects (labels generated in the same

way as the training data in Section Generation of training data and CNN architecture). Other

Fig 5. The proposed CNN architecture. The input into the SegAE network comprises large 3D patches of MRI images

that are in turn reconstructed in an unsupervised manner by SegAE (the reconstructed output is denoted with Ŷ^). The

estimated components of the reconstruction (denoted with S) provide the segmentation of the input into WMHs, WM,

GM, CSF, and meninges (meninges are discarded in subsequent steps), which in turn are used to create a standardized

image that is used as the input into the V_CNN. Kernels of size 3 × 3 × 3 are used in all convolutional layers except size

1 × 1 × 1 is used in the final two layers of both SegAE and the V_CNN. The V_CNN output is a segmentation of the

four ventricle compartments, which in conjunction with the SegAE output provides a consistent ventricle and WMH

segmentation.

https://doi.org/10.1371/journal.pone.0274212.g005
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hyperparameters were not changed from the default values of Tensorflow [38]. After training,

ventricle label prediction was performed with a stride of 64, and patches were assembled using

the average of overlapping voxels. The training scheme is summarized in Table 1.

NPH data set. The SegAE network trained on the AGES-Reykjavik images was further

trained using T1-w, T2-w and FLAIR images of the 10 training subjects in the NPH data set

using a learning rate of 0.0001. The V_CNN that was trained on the AGES-Reykjavik data set

was used directly on the NPH data set, with no retraining, and prediction was performed in

the same way as for the AGES-Reykjavik data. An automatic post-processing of the ventricle

parcellation was performed by changing sporatic lateral- and 3rd ventricle labels in the same

connected component as the fourth ventricle.

Results

We present three experiments for the proposed joint ventricle and WMH segmentation

method. First, we conduct a comparison with widely used, publicly available segmentation

methods, using manual delineations as a reference. Second, we experiment with different com-

binations of input sequences into our segmentation pipeline. Finally, we compare the seg-

mented volumes to various biomarkers in the AGES-Reykjavik data set and explore the

strength of association between ventricle size and WMH load.

Evaluation and comparison

The four ventricle compartments and WMHs in a total of 25 subjects (8–9 from each Group of

different ventricle sizes described in Section AGES-Reykjavik Study) from the AGES-Reykja-

vik cohort were manually delineated for evaluation of the proposed method. In addition, the

method was evaluated on 77 subjects with manual ventricle labels and 10 subjects with manual

WMH labels from the NPH data set. For both of these data sets, the entire ventricular system

was labeled first as a single binary mask from the T1-w image. Then each ventricle mask was

parcellated into the left and right lateral ventricles, and the 3rd and 4th ventricles. The WMHs

were manually segmented from the FLAIR images.

All test subjects were processed using the proposed method, as well as two whole brain seg-

mentation methods: The widely used FreeSurfer 6.0 [13] and RUDOLPH, which was specifi-

cally developed to be robust to severely enlarged ventricles. Furthermore, the method was

compared with two publicly available and widely used WMH segmentation methods: LGA

[39] and LPA [40].

FreeSurfer is a comprehensive software package for analysis of structural and functional

neuroimaging data, including labelling of cortical and sub-cortical brain structures and

WMHs. The WMH segmentation method LGA segments WMHs from T1-w and FLAIR

images. A CSF, GM and WM segmentation is first obtained from the T1-w image and com-

bined with FLAIR image intensities for calculation of WMH belief maps, which are subse-

quently thresholded (κ = 0.1 and 0.5, for the AGES-Reykjavik data and NPH data respectively,

determined using the validation sets) and grown to include hyperintense FLAIR voxels for a

Table 1. The training scheme for the two CNNs of the pipeline, SegAE and V_CNN, for the two data sets, i.e., the AGES-Reykjavik cohort and the NPH cohort.

