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Abstract: Land cover classification using very high spatial resolution (VHSR) imaging plays a very
important role in remote sensing applications. However, image noise usually reduces the classification
accuracy of VHSR images. Image spatial filters have been recently adopted to improve VHSR image
land cover classification. In this study, a new object-based image filter using topology and feature
constraints is proposed, where an object is considered as a central object and has irregular shapes
and various numbers of neighbors depending on the nature of the surroundings. First, multi-scale
segmentation is used to generate a homogeneous image object and extract the corresponding vectors.
Then, topology and feature constraints are proposed to select the adjacent objects, which present
similar materials to the central object. Third, the feature of the central object is smoothed by the
average of the selected objects’ feature. This proposed approach is validated on three VHSR images,
ranging from a fixed-wing aerial image to UAV images. The performance of the proposed approach
is compared to a standard object-based approach (OO), object correlative index (OCI) spatial feature
based method, a recursive filter (RF), and a rolling guided filter (RGF), and has shown a 6%–18%
improvement in overall accuracy.

Keywords: image filter; very high spatial resolution (VHSR) aerial image; multi-scale segmentation;
land cover classification

1. Introduction

Very high spatial resolution (VHSR) remote sensing imagery, such as aerial images and unmanned
aerial vehicle (UAV) images, reveal ground details, including texture, geometry, and topology, and thus
provide an outstanding visual performance [1]. Therefore, classification of VHSR images for various
applications has received much research interest [2–4]. However, compared with the classification
of high spatial resolution hyperspectral remote sensing images , the classification of remote sensing
images with a high spatial resolution but a relatively low spectral resolution (such as images obtained
by airborne or UAV) has become challenging. Given the improvement in spatial resolution, several
zones may appear too small and heterogeneous when a VHSR image is processed by multi-scale
segmentation. These zones may be meaningless relative to the classes of interest. Furthermore,
the increase in spatial resolution enhances the correlative strength of the pixels of the intra-class.
Consequently, the spectral signatures inside a target become highly heterogeneous, and different
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targets present increasingly similar spectra. A high intra-class and a low inter-class variability reduce
the separability of different land cover classes in the spectral domain [1,5,6].

Numerous strategies have been adopted to overcome these challenges in VHSR image
classification. Spatial–spectral feature extraction is the most popular approach. It aims to complement
the insufficiency of spectral information by exploiting the spatial features of a ground object [7,8].
These features, such as the pixel shape index (PSI) [9], the pixel spatial feature set [10], and structural
features, are exploited through mathematical morphology and its related models [11–15]. In addition,
object-based image analysis is also a new paradigm for VHSR image classification [16]. The object-based
approach usually begins with segmentation to generate an image object, which is a group of pixels
that are spectrally similar and spatially contiguous. The application of the object-based approach in
practical situations has been studied extensively [13,17–20]. The object-based approach has several
advantages over pixel-based VHSR image classification in terms of classification accuracy [21,22].

Image filters, especially the edge-preserving filter, have recently been proposed to smooth noise in
images with a high spatial resolution and improve land cover classification accuracy. Edge-preserving
filters have been adopted in many applications [23–25]. For example, Kang et al., proposed a
spectral–spatial classification framework based on an edge-preserving filter and obtained a significantly
improved classification accuracy [26]. They also presented a recursive filter combined with image
fusion to enhance image classification [27]. Xia et al., proposed a method that combines subspace
independent component analysis and a rolling guidance filter for the classification of hyperspectral
images with high spatial resolution [28]. Experimental results showed that the proposed method
gives a better accuracy than the traditional approach without the use of image filtering. From the
application viewpoint, these simple yet effective approaches imply the many potential applications of
VHSR images.

