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We present a detailed report of the connection between long-duration gamma-ray bursts (GRBs) and their accompanying
supernovae (SNe). The discussion presented here places emphasis on how observations, and the modelling of observations, have
constrained what we know about GRB-SNe. We discuss their photometric and spectroscopic properties, their role as cosmological
probes, including their measured luminosity–decline relationships, and how they can be used to measure the Hubble constant. We
present a statistical summary of their bolometric properties and use this to determine the properties of the “average” GRB-SN.
We discuss their geometry and consider the various physical processes that are thought to power the luminosity of GRB-SNe and
whether differences exist between GRB-SNe and the SNe associated with ultra-long-duration GRBs. We discuss how observations
of their environments further constrain the physical properties of their progenitor stars and give a brief overview of the current
theoretical paradigms of their central engines. We then present an overview of the radioactively powered transients that have
been photometrically associated with short-duration GRBs, and we conclude by discussing what additional research is needed to
further our understanding of GRB-SNe, in particular the role of binary-formation channels and the connection of GRB-SNe with
superluminous SNe.

1. Introduction

Observations have proved the massive-star origins of long-
duration GRBs (LGRBs) beyond any reasonable doubt. The
temporal and spatial connection between GRB 980425 and
broad-lined type Ic (IcBL) SN 1998bw offered the first clues to
their nature [1, 2] (Figure 1).The close proximity of this event
(𝑧 = 0.00866; ∼40Mpc), which is still the closest GRB to
date, resulted in it becoming one of the most, if not themost,
scrutinized GRB-SN in history. It was shown that SN 1998bw
had a very large kinetic energy (see Section 4 and Table 3)
of ∼2–5 × 1052 erg, which led it to being referred to as a
hypernova [3]. However, given several peculiarities of its 𝛾-
ray properties, including its underluminous 𝛾-ray luminosity
(𝐿�훾,iso ∼ 5 × 10

46 erg s−1), it was doubted whether this event

was truly representative of the general LGRB population.This
uncertainty persisted for almost five years until the spec-
troscopic association between cosmological/high-luminosity
GRB 030329 (𝐿�훾,iso ∼ 8 × 10

50 erg s−1) and SN 2003dh [4–
6]. GRB 030329 had an exceptionally bright optical afterglow
(AG; see Figures 2 and 3), and a careful decomposition of the
photometric and spectroscopic observations was required in
order to isolate the SN features from the dominant AG light
[7] (see Section 2.1 and Figure 4). As was seen for SN 1998bw,
SN 2003dh was a type IcBL SN, and its kinetic energy was in
excess of 1052 erg, showing that it too was a hypernova.

The launch of the Swift satellite [8] dramatically changed
the way we studied GRBs and the GRB-SN association, and
the number of events detected by this mission has helped
increase the GRB-SN sample size by a factor of three since
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Figure 1: GRB 980425/SN 1998bw: the archetype GRB-SN. Host image (ESO 184-G82) is from [1], where the position of the optical transient
is clearly visible. Optical light curves are from [9] and spectra from [2].

20 40 600
Days after March 29.4842

R

22

21

20

19

18 t−2.05 + SN 1998bw V-band (z = 0.16854, �훿t = 0)

(a)

SN 2003dh

SN 1998bw

4.0d
7.4d

8.3d
8.3d

9.9d
12.2 d

15.9d
15.1d
20.1 d
20.3 d
27.8d
27.1d

f �휆
+

co
ns

ta
nt

(a
rb

itr
ar

y 
un

its
)

4000 5000 6000 7000 8000 90003000
Rest wavelength (Å)

(b)

Figure 2: (a)The photometric (𝑅-band) evolution of GRB 030329/SN 2003dh, from [6]; (b) the spectral evolution of GRB 030329/SN 2003dh,
as compared with that of SN 1998bw, from [4].

the pre-Swift era.This includes, amongmany others, the well-
studied events GRB 060218/SN 2006aj, GRB 100316D/SN
2010bh, GRB 111209A/SN 2011kl, GRB 120422A/SN 2012bz,
GRB 130427A/SN 2013cq, and GRB 130702A/SN 2013dx. A
full list of the references to these well-studied spectroscopic
GRB-SN associations is found in Table 4.

This review paper represents a continuation of other
review articles presented to date, including the seminal
work by Woosley and Bloom (2006) [11]. As such, we have

focused the majority of the content on achievements made
in the 10 years since [11] was published. In this review and
many others [12–19], thorough historical accounts of the
development of the gamma-ray burst supernova (GRB-SN)
connection are presented, and we encourage the reader to
consult the detailed presentation given in section one of [11]
for further details. In Tables 2 and 3 we present the most
comprehensive database yet compiled of the observational
and physical properties of the GRB prompt emission and
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Figure 3: A mosaic of GRB-SNe (AG + SN). Clear SN bumps are observed for all events except SN 2003dh, for which the SN’s properties
had to be carefully decomposed from photometric and spectroscopic observations [7]. The lack of an unambiguous SN bump in this case is
not surprising given the brightness of its AG relative to the other GRB-SN in the plot: SN 2013dx was at a comparable redshift (𝑧 = 0.145,
compared with 𝑧 = 0.1685 for 2003dh), but its AG was much fainter (2–5 mag) at a given moment in time. The redshift range probed in this
mosaic spans almost an order of magnitude (0.145 < 𝑧 < 1.006) and shows the variation in peak observed magnitude for GRB-SNe. It is
important to remember that given the large span of distances probed here, observer-frame 𝑅-band samples a wide range of rest-frame SEDs
(from 𝑈-band to 𝑉-band).
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Figure 4: An example decomposition of the optical (𝑅-band) light curve of GRB 090618 [10]. (a) For a given GRB-SN event, the single-filter
monochromatic flux is attributed as arising from three sources: the AG, the SN, and a constant source of flux from the host galaxy. (b) Once
the observations have been dereddened, the host flux is removed, either via the image-subtraction technique or by being mathematically
subtracted away. At this point a mathematical model composed of one or more power laws punctuated by break-times is fit to the early light
curve to determine the temporal behaviour of the AG. (c) Once the AG model has been determined, it is subtracted from the observations
leaving just light from the SN.

GRB-SNe, respectively, which consists of 46 GRB-SNe. It is
the interpretation of these data which forms a substantial
contribution to this review. We have adopted the grading
scheme devised by [17] to assign a significance of the GRB-
SN association to each event, where A is strong spectroscopic
evidence, B is a clear light curve bump as well as some
spectroscopic evidence resembling a GRB-SN, C is a clear
bump consistent with other GRB-SNe at the spectroscopic
redshift of the GRB, D is a bump, but the inferred SN
properties are not fully consistent with other GRB-SNe or
the bump was not well sampled or there is no spectroscopic
redshift of theGRB, andE is a bump, either of low significance
or inconsistent with other GRB-SNe.This is found in Table 3.

Throughout this article we use a ΛCDM cosmology
constrained by [20] of𝐻0 = 67.3 km s−1Mpc−1, ΩM = 0.315,
ΩΛ = 0.685. All published data, where applicable, have

been renormalized to this cosmological model. Foreground
extinctions were calculated using the dust extinction maps
of [21, 22]. Unless stated otherwise, errors are statistical only.
Nomenclature is as follows: 𝜎 denotes the standard deviation
of a sample, whereas the root-mean square of a sample is
expressed as RMS. A symbol with an overplotted bar denotes
an average value. LGRB and SGRB are long- and short-
duration GRBs, respectively, while a GRB-SN is implicitly
understood to be associated with an LGRB.The term 𝑡0 refers
to the time that a given GRB was detected by a GRB satellite.

2. Observational Properties

2.1. Photometric Properties. The observer-frame, optical light
curves (LCs) of GRBs span more than 8–10 magnitudes at a
given observer-frame postexplosion epoch (see, e.g., Figure 1
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in [23]). Similarly, if we inspect the observer-frame 𝑅-band
LCs of GRB-SNe (redshift range 0.145 < 𝑧 < 1.006) shown
in Figure 3, they too span a similar range at a given epoch.
Indeed, the peak SN brightness during the SN “bump” phase
ranges from 𝑅 = 19.5 for GRB 130702A (the brightest GRB-
SN bump observed to date) to 𝑅 = 25 for GRB 021211.

For a typical GRB-SN, there are three components of flux
being measured: (1) the afterglow (AG), which is associated
with the GRB event, (2) the SN, and (3) the constant source of
flux coming from the host galaxy. A great deal of information
can be obtained from modelling each component, but, for
the SN component to be analysed, it needs to be decomposed
from the optical/NIR LCs (Figure 4). To achieve this task, the
temporal behaviour of the AG, the constant source of flux
from the host galaxy, and the line of sight extinction, includ-
ing foreground extinction arising from different sight-lines
through the Milky Way (MW) [21, 22], and extinction local
to the event itself [10, 23–26], in a given filter need to bemod-
elled and quantified.The host contribution can be considered
either by removing it via the image-subtraction technique
[27–29], by simple flux-subtraction [30–32], or by including
it as an additional component in the fitting routine [33–36].
TheAGcomponent ismodelled using either a single or a set of
broken power laws (SPL/BPL; [37]). This phenomenological
approach is rooted in theory however, as standard GRB
theory states that the light powering the AG is synchrotron
in origin and therefore follows a power law behaviour in both
time and frequency (𝑓] ∝ (𝑡 − 𝑡0)

−�훼]−�훽, where the respective
decay and energy spectral indices are 𝛼 and 𝛽).

Once the SN LC has been obtained, traditionally it is
compared to a template supernova, that is, SN 1998bw,
where the relative brightness (𝑘) and width (also known as
a stretch factor, 𝑠) are determined. Such an approach has
been used extensively over the years [10, 18, 31–34, 38–43].
Another approach to determining the SN’s properties is to fit
a phenomenological model to the resultant SN LC [10, 42–
44], such as the Bazin function [45], in order to determine
the magnitude/flux at peak SN light, the time it takes to rise
and fade from peak, and the width of the LC, such as the
Δ𝑚15 parameter (in a given filter, the amount a SN fades in
magnitudes from peak light to 15 days later). All published
values of these observables are presented in Table 3.

2.2. Spectroscopic Properties. Optical and NIR spectra, of
varying levels of quality due to their large cosmological
distances, have been obtained for more than a dozen GRB-
SNe. Those of the highest quality show broad observation
lines of O i, Ca ii, Si ii, and Fe ii near maximum light.
The line velocities of two specific transitions (Si ii 𝜆6355
and Fe ii 𝜆5169; Figure 6) indicate that near maximum light
the ejecta that contain these elements move at velocities
of order 20,000–40,000 km s−1 (Fe ii 𝜆5169) and about
15,000–25,000 km s−1 (Si ii 𝜆6355). The weighted mean
absorption velocities at peak 𝑉-band light of a sample of
SNe IcBL that included GRB-SNe were found to be 23,800 ±
9500 km s−1 (Fe ii 𝜆5169) by [46] (see as well Table 3). SNe
IcBL (including and excluding GRB-SNe) have Fe ii 𝜆5169
widths that are ∼9,000 km s−1 broader than SNe Ic, while
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Figure 5: Peak/near-peak spectra of GRB-SNe. The spectra have
been arbitrarily shifted in flux for comparison purposes and to
exaggerate their main features, and host emission lines have been
manually removed. The spectra of SNe 2012bz, 2013cq, and 2013dx
have been Kaiser smoothed [31] in order to suppress noise. Most
of the spectra are characterized by broad absorption features, while
such features are conspicuously absent in the spectra of SN 2013ez
and SN 2011kl.

GRB-SNe appear to be, on average, about ∼6,000 km s−1
more rapid than SNe IcBL at peak light [46]. Si ii 𝜆6355
appears to have a tighter grouping of velocities than Fe ii
𝜆5169, though SN 2010bh is a notable outlier, being roughly
15,000 to 20,000 km s−1 more rapid than the other GRB-
SNe. SN 2013ez is also a notable outlier due to its low line
velocity (4000–6000 km s −1), and inspection of its spectrum
(Figure 5) reveals fewer broad features than other GRB-SNe,
where it more closely resembles type Ic SNe rather than
type IcBL [31]. Nevertheless, this relative grouping of line
velocities may indicate similar density structure(s) in the
ejecta of these SN, which in turn could indicate some general
similarities in their preexplosion progenitor configurations.
For comparison, [46] found that the dispersion of peak SNe
Ic Fe ii 𝜆5169 line velocities is tighter than those measured
for GRB-SNe and SNe IcBL not associated with GRBs (𝜎 =
1500, 9500, 2700 km s−1, resp.). This suggests that GRB-SNe
and SNe IcBL have more diversity in their spectral velocities,
and in turn their density structures, than SNe Ic. Finally, [46]
found no differences in the spectra of 𝑙𝑙GRB-SNe relative to
high-luminosity GRB-SNe.

During the nebular phase of SN 1998bw (one of only
a few GRB-SNe that has been spectroscopically observed
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Figure 6: Measured line velocities of a sample of GRB-SNe. See Table 4 for their respective references.

during this phase due to its close proximity; see as well
Section 5), observed lines include [O i] 𝜆5577, 𝜆𝜆6300,6364;
O [ii] 𝜆7322; Ca ii 𝜆𝜆3934,3963, 𝜆𝜆7291,7324; Mg i] 𝜆4570;
Na i 𝜆𝜆5890,5896; [Fe ii] 𝜆4244, 𝜆4276, 𝜆4416, 𝜆4458, 𝜆4814,
𝜆4890, 𝜆5169, 𝜆5261, 𝜆5273, 𝜆5333, 𝜆7155, 𝜆7172, 𝜆7388,
𝜆7452; [Fe iii] 𝜆5270; Co ii 𝜆7541; C i] 𝜆8727 [47]. Nebular
[O i] 𝜆𝜆6300,6364 was also observed for nearby GRB-SNe
2006aj [48] and 100316D [49], though in the latter case
strong lines from the underlying Hii are considerably more
dominant. For SN 2006aj, [Ni ii 𝜆7380] was tentatively
detected [48], which, given the short half-life of 56Ni, implies
the existence of roughly 0.05M⊙ of

58Ni. Such a large amount
of stable neutron-rich Ni strongly indicates the formation of
a neutron star [48]. Moreover, the absence of [Ca ii] lines
for SN 2006aj also supported the lower kinetic energy of this
event relative to other GRB-SNe, which is likely less than that
attributed to a hypernova.

3. Phenomenological Classifications of
GRB-SNe

Replicating previous works [19, 41], in this review, we divided
GRB-SNe into the following subclasses based primarily on
their isotropic 𝛾-ray luminosity 𝐿�훾,iso:

(i) 𝑙𝑙GRB-SNe:GRB-SNe associatedwith low-luminosity
GRBs (𝐿�훾,iso < 10

48.5 erg s−1).

(ii) INT-GRB-SNe: GRB-SNe associated with intermedi-
ate-luminosity GRBs (1048.5 < 𝐿�훾,iso < 10

49.5 erg s−1).
(Not to be confused with intermediate-duration
GRBs, i.e., those with durations of 2–5 s [50–52].)