AGES-Reykjavik input NPH input

SegAE Unsupervised training using T1-w, T2-w/PD-w, and FLAIR images Unsupervised fine-tuning using T1-w, T2-w, and FLAIR images

V_CNN Supervised training using automatically generated labels from RUDOLPH and

standardized images from SegAE

No training– network trained using standardized images derived from

the AGES-Reykjavik data

https://doi.org/10.1371/journal.pone.0274212.t001
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final lesion probability map. The WMH segmentation method LPA segments WMHs from

FLAIR images, using a logistic regression model, trained on MRIs of 53 MS patients with

severe lesion patterns obtained at the Department of Neurology, Technische Universität Mün-

chen, Munich, Germany. A lesion belief map and a spatial covariate, accounting for voxel spe-

cific changes in lesion probability, are used. Finally, the lesion probability map can be

thresholded for a WMH segmentation. These four segmentation methods could be applied to

our data sets without the need for a new set of manually delineated training segmentations.

We ran FreeSurfer both with default parameters and with the -bigventricles flag to

account for enlarged ventricles.

For each subject in the test set the following metrics were computed to evaluate the perfor-

mance of the proposed method and alternative methods compared to the manually delineated

structures:

• Dice Similarity Coefficient (DSC)
A measure of overlap between the ground truth and predicted segmentations, DSC is

defined as 2
jA\Bj
jAjþjBj, where A and B are binary masks. A DSC of 1 indicates a perfect overlap

and 0 indicates no overlap between A and B.

• Log Volume Ratio (LVR)
A log transformed ratio of the predicted volume VP to the true volume VT. LVR is defined as

log VP
VT

� �
. Lower LVR indicates a more accurate prediction.

• Lesion-wise F1-score (L-F1)
Let NP be the number of correctly detected lesions after comparing the predicted lesion

mask P to the ground truth lesion mask T. NF is the number of incorrectly detected lesions

in P. An individual lesion is defined as a 3D connected component, and L-F1 is defined as
NP

NPþNF
. Higher L-F1 indicates better performance.

• Modified Hausdorff distance (H95)
Hausdorff distance measures the longest distance one has to travel from a point in one set to

a point in the other set, defined as:

dHðX;YÞ ¼ maxf sup
x2X

inf
y2Y

dðx; yÞ; sup
y2Y

inf
x2X

dðx; yÞ g;

where d(x, y) denotes the distance between x and y, sup denotes the supremum and inf the

infimum. Here the 95th percentile is used instead of the maximum distance, since the Haus-

dorff distance is sensitive to outliers. Lower H95 scores indicate better performance.

Fig 6 shows the ventricle volumes (of the entire ventricular system combined) of the manual

masks and the estimated ventricle volumes using the three methods, as well as the DSC

between the corresponding ventricle segmentations and the manual masks, ordered by the vol-

ume of the manual masks. This way, the performance of the methods relative to ventricle vol-

ume is demonstrated, since the DSC is known to be sensitive to the size of the segmented

volume [41]. The proposed method shows the most stable performance on all three groups of

ventricle sizes in the AGES-Reykjavik data set, and achieves the highest DSC on 20 out of the

25 subjects. RUDOLPH has the lowest DSC score on the smallest ventricles. FreeSurfer with

default settings fails when presented with the largest ventricles. In subsequent analysis we omit

results from default FreeSurfer, since FreeSurfer with the -bigventricles flag has a simi-

lar performance as the default version on subjects with smaller ventricles. The proposed

method shows a stable performance on all 77 subjects with NPH compared to FreeSurfer,
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which shows poor performance on two subjects with severely enlarged ventricles, and

RUDOLPH, which has a consistently lower DSC score.

Table 2 shows the DSC, LVR, and H95 metrics for the entire ventricular system and each

sub-compartment. Table 3 shows the DSC, LVR and L-F1 metrics for the WMHs. Scores are

averaged over all subjects and the best scores are shown in bold. Statistical significance was

determined using a Wilcoxon signed-rank test and values that are significantly different from

the proposed method are denoted with an asterisk (�). The proposed method achieves the

highest average DSC and H95 scores on the entire ventricular system (significantly better than

FreeSurfer and RUDOLPH on both the AGES-Reykjavik and NPH data sets). On the NPH

data set, the proposed method also achieves the highest LVR score (significantly better than

FreeSurfer and RUDOLPH), however, FreeSurfer achieves a slightly better LVR score on aver-

age than the proposed method on the AGES-Reykjavik data set, although it is not significantly

different. The corresponding scores for the left- and right lateral ventricles and the 3rd and 4th

ventricles seperately are also shown in Table 2. The proposed method achieves the highest

average WMHs segmentation score on all three metrics compared to FreeSurfer, LGA, and

LPA on the AGES-Reykjavik data set. The L-F1 score is sensitive to lesions with high-overlap

splitting into parts, or a few voxels connecting otherwise unconnected lesions in the ground

truth segmentation. LPA achieves the highest DSC and L-F1 scores on the NPH data sets,

although, was not significantly better than the proposed method. Our method achieved the

best LVR score, which was not significantly different from the comparison methods.