In this study, we adopted the idea of image filters and extended it to the context of the object-based
approach. We refer to this adoption–extension approach as “object filter based on topology and
features” (OFTF). We used the unique capabilities of the object-based image technique, which allows
the noise in a VHSR image to be addressed in a multi-scale object manner. To achieve this purpose,
first, a popular multi-scale algorithm-Fractal Net Evolution Algorithm (FNEA) which was embedded
in the eCognition software was adopted to generate image objects [29,30]. FNEA, which is a widely
used multi-scale segmentation algorithm, was first introduced by Batz and Schape. This algorithm
quickly became one of the most important segmentation algorithms within the object-based analysis
domain [30]. The basic idea of the algorithm is a bottom-up region merging technique. It starts
with each image pixel as a separate object. Subsequently, pairs of image objects are merged into
larger objects. The process terminates when no pair of objects satisfies the merging criterion. Second,
the segmented object was exported as a vector with corresponding spectral features, such as the mean
or the standard deviation of the pixels within an object for a band. In this case, a target usually exists as
a group of objects that are similar in features and spatially continuous to allow for the smoothing of the
difference among the objects from one target. To demonstrate the effectiveness of the proposed OFTF
approach, we compared it with the original object-based approach (OO) and OCI [19] through image
classification. In addition, two relatively new approaches, the recursive filter (RF) [27] and the rolling
guided filter (RGF) [28], which have been applied successfully to high-resolution image classification,
were compared with the proposed OFTF approach.

The remainder of this paper is organized as follows. Section 2 details the proposed OFTF
approach. Section 3 presents the experimental setup and the results. Section 4 gives the discussion on
the experimental results. Section 5 provides the conclusion.

2. Proposed Object Filter Based on Topology and Feature Constraints

The aim of the proposed OFTF is to improve the classification of VHSR images by smoothing the
noise of the ground target in an object manner. Due to the complexity and uncertainty of the spatial
arrangement of segmented objects, the proposed OFTF is based on a simple assumption: the objects
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comprising a target usually have strong correlations with one another and present spatial continuity.
As shown in Figure 1, regardless of the shape of the target (e.g., rectangle, line, or “L”), its units are
subject to the abovementioned assumption.
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Figure 2. Flowchart of the proposed approach. 

Figure 1. Performance example of a target’s objects in a remote sensing image scene,
(a) “Rectangle”-building; (b) “Line-shape”-meadow; and (c) “L”-building.

In this case, several pre-processing steps, such as multi-scale segmentation and exporting the
corresponding object’s vector, are necessary when the proposed OFTF approach is used. As shown in
Figure 2, the proposed approach consists of the following three consecutive main steps (labeled as a
dotted line).

1. Topology constraint: Based on the object’s vector, the neighboring object that touches the central
object in the topology is obtained.

2. Feature constraint: In the feature space, the object in the set of the touched neighboring object that
is dissimilar to the central object should be excluded. Details of how to judge the “dissimilarity”
are presented in Section 2.2.

3. The feature of the central object is smoothed through the corresponding feature of the remaining
neighboring objects. Each step is discussed in detail below.
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2.1. Topology Constraint

Compared with spectral features, topology may include information on geographic location,
spatial arrangement, and geometry. This information is usually studied in the spatial analysis of
geographic information systems (GIS). In addition, topology can be described in the VHSR remote
sensing imagery. When an image was segmented into multi-scale image objects, a target consists of a
group of objects which are spatially continuous. In this study, topology was introduced to reveal the
spatial relationship between the central object and its neighboring objects. A topology called “TOUCH”
was used as the spatial constraint for the proposed object filter. “TOUCH” represents the condition
in which the central object and an adjacent object share a common boundary (or a part of a common
boundary) with no gaps and overlaps. A group of objects that consists of a given target are usually
spatially continuous. Therefore, this topology constraint can be regarded as spatial knowledge for
image analysis.

As shown in Figure 3, each block symbolizes an image object, and similar colors indicate the
difference of the same material for a target. “Y” is a central object. Therefore, objects 1–6 touch “Y”
according to our proposed topology constraint.
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objects around central object Y. (b) Filtered result.

2.2. Feature Constraint

When the central object “Y” is located at the interior of a target, the adjacent surrounding
objects are the same material of the target. However, when the central object “Y” is located at the
boundary between different targets with a different material, smoothing the feature of “Y” by using all
topology-touched objects is unreasonable. Therefore, the feature constraint is introduced to exclude
objects that are different from the material of the central object.

To achieve this purpose, the difference among the objects that have the same material as the
central object are denoted by the standard deviation and mean value of the pixels in the central object.
Therefore, in the case of the topology constraint, the feature is introduced as another constraint in the
spectral domain, the feature constraint is provided as Equation (1).

