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Pathogen inactivation in platelet concentrate storage: 

Effects on quality and utilization 

Níels Árni Árnason 

August 2022 

Abstract 
 

In transfusion medicine and blood banking, product quality and safety of patients 

are both essential. Blood transfusion is, in many instances, a lifesaving 

procedure; however, is not without risk. Blood products contain biological 

response modifiers (BRMs) that can induce febrile and allergic reactions and 

there is risk of donor/patient incompatibility, resulting in hemolytic transfusion 

reaction. Pathogen contamination of donor origin or due to collection and 

processing is another risk. The implementation of efficient viral screening has 

made blood transfusions safer, despite not addressing the risks from emerging 

pathogens or from bacterial contamination. For platelet concentrates (PCs) in 

particular, the standard storge conditions (room temperature) present an elevated 

risk of bacterial contamination and transfusion transmitted bacterial infection 

(TTBI) compared to other blood components, which are stored at subzero or 

refrigerated temperatures. Though the risk of TTBI can be minimized via the use 

of various screening assays, TTBI resulting in sepsis still occurs, with a high 

mortality rate. Therefore, methods have been developed to inactivate pathogens 

in blood products; such methods include photo or photochemical techniques, 

which influence the nucleic acids of pathogens and disable transcription. These 

methods have proven highly efficient in reducing the pathogenic load in blood 

products, namely PCs and plasma. As these methods have been approved 



 

through clinical trials and then implemented in routine use, indications of 

negative effects on blood products have emerged, specifically effects on platelet 

quality have been of concern.       

  In response to the concern about reduced platelet quality, we investigated 

effect of pathogen inactivation (PI) with amotosalen and ultraviolet A (UVA) on 

the quality of stored platelets using a pool and split strategy and whole blood 

collected buffy coat (BC) platelet concentrates, with the aim of adding to the 

existing information.         

  Multiple reports have suggested that micro RNA (miRNA) are important 

post transcription regulators in platelets, and there have been indications of 

altered miRNA profile due to pathogen inactivation (PI) methods. Therefore, we 

examined PI effects on 25 pre-selected miRNAs. Minimal influence was 

observed, with only 1 out of the 25 showing PI treatment-related down 

regulation.        

The release of BRMs  from platelets into the storage media presents a 

potential risk of adverse events, as well as BRMs being indicators of platelet 

activation during storge. Monitoring the concentration of 36 proteins, we 

observed both reduction and increase of BRMs related to PI treatment. 

  Additionally, PC utilization in national blood transfusion services (at the 

Blood Bank of Iceland) was analyzed pre- and post-PI implementation. We 

observed several PI treatment-related effects on both miRNA profiles and protein 

concentrations in the storage media, as well as elevated expression of markers of 

platelets storge lesion (PSL), though these effects did not translate to increased 

utilization or adverse events. We also observed increased product availability and 

more efficient stock management due to increased storge time, without an 

increase in outdated stock.         



 

 

Smithreinsun meðferð á blóðflöguþykkni:  

Áhrif á gæði og notkun 

Níels Árni Árnason 

August 2020 

 
Útdráttur 

 

Í blóðbankastarfsemi og við blóðinngjöf skipta gæði afurðar og öryggi sjúklings öllu 

máli. Í mörgum tilfellum er blóðinngjöf lífsbjargandi meðferð, en ekki laus við áhættu. 

Blóð inniheldur lífvirka þætti sem geta stuðlað að aukaverkunum eins og hækkun á 

líkamshita og ofnæmi, að auki er áhætta á blóðgjafa og blóðþega misræmi sem getur 

valdið niðurbroti á blóðfrumum. Sýking í blóðhluta sem getur átt uppruna frá blóðgjafa 

eða við vinnslu á blóðhlutanum er annar áhættuþáttur. Innleiðing veiru skimunar í 

blóðhlutum hefur aukið mikið á öryggi við blóðinngjöf, án þess þó koma í veg fyrir 

sýkingar vegna óþekktra sýkla eða bakteríu smits. Almennt er blóðflögu þykkni (BÞ) 

geymt á vöggu og við stofuhita sem eru kjöraðstæður fyrir vöxt baktería, og þess vegna 

er áhætta á slíku smiti margföld í tilfelli BÞ borið saman við aðra blóðhluta sem eru 

kældir eða frystir við geymslu. Hægt er að lágmarka áhættu á bakteríu mengun með 

margvíslegum skimunar aðferðum, en þrátt fyrir slíkar aðferðir eru tilfelli þar sem 

bakteríu mengað BÞ veldur alvarlegri blóðsýkingu með hárri tíðni dauðsfalla. Til að 

draga enn frekar úr og jafnvel koma alveg í veg fyrir bakteríu mengun i BÞ hafa verið 

þróaðar smit-hreinsunar (SH) aðferðir sem byggja ljósa eða ljósa og efnatækni sem hafa 

áhrif á kjarnsýrur í sýklum og koma í veg fyrir umritun. Þessar aðferðir hafa sannað sig í 

að draga úr magni sýkla í blóðhlutum, þá sérstaklega BÞ og blóðvökva. Á sama tíma og 

þessar aðferðir fengu samþykki byggt á  klínískum tilraunum og voru innleiddar inn i 

almenna blóðbanka starfsemi, komu fram vísbendingar um neikvæð áhrif á gæði 

blóðhluta sérstaklega BÞ.        



 

 Til að rannsaka hugsanleg áhrif SH tækni sem byggir á amotosalen og 

útfjólubláu ljósi A á gæði BÞ í geymslu beittum við blöndunar og uppskipti aðferð á BÞ 

unnið úr heilblóðsgjöfum.        

 Fjöldi birtra rannsóknarniðurstaða hafa gefið í skyn að stuttar RNA sameindir 

(miRNA) hafi hlutverk í stýringu á prótein tjáningu í blóðflögum og vísbendingar um 

neikvæð áhrif SH. Til að rannsaka frekar þessi áhrif völdum við 25 miRNA til að meta 

áhrif SH. Áhrif SH á þessi 25 miRNA var takmörkuð þar sem aðeins 1 af 25 sýndi 

breytingu tengda SH meðferð. 

Losun lífvirka þátta eins ýmissa próteina frá blóðflögum út í geymsluvökva er 

áhættuþáttur sem hugsanlega getur valdið aukaverkun og að auki er magn þessara þátta í 

geymsluvökva vísir fyrir virkjun blóðflaga í geymslu. Eftirlit með magni 36 próteina í 

geymsluvökva sýndi bæði aukningu og minnkun tengda SH meðferð á BÞ  

 Notkun BÞ á Íslandi var skoðuð fyrir og eftir innleiðingu á SH í Blóðbankanum. 

Okkar niðurstöður sýndu áhrif á bæði miRNA og prótein losun sem og aukna tjáningu á 

vísum fyrir blóðflögu geymslu skemmdum, án þess að greina þessi áhrif í aukinn notkun 

eða fjölda aukverkanna. Við greindum aukið framboð á BÞ og skilvirkari lager stjórnun.      
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1 Introduction 
 

 1.1 Brief History of platelets in transfusion medicine 
 

1.1.1 Discovery of platelets 
 

Suggestions of additional elements in the blood other than white and red cells came as early 

as 1770s by William Hewson, a British surgeon, anatomist, and physiologist. Hewson, 

often referred to as the father of hematology, is credited with discovering white blood cells, 

lymphatic system functions, fibrinogen, and the fundamentals of blood coagulation [1]. 

However, because they are the smallest recognized cell in the human body, the detection 

and visualization of platelets was impossible until advances in microscopy in 1830. The 

first illustration of platelets by British anatomist George Gulliver and a platelet fibrin clot 

by British physician William Addison were published in 1841 and 1842, respectively [2]. 

An 1864 publication by British pathologist Lionel Beale included a drawing of blood that 

clearly showed platelets. Beale, however speculated that these small capsules were 

precursors of white or red blood cells and that their rapid cell death produced fibrin [3].  

William Osler, a physician born in Canada and one of four founders of Johns 

Hopkins Hospital, described platelets in an 1874 publication. Osler reported on small disc-

shaped corpuscles circulating in the blood and their instant aggregation in samples of blood 

removed from a vessel. In this early published description of platelets, Osler did not 

confirm whether platelets were normal elements of blood or exogenous organisms [4].  

Using in vivo microscopy and a primitive flow chamber, conformation that platelets 

are a part of normal human physiology and a description of their role in hemostasis and 

thrombosis was published in 1882 by Giulio Bizzozero, an Italian doctor and biomedical 

scientist [5]. Bizzozero had previously, in 1868, recognized the role of bone marrow in 

hematopoiesis and observed leukocyte recruitment to platelet aggregates, thus establishing 

leukocyte-platelet interaction [6]. Bizzozero also recognized megakaryocytes in the bone 

marrow, but not their role in platelet production. Platelet connection to megakaryocytes was 



 

established in 1906  by James H Wright, an American pathologist who recognized the same 

type of granules in both cell types [7].  

1.1.2 Transfusion, collection, and storage 
 

William Duke, an American medical doctor and a student of Wright, published the first 

results on the in vivo function of platelet in 1910 by analyzing bleeding time in 

thrombocytopenic patients pre and post whole blood transfusion [8]. Although Dukes 

results clearly showed the benefits of blood transfusions for thrombocytopenic patient, his 

findings did not receive proper attention. The field of blood transfusion was in its infancy, 

with the major ABO blood groups discovered only ten years prior [9] to Duke’s landmark 

experiment and knowledge of the serological risks of blood transfusion were limited [10].  

During World War II thrombocytopenia was recognized as symptom of radiation exposure 

from atomic weapon testing. The USA government started funding research into platelet 

transfusion medicine [11]. William P. Murphy Jr. a medical doctor and inventor, alongside 

Carl W. Walter, a surgeon, inventor, and founder of one of the world’s first blood banks, 

introduced plastic containers for collecting and storage of blood in 1950. The 

implementation of plastic containers and advances in centrifuging technology with the 

development of temperature controlled centrifuges paved the road to modern blood 

component processing [12,13].  

With the development of more robust chemotherapy drugs, thrombocytopenia 

became a common side effect and major cause of mortality in cancer patients receiving 

chemotherapy and 1961 the beneficial role of platelet transfusion for these patients was 

reported [11,12] [14].  

In a 1962 publication the investigators concluded that a platelet count lower than 

20x109/L should be the trigger for platelet transfusion to prevent spontaneous bleeding, and 

prophylaxis platelet transfusion was recommended to prevent bleeding [15]. To date there is 

no universal consensus on triggers for prophylaxis platelet transfusion due to lack of 

objective data to make evidence based recommendations [16].    



3 
 

 Murphy and Frank H. Gardner, both medical doctors, published their research on 

platelet storage in 1969, reporting on the shortening of in vivo life span of radiolabeled 

refrigerated platelets and the feasibility of storing platelets at room temperatures for up to 

four days [17]. Murphy and Gardner subsequently recognized the importance of agitation 

and of the gas permeability of plastic containers in preserving platelet quality [18]. They 

concluded that platelet storage beyond four days resulted in unexpectable in vivo recovery 

and increased risk of bacterial contamination [19].  

1.1.2 Transfusion transmitted infection 
 

Following the Murphy and Gardner publication recommending a maximum 4-day storage 

period, there were publications which indicated a minimal risk of bacterial growth in PCs 

stored at room temperatures [20–22]. Further research using more sensitive culture 

techniques, however, indicated that up to 6.3% of PCs were contaminated with bacteria. In 

this study, contamination was detected at all timepoints during storage of the platelets, from 

day one to day four. A retrospective analysis done in the same study did not show a similar 

frequency of septic reaction. The authors concluded that in most cases bacterial 

contaminated PCs did not contain a high enough number of bacteria to be clinically relevant 

[23]. 

Even during the early days of room temperature storage of PCs, bacterial screening 

with an overnight holding period was being suggested [24]. Advances in platelet storage 

containers using plasticizers with increased gas permeability resulted in increased viability 

and recovery, leading to the potential for prolonged storage for up to five or seven days 

[25,26]. In 1983, with the aim of increasing the availability of platelet products for 

transfusion and based on evidence of low risk of transfusion transmitted bacterial infection 

(TTBI), the FDA approved 7-day storage of platelets in the USA. Only two years later, 

however, based on increased reporting of TTBI related to platelet products, the FDA 

reversed its decision, allowing a maximum of 5-day storage [27,28].  

Although the risks of TTBI were known, viral screening of blood products would be 



 

the focus of the transfusion community for the next two decades. The first case of acquired 

immune deficiency syndrome (AIDS) was reported in 1981 and in 1984 the human 

immunodeficiency virus (HIV) was identified by Gallo R and colleagues as the cause of 

AIDS. Gallo’s group also provided an antibody test to identify positive donors [29]. The 

following year the first screening test for HIV antibodies was approved by the FDA and in 

1992 blood donor screening for both HIV-1 and HIV-2 antibodies was implemented. In 

1996, HIV p24 antigen tests were developed, shortening the window period of undetected 

new infection [12][30]. 