A visual comparison of the ventricle and WMH segmentations from the proposed method

and the alternative segmentation methods can be seen in Fig 7. LPA and LGA provide WMH

labels but not ventricle labels. RUDOLPH and FreeSurfer provide a whole brain segmentation

with ventricle parcellation, however RUDOLPH does not provide WMH labels, as is common

in multi-atlas segmentation approaches, and the WMH labels from FreeSurfer are not accu-

rate, as expected, given that FreeSurfer’s segmentation is entirely based on the T1-w sequence,

where WMHs have similar intensity values to GM structures. The proposed method is able to

provide accurate and consistent (i.e., non-overlapping labels) WMH and ventricle segmenta-

tion, while FreeSurfer’s WMH labels tend to bleed into the labels of the lateral ventricles.

Fig 6. Quantitative evaluation of the ventricle segmentation. The top graphs show the overall ventricle volume for

the manual masks (red) and masks generated by FreeSurfer (blue), RUDOLPH (orange), and the proposed method

(brown), ordered by the volume of the manual masks. The bottom graphs show the DSC for the same methods

compared with the manual masks. Results on the AGES-Reykjavik data are shown on the left and the NPH data on the

right.

https://doi.org/10.1371/journal.pone.0274212.g006
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Input sequence dependence

In our second experiment we wanted to explore whether the proposed method was able to seg-

ment the WMHs and the ventricles using fewer input sequences than the network was trained

on. This would be beneficial, for example, for WMH segmentation when FLAIR images are

missing. Three SegAE networks trained on the AGES-Reykjavik data set were used for this

experiment, one using only the T1-w image as input, another using T1-w and T2-w images as

input, and one using T1-w and T2-w and FLAIR images as input. Only one V_CNN network

was used to segment the ventricles in standardized images created with segmentations from

the three SegAE networks separately. The AGES-Reykjavik test set was used for evaluation of

Table 2. Evaluation of the ventricle segmentation. The mean and standard deviation of the DSC, LVR, and H95 for FreeSurfer, RUDOLPH and the proposed CNN pipe-

line on the entire ventricular system (Entire), the left lateral ventricle (LLV), the right lateral ventricle (RLV), the third ventricle (3rd) and the fourth ventricle (4th). A

paired Wilcoxon signed-rank test was used to obtain the p-values for determining statistical significance.

AGES-Reykjavik data set (N = 25)

FreeSurfer RUDOLPH Proposed

Entire DSC 0.894 (± 0.048)� 0.888 (± 0.079)� 0.932 (± 0.038)

LVR 0.071 (± 0.072) 0.200 (± 0.171)� 0.072 (± 0.068)

H95 6.939 (± 7.229)� 6.624 (± 8.384)� 2.816 (± 5.408)

LLV DSC 0.906 (± 0.044)� 0.889 (± 0.081)� 0.938 (± 0.039)

LVR 0.072 (± 0.077) 0.203 (± 0.175)� 0.070 (± 0.077)

H95 7.155 (± 8.370)� 7.451 (± 0.175)� 2.942 (± 5.459)

RLV DSC 0.900 (± 0.052)� 0.890 (± 0.081)� 0.935 (± 0.038)

LVR 0.073 (± 0.070) 0.195 (± 0.179)� 0.078 (± 0.074)

H95 7.646 (± 0.916)� 7.205 (± 9.222)� 3.848 (± 7.750)

3rd DSC 0.853 (± 0.044) 0.867 (± 0.056) 0.869 (± 0.039)

LVR 0.136 (± 0.098) 0.188 (± 0.132)� 0.152 (± 0.119)

H95 2.260 (± 0.781) 2.540 (± 0.993) 2.573 (± 0.910)

4th DSC 0.687 (± 0.077)� 0.777 (± 0.092)� 0.824 (± 0.054)

LVR 0.525 (± 0.191)� 0.417 (± 0.224)� 0.199 (± 0.144)