Ob
sur =

{
Ob

i

∣∣∣Ob
i ∈ [m(Ob

c )− R× δ(Ob
c ), m(Ob

c ) + R× δ(Ob
c )]
}

(1)

where Ob
sur is the set of objects that satisfies the topology and feature constraints surrounding the

central object “c”, “b” is the b-th spectral band. m(Ob
c ) and δ(Ob

c ) are the mean and the standard
deviation of band “b” of the central object, respectively. R is the relaxation parameter to ensure that the
constraint has general adaptability. It controls the degree of constraint in the feature domain. When
R = 0, the feature constraint is “Ob

i = m(Ob
c ),” and a large R implies a large relaxation range of the

feature constraint. A suitable R is the key to obtaining a reasonable filtered result. If R is excessively
small, the relaxation would be too strict to cover the “variety” of different objects that belong to the
same target. If R is excessively large, more noise will be smoothed, but the object having a material
that is different from that of the central object will be introduced to smooth the central object’s feature.
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In the proposed OFTF approach, the relationship among the feature constraints of each band is
denoted by “AND”. In other words, a neighboring object can only be applied to smooth the feature of
a central object until the feature constraints of each band for an object satisfy Equation (1).

2.3. Smoothing the Feature of the Central Object

In the case of topology and feature constraints, object set Ob
c is obtained. The elements of this

set meet the spatial and feature constraints. The proposed OFTF approach smooths the central object
through the average of Ob

c , i.e., by:

OFTF(Ob
c ) =

1
N

N

∑
i=1

Ob
i (2)

where N is the total number of objects that satisfy the topology and feature constraints surrounding
the central object. Therefore, the filtered feature of each band for the central object can be calculated
with Equation (2).

It is worth noting that it is difficult to utilize the topology information for an image object directly.
Therefore, from the technical point of view, a series of transformation is adopted. The workflow of
OFTF is presented: First, the spectral feature and the topology information can be transformed into
a shapefile with the aid of eCognition software. (The shapefile format is a popular geospatial vector
data format for geographic information system). Then, a customize application was developed based
on ArcEngine 10.0 for realizing the proposed OFTF. Finally, the filtered value of each image object
can be exported, and the format can be customized for classification. To promise the repeatability
of the proposed approach, the sourcing code of the customize application can be obtained from the
first author.

3. Experimental Section

Three VHSR images acquired by an airborne platform were utilized to validate the feasibility and
effectiveness of the proposed OFTF approach through classification. Three parts were designed to
achieve the objectives. First, the images were described for each experiment. Second, an experiment
was performed to investigate the adaptability and parameter sensitivity of the proposed approach for
classification. Finally, the proposed OFTF was compared with the original object-based approach and
two state-of-the-art approaches [27,28].

3.1. Data Sets

As shown in Figure 4a, the first image was acquired with an airborne ADS80 sensor. The relative
flying height was approximately 3000 m, and the spatial resolution was 0.32 m. The size of the image
is 560 × 360 pixels. The aerial image was used to analyze the sensitivity of the parameters of the
proposed OFTF for classification. Six interesting classes of this image were classified. These six classes
were water, shadow, grass, trees, road, and building. The ground reference is shown in Figure 4b.
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The second image was acquired with a Canon-5D-Mark2 camera mounted on an unmanned
aerial vehicle (UAV) platform. The area is located in YingTan City, Jiang Xi Province, southern China.
This VHSR image was used to test the feasibility and effectiveness of the proposed approach for
classification. The image has a size of 1400 × 1000 pixels and 0.1 m spatial resolution, as shown in
Figure 5a. This image presents a typical country area in China and includes seven classes, namely,
grass, road, building, shadow, trees, water, and soil. The ground reference is shown in Figure 5b.
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The third image was acquired similarly as the second image, but it covers a different area.
The size of the image is 800 × 790 pixels with 0.1 m spatial resolution. The image was classified into
seven classes of grass, road, building, shadow, trees, water, and soil, as shown in Figure 6a,b.
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Classification of the three data sets was challenging because the spatial resolution was very high
and the spectral information relatively insufficient. Furthermore, noise and uncertainties may play
a role in the classification. The training objects and test pixels were randomly selected. The training
pixels relate to their corresponding objects. For example, in Table 1, 6/1318 means that 1318 training
pixels correspond to six image objects. To smooth the image effectively, the iterations for the proposed
OFTF is fixed to three for each experiment. Moreover, the original spectral band (R-G-B) and its object
mean value were adopted as the inputs of each classifier to ensure fair comparisons.
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3.2. Experimental Setup and Parameter Settings

