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Ágrip 
Taugaþroskaraskanir á hvatvísis-þráhyggju rófinu eru þrálát og hamlandi einkenni 
sem koma oft fram snemma á lífsleiðinni. Há tíðni fylgiraskana finnast samhliða 
Tourette heilkenni (TS), kækjum (Tics), þráhyggju- og áráttu- hegðun (OCD), 
athyglisbrest með og án ofvirkni röskun (ADHD), og einhverfurófsröskun (ASD) 
og dæmi eru um að sömu algengu breytileikarnir auka áhættu á mismunandi 
röskunum. 

Þessi ritgerð fjallar um erfðafræði rúmmáls heila og fimm taugaþroskaraskana á 
hvatvísis-þráhyggju rófinu (Tourette, Tics, OCD, ADHD, og fótaóeirð (RLS)) með 
það að markmiði að finna nýja breytileika sem ávísa áhættu af því að þróa þessar 
svipgerðir og að rannsaka áhættu á krossröskun. Erfðafræði þessara raskana er 
flókin. Þrátt fyrir stórar safngreiningar (meta-analysis), hafa tiltölulega fáir 
breytileikar fundist sem ávísa áhættu á þessum röskunum, né varpað ljósi á þá 
líffræðilegu ferla sem þar liggja að baki. Betri skilningur á erfðafræðilegri 
undirstöðu þessara raskana gæti stórbætt og flýtt fyrir greiningu, gefið betri 
innsýn inn í sjúkdómsferlið og bent á nýjar lyfjameðferðir. 

Eintakabreytileikar annaðhvort koma fyrir innskotum eða eyða út svæðum í 
erfðamenginu og hafa þannig áhrif á hversu mikið er tjáð af genum sem eru á 
þeirra áhrifasvæði. Leit í líklegum genum staðfestir að úrfelling á AADAC geninu 
er áhættu þáttur fyrir Tourette heilkenni. Þar að auki, höfum við sýnt fram á 
tengls á milli ákveðinna eintakabreytileika, sem hafa áður verið tengdir við 
einhverfu og geðklofa, og ADHD. Þessi fylgni varpar ljósi á þá erfðafræðilegu 
áhættu sem ADHD deilir með einhverfu og geðklofa.  Safngreining niðurstaðna 
úr víðtækri erfðamengisleit skilaði engum erfðabreytileikum sem voru í marktægt 
hærri tíðni í TS en í viðmiðunarhópi.  Þó staðfestir samanlagt arfgerðar-skor 
fjölgena eðli Tourette heilkennis. 

Stórar safngreiningar hafa auðkennt nýja breytileika sem ávísa áhættu á röskun á 
hvatvísis-þráhyggju rófinu. Staðsetning breytileika og aðrar aðferðir hafa verið 
notaðar til að tengja breytileika við gen og Mendelsku slembivali beitt til að rýna 
í orsakasamhengi, með fókus á líffræðilega ferla þessi gen taka þátt í. 

Breytileiki í rúmmáli heilans getur haft áhrif á tengsl á milli uppbyggingu og 
virkni í heilanum. Stór safngreining niðurstaðna úr víðtækri erfðamengisleit á 
rúmmáli heilans hefur leitt í ljós 64 breytileika í erfðamenginu sem útskýra um 
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5.0% dreifni svipgerðarinnar. Erfðafylgnigreining (GC) sýnir jákvæða fylgni á 
milli rúmmáls heilans og vitrænna hæfileika og taugasjúkdóma. 

Breið svipgerða erfðafylgni greining og orsakagreiningar voru notaðar til að 
kryfja flókin fjölgena sambönd á milli TS, kækja, ADHD, OCD og RLS. GC 
þessara fimm raskana á móti 1,140 birtra niðurstaðana úr heilgenóms 
erfðatengslaleitum, bar kennsl á 59 algeng svipbrigði sem eru sýna marktæka 
erfðafylgni (FDR < 0.05). Stigveldis þyrpingagreining á þessu 59 svipgerðum 
leiddi í ljós fimm dulda klasa; (1) taugaþroska- og geðraskanir, (2) tilfinningar 
raskanir, (3) útlima og vöðva verkir, (4) offita / óheilbrigður lífstíll, (5) vitsmuna / 
lærdóms svipgerðir.  

Sjaldgæfir og algengir breytielikar hafa verið tengdir við TS, ADHD, RLS og 
rúmmál heilans. Lykil spurning er hvort breytileikarnir, sem hafa verið tengdir við 
breytingar í heila, valdi taugasjókdómum í gegnum áhrifin sem þeir hafa á 
heilann, eða hvort erfðafræðileg tilhneiging til að þróa taugasjókdóma hefur 
áhrif á uppbyggingu og þroska heilans. Tvíátta Mendelsk slmbivals greining á 34 
svipgerðum, með innbyrgðis fylgni, samanborið við rúmmál heilans gaf til kynna 
að rúmmál heilans annað hvort hefur áhrif á taugaþroska raskanir (ADHD) og 
taugasjókdóma (Parkinson’s) eða þá að orsakasamhengið sé stýrt af svipgerðum 
sem sýna sterka fylgni við rúmmál heilans. 

Lykilorð:  

Erfðafræði, víðtæk erfðamengisleit, Tourette heilkenni, Athyglisbrestur með án 
ofvirkni, Áráttu- og þráhyggjuröskun, fótaóeirð, heila rúmmál. 
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Abstract 
Neurodevelopmental disorders on the impulsivity-compulsivity spectrum are 
chronic disabling conditions with an early onset.  High rates of comorbidity have 
been reported between Tourette syndrome (TS), Tics disorder (Tics), obsessive-
compulsive disorder (OCD), attention-deficit/hyperactivity disorder (ADHD) and 
autism spectrum disorder (ASD) and these disorders share cross-disorder risk, 
conferred by common variants. 

In this thesis the focus is on the genetics of human intracranial volume (ICV) and 
five impulsivity-compulsivity spectrum neurological disorders (Tourette, Tics, 
OCD, ADHD, and restless legs syndrome (RLS)) with the aim of finding novel 
sequence variants conferring risk of these behaviours and study their cross-
disorder risk. The genetics of these disorders is complex. Despite large meta-
analyses, relatively few sequence variants have been associated with these 
disorders and perturbed biochemical pathways have not been clearly outlined. 
Better understanding of their genetic underpinnings may greatly improve and 
accelerate diagnosis, give insights into disease processes, and point to novel 
targets for drug therapies.  

Copy number variations (CNVs) introduce insertion/deletion throughout the 
genome thereby impacting gene expression through gene dosage effect. A 
candidate gene study confirms AADAC deletion as a risk factor for TS. 
Moreover, a group of rare, recurrent CNVs, so called neuropsychiatric CNVs, 
confer high risk of ADHD. This association highlighted shared genetic risk of 
ADHD with ASD and schizophrenia. The GWAS meta-analysis of TS didn’t find 
any significant association while aggregate risk score of common variants 
confirmed polygenic nature of TS. 

Through large meta-analyses, more sequence variants conferring risk of diseases 
of the impulsivity-compulsivity spectrum have been uncovered. Colocalization 
analyses were used to identify affected genes and Mendelian randomization to 
search for causal relationships, with a focus on the biological insights these 
associations are beginning to produce.  

Variations in ICV can impact brain structure-function relationships. The GWAS 
meta-analysis of ICV uncovered 64 sequence variants explaining 5.0% of the 
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trait’s variance. Genetic correlation analysis shows positive correlation between 
ICV and cognitive abilities and neurological traits.  

Phenome-wide genetic correlation (GC) and causal analyses were used to dissect 
complex polygenic nature of TS, Tics, ADHD, OCD, and RLS. GC of these five 
disorders with 1,140 published GWAS studies identified 59 common genetically 
correlated traits (FDR < 0.05). The hierarchical clustering of 59 correlated traits 
identified five latent clusters: (1) neuropsychiatric or neurotic disorders, (2) 
emotional disorders, (3) peripheral and muscular pain (4) obesity / poor 
lifestyle, and (5) cognition / learning traits.  

Rare and common variants associate with TS, ADHD, RLS, and ICV. The key 
question is whether variants, associated with structural changes in the brain, 
cause neurological disorders through their effect on brain structure or 
alternatively whether genetic predisposition to certain neurological disorders 
impacts brain structure or development. Bidirectional MR analyses of 34 
correlated disorders compared with ICV revealed that ICV either has a causal 
effect on a neurodevelopmental disorder (ADHD) as well as on a 
neurodegenerative disorder (Parkinson’s) or these causal relationships may be 
driven by traits closely correlated with ICV.  

 

Keywords:  

Genetics, GWAS, Tourette syndrome, Attention deficit / hyperactivity disorder, 
obsessive compulsive disorder, restless leg syndromes, intracranial volume. 
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1 General Introduction 
It took more than a decade of large sequencing efforts (Lander et al., 2001; 
Venter et al., 2001) and guidance from genetic maps (Augustine Kong et al., 
2002) to assemble and read nature's genetic blueprint of a human being. 
Identification of diversity in the sequence directed the design of genotyping 
arrays that in turn have transformed human genetics. The large-scale generation 
of data by companies like deCODE genetics, and universities all over the world 
has improved our understanding of the contribution that genes make to the 
development of diseases (Emilsson et al., 2008; Gudbjartsson, Helgason, et al., 
2015; Augustine Kong et al., 2002). The phenotypic variance explained by 
variants in the genomic sequence has been gradually increasing. As an example, 
for stable and easily measurable trait adult height the variance explained is 
~24.6% (Yengo et al., 2018). For diseases with high heritability the explained 
variance can be considerable, e.g. for schizophrenia (heritability = 45.58%) the 
variance explained by sequence variants is ~9.0% (Calafato et al., 2018; Power 
et al., 2015). Thus, still only a fraction of the variance has been explained 
although more than 25,000 samples from schizophrenia patients have been 
whole genome sequenced and data from more than 200,000 patients are 
included in the largest meta-analysis for schizophrenia (Max Lam et al., 2019; 
Ripke, Walters, O'Donovan, & Consortium, 2020). 

Sequence variants have been associated with educational attainment, age at first 
child and the number of children individuals have (J. J. Lee et al., 2018b; Mills et 
al., 2020). While some sequence variants are under negative selection pressure 
other variants are selected for. As a group, variants that associate positively with 
educational attainment have been under negative selection pressure in the 
Icelandic population during the 20th century (Augustine Kong et al., 2017) while 
variants that confer risk of higher BMI and variants that associate with ADHD 
have been increasing in frequency (unpublished data) in the Icelandic 
population over the same period. Changes in the environment, the impact of the 
industrial revolution, wars, and plagues, can shape populations altering the 
frequencies of sequence variants over time. Many rare variants conferring high 
risk of diseases are under negative selection pressure. Certain recurrent copy 
number variants (CNVs) confer high risk of neurodevelopmental, psychiatric 
disorders and negatively associate with cognitive abilities (O. O. Gudmundsson 
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et al., 2019; Stefansson et al., 2014; Stefansson et al., 2008). Carriers of these 
variants have fewer offspring, but new mutations maintain these recurrent CNVs 
at low but, stable frequencies worldwide (Stefansson et al., 2014). 

Not only do we inherit our DNA from our parents, but our parents are also a 
strong environmental influence. The alleles inherited (transmitted) shape us but 
so do the transmitted and the non-transmitted alleles through the behaviour of 
our parents (Augustine. Kong et al., 2018) and several studies have furthermore 
suggested that childhood onset neurological disorders may derive from pre-
existing intrauterine conditions or insults (Cao et al., 2006; Noonan, Haist, & 
Müller, 2009; Tian et al., 2006; Weng et al., 2010). Hence, the inherited alleles 
can directly affect risk of trait(s) through their impact on biological mechanisms 
while non-transmitted alleles exert their impact through parental behaviour or 
genetic nurturing i.e., the sequence variants impact parental traits which 
indirectly influence offspring’s traits ‘nature-nurture effect’ (Augustine. Kong et 
al., 2018). Thus, environmental factors, including our parental genomes and 
their lifestyles, also contribute to the risk of developing diseases and other traits.  

One of the goals in human genetic research is to identify sequence variants that 
are helpful as diagnostic markers. Another important goal is to find good targets, 
genes, and biological pathways, for drug discovery. This requires analysis of 
large datasets where variance in the sequence is compared to variance in 
phenotype. deCODE genetics, thanks to large sample sets and the long-range-
phasing technology, has been successful in scanning the genome for sequence 
variants conferring risk of both rare diseases and common traits (Grant et al., 
2006; Gudbjartsson et al., 2007; J. Gudmundsson et al., 2008; Stefansson et 
al., 2007; Thorgeirsson et al., 2008). Furthermore, the efforts of deCODE 
genetics were also successful in uncovering rare sequence variants conferring 
high risk of disease (T. Jonsson et al., 2012; Stacey et al., 2006; Steinberg et al., 
2015; Walters et al., 2018) as well as protect against the same (T. Jonsson et al., 
2012). The advancement in the full genome scanning has provided extensive 
information and exciting opportunities to better understand human diversity and 
the genetic architecture of various diseases and traits. This has widened the 
horizon of genetic studies both for rare (Mendelian) diseases and for common 
complex disorders (Hindorff et al., 2009). 

Larger and larger datasets of genotyped samples from phenotyped individuals 
are now needed for discoveries. Large Biobanks (the UK Biobank, FINNGEN, 
the Estonian biobank, MVP (million veterans program from USA), 23&me, and 
DBDJ (the databank of Japan), to name a few) and other large samples (deCODE 
genetics, DBDS (the Danish blood donor study), MoBa (the mother, father, and 
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child cohort study) from Norway have proven most useful (Clare Bycroft et al., 
2018). The largest meta-analysis to date includes millions of study subjects (J. J. 
Lee et al., 2018a; Nielsen et al., 2018; Kyoko Watanabe et al., 2020). While 
studies using relatively small samples have uncovered the first sequence variants 
for some traits (Stefansson et al., 2007), variants for other traits have remained 
elusive even though relatively large samples have been available (Arnold et al., 
2018; D. Yu et al., 2019). 

Through GWAS meta-analysis of five disorders and neurological traits, rare and 
common variants were found to associate with TS, Tics, ADHD, RLS, and human 
brain volume. Phenome-wide genetic correlation and polygenic risk score 
analyses helped uncover underlying genetic architecture of these neurological 
traits and identified five latent factors among these traits. Colocalization analyses 
implicated several genes associated with respective traits where pathway and 
gene-set enrichment analyses identified potential biological pathways involved in 
disease etiology. Bidirectional Mendelian randomization (MR) analyses of 
correlated disorders pinpointed causal relationship. The MR analyses using 
genetic variants associated with human intracranial volume (ICV) and several 
neurological traits revealed that ICV either has a causal effect on a 
neurodevelopmental disorder (ADHD) as well as on a neurodegenerative disease 
(Parkinson’s) or confounded by closely correlated trait.   

1.1 Childhood neuropsychiatric and involuntary movements 
disorders 

Childhood neuropsychiatric disorders are complex conditions with high 
comorbidity with known pleiotropy (P. H. Lee, Feng, & Smoller, 2021; Z. Yang 
et al., 2021). The comorbidity generates cross-disorder heterogeneity that 
transcends diagnostic boundaries, which shapes phenotypic complexity. Such a 
comorbidity and heterogeneity are notable for chronic tics (Tics disorder-TD), 
obsessive compulsive disorder (OCD), and attention deficit / hyperactivity 
disorder (ADHD) which overlap three phenotypic domains: (1) involuntary urge 
to move, (2) impulsivity and (3) compulsive behaviour. TD also bears some 
phenotypic similarity with restless leg syndrome (RLS), as both are characterized 
by unpleasant sensation and compulsion for involuntary movement (Lesperance 
et al., 2004).  

We applied a genetic correlation approach to better understand whether the 
phenotypic overlap (comorbidity) between childhood neuropsychiatric and 
involuntary movement disorders is also present at the genetic level. To this end, 
the largest available genome-wide summary data were used; from studies of five 
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childhood neuropsychiatric disorders (TS, TD, OCD, ADHD, and autism 
spectrum disorder (ASD)), two involuntary movement disorders (RLS, and 
Essential tremor (ET) which usually have a relatively early onset), and one late 
onset neurodegenerative disease with an impaired motor function component 
(Parkinson‘s disease) (see chapter 4.6: cross disorder genetic analysis). The 
analysis found two clusters (Figure 1, highlighted with black boxes) of 
correlations (detected through Ward‘s hierarchical clustering method (Murtagh & 
Legendre, 2014)), the first cluster showing positive genetic correlation within 
childhood neuropsychiatric disorders (P < 0.05/45 = 0.0011) and the second 
cluster showing positive genetic correlation between two involuntary movement 
disorders (RLS and ET)  and a neurodegenerative disease (PD). These two 
clusters are joined by a nominally significant association between ADHD and RLS 
(P = 0.0087, rg = 0.18) (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Genetic correlation between childhood neuropsychiatric and involuntary 
movement disorders. The value in each box is the genetic correlation (rg) between each 
pair of disorders. The Bonferroni significant associations (P < 0.05/45 = 0.0011) are 
highlighted with ‘☆’ and the nominally significant associations as ‘°’. The black box bound 
the clusters identified through Ward’s hierarchal clustering method.  

Little is known about the genetic nature, etiology, heterogeneity, and the role of 
development in the afore mentioned conditions. Their complex and polygenic 
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nature requires large, genotyped study samples to uncover risk variants through 
genome wide association studies. The work presented here aimed at discovering 
sequence variants conferring risk of TD, obsessive-compulsive disorder, ADHD 
and RLS. These disorders are all highly comorbid with anxiety, depression, and 
substance use disorders (Senanayake, Krashin, & Murinova, 2020) and genetic 
correlation studies tell a similar story (Didriksen et al., 2020; Barbara Schormair 
et al., 2017). To dissect the relationship between childhood neuropsychiatric and 
involuntary movement disorders and their comorbidities (anxiety, depression, 
and life-style traits) various statistical methods were applied. 

1.2 TS/TD and OCD phenotyping in Iceland 

Tourette syndrome (TS) or chronic tic disorder (TD) are complex heterogenous 
conditions that are characterized by multiple involuntary motor and/or vocal tics. 
These tics are classified into 16 types (e.g., facial tics, extremity tics, or vocal 
tics) which may differ in their manifestation. The tics may wax and wane in 
frequency and intensity and in some individuals they completely disappear in 
adulthood or through habit reversal therapy (Piacentini & Chang, 2005; Van de 
Griendt, Verdellen, Van Dijk, & Verbraak, 2013). TS/TD are heritable (h2 = 
0.29) (D. Yu et al., 2019), have life-time prevalence of 0.3%-1% (Brander et al., 
2018; Mary M Robertson et al., 2017), and are highly comorbid with other 
neurodevelopmental disorders (Levy, Paschou, & Tümer, 2021; Paschou et al., 
2022; Mary M Robertson et al., 2017). The heterogenous and comorbid nature 
of TS/TD calls for in-depth and cross-disorder analyses. 

Like TS, OCD is also a complex and heterogenous disorder involving multiple 
obsessive and compulsive symptoms. These symptoms are characterized by 
recurrent, unwanted thoughts (perhaps of aggressive or sexual nature, or acts 
involving inappropriate behaviour in public), and repetitive behaviours. The 
repetitive behaviours or mental acts (such as hand washing, ordering, and 
checking) are performed in response to an obsession or according to rules that 
must be applied rigidly. They are aimed at preventing or reducing distress of a 
feared event or situation, a fear which at the same time is clearly unrealistic 
and/or excessive (Smit et al., 2020). OCD markedly impairs the quality of life by 
impacting personal, social, and occupational functioning and has been reported 
to have life-time prevalence of 2-3% (Hirschtritt, Bloch, & Mathews, 2017; Kessler 
et al., 2005). No unequivocal association between a sequence variant and OCD 
has not been reported.   

In collaboration with paediatricians in Iceland, individuals diagnosed with TS/TD, 
and or OCD were invited to participate in the research aiming at finding risk 
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variants. Individuals diagnosed with TS/TD, and or OCD (ICD diagnosis) were 
sent invitation letters. Participants donated blood and answered screening 
questionnaires. Furthermore, close relatives were also invited to participate in the 
study. They also donated blood and answered questionnaires. As expected, 
there is strong comorbidity between the TS/TD sample (Figure 1), OCD sample 
(Figure 2) and other neurodevelopmental disorders (ADHD, and ASD). 

Figure 2. Upset plot showing phenotypic distribution of pure TS/TD and their 
known comorbidities in the studied sample. The column of dots represents the 

number of individuals that fulfill the criteria of the black colored dots eg. 466 
individuals have both an ADHD diagnosis and a Tourette ICD10-F95.2 diagnosis 
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Figure 3. Upset plot showing phenotypic distribution of pure OCD and their 
known comorbidities in the studied sample. The column of dots represents the 

number of individuals that fulfill the criteria of the black colored dots, e.g., 1,357 
individuals were diagnosed with OCD only (without any reported comorbidity). 

1.3 RLS phenotyping in Iceland 
RLS is a complex sensorimotor disorder with a prevalence as high as 10% in the 
general population (Maria Didriksen et al., 2017; Khachatryan et al., 2022; 
Pedrazzini et al., 2014; Yeh, Walters, & Tsuang, 2012). Symptoms include 
distressing sensations in the extremities and overwhelming urge to move the 
legs. These symptoms intensify when sitting or lying down. The disorder can 
cause reduced quality of life, poor sleep, and impaired cognitive and mental 
well-being (Barbara Schormair et al., 2017). Despite the high prevalence and 
serious health impact of the disorder, there are currently no adequate treatments 
for RLS as available drugs are fraught with side effects. This is in part due to 
limited knowledge of the pathophysiology of RLS. 

In collaboration with neurologists in Iceland and Professor David Rye from Emory 
University, individuals diagnosed with RLS were invited to participate in a 
research project aiming at finding sequence variants conferring risk of RLS. 
Patients were initially recruited through advertisements. Participants donated 
blood, answered screening questionnaires for RLS and slept with leg monitors. 
Additionally, individuals already diagnosed with RLS (ICD 10 G25.8, available 
through hospital records), and their close relatives were also invited to 
participate in the study (Stefansson et al., 2007). In moderate-to-severely affected 
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subjects meeting restless leg syndrome criteria (in line with International restless 
leg syndrome study group rating), 5–15% do not exhibit periodic leg 
movements at night (PLMs) (Trotti et al., 2009). It remains unknown whether RLS 
in the absence of PLMs represents a separate clinical and biological entity or a 
limitation intrinsic to methods of ascertainment (Trotti et al., 2009). In line with 
Trotti et al., the PLMs screening was used to improve the diagnostic accuracy. 
Subjects diagnosed with RLS exhibiting PLMs ⩾ 10/h were considered 
confirmed RLS/PLM cases (Figure 4). 

 

Figure 4. Upset plot showing phenotypic distribution of pure RLS/PLM and their 
known comorbidities in the studied sample. The column of dots represents the 

number of individuals that fulfill the criteria of the black colored dots, e.g., 335 
individuals were diagnosed with RLS and ADHD. 

1.4 DNA sequence variations 

The genetic variation(s) between the DNA sequence of the individuals within the 
population is defined as DNA sequence variation. Spontaneous mutation (a 
permanent alteration to DNA sequence) or recombination events (mixing of 
genetic material from parents that occurrs during cross-over) are the main source 
of such genetic variations (Miller & Therman, 2011). The mutations can be 
deleterious, gain of function, or appear neutral in nature. Only those mutations 
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that appear in germline cells (sperms, or eggs) can be passed on to the next 
generation. 

De novo (new) mutations are errors that occurr in the DNA replication process. 
These sequence variations most often are one of three types 1) single nucleotide 
variation, 2) insertion or deletions (indels), or 3) copy number variation. These 
vary in size from a single base pair change, single nucleotide polymorphism 
(SNP), to small size indels (1 to 100 base pairs), insertion or deletions of few 
base pairs, to very large structural variations (up to a few mega-bases). Copy 
number variations (CNVs) involve deletions, insertions, or rearrangement of 
chromosomal regions (Freeman et al., 2006). The CNVs introduce complex 
genetic variations by deleting or adding multiple genes and often impact 
phenotypes (Conrad et al., 2010). 

The age of the father has been shown to associate positively with higher rate of 
de novo single nucleotide mutations in the offspring (H. Jónsson et al., 2017; 
Augustine Kong et al., 2012). The mutations vary in their impact on human traits 
and biological mechanisms, some with no effect, while others may provide 
protection against degenerative diseases (T. Jonsson et al., 2012), or cause 
impairments (O. O. Gudmundsson et al., 2019; Walters et al., 2018).  

Sequence variants can impact gene expression and/or protein function. Mutation 
in coding regions of the genome affect protein function differently, synonymous 
variants do not change amino acid sequence and therefore unchanged protein 
function, while missense variants (a type of nonsynonymous variant) substitute 
amino acid sequence and may result in a malfunctioning protein, and finally 
nonsense mutations (high impact) can introduce a premature stop codon that 
may result in truncation or absence of a protein (through nonsense mediated 
decay) (Mort, Ivanov, Cooper, & Chuzhanova, 2008). Due to the high impact of 
coding variants, they are often in low frequency (below 1%) within a population 
and those with serious impact on physiology are under high negative selection 
pressure (frequency < 0.1%) (Reich & Lander, 2001).  