H95 12.857 (± 3.231)� 2.901 (± 1.434) 2.615 (± 1.473)

NPH data set (N = 77)

Entire DSC 0.923 (± 0.088)� 0.916 (± 0.060)� 0.944 (± 0.036)

LVR 0.076 (± 0.227)� 0.110 (± 0.130)� 0.074 (± 0.064)

H95 3.884 (± 5.788)� 17.564 (± 7.175)� 2.562 (± 2.303)

LLV DSC 0.928 (± 0.084)� 0.921 (± 0.062)� 0.945 (± 0.036)

LVR 0.073 (± 0.214)� 0.104 (± 0.134) 0.083 (± 0.068)

H95 3.540 (± 5.493)� 17.820 (± 7.419)� 2.180 (± 1.709)

RLV DSC 0.925 (± 0.097)� 0.915 (± 0.059)� 0.946 (± 0.034)

LVR 0.079 (± 0.276)� 0.108 (± 0.126)� 0.073 (± 0.038)

H95 3.883 (± 6.404)� 20.394 (± 7.936)� 3.999 (± 7.977)

3rd DSC 0.830 (± 0.076) 0.851 (± 0.095) 0.837 (± 0.104)

LVR 0.155 (± 0.169)� 0.234 (± 0.215) 0.219 (± 0.238)

H95 3.512 (± 1.852) 2.642 (± 1.321)� 4.192 (± 5.308)

4th DSC 0.739 (± 0.078)� 0.805 (± 0.070) 0.775 (± 0.127)

LVR 0.417 (± 0.179)� 0.309 (± 0.189) 0.315 (± 0.364)

H95 9.771 (± 3.815) 2.885 (± 1.493)� 8.583 (± 7.499)

Asterisk (�) denotes values that are significantly different from the proposed CNN (p < 0.05/15, where 15 corrects for multiple comparisons), and bold figures denote

the best score for each metric.

https://doi.org/10.1371/journal.pone.0274212.t002
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the input sequence dependence. Fig 8 shows boxplots of the DSC coefficients for WMHs (Fig

8, left) and the entire ventricular system (Fig 8, right) for the proposed method when using the

following sequences as input: 1) only T1-w images, 2) only T1-w and T2-w images, and 3)

using T1-w, T2-w, and FLAIR images as input. As expected, the segmentation accuracy for

WMHs is not as accurate when some of the sequences are missing, however, we note that our

method is able to produce similar WMH segmentation results as the LGA method but without

using the FLAIR image as input (mean DSC 0.647±0.140 for the proposed method vs. 0.634

±0.146 for LPA). Likewise, the proposed method produced a better average DSC for the WMH

segmentation than FreeSurfer when using only the T1-w image as input (mean DSC 0.442

Table 3. Evaluation of the WMH segmentation. The mean and standard deviation for DSC, LVR, and L-F1 for the WMH segmentations from FreeSurfer, LGA, LPA,

and SegAE. A paired Wilcoxon signed-rank test was used to obtain the p-values for determining statistical significance.

AGES-Reykjavik data set (N = 25)

FreeSurfer LGA LPA Proposed

DSC 0.284 (± 0.107)� 0.634 (± 0.146)� 0.669 (± 0.175) 0.774 (± 0.100)

LVR 0.697 (± 0.255)� 0.322 (± 0.352) 0.558 (± 0.607)� 0.297 (± 0.307)

L-F1 0.127 (± 0.068)� 0.309 (± 0.117)� 0.354 (± 0.185) 0.437 (± 0.085)

NPH data set (N = 10)

FreeSurfer LGA LPA Proposed

DSC 0.482 (± 0.0.120)� 0.665 (± 0.110) 0.778 (± 0.053) 0.721 (± 0.070)

LVR 0.754 (± 0.288) 0.634 (± 0.233) 0.360 (± 0.156) 0.334 (± 0.173)

L-F1 0.088 (± 0.037) 0.086 (± 0.020) 0.163 (± 0.057) 0.146 (± 0.070)

Asterisk (�) denotes values that are significantly different from the proposed CNN (p < 0.05/12, where 12 corrects for multiple comparisons), and bold figures denote

the best score for each metric.