(iii) GRB-SNe: GRB-SNe associated with high-luminosity
GRBs (𝐿�훾,iso > 10

49.5 erg s−1).
(iv) ULGRB-SNe: ultra-long-duration GRB-SNe, which

are classified according to the exceptionally long
duration of their 𝛾-ray emission (∼104 seconds [53,
54]) rather than on their 𝛾-ray luminosities.

Historically, the term X-ray flash (XRF) was used
throughout the literature, which has slowly been replaced
with the idiom of “low-luminosity.” Strictly speaking, the
definition of an XRF [55] arises from the detection of soft,
X-ray rich events detected by the Wide Field Camera on
BeppoSax in the energy range 2–25 keV. Here we make no
distinction based on the detection of a given satellite and
instrumentation, where the “𝑙𝑙” nomenclature refers only to
the magnitude of a given GRB’s 𝐿�훾,iso.

The luminosity, energetics, and shape of the 𝛾-ray pulse
of a given GRB can reveal clues to the origin of its high-
energy emission and thus its emission process. Of particular
importance is whether the 𝛾-rays emitted by 𝑙𝑙GRBs arise
from the same mechanism as high-luminosity GRBs (i.e.,
from a jet) or whether from a relativistic shock breakout
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(SBO) [30, 56–60] (see aswell Section 9). It was demonstrated
by [61, 62] that a key observable of 𝑙𝑙GRBs are their single-
peaked, smooth, nonvariable 𝛾-ray LCs compared to the
more erratic 𝛾-ray LCs of jetted-GRBs, which become softer
over time. It was shown by [60] that an SBO is likely present
in all LGRB events, but for any realistic configuration the
energy in the SBOpulse is lower bymany orders ofmagnitude
compared to those observed in the GRB prompt emission
(𝐸SBO = 10

44–1047 erg, for reasonable estimates of the ejecta
mass and progenitor radii). These low energies (compared
with 𝐸�훾,iso) suggest that relativistic SBOs are not likely to be
detected at redshifts exceeding 𝑧 ≈ 0.1. In cases where they
are detectable, the SBO may be in the form of a short pulse
of photons with energies >1MeV. Inspection of the 𝐸�푝 values
in Table 2 shows that only a few events have photons with
peak 𝛾-ray energies close to this value: GRB 140606Bhas𝐸�푝 ≈
800 keV [32]; however suspected 𝑙𝑙GRBs 060218 and 100316D
only have 𝐸�푝 = 5 keV and 30 keV, respectively. It should be
noted that while the SBO model of [60] successfully explains
the observed properties (namely, the energetics, temperature,
and duration of the prompt emission) of GRBs 980425,
031203, 060218, and 100316D, their SBOorigins are still widely
debated [63, 64], with no firm consensus yet achieved.

Thermal, black body (BB) components in UV and X-
ray spectra have been detected for several events, including
GRB 060218 (X-ray: 𝑘𝑇 = 0.17 keV, time averaged from
first 10,000 s, [58]); GRB 100316D (X-ray: 𝑘𝑇 = 0.14 keV,
time averaged from 144–737 s, [65]); GRB 090618 (X-ray:
𝑘𝑇 = 0.3–1 keV up to first 2500 s, [66]); GRB 101219B (X-ray:
𝑘𝑇 = 0.2 keV, [67]); and GRB 120422A (UV: 𝑘𝑇 = 16 eV at
observer-frame 𝑡 − 𝑡0 = 0.054 d, [41]). A sample of LGRBs
with associated SNe was analysed by [68] who found that
thermal components were present in many events, which
could possibly be attributed to thermal emission arising from
a cocoon that surrounds the jet [69] or perhaps associated
with SBO emission. Reference [67] analysed a larger sample
of LGRBs and found that, for several events, a model that
included a BB contribution provided better fits than absorbed
power laws. Reference [70] found that, in their sample of
28 LGRBs, eight had evidence of thermal emission in their
X-ray spectra, indicating such emission may be somewhat
prevalent. However, the large inferred BB temperatures (𝑘𝑇
ranging from 0.16 keV for 060218 to 3.2 keV for 061007, with
an average of ≈1 keV) indicates that the origin of the thermal
emissionmay not be a SBO.Moreover, the large superluminal
expansions inferred for the thermal components instead
hint at a connection with late photospheric emission. In
comparison, some studies indicate a SBO temperature of ∼
1 keV [71], while [60, 72–74] showed that for a short while the
region behind the shock is out of thermal equilibrium, and
temperatures can reach as high as ∼50 keV.

The radius of the fitted BB component offers additional
clues. References [58, 59] derived a BB radius of 5–8× 1012 cm
for GRB 060218; [65] found ≈8 × 1011 cm for GRB 100316D;
[41] found ≈7 × 1013 cm for GRB 120422A; and [75] derived
a radius of ≈9 × 1013 cm for GRB 140606B. The radii inferred
for GRBs 060218, 120422A, and 140606B are commensurate
with the radii of red supergiants (200–1500 R⊙), while that
measured for GRB 100316D is similar to that of the radius of a
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Figure 7: The positions of GRBs, SNe Ibc, and GRB-SNe in the
𝐸K-Γ𝛽 plane [32, 78–81]. Ordinary SNe Ibc are shown in green,
𝑙𝑙GRBs in blue, relativistic SNe IcBL in purple, and jetted-GRBs in
red. Squares are used for the slow-moving SN ejecta, while circles
represent the kinetic energy and velocity of the nonthermal radio-
emitting ejecta associated with these events (e.g., the GRB jet). The
velocities were computed for 𝑡 − 𝑡0 = 1 day (rest-frame), where
the value Γ𝛽 = 1 denotes the division between relativistic and
nonrelativistic ejecta. The solid lines correspond to (green) ejecta
kinetic energy profiles of a purely hydrodynamical explosion 𝐸K ∝
(Γ𝛽)−5.2 [57, 82, 83]; (blue/purple dashed) explosions powered by
a short-lived central engine (SBO-GRBs and relativistic IcBL SNe
2009bb and 2012ap: 𝐸K ∝ (Γ𝛽)−2.4); (red) those arising from a
long-lived central engine (i.e., jetted-GRBs; 𝐸K ∝ (Γ𝛽)−0.4 [84]).
Modified, with permission, fromMargutti et al. [78, 81].

blue supergiant (≤25 R⊙). These radii, which are much larger
than those expected for Wolf-Rayet (WR) stars (of order a
few solar radius to a few tens of solar radii), were explained
by these authors by the presence of a massive, dense stellar
wind surrounding the progenitor star, where the thermal
radiation is observed once the shock, which is driven into
the wind, reaches a radius where the wind becomes optically
thin. An alternative explanation for the large BB radii was
presented by [76] (see aswell [77]), where the breakout occurs
in an extended (𝑅 = 100R⊙) low-mass (0.01M⊙) envelope
surrounding the preexplosion progenitor star. The origin of
envelope is likely material stripped just prior to explosion,
and such an envelope is missing for high-luminosity GRB-
SNe [77].

For a given GRB-SN event there are both relativistic and
nonrelativistic ejecta, where the former is responsible for
producing the prompt emission, and the latter is associated
with the SN itself. The average mass between the two
components is large: the ejecta mass of a GRB-SN is of order
2–8M⊙, while that in the jet that produces the 𝛾-rays is
of order 10−6M⊙, based on arguments for very low baryon
loading [88]. A GRB jet decelerates very rapidly, within a few
days, because the very low-mass ejecta is rapidly swept up
into the comparatively larger mass of the surrounding CSM.
Conversely, SNe have much heavier ejecta and can be in free-
expansion for many years or even centuries. Measuring the
amount of kinetic energy associated with each ejecta compo-
nent can offer additional clues to the explosion mechanisms
operating in these events. Figure 7 shows the position of SNe
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Figure 8: Properties of the prompt emission for different classes of GRBs in the 𝐸�훾,iso-𝐸p plane [85]. Data from [85–87] are shown in grey
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follow the Amati relation include 𝑙𝑙GRBs (980425 and 031203), INT-GRBs (150818A), and high-luminosity GRB 140606B. Both ULGRBs are
consistent with the Amati relation, so are GRBs 030329 and 130427A, while GRB 120422A and 𝑙𝑙GRB 100316D are marginally consistent.

Ibc (green), GRBs (red), 𝑙𝑙GRBs (blue), and relativistic SNe
IcBL (purple) in the 𝐸K-Γ𝛽 plane [32, 78–81], where 𝛽 = V/𝑐
(not to be confused with the spectral PL index of synchrotron
radiation) and Γ is the bulk Lorentz factor. Squares indicate
slow-moving SN ejecta, while circles represent the kinetic
energy and velocity of the nonthermal radio-emitting ejecta
associated with these events (e.g., the jet in GRBs). The
velocities were computed for 𝑡−𝑡0 = 1 day (rest-frame), where
the value Γ𝛽 = 1 denotes the division between relativistic and
nonrelativistic ejecta. The solid lines show the ejecta kinetic
energy profiles of a purely hydrodynamical explosion (green)
𝐸K ∝ (Γ𝛽)−5.2 [57, 82, 83]; explosions powered by a short-
lived central engine (blue/purple dashed), SBO-GRBs and
relativistic IcBL SNe 2009bb and 2012ap: 𝐸K ∝ (Γ𝛽)

−2.4; and
those arising from a long-lived central engine (red), that is,
jetted-GRBs: 𝐸K ∝ (Γ𝛽)

−0.4 [84].
It is seen that 𝑙𝑙GRBs and high-luminosity GRBs span a

wide range of engine energetics, as indicated by the range
of PL indices seen in Figure 7. The two relativistic SNe IcBL
considered in this review (SNe 2009bb and 2012ap), which
are also thought to be engine-driven SNe [79, 81, 89], occur at
the lower-end of central engine energetics. Modelling of GRB
060218 [90] showed that ∼1048 erg of energy was coupled to
the mildly relativistic ejecta (Γ ∼ 2). Reference [78] showed
the presence of a very weak central engine for GRB 100316D,
where ∼1049 erg of energy was coupled to mildly relativistic
(Γ = 1.5–2), quasi-spherical ejecta. It was shown by [79] that
≥1049 erg was associated with the relativistic (V = 0.9𝑐), radio-
emitting ejecta of SN 2009bb. These authors also showed
that, unlike GRB jets, the ejecta was in free-expansion, which
implied it was baryon loaded. For SN 2012ap, [89] estimated
there was ∼1.6 × 1049 erg of energy associated with the
mildly relativistic (0.7𝑐) radio-emitting ejecta. The weak X-
ray emission of SN 2012ap [81] implied no late-time activity
of its central engine, which led these authors to suggest that
relativistic SNe IcBL represent the weakest engine-driven
explosions, where the jet is unable to successfully break out
of the progenitor. 𝑙𝑙GRBs then represent events where the

jet does not or just barely escapes into space. Note that [91]
calculated an estimate to the dividing line between SBO-
GRBs and jet-GRBs, finding that for 𝛾-ray luminosities above
1048 erg s−1 a jet-GRB may be possible.

Next, the distribution of 𝑇90 (the time over which a
burst emits from 5% of its total measured counts to 95%) as
measured by the various GRB satellites can be used to infer
additional physical properties of the GRB jet duration and
progenitor radii. A basic assertion of the collapsar model is
that the duration of the GRB prompt phase (where𝑇90 is used
as a proxy) is the difference of the time that the central engine
operates minus the time it takes for the jet to break out of
the star: 𝑇90 ∼ 𝑡engine − 𝑡breakout. A direct consequence of this
premise is that there should be a plateau in the distribution
of 𝑇90 for GRBs produced by collapsars when 𝑇90 < 𝑡breakout
[92]. Moreover, the value of 𝑇90 found at the upper limit
of the plateaus seen for three satellites (BATSE, Swift, and
Fermi) was approximately the same (𝑇90 ∼ 20–30 s), which is
interpreted as the typical breakout time of the jet. This short
breakout time suggests that the progenitor star at the time
of explosion is quite compact (∼5 R⊙ [93]). Reference [94]
then used these distributions to calculate the probability that
a given GRB arises from a collapsar or not based on its 𝑇90
and hardness ratio. Note however that 𝑇90 might not always
be the best indicator of the engine on-time. For example,
[91] showed that while GRB 120422A had 𝑇90 = 5 s, the
actual duration of the jet was actually 86 s, as constrained by
modelling of the curvature effect. Though see [95] who state
that curvature radiation is not from a central engine that is
still on but from electrons that were off-axis and hence had
a lower Lorentz factor and which are received over a time
interval that is long compared to the duration of the burst.

Finally, Figure 8 shows the properties of the prompt
emission for the various GRB-SN subclasses in the 𝐸�훾,iso-𝐸p
plane, that is, the Amati relation [85]. Data from [85–87]
are shown in grey along with their best fit to a single power
law (index of 𝛼 = 0.57) and the 2𝜎 uncertainty in their fit.
Several events do not appear to follow the Amati relation,
including 𝑙𝑙GRBs 980425 and 031203, INT-GRB 150818A, and
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43 erg s−1,

which makes it more than 5𝜎 more luminous than the average GRB-SN. The average peak time of the entire sample is 𝑡p = 13.2 d, with a
standard deviation of 2.6 d. If SN 2011kl is excluded from the sample, this changes to 13.0 d. Plotted for reference is an analytical model that
considers the luminosity produced by the average GRB-SN (𝐸K = 25 × 10

51 erg,𝑀ej = 6M⊙, and𝑀Ni = 0.4M⊙).

high-luminosity GRB 140606B. Both ULGRBs are consistent
with the Amati relation, so are GRBs 030329 and 130427A,
while GRB 120422A and 𝑙𝑙GRB 100316D are marginally
consistent. It was once supposed that the placement of a
GRB in the 𝐸�훾,iso-𝐸K plane could be a discriminant of GRB’s
origins, where it is seen that SGRBs also do not follow
the Amati relation. However, over the years many authors
have closely scrutinized the Amati relation, with opinions
swinging back and forth as to whether it reflects a physical
origin or is simply due to selection effects [96–103]. To date,
no consensus has yet been reached.

4. Physical Properties:
Observational Constraints

4.1. Bolometrics. The bolometric LCs of a sample of 12 GRB-
SNe, which includes 𝑙𝑙GRB-SNe and ULGRB-SN 2011kl, are
shown in Figure 9.The Bazin function was fit to the GRB-SN
bolometric LCs in order to determine their peak luminosity
(𝐿p), the time of peak luminosity (𝑡p), and the amount the
bolometric LC fades from peak to 15 days later (Δ𝑚15). (NB.
that SNe 2001ke, 2008hw, and 2009nz were excluded from
the fitting and the subsequent calculated averages, as their
bolometric LCs contained too few points to be fit with the
Bazin function, which has four free parameters. As such, their
luminosities and peak times were approximated by eye and
are not included in the average GRB-SN properties presented
here.) These values are presented in Table 3.