1.5 Annotation of DNA sequence variants 

Accurate assessment of the functional effects of sequence variants is challenging 
(Shameer, Tripathi, Kalari, Dudley, & Sowdhamini, 2016). The whole genome 
sequencing of larger samples is uncovering vast number of novel coding 
sequence variants that require the assessment of their functional effects. For this, 
researchers are using algorithms to predict the effects of amino acid changes on 
protein function (Adzhubei, Jordan, & Sunyaev, 2013; Sim et al., 2012). These 
algorithms are trained on number of the known factors (protein conservation 
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scores, chemical differences between amino acids) to predict the likely causal 
effect of coding variant. In comparison, the prediction of effect for non-coding 
variants (which make ~98% of the genome) is more challenging as they do not 
directly impact protein function. The non-coding variants (present in introns or 
intergenic regions) do not directly affect the protein sequence (translation) or 
function. They may however affect gene expression, transcript isoforms by acting 
through regulatory elements (Cheung & Spielman, 2009; Pagani & Baralle, 
2004). One complication of gene expression analysis used to search for variants 
with an effect on expression (eQTLs), is that the expression and the underlying 
regulatory mechanism is often tissue and event specific (spatial-temporal effect). 
Therefore, understanding the biological effect of non-coding variants is not only 
complex but has also proven to be challenging (Ritchie, Dunham, Zeggini, & 
Flicek, 2014). 

1.6 Classical genetics and candidate gene studies 

Historically genetic studies were focused on Mendelian disorders by applying 
monogenic inheritance models. For that, linkage analysis and the candidate gene 
approach have widely been used (Gul et al., 2006; Nicholas et al., 2010; 
Santos et al., 2005). The linkage analysis (a statistical method) infers that closely 
located (physically) sequence variants on chromosome remain linked during the 
meiosis. In a family study design, this approach helps to indentify correlated 
segregation (linkage) of a trait and chromosomal locus (sequence variants) 
harboring the disease gene (Altshuler, Daly, & Lander, 2008). The linkage 
analysis approach has proven successful in finding highly peneterant causal 
genes for Mendelian diseases (Jimenez-Sanchez, Childs, & Valle, 2001). Though 
successful for Mendelian diseases the linkage analysis was less successful in 
finding loci linked to common disorders. The candidate gene- approach is a 
hypothesis driven search for risk variants in a biologically plausible gene, or 
genes. This approach ignores the genome-wide domain to search for associated 
variants and therefore only able to identify a fraction of genetic risk factors, but 
the approach has the advantage that it reduces the multiple testing burden 
(Hirschhorn & Daly, 2005; Tabor, Risch, & Myers, 2002). However, this 
approach failed in large for complex diseases because; a) sample sizes were too 
small, and b) marker coverage was sub-optimal by ignoring large parts of the 
genome. Most of the common human diseases/traits follow complex polygenic 
inheritance model, where multiple independent sequence variants confer small 
to modest risk and therefore large samples are needed to uncover statistically 
significant associations, and genome-wide association scans have been more 
useful than linkage analysis. 
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1.7 Genome-wide association scans 

The candidate gene approach only explores a fraction of the genome while the 
common diseases (non-Mendelian traits) follow complex polygenic inheritance 
models involving multiple independent variants with biological and 
environmental interactions. Therefore, a more robust and hypothesis free 
approach is required such as genome-wide scans to find genetic variants that 
associate with phenotypes. The first human genome was published in 2003, and 
since then thousands of genome-wide association studies (GWAS) have 
identified thousands of sequence variants associating with diseases/traits 
(Bjornsdottir et al., 2019; Didriksen et al., 2020; Gisladottir et al., 2020; Grant 
et al., 2006; Gudbjartsson et al., 2007; J. Gudmundsson et al., 2008; B. A. 
Jónsson et al., 2019; Stefansson et al., 2007; Thomsen & Gloyn, 2017; 
Thorgeirsson et al., 2008; Visscher et al., 2017). The GWAS is a powerful 
statistical approach that scans millions of genetic variants to find their association 
with a phenotype (binary or quantitative). Only a subset of these genetic variants 
are directly genotyped using next generation genome-wide chip-genotyping 
technologies ‘Illumina or Affymetrix platform’ (Kennedy et al., 2003; Quail et al., 
2008). To increase the number of markers available for testing the rest of the 
sequence variants are imputed based on chip genotypes and known correlations 
(linkage disequilibrium) between measured and unmeasured variants. 

1.8 Phasing and imputation 

Haplotypes (LD-blocks) are a combination of sequence variants at two (or more) 
loci that show little chance of variation during recombination in meiosis and are 
inherited together (Stram, 2017). Sequence variants within an LD-block show 
non-random correlated association of alleles with traits. GWAS studies test 
millions of sequence variants for association with phenotypes. 

Not all the sequence variants are directly genotyped/assayed for each 
participant in the study. However, the statistical approaches can exploit 
knowledge about LD-blocks (haplotypes) to impute missing or additional 
sequence variants that are not directly genotyped (Jonathan Marchini, Bryan 
Howie, Simon Myers, Gil McVean, & Peter Donnelly, 2007). The haplotype map 
is provided from a reference panel. The reference panel is constructed based on 
whole genome sequencing of a population subset (Augustine Kong et al., 2002; 
Augustine Kong et al., 2008). Therefore, the imputation information and 
accuracy of sequence variants increases with enrichment of whole genome 
sequencing data, i.e., diverse, and high depth sequencing of participants 
increases haplotype information. 
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Prior to the imputation of additional un-typed genotypes, the haplotype phasing 
of existing genotype calls is the crucial and critical step which helps to perform 
accurate imputation (Browning & Browning, 2011). The shared haplotypes 
between close and distant relatives (identical by descent) can often be reliably 
detected (Augustine Kong et al., 2008). Icelanders are geographically isolated 
and a relatively homogenous population with rich genealogical records. 
Researchers at deCODE Genetics developed a powerful method to long-range 
phase genomes of Icelanders and impute sequence data efficiently to low minor 
allele frequencies (Augustine Kong et al., 2008). Additionally, this long-range 
phasing method is a powerful tool to detect recurrent mutations and to identify 
fine-scale recombination events. 

1.9 GWAS and complex traits 

The past decade has seen an explosion in the number of GWAS studies with 
replication data for thousands of traits. The variants discovered have helped to 
understand the complex genetic architecture and disease susceptibility of a wide 
range of behavioral, anthropometric, lifestyle, cancerous, cardio-vascular, and 
neurological diseases (Didriksen et al., 2020; Gisladottir et al., 2020; Grant et 
al., 2006; Gudbjartsson et al., 2007; J. Gudmundsson et al., 2008; J. 
Gudmundsson et al., 2017; Hsu et al., 2019; L. Jonsson et al., 2018; T. Jonsson 
et al., 2012; Lo et al., 2017; Norland et al., 2019; Thorhildur Olafsdottir et al., 
2021; Stefansson et al., 2007; Styrkarsdottir et al., 2017; Styrkarsdottir et al., 
2019; Thorgeirsson et al., 2008; Thorgeirsson et al., 2010; Walters et al., 2018; 
Zink et al., 2017). These discoveries are in addition helping to advance clinical 
care and personalized medicine (Tam et al., 2019).  

The advancement and cost effective sequencing technologies are facilitating the 
inclusion of rare coding sequence variant  in GWASs (Gudbjartsson, Helgason, 
et al., 2015). To find statistically significant associations, the multiple testing 
burden increases with the inclusion of rare sequence variants. For that, 
Sveinbjornsson et al. introduced a method to weigh the sequence variants based 
on their impact category i.e. a coding sequence variant is more likely to be 
causal than intergenic sequence variants and therefore is weighted differently 
than intergenic variants (Sveinbjornsson et al., 2016).  

1.10 Functional annotation of associated variants 

GWASs have detected thousands of genetic variants that associate with multiple 
traits and this number is exponentially increasing with larger meta-analysis of 
phenotypes involving millions of participants (Kyoko Watanabe, Taskesen, Van 
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Bochoven, & Posthuma, 2017). In a few cases have GWASs identified coding 
variants that provide insight into the causal relationship (biological mechanism) 
of genetic variants with traits. However, the genotype-phenotype association 
relationship and its causation remains poorly understood, as most GWAS signals 
are located in non-coding or intergenic regions, (Maurano et al., 2012). 
Therefore, inference of GWAS signals to biological mechanism (gene 
expression, gene regulation, protein function, protein-protein interaction, and 
biological pathways) is limited. Hence, it is of utmost importance to translate the 
association of genetic loci into causal variants that may help guide functional 
genomics experiments for drugable targets (Breen et al., 2016).  

Previously, I discussed that genetic variants are correlated in the haplotype block 
and so their association with the traits. Therefore, the GWAS signals span a 
genomic region, risk locus, of multiple correlated sequence variants (Kyoko 
Watanabe et al., 2017). At these GWAS risk loci, some of the genes maybe 
relevant to disease, while others may not, but are not distinguishable just on 
association results alone. To disentangle and pinpoint the likely causal genes, or 
sequence variants, requires integration of functional information (transcriptomics, 
proteomics, metabolomics, and methylomics). Correlation analysis of GWAS 
signals with –omics data (colocalization analysis) by employing LD-block 
information may aid in discovering the true causal signals.   

1.11 Cross trait analysis 

The GWASs for the complex psychiatric disorders have so far been only 
moderately successful in identifying associated risk variants and causal pathways. 
This may partially be due to the clinical diagnosis of psychiatric disorders that 
have a wide range of symptoms and overlapping diagnostic boundaries. 
Crucially, there are no biological markers for psychiatric disorders, apart from 
genetic variants that are being discovered. Diagnoses are therefore made using 
consensus clinical criteria as inferred from the Diagnostic and Statistical Manual 
(DSM). Hence, the complications from comorbidity and qualitative nature of 
psychiatric diagnoses, compared with a disorder like hypertension or 
osteoporosis diagnosed by direct physical measurement, make it difficult to 
distinguish disease severity. Therefore, the broad symptoms and the complex 
cross trait phenotypic overlap may impede the identification of true biological 
relationship of sequence variants with specific disorders. To dissect these 
relationships, scientists use exploratory and confirmatory factor analysis to define 
the latent variables (traits). These latent traits may be used to study shared 
genetic architecture of disorders.  
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In addition, the psychiatric disorders are highly polygenic, multiple independent 
genetic variants confer risk. To study the polygenic nature, statistical methods are 
employed to construct cumulative risk scores (polygenic-risk-score) of trait A and 
then study its impact on other traits and vice versa. Other statistical methods used 
to disentangle the shared genetic architecture of disorders include genome-wide 
genetic correlation analysis whereby the pair-wise relationship between two (or 
more) disorders is studied using the resulting GWAS summary data. The pair-
wise genetic correlation analysis estimates the positive or negative relationship 
between disorders. 

1.12 Causal analysis 

Besides the broadly categorized and overlapping nature of different traits, a 
genetic variant may also impact multiple traits through distinct pathways, 
pleiotropy, or through an inter-mediatory trait; genetic variant → exposure 
(phenotype or biological marker) → outcome phenotype i.e., phenotype i.e., 
Genetic variant affects either another phenotype or a biological marker which 

in turn impacts another trait which has a measurable/visible/interpretable 

effect (the outcome phenotype) (Emdin, Khera, & Kathiresan, 2017; Eriksson et 
al., 2017; VanderWeele, Tchetgen, Cornelis, & Kraft, 2014). The pleiotropic and 
causal relationship can be detected through genome-wide genetic correlation, 
genetic risk score analysis, or using genome wide significant genetic 
associations as an instrumental variable. The statistical methods (conditional 
association, and Mendelian randomization analysis) can be applied to study 
whether the genetic variant(s) associated with one trait also impact/associate with 
another trait. Such an analysis helps to disentangle the shared genetic 
architecture of two diseases and may identify intermediator traits possibly 
impacting both conditions through shared biological pathways. Recently, 
analyses of several GWAS studies showed the pleiotropic and causal relationship 
between different traits (Burgess, Foley, Allara, Staley, & Howson, 2020; Holmes 
et al., 2015; Winter-Jensen, Afzal, Jess, Nordestgaard, & Allin, 2020). Such 
studies have promise to identify genetic variants impacting biological pathways 
that are either common to both traits or distinct to one of the diseases, paving 
the way for personalized medicine.  
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2 Aims 
Genetic architecture of childhood neuropsychiatric and 

involuntary movement disorders 

Chronic tics, an involuntary movement disorder (tic disorder TD), bears some 
phenotypic similarity with restless leg syndrome (RLS), as both are characterized 
by unpleasant sensation and involuntary movement in extremities and legs 
(Lesperance et al., 2004). TD is highly comorbid with obsessive compulsive, and 
attention deficit / hyperactivity disorders (Darrow et al., 2017). Likewise, RLS is 
comorbid with varied psychiatric conditions that include anxiety, depression, 
substance (tobacco, opioid) use disorders, insomnia, and hypertension 
(Senanayake et al., 2020). Genetic correlation studies tell a similar story 
(Didriksen et al., 2020; Barbara Schormair et al., 2017). These comorbid and 
correlated traits have a significant impact on the quality of life. 

This work aimed at uncovering sequence variants conferring risk of involuntary 
movement disorders (TS, Tics, ADHD, OCD and RLS), as well as search for 
variants affecting ICV and how ICV affects neurodevelopmental disorders on the 
impulsivity-compulsivity spectrum and furthermore to study cross disorder risk of 
common and rare variants relevant to these disorders. A further aim was to cast 
light on whether structural changes in the human brain cause neurological 
disorders or alternatively whether genetic predisposition to certain neurological 
or neurodevelopmental disorders impacts brain structure or development. To 
understand the genetic basis of brain structure and neurological disorder, brain 
volume GWAS meta-analysis, their genetic correlations, and bidirectional 
Mendelian randomization analyses were conducted. 
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3 Materials and methods 

3.1 Phenotyping and factor analysis of TS, and TD (paper I, 
and III) 

In Iceland, using a well characterized sample of 1,023 TS cases, a GWAS study 
to find sequence variants conferring risk of TS is underway. These 1,023 cases 
(591 with ICD 10 F95.2 and 432 recruited through questionnaire data) have 
been chip genotyped and long-ranged phased (LRP). LRP is a phasing method 
developed by Kong et.al (Augustine Kong et al., 2008) to correctly phase family 
genotype data and inform long haplotypes. Similarly, for GWAS studies of TD, 
ADHD, OCD and ASD well characterized phenotypes comprised of genotyped 
and LRP subjects (N = 1,048, N = 5,204, N = 575, and N = 540 respectively). 
These cases were used for polygenic risks score predictions. The cases are 
drawn from diagnostic registries of the main Icelandic neuropsychiatric specialty 
clinics to which most referrals are made.  
According to the Icelandic Census 2011, the total number of persons residing in 
Iceland was 315,556 on 31 December of 2011. With international TS prevalence 
estimates between 0.3-0.9% (M. M. Robertson, Eapen, & Cavanna, 2009; Scharf 
et al., 2014) the index-case list represents a prevalence of 0.27%, close to the 
lower end of the international prevalence estimate. Studies have found that many 
TS cases are mild and such cases without comorbidities may not be brought to 
medical attention (Khalifa & von Knorring, 2003; Scharf, Miller, Mathews, & Ben-
Shlomo, 2012)._ENREF_12 This study administered the brief TS/TD screening 
questionnaire (TSQ) (Appendix 1) based on ICD-10 and DSM-IV-TR diagnostic 
criteria to identify and characterize a history of TS and TD to individuals with 
diagnosed ASD (N = 266), ADHD (N = 280), OCD (N = 142), relatives of 
individuals with neuropsychiatric disorders (N = 3,286) and controls (N = 211). 
Detailed demographic statistics of all participants are presented in Appendix, 
Supplementary Table 1. 

3.1.1 The TS/TD screening questionnaire (TSQ) 

The brief set of TS/TD screening questions (TSQ) was designed by paediatric 
neurologists and clinical psychologists at the State Diagnostic and Counselling 
Centre (SDCC) in Reykjavik Iceland to detect current or a history of TS/TD, by 
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self-report (parent-report for children under 18 years of age). The TSQ was 
designed to reflect the diagnostic criteria used in clinical practice following both 
DSM-IV-TR (APA, 2000) and ICD-10 (WHO, 1992) guidelines. Appendix, 
Supplementary Tables 2 & 3 show that both classification systems define these 
disorders similarly as mental and behavioural disorders with onset occurring in 
childhood or adolescence (i.e. before 18 years of age) and with comparable 
criteria for diagnosis (Woods & Thomsen, 2014). Relatively few substantive 
changes were made to diagnostic criteria for TS/TD in the updated DSM-V 
(APA, 2013) classification. In addition to the tic questions, surveys included a 
brief set of medical history and symptom-related questions regarding the main 
comorbidities of TS/TD; ASD, OCD, and ADHD (Cavanna, Servo, Monaco, & 
Robertson, 2009). 
Descriptive statistics were calculated for the entire sample (N = 4,431) and are 
presented in Appendix, Supplementary Tables 1. Moreover, scoring rules for 
responses to the TSQ were established according to the diagnostic criteria 
(Appendix, Supplementary Table 2). To determine a likely diagnosis of TS, 
endorsement of at least two motor tics and a vocal tic with onset prior to age 18 
and persisting for at least a year were required.  To determine a likely diagnosis 
of any other TD, responses indicating a history of any persistent motor or vocal 
tic starting before the age of 18, not being due to another reported illness or 
medication, was required (See scoring algorithm and results in Appendix). For 
individuals with a history of tics, a motor tic count and vocal tic count was 
generated based on 13 motor tic symptoms and 5 vocal tic symptoms included in 
the TSQ. 

3.1.2 Exploratory factor analysis 

To perform exploratory factor analysis (EFA), correlation coefficient matrices 
were estimated using heterocorrelation method from ordinal responses of TSQ 
(using polycor, see Appendix). Therein, varimax rotation solution was used to 
infer factor loading and structure. Factors with eigenvalues higher than 1 were 
retained and characteristic consideration decided the final number of factors. To 
validate predicted factors, confirmatory factor analysis (CFA) was employed 
using psych R package (see resources). Estimation was based on weighted least-
squares and minimum residual calculation. Only items having factors loading > 
0.40 were retained in a factor (those with cross factor loading > 0.30 were 
excluded from factor analysis (FA)). Bayesian-information criterion and Tucker-
Lewis index (TLI) was used as a fitness index (TLI: 0.86 - 0.97) (Appendix, 
Supplementary Table 4 & 5). CFA of tic items belonging to (1) ICD 10 F95.* 
and (2) questionnaire based TS/TD (screened by TSQ excluding F95.*) groups 
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showed that eigenvalues of three factors; body/extremity tics, facial tics, and 
vocal tics were greater than 1 explaining 87.12% and 92.43% cumulative 
variance, respectively (Appendix, Supplementary Figure 1 & 2). 

3.1.3 Quantitative tics and TSQ score distribution 

To generate quantitative traits for tic factors, the sum of positive responses for 
each tic item in respective tic factor category was used. For this, sums of positive 
responses of 18 tics belonging to respective tic factor (as shown in Appendix, 
Supplementary Figure 3) were calculated and standardized (mean 0, SD 1) 
while adjusting for gender, age, and respondent type (self/parental 
administered). These quantitative tic traits were later used to conduct GWAS 
analyses, calculate their heritability and to obtain genetic correlation with TS 
PGRS. To understand severity of TS/TD phenotypes, the distribution of each tic 
factor score was assessed by comparing average standardized TSQ score for TS 
and TD within each recruitment group.  

3.2 CNV analysis (Papers I, and II) 

3.2.1 CNV calling and imputation 

Detecting CNVs through chip array data is challenging, in particular calling 
small CNVs (Valsesia, Macé, Jacquemont, Beckmann, & Kutalik, 2013). For array-
based methods a high false discovery rate is a common challenge for all 
available CNV prediction algorithms (Pinto et al., 2011; X. Zhang et al., 2014). 
Here, the long range phasing (Augustine Kong et al., 2008) of SNP array 
genotypes was performed to validate CNVs segregating in extended pedigrees. 

The CNVs were called in a set of 150,656 genotyped and long-range phased 
subjects using the PennCNV algorithm (Wang et al., 2007) and the CNVs were 
validated using shared LRP haplotype backgrounds (Appendix, Supplementary 
Figure 4). PennCNV allows for a minimum specification of family information to 
increase sensitivity and accuracy of CNV calls. The inclusion of family data is, 
however, limited to trios and quartets with no possibilities of specifying larger 
sib-ships or relatives beyond first degree. In this study, the extended genealogy 
of the Icelandic population and the known haplotype structure was used, to 
validate PennCNV calls and to identify CNVs segregating in extended pedigrees 
on the same haplotypes. PennCNV copy number detection was performed using 
standard protocol (Wang et al., 2007).  Allele frequencies were obtained per 
sample batch and adjusted for genomic waves (Diskin et al., 2008) with 
genotype-array specific GC-model files. Markers within the genomic super 
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duplicated regions described in literature (Bailey et al., 2002; Bailey, Yavor, 
Massa, Trask, & Eichler, 2001) were excluded, and CNVs overlapping known 
gaps in the assembly (UCSC Table) were also excluded prior to QC.  

Chromosomes phased by LRP, and pedigree information were used to inform 
and verify the quality of CNV calls in the 150,656 genotyped subjects. A sliding 
window approach was used to identify all non-overlapping genomic segments 
including verified CNV breakpoints. All CNV segments that segregated in 
pedigrees with MAF > 0.01% were used. This gave a total of 24,053,800 CNV 
genotypes that map to 41,181 unique CNV bins in 134,387 subjects (Appendix, 
Supplementary Table 6 & Supplementary Table 7). These CNVs were 
further imputed into 100,903 first- and second-degree relatives of 150,656 
directly genotyped individuals.  

3.2.2 CNVs Quality control 

Sample based QC per genotyping-array was performed using the statistics from 
PennCNV (Wang et al., 2007). Samples were removed based on QC measures 
as; a) BAF-SD > mean+3SD, b) LRR-SD > mean+3SD or c) GCWF > mean+3SD. 
In addition, outlier samples having too many CNV calls (>mean+4SD) were 
removed unless > 90% of the calls were found on a single chromosome. Hence, 
large chromosomal CNVs were not excluded. CNV level QC was performed by 
excluding CNVs with < 10 SNPs/call. Adjacent calls were iteratively joined 
together, if the distance between calls was < 20% of the combined length 
(Appendix, Supplementary Table 6). 

3.3 Meta-analysis of genome-wide association studies for 
restless legs syndrome (Paper IV) 

3.3.1 Ethical approval of restless leg syndrome study 

All participating individuals (a legal guardian in case of those below 18 years) 
who provided their blood and/or buccal swab sample for the genetics study of 
restless leg syndrome also gave written informed consents for the study. 

In Iceland, the encryption of sample identifiers was performed in accordance 
with the regulations of the Icelandic Data Protection Authority, and the National 
Bioethics Committee of Iceland provided the approval of the study. 

In Denmark, the participants of the Danish blood donor study (DBDS) provided 
written informed consent. This study was approved by The Scientific Ethical 

https://scholar.google.is/citations?view_op=view_citation&hl=en&user=ply4GVYAAAAJ&sortby=pubdate&citation_for_view=ply4GVYAAAAJ:oi2SiIJ9l4AC
https://scholar.google.is/citations?view_op=view_citation&hl=en&user=ply4GVYAAAAJ&sortby=pubdate&citation_for_view=ply4GVYAAAAJ:oi2SiIJ9l4AC
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Committee of Central Denmark (M-20090237), the Danish Data Protection 
agency (30-0444), and the National Ethical Committee (NVK-1700407).  

In UK, all the participants of the INTERVAL dataset provided written informed 
consent. This study was approved by the National Research Ethics Service 
Committee - Cambridge East (Research Ethics Committee (REC: 11/EE/0538). 
The UK Biobank project is approved by the Northwest Multi-centre Research 
Ethics Committee, and by the Patient Information advisory Group, the National 
Information Governance Board for Health and Social Care, and from the 
Community Health Index Advisory Group. The UK Biobank also holds a Human 
Tissue Authority license. 

In Netherlands, all the participants of the study provided written informed 
consent for the study of RLS. This study was approved by the Medical Ethical 
Committee of the Academic Medical Centre (AMC) in the Netherlands, and 
Sanquin’s Ethical Advisory Board approved DIS-III. 

In the US, all the participants of US Emory sample provided written informed 
consent, and an institutional review board at Emory University, Atlanta, Georgia, 
US, approved the study protocol (HIC ID 133-98). 

3.3.2 Recruitment (restless leg syndrome) 

Altogether, 480,982 participants of Caucasians ancestry (10,257 cases and 
470,725 controls) from Iceland, Denmark, the UK, Netherlands, and the US were 
recruited in these studies. All participants of the study provided written informed 
consent. 

3.3.3 Phenotyping of restless leg syndrome 

In Iceland, a screening questionnaire was used to screen for RLS-like symptoms, 
both among participant recruited through a newspaper advertisement and 
among subjects that had participated in various studies at deCODE genetics. RLS 
was assessed using a questionnaire based on the International RLS Study Group 
diagnostic criteria (IRLSSG) (Allen et al., 2014). 

For the DBDS and the INTERVAL participants the RLS status was assessed using a 
10-item questionnaire with excellent diagnostic specificity (94%) and sensitivity 
(87.2%), ‘The Cambridge-Hopkins RLS questionnaire (CH-RLSq)’. Furthermore, 
the definite and probable RLS cases were combined into one group and the 
remaining participants were included in analyses as controls.  