https://doi.org/10.1371/journal.pone.0274212.t003

Fig 7. Visual comparison of the proposed method and the five methods used for comparison. The images show the

left (green) and right (blue) lateral ventricles (the 3rd and 4th ventricles are not visible in these slices), and WMHs

(white). LPA and LGA provide WMH labels but not ventricle labels. RUDOLPH and FreeSurfer provide a whole brain

segmentation with ventricle labels, however RUDOLPH does not provide WMH labels and the WMH labels from

FreeSurfer are not accurate. The proposed method provides accurate ventricle and WMH labels.

https://doi.org/10.1371/journal.pone.0274212.g007
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±0.162 for the proposed method vs. 0.284±0.107 for FreeSurfer). For the ventricle segmenta-

tion, there is no significant difference in accuracy when using one, two, or all three sequences.

Association between ventricle size and lesion load

In our final experiment, we explored associations between the segmentation volumes and vari-

ous biomarkers in the AGES-Reykjavik study on data from 2371 subjects. We ran the pipeline

on 2401 subjects for which all the required data existed and omitted 30 subjects due to failures

in processing (24 due to registration errors and 6 due to skullstripping errors).

First, we explored the relationship of age and the total volume of the ventricles divided by

ICV as well as the WMH load divided by ICV for men and women (see Fig 9). We show the 3

moving year average and standard deviation of the volumes for each age group. While there

was an overall increase in both ventricle volume and WMH load with age, the individual vari-

ability was high within each age group.

Second, we compared selected segmentation volumes from our pipeline (ventricle- and sul-

cal CSF volumes, WMH load, and ICV) to several demographics and biomarkers in the

AGES-Reykjavik study (see Table 4) to explore risk factors for either ventricle enlargement or

high WMH load and the individual association between the two. These biomarkers were care-

fully selected as they have previously been shown to be associated with WMHs and enlarged

ventricles. Table 5 shows the results from two multiple linear regression models on data from

2371 subjects at first visit (baseline) to predict the volume of the entire ventricular system

(Table 5, top) and the WMH load (Table 5, bottom), respectively. The adjusted coefficients of

determination (adjusted-R2) of the two models were 0.141 and 0.275, for the WMH prediction

and the ventricle volume prediction, respectively. The ventricle model has the WMH load as

input, and the WMH load model has the entire ventricle volume as input. Furthermore, both

models include the sulcal CSF volume, ICV, age, sex, body mass index (BMI), systolic and dia-

stolic blood pressure, use of hypertension medication, diabetes mellitus type 2, and history of

smoking. The values were normalized by subtracting the mean and dividing by the standard

deviation. The use of hypertension medication and the presence of diabetes mellitus type 2 is

represented with the dichotomous variables 0 and 1, for absence and presence, respectively.

Smoking status is represented with the categorical variables 0, 1, and 2 for non-, former-, and

current smoker, respectively. Using the multiple regression model we found that WMHs, ICV,

age, and diabetes mellitus type 2 are significantly associated with the ventricle volume

(p< 0.05/22, where 22 corrects for multiple comparisons). Furthermore, we found that ventri-

cle volume, age, sex, diastolic blood pressure and smoking are significantly associated with

Fig 8. Boxplots comparing the DSC when using different number of input sequences in the proposed method. The

left plot shows WMHs and the right plot shows the ventricular system when generating segmentations from: 1) Only

T1-w (blue), 2) only T1-w and T2-w (orange), and 3) T1-w, T2-w, and FLAIR images (green).

https://doi.org/10.1371/journal.pone.0274212.g008
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WMH load (p< 0.05/22, where 22 corrects for multiple comparisons). Thus, there may be

other underlying reasons for the association between WMHs and ventricle volume than

increasing age and the other biomarkers and demographic factors mentioned above.

Discussion

Our hybrid multi-atlas segmentation and convolutional autoencoder approach jointly pro-

vides a segmentation of WMHs and a parcellation of the ventricular system into its four main

compartments. First, a segmentation of the WMHs, CSF, WM, and GM is acquired with the

Table 4. Demographics and biomarkers [mean and standard deviation (SD)] at baseline for the 2371 subjects used

in the multiple regression model.