The first screening test for hepatitis B was antigen based, recognizing the surface 

antigen of the virus (HBsAg). This test was approved and mandatory by the FDA in 1972 

and in 1986 the hepatitis B core antigen test (HBV-c), was developed further lowering the 

risk of transfusion related hepatitis B infection [31]. The first screening tests developed for 

hepatitis C in the 1970’s were based on exclusion of serological markers for hepatitis B and 

A termed (NANB) hepatitis, as well as detection of elevated levels of the liver enzyme 

alanine amino transferase (ALT). These screening methods had low predictive value with 

high false negative and positives levels resulting in unnecessary exclusion of valuable 

donors [31]. In collaboration of scientists from the Centers for Disease Control (CDC), 

National Institute of Health (NIH) and Houghton M and colleagues the hepatitis C virus 

was discovered in 1989 and in the following year screening tests for hepatitis C virus 

antibodies were available [32].        

 More sensitive tests with specific amplification of viral nucleic acids (NAT) were 

developed in the mid to late 1990’s and first adopted by plasma fractionation industry 

alongside their pathogen inactivation technology to further reduce the risk of viral 

contamination in their products [33]. Due to highly sensitive antigen tests available for 

HBV and vaccination programs, NAT testing for HBV was not implemented in the US until 

2009 after a single NAT test for HCV,HIV and HBV was developed. In the beginning of 

NAT testing the residual risk for transfusion related HBV infection was estimated to be 1 in 



5 
 

500.000 units, but recent data 10 years after NAT implementation show the residual risk as 

low as 1 in 2 million. NAT testing for HCV and HIV started as early as 1999 in the US and 

current residual risk for of transfusion related HCV infection is 1 in 2 million units [31,34]. 

In 1997 Germany was the first country to start using in house developed NAT for 

HCV,HBV and HIV[33]. Research published in 1999 showed the feasibility of 

implementing NAT in the blood banks setting, especially for HCV as 2 out 374.000 

samples tested were NAT only positive and undetected by serological tests [35]. This ratio 

was close to the estimated residual risk for transfusion related HCV infection of 2 in every 

200.000 units in Germany at the time. This and other cumulative data led to NAT HCV 

being mandated in Germany in 1999. Fallowing the commercialization of NAT more 

countries have implemented NAT with over 60 million tests being run annually worldwide 

[33]. In a survey conducted by the International Society of Blood Transfusions (ISBT) on 

NAT testing including 33 countries during a 10 year period from 1999 to 2009 and 

covering 30 million donations, 2808 were identified as only NAT positive and not detected 

by serological testing [36]  

All these developments greatly improved transfusion safety and with improved 

surveillance and reporting of serious adverse events related to blood transfusion, TTBI 

gained more focus [37–40]. It was established that the major source of bacterial 

contamination is the skin flora at the site of the venipuncture during donation, with donor 

bacteremia or contamination due to processing occurring less frequently [41,42]. Improved 

phlebotomy techniques, firm donor deferrals and diversion of the first 10 to 30 ml during 

donation, although reducing the risk, did not prevent bacterial contamination in platelet 

components. To minimize the risk of TTBI and sepsis, implementation of additional 

methods including bacterial detection or reduction were needed [30,37–40].   

  

 

 



 

1.2 Platelet biology 

 
1.2.1 Platelet production 
 
The normal platelet count of a healthy adult ranges from 150 to 450 x 109 per liter, with an 

average of 100 x 109 platelets produced and cleared from circulation every day. The spleen 

stores up to one third of platelets, and there is a constant consumption of platelets 

maintaining vascular integrity, as well as senescent and apoptotic platelets removed from 

circulation. The platelet lifespan of, on average, ten days in circulation, is determined by the 

internal proteolytic clock, governed by pro-apoptotic proteins Bax and Bak and their 

interplay with pro-survival protein Bcl-XL. Changes in platelet surface glycoprotein 

receptors, like the loss of sialic acid (desialylation), can also be signals that trigger rapid 

clearance by hepatocytes and macrophages [43,44].   

 Platelet precursor megakaryocytes are the largest and rarest cells in bone marrow and 

produce 5,000 to 10,000 platelets per cell. These large cells are primarily localized in bone 

marrow, forming elongated structures called pro-platelets that develop into mature platelets 

that then break off into circulating blood via bone sinusoids [45–47]. Platelets may also be 

produced in the lungs from migrating megakaryocytes [48]. Under the control of the liver-

produced cytokine thrombopoietin [49,50], hematopoietic stem cells in the bone marrow 

differentiate into common myeloid precursor cells that further differentiate in to 

megakaryoblasts, which are a precursor of the pro-megakaryocyte that forms into the fully 

differentiated megakaryocyte [51,52]. 

To produce their platelet progeny, megakaryocytes multiply their DNA content 

without dividing, in a process called endomitosis. During this process, the nuclear envelope 

breaks down and is reassembled again. Multiple cycles of endomitosis give the appearance 

of one enlarged lobed nucleus with multiple chromosome copies 4 N – 128 N [53]. 

Polyploidy enables megakaryocytes to up-regulate proteins and lipids in large quantities to 

assemble the invaginated membrane system (IMS) in the cytoplasm, creating extra surface 

area for the extension and formation of pro-platelets [54,55]. Formation of pro-platelets and 
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the eventual production of mature platelets requires the upregulation of multiple platelet-

specific proteins, organelles and other factors that occupy the cytoplasm of mature 

megakaryocytes. Proteins, organelles, and RNA are packaged into newly forming platelets 

prior to their entry into blood circulation [53,56]. 

 

 

1.2.2 Platelet structure 
Platelets are small in size, ranging from 2 to 3 μm in diameter and having a thickness of 

approximately 0.5 μm. If platelets were recognized as cells instead of as megakaryocyte cell 

fragments, they would be categorized as the smallest cell in the human body. Platelets are 

irregularly shaped, and in their inactivated state display a wrinkled discoid shape. These 

wrinkles are tiny folds that provide the platelet with extra surfaces for activation-induced 

shape change [57].  

Each platelet is organized in to four zones: the peripheral zone, the membrane 

system, the structural (sol-gel) zone and the organelle zone, as shown in Figure 1. The 

peripheral zone consists of a lipid bilayer membrane covered with glycoproteins and 

glycolipids, referred to as the glycocalyx or pericellular matrix. Within the glycocalyx are 

multiple receptors that are important in the platelet’s role in hemostasis: for example, 

glycoprotein (GP)Ib-V-IX complex, which binds to vWF on exposed subendothelial 

collagen; GP-VI, with direct collagen binding affinity; and integrin αIIb/β3 complex for 

fibrinogen binding and subsequent platelet aggregation. The glycocalyx has a high negative 

charge that provides a repulsive force, preventing spontaneous platelet aggregation and 

attachment to other components in blood or to the endothelial cell lining of the circulatory 

system [58].  

On the platelet surface are randomly distributed openings of the open canalicular 

system (OCS). The OCS is an internalized cell membrane providing more extra surface and 

cell membrane for platelet shape change [59]. These open canals are also a route for platelet 

secretion via de-granulation and uptake of plasma components like fibrinogen [60,61]. The 



 

OCS is a part of the platelet internal membrane system, which also includes the dense 

tubular system (DTS) and, in less than 1% of normal platelets, Golgi complex residues from 

megakaryocyte precursors [62]. DTS is a smooth endoplasmic reticulum (ER) system that 

serves as the main storage pool of Ca2+ and plays a key role in Ca2+-regulated platelet 

activation [63,64].  

In a resting platelet, the cytosolic Ca2+ concentrations are maintained at 0.1 μM and 

upon activation there can be tenfold or more upregulation in concentration. Thrombin, 

adenosine diphosphate (ADP) and thromboxane A2 (TXA2) all bind to different platelet 

receptors to activate phospholipase C, which generates inositol triphosphate (IP3), a key 

signal in Ca2+ release from DTS. Depletion of Ca2+ storage in DTS activates the Ca2+ sensor 

protein STIM1, which then triggers an influx of extracellular Ca2+ through Orai1, a calcium 

channel in the plasma membrane [58,65]. The concentration of free Ca2+ in the platelet 

cytosol regulates various proteins that affect the function of the platelet cytoskeleton [62].  

The platelet structural zone includes the cytoskeleton, which is mainly constructed of 

actin filaments and tubulin in microtubules. Platelet microtubules are assembled from α and 

β tubulin and are arranged in circumferential coils near the cell wall and support the 

contractile element of the cytoskeleton during platelet shape change. A number of reports 

suggest that assembled microtubules are important for the platelet to be able to retain its 

discoid shape [66–68]. The membrane-based skeleton in platelets contains spectrin and 

interacts with membrane glycoproteins and lipids as well as cytoskeletal proteins. The 

spectrin skeleton also has a role in proplatelet formation, regulating the size of the forming 

platelets [69]. The motor protein myosin is also a part of the structural zone responsible for 

initiating shape change and plays a role in platelet internal contraction, moving dense- and α-

granules to the center of the platelet; this may ultimately cause degranulation via the OCS 

[57,70,71]. 

 Platelets lack a nucleus, but contain various other organelles like granules, 

lysosomes, and mitochondria. Platelet α-granules are the most abundant organelles, with 50 
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to 80 copies on average. These α-granules contain various types of proteins secreted or 

expressed on the platelet surface with  multiple functions like cell adhesion, cell recruitment, 

cell growth, coagulation, inflammation, tumor metastasis, host defense and immune 

modulation [57,72]. Many membrane-based α-granule proteins are already expressed on the 

surface of resting platelets, including integrins αIIbβ3 and glycoprotein GPVI, while others 

such as P-selectin are specifically relocated from α-granules to the surface during activation 

[73,74].  

Dense granules are less abundant, with 3 to 8 copies on average per platelet, and 

contain both proteins and platelet agonists in the form of nucleotides and neurotransmitters. 

Dense granules and their contents play a role in hemostasis and contribute to thrombus 

formations with endo- and autocrine effects [75].  

Not all platelets contain lysosomes, but those platelets that do contain these 

organelles have, on average, 1 to 2 copies. Lysosomes contain protein- and carbohydrate-

degrading enzymes. The role of lysosomes in platelets has yet to be fully elucidated, though 

it is possible that these organelles play a role in endosomal digestion [75].  

There have also been reports on platelet organelles named T-granules. These granules 

were first described in 2012 [76] and contain TLR9, protein disulfide isomerase (PDI) and 

the SNARE family protein vesicle-associated membrane protein 8 (VAMP8). The prefix 

letter T stands for the tubular structure of these organelles. Toll-like receptors (TLRs) 2,4 

and 9 have been detected on platelets, and their expression is elevated during platelet 

activation [77,78]. Thon et al. proposed a pathway where T-granules are recruited to the 

platelet surface during activation and release TLR9 via VAMP8 and contribute to platelet 

secretion [76]. Others have noted that PDI is specifically located in the ER and thus the DTS 

of platelets and that of T-granules are more a compartment of DTS and not a specific 

organelle [79]. 



 

 

Figure 1. The ultrastructure and content of a resting discoid shaped platelet and its 

organization into four zones: the membrane system, the organelle zone, the peripheral zone, 

and the structural zone. [80]  

1.2.3 Platelet function 
 

1.2.3.1 Platelets promote hemostasis 

Platelets have multiple functions in the human body, the most notable being their role in 

hemostasis, ensuring the integrity of the endothelial cell linings of the vessel walls in the 

circulatory system. The platelets’ function as immune response modulators has been 

increasingly studied in recent years, as well as their pathogenic role in thrombosis, cancer 

immune evasion and metastasis.        

 Because high shear rates in contracted vessels can promote platelet aggregation and 

activation, endothelial cells effectively promote the resting state of platelets by secreting 

vasodilators nitric oxide (NO) and prostacyclin 2 (PGl2), thus limiting the platelet shear 

stress exposure (Figure 2A) [81–83]. In addition, during steady state, endothelial cells express 

on their surface ATPase CD39, which has the ability to hydrolyze circulating ADP, 

preventing ADP platelet stimulation [84]. NO and PGl2 have a direct effect on platelet 

activation by suppressing Ca2+ release from the DTS into the cytosol and pumping cytosolic 

Ca2+ out of the platelet [85,86]. This brake on Ca2+  efflux from the DTS into the cytosol is, in 

part, released by autocrine effects of dense granule secretion of ADP binding to the P2Y12 
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receptor, which inhibits the downstream signal of PGl2 binding [87,88]. PGl2 binds to 

prostacyclin receptor IP in the platelet membrane, while NO is diffused through the 

membrane; through their regulation of low cytosolic Ca2+, they inhibit aggregation, de-

granulation and cytoskeletal rearrangement [89].  