The average peak luminosity of the GRB-SN sample, ex-
cluding SN 2011kl, is 𝐿p = 1.0 × 10

43 erg s−1, with a stand-
ard deviation of𝜎�퐿p

= 0.4×1043 erg s−1.Thepeak luminosities
of SNe 2003dh and 2013dx are ≈1 × 1043 erg s−1, meaning that
they are perhaps better representatives of a typical GRB-SN

than the archetype SN 1998bw (𝐿p = 7 × 10
42 erg s−1). The

peak luminosity of SN 2011kl is 𝐿p = 2.9 × 1043 erg s−1,
which makes it more than 5𝜎 more luminous than the
average GRB-SN. This is not, however, as bright as superlu-
minous supernovae (SLSNe), whose luminosities exceed >7
× 1043 erg s−1 [104].This makes SN 2011kl an intermediate SN
event between GRB-SNe and SLSNe and perhaps warrants a
classification of a “superluminous GRB-SNe” (SLGRB-SN);
however, in this chapter we will stick with the nomenclature
ULGRB-SN. When SN 2011kl is included in the sample, 𝐿p =
1.2×1043 erg s−1, with 𝜎�퐿p = 0.7×10

43 erg s−1. Even using this
average value, SN 2011kl is still 2.5𝜎more luminous than the
average GRB-SN.

The average peak time, when SN 2011kl is and is not
included in the sample, is 𝑡p = 13.2 d (𝜎�푡p = 2.6 d) and
𝑡p = 13.0 d (𝜎�푡p = 2.7 d), respectively. Similarly, Δ𝑚15 =
0.7mag (𝜎Δ�푚15 = 0.1mag) and 0.8mag (𝜎Δ�푚15 = 0.1mag),
respectively. As such, the inclusion/exclusion of SN 2011kl has
little effect on these derived values. The fact that SN 2011kl
peaks at a similar time as the average GRB-SN, but does so
at a much larger luminosity, strongly suggests that ULGRB-
SNe do not belong to the same class of standardizable candles
as GRB-SNe. This can be readily explained in that SN 2011kl
is powered by emission from a magnetar central engine
[36, 105–107], whereas GRB-SNe, including 𝑙𝑙GRB-SNe, are
powered by radioactive heating [106]. Whether ULGRB-SNe
represent the same set of standardizable candles as type I
SLSNe [108, 109], which are also thought to be powered by
a magnetar central engine, their own subset, or perhaps none
at all, requires additional well-monitored events.

Over the years, and since the discovery of SN 1998bw, the
bolometric properties (kinetic energy, 𝐸K, ejecta mass, 𝑀ej,
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Table 1: Average Bolometric properties of GRB-SNe.

Type∗ (M⊙) (M⊙) (d, rest) (mag) (km s−1)
𝑁 𝐸†K 𝜎 𝑁 𝑀ej 𝜎 𝑁 𝑀Ni 𝜎 𝑁 𝐿‡p 𝜎 𝑁 𝑡p 𝜎 𝑁 Δ𝑚15 𝜎 𝑁 Vph 𝜎

GRB 19 26.0 18.3 19 5.8 4.0 20 0.38 0.13 2 1.26 0.35 2 12.28 0.67 2 0.85 0.21 6 18400 9700
INT 1 8.2 — 1 3.1 — 1 0.37 — 1 1.08 — 1 12.94 — 1 0.85 — 1 21300 —
LL 6 27.8 19.6 6 6.5 4.0 6 0.35 0.19 5 0.94 0.41 5 13.22 3.53 5 0.75 0.12 4 22800 8200
ULGRB 2 18.8 18.7 2 6.1 2.9 1 0.41 — 1 2.91 — 1 14.80 — 1 0.78 — 1 21000 —
Rel IcBL 2 13.5 6.4 2 3.4 1.0 2 0.16 0.05 2 0.35 0.50 2 12.78 0.84 2 0.90 0.21 2 14000 1400
GRB ALL 28 25.2 17.9 28 5.9 3.8 28 0.37 0.20 9 1.24 0.71 9 13.16 2.61 9 0.79 0.12 12 20300 8100
GRB ALL∗∗ 27 25.9 17.9 27 5.9 3.9 28 0.37 0.20 8 1.03 0.36 8 12.95 2.72 8 0.79 0.13 11 20200 8500
Ib 19 3.3 2.6 19 4.7 2.8 12 0.21 0.22 — — — — — — — — — 11 8000 1700
Ic 13 3.3 3.3 13 4.6 4.5 7 0.23 0.19 — — — — — — — — — 10 8500 1800
∗Classifications (Section 3): �푙�푙GRBs: GRB-SNe associated with low-luminosity GRBs (�퐿�훾,iso < 1048.5 erg s−1); INT-GRBs: GRB-SNe associated with
intermediate-luminosity GRBs (1048.5 < �퐿�훾,iso < 10

49.5 erg s−1); GRBs: GRB-SNe associated with high-luminosity GRBs (�퐿�훾,iso > 10
49.5 erg s−1); ULGRBs:

GRB-SNe associated with ultra-long-duration GRBs (see Section 3).
∗∗Excluding SN 2011kl.
†Units: 1051 erg.
‡Units: 1043 erg s−1.
Note: average bolometric properties of SNe Ib and Ic are from [18].

and nickel mass, 𝑀Ni) of the best-observed GRB-SNe have
been determined by sophisticated numerical simulations
(hydrodynamical models coupled with radiative transfer, RT,
codes) [3, 7, 36, 47, 48, 107, 110–119] and analytical modelling
[10, 18, 31, 32, 40, 41, 43, 106, 120–122]. A summary of
the derived bolometric properties for individual GRB-SNe
is presented in Table 3, while a summary of the average
bolometric properties, broken down by GRB-SN subtype and
compared against other subtypes of SNe Ibc, is shown in
Table 1. It should be noted that the values presented have been
derived over different wavelength ranges: some are observer-
frame 𝐵𝑉𝑅𝐼, while others include UV, 𝑈-band, and NIR
contributions. Further discussion on the effects of including
additional filters when constructing a bolometric LC of a
given SN can be found in [30, 41, 49, 120, 123], who show
that including NIR flux leads to brighter bolometric LCs that
decay slower at later times and including UV flux leads to
an increase in luminosity at earlier times (during the first
couple of weeks, rest-frame) when the UV contribution is
nonnegligible.

From this sample of𝑁 = 28GRB-SNe we can say that the
average GRB-SN (grey-dashed line in Figure 9) has a kinetic
energy of 𝐸K = 2.5 × 10

52 erg (𝜎�퐸K = 1.8 × 10
52 erg), an ejecta

mass of𝑀ej = 6M⊙ (𝜎�푀ej
= 4M⊙), a nickel mass of𝑀Ni =

0.4M⊙ (𝜎�푀Ni
= 0.2M⊙), and a peak photospheric velocity

of Vph = 20,000 km s−1 (𝜎Vph = 8,000 km s−1). Here we have
assumed that the line velocities of various transitions, namely,
Fe ii 𝜆5169 and Si ii 𝜆6355, are suitable proxies for the photo-
spheric velocities. An in-depth discussion of this assumption
and its various caveats can be found in [46]. It has a peak
luminosity of 𝐿p = 1 × 10

43 erg s−1 (𝜎�퐿p
= 0.4 × 1043 erg s−1),

reaches peak bolometric light in 𝑡p = 13 days (𝜎�푡p = 2.7
days), and has Δ𝑚15 = 0.8mag (𝜎Δ�푚15 = 0.1mag). There are
no statistical differences in the average bolometric properties,
rise times, and decay rates, between the different GRB-SN

subtypes, and excluding ULGRB-SN 2011kl, there are no
differences in their peak luminosities. As found in previous
studies [18, 120], relativistic SNe IcBL are roughly half as ener-
getic as GRB-SNe and contain approximately half as much
ejecta mass and nickel content therein. However, we are com-
paringGRB-SNe against a sample of two relativistic SNe IcBL,
meaning we should not draw any firm conclusions as of yet.

There are a few caveats to keep in mind when inter-
preting these results. The first is the comparison of bolo-
metric properties derived for SNe observed over different
filter/wavelength ranges, as discussed above. Secondly, for a
GRB-SN to be observed there are several stringent require-
ments [11], including AGs that fade at a reliably determined
rate (e.g., for GRB 030329 the complex AG behaviour led to
a range of 1mag in the peak brightness of accompanying SN
2003dh [4–6]; thus in this case the reported peak brightness
was strongly model-dependent), have a host galaxy that
can be readily quantified, and are to be at a relatively low
redshift (𝑧 ≤ 1 for current 10 m class ground telescopes
and HST). Moreover, the modelling techniques used to
estimate the bolometric properties contain their own caveats
and limitations. For example, the analytical Arnett model
[208] contains assumptions such as spherical symmetry,
homogeneous ejecta distribution, homologous expansion,
and a central location for the radioactive elements [18].

4.2. What Powers a GRB-SN? Observations of GRB-SNe can
act as a powerful discriminant of the different theoretical
models proposed to produce them.The analysis presented in
the previous section made the assumption that GRB-SNe are
powered by radioactive heating. In this scenario, it is assumed
that during the initial core-collapse (see Section 9 for further
discussion), roughly 0.1M⊙ or so of nickel can be created
via explosive nucleosynthesis [209] if the stellar material has
nearly equal amounts of neutrons and protons (such as silicon
and oxygen), and approximately 1052 erg of energy is focused
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Table 2: GRB-SN master Table 1: 𝛾-ray properties.

(1052 erg) (keV) (erg s−1)
GRB SN Type 𝑧 𝑇90 (s) 𝐸�훾,iso 𝐸p 𝐿†iso
970228 GRB 0.695 56 1.6 (0.12) 195 (64) 4.84 × 1050

980326 GRB 0.48 (0.09) 935 (36)
980425 1998bw 𝑙𝑙GRB 0.00867 18 0.000086 (0.000002) 55 (21) 4.80 × 1046

990712 GRB 0.4331 19 0.67 (0.13) 93 (15) 5.05 × 1050

991208 GRB 0.7063 60 22.3 (1.8) 313 (31) 6.34 × 1051

000911 GRB 1.0585 500 67 (14) 1859 (371) 2.75 × 1051

011121 2001ke GRB 0.362 47 7.8 (2.1) 793 (265) 2.26 × 1051

020305
020405 GRB 0.68986 40 10 (0.9) 612 (10) 4.22 × 1051

020410 >1600
020903 𝑙𝑙GRB 0.2506 3.3 0.0011 (0.0006) 3.37 (1.79) 4.20 × 1048

021211 2002lt GRB 1.004 2.8 1.12 (0.13) 127 (52) 8.02 × 1051

030329 2003dh GRB 0.16867 22.76 1.5 (0.3) 100 (23) 7.70 × 1050

030723 <0.023
030725
031203 2003lw 𝑙𝑙GRB 0.10536 37 0.0086 (0.004) <200 2.55 × 1048

040924 GRB 0.858 2.39 0.95 (0.09) 102 (35) 7.38 × 1051

041006 GRB 0.716 18 3 (0.9) 98 (20) 2.86 × 1051

050416A INT 0.6528 2.4 0.1 (0.01) 25.1 (4.2) 6.89 × 1050

050525A 2005nc GRB 0.606 8.84 2.5 (0.43) 127 (10) 4.54 × 1051

050824 GRB 0.8281 25 0.041 < 𝐸 < 0.34 11 < 𝐸 < 32

060218 2006aj 𝑙𝑙GRB 0.03342 2100 0.0053 (0.0003) 4.9 (0.3) 2.60 × 1046

060729 GRB 0.5428 115 1.6 (0.6) >50 2.14 × 1050

060904B GRB 0.7029 192 2.4 (0.2) 163 (31) 2.12 × 1050

070419A INT 0.9705 116 ≈0.16 2.71 × 1049

080319B GRB 0.9371 124.86 114 (9) 1261 (65) 1.76 × 1052

081007 2008hw GRB 0.5295 9.01 0.15 (0.04) 61 (15) 2.54 × 1050

090618 GRB 0.54 113.34 25.7 (5) 211 (22) 3.49 × 1051

091127 2009nz GRB 0.49044 7.42 1.5 (0.2) 35.5 (1.5) 3.01 × 1051

100316D 2010bh 𝑙𝑙GRB 0.0592 1300 >0.0059 26 (16) 4.80 × 1046

100418A GRB 0.6239 8 0.0990 (0.0630) 29 (2) 2.00 × 1050

101219B 2010ma GRB 0.55185 51 0.42 (0.05) 70 (8) 1.27 × 1050

101225A ULGRB 0.847 7000 1.2 (0.3) 38 (20) 3.16 × 1048

111209A 2011kl ULGRB 0.67702 10000 58.2 (7.3) 520 (89) 9.76 × 1049

111211A 0.478
111228A GRB 0.71627 101.2 4.2 (0.6) 58.4 (6.9) 7.12 × 1050

120422A 2012bz GRB 0.28253 5.4 0.024 (0.008) <72 5.70 × 1049

120714B 2012eb INT 0.3984 159 0.0594 (0.0195) 101.4 (155.7) 5.22 × 1048

120729A GRB 0.8 71.5 2.3 (1.5) 310.6 (31.6) 5.79 × 1050

130215A 2013ez GRB 0.597 65.7 3.1 (1.6) 155 (63) 7.53 × 1050

130427A 2013cq GRB 0.3399 163 81 (10) 1028 (50) 6.65 × 1051

130702A 2013dx INT 0.145 58.881 0.064 (0.013) 15 (5) 1.24 × 1049

130831A 2013fu GRB 0.479 32.5 0.46 (0.02) 67 (4) 2.09 × 1050

140606B GRB 0.384 22.78 0.347 (0.02) 801 (182) 2.10 × 1050

150518A 0.256
150818A INT 0.282 123.3 0.1 (0.02) 128 (13) 1.03 × 1049

†�퐿 iso = �퐸iso(1 + �푧)/�푇90.
‡�훾-ray properties calculated by [85] for a redshift range of 0.9 ≤ �푧 ≤ 1.1.
�푙�푙GRB: GRB-SN associated with a low-luminosity GRB (�퐿�훾,iso < 1048.5 erg s−1); INT: GRB-SN associated with an intermediate-luminosity GRB (1048.5 <
�퐿�훾,iso < 1049.5 erg s−1); GRB: GRB-SN associated with a high-luminosity GRB (�퐿�훾,iso > 1049.5 erg s−1); ULGRB: GRB-SN associated with an ultra-long-
duration GRB (see Section 3).
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Table 4: References.