Baseline

Age [mean, SD] 74.7, 4.8

Sex [% male] 41%

Body mass index (BMI) [mean, SD] 27.2, 4.1

Systolic blood pressure [mean, SD] 141.3, 19.9

Diastolic blood pressure [mean, SD] 74.1, 9.3

Hypertension medication [count] 1430

Diabetes mellitus type 2 (DM2) [count] 214

History of Smoking [count] [0: 1026, 1: 1091, 2: 254]

https://doi.org/10.1371/journal.pone.0274212.t004

Fig 9. The 3 year moving average (red dots) and standard deviation (dashed blue line) of ventricle volumes and

WMH load. The association between age and the total volume of all the ventricles divided by ICV (top) for (a) women

and (b) men, as well as the association between age and WMH load divided by ICV (bottom) for (c) women and (d)

men. The ventricle volume and WMH load of individual subjects, at their corresponding age, are shown in grey.

https://doi.org/10.1371/journal.pone.0274212.g009
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unsupervised CNN method SegAE. Then the training labels for the ventricle parcellation net-

work, i.e., the V_CNN, are acquired without manual delineation by merging labels from the

multi-atlas segmentation method RUDOLPH with the CSF segmentation provided by SegAE.

The input to the V_CNN is a standardized image created with a linear combination of the

SegAE segmentations.

We compared with methods that are publicly available. Furthermore, given that our

method requires no manually delineated ground truth data, we selected methods for compari-

son that do not require training on manually delineated ground truth data in a new data set.

Our results imply that standardized images allow us to segment brain structures, such as the

ventricles, using different types of sequences as input to the pipeline. In contrast, if a CNN was

trained using the MRI sequences directly, different CNNs would have to be trained for each

combination of input sequences [42] or by incorporating image synthesis [43]. Doing that

would limit the method to data sets with similar MRI parameters and scanner characteristics.

This method can serve as an alternative to training on ground truth from multiple data sets at

once or as an alternative to domain adaptation techniques for translating images between dif-

ferent domains [44]

Table 5. Multiple linear regression models to predict the entire ventricle volume (top) and WMH load (bottom). Input parameters are given on the left, followed by

the regression coefficients (βn), the standard error (S), the t statistic and p-values, as well as the 95% confidence interval.

Predicting ventricle volume

βn S t p [0.025 0.975]

Constant 40.7473 0.355 114.688 0.000 40.051 41.444

WMH load 4.1334 0.375 11.028 0.000 3.398 4.868

sulcal CSF volume 0.5497 0.477 1.152 0.250 -0.386 1.486

Intracranial volume (ICV) 6.9992 0.536 13.052 0.000 5.948 8.051

Age 3.3780 0.413 8.177 0.000 2.568 4.188

Sex -1.3190 0.506 -2.609 0.009 -2.310 -0.328

Body mass index (BMI) 0.6169 0.367 1.681 0.093 -0.103 1.337

Systolic blood pressure 0.3602 0.423 0.851 0.395 -0.470 1.190

Diastolic blood pressure -0.0727 0.429 -0.170 0.865 -0.913 0.768

Hypertension medication -0.0216 0.369 -0.059 0.953 -0.746 0.703

Diabetes mellitus type 2 1.1835 0.365 3.246 0.001 0.469 1.898

History of smoking 0.3159 0.368 0.859 0.391 -0.406 1.037

Predicting WMH load

βn S t p [0.025 0.975]

Constant 9.3225 0.180 51.742 0.000 8.969 9.676

Ventricle volume 2.2806 0.207 11.028 0.000 1.875 2.686

sulcal CSF volume 0.1301 0.242 0.537 0.591 -0.345 0.605

Intracranial volume (ICV) 0.5573 0.281 1.981 0.048 0.006 1.109

Age 1.8497 0.209 8.850 0.000 1.440 2.260

Sex 0.9884 0.256 3.862 0.000 0.487 1.490

Body mass index (BMI) 0.2958 0.186 1.589 0.112 -0.069 0.661

Systolic blood pressure 0.4248 0.215 1.980 0.048 0.004 0.845

Diastolic blood pressure 0.7570 0.217 3.491 0.000 0.332 1.182

Hypertension medication 0.5315 0.187 2.843 0.005 0.165 0.898

Diabetes mellitus type 2 0.0216 0.185 0.117 0.907 -0.342 0.385

History of smoking 0.9274 0.186 4.996 0.000 0.563 1.291

https://doi.org/10.1371/journal.pone.0274212.t005
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Generalizability