The actual formation of a platelet thrombus and, eventually, a hemostatic plug to stop 

bleeding is a complex process with multiple contributing factors and is intertwined with 

blood coagulation. Novel aspects of this process are still being discovered and debated in the 

platelet scientific community. As illustrated in Figures 2A and 2B, an injury to the 

endothelial cell lining, the interior of a vessel, exposes subendothelial collagen with a high 

binding affinity for von Willebrand Factor (vWF), which is expressed and secreted by 

endothelial cells [90]. The collagen-bound vWF caches nearby platelets by binding to platelet 

receptor GPIbα, a part of the glycoprotein complex Ib-V-IX. [91–93]. vWF self-association 

also plays a role in platelet adhesion, whereby circulating vWF can bind to platelet-bound or 

subendothelial vWF, a process increased by high shear rates [94,95].  

Glycoprotein VI and integrin protein complex α2β1 bind directly to the exposed 

collagen for more stable platelet adhesion and activation [96,97]. All of these receptor and 

receptor complexes have downstream signals that results in platelet activation and thrombus 

formation by upregulation of cytosolic Ca2+ from the DTS and extracellular space, release of 

ADP and thromboxane via de-granulation, and increased binding affinity of the integrin 

complex αIIbβ3 for fibrinogen [98–102]. In addition to vWF and collagen, the subendothelial 

extracellular matrix contains laminin, which mainly binds to the α6β1 receptor [103], and 

fibronectin, which binds to the α5β1, as well as αIIB3 [104] receptors and thrombospondin 

binding to GPIbα [105].  

The mechanism of platelet tethering to the subendothelial matrix is closely related to 

shear forces, with high shear forces triggering GPIbα and vWF binding [106], while low 

shear forces relate to platelet binding to collagen, fibronectin and laminin [89]. These first 

responders spread out and form a monolayer, secreting agonists to activate additional 



 

platelets, which are recruited to the injury site by P-selectin binding and rolling on activated 

endothelial cells. The rise in cytosolic Ca2+ in activated platelets increases 

phosphatidylserine (PS) exposure on the platelet surface, making it more procoagulant. PS 

on the surface of platelets and released microparticles provides binding sites for clotting 

factors that accelerate the coagulation cascade and the release of tissue factor (TF) (Figures 

2B and 2C) [107–109].  

The formation of a hemostatic plug is initiated via the extrinsic pathway when blood 

reaches TF in the outermost layer of the vessel, triggering the coagulation cascade that 

includes converting numerous clotting factors to their activated state. Both the intrinsic and 

extrinsic pathways come together in the common coagulation pathway to generate thrombin 

from prothrombin for the conversion of fibrin from fibrinogen to achieve a stable plug 

(Figure 2D).  

 

Figure 2. Hemostatic thrombus formation in flowing blood. (A) An injury to the endothelial 

lining with blood loss. (B) The binding of platelets at the site of injury. (C) Activation and 

recruitment of additional platelets to the site of injury. (D) Formation of a stable hemostatic 

plug of platelets and fibrinogen, is shown in red, stopping the blood loss [84]. 

 

Thrombin has dual counteracting roles in the coagulation and thrombus process. 

Thrombin activates platelets via the PAR 1 and PAR 4 receptors and generates fibrin, but it 
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also activates anticoagulant protein C, which, along with its cofactor protein S, inactivates 

clotting factors, thus acting as a brake on the coagulation cascade [84,110]. Eventually, 

plasmin is formed from plasminogen leading to fibrinolysis and clot degradation [111].  

Recently, with improvements in microscopic technology and the use of intravital 

imaging, it has been shown that there is an activation gradient in the hemostatic plug, with 

the core platelets close to the injury being procoagulant and highly activated mainly by 

thrombin, and platelets in the outer shell being P-selectin negative and less activated (mostly 

by ADP and thromboxane) [112,113]. Numerous platelet functional roles and attributes have 

been discovered by analyzing inherited and acquired platelet defects that often lead to 

thrombocytopenia, ineffective thrombus formation and coagulation.  

1.2.3.2 Platelets in immunological response 

The role of platelets promoting endothelial integrity and hemostasis has been recognized 

and studied for more than a century. More recently, additional roles of platelets have been 

recognized and intensely studied, including immune modulation and antimicrobial defense. 

Platelets are constantly patrolling the vasculature, making them ideal first responders of the 

immune system. In fact, platelets are equipped with diverse tools that play critical roles in 

direct pathogen response and leukocyte recruitment. Platelets contain pattern recognition 

receptors (PRR) including Toll-like receptors (TLR) that recognize pathogen-associated 

molecular patterns (PAMPs). TLRs are expressed on the surface of platelets and their 

extended pseudopodia, enabling sensing of foreign antigens [105–107].  

Platelets play a further role in innate immunity response by pathogen encapsulation 

[119,120] and secreting antimicrobial peptides like platelet factor 4 (PF4) and RANTES, 

which are stored in the platelet granules [121,122]. Platelet granules contain numerous pro- 

and anti-inflammatory factors that modulate the immune response [123]. Platelets also play a 

role in adaptive immunity by presenting foreign antigens to other immune cells [124]. 

Platelets not only interact with T cells by antigen presentation, but also by direct signaling 

with the CD40 ligand and receptor [125,126]. Platelets can promote neutrophil activation and 



 

neutrophil extracellular trap (NET) action [127].  

How platelets inherit their multiple immune functions has not been fully elucidated. 

It has been proposed that platelets evolved from the hemocyte found in invertebrates that, in 

addition to immunological roles, promotes clotting of the hemolymph tissue, the invertebrate 

analog to vertebrate blood [128]. Recent investigations have provided evidence that platelet 

immunological attributes are obtained from the MK precursor cell.  

In a recent publication by Cunin et al., a phenomenon called emperipolesis (where an 

intact cell is found in the cytoplasm of another cell) was studied in vivo and in an in vitro 

inflammation mouse model. Using video and figures generated with confocal and electron 

microscopy, Cunin et al. elegantly showed neutrophil and MK attachment and the 

subsequent entry of the neutrophil into the MK cytosol. Once inside, a fusion of the 

neutrophil membrane and the DMS of the MK occurs, thus a transferring the neutrophil 

membrane to the membrane of future circulating platelets. The neutrophil attaches to the MK 

via β-integrin and enters the MK through a vacuole termed emperisome that releases its 

cargo directly into the cytosol of the host cell [129,130].     

 Recent data shows evidence of platelets extending their immune modulation role 

through extracellular vehicles (EVs) that contain proteosome activity, and the ability for 

antigen presentation via MHC-I in mice. Due to their small size, EVs are able to cross tissue 

barriers and enter the lymphatic tissue and organs where antigens are presented to cytotoxic 

CD-8 T-cells [131].         

 

1.2 Platelet miRNA and transcriptomics 
 

1.3.1 The platelet proteome 
Megakaryocytes upregulate platelet-specific proteins that are sorted into the forming platelet, 

providing newly formed platelets with the majority of proteins essential for platelet function, 

both in resting and activated states [132]. The platelet proteome appears to be about 85% 

stable between healthy individuals [45,53,133]. The platelet proteome profile can be 

influenced by the ability of platelets to endocytose plasma proteins from circulation [134,135] 
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and to degrade proteins via the ubiquitination and proteasome pathway [136,137]. In addition, 

a large proportion of platelet proteins are represented at the transcriptomic level. Warshaw 

et al. carried out important studies in the 1960s establishing active protein translation in 

platelets using 14C-labeled amino acids [138]. The labeled amino acids were taken up by the 

platelets and incorporated into platelet protein extracts. The authors also showed that this 

protein synthesis was inhibited by puromycin treatment, which affects protein translation in 

the ribosome, but not by actinomycin treatment, which inhibits transcription. The authors 

further speculated that platelet protein translation included mRNA from megakaryocyte 

precursor cells and not, for example, cytoplasmic DNA [138].    

 In the late 1960s, other investigators reported on labeled amino acid incorporation 

into platelet contractile proteins from stable mRNA transcripts and on the existence of 

ribosomes in platelets [139–141]. Further evidence and analysis of platelet mRNA were 

established in the late 1980s after the invention of polymerase chain reaction (PCR) 

technology [142]. Following these investigations, integrin-regulated and signal-dependent 

protein translation became recognized [143–147], as did continuous continues translation 

[148], a process also detected in blood bank stored platelets [149].     

 RNA sequencing data indicate that platelets harbor 9000 to 9500 protein coding mRNA 

transcripts [69,150]. A recent study using a genome-wide transcripts database for platelets 

and megakaryocytes, generated by the Blueprint epigenome project and data from the 

analysis of  6 different cohorts, concluded that platelets contain 14800 protein coding 

transcripts, with high quantitative similarity between platelets and megakaryocytes [151]. 

 There is some debate on how selective or random the megakaryocyte packaging of 

mRNA into pro-platelets occurs relating to observations of a weak correlation between 

platelet transcriptome and proteome [152–154]. Despite the lack of correlation between 

mRNA transcripts and expressed proteins, the platelet transcriptome has very low inter-

individual variability and it has been speculated that the high number of transcripts with no 

corresponding protein in steady state platelets reflects the dynamics of the platelet proteome 



 

in various platelet functions [155–157].  

1.3.2 Post transcriptional control in platelets 
Transcriptome translation into proteins can be regulated via various pathways including the 

mTOR pathway, mRNA splicing, intron retention and micro RNAs (miRNAs). All these 

post-transcriptional regulation tools exist in platelets [158–160].  

Micro RNAs are small, non-coding, 18 to 24 nucleotide post-transcriptional 

regulators that many cell types utilize for fine tuning of their gene expression [161,162]. 

These small RNAs bind to complimentary regions of their target mRNA, inhibiting 

translation into proteins and, in most cases, facilitating degradation of their target mRNA 

[163]. Micro RNA genes are transcribed by RNA polymerase II, generating single-stranded 

primary-miRNA (pri-miRNA) transcripts with a double-stranded hairpin loop that contains 

the mature miRNA sequence. Processing of miRNA within the nucleus is initiated by 

DGCR8 RNA-binding protein that recognizes pri-miRNA transcripts and directs the 

ribonuclease III enzyme DORSA cleavage at the single/double strand junction. DORSA 

enables the release of a double-stranded pre-mRNA hairpin that is exported out of the 

nucleus by the shuttle protein Exportin 5. In the cytoplasm, pre-mRNA is captured by TRBP 

RNA-binding protein and is further processed by RNase Dicer, producing a short double-

stranded pre-mRNA. The RISC protein complex is the next stop in the miRNA processing 

chain. A mature single-stranded miRNA is generated and guided by Argonaut 2 (Ago2), 

which binds to target mRNA, inhibiting translation or facilitating its degradation by 

endonuclease activity of Ago2 [164–167].      

 Single miRNA can have multiple mRNA targets. Alternately, a single mRNA can be 

regulated by different miRNA. Micro RNA and mRNA target pairing is regulated by the 

seed region, a sequence located between positions 2 and 8 at the 5’ end on the miRNA, and a 

complementary sequence predominantly in the 3’ untranslated region (UTR) on the mRNA 

target, although miRNA binding sites in the 5’ UTR have also been reported (Figure 3B). 

The binding of the miRNA seed region follows the classical Watson-Crick base pairing rule; 

however, complete homology is not required for miRNA binding and mRNA regulation. 
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Complete homology is related to mRNA degradation, whereas incomplete homology is more 

related to temporary translation inhibition where miRNA can attach and detach again, adding 

to the versatile role of miRNA as post-transcriptional regulators [168–171].  

 Serial analysis of gene expression (SAGE) has revealed that platelet mRNA transcripts 

are on average longer than transcripts in nucleated cells and, in addition, have a significantly 

longer 3’ UTR region, a possible indication of the increased role of miRNA 

posttranscriptional regulation in platelets compared to other nucleated cells [172]. 

 Transcription and miRNA processing within the nucleus is non-existent in platelets. 

However, platelets contain all the necessary components and machinery for the cytoplasmic 

part of miRNA maturation and mRNA binding [173]. The generation process of miRNA and 

mRNA binding is illustrated in Figure 3.  

 The existence of miRNA and their role in platelet function has been recognized and 

studied in recent years. According to an miRbase 2019 publication [174], 2654 mature human 

miRNA have been discovered and around 500 to 800 of them have been detected in platelets 

[175,176], regulating various platelet processes including platelet activation, reactivity, de-

granulation and apoptosis [177–184]. Megakaryocyte maturation and platelet formation are 

also influenced by miRNA regulation [185–187].  

 An important study by Rowley et al. analyzed the effects of using conditional 

deletion of the Dicer enzyme in megakaryocytes and platelets in mice. This inhibition of the 

miRNA processing process had a reduction effect on most of the platelet miRNA that 

resulted in a platelet phenotype with increased αIIbβ3 receptor complex on the platelet 

surface. These platelets were more pro-thrombotic than wild-type platelets, implying that 

Dicer-processed miRNA regulate platelet reactivity and are important in both normal and 

pathogenic thrombus formation [188]. Platelet reactivity level is a contributing factor to 

vascular disease, including atherosclerosis and thrombosis [189,190]. 