GRB References(s)
970228 [124, 125]
980326 [126, 127]
980425 [1–3, 9, 18, 42, 44, 47, 110, 111, 120, 128]
990712 [18, 129]
991208 [18, 130]
000911 [131, 132]
011121 [18, 42, 44, 133–136]
020305 [137]
020405 [18, 138]
020410 [139, 140]
020903 [18, 141–143]
021211 [18, 144, 145]
030329 [4–7, 18, 30, 42, 44, 112, 128, 146, 147]
030723 [148, 149]
030725 [150]
031203 [18, 42, 44, 113, 128, 151–156]
040924 [90, 157]
041006 [18, 39, 90, 158]
050416A [159, 160]
050525A [18, 44, 128, 161]
050824 [18, 35, 162, 163]
060218 [18, 33, 42, 44, 48, 58, 90, 113, 120, 128, 156, 164–168]
060729 [10, 18, 169, 170]
060904B [18, 171]
070419A [172, 173]
080319B [174–176]
081007 [177–181]
090618 [10, 18, 42, 128]
091127 [18, 181–183]
100316D [18, 30, 42, 44, 49, 65, 78, 120, 121, 128, 184]
100418A [185–187]
101219B [181, 188]
101225A [34, 53], here
111209A [36, 53, 105–107, 189], here
111211A [190]
111228A [191]
120422A [18, 41, 44, 91, 128, 192]
120714B [193, 194]
120729A [31]
130215A [31]
130427A [40, 195–197]
130702A [43, 44, 198]
130831A [31, 42, 199]
140606B [32, 75]
150518A [200]
150818A [201–203]
SN 2009bb [18, 42, 44, 79, 120, 204, 205]
SN 2012ap [76, 89, 206, 207], here

into ∼1% of the star, which occurs in the region between the
newly formed compact object and 4 × 109 cm [210]. In this

scenario, temperatures in excess of 4 × 109 K can be attained.
However, the precise amount of 56Ni that is generated is
quite uncertain and depends greatly on how much the star
has expanded (or collapsed), prior to energy deposition. The
radioactive nickel decays into cobalt with a half-life of 6.077
d and then cobalt into iron with a half-life of 77.236 d: 56

28Ni
→ 56

27Co →
56
26Fe [208, 211]. Given its short half-life, the

synthesized nickel must be generated during the explosion
itself and not long before core-collapse. Gamma-rays that are
emitted during the different radioactive decay processes are
thermalised in the optically thick SN ejecta, which heat the
ejecta that in turn radiates this energy at longer wavelengths
(optical and NIR).This physical process is expected to power
other types of SNe, including all type I SNe (Ia, Ib, Ic, and type
Ic SLSNe) and the radioactive tail of type IIP SNe.

Observationally, there are hints that suggest that the best-
observed GRB-SNe are powered, at least in part [212], by
radioactive heating. At late times, the decay of 56Co leads
to an exponential decline in the nebular-phase bolometric
LC of type I SNe. An example of this is the grey-dashed
line in Figure 9, which is an analytical model [122, 213] that
considers the luminosity produced by a fiducial SN with a
kinetic energy of 𝐸K = 25 × 10

51 erg, an ejecta mass of𝑀ej =
6M⊙, and a nickel mass of𝑀Ni = 0.4M⊙ (e.g., the “average”
GRB-SN). Such a model and others of this ilk assume full
trapping of the emitted 𝛾-rays and thermalised energy. For
comparison, the late-time LC of SN 1998bw appears to fade
more rapidly than this, presumably because some of the 𝛾-
rays escape directly into space without depositing energy into
the expanding ejecta. At times later than 500 d [9, 214], the
observed flattening seen in the LC can be interpreted in terms
of both more of the energy and 𝛾-rays being retained in the
ejecta, and more energy input from the radioactive decay of
species in addition to cobalt.

In the collapsar model, there are additional physical
processes that can lead to the creation of greater masses of
radioactive nickel. One potential source of 56Ni arises from
the wind emitted by the accretion disk surrounding the newly
formed black hole (BH). According to the numerical simula-
tions of [215], the amount of generated nickel depends on the
accretion rate as well as the viscosity of the inflow. In theory,
at least, the only upper bound on the amount of nickel that
can be synthesized by the disk wind is the mass of material
that is accreted. In an analytical approach, [216] demonstrated
that enough 56Ni can be synthesized (in order to match
observations of GRB-SNe), over the course of a few tens of
seconds, in the convective accretion flow arising from the
initial circularization of the infalling envelope around the BH.

In the millisecond magnetar model, it is more difficult
to produce a sufficient amount of 56Ni via energy injection
from a central engine. Some simulations suggest that only a
few hundredths of a solar mass of nickel can be synthesized
in the magnetar model [217]. However it may be possible
to generate more nickel by tapping into the initial rotational
energy of the magnetar via magnetic stresses, thus enhancing
the shocks induced by the collision of the energetic wind
emanated by themagnetar withmaterial already processed by
the SN shock [218, 219]. Another route would be via a shock
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Figure 10: Late-time bolometric LC of SN 1998bw in filters 𝐵𝑉𝑅𝐼.
Two analytical models have been plotted to match the peak lumi-
nosity: (1) a single-zone analytical model for a fiducial SN that is
powered by radioactive heating, where 𝐸K = 27.6 × 10

51 erg, an
ejecta mass of𝑀ej = 6.4M⊙, and a nickel mass of𝑀Ni = 0.39M⊙,
and (2) a 𝑡−2 curve, which is the expected decay rate for luminosity
powered by amagnetar central engine. At late times the decay rate of
model (1) provides amuch better fit than the 𝑡−2 decay, which grossly
overpredicts the bolometric luminosity at times later than 400 d.
This is one line of observational evidence that GRB-SNe are powered
by radioactive heating and not via dipole-extracted radiation from a
magnetar central engine (i.e., a magnetar-driven SN).

wave driven into the ejecta by the magnetar itself, which
for certain values of 𝑃 and 𝐵 could generate the required
nickel masses [220]. However, in this scenario an isotropic-
equivalent energy input rate of more than 1052 erg is required,
and the subsequent procurement of additional nickel mass
via explosive nucleosynthesis will inevitably lead to a more
rapid spin-down of the magnetar central engine, rendering
it unable to produce energy input during the AG phase. It is
alsoworth considering that if amagnetar (and the subsequent
GRB) is formed via the accretion-induced collapse of a white
dwarf star, or perhaps the merger of two white dwarfs, there
is no explosive nucleosynthesis and thus a very low 56Ni yield
[221].

The uncertainties unpinning both models mean that
neither can be ruled out at this time, though perhaps the
collapsarmodel offers a slightly easier route for producing the
necessary quantity of nickel needed to explain the observed
luminosities of GRB-SNe. But what if GRB-SNe are not
powered by radioactive heating, but instead via another
mechanism? Could, instead, GRB-SNe be powered by a mag-
netar central engine [223, 224], as has been proposed for some
type I SLSNe [225–227]? A prediction of themagnetar-driven
SNmodel is that at late times the bolometric LC should decay
as 𝑡−2 [106, 217, 223–225, 228, 229]. Plotted in Figure 10 is the
bolometric LC of SN 1998bw to 𝑡−𝑡0 = 500 d. Overplotted are
two analytical models: (1) a single-zone analytical model for
a fiducial SN that is powered by radioactive heating, where
𝐸K = 27.6 × 10

51 erg, an ejecta mass of𝑀ej = 6.4M⊙, and a
nickel mass of𝑀Ni = 0.39M⊙, and (2) a 𝑡−2 curve (i.e., the
decay rate expected for luminosity powered by a magnetar
central engine). Both have been fitted to the bolometric LC

of SN 1998bw to match its peak luminosity. At late times the
decay rate of the radioactive-heated analytical LC provides a
much better fit than the 𝑡−2 decay, which grossly overpredicts
the bolometric luminosity at times later than 400 d. The
difference between observations and the radioactive decay
model can be attributed to incomplete trapping of 𝛾-rays
produced during the radioactive decay process.

Further evidence against the magnetar model are the
observed line velocities as a function of time. In 1D analytical
magnetar models [228, 229], a mass shell forms due to the
expanding magnetar bubble. This feature of the 1D models
has the implication that the observed line velocities will have
a flat, plateau-like evolution. Inspection of Figure 6 reveals
that this is indeed not the case for all the GRB-SNe of which
there are time-series spectra. This particularly applies in the
measured Si ii 𝜆6355 velocities, where all appear to decrease
from a maximum value early on, rather than maintaining a
flat evolution throughout. This is a second line of evidence
that rules against magnetar heating in GRB-SNe.

However, it appears that not all GRB-SNe subtypes
are powered by radioactive heating. Several investigations
have provided compelling evidence that ULGRB 111209A/SN
2011kl was powered instead by a magnetar central engine.
Reference [36] showed that SN 2011kl could not be powered
entirely (or at all) by radioactive heating. Their argument
was based primarily on the fact that the inferred ejecta mass
(3.2 ± 0.5M⊙), determined via fitting the Arnett model [208]
to their constructed bolometric LC, was too low for the
amount of nickel needed to explain the observed bolometric
luminosity (1.0 ± 0.1M⊙). The ratio of MNi/Mej = 0.3
was much larger than that inferred for the general GRB-
SN population (MNi/Mej ≈ 0.07; [18]), which rules against
radioactive heating powering SN 2011kl. Secondly, the shape
and relative brightness of an optical spectrum obtained of SN
2011kl just after peak SN light (𝑡 − 𝑡0 = 20 d, rest-frame) was
entirely unlike the spectra observed for GRB-SNe (Figure 5),
including SN 1998bw [2]. Instead, the spectrum more closely
resembled those of SLSNe in its shape, including the sharp
cut-off at wavelengths bluewards of 3000 Å. Several authors
[36, 105–107, 230] modelled different phases of the entire
ULGRB event to determine the ejecta mass (𝑀ej), initial spin
period (𝑃), and the initial magnetic field strength (𝐵), with
some general consensus among the derived values: 𝑀ej =
3–5M⊙ (for various values of the assumed grey opacity), 𝑃 =
2–11ms, and 𝐵 = 0.4–2 × 1015 G. Note that some models
assumed additional heating from some nucleosynthesised
nickel (0.2M⊙ [105, 107]), while [106] assumed that energy
injection from themagnetar central enginewas solely respon-
sible for powering the entire event. The general consensus
of all the modelling approaches is that SN 2011kl was not
powered entirely by radioactive heating, and additional
energy, likely arising from a magnetar central engine, was
needed to explain the observations of this enigmatic event.

5. Geometry

Measuring the geometry of GRB-SNe can lead to additional
understanding of their explosion mechanism(s) and the role
and degree of nickel mixing within the ejecta. A starting
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Figure 11: Observed [O i] 𝜆𝜆6300,6364 emission-line profiles for a sample of SNe Ibc. Top right: emission lines classified into characteristic
profiles (from [222]): single-peaked (S), transition (T), and double-peaked (D). Model predictions from a bipolar model (red curves) and
a less aspherical model (blue), for different viewing directions are shown (directions denoted by the red and blue text). All other panels:
nebular line profiles observed for an aspherical explosion model for different viewing angles (from [113]). The figure shows the properties
of the explosion model: Fe (coloured in green and blue) is ejected near the jet direction and oxygen (red) in a torus-like structure near the
equatorial plane. Synthetic [O i] 𝜆𝜆6300,6364 emission-line profiles are compared with the spectra of SN 1998bw (top left) and SN 2003jd
(bottom right).

point is to understand the geometry of GRB-SNe relative to
other types of stripped-envelope core-collapse SNe (CCSNe)
and ascertain whether any differences exist. In this section
we will recap the results of photometric, spectroscopic, and
polarimetric/spectropolarimetry observations of SNe Ibc.
The collective conclusion of these studies is that asphericity
appears to be ubiquitous to all SNe Ibc.

5.1. Non-GRB-SNe Ibc

5.1.1. Spectroscopy. Thebestway to investigate the inner ejecta
geometry of a given SN is through late-time spectroscopy,
as done by [110, 111, 222, 231–235]. At ≥200 d after the
explosion, expansion makes the density of the ejecta so
low that it becomes optically thin, thus allowing optical
photons produced anywhere in the ejecta to escape without
interacting with the gas. At these epochs the SN spectrum is
nebular, showing emission lines mostly of forbidden transi-
tions. Because the expansion velocity is proportional to the
radius of any point in the ejecta, the Doppler shift indicates
where the photon was emitted: those emitted from the near
side of the ejecta are detected at a shorter (blueshifted)
wavelengths, while those from the far side of the ejecta are
detected at a longer (redshifted) wavelength. The late-time

nebular emission profiles thus probe the geometry and the
distribution of the emitting gas within the SN ejecta [236,
237]. Importantly for SNe Ibc, nebular spectra allow the
observer to look directly into the oxygen core.

One of the strongest emission lines is the [O i]
𝜆𝜆6300,6364 doublet, which behaves like a single transition
if the lines are sufficiently broad (≥0.01𝑐) because the red
component is weaker than the blue one by a factor of
three; see Figure 11. The appearance of this line can then be
used to infer the approximate ejecta geometry: (1) a radially
expanding spherical shell of gas produces a square-topped
profile; (2) and a filled uniform sphere, where 56Ni is confined
in a central high-density region with an inner hole that is
surrounded by a low-density O-rich region [238], produces
a parabolic profile. These authors also considered a third
scenario: (3) a bipolar model [215, 238, 239] characterized
by a low-density 56Ni-rich region located near the jet axis,
where the jets convert stellar material (mostly O) into Fe-
peak elements.The [O i] profile in the bipolarmodel depends
on both the degree of asphericity and the viewing angle. If a
bipolar SN explosion is viewed from a direction close to the
jet axis, the O-rich material in the equatorial region expands
in a direction perpendicular to the line of sight, and the [O
i] emission profile is observed to be sharp and single-peaked.
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On the other hand, for a near-equatorial view, the profile is
broader and double-peaked. It is important to note that a
double-peaked profile cannot be accounted for in the spher-
ical model. Furthermore, the separation of the blueshifted
and redshifted peaks, which represent the forward and rear
portions of an expanding torus of O-rich material, suggests
that the two peaks actually originate from the two lines of
the doublet from a single emitting source on the front of
the SN moving towards the observer. Double emission peaks
seen in asymmetric profiles with separations larger or smaller
than the doublet spacing do not share this problem.The high
incidence of ≈64 Å separation between emission peaks of
symmetric profiles plus the lack of redshifted emission peaks
in asymmetric profiles suggests that emission from the rear
of the SN may be suppressed. This implies that the double-
peaked [O i]𝜆𝜆6300,6364 line profiles of SNe Ibc are not nec-
essarily signatures of emission from a torus. The underlying
cause of the observed predominance of blueshifted emission
peaks is unclear but may be due to internal scattering or
dust obscuration of emission from far side ejecta [235].
These models are for single-star progenitors, and they do not
consider the effects that binary interactions or merger might
impart to the observed geometry of the SN ejecta [240].

References [222, 232, 234] found that all SNe Ibc and IIb
are aspherical explosions. The degree of asphericity varies
in severity, but all studies concluded that most SNe Ibc are
not as extremely aspherical as GRB-SNe (specifically SN
1998bw). Interestingly [234] found that, for some SNe Ibc,
the [O i] line exhibits a variety of shifted secondary peaks
or shoulders, interpreted as blobs of matter ejected at high
velocity and possibly accompanied by neutron-star kicks
to assure momentum conservation. The interpretation of
massive blobs in the SN ejecta is expected to be the signature
of very one-sided explosions.

Some notable and relevant nebular spectra analyses
include SNe IcBL 2003jd [231], 2009bb [204], and 2012ap
[206]. Reference [231] interprets their double-peaked [O i]
𝜆𝜆6300,6364 nebular lines of SN 2003jd as an indication
of an aspherical axisymmetric explosion viewed from near
the equatorial plane, and directly perpendicular to the jet
axis, and suggested that this asphericity could be caused by
an off-axis GRB jet. Reference [204] obtained moderately
noisy nebular spectra of SN 2009bb, which nevertheless
displayed strong nebular lines of [O i] 𝜆𝜆6300,6364 and
[Ca ii] 𝜆𝜆7291,7324 that had all single-peaked profiles. In
their derived synthetic spectra, a single velocity provided a
good fit to these lines, thus implying that the ejecta is not
overly aspherical. The nebular spectra (>200 d) of SN 2012ap
[206] had an asymmetric double-peaked [O i] 𝜆𝜆6300,6364
emission profile that was attributed to either absorption in the
supernova interior or a toroidal ejecta geometry.