Muhammad Sulaman Nawaz 

22 

For UK Biobank participants, the clinical diagnostic code International 
Classification of Diseases (ICD10), tenth revision: G25.8 was used to inform 
about case status of restless leg syndrome. The specific sub-code for RLS 
(G25.81) was not available.  

For the Netherlands participants were from the Donor InSight-III (DIS-III, 2015-
2016) study (Timmer et al., 2019). A self-reported questionnaire, used as part of 
the RISE study (Spencer et al., 2013), was used to determine RLS status. This 
questionnaire is based on the IRLSSG criteria and was developed in 
collaboration with an expert on RLS (Professor David B. Rye) (Spencer et al., 
2013).  

For the US Emory, a dataset from the sleep program at Emory University was 
included, which is a tertiary care center for RLS that is recognized as a Quality 
Care Center for RLS by the RLS Foundation. A clinically verified RLS affection 
status in this dataset was used where RLS status was assessed by one of two 
clinicians familiar with RLS (David B. Rye and Lynn Marie Trotti) complemented 
by objective measurements of periodic leg movements in sleep (PLMS) and 
additional secondary and supportive diagnostic features (Allen et al., 2014). For 
the genetics study, the analysis was limited to subject of Northern European 
origin in line with the participants from other populations. 

For all these cohorts, the effect estimates for the 20 known RLS-associated 
variants (B. Schormair et al., 2017) were largely like the effect estimates 
observed in each of the cohorts included in this meta-analysis (Table 2). This 
indicates that the phenotypes in each cohort are comparable to previous RLS 
GWAS efforts. Moreover, the meta-analysis of the discovery and follow-up 
samples replicated 19 of the 20 previously reported variants. Of all these 
samples, only the dataset form UK-INTERVAL was part of previously published 
meta-analysis (Barbara Schormair et al., 2017).   
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IRLSG RLS diagnostic criteria(R. P. Allen et al., 2014) CH-RLSq(Allen et al., 2009) Questionnaire used by the InSight-III cohort(Spencer et al., 2013)

Do you have, or have you had, recurrent uncomfortable feelings 

or sensations in your legs while you are sitting or lying down?

When you try to relax in the evening or sleep at night, how often do you have unpleasant, restless 

feelings in your legs that can be relieved by walking or movement?

a)    Yes a)    Never

b)    No b)    Rarely (2 to 4 times a month)

c)     Often (5 to 15 times a month)

d)    Very often (16 or more times a month)

Do you, or have you had, a recurrent need or urge to move your 

legs while you were sitting or lying down? 

How often do you experience a strong urge to move your legs usually accompanied or caused by 

unpleasant sensations in your legs – for example restlessness, creepy-crawly, or tingly feelings?

a)    Yes a)    Never

b)    No b)    Rarely (2 to 4 times a month)

c)     Often (5 to 15 times a month)

d)    Very often (16 or more times a month)

If you get up or move around when you have these feelings do 

these feelings get any better while you actually keep moving?

Is the urge to move your legs or are the unpleasant sensations partially or totally relieved by 

movement such as walking or stretching?

a)       Yes a)    Yes

b)       No b)    No

c)       Don’t know c)     Don’t know

Are you more likely to have these feelings when you are resting 

(either sitting or lying down) or when you are physically active?

Does the urge to move your legs begin, or do the unpleasant sensations begin or worsen, during 

periods of rest or inactivity such as when sitting or lying down?

a)       Resting a)    Yes

b)       Active b)    No

c)     Don’t know

Which times of day are these feelings in your legs most  likely to 

occur? 
At what times is the urge to move your legs or the unpleasant sensations most bothersome?

a)       Morning a)    In the morning (before noon)

b)       Mid-day b)    In the afternoon (before supper)

c)       Afternoon c)     In the evening (after supper)

d)       Evening d)    At night while sleeping

e)       Night e)    No difference by time of day

f)        About equal at all times

Will simply changing leg position by itself once without 

continuing to move usually relieve these feelings?

a)    Usually relieves

b)     Does not usually relieve

c)     Don’t know

Are these feelings ever due to muscle cramps? 

a)       Yes 

b)       No 

c)       Don’t know

If so, are they always due to muscle cramps? 

a)       Yes 

b)       No 

c)       Don’t know

1. An urge to move the legs usually but not always 

accompanied by or felt to be caused by uncomfortable 

and unpleasant sensations in the legs

2. The urge to move the legs and any accompanying 

unpleasant sensations begin or worsen during periods of 

rest or inactivity such as lying down or sitting.

3. The urge to move the legs and any accompanying 

unpleasant sensations are partially or totally relieved by 

movement, such as walking or stretching, at least as long 

as the activity continues. 

4. The urge to move the legs and any accompanying 

unpleasant sensations during rest or inactivity only occur 

or are worse in the evening or night than during the day.

5. The occurrence of the above features are not solely 

accounted for as symptoms primary to another medical or 

a behavioral condition (e.g., myalgia, venous stasis, leg 

edema, arthritis, leg cramps, positional discomfort, 

habitual foot tapping). 

Table 1: The questionnaire used to assess restless leg syndrome. 

3.3.4 Cohorts used for follow-up/replication analysis 
After the discovery meta-analysis, the novel markers identified were tested for 
replication in two cohorts. 

3.3.4.1 EU-RLS-GENE study 
RLS cases in the EU-RLS-GENE study were recruited in specialized outpatient 
clinics for movement disorders as well as in sleep clinics in eight European 
countries, French Canada, and the United States. RLS diagnosis was based on a 
face-to-face interview by an expert neurologist, implementing the diagnostic 
criteria established by the IRLSSG in 2003. Ancestry-matched controls were 
obtained for each case sample. A total of 6,228 cases and 10,992 controls were 
included in the statistical analysis. Written informed consent was obtained from 
all participants. 

3.3.4.2 US (RBC-Omics) cohort 
The RBC-Omics cohort included blood donors recruited from four blood centres 
in the United States as a part of the Recipient Epidemiology and Donor 
Evaluation Study (REDS-III) (Endres-Dighe et al., 2018; Kanias et al., 2017; 
Yuelong Guo, 2018). RLS status was assessed using the CH-RLSq as in the DBDS 
and INTERVAL cohorts. Analysis in the cohort was restricted to subjects of 
Caucasian ancestry and included 423 cases and 7,334 controls. All subjects 
provided written informed consent. 
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3.3.5 Genotyping and Imputation analysis 

3.3.5.1 Icelandic dataset  

At deCODE genetics, DNA samples from 150,656 Icelanders were genotyped 
on one or more of 16 different Illumina SNP genotyping-arrays including 14,084 
participants of the RLS study. Through whole-genome sequencing (WGS) (with 
mean sequencing depth of 10X, median 32X) of 8,453 Icelanders, almost 34.2 
million sequence variants were identified. To increase the statistical power for 
the association studies, these sequence variants were imputed into the 150,656 
directly genotyped Icelanders employing long-range-phasing algorithm (A. Kong 
et al., 2008). This generated high density SNP information haplotypes 
(described in detail earlier (Steinthorsdottir et al., 2016)). Subsequently, logistic 
regression analysis was performed for each of the imputed sequence variants 
accounting for cryptic relatedness and adjusting for sex and year of birth 
(Steinthorsdottir et al., 2016). 

3.3.5.2 Danish (The Danish Blood Donor Study) dataset 

DNA samples (extracted from blood) from 26,565 participants of the DBDS were 
genotyped using the Infinitum Global Screening Array on Illumina® genotyping 
platform at deCODE Genetics, Iceland. To maximize the imputation accuracy, 
genotyping arrays with ~660,000 common genetic markers were used, these 
markers span the entire genome and represent major populations. Eagle (P. R. 
Loh et al., 2016) was used to perform long-range-phasing employing deCODE’s 
Northwest European (NWE) reference panel. The NWE panel was constructed 
through whole genome sequencing data of 15,576 individuals from Scandinavia, 
the Netherlands and Ireland, 8,429 Danes (1,590 of these are from DBDS). The 
Graphtyper (H. Jonsson et al., 2017) variant caller was used to call genotypes 
from whole genome sequencing data. Standard protocols for the quality control, 
long range phasing, and imputation of study sample were used (Steinthorsdottir 
et al., 2016). For the association analysis, logistic regression analysis were 
employed by adjusting for known confounders and cryptic relatedness as 
described previously(Steinthorsdottir et al., 2016). 

3.3.5.3 UK (The INTERVAL Study) dataset 
The UK INTERVAL samples, were genotyped using the Affymetrix UK Biobank 
Axiom array and the genotypes were called through the Axiom GT1 algorithm (Di 
Angelantonio et al., 2017). The standard quality control parameters were used 
for the sample and cohort level QC-analysis (i.e., excluded the samples if call 
rate <97%, or contamination rate >10%, or sex mismatch, or not of European 
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ancestry (PCA-based scores on PC1 or PC2<0). For the ancestry analysis, a set 
of high-quality common (MAF > 0.05), and weakly correlated (r2<0.2 between 
pairs of variants) autosomal variants were used. To impute the additional 
autosomal sequence variants, a two step procedure was employed. To phase the 
genotypes, IMPUTE3 was used followed by Burrows-Wheeler transform 
imputation algorithm PBWT employing the UK10K and the 1000 Genomes Phase 
3 reference panel (URL, https://www.internationalgenome.org/data-portal/data-
collection/phase-3). The association analysis used a previously described 
method (Ji et al., 2017). 

3.3.5.4 The UK (UK Biobank) dataset 

The first set of 50,000 UK Biobank samples were genotyped using the Affymetrix 
UK BiLEVE Axiom array. Subsequently, the remaining 450,000 samples were 
genotyped using Affymetrix UK Biobank Axiom® array. These samples provided 
genotypes for ~850,000 sequence variants. These arrays have high content 
overlap, or >95% common content (C. Bycroft et al., 2018; Bycroft et al., 2017). 
The 1000 Genomes phase 3 (Genomes Project et al., 2015), UK10K (McCarthy 
et al., 2016), and HRC (Bycroft et al., 2017) reference panels were used to 
impute the additional genotypes in these directly genotyped subjects. The 
imputed genotypes were transferred to deCODE Genetics, Iceland. Therein, the 
sample and cohort level quality control steps were followed as previously 
described (Steinthorsdottir et al., 2016). Association analysis using imputed 
genotypes employed logistic regression  with adjustment for known confounders, 
and cryptic relatedness (Steinthorsdottir et al., 2016).  

3.3.5.5 The Netherlands (Donor InSight-III) dataset 

DNA samples were genotyped for 820,967 sequence variants using the UK 
Biobank version 2 Axiom Array (Thermo Fisher, CA, USA) (Biobank.). After 
performing sample level quality control (QC) steps (i.e. call rate (≥97%), Hardy-
Weinberg Equilibrium (HWE) p-value<1x10-6, and copy number analyses 
(MAPD2 value ≤0.35 and WavinessSD3 value ≤0.1), 789,754 sequence variants 
were retained for the imputation and downstream analysis (I. Affymetrix, 2013, 
2015; l. Affymetrix, 2017) (C. Bycroft et al., 2018). To impute genotypes for 
additional variants, the Sanger imputation pipeline (Eagle phasing and BWT 
imputation using the HRC v1.1 panel) was used (Durbin, 2014; P. R. Loh et al., 
2016; McCarthy et al., 2016). Post imputation QC steps excluded rare 
(MAF<0.01), and poorly imputed sequence variants (imputation score R2≤0.3). 
Additionally, only Caucasian samples were retained by performing ancestry 
check using principal components analysis (PCA) carried out in PLINK2. 

https://www.internationalgenome.org/data-portal/data-collection/phase-3
https://www.internationalgenome.org/data-portal/data-collection/phase-3
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3.3.5.6 US (Emory) dataset 
Illumina Omni Express arrays were used for genotyping at deCODE Genetics, 
Reykjavik, Iceland. Sample level QC excluded markers with (<94% yield, minor 
allele frequency <0.1%, failed Hardy-Weinberg test (P<1 × 10−6), or showing 
significant (P<1 × 10−6) difference between genotype batches. To phase the QC 
passed genotypes, SHAPEIT (v2.790) (Delaneau, Howie, Cox, Zagury, & 
Marchini, 2013) was used, followed by IMPUTE2 (v2.3.2)(Howie, Donnelly, & 
Marchini, 2009) to impute un-genotyped variants. 

For ancestry analysis, ADMIXTURE (v 1.2) (Alexander, Novembre, & Lange, 
2009) and EIGENSOFT (v 6.0.1) (Price et al., 2006) were used. Based on the 
principal component analysis, ethnic outliers were excluded from the analysis.  
For the association analysis of the imputed genotypes, SNPTEST (J. Marchini, B. 
Howie, S. Myers, G. McVean, & P. Donnelly, 2007) was used employing the 
frequentist additive method while adjusting for gender, and the first twenty 
principal components (derived from SNP-genotypes) to correct for population 
structure.  

3.3.6 Association analysis 

The analysis included 42.9 million sequence variants (method described earlier 
(Saevarsdottir et al., 2020)). The genotypes of the sequence variants were 
estimated through LRP of haplotypes and imputation processes (Augustine Kong 
et al., 2008). For the quantitative traits with effective sample size of over 20,000 
a linear mixed model implemented by BOLT-LMM (P.-R. Loh et al., 2015) was 
used to test for association between sequence variants and quantitative trait, 
assuming an additive genetic model. Whereas for binary trait the logistic 
regression analysis model was used. The quantitative traits used for analysis are 
standardized and follow a normal distribution with a mean that depends linearly 
on the expected allele at the variant and a variance–covariance matrix 
proportional to the kinship matrix (P.-R. Loh et al., 2015). Additionally, LD score 
regression (B. K. Bulik-Sullivan et al., 2015) was used to account for inflation in 
test statistics that may arise due to cryptic relatedness and stratification. A 
likelihood-ratio test was used to compute all P-values, as described earlier 
(Benonisdottir et al., 2016). To identify a genome wide significant association, 
the annotation dependent significant thresholds as described in Sveinbjornsson 
et al were used (Sveinbjornsson et al., 2016).  
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3.3.7 Meta-analysis 

In case of polygenic traits, individual small studies have limited power to detect 
sequence variants associated with phenotype of interest. For this, meta-analysis 
approach, combining summary statistics across independent studies, has been 
widely used to increase power for discovery. The meta-analysis studies are 
flexible to combine dozens of studies and have successfully detected significant 
associations using millions of individual samples (from different studies) (J. J. Lee 
et al., 2018a; Levey et al., 2020). 

To perform meta-analysis, a few statistical approaches are used, among those the 
simplest is, Fisher’s method to combine P-values. 

χ𝟐 = −2 × ∑ log(𝑃𝑖)𝑖=1
𝑘   

Where k is the total number of studies, Pi is the P-value for the variant in the 
study i, χ2 is a chi-squared distribution with 2k degree of freedom. In case of 
studies having different power to detect associations, they can be weighted 
based on their sample size employing z-statistics. 

𝑍 = ∑ 𝑧𝑖 × 𝑤𝑖𝑖
𝑘 /√∑ 𝑤𝑖𝑖

𝑘

2  

Where wi is the square root of the sample size of the ith study, Zi is the Z-score of 
the variants from the standard normal distribution defined as:  

𝑍𝑖 = (𝑠𝑖𝑔𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒) × Φ−1(1 − 𝑃𝑖/2) 

Where Φ is the standard normal cumulative distribution function (Estruch et al., 
2013). In the meta-analysis, different studies may have varied power to detect 
associations and so should be weighted based on the effective sample size 
(Willer, Li, & Abecasis, 2010), which could be estimated through this formula. 

𝑁𝑒 = 4/(
1

𝑁𝑐𝑎𝑠𝑒𝑠
+

1

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠
)  

Other than the varied effective sample size, the estimated effect size varies 
between cohorts. Therefore, meta-analysis is performed either using fixed-effect 
or random-effect assumptions. Among these, the fixed-effect meta-analysis is the 
most common approach which assumes that the true effect for all variants is the 
same in all cohorts under study (fixed-effect meta-analysis). This combined effect 
is computed as: 

𝛽𝐹 = ∑ 𝛽𝑖 × 𝑤𝑖/
𝑖
𝑘 (∑ 𝑤𝑖)

𝑖

𝑘
  

Where βF is the average effect estimate which has variance: 
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𝑣𝑎𝑟(𝛽𝐹) = 1/ ∑ 𝑤𝑖𝑖
𝑘   

Therefore, this βF is weighted by the inverse variance of the effect estimates in 
each study i.e. giving greater weight to larger studies (have lower variance in the 
effect estimate) (Higgins & Thompson, 2002; Willer et al., 2010). However, the 
random effect analyses allow sizes to vary between study cohorts where weight 
for each study is estimated as: 

𝑤𝑖
𝑅 = 1/(1/𝑤𝑖  + 𝜏2) 

Where ‘𝜏’ is computed by: 

𝜏 = (𝑄 − (𝑘 − 1))/(∑ 𝑤𝑖 − (∑ 𝑤𝑖
2/

𝑘

𝑖
∑ 𝑤𝑖

𝑘
𝑖 ))𝑘

𝑖   

 There in equation, ‘Q’ is Cochran’s Q statistic given by: 

𝑄 = ∑ 𝑤𝑖(𝛽 − 𝛽𝐹)2𝑘
𝑖   

Cochran’s ‘Q’ follows a chi-squared distribution with k-1 degree of freedom. 

As compared to fixed-effect meta-analysis the random effect analyses has much 
lower power to detect the associations and therefore are usually not used in the 
discovery phase of meta-analyses. However, in case of heterogeneity and to 
generalize the findings it is worth testing random-effect models as well 
(Evangelou & Ioannidis, 2013).  

The heterogeneity of effect estimates among the study cohort can be estimated 
using Cochran’s Q-statistic from the equation above. Under the null hypothesis of 
no heterogeneity, it is expected to follow a chi-squared distribution with k-1 
degrees of freedom. A significant deviation (P < 0.05) from this distribution may 
mean that combination of the effects under fixed effect assumption is not 
appropriate (Higgins & Thompson, 2002). 

Population heterogeneity is also measured through 𝐼2, which is the percentage of 
total variation across the studies included in the meta-analysis, that can be traced 
to heterogeneity rather than chance (Higgins & Thompson, 2002). 𝐼2 is 
calculated from the Cochran’s Q statistic in the following way (and negative 
values are set as 0):  

𝐼2 = 100% × 𝑄 − (k − 1)/𝑄 

𝐼2 ranges from 0 to 100, where a value closer to 100 means more heterogeneity 
between the studies of the analysis. While Cochran’s Q-statistic has low power 
for detecting heterogeneity in analyses that include a small number of studies 
(significance is often set at 0.1 to account for this), 𝐼2 can be readily compared 
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between studies of different sizes and regardless of the effect measure (beta, 
odds ratio, hazard ratio etc.) (Higgins & Thompson, 2002). 

When planning a meta-analysis study, there are number of guidelines for the 
standardization of phenotype criteria, quality controls, imputation threshold, 
standardization, normalization, and harmonization of effect alleles (i.e., effect 
estimates are standardized and normalized for same effect allele across cohorts). 
These QC and harmonization steps help to minimize heterogeneity that may arise 
due to flipped allele’s or non-standarized effect estimates between studies. 
Additionally, critical constraint in the meta-analysis studies is to deal with the 
level of phenotypic heterogeneity across the cohorts which in some cases is 
inevitable. Phenotypic heterogeneity can arise for complex phenotypes that are 
difficult to define (especially questionnaire based phenotypes), for example 
behavioral and cognitive traits, but even when phenotypes fulfill accepted 
clinical criteria, heterogeneity can still arise due to population stratification or 
simply because genetic variants have different effects in different ancestral 
groups (Evangelou & Ioannidis, 2013). 

For meta-analysis, GWAS summary statistics were combined using an inverse-
variance weighted meta-analysis by allowing different population frequencies for 
alleles but assuming fixed-effects. Additionally, the heterogeneity in the effect 
estimates was tested using a likelihood ratio test by comparing the null 
hypothesis of the effect being same in both populations to the alternative 
hypothesis of either population having a different effect. Since the QC, 
imputation, and association tests, adjusting for principal components was done 
at cohort level and later meta-analysed together. Therefore, the joint principal 
component analysis of the meta-analysis set was not performed. Additionally, 
detailed information about the QC, imputation, and the association method for 
Icelandic (Styrkarsdottir et al., 2019), and UK Biobank (Astle et al., 2016) have 
already been described by respective cohorts. 

3.3.8 Rare loss of function variants and burden analysis 

The loss of function (LoF) sequence variants (frameshift, stop-codon, splice-
donor, and splice acceptor) are annotated to be high impact mutations as they 
result in the malfunctioning of the coded protein. Largely, such mutations are 
found in low frequency and are hard to find and impute. An extensive whole-
genome-sequencing (WGS) effort is required to uncover those sequence 
variants which can be prohibitively expensive. Additionally, the low frequencies 
of LoFs in the constrained genes, those with low probability of loss of function 
mutations, further limit power to detect significant associations. 
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To benefit from the WGS data and collectively studying the LoF mutations 
(simple hypothesis that LoF confer similar risk), a burden analysis approach was 
used (T. Olafsdottir et al., 2021). Same approach was used to report the role of 
MAP1B mutations in intellectual disability and white matter deficit (Walters et al., 
2018). Furthermore, a strict threshold was defined to combine all rare loss of 
function mutation with minor allele frequency below 0.1% and employed rare 
variant burden analysis (T. Olafsdottir et al., 2021) test statistics to compute risk 
estimate and p-value. Top Bonferroni significant associations (P < 0.05/N, 
where ‘N’ is the number of genes with LoF variants below 0.1% frequency tested 
for association). LoF mutations in these genes were further investigated using 
segregation and follow-up analysis in indepdent cohort. In case of rare novel 
associations, genes not reported in the clincVar, were followed as constrained 
genes. 

3.4 Genetic correlation analysis using LDSC 

The genetic correlation between GWAS meta-analysis and published GWAS 
studies with effective sample sizes over 5,000 (N = 1,099) were performed 
using LDSC (B. Bulik-Sullivan et al., 2015; B. K. Bulik-Sullivan et al., 2015) (P 
threshold < 0.05/1,099 = 4.5×10-5). Most of these GWASs were reported using UK 
biobank, GIANT consortium, GWAS & Sequencing Consortium of Alcohol and 
Nicotine, and psychiatric genomics consortium data and were accessed by 
downloading summary data reported by Watanabe et.al, (K. Watanabe et al., 
2019) and Zhao et.al, (Zhao et al., 2019). Since most of the published GWASs 
used in the analysis focus on samples of Caucasian ancestry, the pre-computed 
LD scores from 1000 genome panel with r2 from HapMap3 excluding HLA 
region (B. Bulik-Sullivan et al., 2015; B. K. Bulik-Sullivan et al., 2015) was used.   

3.5 Cis-colocalization analysis of top SNPs to find eQTLs 

The cis-colocalization analysis was performed to prioritize genes associated with 
TS, RLS variants. The analysis was performed using two approaches (1) cis-eQTL 
analysis from RNA expression, (2) correlation with coding variants using whole 
genome sequence and imputation set. For RNA sequence data, the samples 
from whole blood (N = 13,173), and adipose tissue (N = 686) were used from 
deCODE genetics (Saevarsdottir et al., 2020), and for various blood cells from 
exSNP database (C. H. Yu, Pal, & Moult, 2016) were queried. To claim the 
variants that share same causal signal (that co-localize with cis-eQTL), a strict 
criterion of either being the top independent cis-eQTLs from above mentioned 
RNA sequencing dataset or being in high LD (r2 > 0.8) with our top GWAS 
significant associations and significant for the number of tests (P < 0.05/N, 
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where ‘N’ is for number of tests) was used. Similarly, for coding variants, 
whether top GWAS variants are in high LD (r2 > 0.8) with coding variants 
(missense or loss-of-function). These cis-colocalization analyses may help to 
implicate potential genes and so better understand their biological involvement.   

3.6 Gene-based genome-wide association analysis  

Complex and polygenic traits are affected by multiple sequence variants often 
conferring small effects. In such cases, analysis may be constrained by sample 
size or signals otherwise too weak to detect significant association. The 
aggregate analysis of multiple markers within/near the gene can help the 
identification of novel associations. MAGMA has implemented  gene-based 
GWAS (GWGAS) using regression analysis of continuous properties of genes, 
LD structure and markers to consolidate potential signals into a single statistics 
(de Leeuw, Mooij, Heskes, & Posthuma, 2015). MAGMA gene-based genome 
wide association analysis approach was used to uncover genes associated with 
TS. MAGMA requires pre-computed association statistics of the sequence 
variants in the study.  

To do so, sequence variants within 200Kb of Ensemble genes and with MAFs 
above 0.1% were tested for their aggregate effect with TS. The observed effects, 
the p-values, and the effective sample size for each variant in the study served as 
input for the analysis. Since TS meta-analysis was performed using Caucasian 
samples, the 1000genome LD structure was used to correct for population 
stratification, compute SNP density and other covariates used by MAGMA. 

3.6.1 Pathway and gene-set enrichment analysis 

To study the gene-set or pathways involved, the INRICH, DEPICT, and MAGMA 
based gene-set enrichment methods were used to perform tissue enrichment, 
and pathway analysis. For this, three approaches were used (1) using gene as the 
association signals employing MAGMA get-set enrichement analysis method, (2) 
using top associated markers (p-value threshold) employing DEPICT, (3) using 
tight LD-blocks of independently (r2>0.5) associated signals by employing 
INRICH method and performing hypergeometric computations by prioritizing 
candidate genes identified through cis-colocalization analysis of eQTLs and 
coding variants.  