 Platelets are a major source of circulating miRNA, making platelet miRNA an 

attractive biomarker for platelet-related pathological processes [191,192]. A recent study 



 

proposed a q-PCR test panel of specific miRNA as biomarkers of platelet activation and a 

tool to assess the risk of thrombosis or anti-platelet therapy [193]. As mounting evidence 

have shown a role of miRNA in platelet function, there is growing interest in miRNA 

research in platelet storage. Several studies have focused on miRNA in platelet blood 

banking, revealing active miRNA post-transcriptional regulation and changes in the 

miRNAome during storage.  

 Some reports have proposed using specific miRNA as markers of storage lesion or as 

potential targets in controlling the onset and acceleration of platelet storage lesion (PSL) 

[194–198]. Although this is an interesting possibility for tackling PSL, the modern 

complexity, practicality, and cost of implementing such methods in platelet storage practice 

need to be considered. 

 In addition to investigating changes in the platelet miRNA profile during storage, the 

effects of PC processing have also been investigated. Osman et al. reported pathogen 

inactivation (PI)-related alterations in six out of eleven miRNA included in the analysis of 

single donor apheresis; the same alterations were not observed in untreated or irradiated PCs. 

As additional steps in PC processing tend to affect the metabolic activity of platelets and 

contribute to PSL, and there are implications of miRNA having a role in the activation of 

platelets, some alteration in the miRNA profile would be expected. Our own analysis on BC 

PCs, published in paper I, did not confirm Osman’s results on miRNA; in our study, only a 

single miRNA displayed treatment-related effects [199]. These results are discussed in more 

detail in paper I and in the discussion section of this thesis. 

 Platelet-derived Microparticles (MPs) size (100  nm to 1μm diameter), are diverse 

EV´s that contain cytoplasmic components, including proteins and nucleic acids. MPs have 

been implicated as key players in platelet-related hemostasis, as well as in pathogenesis 

[200,201]. Over 20 years ago, it was established that platelets release MPs during storage 

[202]. Different collection and processing methods can influence MP content [203], and it has 

been determined that PCs with high MP content are pro-coagulant [204,205]. More recently, 
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it has been shown that MPs released by platelets contain miRNA that can be delivered to 

other cells, potentially serving as a remote control of neighboring cells’ gene expression 

[206–208].  

 

Figure 3. (A) Multiple editing steps in the generation of a mature single-stranded miRNA 

(B) RISC-bound miRNA binding to the seed region of an mRNA transcript [164]  
 

1.4 Platelet Releasate  
Platelets communicate with cells in their environment directly by receptor binding and 

surface expression of molecules like CD40L and P-selectin glycoprotein ligand-1 (PSGL-1), 

and by releasing various BRM factors [209–211]. As graphically descripted in Figure 4, 

during storage platelets are gradually activated and release a variety of factors and 

extracellular vesicles into the extracellular space. These factors and vesicles are collectively 

termed platelet releasate, and have possible implications in transfusion-related adverse 

events (TRAEs) via horizontal information transfer (HIT) [212]. In addition to releasing MPs 

by outward budding and plasma membrane fission platelets release other EV’s like 

exosomes of endosomal origin from multivesicular bodies by exocytosis [213]. Platelets can 

shed proteins, referred to as the sheddome, that include the ectodomain of membrane 



 

proteins proteolytically cleaved on the surface of the platelet. Examples of sheddome 

proteins are glycocalicin (the soluble form of GPIbα), GPVI and soluble CD40L (sCD40L) 

[214–216]. Platelet degranulation involves secretion of the granule content via exocytosis of 

the plasma membrane and OCS [214]. 

Secretomics is a category of platelet proteomics that specifically analyzes the 

secretion of proteins out of the platelet. Many different proteins have been detected in the 

platelet secretome, with some inter-individual variation, although some analyses indicate that 

there is a core set of around 300 proteins with limited inter-individual variation [132,154,217]. 

As discussed in Chapter 1.2.3, platelets are major players in immunological response 

and, therefore, the immune modulating effects of allogenic PC transfusions are of research 

interest. The activation status of platelets, protein surface expression and secretion into the 

storage media have been investigated in relation to adverse events. TRAEs induced by 

transfusion of PCs are more frequent than those from plasma or red blood cell (RBC) 

transfusions [218]. 

Standard PC storage conditions (room temperature with agitation) keep platelets 

metabolically active. These storage conditions, as well as exposure to additional stimulants 

like anticoagulants, preservatives, gases and plastics, gradually activate the stored platelets 

over time, with release of granule contents into the storage media [219]. Platelet-derived 

components role in TRAE was recognized when leukocyte reduction of PC units did not 

have the same effect on reducing the TRAE as observed in leukocyte reduced red cell units 

[220,221]. It was subsequently established that plasma components in the PCs, rather than the 

platelets themselves, were the source of these effects. The concentrations of specific 

biological response modifying cytokines, for example IL-6,IL-8 and TNF-α, have been 

found to be related to increases in TRAEs, such as febrile nonhemolytic transfusion reaction 

(FNHTR), and these plasma components increase in concentration in correlation with PC 

storage time [222–224]. 

A well-known platelet-released culprit in TRAE is sCD40L [219]. CD40L is in 
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abundance in α-granules, and upon activation is highly expressed on the surface of platelets. 

It is subsequently cleaved from the surface and released as soluble sCD40L. Reports on the 

cellular distribution of CD40L estimate that platelets contain >95% of all CD40L in 

circulation [219,225]. Different cell types express the CD40 receptor and are potential targets 

of transfused sCD40L; these include T-cells, endothelial cells, monocytes and their 

derivatives, macrophages. CD40L binding to endothelial cells can promote leukocyte 

recruitment and migration in to inflamed tissues. 

Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion- 

related mortality and, although not without debate, sCD40L has been implicated in 

pathogenesis of TRALI by neutrophil priming in the lungs [226–228]. It is clear that 

TRALI is a multifactorial condition and the underlying medical conditions of a 

patient have an impact on outcomes, as does the patient’s own platelets. In animal 

studies, allogenic platelet lipids have also been implicated in TRALI[229]. A recent 

study by Tariket et al. using a mouse model of the disease and a neutralizing sCD40L 

antibody showed reduced pulmonary edema and neutrophil activity [230]. 

RANTES a α-granule-stored chemokine, has also been detected in relatively high 

concentrations in stored platelets has been implicated in TRAE-like allergic reactions and 

FNHTR [231,232]. Many other secreted BRMs have the potential to induce TRAE in 

transfused patients, especially pro-inflammatory ones like PF-4, OX-40, MIP-α, IL-27 and 

IL-13 [233–235].          



 

 

Figure 4. An illustration of various release mechanisms in platelets, including secretion of 

proteins and release of microparticles and exosomes into the storage media. Also shown are 

potential effector cells in adverse transfusion reactions [212]  

 

1.6 Platelet blood banking and transfusion 
 

One blood donation can save up to three different patients if the whole blood (WB) is 

separated into three components: plasma; red blood cells (RBCs); and PC. Modern health 

care uses blood component therapy, as it reduces unnecessary exposure of patients to 

components in WB when only specific elements from the WB donation are needed; for 

example, RBCs can be used to increase hemoglobin, while coagulation factors can be 

obtained from plasma. In developing countries and on military front lines, WB transfusions 

are still in practice. There are some reports that leukoreduced WB are preferrable for some 

indications, namely active bleeding [236,237].  

 
 
 
 



23 
 

1.6.1 Harvesting platelets 
Since blood component processing was introduced, different techniques for the 

collection and processing of PCs for storage in blood banks have been developed. One such 

technique is the single donor platelet-rich plasma (PRP) method practiced in most processing 

centers in the USA, and the second main technique is the pooled BC platelet method, which 

is preferred in Europe. The key differences between these two methods are the WB 

centrifugation and separation steps. In the BC method, there is a high g-force hard spin that 

separates the WB into plasma, a RBC layer and a BC layer containing platelets and 

leukocytes. The BC layer is removed, and at this point contains a small amount of the RBCs 

and plasma. Commonly, four to six BC are pooled, along with additive solutions, to create a 

single dose of PC product. The BC pool is then subjected to a soft spin, separating the 

platelet concentrate from the leukocytes.  

In the PRP, method there is a soft spin with low g-force that separates the platelets 

and plasma (in one layer) from the RBCs and 30-50% of the leukocytes. A second hard spin 

separates most of the plasma from the platelets, producing a platelet pellet that is generally 

resuspended in 50 to 60 mL of residual plasma. In order to avoid multiple transfusion of 

small PRP units, it is common practice to pool five to ten PRP units to generate a single PC 

product for transfusion. Both processing methods include leukoreduction steps to reduce 

incidents of TRAE. Additional processing steps are applied to further deplete platelets of 

leukocytes for the prevention of transfusion-associated graft vs host disease (TA-GVHD). 

These methods include irradiation, photochemical inactivation and possibly additional 

filtering [235,238,239].  

Of the two platelet processing techniques, PRP has a longer history; however, there 

are only few countries still using this method. Comparative analysis has shown that there are 

higher levels of aggregation and activation of platelets using PRP, resulting in acceleration 

of PSL compared to the BC method. The close proximity of the platelets in the platelet pellet 

after the second spin and the low volume, high platelet count storage of PRP likely produces 



 

these difference observed [240]. Additional advantages of the BC method are that: 1) it is 

more automated process with a streamlined workflow in compliance with good 

manufacturing practice (GMP); 2) there is higher plasma recovery for fractionation or 

component production. On the other hand, there is lower RBC recovery using the BC 

method compared to the PRP method [241].  

Apheresis is an additional option for acquiring platelets for medical use. With this 

technique, which uses built-in centrifuging and automatic addition of anticoagulants and 

storage solutions, specific components of the blood are collected, while other components 

are circulated back into the donor. Single donor apheresis PCs minimize donor exposure, 

lowering the risk of infectious agent transmission and can be antigen- and human leukocyte 

antigen (HLA)-matched to specific patients.  

There have been reports of lower frequencies of bacterial contamination in apheresis 

compared to PRP platelets. However, these observations have not been confirmed when 

comparing apheresis to the BC method [242,243]. The apheresis collection technique does 

have some drawbacks. It is time consuming and requires considerable expertise [241]. During 

apheresis collection, there is a risk of citrate toxicity due to the potential for citrate to be 

infused back into the donor, where it can bind Ca2+ in donor plasma causing hypercalcemia. 

Incorrect use of apheresis machine can do harm to the donor.  

There are conflicting reports on donor adverse events favouring apheresis [244] or 

WB [245,246] collections. Regarding transfusion efficacy reports, apheresis and BC are 

comparable, while PRP inferiority has been documented compared to apheresis [247]. In our 

own research department of the Blood Bank in Iceland, the metabolomic activity during 

storage has been analysed and compared for BC and apheresis. In these analyses, two shifts 

in metabolic activity resulting in three different metabolic phenotypes relating to zero- to 

three-, four- to six- and seven- to ten-day old PCs were discovered. Apheresis PCs showed a 

clearer activation phenotype than BC PCs [248,249]. It has been noted in some reviews on 

this subject that the overall differences between the collection and processing methods are 
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minimal, and more focus and effort should be on standardizing platelet transfusion and better 

defining platelet quality and donors from whom high quality platelets can be produced. A 

mix of WB and apheresis methods for platelet collection is likely to make the most of 

donated blood and result in stable platelet stocks and availability [250][241].   

 Along with bacterial contamination risk, a PSL limits the storage time of PC. Due to 

their storage conditions, platelets are gradually activated and display a metabolic shift during 

storage [251]. Consequently, granules release their contents into the storage media. Some of 

these contents have autocrine effects, which promotes further activation, shedding of surface 

receptors, PS exposure, EV release, apoptosis-like lesions and, ultimately, platelet lysis. PSL 

affects in vitro aggregation and in vivo viability and recovery [252–257]. Thus, specific 

storage solutions, also known as platelet additive solutions (PAS), have been developed to 

reduce PSL.  

1.6.2 Platelet additive solutions 
The first generation of PAS were developed in the 1980s, and since that time there have been 

multiple generations with various combinations of nutrients and buffers. All but one 

generation of PAS contain citrate anticoagulant, and generally PAS contains acetate as a 

glucose substitute. Acetate is a substrate for mitochondrial oxidative phosphorylation, 

promoting less lactate production than glycolysis and results in optimal pH levels. Some 

generations of  PAS contain phosphate to stabilise pH, potassium and magnesium as buffers 

on the glycolysis rete, gluconate to limit glucose consumption, and glucose, particularly 

when plasma is highly diluted with PAS [258,259]. PAS were also developed as a substitute 

for plasma used for fractionations or transfusion. The dilution of plasma by PAS reduces the 

rate TRAE, as donor plasma may contain immune-modulating components as well as HLA 

and human platelet antigens (HPA) antibodies [251,260,261].  