5.1.2. Polarimetry. Further enlightening clues to the geome-
try of SNe Ibc have arisen via polarimetric and spectropo-
larimetric observations (see [242] for an extensive review and
Figure 12). When light scatters through the expanding debris
of a SN, it retains information about the orientation of the
scattering layers. Since it is not possible to spatially resolve
extragalactic SNe through direct imaging, polarization is a

(a) Spherical photosphere

(b) Spherical ion distribution

(c) Aspherical ion distribution

Polarization vector (length = degree of polarization)

Figure 12: Schematic illustration of polarization in the SN ejecta.
(a) When the photosphere is spherical, polarization is canceled
out, and no polarization is expected. At the wavelength of a line,
polarization produced by the electron scattering is depolarized by
the line transition. (b) When the ion distribution is spherical, the
remaining polarization is canceled, and no polarization is expected.
(c) When the ion distribution is not spherical, the cancelation
becomes incomplete, and line polarization could be detected (figure
and caption taken from [241]).

powerful tool to determine the morphology of the ejecta.
Spectropolarimetry measures both the overall shape of the
emitting region and the shape of regions composed of
particular chemical elements. Collectively, numerous polari-
metric data have provided overwhelming evidence that all
CCSNe are intrinsically three-dimensional phenomena with
significant departures from spherical symmetry, and they
routinely show evidence for strong alignment of the ejecta
in single well-defined directions, suggestive of a jet-like flow.
As discussed in [242], many of these CCSNe often show
a rotation of the position angle with time of 30–40∘ that
is indicative of a jet of material emerging at an angle with
respect to the rotational axis of the inner layers. Another
recent investigation by [241] showed that all SNe Ibc show
nonzero polarization at the wavelength of strong lines. More
importantly, they demonstrated that five of the six SNe Ibc
they investigated had a “loop” in their Stokes 𝑄-𝑈 diagram
(where 𝑄 is the radiance linearly polarized in the direction
parallel or perpendicular to the reference plane and 𝑈 is the
radiance linearly polarized in the directions 45∘ to the refer-
ence plane), which indicates that a nonaxisymmetric, three-
dimensional ion distribution is ubiquitous for SNe Ibc ejecta.

The results of [242] suggest that the mechanism that
drives CCSNe must produce energy and momentum aspher-
ically from the start, either induced from the preexplosion
progenitor star (i.e., rotation and/or magnetic fields) or per-
haps arising from the newly formed neutron star (NS) [243–
246]. In any case, it appears that the asphericity is perma-
nently frozen into the expandingmatter. Collimated outflows
might be caused by magnetohydrodynamic jets, as is perhaps
the case for GRB-SNe [210, 215, 247, 248], from accretion
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flows around the central neutron star, via asymmetric neu-
trino emission, from magnetoacoustic flux, jittering jets (jets
that have their launching direction rapidly change [249]), or
by some combination of thosemechanisms. Another alterna-
tive idea, perhaps intimately related, is that material could be
ejected in clumps that block the photosphere in different ways
in different lines. Itmay be that jet-like flows induce clumping
so that these effects occur simultaneously. Alternatively, the
results of [241] suggest that the global asymmetry of SNe
Ibc ejecta may rather arise from convection and preexisting
asymmetries in the stellar progenitor before and during the
time of core-collapse (e.g., [250, 251]), rather than induced
by two-dimensional jet-like asphericity.

In addition to the above analyses, there are more clues
which show that asphericity is quite ubiquitous in CCSN
ejecta. A jet model was proposed for type Ic SN 2002ap
[252], where the jet was buried in the ejecta and did not
bore through the oxygen mantle. The lack of Fe polarization
suggests that a nickel jet had not penetrated all the way to
the surface. For CCSNe, we know that pulsars are somehow
kicked at birth in a manner that requires a departure from
both spherical and up/down symmetry [253]. The spatial
distribution of various elements, including 44Ti in supernova
remnants [254], is also consistent with an aspherical explo-
sion, arising from the development of low-mode convective
instabilities (e.g., standing accretion shock instabilities [255])
that can produce aspherical or bipolar explosions in CCSNe.
The anisotropies inferred by the oxygen distribution instead
suggest that large-scale (plume-like) mixing is present, rather
than small-scale (Rayleigh-Taylor) mixing, in supernova
remnants. Additionally, the Cassiopeia A supernova remnant
shows signs of a jet and counterjet that have punched holes
in the expanding shell of debris [256], and there are examples
of other asymmetric supernova remnants [257, 258] and
remnants with indications of being jet-driven explosions or
possessing jet-like features [259, 260].

5.1.3. Role of Mixing in the Ejecta. The analytical modelling
of late-time (>50–100 d) bolometric LCs of SNe Ibc also
implies a departure from spherical symmetry (or perhaps a
range grey optical opacities [261]). Modelling performed by
[122] showed that the late-time bolometric LC behaviour of
a sample of three SNe Ic and IcBL (SNe 1998bw, 1997ef, and
2002ap) was better described by a two-component model
(two concentric shells that approximated the behaviour of a
high-velocity jet and a dense inner core/torus) than spherical
models. Their modelling also showed that there was a large
degree of nickelmixing throughout the ejecta. A similar result
was inferred by [262] for a sample of SNe Ibc, who showed
that the outflow of SNe Ib is thoroughly mixed. Helium lines
arise via nonthermal excitation and nonlocal thermodynamic
equilibrium [263–266]. High-energy 𝛾-rays produced during
the radioactive decay of nickel, cobalt, and iron Compton
scatter with free and bound electrons, ultimately producing
high-energy electrons that deposit their energy in the ejecta
through heating, excitation, and ionization.

To address the question of whether the lack of helium
absorption lines for SNe Ic was due to a lack of this element
in the ejecta or that the helium was located at large distances

from the decaying nickel [266–268], [262] showed that the
ejecta of type SN Ic 2007gr was also thoroughly mixed,
meaning that the lack of helium lines in this event could
not be attributed to poor mixing. A similar conclusion was
reached by [46] who demonstrated that He lines cannot be
“smeared out” in the spectra of SNe IcBL, that is, blended so
much that they disappear; insteadHe really must be absent in
the ejecta (see as well [269]). A prediction of RTmodels [270]
is if the lack of mixing is the only discriminant between SNe
Ib and Ic, then well-mixed SNe Ib should have higher ejecta
velocities than the less well-mixed SNe Ic. The investigation
by [271] tested this prediction with a very large sample of
SNe Ibc spectra, finding the opposite to be true: SNe Ic have
higher ejecta velocities than SNe Ib, implying that the lack of
He lines in the former cannot be attributed entirely to poor
mixing in the ejecta. Next, [272] showed that for a sample
of SNe Ibc, SNe Ib, Ic, and IcBL have faster rising LCs than
SNe Ib, implying that the ejecta in these events are probably
well mixed. The collective conclusion of these observational
investigations states that the lack of helium features in SNe
Ic spectra cannot be attributed to poor mixing but rather the
absence of this element in the ejecta, which agrees with the
conclusion of [268] that no more than 0.06–0.14M⊙ of He
can be “hidden” in the ejecta of SNe Ic.

5.2. GRB-SNe. The key result presented in the previous
sections is that all CCSNe possess a degree of aspheric-
ity: either two-dimensional [242] asymmetries where most
CCSNe possess a jet or three-dimensional asymmetries [241].
Taken at face value, if all CCSNe possess two-dimensional
axisymmetric geometry, then the observation of the 30–40∘
rotation of the position angle with time is suggestive of a
jet of material emerging at an angle with respect to the
rotational axis of the inner layers. This observation differs to
that expected for GRB-SNe, where the jet angle is expected to
be along or very near to the rotation axis of the preexplosion
progenitor star. If jets are almost ubiquitous in CCSNe, but
they are usually at an angle to the rotational axis, does
this suggest that GRB-SNe are different because the jet
emerges along, or very near to, the rotational axis? If so, then
something is required to maintain that collimation: that is,
more rapid rotation of GRB-SN progenitors and/or strong
collimation provided by magnetic fields [248]. Moreover, is
the difference between 𝑙𝑙GRBs and high-luminosity GRBs
due to less collimation in the former? In turn, perhaps more
SNe Ibc arise from central engine that is currently accounted
for, but for whatever reason the jets very quickly lose their
collimation, perhaps to underenergetic or very short-lived
central engines, and deposit their energy in the interior of
the star, where perhaps a combination of jets and a neutrino-
driven explosion mechanism is responsible for the observed
SN. Note that this supposition is also consistent with the
study of [273] who looked for off-axis radio emission from
GRBs pointed away from Earth, finding <10% of all SNe
Ibc are associated with GRBs pointed away from our line
of sight. In this scenario, no imprint of the jet in the non-
GRB-SNe Ibc is imparted to the ejecta. Nevertheless, the
results of [241] need to be kept inmindwhen considering this
speculative scenario, where the asymmetries in SNe Ibc may
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not be axisymmetric, but instead may be intrinsically three-
dimensional.

More observations are sorely needed of nearby GRB-
SNe to help address this outstanding question. To date only
two GRB-SNe have occurred at close enough distances that
reasonable quality nebular spectra have been obtained: SN
1998bw (∼40Mpc) and SN 2006aj (∼150Mpc). Even SN
2010bh was too distant (∼270Mpc) for the nebular emission
lines to be reasonably modelled [49]. In the following section
wewill present a brief summary of the results of spectroscopic
and polarimetric analyses of these two GRB-SNe.

References [47, 110, 111] investigated the nebular spectra
of SN 1998bw, which exhibited properties that could not be
explained with spherical symmetry. Instead, a model with
high-velocity Fe-rich material ejected along the jet axis, and
lower-velocity oxygen torus perpendicular to the jet axis, was
proposed. From this geometry a strong viewing-angle depen-
dence of nebular line profiles was obtained [110]. Reference
[47] noted that the [Fe ii] lines were unusually strong for a SN
Ic and that lines of different elements have different widths,
indicating different expansion velocities, where iron appeared
to expand more rapidly than oxygen (i.e., a rapid Fe/Ni-
jet and a slower moving O-torus). The [O i] nebular lines
declined more slowly than the [Fe ii] ones, signalling deposi-
tion of 𝛾-rays in a slowly moving O-dominated region.These
facts suggest that the explosionwas aspherical.The absence of
[Fe iii] nebular lines can be understood if the ejecta are signif-
icantly clumped. Reference [111] noted that theirmodels show
an initial large degree (∼4 depending on model parameters)
of boosting luminosity along the polar/jet direction relative to
the equatorial plane, which decreased as the SN approached
peak light. After the peak, the factor of the luminosity
boost remains almost constant (∼1.2) until the supernova
entered the nebular phase. This behaviour was attributed to
an aspherical 56Ni distribution in the earlier phase and to the
disk-like inner low-velocity structure in the later phase.

Early polarization measurements of ≈0.5%, possibly
decreasing with time, were detected for SN 1998bw [2, 274],
which imply the presence of aspherical ejecta, with an axis
ratio of about 2 : 1 [115]. In contrast, radio emission of GRB
980425/SN 1998bw showed no evidence for polarization
[56], which suggested that the mildly relativistic ejecta were
not highly asymmetric, at least in projection. However it
should be noted that internal Faraday dispersion in the
ejecta can suppress radio polarization. As mentioned in the
previous section, modelling of the late-time bolometric LC
of SN 1998bw [9, 117, 214, 275] showed that some degree of
asymmetry in the explosion is required to explain its decay
behaviour (see as well Figure 10).

For SN 2006aj, the [Fe ii] lines were much weaker than
those observed for SN 1998bw, which supports its lower lumi-
nosity relative to the archetype GRB-SN [113]. Most of the
nebular lines had similar widths, and their profiles indicated
that nomajor asymmetries were present in the ejecta at veloc-
ities below 8000 km s−1.Themodelling results of [48] implied
a 1.3M⊙ oxygen core thatwas produced by amildly asymmet-
ric explosion. The mildly peaked [O i] 𝜆𝜆6300,6364 profile
showed an enhancement of the material density at velocities
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Figure 13: Luminosity (𝑘)-stretch (𝑠) relation for relativistic type
IcBL SNe [42]. For all filters from𝑈𝐵𝑉𝑅𝐼, and combinations thereof,
GRB-SNe are shown in blue, and the two known relativistic type
IcBL SNe (2009bb and 2012ap) are shown in red. A bootstrap
analysis was performed to fit a straight line to the dataset to find the
slope (𝑚) and 𝑦-intercept (𝑏), which used Monte-Carlo sampling
and 𝑁 = 10,000 simulations. The best-fitting values are 𝑚 =
2.72 ± 0.26 and 𝑏 = −1.29 ± 0.20. The correlation coefficient is
𝑟 = 0.876, and the two-point probability of a chance correlation is
𝑝 = 1.1 × 10−9. This shows that the 𝑘-𝑠 relationship is statistically
significant at the 0.001 significance level.

less than <3000 km s−1, which also indicated an asymmetric
explosion. If SN 2006aj was a jetted SN explosion, the jet was
wider than in SN 1998bw (intrinsically or due to stronger
lateral expansion [238]), since the signature is seen only in
the innermost part. Linear polarization was detected by [276]
between three and 39 days after explosion, which implied the
evolution of an asymmetric SN expansion. Reference [277]
concluded that their polarization measurements were not
very well constrained, and considering the low polarization
observed of 6000–6500 Å, the global asymmetry was ≤15%.

6. GRB-SNe as Cosmological Probes

6.1. Luminosity–Stretch/Decline Relationships. In 2014, [42,
44, 128] (see as well [41]) demonstrated, using entirely
different approaches, that GRB-SNe (which included 𝑙𝑙GRB-
SNe, INT-GRB-SNe, and high-luminosity GRB-SNe) have a
luminosity−decline relationship that is perfectly akin to that
measured for type Ia SNe [279]. All approaches investigated
decomposed GRB-SN LCs (see Section 2.1). In [42], a
template SN LC (1998bw) was created in filters 𝐵𝑉𝑅𝐼(1 + 𝑧)
as it would appear at the redshift of the given GRB-SN. A
spline function (𝑔(𝑥)) was then fit to the template LC, and
the relative brightness (𝑘) andwidth (𝑠) were determined (i.e.,
𝑓(𝑥) = 𝑘 × 𝑔(𝑥/𝑠)) for each GRB-SN in each rest-frame
filter. These were then plotted, and a straight line was fit to
the data, where the slope and intercept were constrained via
a bootstrap fitting analysis that used Monte-Carlo sampling.
An example of the 𝑘-𝑠 relation is shown in Figure 13, where
GRB-SNe are shown in blue points, and the two relativistic
SNe IcBL (2009bb and 2012ap) are shown in red.This relation
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Figure 15: Hubble diagrams of relativistic SNe IcBL in filters 𝐵𝑉𝑅, from [44]. GRB-SNe are shown in blue and SNe IcBL (SNe 2009bb and
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a bootstrap method. Also plotted are the rms values (𝜎) and residuals of the magnitudes about the ridge line. In the 𝐵-band, the amount of
scatter in the combined SNe IcBL sample is the same as that for SNe Ia up to 𝑧 = 0.2 [44, 278], which is 𝜎 ≈ 0.3mag.

shows that GRB-SNe with larger 𝑘 values also have larger 𝑠
values; that is, brighter GRB-SNe fade slower. The statistical
significance of the fit is shown as Pearson’s correlation
coefficient, where 𝑟 = 0.876, and the two-point probability
of a chance correlation is 𝑝 = 1.1 × 10−9, which clearly shows
that the relationship is significant at more than 𝑝 < 0.001
significance level. This implies that not only are GRB-SNe
standardizable candles, but all relativistic type IcBL SNe are.