3.7 Causal analysis through Mendelian randomization 

The Mendelian randomization (MR) analysis was performed to investigate the 
causal association of genetically correlated traits. For that, the GWAS significant 
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associations from published studies for genetically correlated traits were used. 
To estimate the causal effect of exposure phenotype on target phenotype, it is 
best to use unequivocal instrumental variables (IVs) for the analysis. Therefore, a 
two-sample MR approach was used to get GWAS significant associated variants 
(as an IV) of smoking cessation (Mengzhen Liu et al., 2019; Xu et al., 2020) 
(current vs former, N = 25), smoking initiation (Mengzhen Liu et al., 2019; Xu et 
al., 2020) (N = 387), depression (Howard et al., 2019) (N = 97), COPD 
(Sakornsakolpat et al., 2019) (N = 81), asthma (Olafsdottir et al., 2020) (N = 
84), lung function (Shrine et al., 2019) (N = 115), BMI (Yengo et al., 2018) (N = 
933), T2D (Mahajan et al., 2018) (N = 398), proxy for hypertension (systolic 
blood pressure, N = 248; diastolic blood pressure, N = 331; pulse pressure, N 
= 279) (Evangelou et al., 2018), stroke ischemia (Malik et al., 2018) (N = 31), 
coronary artery disease (van der Harst & Verweij, 2018) (N = 167), height 
(Yengo et al., 2018) (N = 3,231), and educational attainment (J. J. Lee et al., 
2018b) (N = 1,252). These IVs were used to test for their causal effect on 
monocyte count. Therein, the effect estimates for all these instrumental variables 
(effect alleles) were looked up in the summary statistics for monocyte count 
association. The MR analysis was performed using R package 
‘MendelianRandomization’ accessible from (https://cran.r-
project.org/web/packages/MendelianRandomization/index.html) applying 
inverse-variance weighted (IVW), and MR-Egger methods. Though IVW provide 
robust estimates for causal effect, in cases of unbalanced pleiotropy these 
estimates may be biased. Therefore, the MR-Egger method was specifically 
employed to test whether the causal estimate by IVW is biased i.e., the intercept 
computed by MR-Egger is different from zero. Additionally, the diagnostic plots 
were generated, effect versus effect plots, funnel plots and scatter plots along 
with estimated regression lines. Moreover, a weighted linear regression was 
performed including the intercept (weighted by effect allele frequency i.e., 
EAF×(1-EAF)) using ‘lm’ method in R. 

3.8 Intracranial volume meta-analysis (Paper V) 

3.8.1 Phenotyping of intracranial volume 

The intracranial volumes were either determined from head circumference or 
intracranial volume (ICV) data from the participants. These measurements were 
adjusted for known confounders (e.g., height, gender, age, age2, gender×age2), 
and the residuals were rank transformed, and inverse normalized to use for 
association studies.  

https://cran.r-project.org/web/packages/MendelianRandomization/index.html
https://cran.r-project.org/web/packages/MendelianRandomization/index.html
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3.8.2 Iceland: ICV and HC 

In Iceland, the ICV data of 1,392 participants was extracted from MRI 
acquisitions as described earlier (Sonderby et al., 2020; Stefansson et al., 
2014). These subjects participated in the various projects at deCODE genetics. 
The ICV data were adjusted for known confounders (Sonderby et al., 2020; 
Stefansson et al., 2014), the residuals were rank-transformed, and inverse 
normalized.  

Additionally, we used manual head circumference (HC) measurements from 
12,506 adults, and  HC data of 1,599 children (recruited through various 
projects like ADHD, and ASD) were used for genetic association studies. At the 
recruitment centre, the HC measurements were performed as a part of a 
comprehensive phenotyping of the general population (the deCODE health 
study). For adults, the HC measurements were performed manually using a 
measuring tape, while the participant remained in a seated position, and each 
measurement was repeated three times, documenting only the largest value. 
Thus, the largest possible circumference was measured, from the most 
prominent part of the forehead above the ears to the occipital protuberance. For 
children, HC measurements were performed at health-care centres during a 
routine visit of children for developmental assessment. Hence, HC 
measurements were performed manually using a measuring tape, while the child 
rested on bed, from the most prominent part of the forehead above the ears to 
the occipital protuberance. 

The HC measures were also adjusted for known confounders (height, gender, 
age, age2, and gender×age2) and the residuals were rank transformed, and 
inverse normalized. The Pearson correlation between the ICV and HC 
measurements is high (NICV+HC data = 1,392, r = 0.69, P = 6.27×10-92) as close to 
reported correlation (r = 0.73, P < 0.01) (Hshieh et al., 2016). The residual of 
the inverse normalized, rank transformed and adjusted data of ICV, and HC 
were combined (used ICV data where both ICV and HC were available) and 
used as a quantitative trait to run for association analysis. All the participants (or 
their parents/guardian in case of minor) of the study gave written informed 
consent, in accordance with the declaration of Helsinki, and study was approved 
by the Icelandic Data Protection Authority and the National Bioethics committee 
(referral codes: VSN-15-241, VSN-09-098, and VSNb2015120006/03.01 with 
amendments, and VSN-16-093). 
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3.8.3 UKB: ICV 

The intracranial volume (ICV) processed data of 39,283 UK Biobank participants, 
subset of the 500,000 UK Biobank study participants, was received for those 
who underwent an MRI acquisition (Alfaro-Almagro et al., 2018). After the quality 
control checks, outliers’ removal, European ancestry filtering, and additional 
filtering, a final set of 37,100 subjects was retained for the final study. The ICV 
phenotype (Volume of estimated total intra cranial, whole brain,) was retrieved 
from UKB using field code ‘26521’ as described here (Jansen et al., 2020). After 
the quality control criteria, the raw data were rank-transformed, inverse 
normalized, and adjusted for known confounders (height, gender, age, age2, 
gender×age, and pc1-pc20). The residual of the inverse normalized adjusted 
data was used as a quantitative variable for association testing. This study was 
approved through UK Biobank license number 24898. 

3.8.4 ENIGMA ICV + EGGC HC (head circumference):  

The GWAS meta-analysis of ENIGMA ICV + EGGC HC published by Haworth 
et.al. (S. Haworth et al., 2019) was accessed through web-portal (link in URLs) 
and subsequently meta-analysed together with ICV data from Iceland and UKB. 

3.8.5 Calculation of Polygenic risk score 

To assess the impact conferred by the confluence of common variants, the PRS 
for each of the 500,000 UK Biobank subjects, and 150,656 participants from 
deCODE study subjects in Iceland was derived. For each population, the PRSs 
were constructed using the GWAS summary statistics of a trait excluding the data 
from same population (to avoid inflation due to population biasness). Briefly, the 
630,000 informative SNPs (which tag almost all LD panels in the genome) were 
used by weighing their effects (from GWAS summary) through LDpred, as 
described previously (Vilhjálmsson et al., 2015). The following formula was used 
to calculate the PRS score from the weighted data.  

𝑃𝑅𝑆𝑗 = ∑ 𝑤𝑖 × 𝐺𝑗𝑖€𝑠   

Where ‘s’ is the set of genetic variants retained under p-value threshold, ‘wi’ is 
the weight given to the ith variant, given by the log odds ratio or regression 
coefficient in a regression (the GWAS study from which PRS score is to be 
calculated), ‘Gij

’ is the expected count of effect allele in the individual ‘j’. 
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Subsequently, for sanity check and to find the best weight, the constructed PRS 
score was used to assess their impact on respective phenotype i.e., the weight 
which explained highest phenotypic variance. 

This weight was further used to perform phenome wide PRS association analysis 
to study impact of PRS on other traits. To this end, for binary traits the logistic 
regression method was employed using population controls that fall in the same 
year of birth bin and by adjusting for gender, poly(year of birth,4), and the first 
40 (PC1-PC40) principal components derived from the SNP genotypes. For 
quantitative traits, the linear regression method was employed by adjusting for 
above mentioned covariates. The estimated p-values for each trait were further 
corrected for inflation using inflation factor computed by LDSC (B. K. Bulik-
Sullivan et al., 2015). To report a significant association, a strict Bonferroni 
significant p-value threshold was used (P < 0.05/N), where ‘N’ is the number of 
traits tested for association.  
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4 Results 

4.1 Genetics of Tourette syndrome 

Tourette syndrome (TS) is a complex heterogeneous disorder characterized by 
motor and vocal tics. The tics may wax and wane in frequency and intensity. 
Also, in some individuals the tics may completely disappear in adulthood. TS is 
highly comorbid with three other neuropsychiatric disorders, obsessive-
compulsive disorder (OCD), attention deficit hyperactive disorder (ADHD), and 
autism spectrum disorder (ASD). The heterogeneous and comorbid nature of TS 
requires in-depth and cross-disorder analysis to better understand its biological 
nature. The GWAS search for common and rare variants including CNVs 
associating with TS was performed. As a part of TS-EUROTRAIN network, the 
largest European GWAS meta-analysis for TS was planned to better understand 
the aetiology and pathophysiology of the disorder (Forde et al., 2016).  

In collaboration with clinicians at Landspitali University hospital in Iceland, the 
2,023 individuals with TS (NF95.2 = 1,632), and 1,322 with TD (NF95.0, F95.1, F95.8, F95.9 
= 651) were identified. The recruitment centre (Þjónustumiðstöð 
rannsóknarverkefna), a clinic administered under conditions issued by the Data 
Protection Authority of Iceland, contacted the affected individuals or their legal 
guardians if the subjects were younger than 18 years of age and offered them 
participation in the study. All participants who donated samples gave written 
informed consent and the National Bioethics Committee of Iceland approved the 
study.  

A subset of clinically diagnosed TS/TD cases, their relatives, and an additional 
set of subjects (who also participated in other studies conducted by deCODE 
genetics) participated by answering questionnaires, providing data for diagnosis 
and detailed tics phenotyping (N = 14,633). The questionnaire data were used 
to perform factor analysis to better understand the phenotypic heterogeneity and 
to generate quantitative tics phenotypes. Based on tics-questionnaire data, the 
analysis detected three latent tic components that are clustered as (1) vocal tics 
(2) facial motor tics, and (3) extremity and abdominal region motor tics (Figure 
5). Loading of these clusters was consistent in clinically diagnosed and 
questionnaire-based TS and TD cases (Figure 5). 
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Figure 5: Factor analysis of tics questionnaire data. Factor analysis of tic types in 
clinical (ICD 10 F95x) cases using heterochor correlation analysis. To understand 
tics heterogeneity, the recruited subjects diagnosed with Tourette and/or tics (N = 930) 
were assessed for the prevalence of either of the 16 tic types. Factor analysis of those 
response resulted in three tic factors (a) body/extremity tics (b) facial tics and (c) vocal 
tics. 

4.2 Copy number variations (CNVs) analysis of TS, and 
ADHD (Paper I, II and unpublished data) 

We carried out three CNV analyses. First, candidate CNVs reported to associate 
with TS (in scientific publications) were studied in the European sample 
described previously (1,181 TS cases, and 118,730 controls). A second set of 19 
neuropsychiatric CNVs conferring risk of Autism and Schizophrenia were tested 
for their association with ADHD and TS in Icelandic and Norwegian samples. 
Third, genome wide CNV analysis was carried out for TS.  

4.2.1 Candidate CNVs study of TS (Paper I) 

For TS some genome wide CNV studies have suggested involvement of a few 
CNVs in the pathogenesis of TS (Fernandez et al., 2012; McGrath et al., 2014; 
Nag et al., 2013; Sundaram, Huq, Wilson, & Chugani, 2010). In a small study, 
Sundaram et al. (Sundaram et al., 2010) reported four recurrent CNVs deleting 
exon(s) of NRXN1, CTNNA3, FSCB, and AADAC. Partial deletions in NRXN1 and 
CTNNA3 have previously been associated with ASD (Marshall et al., 2008; 
Wang et al., 2009) and/or schizophrenia (Kirov et al., 2008). Sundaram et al. 
found suggestive association of AADAC deletion with TS (Sundaram et al., 
2010). 
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To study these candidate genes, Danish collaborators initially screened 243 TS 
cases and 1,887 matched controls from Denmark. While the association was not 
significant in Denmark (P = 0.13, OR =1.43) it prompted further studies. The 
association signal of AADAC deletion was followed in five additional European 
populations including Iceland, Netherland, Hungary, Germany, and Italy. The 
Mantel-Haenszel meta-analysis of 1,181 cases and 118,730 population controls 
confirmed the association with the AADAC deletion (P = 4.4×10-4, OR = 1.90) 
and has been described (Paper I) (Bertelsen et al., 2016). 
 In addition, a Norwegian sample has now been genotyped, and analysis of the 
data further supports the association between AADAC and TS/TD (ICD10 F95, 
Figure 6) (unpublished data, collaboration with Prof. Ole Andreassen). 
Moreover, using additional 669 TS cases from Iceland, the combined meta-
analysis of European samples is consistent in the larger sample (P = 1.7×10-5, OR 
= 1.58, Figure 6). 

Figure 6. Meta-analysis of AADAC CNV deletion including Norwegian samples 
and additional samples from Iceland. In the follow up study, the AADAC deletion was 
tested in the larger Icelandic and additional Norwegian samples. Each blue line indicates 
effect size in respective population, and blue diamond represents combined effect 
‘updated meta-analysis’ of AADAC deletion.   

A panel of total RNA from 19 different regions of human adult brain was used to 
study the expression of AADAC in the central nervous system. Expression of 
AADAC was found in all the 19 regions.  
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4.2.2 Neuropsychiatric CNV analysis in ADHD (Paper II) 

Rare recurrent CNVs have been associated with neurological disorders such as 
schizophrenia, ASD, developmental, and neuropsychiatric disorders (Ingason et 
al., 2011; Kirov et al., 2014; Malhotra & Sebat, 2012; Morrow, 2010; Stefansson 
et al., 2008). A group of 19 large and rare CNVs (0.0027–0.25% carrier 
frequency in the population) referred to as 'neuropsychiatric-CNVs' also affect 
cognition and negatively impact educational attainment (Stefansson et al., 2014). 
Two of these 19 neuropsychiatric CNVs were reported to associate with ADHD 
(Schneider et al., 2014; Williams et al., 2010). Paper 2 represents the largest 
study to test a set of neuropsychiatric CNVs with ADHD. Furthermore, the same 
variants were tested for association with TS. The analysis found that 
neuropsychiatric CNVs are in higher frequency in ADHD and TS than in 
population controls.  
Through meta-analysis of Icelandic and Norwegian data, the 19 neuropsychiatric-
CNVs as a group confer risk of ADHD (P = 1.6×10-21, OR = 2.43) (O. O. 
Gudmundsson et al., 2019). These CNVs are found in low frequency in the 
population but as a group they are found in 1.51% frequency.  In this sample, 14 
of the 19 CNVs were tested for association (have sufficient power to detect 
association with CNV frequency > 0.018%) between ADHD and population 
controls (Figure 7). The analysis identified six false discovery rate adjusted 
significant CNV associations (P < 0.05/14 = 0.0036) including the 22q11.21 
deletion (P = 1.8×10-6, OR = 10.73), the 16p11.2 proximal duplication (P = 
9.1×10-5, OR = 4.34), the 15q13.3 (BP4 & BP4.5-BP5) deletion (P = 1.0×10-4, 
OR = 5.97), the 1q21.1 distal duplication (P = 0.0020, OR = 3.44), the 2p16.3 
NRXN1 deletion (P = 0.0026, OR = 4.68), and the 16p13.11 duplication (P = 
0.0035, OR = 2.12) (Figure 7) (O. O. Gudmundsson et al., 2019). 
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Figure 7. Summary of 19 neuropsychiatric CNV associations with ADHD in 
Icelandic and Norwegian samples. The carrier CNV frequency for ADHD cases and 
controls was calculated from a combined Icelandic and Norwegian dataset. The Cochran-
Mantel-Haenszel χ2 test was used for count data to estimate OR and P value from a 
combined set of Icelandic and Norwegian genotypes. The effects were adjusted for 
cryptic relatedness and population structure using the intercept from LD score regression 
(B. K. Bulik-Sullivan et al., 2015).  

4.2.3 Neuropsychiatric CNV analysis of TS (unpublished data) 

As TS and ADHD are highly comorbid disorders with an early age of onset 
(Hirschtritt et al., 2015). It is known that neuropsychiatric CNVs have pleiotropic 
effect on ADHD, autism, and schizophrenia (O. O. Gudmundsson et al., 2019; 
Malhotra & Sebat, 2012; Rees et al., 2014; Rees, O’Donovan, & Owen, 2015) 
but their effect on TS/TD is not explored yet. We used a combined sample of 
Icelandic and Norwegian TS/TD cases (N = 2,684) and controls (N = 279,143) 
and tested 13 of the 19 neuropsychiatric CNVs. At a Pthreshold < 0.0039 
(0.05/13), we found that the 17q12 duplication confers high risk of TS/TD (P = 
4.4×10-5, OR = 10.22, Table 2). The 17q12 duplication was not reported to 
associate with ADHD (P = 0.14, OR = 2.20) (O. O. Gudmundsson et al., 2019). 
To replicate these findings, this CNV was tested in an independent Danish 
sample of 246 clinically diagnosed TD (F95.x cases) and 94,363 population 
controls. While the risk (Odds ratio) is in keeping with the discovery observation, 
the replication is not significant (P = 0.08, OR = 11.79). The combined meta-
analysis of 17q12 duplication using Icelandic, Norwegian, and Danish data 
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F1/F2 P OR F1/F2 P OR F1/F2 P OR

1q21_1_distal_dup 0.049/0.048 0.989 1.014 . . . 0.049/0.048 0.989 1.014

2p16_3_NRXN1_refseq_del 0.049/0.019 0.326 2.609 . . . 0.049/0.019 0.326 2.609

15q11_2_del 0.196/0.241 0.998 0.811 0.156/0.068 0.355 2.306 0.186/0.161 0.36 2.31

15q13_3_BP4_BP45_BP5_del 0.098/0.018 0.058 5.415 0.156/0.006 0.043 25.388 0.112/0.013 0.0083 7.81

16p11_2_distal_del 0.049/0.017 0.307 2.812 . . . 0.049/0.017 0.307 2.812

16p11_2_proximal_del 0.049/0.033 0.493 1.491 . . . 0.049/0.033 0.493 1.491

16p11_2_proximal_dup 0.098/0.042 0.219 2.321 . . . 0.098/0.042 0.219 2.321

16p12_1_del 0.147/0.064 0.147 2.308 0.156/0.021 0.129 7.518 0.149/0.044 0.053 2.78

16p13_11_dup 0.098/0.121 0.998 0.807 . . . 0.098/0.121 0.998 0.807

17p12_del 0.049/0.029 0.45 1.699 . . . 0.049/0.029 0.45 1.699

17q12_dup 0.147/0.03 0.027 4.874 0.468/0.013 1.26e-4 35.968 0.224/0.022 4.4e-05 10.22

22q11_21_17MB_20MB_multiple_dup 0.049/0.019 0.335 2.519 . . . 0.049/0.019 0.335 2.519

22q11_21_17MB_20MB_multiple_del 0.049/0.019 0.335 2.519 . . . 0.049/0.019 0.335 2.519

Combined (Neuropsychiatric_CNVs) 1.224/0.774 0.0458 1.523 0.936/0.108 9.26e-5 8.761 1.155/0.464 0.0011 1.90

Psych_CNV
Tourette + Tics Tourette + Tics Tourette + Tics

(Cases = 641; Controls = 129,942) (Cases = 2,684; Controls = 279,143)

Iceland Norway Combined

(Cases = 2,043; Controls = 149,201)

further strengthen these findings (P = 8.7×10-6, OR = 10.43). Additionally, the 
psychiatric CNVs as a group also confer risk of TS/TD (P = 0.0011, OR = 1.90). 
The association of 17q12 duplication and neuropsychiatric CNVs with TS/TD, 
highlight its shared component with other neuropsychiatric disorders. The 17q12 
duplication has also been reported to negatively associate with performance on 
tests for cognitive function (Stefansson et al., 2014). A more detailed analysis is 
required to further understand how 17q12 duplication affects TS/TD.  

Table 2. Effect estimates for association testing of neuropsychiatric CNVs with 
TS/TD. OR is estimated odds ratio, P is the p-value for the association test, F1 is the 
frequency (in percentage) of CNV in cases whereas F2 is frequency (in percentage) of 
CNV in controls. 

 

4.2.4 SNP GWAS meta-analysis for Tourette (Paper III) 

Paper III reports the GWAS meta-analysis of 8.3 million sequence variants tested 
for association with TS in 4,819 cases and 9,488 matched controls of European 
ancestry. In this study the Icelandic TS sample was used as a follow up sample to 
test for top sequence variants while PRS score for TS was constructed for 
150,250 Icelanders to study PRS distribution in population.  

The discovery meta-analysis yielded one GWAS SNP (P = 2.1×10-8, OR = 1.16, 
Figure 8). However, the association signal did not replicate in the Icelandic 
sample. The discovery signal is an intronic variant at 13q12.2 in FLT3. Thirty-nine 
independent signals (MAF > 1.00%, and P < 1.0×10-5) from discovery meta-
analysis were tested for replication in the deCODE sample. None of the 
discovery signals were confirmed in the Icelandic sample (P > 0.05/39 = 
0.0013). Summary statistics for top 10 signals in the primary analysis are shown 
in Table 3. TS PRS analysis highlighted TS polygenicity where TS PRS scores 
were elevated in TS, and TD compared to population and screened controls 
(Figure 9).  
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Chr Pos_hg19 rsID EA OA Gene EAF% OR P OR P OR P

chr1 29576784 rs6670211 A C EPB41 42.06 0.88 1.4e–06 0.94 0.45 0.89 1.5e–06

chr2 161544891 rs13407215 T C AHCTF1P1 0.01 2.21 1.9e–07 0.02 0.85 2.21 1.9e–07

chr2 58955953 rs2708146 G A LINC01122 48.05 0.88 3.2e–07 0.98 0.75 0.89 8.0e–07

chr4 2460571 rs73205493 T C LOC402160 35.09 1.16 1.8e–06 1.08 0.34 1.15 1.6e–06

chr6 36623338 rs72853320 A G CDKN1A 12.13 1.2 1.7e–06 0.88 0.28 1.17 2.2e–05

chr6 98550289 rs1906252 A C MIR2113 50.13 0.88 7.0e–07 0.9 0.17 0.88 2.8e–07

chr8 113581898 rs117648881 A G CSMD3 1.13 0.59 8.8e–07 0.72 0.32 0.6 6.2e–07

chr10 23705451 rs191044310 A T OTUD1 0.24 0.54 1.5e–07 2.27 0.25 0.56 5.9e–07

chr13 28612886 rs2504235 A G FLT3 32.02 1.16 2.1e–08 0.94 0.5 1.14 2.4e–07

chr19 52318380 rs12459560 T G FPR1 16.17 1.19 8.2e–07 1.08 0.45 1.18 9.1e–07

Top 10 linkage disequilibrium–independent loci in the primary TS Primarya Follow upb Combinedc

Figure 8: Results of the primary Tourette’s syndrome genome-wide association 
study meta-analysis of 4,819 cases and 9,488 controls. Panel A is a quantile-
quantile plot of observed versus expected -log10 (p) values from the primary genome-
wide association study (GWAS) meta-analysis. The 95% confidence interval of expected 
values is indicated in grey. The genomic control λ value is 1.072, and the λ1000 value is 
1.011 for single-nucleotide polymorphisms (SNPs) with minor allele frequency >0.01, 
INFO score (measurement of imputation quality) >0.6, and certainty >0.9. Panel B is a 
Manhattan plot of all final genotyped and imputed SNPs in the primary Tourette’s 
syndrome GWAS meta-analysis. The upper horizontal line indicates the genome-wide 
significance threshold of 5×10-8, and the lower horizontal line indicates the suggestive 
threshold of 1.0×10-5. 

Table 3: Top 10 linkage disequilibrium–independent loci in the primary 
Tourette’s syndrome GWAS meta-analysis. Chr is for chromosome, Pos_hg19 is 
position in hg19, rsID is the dbSNP ID of the variants, EA is effect allele, OA is other 
allele, EAF% is effect allele frequency in percentage, Gene is the closest genes within 
500Kb, P is p-value for association, OR is estimated odds ratio for the effect allele. a P 
and OR is presented for the primary Tourette’s syndrome GWAS meta-analysis of 4,819 
cases and 9,488 controls, b for the targeted replication in the independent deCODE 
sample (706 Tourette’s cases and 6,068 controls), and c for the meta-analysis of these two 
data sets.  



Muhammad Sulaman Nawaz 

44 

Figure 9: TS Polygenic risk score density plot in population-based sample from 
Iceland. The plot shows PRS in TS cases (N = 706), TD cases (N = 466), unscreened 
population control subjects (N = 127,164), and tic-negative control subjects (N = 6,068). 

4.3 GWAS analysis of TS, and TD including rare variants 
(unpublished data) 

The largest TS GWAS, to date, includes 4,819 cases and 9,488 controls (D. Yu 
et al., 2019). Due to limitations in imputation of rare variants, current GWAS 
studies cover only common variants (MAF above 1%). To date no SNPs or Indels 
have been unequivocally associated with TS or TD (D. Yu et al., 2019).  