Simply by training an unsupervised tissue and WMH segmentation method on the NPH data

set, the V_CNN trained only on AGES-Reykjavik data could be used to further parcellate the

ventricular system in standardized images of NPH subjects. This data set was especially chal-

lenging because of severely enlarged ventricles and, in many cases, strong pulsation artifacts in

the FLAIR images. Our method is a step towards making CNNs, trained in a supervised man-

ner using manually delineated labels or labels from multi-atlas segmentation methods, able to

directly segment new brain MRI data (using different scanners or protocols) without the need

to generate new training labels.

Pulsation artifacts were removed from the CSF and WMH segmentations from SegAE

using a pulsation artifact mask obtained with element-wise multiplication of the soft CSF and

WMH segmentation masks. A limitation of this approach is that if the pulsation artifact is too

strong, such that it is exclusively present in the WMH segmentation, the multiplication will be

zero. A pulsation artifact output could potentially be incorporated into SegAE to generalize the

method further and avoid pulsation artifacts affecting the CSF and WMH segmentations.

We have demonstrated the generalizability of the method to different data sets by training

the method on data from the AGES-Reykjavik cohort and then applied the method on the

challenging NPH data set without any manually delineated training labels. A more extensive

validation can be done with access to other manually delineated, multi-contrast data sets with

ventricle and WMH lesion labels. One limitation that we came across when inspecting the

SegAE WMH segmentations of the NPH data set was sporadic WMH labels erroneously

appearing in the cerebellar region in some subjects of the NPH data set. We believe that this is

due to resampling during pre-processing. Resampling may create a problem for unsupervised

multi-contrast methods such as SegAE when there is a large difference in resolution between

the available MRI sequences. For instance, when thin lines of CSF in high-resolution T2-w

images of the NPH data set correspond to brighter voxels in FLAIR and T1-w images due to

blurring (see Fig 10). One solution could be to use the lower FLAIR resolution as a reference

for registration as proposed in [45]. However, the ground truth manual delineations that

existed for our data set were only available in MNI space. Future solutions may involve more

advanced super-resolution techniques.

Fig 10. Resampling may cause erroneous WMH segmentation in the cerebellum. Images (a), (b), and (c) show an

axial slice of the cerebellum in T2-w, FLAIR, and T1-w images, respectively, of a subject in the NPH data set. The T2-w

images have a higher in-plane resolution, which shows the thin lines of CSF in the cerebellum. Meanwhile, the

upsampling of the lower resolution FLAIR and T1-w images gives them a blurry appearance, leading to brighter voxels

instead of fine dark lines corresponding to the CSF in the T2-w image.

https://doi.org/10.1371/journal.pone.0274212.g010
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Input sequence dependence

We conducted an ablation experiment to test if our method could be used to generate accurate

segmentations without using all three MRI sequences as input (i.e., the T1-w, T2-w, and

FLAIR images). Our method was shown to give a robust ventricle segmentation when chang-

ing the input MRI sequences used to generate the standardized images with SegAE (see Fig 8).

Furthermore, we showed that the method could be used to segment WMHs without using the

FLAIR images as input, i.e., by using only T1-w or only T1-w and T2-w images, although with

some resignation in DSC. However, the DSC for the WMH segmentations when only T1-w

and T2-w images were used as input were still comparable to the LPA method. Similarly, using

only T1-w images as input, the average DSC was higher when using the proposed method

rather than FreeSurfer. Therefore, this strategy may be a viable option in data sets where

FLAIR images are not available for all subjects.

Investigating associations

Finally, we conducted an experiment where we compared the ventricle and WMH segmenta-

tion volumes to various demographics and clinical biomarkers in the AGES-Reykjavik data

set. The aim was to determine the variability in the elderly population and to explore the

strength of association between ventricle sizes and WMHs and risk factors for both.

First we demonstrated in Fig 9 how the average ventricle sizes increase with age for both

sexes and how a population data set could be used to determine enlarged ventricles using the

standard deviation for each age group. Similarly, the average WMH load increases with age,

and notably, the standard deviation also generally increases with age. Fewer data points

between ages 90–97 cause the standard deviation to decrease. The results demonstrate the high

variability of ventricle volumes and WMHs in the elderly population.