The result in [42] clearly superseded the results of [30, 33,
39] who searched for correlations in the observer-frame 𝑅-
band LCs of a sample of GRB-SNe, concluding that none was
present. However, the method used in [32, 42, 44] had one
key difference to previous methods: they considered precise,
𝐾-corrected rest-frame filters. Instead, previous approaches
were all sampling different portions of the rest-frame spectral
energy distribution (SED), which removed any trace of
the 𝑘-𝑠 relationship. While such a correlation implies that,
like SNe Ia, there is a relationship between the brightness
of a given GRB-SN and how fast it fades, where brighter
GRB-SNe fade slower, this relationship is not very useful
if GRB-SNe want to be used for cosmological research:
the template LCs of SN 1998bw are created for a specific

cosmological model and are therefore model-dependent.
Instead, the luminosity−decline relationship presented by
[44, 128] relates the same observables as those used in SN
Ia-cosmology research: their peak absolute magnitude and
Δ𝑚15 in a given filter. Reference [128] considered rest-frame
𝑉-band only, while [44] considered rest-frame𝐵𝑉𝑅. Figure 14
shows the relationships from the latter paper, where the two
relativistic SNe IcBL are included in the sample. The amount
of RMS scatter increases from blue to red filters and is only
statistically significant in 𝐵 and 𝑉 (at the 𝑝 = 0.02 level).

6.2. Constraining Cosmological Parameters. Once the lumi-
nosity−decline relationship was identified, the logical next
step is to use GRB-SNe to constrain cosmological models,
in an attempt to determine the rate of universal expansion
in the local universe (the Hubble constant, 𝐻0) and perhaps
even themass and energy budget of the cosmos. In a textbook
example of how to use any standard(izable) candle tomeasure
𝐻0 in a Hubble diagram of low-redshift objects (typically
𝑧 ≪ 1), [44] followed the procedure outlined in numerous
SNe Ia-cosmology papers [280–288]. Figure 15 shows Hubble
diagrams of relativistic SNe IcBL in filters 𝐵𝑉𝑅 (GRB-SNe
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in blue, relativistic SNe IcBL in red) for redshifts less than
𝑧 = 0.2.The amount of RMS scatter (shown as 𝜎) is less in the
𝐵-filter, ≈0.3mag, and about 0.4mag in the redder 𝑉 and 𝑅
filters. Compared with the sample of SNe Ia in [278] over the
same redshift range, it is seen that SNe Ia in the 𝐵-band also
have a scatter in their Hubble diagram of 0.3mag. Moreover,
when the large SNe Ia sample (𝑁 = 318) was decreased to the
same sample size of the relativistic SNe IcBL sample, the same
amount of scatter was measured, meaning that GRB-SNe and
SNe IcBL are as accurate as SNe Ia when used as cosmological
probes.

A key observable needed to measure 𝐻0 is independent
distance measurements to one or more of the objects being
used. However, to date no independent distance has yet been
determined for a GRB or GRB-SN. However, relativistic SNe
IcBL 2009bb and 2012ap were included in the same sample
as the GRB-SNe, which was justified by [44] because both
are subtypes of engine-driven SNe (Figure 7), and indeed
they also follow the same luminosity−stretch (Figure 13)
and luminosity−decline (Figure 14) relationship as GRB-SNe.
Thus, one can use the independent distance measurements
to their host galaxies (Tully-Fisher distances) and use them
as probes of the local Hubble flow to provide a model-
independent estimate of 𝐻0. Reference [44] constrained a
weighted-average value of 𝐻0,�푤 = 82.5 ± 8.1 km s−1Mpc−1.
This value is 1𝜎 greater than that obtained using SNe Ia and
2𝜎 larger than that determined by Planck.This difference can
be attributed to large peculiar motions of the host galaxies
of the two SNe IcBL, which are members of galaxy groups.
Interestingly, when the same authors used a sample of SNe
Ib, Ic, and IIb, they found an average value of 𝐻0 that had
a standard deviation of order 20–40 km s−1Mpc−1, which
demonstrates that these SNe are poor cosmological candles.
In a separate analysis, [289] used their sample of GRB-
SNe, which did not include non-GRB-SNe IcBL but instead
covered a larger redshift range (up to 𝑧 = 0.6), to derive
the mass and energy budget of the universe, finding loosely
constrained values of Ω�푀 = 0.58

+0.22
−0.25 andΩΛ = 0.42

+0.25
−0.22.

6.3. Physics of the Luminosity–Decline Relationship. A physi-
cal explanation for why GRB-SNe are standardizable candles
is not immediately obvious. If the luminosity of GRB-SNe
(excluding SN 2011kl) is powered by radioactive heating (see
Section 4.2), then more nickel production leads to brighter
SNe. So far however, no correlation has been found between
the bolometric properties of GRB-SNe and the properties
(𝐸iso and 𝑇90) of the accompanying 𝛾-ray emission [11,
32, 43]. To a first order, this is at odds with the simplest
predictions of the collapsar model, which suggests that more
energy input by a central engine should lead to increased
nickel production andmore relativistic ejecta.However, 𝛾-ray
energetics are a poor proxy of the total energy associated with
the central engine, so the absence of a correlation is perhaps
not surprising. Moreover, as pointed out by [11], one expects
large variations in the masses and rotation rates of the pre-
explosion progenitor stars, especially whenmetallicity effects
are factored in. Different stellar rotation rates will result in
different rotation rates imparted to their cores, leading to
different amounts of material being accreted and ultimately
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Figure 16: The effect of different degrees of nickel mixing in the
ejecta of SNe Ibc on their observed LCs, from [290]. Top andmiddle
panels: how the relative positions of the shock-heating contribution
(blue curves), 56Ni diffusive tail contribution (purple curves), and
the 56Ni contribution (red curves) to the observed LC can differ
depending on the depth and amount of mixing of the 56Ni.The total
observed LC is the sum of these three components.When the 56Ni is
located deep in the ejecta (middle panel) and the shock-heating light
curve (blue curve) is below the detection limits, there can be a sig-
nificant dark phase between the time of explosion and the moment
of first detection. Bottom: temporal evolution of the photospheric
radius (orange curve) and velocity (green curve). Depending on the
position of the 56Ni LC, different photospheric radii, velocities, and
velocity gradients will be present during the rising LC.

resulting in a variation of the final BH masses. Along with
variations in the stellar density, all of these factors will result
in a range of nickel masses being produced. Moreover, even
if the same amount of nickel is produced in each event, SNe
that expand at a slower rate will be fainter because their LCs
will peak later after whichmore of the nickel has decayed and
suffered adiabatic degradation. Additionally, the location of
the nickel in the ejectawill also result in different looking LCs,
where nickel that is located deeper in the ejecta takes longer to
diffuse out of the optically thick ejecta, leading to later peak
times (Figure 16). If the degree of mixing in the early SN is
heterogeneous for GRB-SNe, a range of rise times is expected,
along with a large variation in the velocity gradients and
photospheric radii. However, inspection of Figure 6 shows
that, if we naively take a single transition as a proxy of the
photospheric velocity, the distribution of say Si ii𝜆6355 shows
that the velocity gradient of most GRB-SNe has a similar
evolution, though the range of velocities of the Fe ii 𝜆5169
transition implies that they still have awide range of velocities
at a given epoch. This similar behaviour might suggest a
similar degree of nickel mixing in the SN ejecta.
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Nevertheless, it appears from independent studies using
different approaches that GRB-SNe are standardizable can-
dles. Whether this observation implies similarities in the
physical properties of the central engine driving the explo-
sion, or the SNe themselves, is uncertain. For themost part, it
is expected thatmost GRB-SNe are viewed close to the jet axis
[42], which also appears to apply to SN 2009bb [204], mean-
ing we are observing SNemore or less with the same approxi-
mate geometry.The fact thatGRB-SNe are standardizable and
have a range of brightness implies that different amounts of
nickel are being generated. A naive conclusion to be drawn
is that the observed luminosity−decline relationships suggest
that a correlation exists between the strength and energetics
produced by the central engine and the resultant nucleosyn-
thetic yields of 56Ni.Moreover, the lack a luminosity−decline
relationship for SNe Ibc [42, 44] implies that the explosion
and nucleosynthesis mechanism(s) are not correlated.

In the context of SNe Ia, which are, of course, also
standardizable candles, their LCs are also powered solely by
the radioactive decay of nickel and cobalt, the amount of
which determines the LC’s peak brightness and width. The
width also depends on the photon diffusion time, which in
turn depends on the physical distribution of the nickel in the
ejecta, as well as themean opacity of the ejecta. In general, the
opacity increases with increasing temperature and ionization
[291], thus implying that more nickel present in the ejecta
leads to larger diffusion times. This directly implies that
fainter SNe Ia fade faster than brighter SNe Ia, thus satisfying
the luminosity−decline relation [279]. This is not the only
effect however, as the distribution of nickel in the ejecta also
affects how the LC evolves, where nickel located further out
has a faster bolometric LC decline. Additionally, following
maximum 𝐵-band light, SNe Ia colours are increasingly
affected by the development of Fe ii and Co ii lines that
blanket/suppress the blue 𝐵-band light. Dimmer SNe are thus
cooler, and the onset of Fe iii→ Fe ii recombination occurs
quicker than in brighter SNe Ia, resulting in a more rapid
evolution to redder colours [292].Therefore the faster𝐵-band
decline rate of dimmer SNe Ia reflects their faster ionization
evolution and provides additional clues as to why fainter SNe
Ia fade more rapidly. Thus, as the LCs of GRB-SNe are also
powered by radioactive decay, the physics that govern SNe
Ia also govern those of GRB-SNe and may go some way to
explaining why GRB-SNe are also standardizable candles.

7. Host Environments

Direct observations of the SNe that accompany LGRBs,
and their subtypes, provide a rich range of clues as to the
physical properties of their preexplosion progenitor stars.
LGRBs represent a rare endpoint of stellar evolution, and
their production and subsequent properties are likely to be
a consequence of environmental factors. As such, many in-
depth investigations of their host environments, both their
global/galaxy-wide properties and, where possible, host-
resolved environmental conditions, have been performed.
Indeed, the information gained from this myriad of investi-
gations warrants their own reviews, and the gathered nuances
of these studies are beyond the scope of this GRB-SN review.

Instead, in this section we highlight what we regard as the
most important developments in this branch of GRB phe-
nomenology that have directly furthered our understanding
of the GRB-SN connection. For further insight, we refer the
reader to excellent reviews and seminal studies by, among
others, [293–296], and references therein.

7.1. Global Properties. With the advent of X-ray localizations
of GRB AGs came the ability to study the type of galaxies
that LGRBs occur in. Over the years, evidence mounted
that LGRBs appeared to prefer low-luminosity, low-mass,
blue, star-forming galaxies that have higher specific star-
formation rates (SFRs) than the typical field galaxy [293, 297–
308]. Visual inspection of optical HST imaging of LGRB
host galaxies [307, 309, 310] showed a high fraction of
merging/interacting systems: 30% showed clear signs of inter-
action, and another 30% showed irregular and asymmetric
structure, which may be the result of recent mergers. The
position of a GRB within its host also provided additional
clues: both [311], who examined the offsets of LGRBs from
their host nuclei (see as well [312, 313]), and [309] demon-
strated that, within their hosts, LGRBs were more likely to be
localized in the brightest UV regions of the galaxy, which are
associated with concentrated populations of young massive
stars.

At the same time, several early studies were converg-
ing towards the idea that LGRBs favoured subsolar, low-
metallicity (𝑍) host/environments [314–317]. As the progeni-
tors of LGRBs are massive stars with short lifetimes (of order
a few million years), they are not expected to travel far from
their birth in H ii regions, and the measured metallicity of
the associated H ii region at the site of an LGRB can be used
as a proxy of the natal metallicity. Reference [305] found that
the metallicities of half a dozen low-redshift (𝑧 < 0.3) LGRB
hosts were lower than their equally luminous counterparts
in the local star-forming galaxy population and proposed
that LGRB formation was limited by a strong metallicity
threshold.Thiswas based on the observation that LGRBhosts
were placed below the standard 𝐿-𝑍 relation for star-forming
galaxies, where galaxies with higher masses, and therefore
luminosities, generally have higher metallicities [318–321]. A
metallicity cut-off for LGRB formation was also proposed by
[322]. Reference [323] demonstrated that nearby LGRB host
galaxies had systematically lower metallicities than the host
galaxies of nearby (𝑧 < 0.14) SNe IcBL. Reference [205]
showed that most LGRB host galaxies fall below the general
𝐿-𝑍 relation for star-forming galaxies and are statistically
distinct to the host galaxies of SNe Ibc and the larger star-
forming galaxy population. LGRB hosts followed their own
mass-metallicity relation out to 𝑧 ∼ 1 that is offset from the
general mass-metallicity relation for star-forming galaxies by
an average of 0.4 ± 0.2 dex in metallicity. This marks LGRB
hosts as distinct from the host galaxies of SNe Ibc and rein-
forced the idea that LGRB host galaxies are not representative
of the general galaxy population [303, 324, 325].

For the better part of a decade, this general picture
became the status-quo for the assumed host properties of
LGRBs: blue, low-luminosity, low-mass, star-forming galax-
ies with low metal content. However, more recently this
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previously quite uniform picture of GRB hosts became
somewhat more diverse: several metal-rich GRB hosts were
discovered [205, 326, 327], which revealed a population
of red, high-mass, high-luminosity hosts that were mostly
associatedwith dust-extinguished afterglows [328–331]. Next,
the offset ofGRB-selected galaxies towards lowermetallicities
in the mass-metallicity relation [205] could, for example, be
partially explained with the dependence of the metallicity
of star-forming galaxies on SFR [332, 333]. Moreover, it was
shown that LGRBs do not exclusively form in low-metallicity
environments [328, 331, 334, 335], where the results of [296]
are an excellent example of this notion. Analysing the largest
sample of LGRB-selected host spectra yet considered (up to
𝑧 = 3.5), they found that a fraction of LGRBs occur in hosts
that contain super-solar (𝑍 > 𝑍⊙) metal content (<20% at
𝑧 = 1). This shows that while some LGRBs can be found
in high-𝑍 galaxies, this fraction is significantly less than the
fraction of star-forming regions in similar galaxies, indicating
GRBs are actually quite scarce in high-metallicity hosts.They
found a range of host metallicities of 12 + log(O/H) = 7.9 to
9.0, with amedian of 8.5. Reference [296] therefore concluded
thatGRBhost properties at lower redshift (𝑧 < 1-2) are driven
by a given LGRB’s preference to occur in lower-metallicity
galaxies without fully avoiding metal-rich ones and that one
or more mechanism(s) may operate to quench GRB forma-
tion at the very highest metallicities. This result supported
similar conclusions fromnumerous other recent studies [205,
326, 331, 335–340] which show that LGRBs seem to prefer
environments of lowermetallicity, with possibly no strict cut-
off in the upper limit of metal content (though see [341]).