In Iceland, approximately half of the adult population has been genotyped using 
Illumina SNP arrays. Furthermore, more than 15% of the population has been 
whole genome sequenced. This allows for long-range phasing of the Icelandic 
chromosomes and for imputing rare as well as common variants into the phased 
chromosomes (Gudbjartsson, Sulem, et al., 2015; Augustine Kong et al., 2008). 
Hence, in the Icelandic sample, variants with a MAF as low as 0.01% can be 
tested for association with diseases and other traits. 

Under the additive model, 42.9 million sequence variants were tested for 
association with TS and TD in the Icelandic sample. The tested variants were 
identified through whole-genome sequencing of 49,708 Icelandic individuals. 
The variants were subsequently imputed into long range phased chromosomes of 
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166,281 chip genotyped Icelanders, as well as 150,998 of their close relatives 
(Gudbjartsson, Helgason, et al., 2015). Weighted Bonferroni thresholds for 
sequence variant annotation classes were applied to determine significance 
(Sveinbjornsson et al., 2016). 

The GWAS for broad TS (cases = 2,023; controls = 317,445) did not yield any 
significant associations (Figure 10A). Furthermore, the top 10 associations (P < 
5×10-8) were not confirmed in a Norwegian follow up sample (Table 4).  

The GWAS for broad TD (1,322 cases; 326,339 controls) identified one 
genome-wide significant variant (rs564796941-C, P = 4.52×10-13, OR = 5.05, 
EAF = 0.33%, Figure 10B and Table 4). rs564796941-C is a frameshift 
mutation (p.Lys271ThrfsTer37) predicted to be a stop-gain, loss of function 
variant in the epidermal growth factor-like 7 (EGFL7). This mutation is present in 
the last exon (exon 13) of EGFL7 and so it is not clear what impact its presence 
has on the gene product; stop-gain mutations in the final exon are not always 
detrimental where early truncation does not have a negative impact and the 
function of the protein may be preserved. We searched for other loss-of-function 
sequence variants in EGFL7 and found a rare splice acceptor (rs755785262-G) 
and a splice donor (rs746089480-A) that were tested for association with TD 
(Figure 11). These variants do not individually associate with TD (Table 4, 
rs755785262-G, P = 0.113, OR = 2.84, EAF = 0.08% and rs746089480-A, P = 
0.332, OR = 1.39, EAF = 0.41%, respectively). A burden test (T. Olafsdottir et 
al., 2021) of these three potential loss-of-function variants (1,177 cases; 165,104 
controls) shows significant association with TD (P = 7.76×10-10, OR = 5.14). 

The frameshift variant, rs564796941-C, is rare in the Norwegian sample (ICD-10 
F95 cases = 399, controls = 67,533). While the OR estimate is in keeping (OR 
= 4.15) the association is not significant (P = 0.29) and a larger sample is 
needed to unequivocally confirm or reject this association. The splice acceptor 
(rs755785262-G) and splice donor (rs746089480-A) variants were not found in 
the Norwegian sample.  

The predicted loss-of-function sequence variants (frameshift variant, introduction 
of stop codon, and splicing variants) may impact gene expression differently. 
The EGFL7 variant associating with TD, rs564796941-C (p.Lys271ThrfsTer37), 
does not associate with EGFL7 expression (Figure 11B) although it adds 
additional 37 amino acids. rs746089480-A (not in LD with rs564796941-C), 
another variant predicted to be loss-of-function in EGFL7, has a similar frequency 
to rs564796941-C, but does not associate with TD. This variant is on a haplotype 
background that is associated with a high expression of EGFL7 and is in high LD 
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(r2 = 0.83) with the second leading eQTL of EGFL7 (Figure 11B). The 
rs746089480-A causes skipping of exon 11 of EGFL7 (P = 2.02×10-95, βexp = 
2.54). The third variant, rs755785262-G, predicted to be a loss-of-function in 
EGFL7, is found in lower frequency than the other two and does not associate 
with TD or EGFL7 expression (Figure 11B). Hence, based on RNA expression 
analysis alone, it can’t be determined whether these EGFL7 sequence variants 
have loss or gain of function state. 

Figure 10: SNP GWAS Manhattan plot for (A) Tourette syndrome, (B) Tics 
disorder. The red dotted line represents weighted significant threshold based on variant 
annotation (Sveinbjornsson et al., 2016) (P < 0.05/42.9×10-7 = 1.02×10-9). Variants with 
(P < 5.0×10-8) are labeled orange if EAF < 0.1% and blue if EAF >= 0.1%. Variants with a 
P < 0.05 were used to generate the Manhattan plots. In the plots Chromosome 23 refers 
to chromosome X.  
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Table 4: Summary data for top sequence variants associated with TS, and TD. Chr 
is for chromosome, Pos is position in hg38, rsID is the dbSNP ID of the variants, P is the 
p-value for association, OR is the estimated odds ratio for the effect allele. Phet is p-value 
for heterogeneity test, I2 is percentage of variation across cohorts that is due to 
heterogeneity rather than by chance. EA is the effect allele, OA is for other allele, and 
EAF is the effect allele frequency in percentage. Gene is the closest gene within 500Kb, 
category is the category of the effect allele type. a Is for discovery sample from Iceland. b 
Is for follow up sample from Norway. c combined meta-analysis of discovery + follow up 
sample. Cases is for number of cases used, and controls is for number of controls used in 
the analysis. 

 

A large sample size is required to ascertain the association of 
p.Lys271ThrfsTer37-EGFL7. EGFL7 is not a constrained gene (Lek et al., 2016). It 
encodes a 273 amino acid secreted protein (epidermal growth factor-like 
domain) and plays an important role in angiogenesis and cell trafficking (Usuba, 
Pauty, Soncin, & Matsunaga, 2019). A recent study has shown that EGFL7 
expression is increased in CNS vasculature of patients with multiple sclerosis 
(MS) and in mice with experimental autoimmune encephalomyelitis (EAE) where 
it may be used to reduce inflammation (Larochelle et al., 2018).  

Figure 11:  EGFL7 model and loss-of–function sequence variants found in EGFL7 
with association data and RNA expression effect sizes. (A) EGFL7 gene model with 
three loss-of-function variants, the frameshift variant (highlighted with red box, 
rs564796941-C) associates with TD. The variant is present in the last exon of EGFL7, while 
the other two loss-of-function variants are located in exon 10 and 11 of the gene. (B) 
Association summary statistics of three loss-of-function variants and their impact on RNA 
expression data, where P is the p-value for association of TD, and OR is the estimated 
odds ratio for TD, P(exp) is p-value for association of RNA expression, and Beta(exp) is 
standardized effect estimate on RNA expression.  

Chr Pos_hg38 rsID EA OA Gene category EAF% P OR P OR P OR 95%CI Phet I2 Cases Controls

chr4 140524735 rs548278560 G A ELMOD2 intron variant 0.126 7.26e-06 4.819 0.6347 0.018 8.1e-06 4.77 (2.40,9.48) 0.51 0 2,283 384,969

chr8 29832791 rs142477257 C G LOC101929470 regulatory region variant 1.836 2.89e-07 0.293 0.4212 0.634 4.71e-07 0.33 (0.21,0.51) 0.21 36.5 2,283 384,969

chr11 104954870 rs56226603 T C CASP4 missense variant 0.002 5.65e-06 87.331 0.6085 0.018 9.0e-06 76.55 (11.28,519.57) 0.28 13.3 2,283 384,969

chr12 87088607 rs766005749 T C LOC105369878 intergenic variant 0.012 8.03e-06 21.025 0.31558 0.017 2.3e-05 17.29 (4.63,64.64) 0.084 66.6 2,283 384,969

chr12 90673999 rs777704260 C T LOC102724834 intergenic variant 0.033 5.74e-07 11.870 0.51608 0.018 8.1e-07 11.39 (4.33,29.95) 0.30 8.6 2,283 384,969

chr12 91297554 rs146533880 C T LOC105369898 intergenic variant 0.015 3.07e-07 22.396 0.23703 2.875 9.7e-07 11.70 (4.37,31.32) 0.057 72.3 2,283 384,969

chr13 73149994 rs7981432 T A . intergenic variant 20.340 5.87e-06 0.777 0.066234 0.793 1.0e-06 0.78 (0.71,0.86) 0.88 0.0 2,283 384,969

chr13 75670983 chr13:75670983 TAC ! LMO7 . 37.907 1.02e-06 0.799 0.44147 1.079 4.0e-05 0.84 (0.78,0.91) 0.0058 86.9 2,283 384,969

chr16 14968366 rs373248556 A G . intergenic variant 0.326 6.39e-06 3.201 0.50975 0.018 7.4e-06 3.17 (1.91,5.25) 0.40 0.0 2,283 384,969

chr17 57827826 chr17:57827826 CAAA ! . . 17.612 1.74e-08 1.349 0.91155 1.014 1.7e-07 1.29 (1.17,1.42) 0.036 77.3 2,283 384,969

chr17 75938584 rs528106498 A G FBF1 upstream gene variant 0.002 2.74e-06 95.021 0.69588 0.018 3.6e-06 88.08 (13.24,586.08) 0.41 0.0 2,283 384,969

chr17 80334570 rs1279468131 G A RNF213 intron variant 0.002 4.12e-06 86.349 0.28318 0.017 2.7e-05 51.28 (8.15,322.52) 0.029 78.9 2,283 384,969

chr18 74246815 rs1465867509 T C . intergenic variant 0.002 7.42e-06 80.214 0.49181 0.018 1.7e-05 63.79 (9.62,422.85) 0.16 50.3 2,283 384,969

chr21 34448298 rs142762112 A AC KCNE1 3 prime UTR variant 0.904 8.06e-07 2.266 0.33674 1.355 1.5e-06 2.03 (1.52,2.70) 0.15 51.8 2,283 384,969

Tics disorder (TD)

chr9 136672271 rs564796941 C CAAGA EGFL7 frame-shift variant 0.328 4.52e-13 5.05 0.29 4.15 2.6e-13 5.02 (3.26,7.74) 0.89 0.0 1,721 393,872

chr9 136671924 rs755785262 G A EGFL7 splice acceptor variant 0.075 0.113 2.84 . . 0.113 2.84 (0.781,10.33) . . 1,322 326,339

chr9 136671015 rs746089480 A G EGFL7 splice donor variants 0.410 0.332 1.39 . . 0.332 1.39 (0.715,2.704) . . 1,322 326,339

Top sequence variants associated with TS, TD, and TS+TD using Icelandic discovery sample Discoverya Follow up analysisb

Tourette Syndrome (TS)

Combined analysisc
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4.4 GWAS meta-analysis of obsessive-compulsive disorder 
(unpublished data) 

In this study, the largest GWAS meta-analysis of obsessive-compulsive disorder 
(cases = 8,317; controls = 1,060,098) was performed by combining GWAS 
summary data of OCD from Iceland, UKB, Norway, US, Denmark, Finland, and 
the Psychiatric genomics consortium (PGC). Therein, 15.8 million sequence 
variants were tested for association with OCD. The meta-analysis identified one 
missense variant associating with OCD: rs3733709 replacing isoleucine at 
position 289 with threonine in PCDHA3 at 5q31.3 (OR = 0.866, P = 2.3×10-8, 
Figure 12). This association was not confirmed in an independent sample from 
Denmark (iPSYCH, OCD cases = 4,509, controls = 38,392, P = 0.491, OR = 
1.012). The top associations for OCD are presented in Table 5. 

The gene-based genome wide association analysis (through MAGMA) of OCD 
meta-analysis identified 12 significant genes located at 5q31.1 including the 
PCDHA3 gene (P = 6.7×10-8, Figure 12b). Genes at other loci were not 
significant.  
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Figure 12: Manhattan plot showing meta-analysis of (A) SNP/Indel GWAS and (B) 
Gene-GWAS of OCD meta-analysis from Iceland, UKB, Norway, Denmark, US, 
Finland, and PGC cohorts (cases = 8,317; controls = 1,060,098). In ‘A’ the red 
dotted line represents SNP/Indels weighted threshold based on variant annotation 
(Sveinbjornsson et al., 2016) (P < 0.05/4.29×10-7 = 1.02×10-9), orange line for missense 
variants (P < 3.0 ×10-8) and in ‘B’ the red line is the Bonferroni threshold for Gene-GWAS 
(P < 0.05/18,540 = 2.7×10-6). For SNP gwas plot, only nominally significant (P < 0.05) 
variants were used to generate Manhattan plots.  
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Table 5: Association results of top sequence variants from meta-analysis of OCD 
(cases = 8,317 controls = 1,060,098). Chr is for chromosome, Pos_hg38 is position 
in hg38, rsID is the dbSNP ID of the variants, EA is effect allele, OA is other allele, 
EAF% is effect allele frequency in percentage, Gene is the closest genes within 500Kb, 
category is variant effect predictor annotation of effect EA, P is p-value for association, 
OR is estimated odds ratio for the effect allele, Phet is p-value for heterogeneity test, I2 
is percentage of variation across cohorts that is due to heterogeneity rather than by 
chance. Sample numbers from Iceland (cases = 2,286; controls = 137,961), Norway 
(cases = 145; controls = 91,416), PGC (psychiatric genomics consortium) (cases = 
2,688; controls = 7,037), UKB (cases = 1,511; controls = 429,427), US (cases = 263; 
controls = 26,592), Finland (cases = 790; controls = 162,180), Denmark (cases = 634, 
controls = 91,416), and the combined meta-analysis (cases = 8,317; controls = 
1,060,098). 

   

Chr Pos rsName EA OA Gene Category EAF% P OR Phet I2

chr1 54779866 rs1731 C T TTC22 3 prime UTR variant 1.746 2.2e-06 1.39598 0.262 21.994

chr1 63710853 rs150781255 C T PGM1 regulatory region variant 0.674 4.62e-07 2.04071 0.428 0.000

chr1 224253241 rs59332140 G A NVL intron variant 20.899 8.8e-07 0.89395 0.616 0.000

chr11 83298357 rs612251 G A CCDC90B intergenic variant 28.288 3.02e-06 0.91375 0.224 26.752

chr11 112964041 rs57715877 A T NCAM1 intron variant 31.989 1.24e-06 1.09527 0.961 0.000

chr12 23649076 rs117794255 A T SOX5 intron variant 2.760 2.35e-06 1.27328 0.526 0.000

chr12 87095311 rs777764681 C T LOC105369878 intergenic variant 0.026 2.88e-06 0.23707 0.783 0.000

chr12 105995093 rs2468203 A G NUAK1 intergenic variant 27.584 1.19e-06 0.91046 0.857 0.000

chr12 119685000 rs175878 T C CIT,PRKAB1 downstream gene variant 32.416 2.36e-06 0.91594 0.135 38.558

chr12 124615757 rs190925930 A G NCOR2 intergenic variant 2.051 3.86e-06 0.71191 0.148 38.703

chr14 26065602 rs75210839 C T NOVA1 intergenic variant 0.000 4.87e-06 1.21300 0.377 6.244

chr14 76077030 rs2160880 A G IFT43 intron variant 47.579 3.06e-06 1.08210 0.841 0.000

chr16 78617776 rs9933350 A C WWOX intron variant 12.635 4.56e-06 1.12176 0.642 0.000

chr16 85621329 rs72801186 A G GSE1 intron variant 5.318 1.21e-06 1.23788 0.251 24.437

chr19 1255720 rs57586121 G A MIDN intron variant 0.768 2.54e-06 1.81194 0.709 0.000

chr19 40415372 rs532549119 A G PRX upstream gene variant 0.156 3.83e-06 0.49047 0.528 0.000

chr2 37149171 rs2307466 C G EIF2AK2 5 prime UTR variant 6.360 2.2e-06 1.18376 0.196 30.395

chr2 64665453 rs72814059 A G SERTAD2 intergenic variant 8.156 3.85e-06 1.14981 0.914 0.000

chr2 102875498 rs200162468 T C LINC01796 intergenic variant 0.534 3.6e-06 1.58202 0.411 0.000

chr2 155500518 rs1442356689 G C LINC01876 intergenic variant 0.275 3.7e-06 0.20127 0.16 39.232

chr2 160518427 rs559967392 C G RBMS1 intergenic variant 0.032 1.31e-06 2.89302 0.943 0.000

chr2 169668573 rs11686105 C A CCDC173 intron variant 44.083 2.04e-06 0.92182 0.87 0.000

chr2 225642884 rs13424677 A T NYAP2 intron variant 19.682 5.62e-07 0.89557 0.451 0.000

chr21 18436543 rs574027069 C A TMPRSS15 intergenic variant 0.216 3.56e-06 2.25196 0.394 0.000

chr22 49553711 rs566685310 T G C22orf34 intergenic variant 0.084 3.46e-06 3.34846 0.489 0.000

chr3 2599096 rs551592282 T G CNTN4 intron variant 0.006 2.12e-06 2.87974 0.983 0.000

chr3 71616968 rs75363374 A G FOXP1 intergenic variant 2.255 3.24e-06 1.36697 0.658 0.000

chr3 78327849 rs113099717 G A ROBO1 intergenic variant 3.850 3.82e-06 1.25383 0.636 0.000

chr4 27904637 rs6825286 T G LINC02261 intergenic variant 16.389 4.69e-06 1.11371 0.668 0.000

chr5 120603733 rs10061078 T C PRR16 intron variant 7.645 3.78e-06 1.15917 0.743 0.000

chr5 140802063 rs3733709 C T PCDHA3 p.Ile289Thr:NP 061729.1 12.615 2.27e-08 0.86641 0.0946 44.474

chr5 152629875 rs2964260 T C LINC01470 intergenic variant 46.501 4.65e-06 1.08058 0.178 32.681

chr6 21283307 rs768063187 T C CDKAL1 intergenic variant 0.017 1.63e-06 0.01450    1 0.000

chr6 27692729 rs9380007 C T LINC01012 intergenic variant 36.848 3.1e-06 0.92035 0.734 0.000

chr6 60644221 rs181982281 C T MTRNR2L9 intergenic variant 0.434 4.48e-06 1.64576 0.506 0.000

chr6 112689714 rs1814561 G A LOC105377949 intergenic variant 0.636 2.5e-06 0.89655 0.943 0.000

chr6 127931780 rs879468984 A T THEMIS intergenic variant 0.195 4.5e-06 0.26751 0.543 0.000

chr6 150332573 rs138906574 T G IYD intergenic variant 1.186 1.91e-06 1.47432 0.731 0.000

chr7 124318842 rs192302022 T G LOC107986841 intergenic variant 0.279 2.67e-06 2.39289 0.629 0.000

(Cases = 8,317; Controls = 1,060,098)

Combined Meta-Analysis
Top variants from OCD Meta-analysis
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4.5 GWAS meta-analysis of Restless legs syndrome (paper 
IV) 

Paper IV reports the largest, to date, GWAS meta-analysis of restless legs 
syndrome (RLS) including 10,257 cases, and 470,725 controls from five 
populations (Iceland, UK, Denmark, US, and the Netherland).  

RLS is a complex sensorimotor disorder with a prevalence ranging from 5 to 
18.8% in European populations (M. Didriksen et al., 2017). Symptoms 
include distressing sensations in the extremities and overwhelming urge to 
move the legs. These symptoms intensify when sitting or lying down. The 
disorder can cause reduced quality of life and sleep and impair cognition 
and mental well-being. Despite the high prevalence and serious health impact 
of the disorder, there are currently no adequate treatments for RLS as 
available drugs target symptoms and are fraught with side effects. Drug 
discovery and development may be hampered by an incomplete 
understanding of the pathophysiology of RLS.  

4.5.1 Novel variants associated with RLS 

In this GWAS meta-analysis, 15.8 million DNA sequence variants were tested 
for association with RLS using 505,959 individuals of European ancestry (a 
discovery sample of 10,257 cases, and 470,725 controls and a replication 
sample of 6,651 cases and 18,326 controls). In the discovery meta-analysis, 
19 of the 20 previously reported RLS associated sequence variants were 
confirmed, and three novel associations with RLS were found and replicated 
in the combined, independent sample (Figure 13, Table 6). The novel RLS 
associated sequence variants are; rs10068599-T in an intron of RANBP17 on 
5q35.1 (OR  =  1.09, P  =  6.9×10−10, 95% CI: 1.06–1.12), rs112716420-G in 
close proximity of MICALL2 on 7p22.3 (OR 1.25, P  =  1.5×10−18, 95% CI: 
1.19–1.31) and rs10769894-A near LMO1 and STK33 on 11p15.4 
(OR  =  0.90, P  =  9.4×10−14, 95% CI: 0.88–0.93) (Table 6). 
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Figure 13: Manhattan plot displaying results from the RLS discovery meta-analysis 
for N = 480,982 independent biological samples. Variants labelled orange were 
previously reported variants. Variants labelled blue and green are novel variants (five) that 
were tested in a follow-up sample. Of the five novel variants, three were confirmed (green 
diamond shape) in the follow up analysis and met the genome-wide significance 
threshold, whereas two did not (Table 7). 
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Table 6: Sequence variants associated with RLS. EA is effect allele, OA is other 
allele, and EAF is effect allele frequency, OR is estimated odds ratio of the effect allele, P 
refers to association P-value of the tested allele, Gene is the closest gene within 500Kb. a 
is for discovery meta-analysis using 10,257 cases, and 470,725 controls, b Follow up 
analysis of top five signals was carried out in two independent replication samples: EU-
RLS-GENE cohort (cases/controls = 6,228/10,992) and the RBC-Omics cohort 
(423/7,334) (See online Supplementary Table 1 for details and Supplementary Table 2, 
which displays results for all known RLS-associated variants). c the combined analysis 
comprises both the discovery sample as well as the two replication samples. * Represents 
significant P-value for replication samples after correcting for multiple testing: 
P < 0.05/5/2 = 0.005. d Reference: PMID: 29029846, e Combined meta-analysis of 
published GWAS (PMID: 29029846) and data from this study. 

 

4.5.2 Cis-colocalization analysis of RLS variants 

To investigate whether the RLS variants exert their impact through gene 
expression, we performed a cis-colocalization analysis of RLS variants using 49 
tissues reported in the GTEx database, i.e., whether any of the RLS variants are 
also the top eQTL signals of the respective gene and tissue.  