PSL accelerates with increased storage time, as does risk of bacterial contamination of 

clinical relevance [26,253]. With improved aseptic protocols during collection, diversion of 

the first aliquot of the WB collection, donor deferral regulation and rigorous screening, the 



 

rate of transfusion transmission of pathogens has dramatically decreased in recent times. 

Even with these safety measures, TTBI still occur at an estimated rate of 1:2000 to 

1:100,000, resulting in increased morbidity and high mortality rates [262–264]. To decrease 

the risk of TTBI, some regions limit PC storage time to below five days: for example, 

maximum storage time is four days in Germany and three days in Japan. Even with such 

short storage times, TTBI cases are reported in these countries. Limiting storage time results 

in challenging stock management, with both PC shortages and high discard rates [265–267]. 

To maximise the storage of safe PCs, bacterial testing or bacterial inactivation treatment can 

be applied. Using conventional bacterial culture testing, there usually is a minimum holding 

period of 24 to 48 hours before PCs are released [16].  

1.6.3 Bacterial screening 
Compared to the short storage time for PCs, the holding time for primary bacterial 

testing is relatively long. In general, bacterial screening tests require a holding period of 24 

up to 72 hours for growth of bacteria in culture or in the PCs themselves for detection. The 

longer the holding period, the greater the sensitivity and specificity of the test, especially 

concerning slow-growing bacteria [268]. Culture for up to seven days is common and in 

many instances a positive result is reported after the PC has already been transfused 

[269,270].  

Rapid tests have been developed that produce results within 4 hours. Rapid methods 

include nucleic amplification tests (NAT) targeting specific strains of bacterial DNA and 

global tests targeting bacterial 16s or 23s ribosomal RNA [193,271,272]. Tests applying 

nucleic acid staining and flow cytometry techniques have been developed but are currently 

not used in routine practise [193]. Rapid antigen tests that detect bacterial peptidoglycans or 

lipopolysaccharide and lipoteichoic acids can be used as standalone tests for inventory 

screening or in combination with primary culture tests to prolong platelet storage for up to 

seven days [273,274]. To maximise bacterial screening sensitivity, large volume primary 

culture with secondary culture or rapid detection release tests can be used in combination. 

Rapid antigen release tests are less sensitive than secondary culture tests, resulting in a 
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higher risk of false negative results, while secondary culture testing later during storage 

might detect clinically insignificant bacterial contamination [275].  Some of the rapid 

detection systems are complex, with a built-in risk of human error.  

Pathogen screening involves fewer processing steps and less stress inflicted on 

platelets compared to the use of pathogen inactivation (PI) treatment. However, there can be 

some added risk of contamination when sampling PCs for bacterial testing, especially when 

multiple testing at different time points is required or during retesting when initial test results 

are inconclusive. As in most biological testing, these tests are not 100% accurate and can 

produce false positive results, resulting in the potential discarding of uncontaminated 

products, or, more seriously, false negative results that can lead to TTBI and sepsis in 

transfusion recipients [276]. With the goal of producing safer PCs with maximum storage 

time, methods for inactivation of a broad range of pathogens – viral, bacterial and protozoan 

- have been developed.  

1.6.4 Pathogen inactivation technology 
There are three pathogen reduction methods available today for PCs, all of which 

utilize photo or photochemical techniques: the amotosalen-UVA Blood System (Cerus 

Corporation, Concord, CA, USA); the Riboflavin-UVB PRT (Pathogen Reduction 

Technology) system (Terumo BCT, Leakwood, CO, USA); and the UVC-Platelet system 

(Macopharma Mouvaux France). All three methods illuminate the product with UV light of 

different wavelengths. The Theraflex system uses no photosensitisers and relies solely on 

UV-C treatment, which causes pyrimidine dimers in nucleic acids and thereby preventing 

replication of pathogens and leukocytes [277]. The Mirasol system also includes the addition 

of the photoreactive compound riboflavin, while Intercept uses an amotosalen additive [278]. 

Riboflavin is vitamin B2. It binds to a range of biomolecules including nucleic acids. With 

UVA/B light treatment, numerous molecular changes occur, including formation of reactive 

oxygen species (ROS) that damage and cause breaks in DNA and RNA, preventing 

replication of pathogens and residual leukocytes [279]. As vitamin B2 is naturally present in 



 

human circulation, there is no need for extra measures to remove leftover riboflavin. 

Amotosalen is synthetic version of the plant-produced organic compound Psoralen that will 

intercalate in helical regions of nucleic acids and, upon exposure to ultraviolet A (UVA) 

light, forms permanent adducts preventing transcription and replication pathogens [280,281]. 

amotosalen-UVA also includes a PC incubation phase with a compound absorption device 

(CAD) for the removal of residual amotosalen to avoid toxicity [282].  

Of the available technologies, the Intercept system is the most studied and has the 

longest history of routine use, with clinical approval in Europe and the USA. Mirasol 

received a CE mark in 2007 and Theraflex in 2009. Intercept is currently in use in more than 

40 countries, and Mirasol in 20. Theraflex is still being clinically evaluated and is currently 

not in routine use [283]. As PI technology effectively inactivates and reduces the viral load of 

the most common and serious transfusion transmitted infections TTI, including HIV 

(Intercept, Mirasol), HBV (Intercept) and HCV (Intercept), theoretically by implementing 

PI, blood collection establishments could replace not only bacterial testing but also 

expansive serological and nucleic acid testing [284–286]. Many reports on PI efficacy 

provide results on log reduction in PCs spiked with relevant pathogens. However, these 

reports have been criticised for lack of standardization and failure to assess the efficacy of PI 

to prevent infection [287]. A recent summary of the amotosalen-UVA infectivity efficacy of 

in-vitro cell lines and in-vivo animal models provides further evidence supporting the safety 

of replacing some of the blood bank traditional screening with PI technology, although 

limited effects were observed for some pathogens like HEV [288]. In general, PI treatment 

does not efficiently reduce prions and some non-enveloped viruses, like HEV [34].  

While extremely rare, viral screening can be subject to false negatives due to human 

error, undetectable early infection window and equipment malfunctions. Also rare, but 

occurring at a higher rate than false negatives, false positive screens can cause anxiety and 

discomfort for the donor [284,289–291]. The only true test for the safety of replacing viral 

screening with PI is real life data, and there is likely to be some reluctance for legislative 
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change in that direction. An important consideration is that PI methods are likely to also 

inactivate emerging pathogens for which there are no available tests. The option of 

protecting the PC inventory and, as a result, patients is a valuable attribute, as was evident in 

the recent Zika virus epidemic in the Americas and in the global SARS-CoV-2 pandemic 

[292]. To date during the SARS-CoV-2 pandemic, there have been no reports of transfusion 

related transmission of the virus, but numerous reports show successful inactivation by PI 

methods [293–297].  

 Even with the acknowledgement of PI efficacy in reducing TTI, there are concerns 

about reduced quality of PI PCs relating to lower platelet counts, platelet damage, increased 

activation and accelerated PSL. Potentially, these in vitro-recorded effects of PI on PC could 

translate into decreased hemostatic efficacy with increased PC and RBC utilization [298]. 

Each additional processing step during platelet collection is likely to induce cellular stress, 

leading to some degree of reversible or irreversible damage or changes to cellular state. To 

test these effects, a number of molecular tests, including functional tests for clot formation 

and coagulation, are available. Published in vitro results on the effect of PI on platelet quality 

from different studies sometimes contradict each other, highlighting possible impacts of 

different storage solution, type of plastic used in collection and storage bags, various 

collection methods, sample preparation and even donor variation when comparing results 

from different investigators.  

To date there is no global gold standard test for platelet in vitro quality to give a 

decisive answer on the impact of different processing protocols. Compiling the available  

data from reports on in vitro analysis reveals that PI reduces platelet quality to some extent, 

at least at the laboratory level, albeit to different degrees depending on the type of marker 

and PI product used in the analysis [299–301]. A recent review by Feys et al. summarizes the 

different biochemical consequences of the three commercially available PI methods [300]. 

Effects on nucleic acids, miRNA and mRNA, which thus affect the platelet miRnome and 

transcriptome, have been attributed to amatosalen UVA treatment in two 2015 publications  



 

by Osman et al., though donor variation and different storage solution effects could not be 

ruled out [302,303]. In a later publication using samples from their 2015 analysis and small 

RNA sequencing, the same group of researchers concluded that the miRNA profile of 

platelets was not affected by amotosalen-UVA or riboflavin-UVB. The investigators 

recognized specific loading of miRNA in platelet MPs that is hampered specifically by 

amotosalen-UVA treatment or the PAS (SSP+) additive solution [123]. The interaction of 

amotosalen and riboflavin with nucleic acids like mRNA, long non-coding RNA (lncRNA) 

is likely to occur to some degree, although the effect of this interaction on platelet quality or 

efficacy needs further investigation. The potential transcriptome effects PI treatment seem to 

only minimally affect the platelet proteome [304,305].  

It has been documented that amotosalen intercalates into platelet mitochondrial DNA 

(mtDNA) without affecting membrane potential, or causing depolarization [306,307]. 

Amotosalen binding to mtDNA is often used as a quality control marker for successful PI 

treatment [308]. Amotosalen can bind to lipids in the platelet cell membrane, affecting signal 

transduction, specifically Akt protein kinase phosphorylation of phosphatidylinositol-tris-

kinase (PI3K), which is involved in degranulation, aggregation and thrombus formation 

[309].  

Riboflavin-UVB treatment has been shown to affect the platelet proteome in the form 

of oxidative damage [310][279]. ROS superoxide anion forms in plasma and PCs treated with 

Riboflavin-UVB display oxidative damage and significantly carbonylated proteins, a state 

associated with aging and disease [311]. Several protein modifications relating to Mirasol 

have been documented and include increased phosphorylation of VASP, a regulator of the 

cytoskeleton, and p38 mitogen-activated proteins kinases (MAPK) [312,313]. This triggering 

of p38 MAPK signalling has been implicated in increased apoptosis and altered function of 

mitochondria [314,315].  

The UV-C system has yet to be put to routine use and is still under clinical assessment, 

so there are fewer reports on in vitro effects than there are for the amatosalen UVA and 
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Riboflavin-UVB systems. There is some data on possible photolysis effects that can dissolve 

disulphide bonds that, for instance, connect the fibrin receptor complex αIIbβ3, resulting in 

increased ligand binding, clearance from circulation and platelet exhaustion [316,317].  

As noted in the review by Fyes et al. all three PI methods affect the metabolic activity 

of PI-treated platelets resulting in increased lactate production. Lactate concentration in 

transfused PCs has consistently been correlated with platelet recovery and survival [318,319]. 

UV-C and ribioflavin-UVB have been shown to have more severe effects on the metabolic 

activity of platelets, with increased lactate production compared to amatosalen UVA 

especially after day 5 of storage. In fact, some blood collection institutions have deemed 

ribioflavin-UVB treated PCs not to be of acceptable quality beyond 5 days of storge 

[320,321].  

1.6.5 Safety and efficacy? 
As has been clearly documented, the increase in safety using PI comes at some cost 

due to reduced quality, and to date the PI debate is mainly focused on the balance of these 

two observations as well as the cost of implementation. The amotosalen-UVA system was 

tested in two large controlled, randomized, double-blinded clinical trials involving 

thrombocytopenic patients, the SPRINT trial in the USA and euroSPRITE trial in Europe 

[322–324]. In both trials, hemostatic efficacy in controlling bleeding was comparable for PI 

and control PCs. In the SPRINT trial analysing single donor apheresis PCs, results showed 

that for amotosalen-UVA PCs, the 1 hour corrected count increment (CCI) was lower, 

transfusion interval was shorter, number of PCs per patient was higher and recorded adverse 

events was lower compared to the control, a difference not recorded in the European trial 

analysing pooled BC PCs. Data from these trials has been extensively reanalysed and has 

come under some criticism, specifically with regard to the use of CCI and the World Health 

Organization grading system for bleeding [325]. CCI analysis alone may not be the best 

indicator of platelet transfusion efficacy and contribution to patient blood coagulation status 

[326]. A systematic review on storage duration of PCs transfused for critically ill and 



 

hematology patients observed lower CCI for older PCs;  however, there was no effect on 

clinical outcomes such as bleeding, sepsis or mortality [327].  Thromboelastography (TEG) 

and thromboelastometry (TEM) have gained increased popularity as point-of-care assays to 

guide patient blood transfusion management [328][329]. Leitner et al. conducted a 

prospective observational study that showed a significant improvement TEM parameters 

after transfusion of PI PCs in patients receiving hematopoietic stem cell transplants. This 

post-transfusion improvement for the TEM assay did not necessarily correlate with CCI or 1-

hour post transfusion increase [330].  The patient population in the SPRINT and euroSPRITE 

trials was thrombocytopenic, mostly due to myeloablative therapy and receiving prophylactic 

transfusion, covering about half of the patient population but excluding the other half, which 

included patients experiencing trauma, circulatory disease and digestive system disease 

[325].  