The aims of the first experiment were to analyze the parameter sensitivity and adaptability of the
proposed approach. The image was processed with the multi-scale segmentation approach at a scale
of 10. Shape and compactness were set to 0.8 and 0.9, respectively, to obtain a highly homogeneous
object. In addition, we used a support vector machine (SVM) classifier with an RBF kernel, and
the needed parameters were determined through five-fold cross validation. The number of training
samples and test pixels for the different classes are shown in Table 1.

The adaptability of the proposed OFTF was investigated with different supervised classifiers,
including the k-nearest neighbor (KNN), the naive Bayesian classifier (NBC), and maximum likelihood
classification (MLC). The parameters of KNN, NBC, and MLC were set to the default values in
MATLAB version 2013b (Publisher: MathWorks, 13 August 2013).

Table 1. Number of training and test pixels for the ADS80 image.

Class Training Objects Test Pixels

Road 6/1318 5791
Grass 7/1107 14,825

Building 16/2168 35,610
Shadow 6/975 3374

Tree 5/879 4077
Water 8/1129 37,022

In a second experiment, the proposed OFTF-based approach was compared with several
approaches, i.e., the original object-based method, the object correlative index (OCI) spatial feature [19],
and two pixel-based edge-preserving filters [27,28] to test its effectiveness. Each processing approach
was investigated through its corresponding classification. The number of training samples and the
reference data are shown in Table 2. SVM with the radial basis function (RBF) was used to classify
each processing image, and the parameter of SVM was optimized through five-fold cross validation.
Each approach was implemented with the following parameters for comparison. First, the original
image object was generated through multi-scale segmentation based on the parameters scale = 20,
shape = 0.9, and compactness = 0.9. After segmentation, the mean values of the three bands for each
image object were extracted for the input feature. The second, parameters for RF [27], RGF [28], and
the proposed OFTF were determined through a trial-and-error approach; the obtained parameters
are shown in Table 3. In addition, the optimized parameters in the OCI-based approach were set to
θ = 20, T1 = 25, and T2 = 60.

Table 2. Number of training and test pixels for the second UAV image.

Class Training Objects/Pixels Test Pixels

Road 6/2260 50,736
Grass 6/2389 93,888

building 17/5394 233,534
Shadow 8/2219 31,400

Tree 9/5358 62,462
Water 6/2470 23,707
Soil 7/2054 51,133

Table 3. Parameter settings for the different approaches in the second experiment.

δs δr Iteration R

RF [27] 200 70 3 /
RGF [28] 3 0.05 3 /

The proposed OFTF / / 3 1.5
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In the third experiment, to test the robustness of the proposed OFTF, the third UAV image
was used to compare the classification accuracies of the original object-based approach, OCI [19],
RF [27], RGF [28], and the proposed OFTF. The optimized parameters for RF, RGF, and the proposed
OFTF-based approach are shown in Table 4. The number of training samples and the reference
data for each test are shown in Table 5. The parameters in the OCI-based approach were set to
θ = 20, T1 = 20, and T2 = 60.

Table 4. Parameter settings for the different approaches in the third experiment.

δs δr Iteration R

RF [27] 200 45 3 /
RGF [28] 5 0.09 3 /

The proposed OFTF / / 3 1.5

Table 5. Number of training and test pixels for the third UAV image.