Therein, the cis-eQTL data for 11 sequence variants impacting 17 genes was 
found. Of the 11 variants with data, 10 strongly associate with cis-gene 
expression (P  <  3.3×10-6). Six of these 10 variants are in LD (r2  >  0.3) with top-

rsID Chr Position (hg38) EA/OA Gene P OR (95% CI) P OR (95% CI) P

rs10188680 Chr2 189,584,800 T/A 0.4 SLC40A1 4.3×10-08 1.04 (0.99-1.09) 0.13 1.07 (1.05 - 1.11) 5.4×10-08

rs10068599 chr5 171,001,975 T/C 0.3 RANBP17 4.3×10-08 1.07 (1.03-1.11) 0.0031* 1.09 (1.06-1.12) 6.9×10-10

rs112716420 chr7 1,343,010 G/C 0.1 MICALL2/UNCX 4.9×10-14 1.27 (1.17-1.37) 5.6×10-06* 1.25 (1.19-1.31) 1.5×10-18

rs10769894 chr11 8,313,948 A/G 0.5 LMO1 5.8×10-12 0.92 (0.87-0.97) 0.0029* 0.9 (0.88-0.93) 9.4×10-14

rs58127855 Chr18 59,943,413 T/C 0 PMAIP1 5.1×10-09 0.91 (-0.01-1.83) 0.84 3.03 (2.01 - 4.97) 6.3×10-07

rsID Chr Position (hg38) EA/OA Gene P OR (95% CI) P OR (95% CI) P

rs10208712 chr2 3986856 G/A 0.4 . 0.91 (0.88-0.94) 0.9 (0.87-0.93) 3.78×10-15 0.9 (0.88-0.92) 5.9×10-23

rs10952927 chr7 88729746 G/A 0.1 . 1.13 (1.09-1.17) 1.17 (1.13-1.21) 1.86×10-15 1.15 (1.12-1.18) 4.1×10-21

rs111652004 chr15 47068169 T/G 0.1 . 0.83 (0.77-0.88) 0.84 (0.79-0.89) 1.05×10-10 0.83 (0.79-0.87) 1.5×10-20

rs113851554 chr2 66523432 T/G 0.1 MEIS1 1.89 (1.83-1.94) 2.16 (2.11-2.21) 1.1×10-180 2.03 (1.99-2.07) 3.3×10-276

rs12046503 chr1 106652717 C/T 0.4 . 1.15 (1.11-1.18) 1.18 (1.15-1.20) 3.32×10-32 1.16 (1.14-1.18) 7.1×10-48

rs12450895 chr17 48695414 A/G 0.2 . 1.09 (1.05-1.13) 1.09 (1.06-1.12) 4.87×10-08 1.09 (1.07-1.11) 1.3×10-12

rs12962305 chr18 44290278 T/C 0.3 . 1.03 (1.01-1.05) 1.11 (1.08-1.14) 1.37×10-10 1.06 (1.04-1.08) 4.5×10-09

rs17636328 chr6 37522755 G/A 0.2 . 0.9 (0.86-0.94) 0.89 (0.86-0.92) 6.43×10-11 0.89 (0.86-0.92) 2.7×10-17

rs1820989 chr2 67842758 A/C 0.5 . 1.12 (1.09-1.15) 1.14 (1.11-1.16) 1.23×10-20 1.13 (1.11-1.15) 3.1×10-32

rs1836229 chr9 8820573 G/A 0.5 PTPRD 0.92 (0.89-0.95) 0.9 (0.87-0.93) 1.94×10-15 0.91 (0.89-0.93) 6.2×10-22

rs1848460 chr3 3406460 T/A 0.3 . 1.06 (1.03-1.08) 1.13 (1.10-1.16) 5.38×10-14 1.09 (1.07-1.11) 3.0×10-15

rs340561 chr13 72274018 T/G 0.2 . 1.07 (1.03-1.10) 1.09 (1.06-1.12) 3.93×10-08 1.08 (1.06-1.10) 2.5×10-10

rs35987657 chr3 130816723 G/A 0.3 . 0.9 (0.87-0.94) 0.9 (0.87-0.93) 4.37×10-13 0.9 (0.88-0.92) 3.9×10-21

rs365032 chr20 64164052 G/A 0.3 MYT1 1.09 (1.05-1.12) 1.13 (1.10-1.16) 3.36×10-14 1.11 (1.09-1.13) 1.5×10-18

rs45544231 chr16 52598818 G/C 0.4 . 0.82 (0.79-0.85) 0.81 (0.78-0.84) 4.72×10-48 0.81 (0.79-0.83) 3.9×10-80

rs61192259 chr6 38486186 C/A 0.4 BTBD9 0.83 (0.80-0.86) 0.76 (0.73-0.79) 1.36×10-78 0.79 (0.77-0.81) 1.9×10-103

rs62535767 chr9 9290311 T/C 0.3 PTPRD 0.93 (0.89-0.96) 0.91 (0.88-0.94) 3.13×10-10 0.92 (0.89-0.94) 4.8×10-14

rs80319144 chr2 158343323 T/C 0.2 CCDC148 0.91 (0.88-0.95) 0.89 (0.86-0.92) 3.18×10-14 0.9 (0.88-0.92) 5.5×10-20

rs868036 chr15 67762675 T/A 0.3 MAP2K5 0.83 (0.79-0.86) 0.8 (0.77-0.83) 1.09×10-48 0.81 (0.79-0.83) 1.8×10-74

rs996064 chr15 35916797 T/A 0.1 . 1.21 (1.14-1.27) 1.21 (1.15-1.27) 2.96×10-09 1.21 (1.16-1.26) 4.4×10-16

Follow up analysisb

Cases = 6,651

Controls = 18,326

Combined analysisc

Cases = 16,908

Controls = 489,051

Novel variants associated with RLS
Discoverya

Cases = 10,257

Controls = 470,725

1.09 (1.06-1.13)

1.1 (1.06-1.13)

1.24 (1.18-1.30)

0.89 (0.86-0.93)

Cases = 15,126

Controls = 95,725

Combined analysise

Controls = 566,450

Known variants associated with RLSd

Current study

Cases = 10,257

Controls = 470,725

Literatured

4.72 (4.20-5.24)

Cases = 25,383

2.34×10-09

1.9×10-09

2.2×10-11

4.5×10-100

1.09×10-17

5.69×10-06

0.0113

7.63×10-08

2.86×10-13

3.68×10-08

7.3×10-05

0.001

1.45×10-09

2.13×10-06

5.71×10-34

4.71×10-30

2.2×10-05

2.11×10-07

4.67×10-28

2.8×10-08

EAF OR (95% CI)

EAF OR (95% CI)
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eQTL for the respective gene. To ascertain that RLS variants and top-eQTLs share 
the same signal, a two-way approximate conditional analysis implemented in 
COJO (J. Yang et al., 2012) was employed. Therein, conditional analysis using 
RLS effect sizes showed that four RLS variants and eQTLs share the same signal 
(Figure 14). Additionally, conditional analysis using GTEx effect sizes also 
confirmed the same associated signals. Hence, four RLS variants (rs10068599-T, 
rs1063756-CACAG, rs12450895-A, and rs3784709-T) co-localize with top 
eQTLs for five genes respectively (RANBP17, CASC16, HOXB2, MAP2K5, and 
SKOR1) (Figure 14).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Cis co-localization of RLS variants using GTEx eQTLs data. Displaying 
eQTL variants for RLS variants that significantly associate with cis-gene expression at least 
in one tissue tested are in linkage disequilibrium (LD) (r2 > 0.30) and share the same 
causal signal (as confirmed through approximate conditional analysis) with the top eQTL 
variant of the respective genes. Cis-eQTL effect estimates (normalized) are provided and 
those sharing same causal signal (COJO conditional analysis) with eQTL and are 
Bonferroni significant (P < 3.3×10-6) are labelled with an asterisk. 
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4.5.3 Shared genetic architecture between RLS and life-style 
traits 

A recent study has shown that RLS is associated with lower educational 
attainment, life-style and cognitive traits (cognitive performance, educational 
attainment, neuroticism score, smoking behaviour, and percentage of fat in the 
legs and in the whole body) (Barbara Schormair et al., 2017). The RLS polygenic 
risk score (RLS-PRS) was used to perform phenome-wide association analysis of 
12,075 binary and continuous traits (Pthreshold < 0.05/12,075 = 4.14×10-6).  
Our analysis confirmed the prior findings that higher RLS-PRS burden is 
negatively associated with educational attainment (P  =  2.7×10-25, β =  -0.02, 
S.E. = 0.002), cognitive performance (P  =  4.4×10-7, β  =  -0.01, S.E. = 0.002), 
and age at first time giving birth (P  =  5.9×10-16, β  =  -0.02, S.E. =  0.003), and 
increased risk of smoking behavior (P = 1.39×10-6, OR = 1.05, S.E. = 0.009). 
The PRS score furthermore associates positively with neuroticism (P  =  8.0×10-23, 
β  =  0.01, S.E. = 0.002), as well as fat percentage in legs (P  =  1.4×10-10, 
β  =  0.01, S.E. = 0.002), and in the whole body (P  =  4.7×10-7, β  =  0.008, 
S.E. = 0.002) (Table 7). Furthermore, genomewide genetic correlation analysis 
through LD score regression  (B. K. Bulik-Sullivan et al., 2015) confirmed 
association results from PRS analysis (Table 7). 

Table 7: Displaying results from the association of RLS-PRS with several binary 
health-related traits and their genetic correlation with RLS GWAS meta-analysis.  
a Refers to the association results from RLS-PRS predictions, b is for the summary statistics 
from the genetic correlation analysis using LD score regression (B. K. Bulik-Sullivan et al., 
2015). Cases is for the number of cases, and controls is for the number of controls used 
for the analysis, N is for the total sample size, P is p-value for the association, OR refers to 
odds ratio predicted by RLS-PRS, R2 is phenotypic variance explained by RLS-PRS, rg is 
for genetic correlation, S.E. is the standard error for the GC analysis, and Z is the z-score 
estimate from the GC analysis. 

  

Phenotype name Cases Controls N OR Beta P R2 rg S.E Z P

Gastro-intestine tract 77,433 331,211 408,644 1.028 NA 6.27e-12 0.0183 0.3858 0.0839 4.5998 4.2292e-06

Upper gastrointestinal tract examination 45,348 363,304 408,652 1.034 NA 1.99e-11 0.0217 0.4206 0.0932 4.5121 6.4187e-06

Gastritis and duodenitis 28,747 379,817 408,564 1.035 NA 2.95e-8 0.0187 0.4362 0.1016 4.2953 1.7443e-05

Diaphragmatic hernia 26,926 381,726 408,652 1.036 NA 3.67e-8 0.0191 0.3148 0.0807 3.9001 9.615e-05

Extrapyramidal movement disorders 3,737 408,819 412,556 1.238 NA 5.37e-38 0.4104 0.944 0.2467 3.8266 0.0001

Duodenum procedue 41,365 367,279 408,644 1.030 NA 9.89e-9 0.0166 0.4182 0.1119 3.7379 0.0002

Gastro Esophageal reflux disease 23,050 385,602 408,652 1.0361 NA 1.939e-07 0.01873 0.3587 0.1012 3.545 0.0004

Spondylosis 7,642 401,002 408,644 1.0569 NA 1.987e-06 0.03246 0.5377 0.1523 3.5315 0.0004

Spine procedure 12,439 396,213 408,652 1.0448 NA 1.585e-06 0.02361 0.3392 0.099 3.4274 0.0006

Stomach Procedue 35,002 373,642 408,644 1.0271 NA 2.155e-06 0.01228 0.342 0.1004 3.4055 0.0007

Primary hypertension 77,566 331,086 408,652 1.0218 NA 2.122e-07 0.00982 0.207 0.0682 3.0332 0.0024

Pure hypercholesterolaemia 33,184 375,468 408,652 1.0278 NA 2.899e-06 0.01193 0.2385 0.0789 3.0238 0.0025

Spondylosis 4,640 404,004 408,644 1.0726 NA 2.461e-06 0.04632 0.4953 0.1689 2.9322 0.0034

Asthma 25,929 382,715 408,644 1.0322 NA 8.469e-07 0.0157 0.1967 0.0825 2.3845 0.0171

Tobacco use 11,901 396,743 408,644 1.0461 NA 1.397e-06 0.02451 0.2044 0.0864 2.3667 0.0179

Education Years . . 405282 NA -0.0155 2.84e-23 0.02407 -0.1731 0.0449 -3.8523 0.0001

Fluid Intelligence . . 204073 NA -0.01044 2.53e-06 0.010845 -0.0891 0.0503 -2.0176 0.0253

Fat percentage in Legs . . 401750 NA 0.01013 1.43e-10 0.010234 0.1368 0.0415 3.3004 0.001

Whole body fat . . 401061 NA 0.0077 1.26e-06 0.0058546 0.1028 0.0404 2.5451 0.0109

Neuroticism . . 332083 NA 0.0145 8.03e-17 0.020856 0.1729 0.0819 2.112 0.0347

GC analyisbPRS analysisaPhenotype
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4.6 Cross disorder genetic analysis identifies shared 
genetic effect with insomnia (unpublished data) 

Our analysis detected that childhood neuropsychiatric and involuntary movement 
disorders share some genetic architecture (Figure 1). However, it remains 
unclear how this genetic overlap is shaped and whether some sequence variants 
have pleiotropic effect on correlated traits impacting through shared biological 
pathway(s). To understand this complex genetic interplay, the phenome-wide 
genetic correlation analysis of five disorders from this study vs. 1,140 published 
GWAS studies was performed (Figure 15). For the common genetically 
correlated traits, the hierarchical clustering method was used to identify the latent 
correlated components. Additionally, to understand the causal relationship of 
genetically correlated traits, the genome-wide significant markers were used as 
instrumental variables (IVs). Therein, a two-sample Mendelian randomization 
approach was employed by using effect estimates of correlated traits as exposure 
phenotypes and the effect estimates of IVs for neuropsychiatric disorders as the 
outcome traits. 

Figure 15: Study scheme for cross disorder genetic analysis. 

4.6.1 Phenome-wide genetic correlation analysis 

We regressed GWAS results of childhood neuropsychiatric and involuntary 
movement disorders from this study (ADHD, OCD, TS, TS+TD, and RLS) against 
1,140 published genome-wide association studies with effective sample size of 
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over 5,000 employing LD score regression (P < 0.05/1,140/5 = 8.8×10-6). The 
LD score regression analysis detected correlations of these disorders with 
hundreds of traits and diseases, including neuropsychiatric disorders, 
neurological diseases, brain structures, cognitive traits, sleep disorders, 
substance use disorders, mood and personality disorders, behavioral 
phenotypes, anthropometric traits, bio-impedance measures (as proxy for body-
fat percentage), musculoskeletal and neuropathic pain, and life-style traits 
(Figure 16 to Figure 19). Among the childhood neuropsychiatric disorders, 
ADHD shows broad genetic correlation (with 356 of 1,140 tested traits) with 
phenotypes from 25 categories (Figure 16). Compared to ADHD, OCD has 
weaker genetic correlation with the tested traits and fewer significant correlations 
(95 of the 1,140 tested traits) (Figure 17). 

Figure 16: Phenome-wide genetic correlation between ADHD and 1,140 
published GWAS studies. Each dot is an estimate of genetic correlation (rg) between 
ADHD and one of the tested traits (binned into a phenotype category), where x-axis 
represents phenotype (category) and y-axis showing its genetic correlation (rg). The 
significant associations (P < 0.05/1,140/5 = 8.8×10-6) are highlighted with red-diamond 
shape. 
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Figure 17: Phenome-wide genetic correlation between OCD and 1,140 published 
GWAS studies. Each dot is an estimate of genetic correlation (rg) between OCD and 
one of the tested traits (binned into a phenotype category), where x-axis represents 
phenotype (category) and y-axis showing its genetic correlation (rg). The significant 
associations (P < 0.05/1,140/5 = 8.8×10-6) are highlighted with red-diamond shape. 

 

Figure 18: Phenome-wide genetic correlation between TS and 1,140 published 
GWAS studies. Each dot is an estimate of genetic correlation (rg) between TS and one 
of the tested traits (binned into a phenotype category), where x-axis represents phenotype 
(category) and y-axis showing its genetic correlation (rg). The significant associations (P < 
0.05/1,140/5 = 8.8×10-6) are highlighted with red-diamond shape. 
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Figure 19: Phenome-wide genetic correlation between RLS and 1,140 published 
GWAS studies. Each dot is an estimate of genetic correlation (rg) between RLS and one 
of the tested traits (binned into a phenotype category), where x-axis represents phenotype 
(category) and y-axis showing its genetic correlation (rg). The significant associations (P < 
0.05/1,140/5 = 8.8×10-6) are highlighted with red-diamond shape. 

4.6.2 Hierarchical clustering of correlated traits 

In the presence of a large set of genetically correlated traits, it is difficult to 
untangle the true genetic overlap of childhood neuropsychiatric disorders with 
involuntary movement disorder. To better understand this relationship, the 
hierarchical clustering approach was employed to identify clusters with shared 
genetic components among these traits. Subsequently, the common genetically 
correlated traits (at-least correlated with two traits and with P < 0.05/1,140/5 = 
8.8×10-6) from pair-wise phenome-wide genetic correlation analysis of 
neuropsychiatric and involuntary movement disorders were selected. The analysis 
identified 59 such traits, diseases, or disorders.  

Hierarchical clustering (Ward’s method) of correlation estimates (‘rg’ from 
genetic correlation analysis through LD score regression (B. K. Bulik-Sullivan et 
al., 2015) identified that TS, and TS+TD form a cluster with RLS, which then form 
cluster with OCD and ADHD (Figure 20). Moreover, the hierarchical clustering 
analysis of these traits with 59 common traits identified five latent clusters 
(Figure 20). These clusters could be categorized into (1) neuropsychiatric or 
neurotic disorders, (2) anxiety, stress, or depression disorders, (3) clinical 
phenotypes with peripheral and muscular pain, general health, and mood 
disorders, (4) obesity and fat percentage/mass (a proxy for poor lifestyle and 
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bio-impedance), and (5) cognition, or learning/educational attainment, and 
fertility traits (Figure 20).  

Among these the role of major depressive disorder (MDD), behavioral traits 
(smoking and neuroticism), obesity, and pain phenotypes are noticeable. MDD 
has been shown to positively correlate (genetically) with ADHD, TS, OCD, and 
RLS (Anttila et al., 2018; Didriksen et al., 2020). Moreover, smoking behavior 
has also been shown to positively correlate (genetically) with ADHD, and RLS 
(Anttila et al., 2018; Didriksen et al., 2020). Smoking is a marker of poor 
lifestyle in general, and as such associates with various important socio-
behavioral phenotypes, such as socioeconomic status and educational 
attainment. Educational attainment has also been shown to negatively correlate 
with ADHD, TS, and RLS (Anttila et al., 2018; Didriksen et al., 2020). 

Most strikingly, for obesity related traits, an interesting relationship between 
ADHD and OCD disorders was observed. Therein, ADHD positively correlates 
with obesity traits whereas OCD has negative correlation with obesity traits 
(Figure 20). This genetic correlation may partially be explained by their 
correlation with anorexia (Figure 20). ADHD correlates positively with obesity 
and negatively with eating disorder and OCD. OCD correlates positively with 
eating disorder and negatively with obesity. These finding further help 
understand indirect association. 

Both ADHD and OCD both correlate positively with neuroticism, sch, bipolar, 
mdd and insomnia. This perhaps suggest that while they are on “opposite” ends 
of the impulsive (ADHD) to compulsive (OCD) spectrum, they both share 
genetics with psychiatric disorders. 

The genetic correlation of the 3rd cluster involving clinical phenotypes with 
peripheral pain and muscular pain has not been explored much. Anttila et.al., 
has shown some evidence for genetic correlation of migraine with ADHD, and 
TS (Anttila et al., 2018). However, in our study, this correlation is not significant 
for TS after correcting for multiple testing (rgTS-Migraine = 0.15, P = 0.009, rgADHD-

Migraine = 0.26, P = 2.45×10-7). The shared genetic component of pain conditions 
(skeletal pain in back-hip-joints, and muscular pain in neck-shoulder and legs) 
with TS, TS+TD, RLS, and ADHD (P < 0.05/1,140/5 = 8.8×10-6) was identified. 
This is an interesting finding providing opportunities for further research.  
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Figure 20: Genetic correlation and hierarchical clustering of common genetically 
correlated traits (at least with two of the five tested neuropsychiatric or 
involuntary movement disorders with P < 0.05/1,140/5 = 8.8×10-6). The 
hierarchical clustering (using Ward ‘s method) identify that TS, TS+TD, and RLS share 
common genetic structure that form cluster with OCD, and then form cluster with ADHD. 
Moreover, the hierarchical clustering of these neurological disorders identified five latent 
clusters that correlate with these disorders (1- neuropsychiatric or neurotic disorders; 2- 
anxiety, stress, and depression disorders; 3- clinical phenotypes with peripheral and 
muscular pain, general health and mood disorders; 4- obesity and fat percentage/mass (a 
proxy for bio-impedance); and 5- cognitive traits, educational attainment, and fertility 
traits). 
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4.6.3 Causal analysis (Mendelian randomization) 

To disentanlge the causal effects between phenotypes, a two-sample Mendelian 
randomization (MR) approach can be employed using instrumental variables 
from common genetically correlated traits. The instrumental variables (IVs) used 
for MR analysis are sensitive to sample size and strength of association with the 
predictor phenotype (Morrison, Knoblauch, Marcus, Stephens, & He, 2020). 
The robustly associated GWAS significant variants and their effect sizes from the 
largest available studies of smoking behavior (Mengzhen Liu et al., 2019; Xu et 
al., 2020), depression (Howard et al., 2019), BMI (Yengo et al., 2018), 
neuroticism (Mats Nagel et al., 2018), insomnia (Kyoko Watanabe et al., 2020), 
ADHD (Ditte Demontis et al., 2019), schizophrenia (Consortium, 2014), bipolar 
disorder (Eli A Stahl et al., 2019), intracranial volume (Philip R Jansen et al., 
2019), subcortical brain structures (Satizabal et al., 2019), intelligence (Savage 
et al., 2018), and educational attainment (J. J. Lee et al., 2018b) were used as 
instrumental variables (IVs). Therein, 90 independent tests were performed using 
IVs and effect sizes from these studies as exposure phenotype compared to their 
effect sizes in childhood neuropsychiatric and involuntary disorders as outcome 
phenotype (P < 0.05/18/5 = 5.5×10-4). 

Amongst the tested IVs from 18 genetic studies, the insomnia associated 
sequence variants exert strongest impact on all the tested childhood 
neuropsychiatric, and involuntary movement disorders (β > 0.85, P < 6.7×10-10, 
Figure 21). It implies that insomnia has causal effect on the neurological 
disorders. Notably, a strong genome-wide genetic correlation between insomnia 
and neurological disorders was also observed (Figure 16 - 19). The genetic 
correlation analysis is in line with the reported finding that polygenic risk score 
of neurodevelopmental disorders correlates with sleep disorders (Ohi et al., 
2021). Future studies are required to understand whether there is a bi-directional 
effect between neurological disorders and insomnia (sleep disturbances).  
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Figure 21: Causal analysis of GWAS significant markers as IV from common 
genetically correlated traits. The red dotted vertical line is set at ‘0’ represents no 
effect. 

Moreover, top GWAS significant sequence variants associated with smoking 
behavior, neuroticism, depression, body-mass-index, intelligence, educational 
attainment, and ICV exert large effects on ADHD (β = 1.65, P = 6.0×10-146, β = 
0.57, P = 2.8×10-8, β = 0.67, P = 8.8×10-14, β = 0.53, P = 1.4×10-42, β = -0.57, 
P = 2.8×10-19, β = -1.29, P = 2.8×10-195, β = -0.23, P = 2.8×10-6, respectively). 
These findings are in line with the genetic correlation of ADHD and these traits 
previously reported (Anttila et al., 2018; Klein et al., 2019; Vink, Treur, Pasman, 
& Schellekens, 2020; F. Zhang et al., 2021).  

Furthermore, the MR analysis highlighted that sequence variants associated with 
insomnia, neuroticism, depression, and schizophrenia show causal relationship 
with OCD (β = 0.85, P = 3.8×10-13, β = 0.93, P = 1.5×10-11, β = 0.65, P = 
8.7×10-12, β = 0.11, P = 1.6×10-4, respectively). While genetic correlation 
between OCD and depression, neuroticism, and schizophrenia has been 
reported before (Anttila et al., 2018).To the best of our knowledge, the genetic 
correlation of OCD with insomnia is a novel observation.  
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Similarly, the MR analysis of RLS shows that sequence variants associated with 
insomnia, neuroticism, smoking behavior, and educational attainment exert 
causal effect on RLS (β = 1.45, P = 6.8×10-29, β = 0.54, P = 3.7×10-5, β = 0.32, 
P = 1.3×10-6, β = -0.32, P = 1.9×10-14, respectively). In a recent study, RLS shows 
strong genetic correlation with neuroticism, smoking behavior, and educational 
attainment (Didriksen et al., 2020). The MR analysis of TS/Tics using GWAS 
significant markers of 18 studies highlighted that only the genetic variants 
associated with insomnia, and educational attainment show causal association 
with TS/Tics (β = 0.95, P = 1.3×10-11, β = -0.56, P = 1.0×10-15, respectively). To 
the best of our knowledge, this is the first study evaluating genetic correlation 
and causal effects of insomnia, and educational attainment PRSs on TS/Tics. 
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4.7 Understanding causal effect of intracranial volume on 
ADHD, and Parkinson’s disease through GWAS meta-
analysis study (paper V) 

Paper V reports the largest, to date, GWAS meta-analysis of intracranial volume 
(ICV) (N = 79,174) using summary data from Iceland, UK Biobank, and 
ENIGMA+EGGC. This study highlights the genetic associations of ICV that 
impact neurological disorders.  

ICV is a quantitative trait that can be measured through magnetic resonance 
imaging (MRI) / computed tomography or using a tape measure to measure the 
head circumference (HC) as a proxy measure for ICV. Brain developmental in 
childhood overlaps with the age at onset of commonly studied 
neurodevelopmental disorders (ADHD, ASD, Tourette, and OCD) (Hirschtritt et 
al., 2015). Genetically and phenotypically, ADHD is negatively correlated with 
ICV (rg = -0.23, r = -0.18)(Klein et al., 2019) while Parkinson's disease positively 
correlates with ICV (rg = 0.35, r =  0.08)(Nalls et al., 2019),(Laansma et al., 
2021). A key question remains whether sequence variants associated with 
structural changes in the brain cause neurological disorders, consequent to 
those structural changes, or alternatively whether genetic predisposition to 
certain neurological or neurodevelopmental disorders impacts brain structure or 
development. To understand the impact of ICV on neurodevelopmental disorders 
we used genetics as a tool to identify the underlying biological relationship. For 
this, we studied the relationship between ICV and brain function by finding 
sequence variants impacting brain growth that show causal relationship with 
neurodevelopmental disorders (Figure 22). 
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Figure 22: Workflow of the study. A GWAS meta-analysis of ICV by combining 
GWAS summary data from Iceland, UKB, and ENIGMA+EGGC (total N = 79,174) 
was performed. This study highlights 64 sequence variants that associate with ICV. 
Based on coding, cis-eQTL, and pQTL analysis 12 genes were identified that exert their 
impact on ICV. Genetic correlation, gene set enrichment, and phenome scan analyses 
were performed to identify traits and pathways that correlated with ICV. To understand the 
underlying biological causal relationship a two-sample bidirectional Mendelian 
randomization analysis was performed. 

4.7.1 Novel variants associated with ICV 

The results from three GWAS on ICV (ICV or ICV+HC) were combined as; ICV 
and HC GWAS from Iceland (NICV+HC = 15,497), ICV from the UK Biobank (NICV 
= 37,100), and ICV and HC from ENIGMA+EGGC (NICV+HC = 26,577). 
Altogether, 42.91 million sequence variants were tested for their association with 
ICV. Therein, a fixed effect meta-analysis was performed by allowing different 
allele frequencies in each population but assumed to have same effect in each 
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population. The meta-anlysis highlighted 64 sequence variants, of those 30 are 
novel, which associate with ICV (Figure 23). 

The largest effect size on ICV (rs180819997-A, β = -0.191 s.d., P = 2.2×10-11, 
EAF = 1.05%) is conferred by a novel low frequency variant. Although, this 
variant also associates with height (β = -0.07, P = 3.31×10-9, N = 511,260) but its 
effect size (in s.d.) on ICV (adjusted for height) is stronger than that on height 
(Pheterogeneity = 9.01×10-5). 

Figure 23: Manhattan-plot showing association results for ICV (N = 79,174) with 
42.91 million sequence variants (SNPs, In-dels and SVs). Each dot represents a 
marker tested for association. The x-axis shows the chromosomal position of the tested 
marker, and the y-axis the significance (–log10P) of the observed association. The red 
dotted line represents suggestive associations set at P = 1.2×10-9 (0.05/42.9×106). Novel 
associations are highlighted with green diamonds, whereas orange dots represent 
associations of variants already reported in the scientific literature.   