A number of clinical trials have been conducted on PI PCs, with amotosalen-UVA 

being the most tested technology. A meta-analysis by Estcourt et al. [283], which included 

ten amotosalen-UVA trials and three riboflavin UVB, concluded that transfusion of PI-

treated platelets does not increase the risk of death, bleeding, or serious side effects, though 

there was evidence of a reduction in platelet CCI, shorter intervals between transfusions, and 

increased risk of platelet transfusion refractoriness related to the transfusion of PI-treated 

platelets. Subgroup analysis between the PI technologies favored the amotosalen-UVA 

technology for all-cause mortality and transfusion intervals [283]. A recent study, not 

included in the Estcourt et al. meta-analysis, indicated that amotosalen-UVA treated PCs are 

non-inferior to standard platelets stored in PAS, but inferior to standard platelets stored in 

plasma [331]. Most of the existing clinical data is from trials analyzing transfusion efficacy in 

thrombocytopenic hematology patients requiring prophylactic transfusions. In a clinical 

study on the transfusion efficacy of amotosalen-UVA treated platelets in actively bleeding 

and massively transfused patients, PI treated platelets were non-inferior to standard platelets 

[332].  
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In addition to clinical studies, hemovigilance studies have also shown positive 

outcomes from using amotosalen-UVA treated platelets [333,334]. Amotosalen-UVA PI 

technology has been implemented in over 300 blood centers, with a positive safety profile 

concerning TTBI. In 2011, Switzerland did a nationwide implementation of amotosalen-

UVA PI and in a report comparing rates of  TTBI 7 years before and 7 years after 

implementation there were zero incidents after PI implementation , compared to 16 recorded 

cases, including three fatalities, in a seven-year period prior to implementation [335]. 

Similarly, regions in Belgium and France which have implemented amotosalen-UVA PI 

have recorded significantly lower rates of TTBI compared to prior implementation [336]. 

There have also been reports of reduced rates of other adverse events such as febrile and 

allergic reactions, likely resulting from inactivation of leukocytes by PI [337][324].   

Regarding cost, there is usually some increase in cost if a new preventive or detection 

test is simply added to existing ones. With the use of PI, other blood safety measures can be 

relaxed or discontinued, such as x and γ irradiation, and bacterial and viral screening. 

Logistics can also be simplified in a standardized one-product-for-all inventory. Reduction 

or prevention of TTBI and other adverse events should also be included in cost estimates 

[338]. 

Over a million amotosalen-UVA treated PCs have been transfused safely worldwide 

and clinical studies have reported favorable results [283,324,332,339–343]. Nonetheless, there 

is ongoing debate about the clinical value of implementing amotosalen-UVA PI technology 

[299,344]. The debate between increased blood safety of PI vs hemostatic efficacy is likely to 

continue.  

The concept of pathogen inactivation was first introduced in the 1980’s after the 

discovery of TTIs of HIV and HCV. At first, PI was only considered for plasma and plasma 

fractionation products. At that time, there was limited evidence or interest in the complexity 

of platelets and their role in various biological process other than hemostasis. Platelets were 

considered cellular “dust”, with little or no activity involving nucleic acids. Currently, there 



 

is an abundance of evidence that platelets rely on mRNA, miRNA, and functional 

mitochondrial DNA for multiple functions. The currently available PI techniques inflict 

damage on pathogen nucleic acids, preventing replication and proliferation; considering that 

this is the method of pathogen inactivation, it is likely that nucleic acids of platelets are 

affected to some extent. The additional processing steps included in amotosalen-UVA 

technology also inflict more stress on the collected platelets, resulting in increased activation 

and accelerated storage lesion. Despite these observations, amotosalen-UVA PCs have been 

shown to have acceptable hemostatic efficacy in many clinical trials. Just as there is no 

universal in vitro marker for PC quality, the method of assessing PC efficacy in clinical trials 

is also not universal, nor is there a consensus on what platelet counts should trigger treatment 

with PC transfusion [16]. More direct and productive clinical trials are warranted, as laid out 

in a recent round table discussion [325]. When predicting potential effects of in vitro results 

on efficacy, the investigator should consider the intended use of the PCs, as it has been 

suggested that slightly activated platelets have better response times to injury. One major 

variable in assessing the impact of a new technology in the effectiveness of PC transfusion is 

the lack of evidence on overall effectiveness of PC transfusions, especially as prophylactic 

treatment in preventing bleeding [345,346]. Based on the available evidence, it appears that 

implementation of amotosalen-UVA impacts morbidity and mortality rates due to lowering 

of TTBI, and there is insufficient evidence showing negative effects on morbidity and 

mortality relating to decreased quality of amotosalen-UVA -treated PCs. 
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2 Purpose 
 

The overall purpose of this thesis was to investigate the effect of the amotosalen plus UVA  

illumination pathogen inactivation (PI) method on the quality of platelets collected and 

stored under standard blood banking conditions. 

 

The specific aims of the research project can be split into three sections: 

 

• To assess the impact of PI treatment on the miRNA profile of BC PCs and identify if 

there is any correlation with the onset and acceleration of PSL. The role of small 

RNA species miRNA in platelet biology has gained interest in the research 

community. The effect of blood bank processing on the miRNA profile of platelets 

has implications for platelet quality during storage and possibly efficacy after 

transfusion; 

 

• To assess the impact of PI treatment on protein concentrations in stored BC PCs. All 

aspects of collection, processing and storage increase platelet stress and PSL with 

activation-like properties. One marker of PSL is the release of proteins and other 

factors into the storage media. This release can have a negative feedback loop with 

autocrine effects and an increase in PSL, as well as potentially causing adverse 

events in patients; 

 

• To assess the impact of PI treatment of stored PCs on their utilization in a national 

blood transfusion service. As there are implication of lower in vitro quality of PI PCs, 

we sought to identify whether these observations translated into different trends in 

PC utilization during a 5-year period before and after implementing PI.   

 



 

 

3 Methods 
 

3.1 Experimental design 
 

A pool and split study was designed using extra BC platelets produced from WB, donated by 

healthy donors, and not used to produce patient PCs in the Blood Bank (BB), Landspitali - 

The National University Hospital of Iceland. A pool and split design (Figure 5) was used to 

exclude donor variation. Standard procedures for BC PC processing in the BB were used. 

These included pooling of 8 ABO-matched BCs to produce double dose PC units. Three 8-

BC pools were further pooled in to one large ABO-matched 24-BC pool, mixed and split up 

again in to three identical single pools. Two pools were diluted in 65% PAS (SSP+) and one 

pool in 100% donor plasma. Before separation,  BCs rested for 1 hour. The PC separation 

centrifuging protocol for 65% PAS was split into two steps: a first spin at 40 g for 2 min 

followed by a second spin at 463 g for 6.5 min. The 100% plasma unit underwent a harder 

spin at 987 g for 7 min. All PCs were automatically pressed and leukocyte-filtered from the 

BC pool, generating two types of PCs: one with 65% PAS and one with 100% donor plasma. 

 One 65% PAS PC received pathogen inactivation treatment (PI-PAS), while a second 

65% PAS PC was used as a control (C-PAS). The 100% plasma PC unit was designated as a 

second type of untreated control (U-PL). The PCs were stored in a platelet incubator under 

standard blood bank storage conditions of 22 ± 2°C with gentle agitation and sampled on 

Days 1, 2, 4, and 7. The experimental setup is depicted in figure 5.  

The experiment was repeated 8 times (n=8). Day 1 baseline samples for PI-PAS and C-

PAS were obtained from the double dose PC. After sampling, the double dose PC unit was 

split up into single units, with one receiving PI treatment and the other one not (untreated 

control). A second baseline sample was obtained from the double dose 100% plasma PC 

unit. After sampling, the double dose 100% plasma unit was split into two single PC units; in 

this case only one was used for further sampling, while the other was discarded.  
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Figure 5. Experimental setup of pool and split design. 

3.2 Quality control 
 

In a closed sterile system, a 10 ml sample was collected from a single dose unit. Immediately 

after sample collection, metabolic activity  via glucose, lactate, CO2, O2 and pH levels was 

measured using a blood gas analyzer (ABL90 FLEX). The sample was then split into 3.2 ml 

and 6.8 ml aliquots. In the 3.2 ml aliquot, platelet count, mean platelet volume (MPV) and 

platelet distribution width (PDW) were evaluated using hematology analyzer (CELL-DYN 

Ruby). Remaining platelets were further stained with antibodies for detecting the expression 

of platelet surface receptors integrin αIIb and glycoprotein GPIbα, membrane protein CD63 

and Annexin V binding with flow cytometry (FacsCalibur). The 6.8 ml sample was 



 

leukocyte-depleted using CD45 antibody-labeled dynabeads and subsequently platelets and 

supernatant were separated by centrifugation. Concentrations of sCD40L, sP-selectin and 

PF-4 in the supernatant were measured by enzyme-linked immunosorbent assays (ELISAs) 

on a microplate reader (Multiskan Spectrum). The platelet pellet and extra supernatant were 

cryopreserved at -80°C for RNA isolation and Luminex cytokine panel analysis. 

 

3.3 miRNA profiling 
 

For RNA extraction, platelets were lysed (TissueLyser) and the RNA precipitated using 

chloroform, ethanol, and spin columns. Synthetic spike-ins were used to control the 

isolation. Primers for 25 miRNAs, selected based on their potential role in platelet biology 

and previous unpublished microarray results, were used for reverse transcription into cDNA. 

Five control and one spike-in synthetic miRNA were used as controls. The qPCR reaction 

was performed in 384-well plates in a real-time PCR system (LightCycler 480) using no 

template controls to detect contamination or primer dimers. The miRNA included in this 

analysis are listed in Table 1, along with a summary of their relevance. 

Table 1. Relevance of miRNA included in this analysis. Adapted from Arnason et al. [199] 

miRNA Relevance Reference 

hsa-miR-223-3p • P2Y12 receptor binds ADP  

• Involved in platelet activation  

[173] 

hsa-miR-96-5p • VAMP8 (Granule release)  

• Platelet reactivity 

[180] [347] 

hsa-miR-126-3p 

• SPRED1, PIK3R2, CXCR4 signaling, VEGF 
pathway and endothelial progenitor cell (EPC) 
recruitment  

• Down-regulated in amotosalen-UVA -
treated  stored platelets   

[348–350][303] 

hsa-let-7e-5p 

• let-7 family highly expressed in platelets 

• Down-regulated in amotosalen-UVA treated  
stored platelets   

[303][175] 

hsa-let-7g-5p 

• let-7 family highly expressed in platelets  

• Down-regulated in amotosalen-UVA treated 
platelets during storage   

[303][175] 

hsa-miR-16-5p 

• Up-regulated in stored platelets, 
 apoptosis association  

• Down-regulated in amotosalen-UVA -
treated stored platelets   

[303][181] 
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hsa-miR-24-3p 

• Down-regulated in stored platelets, apoptosis 
association  

• Down-regulated in PI-treated stored platelets   

[303][181] 

hsa-miR-326 • Up-regulated in stored platelets, apoptosis 
association 

[181] 

hsa-miR-320a • Expression profile can be used to assess 
platelet quality  

[196] 

hsa-miR-7-5p • Down-regulated in stored platelets, apoptosis 
association 

[181] 

hsa-miR-127-5p Expression profile can be used to assess platelet 
quality  

[196] 

hsa-miR-376c-3p • PAR4 expression (differential expression 
related to race) 

[351] 

hsa-miR-484 • Regulates mitochondrial fission by 
suppression of Fis1 translation (apoptosis) 

[352] 

hsa-miR-20a-5p • Secreted by platelets 

• Vascular remodeling  

[320][353][354]  

hsa-miR-146a-5p 
• miR-146a inhibits megakaryocytic production 

indirectly by suppressing inflammatory 
cytokine production from innate immune cells 

[150][185] 

hsa-miR-191-5p • Highly expressed in platelets 

• Down-regulated in PI-treated stored platelets   

[303][175][355] 

hsa-miR-106a-5p 

• Extracellular vesicle-packaged miRNA release 
after short-term exposure to particulate 
matter is associated with increased 
coagulation 

• Released by platelets 

• Down-regulated in amotosalen-UVA -
treated stored platelets   

[303][356]  

hsa-miR-93-5p • Based on previous array data            (unpublished) 

hsa-miR-17-3p • Based on previous array data            (unpublished) 

hsa-1277-3p • Based on previous array data  (unpublished) 

hsa-miR-1260a • Based on previous array data  (unpublished) 

hsa-miR-1260b • Based on previous array data                    (unpublished) 

hsa-miR-134-3p • Based on previous array data            (unpublished) 

hsa-miR-552-3p • Based on previous array data            (unpublished) 

hsa-miR-148a-3p 
• Anti-miR-148a regulates platelet FcγRIIA 

signaling and decreases thrombosis in vivo in 
mice 

[357] 

 

  



 

3.4 Protein concentration in the storage media 
 

Undiluted platelet supernatant was analyzed using Luminex xMAP Technology to quantify 

soluble proteins (growth factors, chemokines and cytokines). The Human 

Cytokine/Chemokine Magnetic Bead Panel (HCYTOMAG-60K) was used; it applies 

microspheres and fluorescent signaling to quantify 41 pre-selected proteins: EGF, eotaxin, 

FGF-2, FLT-3L, fractalkine, G-CSF, GM-CSF, IFN-α2, IFNγ, IL-1α, IL-1β, IL-1ra, IL-2, 

IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12P40, IL-12P70, IL-13, IL-15, IL-17A, 

IL-1RA, IP-10, MCP-1, MCP-3, MDC, MIP-1α, MIP-1β, PDGF-AA, PDGF-AB/BB, 

RANTES, TGF-α, GRO TNFα, TNFβ, CD40L, and VEGF. Not all 41 proteins were 

included in the data analysis. RANTES and PDGF AA/BB had very high concentrations and 

were out of range of the assay, while FLT-3L, IL-2, IL-3, IL-4, and IL-6 were all below the 

detection limit of the assay. Therefore, the concentrations of 34 proteins were included in the 

analysis for comparing C-PAS and PI-PAS. Concentration differences were compared on 

Days 2, 4, and 7. The levels of each protein in the control and treatment groups on Days 2, 4, 

and 7 were also compared to those in a common baseline Day 1 sample. 