Name Training Objects/Pixels Test Pixels

Road 5/1196 23,523
Grass 6/2854 37,061

Building 10/7426 117,437
Shadow 13/4190 10,408

Tree 9/4164 36,739
Water 5/1100 17,800
Soil 5/1556 7742

3.3. Experimental Results

In the first experiment, the quantitative comparison for the relationship between OA and the
parameter R are shown in Figure 7. The figure shows that when R ranges from 0.5 to 3.0, the accuracy
of the proposed OFTF-based approach increases initially and then sharply decreases. When R is 1.5,
the proposed OFTF-based approach reaches its optimal performance with OA = 94.2% and Ka = 0.921.
The visual performances when different values of the parameter R are adopted are shown in Figure 8.
For example, given that “roads” are over-smoothed with the increase in R, an increasing number of
roads are misclassified as “buildings”. In addition, the classification accuracies based on OFTF for the
different classifiers are shown in Table 6.
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KNN 93.1 0.903
NBC 86.1 0.813
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In the second experiment, the effectiveness of the proposed filter was evaluated by comparing the
different classification methods on the UAV image. The land cover classification maps acquired by
different approaches are shown in Figure 9. The quantitative comparisons are presented in Table 7.
In a similar fashion to the second experiment, Figure 10 and Table 8 demonstrate the classification
maps and quantitative comparisons of the third experiment. Detailed discussion about the results are
given in the following section.

Remote Sens. 2016, 8, 1023 9 of 14 

 

 
Figure 8. Classification results of OFTF and SVM with different values of parameter R for the aerial 
image. 

In the second experiment, the effectiveness of the proposed filter was evaluated by comparing 
the different classification methods on the UAV image. The land cover classification maps acquired 
by different approaches are shown in Figure 9. The quantitative comparisons are presented in Table 7. 
In a similar fashion to the second experiment, Figure 10 and Table 8 demonstrate the classification 
maps and quantitative comparisons of the third experiment. Detailed discussion about the results are 
given in the following section. 

 
Figure 9. Classification results of the different approaches (second UAV image): (a–e) are classification 
maps based on RF, RGF, original object, OCI, and the proposed OFTF, respectively. 

Figure 9. Classification results of the different approaches (second UAV image): (a–e) are classification
maps based on RF, RGF, original object, OCI, and the proposed OFTF, respectively.



Remote Sens. 2016, 8, 1023 10 of 14

Remote Sens. 2016, 8, 1023 10 of 14 

 

 
Figure 10. Classification results of the different approaches (third UAV image): (a–e) are classification 
maps based on RF, RGF, original objects, OCI, and the proposed OFTF, respectively. 

Table 7. Class-specific accuracies (%) for the different approaches in SVM classification of the second 
UAV image data 

Class RF [27] RGF [28] OO OCI [19] OFTF
Road 97.8 99.9 99.6 99.7 99.9
Grass 47.2 51.3 70.7 81.5 98.3

Building 81.8 98.5 86.1 89.5 95.6 
Shadow 73.4 97.7 87.8 82.2 80.3 

Tree 95.4 90.7 92.5 86.1 82.6 
Water 73.5 80.0 90.2 91.2 96.7

Soil 84.1 97.9 99.0 99.0 99.8
OA 78.3 88.7 86.9 90.2 94.5
AA 87.1 88.4 86.8 89.9 91.8
Ka 0.72 0.849 0.83 0.894 0.927

 

  

Figure 10. Classification results of the different approaches (third UAV image): (a–e) are classification
maps based on RF, RGF, original objects, OCI, and the proposed OFTF, respectively.

Table 7. Class-specific accuracies (%) for the different approaches in SVM classification of the second
UAV image data.

Class RF [27] RGF [28] OO OCI [19] OFTF

Road 97.8 99.9 99.6 99.7 99.9
Grass 47.2 51.3 70.7 81.5 98.3

Building 81.8 98.5 86.1 89.5 95.6
Shadow 73.4 97.7 87.8 82.2 80.3

Tree 95.4 90.7 92.5 86.1 82.6
Water 73.5 80.0 90.2 91.2 96.7
Soil 84.1 97.9 99.0 99.0 99.8
OA 78.3 88.7 86.9 90.2 94.5
AA 87.1 88.4 86.8 89.9 91.8
Ka 0.72 0.849 0.83 0.894 0.927
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Table 8. Class-specific accuracies (%) of the different approaches in SVM classification of the third UAV
image data.