Ventricle volume and WMH load depend on multiple factors and to explore the individual

association between the ventricle size and WMH load, we used multiple linear regression mod-

els that take several confounders into account. Previous studies have found hypertension to be

a major risk factor for severe WMHs and that hyperintensive drugs reduce the risk of severe

WMHs [46]. Our results showed a positive association with systolic and diastolic blood pres-

sure, although only statistically significant for diastolic blood pressure, and a non-significant

positive association with the use of hyperintensive drugs. The blood pressure variables were

measured at the time of study and lack information about duration of high blood pressure

over a longer time period for each subject. The use of hypertensive medication may indicate a

longer history of high blood pressure and be positively associated with high WMH load even if

they have a lowering effect on blood pressure. Diabetes mellitus type 2 has been associated

with ventricle enlargement [47], as supported by our results, and a moderately elevated risk for

lacunar infarction in older men [48]. Our results found a significant positive association with

ventricle volume, but not with WMH load. Smoking has been associated with a higher WMH

load [49], as seen in our results, however, we do not have an accurate measurement of how

much or for how long each subject has smoked. Other lifestyle factors that are associated with

smoking, such as alcohol consumption and/or less physical activity [50], may influence our

results.

Previous studies have found associations between WMH load and region specific atrophy

[51], which are both biomarkers of small vessel disease [52]. Previous analysis of the AGES--

Reykjavik cohort have found that WMH and CSF volumes increase with age while the GM

and WM volumes decrease [53], and disproportionate ventricular dilation is associated with

WMH load [54]. The association of WMH load and ventricular volume has also been shown

to be independent of demographics, vascular burden and APOE genotype [55]. In our results,
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the ventricle volume but not the sulcal CSF volume is associated with WMH load. There could

be different causes for this in different individuals. WMHs possibly indicate reduced white

matter integrity around the ventricles in some individuals, and perhaps the expansion of the

ventricles might cause periventricular WMHs in the case of NPH patients [56]. Our results

indicate that it is important to investigate the ventricles in the elderly, diabetes patients, and in

people with small vessel disease; and WMHs in elderly people with high blood pressure,

enlarged ventricles, and smokers.

The significant positive association between ventricle volume and WMH load indicate that

there are other underlying reasons for this association (such as cerebral small vessel disease)

than the variables used in the multiple linear regression models in Table 5. Simultaneous seg-

mentation of both the ventricles and WMHs in large scale studies of the elderly population

may shed further light on this connection and differentiate between causes of ventricle

enlargement and increased WMH load [55], and how they contribute to dementia [57].

Impact

The proposed method currently provides segmentation of WMHs and a detailed parcellation

of the ventricular system, which has been a challenging task in the segmentation of brain MRIs

of the elderly and people with neurodegenerative diseases [20, 58]. The method has the poten-

tial of being extended to include segmentations of other brain structures, both cortical and

subcortical, that are usually segmented with methods that do not take WMHs or other tissue

abnormalities into account (e.g., multi-atlas segmentation methods or supervised CNNs with

labelled training data). The proposed method also enables us to segment directly from stan-

dardized images that can be created using different MRI protocols and scanners if appropriate

measures are taken to correct for image artifacts.

Conclusion

We have introduced a hybrid multi-atlas segmentation and convolutional autoencoder

approach for a joint segmentation of WMHs and the four ventricular compartments in the

human brain. The method was compared with the whole-brain segmentation methods Free-

Surfer and RUDOLPH and the WMH segmentation methods LGA, and LPA. The proposed

method achieved the best average DSC on the entire ventricular system in the AGES-Reykjavik

cohort and in the NPH patient data set (comparison of individual ventricle structures and

alternative metrics can be seen in Table 2). The proposed method achieved the highest average

DSC, LVR and L-F1 for the WMH segmentation on the AGES-Reykjavik data set (see statisti-

cal significance in Table 3). LPA achieved the highest DSC and L-F1 for WMHs in the NPH

data set (not significantly better than the proposed method), and the proposed method the

best LVR (not significantly better than the comparison methods). We showed that WMH load

and the ventricle volumes in the AGES-Reykjavik cohort are independently associated using a

multiple linear regression model taking several potential confounders into account.
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