 
 

3.5 Data presentation 
 

With relatively large data sets with multiple variables, for example, groups of proteins, 

metabolites or genes responding to treatment at different timepoints, presenting the collected 

data with large data tables, multiple plots or complicated multidimensional plots is not 

always applicable. Principal component analysis (PCA) is a dimensional reduction method to 

preserve as much variance as possible in a lower dimensional output. Data points 

representing multiple measurements cluster along the x-axis according to the new variable 

principal component 1 (PC1) and along the y-axis according to PC2. The most important 

variances, e.g., biological differences, are represented in PC1, and other influencing factors 

like sampling or donor variation are represented in PC2. PCA plots were generated using R 

software. Heat map hierarchical clustering was performed using MetaboAnalyst.   

 

3.6 Statistics 
 

For miRNA analysis, all data was normalized to the average of assays detected in all 

samples. Fold change gene expression 2-ΔΔCT method was applied. Differences were 
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considered significant with a paired T-test p-value <0.05 after applying the Benjamini-

Hochberg false discovery rate method. For protein concentrations, the normality of the data 

distribution was assessed analytically using the Shapiro–Wilks test and graphically with 

quintile–quintile (Q-Q) plots using DATAtab. Analysis of variance (ANOVA) testing using 

GraphPad Prism was applied to compare normally distributed data, and the Friedman test 

using DATAtab was used for data where a normal distribution was rejected. Differences 

were considered significant if p-values remained below 0.05 after applying the sequential 

Bonferroni correction method. For PC utilization, distribution of data was assessed using box 

and whisker charts. Differences between the two time periods (5 years before and 5 years 

after PI implementation) were assessed using two-sided t tests (with unequal variances) for 

continuous variables.   

 

 

 

 

 

 

 

 

 

 

 

 

  



 

4   Results and discussion 
 

4.1 Paper I: Pathogen inactivation with amotosalen plus 

UVA illumination minimally impacts microRNA 

expression in platelets during storage under standard 

blood banking conditions 
 

In 2012, the Blood Bank of Iceland implemented pathogen inactivation technology for all 

produced PCs, and at the same time irradiation of PCs for selected patients was discontinued. 

However, reports of deleterious side effects PI treatment on the molecular level were of 

concern. One reported effect of amotosalen-UVA PI is altered miRNA and mRNA profiles 

of single donor apheresis PCs [302,303]. Our group used a pool and split strategy to study BC 

PCs, with the aim of limiting potential donor variation effects during qPCR miRNA analysis. 

In this our investigation, miRNA that had previously been shown to be affected by 

amotosalen-UVA PI were included, as well as additional miRNA from an unpublished 

miRNA array analysis and miRNA with published evidence of  having a role in platelet 

function. In contrast to previous published data from Osman et al. [303], limited effects were 

observed on the selected miRNA relating to the amotosalen-UVA treatment. One miRNA, 

miR-96-5p displayed significant PI treatment-related downregulation. In the 100% plasma-

stored control PCs, there was also a drop in miR-96-5p levels although they were not as 

significant as for the PI treatment. Our own unpublished data showed that miR-96-5p is also 

down-regulated in PCs treated with irradiation (Figure 6).  
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Figure 6. The fold change in miR-96-5p during storage of amotosalen-UVA-treated PCs 

(blue), Irradiated PCs (green) and PCs in 100% plasma (yellow) in relation to the standard 

(control) PC (maroon). P-value < 0.05 (+) and < 0.01 (++) 

  

These observations imply that other additional processing, or even the storage media, 

can impact the miR-96-5p level in stored PCs. Lower levels of a miRNA can point to an 

accelerated degradation of that specific miRNA or exocytosis via extracellular vesicles.  

Both are possible effects of increased activation. Vesicle-associated membrane protein 8 

(VAMP8) mRNA is one of many targets of miR-96-5p. In platelets, VAMP8 has a role in 

degranulation, and higher levels of VAMP8 mRNA have been detected in subjects with 

hyperactive platelets [180]. In our data, we observed significantly higher expression of P-

selectin at the end of storage and increased shedding of GPIba in PI-PAS than in C-PAS. We 

did not do direct correlation analysis of miR-96-5p with markers of activation and PSL, 

however there are indications that lower levels of miR-96-5p in PI-PAS are related to the 

acceleration of PSL. Our main observation was that, at least for the 25 miRNA profiles 

included in this publication, amotosalen-UVA PI treatment did not have a large impact; as 

visualized in the PCA analysis, only 21% of the variance was related to PC1 and no clear 

treatment-related clustering was detected. As noted, our results are in contrast to the results 



 

published by Osman et al. where six out of the eleven miRNA included displayed 

amotosalen-UVA treatment-related downregulation, effects that were not detected in other 

treatment groups, including irradiation, riboflavin-UVB pathogen inactivation and storage in 

PAS. These results should be viewed in the light of possible donor variation [351,358,359] 

and questionable study design. In their analysis, the baseline control was PC stored in 100% 

plasma, as were the irradiated and riboflavin-UVB treated PCs. They did include a treatment 

group stored in PAS, the same as the amotosalen-UVA-treated PC, but a direct comparison 

was not done. Using samples from the Osman et al. study and small RNA sequencing, Diallo 

et al. looked more closely at MP accumulation and content in relation to PI treatment. Diallo 

et al. acknowledged the contribution of different storage conditions (100% plasma for 

control vs 35% plasma and 65% PAS for amotosalen-UVA platelets) and concluded that PI 

did not affect the miRNA profile of stored platelets. However, they observed that PCs treated 

with amotosalen-UVA released MPs with an altered miRNA profile compared to control 

platelets. The authors further purposed that miRNA loading into MPs is a selective process 

and that amotosalen-UVA treatment somehow deregulates this miRNA selection, bringing 

on these differences in MP miRNA profiles [123]. Although the same concerns noted earlier 

in this text apply to these results, platelets stored as PCs in blood banks do release miRNA, 

harboring MPs that, in theory, could affect the cells of a transfusion recipient. While an 

interesting point to consider, neither clinical nor retrospective real world data indicate an 

increase in adverse events related to amotosalen-UVA treatment.     

 In our unpublished data looking at the miRnome of PCs using microarray analysis 

with 2200 miRNA probes, we detected on average 850 miRNA in platelet samples from BC 

PC. We did not confirm if all the detected miRNA were true miRNA. A number of the 

miRNA had high annotation numbers, meaning that they had only been discovered recently 

and in some cases validation studies were not available. However, there were a number of 

miRNA whose abundance changed during storage, showing both up- and down-regulation, 

as displayed in Figure 7 and Table 2. Even though some of the miRNA detected in this 
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analysis might be mere products of RNA degradation, these results indicate that the miRNA 

have roles on platelet processes relating to PSL during storage.  

 

Figure 7. Volcano plots showing signal change of individual miRNA. Fold change compared 

to the day 1 baseline is represented on the y-axis and changes in signal intensity on the x-

axis. 

 

 

 

 

 

 

 

 

 



 

 

 

Table 2. Number of miRNA changes during PC storage. 

 

 

4.2 Paper II: Protein Concentrations in Stored Pooled 

Platelet Treated with Pathogen Inactivation by 

Amotosalen Plus Concentrates Ultraviolet A Illumination 
 

To investigate further effects of amotosalen-UVA PI treatment on the in vitro quality of BC 

PCs, we used Luminex magnetic bead technology to quantify the concentration of 36 

proteins in PCs with (PI-PAS) or without (C-PAS) PI treatment. For this analysis, we used a 

commercially available panel (HCYTIMAG-60K) with 41 pre-selected human cytokines, 

chemokines and growth factors, and ELISA (Quantikine) for sP-selectin and PF-4 that were 

not included on the panel. Proteins and their functional classification are listed in Table 3. A 

total of 7 proteins were out of range for the assay; RANTES and PDGF AA/BB had 

excessively high concentrations, while FLT-3L, IL-2, IL-3, IL-4, and IL-6 were below the 

detection limit. The majority of the proteins analyzed gradually increased during the storage 

period in both arms of the analysis. This would be expected, as degranulation and the release 
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of multiple factors by platelets into the storage media occurs with increasing activation and 

PSL. Treatment-related effects were detected at different timepoints for 10 proteins. A 

subgroup of 6 proteins displayed a drop in concentration on Day 2 of storge after the PI 

treatment. One protein, Eotaxin, remained at lower concentration compared to C-PAS 

throughout the storage period, while lower concentrations were observed until Day 7 of 

storge for IP-10,MCP-1, and MDC. For TNF-α and TGF-α, lower concentrations were only 

detected on Day 2. There is limited published data on PI-related drops in PC protein 

concentrations. Thiele et al. reported a decrease in the levels of membrane protein platelet 

endothelial aggregation receptor 1 precursor (PEAR-1) and protein-tyrosine sulfotransferase 

2 (TPST 2). Tauszig et al. reported decreases in levels of RANTES and TGF-β1[360]. 

Potential causes for these observations are the use of UV light treatment, the compound 

absorption device (CAD) or even interaction with the photoreactive psoralen compound 

amotosalen, as psoralens have the ability to bind to both lipids and proteins [361]. In a 2005 

publication on possible neoantigen formation, samples from 523 patients participating in 

seven clinical trials were analyzed with no reports of neoantigenicity. The authors 

additionally measured the amotosalen interaction in PCs and plasma using high-performance 

liquid chromatography (HPLC) and found that 15% of the initial amount becomes bound to 

components in the PC and 15 to 22% is bound in the plasma units. The majority of the 

residual amotosalen is bound to lipids, and only 1 to 2% is protein-bound [362]. These 

observations indicate that only a small proportion of the added amotosalen binds to proteins, 

possibly causing degradation or other modification. Proteins can also absorb UV light, 

resulting in protein structural changes as well as aggregation, cross-linking and degradation. 

For the majority of proteins that are unbound to co-factors or prosthetic groups, this 

absorption occurs at UV wavelengths below 320 nm [363,364]. Using amotosalen-UVA 

technology, PC are exposed to UV light with wavelengths in the range of 315 to 400 nm 

(UV-A), with limited absorption by proteins. UV-B and C have wavelengths below this 320 

nm limit and are more likely to be absorbed by proteins in the PC. A recent review reported 



 

on the sensitivity of proteins to UV-A and visible light. Under specific conditions, the amino 

acids tryptophan and tyrosine have a UV absorption spectrum that can extend into the UV-A 

region [365]. Using a proteomics approach, Prudent et al. have reported limited effects of PI 

treatment on the global proteome of platelets; however, some proteins showed treatment 

related-alterations and PI can induce oxidative damage to peptides [305][304][366]. To 

remove residual amotosalen, PI-treated PCs are incubated for 6-16 hours with a CAD 

containing immobilized polyester beads. Data generated by our own lab using cell-free 

solutions and measuring specifically the effects of CAD and UV-A exposure indicated that a 

number of metabolites were reduced after the CAD incubation, including the hydrophobic 

amino acids tryptophan and phenylalanine present in many proteins especially linked to the 

cell membrane [367]. In fact, there was reduction in tryptophan levels after UV-A exposure 

and CAD incubation (Figure 8).   

      

Figure 8. The effects of different parts of amotosalen-UVA processing. The top of each bar 

is the average of the metabolite levels relative to the baseline, and the error bars depict the 

standard deviation. The gray column represents level of metabolites in cell free solution 

before treatment. The white column shows levels after exposure to UV-A light. The black 

after incubation with CAD [367]. 