Another revealing observation was made by [342] who
showed that low-𝑧 SNe IcBL and 𝑧 < 1.2 LGRBs (i.e., core-
collapse explosions in which a significant fraction of the
ejecta moves at velocities exceeding 20,000–30,000 km s−1)
preferentially occur in host galaxies of high stellar-mass and
star-formation densities when compared with SDSS galaxies
of similar mass (𝑧 < 0.2). Moreover, these hosts are
compact for their stellar masses and SFRs compared with
SDSS field galaxies. More importantly, [342] showed that
the hosts of low-𝑧 SNe IcBL and 𝑧 < 1.2 LGRBs have
high gas velocity dispersions for their stellar masses. It was
shown that core-collapse SNe (types Ibc and II) showed no
such preferences. It appears that only SLSNe occur in more
extreme environments than GRB-SNe and relativistic SNe
IcBL: [343] showed that SLSNe occur in extreme emission-
line galaxies, which are on average more extreme than those
of LGRBs and that type I SLSNe may result from the very
first stars exploding in a starburst, even earlier than LGRBs.
Finally, [342] concluded that the preference for SNe IcBL
and LGRBs for galaxies with high stellar-mass densities and
star-formation densities may be just as important as their
preference for low-metallicity environments.

The result of [342] is the latest in a long line of investiga-
tions that suggest that LGRBs are useful probes of high-𝑧 star
formation. This result stems from a long-debated question
of whether LGRBs may be good tracers of the universal
star-formation rate over all of cosmic history [293, 296, 311,
331, 335, 344–348]. Reference [296] showed that there is an
increase in the (median) SFR of their sample of LGRB host

galaxies at increasing redshift, where they found 0.6M⊙ yr
−1

at 𝑧 ≈ 0.6 to 15.0M⊙ yr
−1 at 𝑧 ≈ 2.0. Moreover, these

authors suggest that by 𝑧 ∼ 3 GRB hosts will probe a large
fraction of the total star formation. In absence of further
secondary environmental factors, GRB hosts would then
provide an extensive picture of high-redshift star-forming
galaxies. However, the connection between LGRBs and low-
metallicity galaxies may hinder their utility as unbiased
tracers of star formation [305, 317, 323, 349], though if LGRBs
do occur in galaxies of all types, as suggested above, then they
may be only mildly biased tracers of star formation [350].

7.2. Immediate Environments. Most LGRB host galaxies are
too distant for astronomers to discern their spatially resolved
properties. These limitations are important to consider when
extrapolating LGRB progenitor properties from the global
host properties, as it may be possible that the location of a
given LGRB may differ to that of the host itself. Where spa-
tially resolved studies have been performed, such as for GRB
980425 [351–354], GRB 060505 [355], GRB 100316D [356],
and GRB 120422A [41, 357], it was found that, in at least two
of these cases, the metallicity and SFR of other H ii regions
in their hosts had comparable properties as those associated
with the LGRB location (within 3𝜎). In these studies the
host galaxies had a minimal metallicity gradient [355], and
there were multiple low-metallicity locations within the host
galaxies, where in some cases the location of the LGRB was
in that of the lowest metallicity [357]. These studies suggest
that, in general, the host-wide metallicity measurement can
be used as a first-order approximation of the LGRB site.

Next, the line ratios of [Ne iii] to [O ii] suggest that H ii
regions associatedwith LGRBs are especially hot [358], which
may indicate a preference for the hosts of LGRBs to produce
verymassive stars. Absorption line spectroscopy has revealed
some fine-structure lines (e.g., Fe [ii]), which could indicate
the presence of absorption occurring in fast-moving winds
emanated by WR stars (i.e., stars that are highly stripped of
their outer layers of hydrogen and helium). The distances
implied by variable fine-structure transitions (e.g., their large
equivalent widths imply large distances to avoid photoioniza-
tion) show that the absorption occurs at distances of order
tens to hundreds of parsecs from the GRB itself [359–362],
whichmakes sense given that the dust and surrounding stellar
material around aGRB is completely obliterated by the explo-
sion. Such absorptionmust arise fromnearbyWRstarswhose
winds dissect the line of sight between the GRB and Earth.

The type of environment in which a given LGRB occurs is
also of interest: is it a constant interstellar medium (ISM) or
a wind-like medium? Do the progenitors of LGRB carve out
large wind-blown bubbles [363, 364], as has been observed
for galactic WR stars [365, 366]? Using a statistical approach
to the modelling of GRB AGs, [367] demonstrated that the
majority of GRBs (L- and SGRBs) in their sample (18/27)
were compatible with a constant ISM, and only six showed
evidence of a wind profile at late times. They concluded
that, observationally, ISM profiles appear to dominate and
that most GRB progenitors likely have relatively small wind
termination-shock radii, where a variable mass-loss history,
binarity of a dense ISM, and a weak wind can bring the
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wind termination shock radius closer to the star [368,
369]. A smaller group of progenitors, however, seem to be
characterized by significantly more extended wind regions
[367]. In this study, the AG is assumed to be powered by
the standard forward-shock model, which has been shown
to not always be the best physical description for all LGRBs
observed in nature [195].

Finally, it appears that LGRBs generally occur in envi-
ronments that possess strong ionization fields, which likely
arise from hot, luminous massive stars in the vicinity of
LGRBs. Reference [296] showed that the GRB hosts in their
sample occupied a different phase-space than SDSS galaxies
in the Baldwin-Phillips-Terlevich (BPT) diagram [370]: they
are predominantly above the ridge line that denotes the
highest density of local star-forming field galaxies. A similar
offset was also observed for galaxies hosting type I SLSNe
[343].This offset is often attributed to harder ionization fields,
higher ionization parameters, or changes in the ISM proper-
ties [371–373]. This result is consistent with the hypothesis
that the difference in the location in the BPT diagram
between GRB hosts and 𝑧 ∼ 0 star-forming galaxies is caused
by an increase in the ionization fraction; that is, for a given
metallicity a larger percentage of the total oxygen abundance
is present at higher ionization states at higher redshifts. This
could be caused by a harder ionization field originating from
hot O-type stars [373] that emit a large number of photons
capable of ionizing oxygen into [O iii].

7.3. Implications for Progenitor Stars. Before LGRBswere con-
clusively associated with the core-collapse of a massive star,
their massive-star origins were indirectly inferred. If LGRBs
were instead associated with the merger of binary compact
objects, two “kicks” arising from two SN explosions would
imply a long delay before coalescence and likely lead to GRBs
occurring at large distances from star-forming regions [374–
377]. With subarcsecond localization came observations that
showed LGRBs, on average, were offset from the apparent
galactic centre by roughly 1 kpc [311], which did not agreewith
a compact object binary-merger scenario. Further statistical
studies showed a strong correlation between the location of
LGRBs and the regions of bluest light in their host galaxies
[309, 310], which implied an association with massive-star
formation. Thus result was furthered by [378] that showed
that LGRBs and type Ic SNe have similar locations in
their host galaxies, providing additional indirect evidence of
LGRBs and massive stars.

The general consensus that LGRBs occur, on average,
in metal-poor galaxies (or location within more metal-rich
hosts), aligned well with theoretical expectations that LGRB
formation has a strong dependence on metallicity. In theo-
retical models [215, 379–383], the progenitors of LGRBs need
to be able to lose their outer layers of hydrogen and helium
(as these transitions are not observed spectroscopically), but
do so in a manner that does not remove angular momentum
from the core (to then power the GRB). At high metallici-
ties, high-mass loss rates will decrease the surface rotation
velocities of massive stars and, due to coupling between the
outer envelopes and the core, will rob the latter of angular
momentum and hence the required rapid rotation to produce

a GRB. In quasi-chemically homogeneous models [382–
384], rapid rotation creates a quasi-homogeneous internal
structure, whereby the onion-like structure retained by non-
or slowly rotatingmassive stars is effectively smeared out, and
the recycling of material from the outer layers to the core
results in the loss of hydrogen and helium in the star because
it is fused in the core. Intriguingly, quasi-chemically homoge-
neous stars do appear to exist in nature.The FLAMES survey
[385] observed over 100 O- and B-type stars in the Large
Magellanic Cloud (LMC) and the Milky Way galaxy and
showed the presence of a group of rapidly rotating stars that
were enriched with nitrogen at their surfaces. The presence
of nitrogen at the surface could only be due to rotationally
triggered internal transport processes that brought nuclear
processed material, in this case nitrogen, from the core to
the stellar surface. Observations of metal-poor O-type stars
in the LMC by [386, 387] show the signature of CNO cycle-
processed material at their surfaces, while modelling of the
spectra of galactic and extragalactic oxygen-sequence WR
stars shows very low surface He mass fractions, thus making
them plausible single-star progenitors of SNe Ic [388].

However, other observations of Local Groupmassive-star
populations have revealed that the WR population actually
decreases strongly at lower metallicities, particularly the
carbon- and oxygen-rich subtypes [389], suggesting that
these proposed progenitors may be extremely rare in LGRB
host environments. Moreover, the results of [390], based on
the analysis of two LGRBs, suggest that some LGRBs may be
associated with progenitors that suffer a great degree of mass
loss before exploding and hence a great deal of core angular
momentum. Moreover, the association of some LGRBs with
super-solar metallicity environments also contradicts the
predictions of the collapsar model. However, other recent
models have considered alternative evolutionary scenarios
whereby LGRB progenitors can lose a great deal of mass
before exploding, but still retain enough angular momentum
to power aGRB [391–393]. Suchmodels consider the complex
connection between surface and core angular momentum
loss and show that single stars arising from a wide range of
metal content can actually produce a GRB. Moreover, the
effects of anisotropic stellar winds need to also be considered
[205]. Polar mass loss removes considerably less angular
momentum than equatorial mass loss [394], which provides
the means for the progenitor to lose mass but sustain a high
rotation rate. Alternatively, episodic mass loss, as has been
observed for luminous blue variable stars may also offer
anothermeans of providing a way to losemass but retain core
angular momentum.

8. Kilonovae Associated with SGRBs

To date, the amount of direct and indirect evidence for the
massive-star origins of LGRBs is quite comprehensive and
thoroughly beyond any conceivable doubt.The samehowever
cannot be stated about the progenitors of SGRBs. For many
years, since the discovery that there are two general classes
of GRBs [399, 400], general expectations were that they arose
from different physical scenarios, where SGRBs are thought
to occur via the merger of a binary compact object system
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Figure 17: Observations of KNe associated with SGRBs: (a) GRB 130603B, from [395].The decomposed optical and NIR LCs show an excess
of flux in the NIR (𝐹160𝑊) filter, which is consistent with theoretical predictions of light coming from a KN. (b) GRB 060614, from [396].
Multiband LCs show an excess in the optical LCs (𝑅 and 𝐼), which once the AG light is removed, the resultant KN LCs match those from
hydrodynamic simulations of a BH-NS merger (ejecta velocity of ∼0.2𝑐 and an ejecta mass of 0.1M⊙ [397]). (c) SEDs of the multiband
observations of GRB 060614, also from [396]. The early SEDs are well described by a power law spectrum, which implies synchrotron
radiation. However, at later epochs the SEDs are better described by thermal, black body spectra, with peak temperatures of ∼2700K, which
are in good agreement with theoretical expectations [398].

containing at least one neutron star (i.e., NS-NS or NS-BH).
Circumstantial evidence for the compact object merger ori-
gins of SGRBs [401, 402] includes their locations in elliptical
galaxies, the lack of associated supernovae (as observed for
LGRBs) [403–406], the distribution of explosion-site offsets
relative to their host galaxies (0.5–75 kpc away, median of
5 kpc [407, 408]), and a weak spatial correlation of SGRB
locations with star-formation activity within their host galax-
ies.

The compact coalescence scenario predicts SGRB AGs
at longer wavelengths [401, 402, 409–411], which have been
observed [412]. As well as the expected AG emission, emis-
sion from a SN-like transient was also predicted [413–417],
which have been referred to as a “kilonova” (KN), “merger-
nova,” or “macronova” (see the recent review by [418]), where
we have adopted the former terminology in this review.

The KN prediction is a natural consequence of the
unavoidable decompression of NSmaterial, where a compact
binary coalescence provides excellent conditions for the
rapid-neutron capture process (𝑟-process [409, 419–422]).
The neutron capture process occurs very quickly and is
completed in less than a second, and it leaves behind a
broad distribution of radioactive nuclei whose decay, once
the ejected material becomes transparent, powers an electro-
magnetic transient in a process similar to that expected to
cause GRB-SNe to shine. Hydrodynamic simulations suggest
that, during a merger, mass is ejected via two mechanisms:
(I) during the merger, surface layers may be tidally stripped
and dynamically flung out in tidal tails; (II) following the
merger, material that has accumulated into a centrifugally
supported disk may be blown off in a neutrino or nuclear-
driven wind. In mechanism (I), the amount of material
ejected depends primarily on the mass ratio of the compact
objects and the equation of state of the nuclear matter. The

material is very neutron-rich (𝑌e ∼ 0.1), and the ejecta
is expected to assemble into heavy (𝑍 > 50) elements
(including Lanthanides, 58 < 𝑍 < 70, and Actinides, 90 <
𝑍 < 100) via the 𝑟-process. In mechanism (II), however,
neutrinos emitted by the accretion disk raise the electron
fraction (𝑌e ∼ 0.5) to values where a Lanthanide-free outflow
is created [423]. In both cases 10−4–10−1M⊙ of ejecta is
expected to be expelled. A direct observational consequence
of mechanism (I) is a radioactively powered transient that
resembles a SN, but which evolves over a rapid timescale (∼1
week, due to lessmaterial ejected comparedwith a typical SN)
and whose spectrum peaks at IR wavelengths. In contrast to
other types of SNe, for example, SNe Ia whose optical opacity
is dictated by the amount of iron-group elements present in
the ejecta, 𝑟-process ejecta that is composed of Lanthanides
has a much larger expansion opacity (≈100 times greater) due
to the atoms/ions having a greater degree of complexity in the
number of ways in which their electrons can be arranged in
their valence shells (relative to iron-group elements).