4.7.2 Identification of candidate genes 

The transcriptome, proteome, and coding variants analyses were performed to 
find likely candidate genes that may exert their impact on ICV. The 64 ICV 
variants (or markers in strong LD, with r2 > 0.8) were annotated for change in 



Muhammad Sulaman Nawaz 

68 

amino-acid, transcript abundance of colocalized genes, and impact on protein 
expression in plasma.  

Of the 64 ICV variants, 10 colocalized (r2 > 0.8) with coding variants influencing 
amino-acid change (missense sequence variants) in 10 genes: MYCL, CDKN1B, 
HOOK2, FRZB, TGOLN2, XRN1, TNNC1, GLI3, ZNF789, and LRRC24.  

For transcriptome analyses, the RNA expression data from whole blood samples 
of 13,173 Icelanders as well as the GTEx v8 data were used. Therein, 3,310 
genes present within 1mb of the ICV variants were tested for colocalization 
analysis in 50 tissues and performed 75,728 independent tests (combination of 
variant × gene × tissue tested, Pthreshold < 0.05/75,728 = 6.6×10-7). The analyses 
identified 26 ICV variants that colocalized (r2 > 0.8) with top eQTL of a single or 
multiple genes i.e., 26 ICV variants colocalized with 71 genes. 

The proteomic analysis of 4,907 aptamers targeting 4,719 proteins in 35,559 
Icelanders identified five ICV variants associating with protein expression of 
FRZB, IGFBP3, HS6ST2, PROK2, and CR2 (Pthreshold < 0.05/4,719/64 = 1.66×10-

7). 

The integrative analysis of three candidate gene studies highlighted that for 12 
ICV variants a single gene is implicated: CDKN1B, GLI3, FRZB, LZTS3, XRN1, 
WNT16, HERC1, RP11-254F7.2, IGFBP3, EGFR, CDK6, and PROK2. 

4.7.3 Impact on cortical and sub-cortical regions 

The 64 ICV variants were tested for their association with 115 cortical and 
subcortical volumes (adjusted for ICV) of 37,100 participants who underwent 
MRI in UK Biobank study. Of the 64 ICV variants, 53 associate with a sMRI trait 
(Pthreshold < 0.05/64/115 = 6.79×10-6). Among these 53, six variants show 
differential effects on local brain volumes as compared to their effect on total 
ICV (Figure 24). 
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Figure 24: Six ICV variants showing differential effect on local vs. global brain 
volume. For each variant the effect estimates are plotted for the sMRI traits (on y-axis) that 
have at-least one divergent effect (red colour highlighted) as compared to their effect on 
ICV. The concordant associations are highlighted with blue colour while discordant 
associations are highlighted with red colour (panel ‘B’). The p-values are labelled for the 
significant associations (P < 0.05/64/115 = 6.79×10-6) only. The vertical black dotted line 
is set at zero representing no effect, while grey dotted lines are shown for better visual 
comparison of beta estimates at 0.05, and -0.05. 

4.7.4 Phenome wide genetic correlation analysis 

To find the genetic similarity of ICV with a wide range of phenotypes (disorders, 
diseases, and traits), the genetic correlation between ICV and 1,483 published 
GWAS studies was performed using LDSC (B. Bulik-Sullivan et al., 2015; B. K. 
Bulik-Sullivan et al., 2015). The GC analysis highlights genetic correlation 
between ICV and 62 of the 1,483 tested phenotypes (Pthreshold < 0.05/1,483 = 
3.4×10-5, Figure 25). The positive genetic correlation of ICV with cortical and 
sub-cortical regions of the brain, Parkinson’s disease, educational attainment, 
and cognitive performance was confirmed (Grasby et al., 2020; Jansen et al., 
2020; Nalls et al., 2019) (Figure 25). Moreover, the positive genetic 
correlation was observed between ICV and neonatal traits, social interaction, 
socioeconomic status, nutritional choice (whole grain), and higher frequency of 
alcohol intake. Among the negatively correlated traits, the GC between ICV and 
ADHD and neuroticism were also confirmed (Klein et al., 2019). Additionally, 
the negative correlation between ICV and having a physical occupation, 
nutritional choice (white bread), lonliness and sedentary lifestyle was observed.  
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Figure 25: Phenome-wide bivariate genetic correlation between ICV and 1,483 
published GWAS studies estimated through LD score regression (B. Bulik-
Sullivan et al., 2015; B. K. Bulik-Sullivan et al., 2015). Each dot is an estimate of 
genetic correlation (rg) between ICV GWAS meta-analysis and one of the tested GWAS 
traits (binned into phenotype categories), where the x-axis represents phenotype 
(category) and the y-axis shows its genetic correlation (rg). The significant associations (P 
threshold < 0.05/1,483 = 3.37×10-5) are highlighted with red-diamond shape. 

4.7.5 Bidirectional Mendelian randomization analysis 

The GC analysis highlighted that ICV is correlated with wide range of traits, 
moreover recent studies have also highlighted that common neurological 
disorders share heritability (Anttila et al., 2018). The genetic correlation simply 
explores correlation between the tested traits, but the direction of causal 
relationship remains elusive. To understand the causal relationship, two sample 
bidirectional Mendelian randomization (MR) analyses were performed to test for 
causal effect of ICV on 35 traits (represented by genetically correlated and 
reported associations). The IVs used for MR analyses are sensitive to sample size 
and strength of association with the predictor phenotype (Morrison et al., 2020).  

The 64 ICV variants (instrumental variables) from this study were used as 
exposure variables to study their effects on correlated traits as an outcome trait: 
depression (Howard et al., 2019), educational attainment (J. J. Lee et al., 2018b), 
Parkinson’s disease (Nalls et al., 2019), ADHD (D. Demontis et al., 2019), 
Alzheimer’s disease (I. E. Jansen et al., 2019), schizophrenia (M. Lam et al., 
2019), bipolar disorder (E. A. Stahl et al., 2019), anorexia (Watson et al., 2019), 
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Autism spectrum disorder (Grove et al., 2019), OCD (International Obsessive 
Compulsive Disorder Foundation Genetics & Studies, 2018), Tourette syndrome 
(D. Yu et al., 2019), migraine (Gormley et al., 2016), epilepsy (International 
League Against Epilepsy Consortium on Complex, 2018), smoking behaviour 
(M. Liu et al., 2019), alcohol consumption (M. Liu et al., 2019), big five 
personality traits (M. Nagel et al., 2018), birth weight (Warrington et al., 2019), 
and a number of cognitive traits (J. J. Lee et al., 2018a) (P threshold < 0.05/35 = 
1.43×10-3, Table 8). 

The MR analyses show positive causal effects of ICV variants on Parkinson’s 
disease (β = 0.52, P = 1.22×10-5), cognitive traits; verbal numerical 
reasoning/fluid intelligence (β = 0.139, P = 3.07×10-10), g factor (β = 0.102, P = 
6.62×10-5), trail making test B (β = -0.093, P = 3.79×10-5), educational 
attainment (β = 0.073, P = 9.18×10-8), and pairs matching (β = -0.055, P = 
2.11×10-6) (Figure 26, Table 8); the trail making test B and pairs matching test 
are scored by how long it takes to complete the task and so a negative value 
indicates shorter time. The ICV variants show negative causal effects on ADHD (β 
= -0.203, P = 6.16×10-4), and on neuroticism (β = -0.064, P = 3.37×10-4) 
(Figure 26). Egger analysis of ICV variants with eight significant traits from 
inverse variance weighted (IVW) analysis revealed no evidence of variant 
pleiotropy i.e., the intercepts were not significantly different from zero (Figure 
27). 
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outcome.pheno PMID NIV Beta S.E. P Beta S.E. P Intercept S.E. P

ADHD PMID_30478444 60 -0.203285 0.056176 0.000616 -0.37691 0.19186 0.0543 0.008126 0.009272 0.384

Alzheimer PMID_30617256 60 0.019914 0.010018 0.0515 0.060004 0.034119 0.0839 -0.00207 0.001698 0.228

Dyscalculia (AMHQ) Iceland** 57 -0.047004 0.041174 0.258 0.107939 0.127951 0.403 -0.0083 0.006552 0.211

Dyslexcia (ARHQ) Iceland** 58 -0.071109 0.04484 0.118 -0.03634 0.120962 0.765 -0.00258 0.005536 0.643

Anorexia PMID_31308545 59 -0.03102 0.07654 0.687 -0.22257 0.273127 0.419 0.009519 0.00983 0.337

Autism PMID_30804558 59 -0.047966 0.055299 0.389 -0.08543 0.153185 0.579 0.002682 0.009325 0.775

Bipolar disorder PMID_34002096 49 0.02142 0.056248 0.705 -0.2349 0.181016 0.201 0.013527 0.008613 0.123

Epilepsy PMID_30531953 65 0.03579 0.031731 0.264 0.075472 0.120473 0.533 9.00E-06 0.004611 0.998

Fluid Intelligence UKB_GWAS 57 0.1421 0.018973 5.37E-10 0.163573 0.054665 0.00414 0.00403 0.003287 0.225

Numeric Memory UKB_GWAS 57 0.060903 0.019307 0.00259 0.054859 0.061781 0.378 0.002098 0.003157 0.509

Pairs Matching UKB_GWAS 56 -0.05547 0.010136 1.12E-06 -0.05172 0.028193 0.0721 -0.0024 0.001713 0.167

Reaction Time UKB_GWAS 52 -0.036762 0.016877 0.034 -0.07639 0.050356 0.136 0.001857 0.002253 0.414

Symbol Digit UKB_GWAS 57 0.064248 0.018788 0.00118 0.089478 0.051934 0.0905 0.002842 0.002975 0.344

TMT A UKB_GWAS 57 -0.056498 0.018212 0.00301 -0.08431 0.06383 0.192 0.001333 0.003051 0.664

TMT B UKB_GWAS 56 -0.091803 0.02027 3.23E-05 -0.09255 0.068683 0.183 -0.00056 0.003326 0.866

g  factor UKB_GWAS 58 0.108897 0.023512 2.15E-05 0.186343 0.065806 0.00642 -9.60E-05 0.003819 0.98

Educational attainment PMID_30038396 51 0.080359 0.012112 2.24E-08 0.056646 0.043621 0.2 0.004105 0.002191 0.0669

Insomnia PMID_30804565 50 -0.04791 0.025494 6.61E-02 -0.04584 0.082744 0.582 -0.00025 0.004104 0.952

Migraine PMID_27322543 59 0.028628 0.051126 0.578 -0.1294 0.164779 0.436 0.008185 0.00751 0.28

Multiple sclerosis not_published* 65 0.072667 0.093613 0.44 -0.3156 0.525301 0.55 0.025699 0.025235 0.312

Agreeableness PMID_21173776 59 0.0766 0.02405 0.00233 0.032154 0.06851 0.641 0.005528 0.003799 0.151

Conscientiousness GCST006326 63 0.029448 0.025301 0.249 -0.08078 0.083015 0.334 0.005759 0.004015 0.157

Extraversion PMID_26362575 63 -0.009835 0.016211 0.546 0.044473 0.056609 0.435 -0.00358 0.002675 0.185

Openess GCST000922 63 0.075045 0.031696 0.021 0.126615 0.10597 0.237 -0.00302 0.005335 0.574

Neuroticism PMID_29942085 51 -0.064406 0.016732 0.000337 -0.15044 0.053732 0.0073 0.004327 0.0028 0.129

OCD PMID_28761083 59 -0.001568 0.002214 0.482 -0.00718 0.0066 0.281 0.000573 0.000614 0.355

Parkinson PMID_31701892 53 0.537002 0.105162 4.74E-06 0.844878 0.341779 0.0168 -0.01486 0.01778 0.407

Depression PMID_30718901 59 -0.060951 0.024797 0.017 -0.06639 0.083606 0.43 -0.00097 0.004017 0.81

Schizophrenia PMID_25056061 51 -0.065141 0.069861 0.356 0.10959 0.266168 0.682 -0.00899 0.013134 0.497

Tourette PMID_30818990 56 -0.076061 0.104237 0.469 -0.24776 0.357358 0.491 0.009115 0.017334 0.601

Smoker current Vs Former PMID_30643251 53 -0.062043 0.019036 0.00197 -0.08033 0.062126 0.202 0.000826 0.003125 0.793

Smoker Ever vs Never PMID_30643251 53 -0.029511 0.024413 0.232 0.065932 0.083892 0.436 -0.00496 0.00421 0.244

Drinks Per Week PMID_30643251 53 0.022677 0.011469 0.0533 0.013592 0.039924 0.735 0.000764 0.002005 0.705

Birth Weight maternal PMID_31043758 60 0.123313 0.041854 0.0048 0.097262 0.133326 0.469 0.001856 0.005911 0.755

Birth Weight child PMID_31043758 60 0.12328 0.049007 0.0146 0.070863 0.175127 0.687 0.003784 0.007679 0.624

IVW Egger Slope Egger interceptMR Analayis

Table 8: Summary of Mendelian randomization analysis using ICV variants as an 
exposure to test for their causal effect on number of correlated or common brain 
disorders. outcome.pheno is the trait name on which the effect of ICV was tested, PMID 
is the reference (PubMed ID or GWAS name) of the outcome trait used for MR analyses, 
NIV is the count of number of instrumental variables used for analysis (it may vary between 
study due to availability of the GWAS summary data for respective study), Beta is the 
causal effect estimated for exposure on outcome, S.E. is the standard error of the causal 
effect estimate, P is the p-value (based on t-distribution) for estimate of causal effect, IVW 
is inverse variance method used for MR analysis, Egger slope is the estimated causal 
effect through Egger analyses when intercept is allowed to float, Egger intercept is the 
estimated intercept based on Egger analyses (a significant non-zero intercept highlights 
horizontal pleiotropy). **represents un-published data from the GWAS analysis of 
Icelandic population. 
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Figure 26: Causal association of instrumental variants from ICV on 34 tested 
traits (A) neurological diseases/disorders (B) personality/behavioural traits (C) 
cognitive/learning/birth weight traits. The analysis was performed using a two-sample 
Mendelian randomization (MR) approach, the instrumental variables and their effect sizes 
are based on results for ICV variants compared to their effects from the largest available 
studies of the genetically correlated traits. IVW (inverse variance weighted) method was 
used to estimate the causal effect, additionally Egger analysis was performed to detect 
whether IVW estimates are biased i.e., intercept is different from zero. The Bonferroni 
significant associations (P < 0.05/34 = 1.47×10-3) are highlighted with red-color, ‘°’ 
refers to traits for which effect estimates were flipped for better representation. 

For the reverse causal analysis, we tested GWAS significant variants of 29 
studies as exposures (IVs) to explore the potential causal effects on ICV from this 
study (Pthreshold < 0.05/29 = 1.72×10-3, Table 9). The exposures of Parkinson’s 
disease, neuroticism, and migraine on ICV had a nominally significant effect in 
our MR analysis (not significant after adjusting for multiple testing and in leave-
one-sample-out analysis). The exposures of birth weight, insomnia, cognitive and 
learning traits show causal effect on ICV (βbirth-weight = 0.216, Pbirth-weight = 1.16×10-6

; 

βinsomnia = -0.192, Pinsomnia = 7.07×10-6
; βeducation = 0.264, Peducation = 4.11×10-33

; 

βcognitive performance = 0.190, Pcognitive performance = 8.62×10-9). Thus, only cognition and 
learning traits show bi-directional causal relationship with ICV. 
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Table 9: Summary of Mendelian randomization analysis using instrumental 
variables of correlated studies as an exposure to test for their causal effects on 
ICV. Exposure.pheno refers to effect estimates from correlated study as exposure trait, 
PMID is the reference (pubmed ID or GWAS name) of the exposure trait used for MR 
analyses, NIV is the number of instrumental variables used for analysis (number of 
independently associated GWAS significant variants), Beta is the causal effect estimated 
for exposure on outcome, S.E. is the standard error of the causal effect estimate, P is the 
p-value (based on t-distribution) for estimate of causal effect, IVW is inverse variance 
method used for MR analysis, Egger slope is the estimated causal effect through Egger 
analyses when intercept is allowed to float, Egger intercept is the estimated intercept 
based on Egger analyses (a significant non-zero interceprt highlights horizontal 
pleiotropy). 

 

 

 

  

exposure.pheno PMID_(exposure) NIV Beta S.E. P Beta S.E. P Intercept S.E. P

ADHD PMID_30478444 9 0.01907 0.024164 0.456 0.048963 0.103531 0.653 -0.002758 0.009683 0.785

Age started smoking PMID_30643251 10 -0.12611 0.104113 0.257 -0.124167 0.583841 0.832 -0.000132 0.010534 0.99

Alzhemier PMID_30617256 32 -0.040861 0.05912 0.495 -0.020789 0.08779 0.814 -0.000682 0.002243 0.763

Anorexia Nervosa PMID_31308545 8 -0.017617 0.028183 0.552 0.006332 0.119691 0.96 -0.002191 0.011096 0.85

Bipolar disorder PMID_31043756 139 0.004025 0.009726 0.68 -0.007707 0.037015 0.835 0.000913 0.002578 0.724

Cigerates per day PMID_30643251 55 -0.051772 0.046163 0.267 -0.100341 0.096972 0.305 0.001878 0.002528 0.461

Cognitive Performance MTAG PMID_30038396 653 0.228407 0.020384 9.13e-27 0.318795 0.092807 0.00063 -0.000759 0.001642 0.644

Cognitive Performance PMID_30038396 225 0.190219 0.031779 8.62e-09 0.300772 0.157907 0.0581 -0.001246 0.003304 0.706

Depression PMID_30718901 97 -0.011862 0.03741 0.752 0.281007 0.17043 0.102 -0.006431 0.003644 0.0808

Drinks per week PMID_30643251 97 -0.005365 0.075899 0.944 0.045456 0.167369 0.787 -0.001313 0.002194 0.551

Education Years COJO PMID_30038396 447 0.284993 0.034135 8.88e-16 0.236637 0.132796 0.0754 0.000893 0.001531 0.56

Education years MTAG PMID_30038396 1599 0.290064 0.019958 4.84e-45 0.419695 0.078008 8.55e-08 -0.000924 0.000836 0.269

Education Years PMID_30038396 1252 0.264325 0.021415 4.11e-33 0.422877 0.083669 4.97e-07 -0.001353 0.000949 0.154

Epilepsy PMID_30531953 10 -0.00253 0.001534 0.134 -0.051247 0.048576 0.322 0.085364 0.086167 0.351

Highest Math Ability PMID_30038396 361 0.231528 0.03009 1.38e-13 0.400417 0.16249 0.0142 -0.001933 0.00274 0.481

Highest MATH MTAG PMID_30038396 1295 0.253127 0.018455 4.46e-40 0.42859 0.074006 8.76e-09 -0.001874 0.000979 0.0558

Intelligence PMID_29942086 241 0.195824 0.030587 8.19e-10 0.331664 0.154274 0.0326 -0.001666 0.003121 0.594

Insomnia Kyoko_Watanabe_medRxiv_2020 780 -0.191448 0.042341 7.07e-06 -0.036237 0.167758 0.829 -0.001461 0.001208 0.227

MATH ability MTAG PMID_30038396 860 0.212092 0.021926 4.45e-21 0.452228 0.095963 2.85e-06 -0.002868 0.001344 0.0331

Math Ability PMID_30038396 611 0.168358 0.024249 9.85e-12 0.331777 0.110681 0.00283 -0.001902 0.001651 0.25

Migraine Heidi_etal_medRxiv_2021 118 -0.042404 0.017356 0.016 0.042244 0.049771 0.398 -0.004544 0.002284 0.049

Multiple sclerosis PMID_31604244 275 -0.005685 0.006091 0.351 0.029302 0.019694 0.138 -0.003272 0.00167 0.051

Neuroticism PMID_29942085 135 -0.126352 0.049029 0.011 -0.648068 0.262893 0.015 0.007919 0.004009 0.0503

Birth Weight Maternal PMID_31043758 72 0.158687 0.044611 0.000673 -0.093567 0.163118 0.568 0.007824 0.004375 0.078

Birth Weight PMID_31043758 144 0.216029 0.042504 1.16e-06 0.545375 0.159052 0.000796 -0.007825 0.003745 0.0385

Parkinson's disease PMID_31701892 90 0.039759 0.011887 0.00121 0.002327 0.02603 0.929 0.004999 0.002609 0.0586

Schizophrenia PMID_25056061 111 0.00678 0.011236 0.548 0.056883 0.049883 0.257 -0.003895 0.00383 0.311

Smoker current vs former PMID_30643251 24 0.102715 0.054126 0.0709 0.08245 0.15068 0.59 0.001167 0.005786 0.842

Smoker Ever vs never PMID_30643251 369 0.043947 0.024372 0.0722 0.096762 0.113857 0.396 -0.00105 0.002184 0.631

MR Analayis IVW Egger Slope Egger intercept
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Figure 27: Effect vs effect plots of top associations from MR analysis. On x-axis are 
effect size for ICV and on y-axis (not always symmetric around ‘0’) the effect size or; (A) 
Parkinson’s disease as log (odds ratio) (B) ADHD as log (odds ratio) (C) Agreeableness 
as beta in S.D. (D) Neuroticism as beta in S.D., (E) Verbal numerical reasoning as beta in 
S.D., and (F) Educational attainment as beta in S.D. All effects are plotted for alleles with 
increasing ICV. Blue line represents the estimated slope from IVW (inverse variance 
weighted regression), and red line is estimated from MR Egger analysis including the 
intercept. Green dots represent conventional GWAS associations (P < 5.0×10-8) for 
respective y-axis trait, while purple dots are Bonferroni significant associations (P < 
0.05/64 = 7.8×10-4) for respective the y-axis trait. 

4.7.6 Conclusion 

Total ICV can capture structural variations in the brain. The discovery of 
sequence variants associated with brain structures may help to understand its 
functioning. So far, limited number of sequence variants associating with ICV 
have been identified. In this analysis (using ICV of 79,174 participants), 64 
associations were highlighted, including 30 novel variants. The largest impact on 
ICV is exerted by a low frequency variant, located at 6p21.2, (rs180819997-A, β 
= -0.191 s.d., P = 2.2×10-11). Polygenic risk score of ICV (p-value threshold = 
0.1) explains up to 8.78% of phenotypic variance while 64 ICV variants explain 
5.0% variance in ICV. 
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Biological annotation of the 64 ICV variants through transcriptome, proteome, 
and coding variant analyses highlighted that 12 of 64 ICV variants exert their 
impact through a single candidate gene (including GLI3, CDK6, and FRZB). GLI3 
regulates early developmental mechanisms and rare mutations in GLI3 associate 
with premature fusing of the skull (Hurst et al., 2011). In this study, a common 
sequence variant in GLI3 (p.Asp1137Asn) associates with larger ICV and may be 
involved in delayed fusing of the skull sutures. Recessive mutations in CDK6 
associate with microcephly (Hussain et al., 2013), a common sequence variant 
identified in this study suggests that lowered CDK6 expression is associated with 
smaller ICV. Moreover, FRZB has been shown to play an important role in 
osteogenesis (Jin et al., 2016; Loughlin et al., 2004), which is in line with the 
common coding variant, p.His488Gln, which  associates with a larger ICV and 
higher FRZB protein expression. These findings highlight possible role of GLI3, 
CDK6, and FRZB during skull/brain development. 

Many ICV variants also associate with personality/cognitive/learning traits, 
cardiovascular disorders, neurological and autoimmune disorders. These 
associations indicate a shared etiology between ICV and a number of 
phenotypes (diseases, disorders, and or traits). More specifically, six of the 64 
ICV variant show divergent effect on volumes of some of the cortical and 
subcortical regions. The divergent associations may help to understand brain 
region specific roles involving horizontal pleiotropy. Among those, a common 
sequence variant, the 17q21.3 inversion, is notable. The 17q21.31 inversion, first 
identified in the Icelandic population(Stefansson et al., 2005), is under positive 
selection and is known to associate with many neurological disorders, personality 
traits, and ICV. The inversion polymorphism located at 17q21.31 has two 
haplotypes in Caucasian populations, H1 and H2. H1 associates with Parkinson’s 
disease (Nalls et al., 2019) and a larger ICV. One of the genes affected by the 
inversion polymorphism is MAPT, which is a candidate gene in Parkinson’s 
disease, based on its involvement with tauopathies. H2, the inverted haplotype, 
associates with smaller ICV, neuroticism (M. Nagel et al., 2018) and negatively 
associates with cognitive traits (J. J. Lee et al., 2018a). 

The GC of ICV compared with 1,483 published GWAS studies confirmed many 
known correlations, such as with Parkinson’s disease, ADHD, cognitive/learning 
traits, educational attainment, neuroticism, and cortical and sub-cortical regions. 
Additionally, the genetic correlation between ICV and neonatal traits, socio-
economic status, environmental traits, sedentary lifestyle, having a physical 
occupation, and higher frequency of alcohol intake was observed. The genetic 



Results  

77 

correlation can identify the strength of correlation (positive or negative) between 
the tested traits, but the underlying true causal relationship remains elusive.  