 

The fact that most of the 6 proteins that experienced a significant decrease in concentration 

after PI (IP-10, MCP-1, MDC, TNF-α, and TGF-α, but not Eotaxin) have similar or higher 
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concentrations at the end of the storage period, implies a faster or larger release of these 

proteins in the PI-PAS group than in C-PAS. Four additional proteins, IL-17A, PF-4, IL-

12p70 and G-CSF, all had higher concentrations after Day 2 of storage in the PI-PAS group 

than in C-PAS, which is a further indication of a more active release in the PI-PAS PCs. 

Apart from the four proteins with significantly higher concentrations and the 6 with 

treatment-related decreases, the concentrations of most of the proteins did not display a 

significant difference between the two research arms. However, in samples from storage Day 

7, most of the proteins had higher concentrations in the PI-PAS compared to C-PAS albeit 

only a few significantly. This observation indicates that the effects of amotosalen-UVA PI 

treatment is most evident at the end of storage when platelet quality is generally 

compromised, and PCs are not stored beyond this time point.  

The release of pro-inflammatory proteins into the storage media of PCs has been 

shown to sufficiently prime T-cells and neutrophils in vitro with potentially immune 

modulating effects in vivo [368,369]. If certain types of proteins are cleared or reduced in PCs 

receiving amotosalen-UVA treatment, this could be beneficial in this regard and might 

explain to some extent the similar or lower transfusion reaction events compared to untreated 

PCs. Further investigation into possible links to protein structure or interaction for this group 

of treatment-reduced proteins is of interest.  

As displayed in PCA analysis and heatmaps in paper II, the overall effect of 

treatment on the concentration of this panel of proteins is limited. Most of the variance is 

likely due to the storage time, as the platelet gradually become activated with increased 

release of proteins despite PI treatment. 

Table 3.   Type of proteins analyzed 

Cytokines 

TNF-β IL-8 IL-1β IL-1α  

TNF-α IL-12p70 IL-7 IFN-γ  

TGF-α IL-12p40 IL-5 IFN-α2  

IL-17 IL-10 IL-1ra IL-13  

IL-15 IL-9 CD40L   

Chemokines 
MIP-1β  IP-10 PF-4 MCP-1 Eotaxin 
MIP-1α  GRO MDC MCP-3  Fractalkine 



 

Growth-factors 

VEGF  G-CSF  FGF-2   

GM-CSF  PDGF-AA EGF   

Cell adhesion molecule (CAM) 
sP-selectin     

 

 

4.3 Paper III: Implementation of pathogen inactivation by 

amotosalen plus ultraviolet A illumination for platelets in 

a national blood service 
 
 

Investigations by our lab revealed minimal effects of amotosalen-UVA treatment on protein 

concentrations and the miRNA profile of PCs produced and stored in the Landspitali 

University Hospital Blood Bank in Iceland (the Blood Bank). In line with numerous reports 

in the literature, our data also indicate an acceleration effect of amotosalen-UVA on PSL. As 

the Blood Bank is the sole provider of blood components in Iceland, and since all collection, 

processing, storage, and transfusion takes places within our system, this operation can be 

categorized as a national transfusion service, although on a global scale our transfusion 

services are small. We sought out to identify if implementation of PI for all PCs in 2012 

affected utilization of the product. Considering there being only, on average, 2000 PC 

transfusions annually in Iceland, we investigated PC transfusions for a 10-year period to 

increase the statistical power of the analysis: 5 years before PI and 5 years after PI. In 

addition, we investigated possible effects on stock management and adverse events. We used 

a blood bank information system (ProSang) to extract information on PC utilization and 

stock management. Our own in-house database was used to extract information about 

platelet content. In agreement with some publications and in contrast to others, we did not 

detect any change in total utilization of PCs per patient before or after the PI implementation. 

We further investigated if there was detectible difference in the utilization of specific 

departments. PC utilization is displayed in Table 4. 

 

Table 4. Number of PC transfusions each year by department. amotosalen-UVA PI treatment 
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of PCs was introduced in 2012; the blue area indicates data from the 5 years before 

amotosalen-UVA was introduced, while the red area indicates data from the 5 years 

following amotosalen-UVA introduction. Red text in a t-test p-value indicates significance.   

Table 4 : PC utilization per department 

 

 

The greatest number of transfusions were observed within the medicine department, which 

includes the hematology and oncology wards with a high number of thrombocytopenic 

patients. The next largest numbers of transfusions took place in the intensive care and 

surgery departments. For all the departments included in the analysis, there was only a single 

department (outside the hospital) with a significant difference showing increased utilization 

after PI implementation. There are likely other variables in play that explain this difference. 

Transfusion sites categorized within this department show large fluctuations in their PC 

utilizations, as displayed in Figure 9. One site (Sel) practiced PC transfusion only in the two 

year period from 2014 to 2016, but had relatively high utilization numbers within that 

period. A second site (KEF) discontinued PC transfusion practice in 2007 and reintroduced 

the practice in 2013.  

 



 

 

Figure 9. PC utilization at individual transfusion sites categorized as “Outside hospital”.  

 

 

There was no significant change in the number of recorded adverse events. In our 

setting there were very few recorded adverse events during this 10 year period. As in many 

other healthcare systems and hospitals, there is likely a lack of reporting of adverse events 

and it is difficult to come to any firm conclusions from these results. As it has been a mission 

of our blood bank to encourage clinicians and other health care personnel to report possible 

transfusion-related adverse events, one could speculate that the reporting has become better 

over time. 

One of the drivers for implementing PI, secondary to PC safety, was the option to be 

able to store PCs for 7 days. Prior to implementation, PCs were stored for a maximum of 5 

days. With this short storge period, our facility struggled with supply and demand issues. 

With the implementation of 7-day storage, we were able to maintain a larger stock without 

increasing outdating. Incidents of PC shortages and delayed delivery were significantly 

reduced by PI implementation. As a result of PI implementation, the average age of 

transfused PCs increased from two days to just over four days. 

The number of platelets per apheresis unit did not change after PI implementation, 

though there were lower numbers in BC units after the implementation. These differences 

can be explained at least in part by modifications in the processing protocol. Before 
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implementation, we used a five BC pool per single therapeutic PC dose. After 

implementation, eight BCs were pooled to produce a double dose PC.   

  

5 Conclusions and future directions 
5.1 Conclusions 

 

With current standard storage conditions of platelet products (room temperature with 

agitation), the risk of bacterial contamination is much higher than for other blood 

components stored at refrigerated or subzero temperatures. At the time of PI implementation, 

the Blood Bank in Iceland was assessing two options for reducing the risk of TTBI: 1) 

screening the inventory using a system such as BacT/Alert; or 2) implementing PI. 

Comparing these two options, the increase in maximum storage time is an obvious advantage 

of PI that is non-existent with bacterial screening unless secondary or rapid testing is applied. 

A second advantage of PI is the possibility of inactivating emerging pathogens that are not 

included in standard screening protocols. Using a bacterial screening system, there is 

minimal additional manipulation of the PC product, better preserving platelets quality. 

However, there must be some measures in place to inactivate residual white blood cells that 

can cause TRAE, particularly in immune compromised patients who are a significant 

proportion of the patient population receiving PCs. Irradiation of platelets is the common 

protocol for leukocyte inactivation, with similar or even more negative effects on platelet 

quality compared to PI. Blood banks using irradiation of PCs thus have a dual stock with 

different products selected for specific patients. PI processing includes the option for a single 

PI PC product for all patients. There is also the issue of false negative and positive results 

using bacterial screening tools. In the final decision making at our facility, the pros of safety 

and better PC stock management outweighed the possible disadvantages of lowering of the 

product quality, and PI was implemented for all PC production in 2012. With this 

implementation, our research and development department had the opportunity to investigate 

the effects of PI on platelet biology, adding to the data in the literature on this new method. 



 

 For decades is has been recognized that platelets contain mRNA and the ability of 

protein translation. Platelets are enucleated and are not able to control protein expression on 

the transcriptional level. Since the discovery of miRNA in the early 90s, platelets’ role as 

post-transcriptional regulators has been realized in multiple cellular processes. Recently it 

was established that platelets contain miRNA and all the components necessary for mature 

miRNA processing and function. It is intriguing that enucleated cells exploit the miRNA 

pathway for post-transcriptional regulation. In paper I, we analyzed the effects of PI on the 

profile of 25 miRNA in BC PCs using qPCR. The effects of PI were minimal, with only a 

single miRNA showing treatment-related downregulation. This contrasted with other reports 

on the effect of amotosalen-UVA on the miRNA profile of single donor apheresis PCs. 

Analysis of proteins in the supernatant of stored PCs showed more pronounced effects, with 

both treatment-related increases and decreases in the concentrations of certain proteins. In 

both analyses, storage time affected protein and miRNA profiles. 

 In conclusion, we did observe amotosalen-UVA PI treatment-related effects on the in 

vitro quality of PCs. These effects did not translate into increased utilization of PCs or 

adverse events. Over the 10 year period since implementation of this technology, there have 

been zero reports of TTBI, and with 7 day storage there has been increased security of PC 

availability. 

  

5.2 Future directions 
 

Donated platelets continue to be an important part of treatment for thrombocytopenic and 

trauma patients. The storage of PCs has largely stayed the same since the early 1970s, with 

room temperature and agitation being standard. Multiple PASs have been developed to 

preserve platelet quality and as substitute for donor plasma, which may be required for 

fractionation or cryopreserved for later use. Still, the maximum storage time for platelets is 

only 5 to 7 days, making PC stock management a challenging task. Even with measures like 

PI in place, there is a 7 day storage limit determined by the lowering of platelet quality 
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beyond that point. In general, lower storage temperatures for live cell donations are used in 

order to lower the metabolic activity of the cells and to preserve their quality, resulting in 

longer storage. In reports from the 1990s where radio labeled platelet aging in vivo was 

compared to the aging of stored in vitro platelets at 22°C, the authors observed that 5 days in 

vitro corresponded to 2.1 days in vivo. The authors also analyzed ATP turnover in platelets 

stored at 37 °C compared to 22 °C, and found these measurements correlated with the aging 

factor. According to these observations and the fact that platelets have normal lifespan of 9-

10 days, the storage time of platelets at 22 °C should be 18 to 20 days [370].  A summarized 

by Gulliksen there are 3 main challenges for longer storage of platelets at 22°C: 1) less 

activation of platelets during collection and processing; 2) reducing the rate of glucose 

consumption and lactate production during storage; and 3) and ensuring there is sufficient 

amount of glucose in the platelet storage environment to last throughout the storage period 

[371]. To improve and prolong the storage of platelets, there are ongoing multiple enquires 

including cold storge, cryopreservation, whole blood and in vitro-generated platelets stored 

in bioreactors. 

      There are also methods being developed and research into making platelet 

transfusion as safe as possible for the patient. PI is a relatively new technology and 

undoubtably we will see new versions and approaches to improve upon existing methods. 

For example, there is now technology available for washing the platelets after storage and 

prior to transfusion to limit the amount of BRMs that can cause TRAE [372]. Platelet donor 

genotyping and human platelet antigen screening reduces the rate of platelet refractoriness 

and TRAE [373–375]. Recently, tools such as next generation sequencing are being applied 

for donor blood group genotyping [376,377]. Donor variations in platelet quality should 

receive more attention [378,379]. Currently, it is only a donor’s platelet count that is the 

deciding factor for selecting donors for PC apheresis collection and BC for pooling. 

However, with a limited pool of donors and increasing deferrals based on a number of 

platelet quality markers and tests, it could prove difficult to maintain sufficient PC stocks in 



 

the future. 

 At our lab, there is currently ongoing work in analyzing the quality of cryopreserved 

and cold-stored platelets with and without PI treatment. Several clinical studies have 

assessed the quality of cold-stored (CS) or cryopreserved platelets. Trial results have 

indicated that platelets acquire some damage under such storage conditions and are quickly 

cleared from circulation after transfusion [380–383]. CS or cryopreserved platelets were also 

shown to be more activated than room temperature-stored platelets, which could be a 

positive attribute when treating actively bleeding patients [384–386]. Thus, CS or 

cryopreserved PCs could prove to be optimal for use in warzones, rural hospitals, or as a 

reserve stock in blood banks. We are also researching the utilization of outdated PCs for 

generation of animal-free serum for cell cultures [387–389]. It is of importance to have 

available animal-free products for the culturing of human cells, especially if intended for 

therapeutic use. In addition, it is reassuring for the donor that their donation does not go to 

waste. 

 As for the next steps regarding this project, we would analyse further the treatment-

related reduction of proteins observed in paper II and the generation of EVs for different 

storage and processing options. At our facility, every PC donation is sampled and analysed 

by our QC department. It would also be of interest to do correlation studies of donor 

attributes and platelet quality during storage. 
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