Class RF [27] RGF [28] OO OCI [19] OFTF

Road 55.8 98.6 98.6 98.7 99.2
Grass 73.7 73.9 95.4 91.2 98.6

Building 85.0 80.4 99.4 95.8 99.5
Shadow 92.6 94.6 85.8 86.7 86.5

Tree 54.4 47.3 58.2 77.8 78.4
Water 84.0 74.2 40.8 93.9 98.7
Soil 88.4 90.1 93.9 62.9 59.2
OA 75.9 77.2 89.2 92.8 94.0
AA 75.8 83.7 86.3 89.9 90.6
Ka 0.687 0.711 0.855 0.91 0.92

4. Discussion

In the first experiment, the sensitivity between the relaxing parameter R and the overall
accuracy was investigated. As shown in Figure 7, when the value of R ranges from 0.5 to 1.5,
the accuracy of the proposed approach increased initially. However, when the value of R became
larger than 1.5, the accuracy decreased. In a practical application, R can be adjusted and determined in
accordance with different images.

In addition, in the first experiment, the adaptability of the proposed OFTF was also investigated
with different supervised classifiers. The quantitative results for each classifier are shown in Table 4.
It can be seen that the proposed OFTF-based classification exhibits the highest accuracy with the SVM
classifier. Therefore, SVM was employed as the “classifier” in the second and third experiments.

In the second experiment, the class-specific accuracies for this parameter setup are shown in
Table 7, and the visual classification map is shown in Figure 9. The table and its corresponding
classification map show that the proposed OFTF-based approach achieves a higher classification
accuracy than the original object-based approach without any filtering process. Furthermore, the
proposed OFTF-based approach also obtains a higher classification accuracy than RF [27], RGF [28],
and OCI [19] in terms of OA and Ka. In terms of visual performance, the proposed OFTF-based
approach is better at smoothing the noise of the classification map when compared to the other
approaches. Therefore, the proposed OFTF method can be considered as suitable for improving the
performance of VHSR images.

In the third experiment, the specific classification with the different approaches under such a
parameter setup is shown in Table 8 and Figure 10. Similar results to those of the second image data
were obtained. The proposed OFTF-based classification exhibits the highest accuracy in terms of OA
and Ka and provides better visual performance than the other approaches.

Currently, aerial images (including UAV images) are involved in a wide range of remote sensing
applications and object-based techniques have been widely applied for VHSR image classification.
However, to our best knowledge, although object-based classification methods have been studied
extensively, this type of object-based filtering has previously not been proposed. In this study, a
novel object-based image filter is proposed to improve the accuracy when applied to aerial images
for land cover survey tasks. In addition, it is worth noting that the proposed OFTF is easy to use for
applications. It has two parameters: R and iteration. Regarding the optimized relaxing parameter, R
can be available by trial-and-error experiments when applied for classification. The other parameter,
iteration, can be fixed as a constant, because the proposed OFTF is based on two-fold constraints
(topology and features) and a larger iteration will not result in over-smoothing the results. With the
rapid development of high resolution remote sensing images (such as aerial and UAV images), this
novel object-based filter is significant and may promote more potential applications.
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The results and discussions reveal that the proposed OFTF is feasible for and effective in reducing
the differences among intra-classes. This feature is helpful in improving the performance of VHSR
image land cover classification.

5. Conclusions

In this paper, a new approach called OFTF was proposed to improve the performance of VHSR
image classification. Experiments were conducted on three real VHSR images to show the effectiveness
of the proposed approach. The results of OFTF were better in terms of classification accuracies than
those of widely used object-based approaches, i.e., two relatively new methods based on considering
contextual spatial information [27,28,31]. The novel contribution of the proposed OFTF approach is
three-fold. First, although object-based image analysis approaches have been studied extensively, to
the best of our knowledge, the concept of object-based filtering has not been proposed yet. Second, a
traditional pixel-wise image filter usually smooths an image through a regular window and it cannot
be used directly for smoothing the difference of segmented image objects. Meanwhile, the proposed
OFTF provides a novel way to smooth the difference of the target's objects through topology-feature
constraints. The procedure of the proposed OFTF is more intuitive and reasonable for various grounded
targets because a ground target is usually presented as objects that are spatially contiguous and possess
similar features. Third, compared with traditional spatial feature extraction algorithms, the proposed
OFTF approach is simple and may imply more potential applications for analysis of VHSR remote
sensing images.

In addition to topology, the spatial knowledge implied in the VHSR image is difficult to portray
both quantitatively and precisely. Therefore, as a topic for future research, a more comprehensive
topology relationship and spatial knowledge, such as azimuth or location, will be extracted from
VHSR imagery. In theory, using a more reasonable feature to model the target in the remote sensing
image scene results in higher accuracy.
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