To understand the causal relationship between ICV and traits or disorders 
genetically correlated to or sharing heritability with ICV (Anttila et al., 2018), two-
sample bidirectional Mendelian randomization (MR) analyses were performed. 
For this, robustly associated GWAS significant sequence variants were used as 
instrumental variables (IVs), for forward and reverse MR analyses. The causal 
analyses of 64 ICV variants on 35 phenotypes (diseases, disorders, or traits) 
highlighted that ICV has positive causal effect on Parkinson’s disease (β = 0.52, 
P = 1.22×10-5), and negative causal effect on ADHD (β = -0.203, P = 6.16×10-4), 
and neuroticism (β = -0.064, P = 3.37×10-4). The reverse MR analyses did not 
reveal significant evidence of Parkinson’s disease, ADHD, or neuroticism on 
ICV. 

Most noticeable is the negative causal effect of insomnia on ICV (βinsomnia = -
0.192, Pinsomnia = 7.07×10-6). Insomnia has a strong genetic component where 
780 sequence variants have been reported to associate with insomnia. 
Moreover, insomnia also shows positive causal effect on ADHD (P. R. Jansen et 
al., 2019). In this study, ICV shows negative causal effect on ADHD and 
insomnia has negative causal effect on ICV. These findings strongly implicate 
that genetic predisposition to insomnia negatively impacts brain development 
which in turn affects ADHD. 

The bidirectional MR analyses between ICV and cognitive/learning traits is 
inconclusive, as strong bidirectional relationship was observed between these 
traits. Further studies are required to dissect the causal pathways of ICV with 
cognitive and learning traits. 

This study used largest GWAS meta-analysis of ICV to highlight 64 associations 
and implicated 12 genes which likely impact ICV. The causal analysis uncovered 
underlying biological relationship between ICV and a neurodevelopmental 
(ADHD) disorder, and a neurodegenerative disease (Parkinson’s). Our findings 
highlight that either changes in ICV show causal effect on ADHD and Parkinson’s 
disease or ICV closely correlates with a confounder that may explain this causal 
relationship. Importantly, this study helped to understand that genetic 
predisposition to insomnia exerts its impact on ADHD through a causal affect on 
ICV. Furthermore, based on ICV and genotype data of 79,174 participants, 
5.0% of the phenotypic variance is attributed to 64 sequence variants. This study 
further helps to understand the relationship between brain structure and brain 
function.  
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5 Discussion 
The aim of the genetic studies described in this thesis was to dissect the genetic 
architecture of human intracranial volume and to understand the genetic 
aetiology of impulsivity-compulsivity disorders (TS, Tics, OCD, ADHD, and RLS). 
So far only a few sequence variants are unequivocally associated with these 
disorders (D. Demontis et al., 2019; Didriksen et al., 2020; Simon Haworth et 
al., 2019; Jansen et al., 2020; Smit et al., 2020; D. Yu et al., 2019). This may 
partially be attributed to heterogenic, and/or comorbid nature of these disorders 
or limitations of underpowerd studies. Thus, we searched for association 
between rare and common variants with ICV and impulsivity-compulsivity 
disorders. 

Candidate CNV meta-analysis confirmed that AADAC deletion is a risk factor for 
TS. Rare, recurrent, so called, neuropsychiatric CNVs have been shown to 
associate with increased risk for ASD, developmental disorders, and 
schizophrenia (Ingason et al., 2011; Kirov et al., 2014; Malhotra & Sebat, 2012; 
Morrow, 2010; Pinto et al., 2014; Stefansson et al., 2008). This thesis shows that 
neuropsychiatric CNVs confer high risk of ADHD. Furthermore, 17q12 
duplication (a neuropsychiatric CNV) is highlighted as a risk factor for TS. These 
findings highlighted that ADHD and TS share rare genetic risk factors with ASD 
and schizophrenia. The neuropsychiatric CNVs are known to exhibit dose-
dependent effects on human brain structural and functional alteration (Stefansson 
et al., 2014). It is likely that dose-sensitive genes affected by recurrent CNV loci 
in combination with polygenic risk scores of respective disorder(s) or brain 
structure(s) may affect disorders differently. Future studies are required to better 
understand such complex interplay of rare and common risk variants.    

Five GWAS meta-analyses of TS, Tics, OCD, RLS, and ICV were performed and 
identified strong associations with RLS and ICV. The GWAS meta-analysis of TS 
(cases = 4,819) didn’t find any sequence variant associated with TS (D. Yu et al., 
2019). While, the study highlighted polygenic architecture of TS where TS 
symptoms and severity increased with higher PRS score (D. Yu et al., 2019). To 
detect a common variant (above 1% frequency) with small effect estimate (OR 
less the 1.2), a large effective sample size is required (Crouch & Bodmer, 
2020). For TS, a larger effective sample size is expected to uncover individual 
association signals as was the experience of the schizophrenia, and ADHD 
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GWAS. The GWAS for Tics highlighted a rare frame-shift variant in EGFL7 that 
associates with increased risk of Tics disorder. Replication of this signal in an 
independent population is required to confirm this association. EGFL7 is 
involved in angiogenesis and higher expression was observed in mice 
autoimmune encephalomyelitis (EAE) where it may be used to reduce 
inflammation (Larochelle et al., 2018). The GWAS meta-analysis of OCD didn’t 
find any significant associations. Like TS, a larger sample is required for a 
GWAS meta-analysis to uncover novel associations. 

The combined GWAS meta-analysis of RLS from six populations (cases = 
10,257) highlighted 23 GWAS significant associations. Cis-colocalization 
analysis of those 23 sequence variants implicated five genes (RANBP17, 
CASC16, HBOX2, MAP2K5, and SKOR1) potentially involved in RLS aetiology. 
These genes provide suggestive markers to investigate a role for druggable 
targets in RLS treatment. Among these, rs10068599-T associates with increased 
risk for RLS and lower expression of RANBP17 in brain subcortical regions, 
mainly in the basal ganglia. Basal ganglia is involved in modulating emotional 
and motor output (Pierce & Peron, 2020). Moreover, Parkinson’s disease (a 
movement disorder) is characterized by a loss of dopaminergic innervation in 
the basal ganglia impacting motor symptoms (Neumann et al., 2018). RLS 
exhibits involuntary urges to move legs while in Parkinson’s disease the voluntary 
control of movements is compromised. Future studies may help to understand 
the role of RANBP17 in RLS aetiology and uncover more signals and to yield 
deeper insights into the disease biology. 

Genome-wide genetic correlation analysis of five impulsivity-compulsivity 
disorders found 59 common genetically correlated traits shaping shared genetic 
architecture. Hierarchical clustering of these correlated traits highlighted five 
latent clusters ranging from psychiatric, emotional, cognitive, lifestyle related 
traits, and pain disorders. As the genetic correlation may or may not exhibit 
causation, the Mendelian randomization analyses were performed (using GWAS 
markers from 18 studies) to test for causal effect of common genetically 
correlated traits on five impulsivity-compulsivity disorders. Among these, the 
insomnia associated sequence variants exerted the strongest impact on all tested 
disorders (β > 0.85, P < 6.7×10-10). This implies that insomnia has a causal effect 
on the neurological disorders. Notably, a strong genome-wide genetic 
correlation between insomnia and neurological disorders was also observed. 
Future studies are required to understand whether there is a bi-directional effect 
between neurological disorders and insomnia (sleep disturbances).  
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The brain is in growth phase during childhood and variation in ICV associates 
with several neurological disorders. It is likely that sequence variants exert their 
effect on neurological disorders through their impact on structural variations in 
ICV. The largest, to date, GWAS meta-analysis of ICV found 64 variants 
explaining 5% of variance. The genetic correlation of ICV compared against 
1,480 GWAS studies, found 62 traits correlated with ICV: including ADHD, 
Parkinson’s disease, cognition and learning traits, neuroticism, and socio-
economic status. Parkinson’s disease cases have greater ICV whereas ADHD 
cases have smaller ICV than controls (at phenotypic level). Bidirectional MR 
analyses of ICV vs correlated studies revealed that ICV either has a causal effect 
on a neurodevelopmental disorder (ADHD) as well as on a neurodegenerative 
disease (Parkinson’s) or these causal relationships might be driven by traits 
closely correlated with ICV. These findings underscore the potential of using the 
simple measure of ICV combined with genetics to further investigate brain 
structure-function relationships. Future studies may focus on understanding the 
closely correlated traits between ICV, ADHD, and Parkinson’s disease. 
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6 Conclusions 
Human genetic research is aimed at understanding the evolution, diversity, and 
aetiology of disease and, from a medical perspective, to identify druggable 
targets which are helpful for better treatment. The neuropsychiatric disorders 
show high heritability, polygenicity, complex interplay of polygenic markers, and 
gene-environment interaction. Large studies are required to discover genetic 
associations and to uncover underlying genetic architecture.  

The candidate gene approach aims to test a gene based on the function of its 
protein or previous association results. In 1st study, a suggestive finding 
(Sundaram et al., 2010) was followed up in a large sample, from seven 
European countries, of TS patients and population-based controls. The AADAC 
deletion was identified as a risk factor for TS (P = 1.7×10-5, OR = 1.58). AADAC 
exhibited higher expression in various brain tissues suspected to be involved in 
neuronal function. While our results robustly replicate the previous observations, 
further studies are required to improve the risk estimate but also to investigate 
AADAC’s role in the TS aetiology. Furthermore, through a larger GWAS meta-
analysis of TS from Caucasian populations, it was shown that TS is highly 
polygenic in nature and a TS PRS associates with increased risk of TS and tics 
symptom severity (P = 5.3×10-9, OR = 1.33). The polygenic nature and 
identification of developmental circuit pathways suggested that TS is a complex 
developmental circuit disorder affecting motor, cognitive, and behavioural 
controls. Larger GWAS studies, functional and structural MRI analyses, and 
causal analysis, are required to further understand these preliminary findings of 
TS. 

ADHD is a highly comorbid, heterogenous, and disabling disorder. Studies have 
demonstrated high heritability and polygenicity (mostly tagged by common 
sequence variants) of ADHD. Rare coding variants exert large impact but 
identifying them is constrained by inadequate sample sizes. Neuropsychiatric 
CNVs, a group of 19 rare, recurrent CNVs, have been shown to associate with 
increased risk of autism, and schizophrenia, and to affect cognition in 
individuals without neurodevelopmental or psychiatric disorders. ADHD is 
comorbid with these disorders, but their underlying shared genetics remain 
elusive. Based on a large meta-analysis of ADHD cases and controls from Iceland 
and Norway, it was shown that neuropsychiatric CNVs also confer risk of ADHD 
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(OR  =  2.43, P  =  1.6  ×  10-21). Moreover, the 17q12 duplication, a 
neuropsychiatric CNV, associates with increased risk of TS (P = 8.7×10-6, OR = 
10.43). However, the 17q12 duplication did not associate with ADHD. These 
findings confirmed pleiotropic effects of neuropsychiatric CNVs and suggests 
shared aetiology of ADHD, TS, autism, and schizophrenia. Furthermore, the 
association of rare neuropsychiatric CNVs provides evidence for ADHD, TS, 
ASD and schizophrenia being related neurodevelopmental disorders rather than 
distinct entities. 

RLS is a complex polygenic sensorimotor disorder strongly influenced by 
lifestyle. Based on GWAS meta-analysis of RLS from six populations, including 
more than 10,000 cases and 470,000 controls, 23 independent GWAS 
significant sequence variants were identified. The cis-eQTL colocalization 
analysis of RLS variants using eQTL data from 49 tissues, implicated five genes 
(RANBP17, CASC16, HBOX2, MAP2K5, and SKOR1) as possibly involved in RLS 
aetiology. These genes provide suggestive markers to investigate for role of 
druggable targets in RLS treatment. The polygenic risk score and genetic 
correlation analyses of RLS confirmed prior epidemiological findings that 
implicate obesity, smoking and high alcohol consumption as risk factors for RLS. 
The 23 GWAS signals explain less than 1% of the variance in RLS, which 
suggests larger GWAS studies are required to uncover more signals and to yield 
deeper insights into the disease biology. 

Common neurodevelopmental disorders (TS, Tics, ADHD, and OCD) and 
common involuntary movement disorders (RLS) share phenotypic overlap 
including involuntary motor, and compulsion components. PRS analysis 
confirmed their polygenic nature while pairwise genetic correlation analyses 
highlighted genetic overlap. Yet their underlying genetic architecture remains 
elusive. Based on genetic correlation analyses of these disorders compared 
against 1,140 published GWAS studies identified 59 common traits. The 
hierarchical clustering of correlated traits highlighted five latent clusters: (1) 
neuropsychiatric or neurotic disorders, (2) emotional disorders, (3) peripheral 
and muscular pain, (4) obesity / poor lifestyle, and, (5) cognition / learning 
traits. Genetic correlation may or may not indicate causation. To infer causality, 
GWAS significant variants (as instrumental variables - IVs) from 18 genetic 
studies were used in Mendelian randomization analysis to test for their causal 
effect on TS, Tics, ADHD, OCD, and RLS. Among the tested IVs, the insomnia 
associated sequence variants exerted the strongest impact on all tested 
traits/disorders (β > 0.85, P < 6.7×10-10). This implies that insomnia has a causal 
effect on the neurological disorders. Notably, a strong genome-wide genetic 
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correlation between insomnia and neurological disorders was also observed. 
Future studies are required to understand whether there is a bi-directional effect 
between neurological disorders and insomnia (sleep disturbances).  

The structural variations seen in brain may associate with neurological disorders. 
Moreover, sequence variants may exert their effect on neurodevelopmental 
disorders through their impact on brain growth. Variation in brain structure can 
help to investigate brain structure-function relationships. ICV was used as a 
measure of total brain size. GWAS meta-analysis (from four studies) of ICV 
found 64 variants explaining 5% of variance. The genetic correlation of ICV 
compared against 1,480 GWAS studies, found 62 traits correlated with ICV: 
including ADHD, Parkinson’s disease, cognition and learning traits, neuroticism, 
socio-economic status, birth weight and measures of cortical and subcortical 
regions. Furthermore, Parkinson’s disease cases have greater ICV whereas 
ADHD cases have smaller ICV than controls (at phenotypic level). Bidirectional 
MR analyses of ICV compared with 34 GWAS studies, revealed that ICV either 
has a causal effect on a neurodevelopmental disorder (ADHD) as well as on a 
neurodegenerative disease (Parkinson’s) or these causal relationships might be 
driven by traits closely correlated with ICV. These findings underscore the 
potential of using the simple measure of ICV combined with genetics to further 
investigate brain structure-function relationships. 
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Appendix 
Appendix 1 – Brief TS/TD screening questionnaire (informally translated from 
Icelandic) based on ICD-10 and DSM-IV-TR diagnostic criteria. 

1. Have you ever been diagnosed with a Tic disorder? 

2. Have you ever been diagnosed with Tourette syndrome? 

3. Have you ever had any involuntary tics that started before you were 18? 

4. If yes to question 3, do/did you have episodes of 

4.1. repeated clicking of finger-joints 

4.2. repeated eye-blinking 

4.3. repeated facial grimaces 

4.4. repeated head jerks 

4.5. repeated mouth-twitches or mouth-grimaces 

4.6. repeated movements (or tensing/stretching) of your legs, feet, 
or toes 

4.7. repeated nose-twitching or sniffing 

4.8. repeated upper torso tensing or movements 

4.9. repeated shoulder jerks 

4.10. repeated tensing of abdominal muscles 

4.11. wide-opening or rolling eyes repeatedly 

4.12. repeated tensing or movements of hands or arms 

4.13. any other motor tics 

4.14. Other motor tics description 

4.15. How long do/did the involuntary tics continue 

4.15.a.1. For less than one month and gone now 
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4.15.a.2. For less than six months and still present 

4.15.a.3. For less than one year and gone now 

4.15.a.4. For more than a year and still present or gone now 

5. Have you ever had involuntary tics, that started before the age of 18, 
and included repeated vocalization or sound-making? 

6. If yes to question 5, do/did you have episodes 

6.1. repeated grunting, whistling, or humming 

6.2. repeated throat-clearing 

6.3. repeated snorting or sniffing 

6.4. repeating single words or syllables 

6.5. any other vocal tics 

6.6. Other vocal tics description 

6.7. How long do/did the vocal tics continue 

6.7.a.1. For less than one month and gone now 

6.7.a.2. For less than six months and still present 

6.7.a.3. For more than one year and gone now 

6.7.a.4. For more than a year and still present or gone now 

7. How have tics developed? 

Appendix: Polycor correlation analysis: 

To perform polycor correlation analysis, ordinal response data collected using 
TS/TD questionarie was subjected to hetrocorrelation coefficient estimates as an 
input for exploratory factor analysis (EFA). Therein, varimax rotation soultion was 
used to infer factors loading and structure. Factors with eigenvalues more than 1 
were retained and characteristic consideration decided the final number of 
factors.  

To eclucidate the validatity of predicted factors, confirmatory FA was employed 
using psych R package ‚polycor‘ (https://cran.r-project.org/package=polycor). 
Estimation was based on weighted least-squares and minimum residual 
calculation. Only items having factors loading greater than or equal to 0.4 were 
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retained in a factor (those with cross factors loading of greater than 0.3 were 
excluded from FA). Bayesian-information crierion, Tucker-Lewis Index were used 
as fitness indicess.  

Supplementary Table 1: Demographic statistics of participant administered with 
TS/TD screening questionnaire. 

Participant Group N 
Sex 

Males (Females) 

ASD 266 152 (114) 

ADHD 280 183 (97) 

OCD 142 63 (79) 

TS 191 104 (87) 

TD 55 31 (24) 

Relatives of ASD, ADHD, or OCD 3,286 1,722 (1,564) 

General Population 211 109 (102) 

Total 4,431 2,364 (2,067) 

Supplementary Table 2: Scoring algorithm for the determination of TS and TD 
based on responses to screening questions (Appendix 1).  

 Screening criteria TD TS 

1 Any tic starting before the age of 18 and not due to other illness or medication * * 

2 ≥2 motor tics and ≥1 vocal tic with duration > 1 year - + 

3 Motor tic(s) or vocal tic(s), not both >1 year + - 

4 ≥1 motor and/or ≥1 vocal tic only, duration > 4wks but less than a year + - 

5 Self-report of diagnosed Tourette syndrome - + 

6 Self-report of diagnosed Tic disorder + - 

* “Yes“ required for screening positive for TS or TD. TS is categorized based on criteria 1-4 or ‚yes‘ 
response to self reported clinical diagnosis in 5. TD positive case is registered where response ‚yes‘ 
to 1, and 3 or 4 or based on self reported clinical diagnosis in 6.  
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Supplementary Table 3: Tic disorders according to the DSM-IV-TR and ICD-10 
diagnostic criteria.  

Phenotype DSM-IV-TR 
(code, label) 

ICD-10 
(code, label) 

Diagnostic criteria* 

Transient tic 
disorder 

307.21, 
Transient tic 
disorder 

F95.0, 
Transient tic 
disorder 

Multiple motor and/or phonic tics with duration 
of at least 4 weeks, but less than 12 months. The 
tics usually take the form of eye-blinking, facial 
grimacing, or head-jerking. 

Chronic motor 
or vocal tic 
disorder   

307.22, 
Chronic tic 
disorder 

F95.1, 
Chronic 
motor or 
vocal tic 
disorder   

Either single or multiple motor or phonic tics, 
but not both, which are present for more than a 
year. The tics occur many times a day (usually in 
bouts) nearly every day or intermittently 
throughout a period of more than 1 year, and 
during this period there was never a tic-free 
period of more than 3 consecutive months. 

Tourette 
syndrome 

307.23, 
Tourette‘s 
disorder 

F95.2, 
Combined 
vocal and 
multiple 
motor tic 
disorder (de 
la Tourette) 

Both multiple motor and one or more vocal tics 
present, although not necessarily simultaneously. 
The tics occur many times a day (usually in 
bouts) nearly every day or intermittently 
throughout a period of more than 1 year, and 
during this period there was never a tic-free 
period of more than 3 consecutive months. 

Tic disorder, 
unspecified 

307.20, Tic 
disorder, not 
otherwise 
specified 

F95.8, Other 
tic disorders 
and F95.9, 
Tic disorder, 
unspecified 

Tics with short duration (i.e. less than 4 weeks); 
and onset of symptoms that occur after age 18 
years 

*To fulfull diagnostic criteria, onset of tics must be in childhood before the age of 18 (except F95.2, 
F95.8, F95.9) and tics should not be induced by medication or another medical condition. 
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Supplementary Table 4: Summary of exploratory factor analysis, using 

response data from TSQ data, showing factor loading by each tics category. 

Tic Items Body.Tics Facial.Tics Vocal.Tics 

Leg.or.foot.movement 0.73 0.3 0.25 

Abdomen.Tensing 0.71 0.32 0.2 

Hand.movements 0.7 0.21 0.24 

Shoulder.Jerks 0.67 0.44 0.03 

Torso.Tensing 0.65 0.46 0.2 

Clicking 0.53 0.33 0.24 

Head.jerks 0.52 0.45 0.18 

Facial.grimaces 0.43 0.63 0.09 

Nose.twitch 0.4 0.71 0.21 

Blinking 0.37 0.76 0.11 

Eyerolling 0.36 0.75 0.19 

Mouth.twitches 0.22 0.8 0.22 

Wors.Syllables 0.3 0.13 0.9 

Snore.Sniff 0.2 0.19 0.85 

Grunt.Whistle.Hum 0.18 0.18 0.81 

Throat.clearing 0.1 0.12 0.87 
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Genotyping assay CNV calls samples CNV calls samples

DECODE_OEx-8_A 430,627 12,911 85,821 12,499

Human1M-Duov3_B 52,881 538 21,014 467

Human1Mv1_C 68,537 737 21,189 686

Human610-Quadv1_B 55,604 652 14,832 607

HumanCNV370-Quadv3_C 12,105 299 3,599 295

HumanCNV370v1_C 630,217 14,138 135,311 12,828

HumanHap300_(v1.0.0) 284,804 16,027 51,748 12,681

HumanHap300v2_A 87,483 6,744 13,518 5,187

HumanOmni1-Quad_v1-0_B 1,348,958 11,066 749,835 10,320

HumanOmni2.5-4v1_H 286,197 2,656 97,485 2,323

HumanOmni2.5-4v1-Multi_H 44,507 425 19,490 410

HumanOmni2.5-8v1_A 372,261 4,143 139,699 4,037

HumanOmni5-4v1_B 115,410 697 54,608 670

HumanOmniExpress-12v1_H 1,114,103 31,843 244,863 31,280

HumanOmniExpress-12v1-1_B 449,822 19,216 117,264 18,498

HumanOmniExpress-12v1-Multi_H 360,300 2,842 199,631 2,725

HumanOmniExpress-24v1-0_A 1,255,989 33,760 398,854 30,740

HumanOmniExpress-24v1-1_A 3,558 70 418 65

Total 6,973,363 158,764 2,369,179 1,46,318

Raw PennCNV Calls after quality filtering

Step Description Total CNV calls Unique CNV loci Number of samples

CNV input PennCNV predictions and validation through LRP data 6,973,363 1,306,432 150,656

Quality filtering Removing CNVs overlapping gaps in the assembly 6,934,294 1,304,169 150,625

Removing sample outliers (BAF-drift, LRR-SD and GCWF) 6,066,069 1,098,944 145,275

Removing CNVs < 10 SNPs/Call 2,971,821 708,771 141,773

Removing samples with number of calls > Mean+3SD 2,369,179 366,528 139,711

CNV validation Autosomal CNVs segregating based on genealogy 1,300,158 142,534 136,601

Segregating CNVs verified by LRP haplotypes 792,766 79,251 138,848

*CNV Breakpoint correction & Binning Breakpoint correction & CNV Binning for LRP verified CNVs 24,282,133 87,464 138,848

CNV-bins with MAF > 0.01% CNV with MAF > 0.01% 24,053,800 41,181 134,387

Supplementary Table 5: Summary of exploratory factor analysis showing 

variance explained and factor loading of different tics types. 

Variable 
Body 
Tics 

Facial 
Tics 

Vocal 
Tics 

SS loadings 3.8 3.73 3.39 

Proportion Var 0.24 0.23 0.21 

Cumulative Var 0.24 0.47 0.68 

Proportion Explained 0.35 0.34 0.31 

Cumulative Proportion 0.35 0.69 1 
MLE Chi Square =  392.44  with prob <  1.6e-44  
Tucker Lewis Index of factoring reliability =  0.836 
RMSEA index =  0.137  and the 90 % confidence intervals are  0.121 0.147 
BIC =  -17.35 
Fit based upon off diagonal values = 1 
Measures of factor score adequacy              
                                                Body Tics Facial Tics Vocal Tics 
Correlation of scores with factors             0.90 0.92 0.97 
Multiple R square of scores with factors       0.81 0.84 0.94 
Minimum correlation of possible factor scores  0.62 0.68 0.88 
Supplementary Table 6: Showing steps from CNV calling pipeline. 

Supplementary Table7: Shows CNV stats for each chip. 
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Supplementary Figure 1: Items level factors analysis of tics types in F95.* 
recruitment group. The tics response data was collected through TSQ. 

Supplementary Figure 2: Items level factors analysis of tics types in recruitment 
groups excluding those with clinical diagnosis of F95.*. The tics response data was 
collected through TSQ 
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Supplementary Figure 3: Variable frquency of vocal and motor tics across 
genders and in different recruitment groups. SRS refers to social response scale, and 
SDCC is abbreviation for ‚State Diagnostic and Counselling Centre ‘.  
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Supplementary Figure 4: Flow chart of segregating CNV validation method, 
employing LRP approach, with exemplified CNV calls and pedigree information. 

 

 



 

186 

 