There have been a handful of observational searches for
KN emission: GRB 050709 [424, 425]; GRB 051221A [426];
GRB 060614 [396, 427]; GRB 070724A [428, 429]; GRB
080503 [430, 431]; GRB 080905A [432]; and GRB 130603B
[395, 433]. In almost all cases null results were obtained, with
the notable exceptions being GRB 130603B, GRB 060614 (see
Figure 17), and GRB 050709. In these cases, the optical and
NIR LCs required a careful decomposition, and once the AG
components were accounted for, an excess of emission was
detected. In the case of GRB 130603B, a single NIR datapoint
was found to be in excess of the extrapolated AGdecay, which
was interpreted by [395] as arising from emission from a KN.
The (observer-frame) colour term𝑅�퐹606�푊−𝐻�퐹160�푊 < 1.7mag
at +0.6 d, and𝑅�퐹606�푊−𝐻�퐹160�푊 < 2.5mag at +9 days, which is
inconsistent with a colour change due to FS emission and was
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argued to be evidence of nonsynchrotron emission arising
from a possible KN. The dataset of GRB 060614 considered
by [396] is more extensive than that of GRB 130603B, and KN
bumps were detected in two filters (observer-frame 𝑅 and 𝐼),
which peaked at 4–6 d (rest-frame).ThedecomposedKNLCs
were shown to be consistent with LCs arising from hydrody-
namic simulations of a BH-NS merger, which had an ejecta
velocity of∼0.2𝑐 and an ejectamass of 0.1M⊙ [233].The larger
dataset also allowed for the construction of SEDs, which
showed a clear transition from a power law spectrum at early
epochs (<3 d), which appeared to transition into a thermal,
black body spectrum over the next two weeks. Moreover, the
inferred temperature of the black body was around 2700K,
which fitted well with theoretical expectations. However, the
precise nature of GRB 060614 is still not understood, and it is
still uncertain if it is a short or a long GRB.

9. Theoretical Overview

While the focus of this review is geared towards what
observations tell us about the GRB-SN connection, a keen
understanding of the leading theoretical models is also
required. The finer intricacies of each model are presented
elsewhere, and we suggest the reader to start with the
comprehensive review by [434] (and references therein),
which is just one of many excellent reviews of the physics
of the prompt emission and AGs. As such, what is presented
here is meant only as an overview of the rich and complex
field of GRB phenomenology.

9.1. Central-EngineModels: MillisecondMagnetars versus Col-
lapsars. Themain consensus of all GRBmodels is that LGRBs
and their associated SNe arise via the collapse ofmassive stars,
albeit ones endowed with physical properties that must arise
only seldom in nature, given the fact GRB-SNe are very rare.
In the leading theoretical paradigms, after the core-collapse
of the progenitor stars, the leftover remnant is either a NS or
a BH, and under the correct conditions, both can operate as
a central engine to ultimately produce an LGRB.

In reality, very few solid facts are known about the true
nature of the central-engine(s) operating to produce LGRBs.
Nevertheless, one of the most prevailing models of the
central engines of GRBs associated with SNe is the collapsar
model [210, 215, 247], where the accretion of material from a
centrifugally supported disk onto a BH leads to the launch a
bipolar relativistic jet, and material within the jet leads to the
production of 𝛾-ray emission. The collapsar model suggests
that there is enough kinetic energy (2–5 × 1052 erg) in the
accretion disk wind which can be used to explosively disrupt
the star, as well as synthesizing ∼0.5M⊙ of 56Ni. In this
model, the duration of the prompt emission is directly related
to the stellar envelope infall time, and the jet structure is
maintained either magnetically or via neutrino-annihilation-
driven jets along the rotation axes. The other promising
mechanism that could lead to the production of an LGRB
and its hypernovae is the millisecond magnetar model [221,
435–437]. In this scenario, the compact remnant is a rapidly
rotating (𝑃 ∼ 1–10ms), highly magnetized (𝐵 ∼ 1014-15 G)

Figure 18: The death of a massive star produces a GRB (and its
multiband AG) and an energetic and bright SN (from [439]).

NS, where the relativistic Poynting-flux jets are supported by
stellar confinement [436].

A cartoon visualization of the formation of an LGRB,
including its AG and associated SN, is shown in Figure 18.
In the standard fireball model, shells of material within the
jet interact to produce the initial burst of 𝛾-rays, called the
prompt emission, via internal shocks. As the jet propagates
away from the explosion site, it eventually collides with the
surrounding medium producing external shocks that power
an AG that is visible across almost the entire electromagnetic
spectrum, from X-rays to radio, and which lasts for several
weeks to months. In this leptonic model, the prompt and
AG radiation is synchrotron or synchrotron-self-Compton
in origin [438]. It is interesting to note that this scenario is
pretty much independent of the nature of the central engine;
all that is required is the formation of an ultra-relativistic jet.
It is generally thought that luminous GRBs with bulk Lorentz
factors of order ΓB ∼ 300 must stem from ultra-relativistic
collisionless jets produced by millisecond magnetars and/or
collapsars. As discussed in Section 3, in order to penetrate the
stellar envelope, the active timescale of the jet produced by the
central engine (𝑡engine) must be longer than the penetrating
timescale, where the latter is ∼R/Vjet. Some 𝑙𝑙GRBs whose
ΓB ∼ 2 can also be explained by this model, but in these
cases, the active timescale is likely to be slightly smaller than
the penetrating timescale so that the ultra-relativistic jet from
the central engine either just barely or completely fails to
completely penetrate the stellar envelope.

The first class of models for the prompt emission of
GRBs was the internal-shock model, where synchrotron or
synchrotron self-Compton radiationwas emitted by electrons
that were accelerated by internal shocks [438, 440] in the
form of high-energy 𝛾-ray photons. Inverse Compton (IC)
scattering and synchrotron self-Compton (SSC) scattering
can enhance the seed photons and account for the very
high-energy 𝛾-ray photons measured for some GRBs. One
prediction of the internal-shock model is the production of
high-energy neutrinos, which to date have not been observed
by neutrino detectors such as IceCube (only upper limits have
been obtained so far, see the review by [441]). Althoughmore
detailed calculations performed by [442, 443] have demon-
strated that the internal-shock model which includes bench-
mark parameters (e.g., the bulk Lorentz factor ΓB = 300) is
consistent with the upper limits obtained by IceCube, these
results have posed more stringent constraints on the internal
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shocks model because there is a possible correlation between
the bulk Lorentz factor ΓB and the GRB luminosity [444–
446]. Instead, alternative scenarios in the context of the ultra-
relativistic jet model are the photospheric emission model
[447–451] and the Internal-Collision-induced MAgnetic
Reconnection and Turbulence (ICMART) model [452, 453].
Photospheric models assume that thermal energy stored in
the jet is radiated as prompt emission at theThomson photo-
sphere [454–456], while ICMART models envisage that col-
lisions between “mini-shells” in a Poynting-flux-dominated
outflow distort the ordered magnetic field lines in a runaway
manner, which accelerates particles that then radiate syn-
chrotron 𝛾-ray photons at radii of ∼1015-1016 cm [452, 453].

9.2. Shock Breakout Models. It has long been believed that
when the diffusion timescale of photons at the shock-wave
front is comparable to the dynamical timescale, a SBO can
occur (see as well Section 3). The SBO of a CCSN can
produce a brief and bright flash whose spectral energy
distribution peaks in the near UV or X-ray regimes [57,
60, 62, 73, 83, 457–464]. When the SN progenitor is a red
supergiant whose radius is larger than several hundred R⊙,
the SBO is nonrelativistic (Newtonian) [459–461] and the
emission is dominated by optical and UV radiation, which
is detectable with space telescopes [465–467]. When the
explosion is energetic enough, and the progenitor is a WR
star whose radius is of order a few solar radii, the SBO
emission typically peaks at X-rays or soft 𝛾-rays, with a
duration of ∼10–2000 s. This class of relativistic SBOs can
naturally explain some LGRBs [60, 62, 463, 464]. Reference
[62] demonstrated that 𝑙𝑙GRB jets either fail or just barely
pierce through the stellar envelope.This choked/stifled jet can
also help accelerate the shock to amildly relativistic velocities
(∼30,000–100,000 km s−1). In the shock breakout model, the
AG emission is produced when the stellar ejecta collides with
the CSM, and [464] showed that the data of the afterglows
of GRBs 980425, 031203, 060218, and 100316D are in good
agreement with the predictions of this model.

10. Future Research

While considerable progress has been made in the field
of GRB-SNe, there are still uncertainties related to several
aspects of their true nature. Solidifying their role as stan-
dardizable candles and cosmological probes requires both
more work and considerably more events. Indeed for GRB-
SNe to be used as cosmological probes, independent distance
measurements to their host galaxies need to be obtained.
Sample studies of GRB-SNe are the ideal way to approach
this question, and with the hopeful launch of JWST in the
next few years, their use over larger redshift ranges than SNe
Ia could make them appealing cosmological candles. Addi-
tional attention is also required to determine the physical
configuration and properties of their preexplosion progenitor
stars, to help address the question of whether they arise from
single versus binary systems. Moreover, further ULGRB-SNe
are needed to address the question of whether all are ultra-
luminous compared with typical GRB-SNe, as seen for SN
2011kl, or whether this event is quite anomalous.

10.1. Role of Binarity. Throughout this review, discussions of
their stellar progenitors were primarily focused on single-star
candidates. However the role of binarity may prove to be one
of the most important ingredients to eventually producing a
GRB. Theoretically, there are strong motivations for consid-
ering a binary evolution. To date, the best theoretical stellar
models find it hard to produce enough angular momentum
in the core at the time of collapse to make a centrifugally sup-
ported disk, though some progress has been made [382, 383,
468]. Instead, it is possible to impart angularmomentum into
the core of a star through the inspiral of a companion star dur-
ing a common envelope phase (CEP) [469]: that is, convert-
ing orbital angularmomentum into core angularmomentum.
The general idea is to consider a binary system comprised of,
among others, a red supergiant and a NS [217], a NS with the
He core of a massive star [470], or the merger of two helium
stars [471]. During the inspiral of the compact object into
the secondary/companion, angular momentum is imparted
to the core, which is spun up via disc accretion. During this
process, the core of the secondarywill increase inmass as well
as gain additional angular momentum, while the inspiralling
NS will also accrete gas via the Bondi-Hoyle mechanism,
which can lead to the NS reaching periods of order millisec-
onds before it eventually merges with the secondary’s core. If
a merger of the NS with the core occurs, a collapsar can be
created, where a GRB can be produced depending on the ini-
tial mass of the secondary, the spin of the newly formed BH,
and the amount of angular momentum imparted to the BH.

For the binary model to be a viable route for LGRB
formation, one or more mechanism is required to expel the
outer envelopes out into space prior to explosion. Generally
there are different ways for this to be achieved, either through
noncontact methods such as stellar winds, through semi-
contact processes such as Roche lobe overflow, or through
contact mechanisms that operate during a CEP. The spin-
rates of a small sample of O-type star and WR binaries
indicate that Roche lobe overflowmass transfer from theWR
progenitor companionmayplay a critical role in the evolution
ofWR–O-star binaries, where equatorial rotational velocities
of 140–500 km s−1 have been measured [472]. In the CE
scenario, during the inspiral, the orbital separation decreases
via drag forces inside the envelope which also results in a
loss of kinetic energy. Some of this energy is lost to the
surrounding envelope, which heats up and expands. Over a
long-enough period the entire envelope can be lost into space.
Anothermechanism to expel the CE arises via nuclear energy
rather than orbital energy [473]. For example, during the
slowmerger of amassive primary that has completed helium-
core burning with a 1–3M⊙ secondary, H-rich material from
the secondary is injected into the He-burning shell of the
primary. This leads to nuclear runaway and the explosive
ejection of the H and He envelopes and produces a binary
comprised of a CO star and the low-mass companion. Should
a further merger occur, this could lead to the formation of a
GRB. If GRB-SNe arise via this formation channel, then this
scenario can naturally explain why GRB-SNe are all of type
Ic.

A generalization of the binary-merger model is that the
more massive the stars are, the more accretion will occur.
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This in turn leads to more convection in the core, which
results in larger magnetic fields being generated and hence
more magnetic collimation for any jets that are produced. In
the case of GRB-SNe versus SNe Ibc, if jets are ubiquitous,
then the difference between them may be the mass of the
merging stars, where lower masses imply lower magnetic
fields and hence less collimation. Moreover, the mass ratio of
the secondary to the primary is also important, where higher
mass ratios will result in more asymmetric explosions [469].

There is a growing list of observations that show that
most massive stars exist in binaries, including [474] who
estimated that over 70% of all massive stars will exchange
mass with a companion star, which in a third of all cases
will lead to a merger of the binary system. Moreover, closely
orbiting binaries are more common at lower metallicities
[475], where the progenitors of GRBs are normally found
(though see [476]who showed that the close binary frequency
of WRs is not metallicity dependent). Additional support for
the notion that the progenitors of SNe Ibc are massive stars
in binary systems has come from [477] who argued that, for
a standard initial-mass function, the observed abundances
of the different types of CCSNe are not consistent with
expectations of single-star evolution. Progenitor nondetec-
tion of 10 SNe Ibc strongly indicates that single massive
WR stars cannot be their solitary progenitor channel [478].
Reference [479] derived a 15% probability that all SNe Ibc
arise from single-star WR progenitors. The large gas velocity
dispersions measured for the host galaxies of GRBs by [342]
may imply the efficient formation of tightmassive binary pro-
genitor systems in dense star-forming regions. Rotationally
supported galaxies that are more compact and have dense
mass configurations are expected to have higher velocity
dispersions. Observations of extra galactic star clusters show
evidence that bound-cluster formation efficiency increases
with star-formation density [480, 481]. Binaries may form
more frequently in bound clusters, and they evolve to become
more tightly bound through dynamical interactions with
other members of the cluster. Alternatively, if the progenitors
of GRBs are actually single stars, but which are more massive
than those that produce SNe Ibc and II, a top-heavy initial-
mass function (IMF) in dense, highly star-forming regions
can also explain their observations. A similar conclusion
was made by [343], who suggested that if the progenitors
of SLSNe are single stars, the extreme emission-line galaxies
in which they occur may indicate a bottom-light IMF in
these systems. However, observations of low-mass stars in
elliptical galaxies that are thought to have undergone high
star-formation densities in their star-forming epochs instead
suggest that the IMF is bottom heavy [482, 483].

A major hurdle therefore is finding ways to provide
observational evidence to distinguish between single and
binary progenitors. One such indication may be idea that the
progenitors of GRB-SNe are “runaway” stars: that is, massive
stars ejected from compact massive-star clusters [484, 485].
This notation was prompted by the observation that the very
nearest GRB-SNe, which can be spatially resolved in their
host galaxies, are offset from the nearest sites of star formation
by 400–800 pc. If GRB-SNe do arise from runaway stars, the
lack of obvious wind-features in AG modelling (Section 7.2)

can naturally be explained: simulations [486] suggest that
a high density of OB stars is required to produce the 𝑟−2
wind profile, in the region of 104-105 OB stars within a few
tens of parsecs. This is a much larger density than has been
observed in nature, where the densest known cluster is R136
(e.g., [487, 488]) which contains many of the most massive
and luminous stars known, including R136a1 (𝑀 ∼ 315M⊙,
𝐿 ∼ 8.7 × 106 L⊙). Within the central five parsecs of R136
there are 32 of the hottest known type O stars (spectral type
O2.0–3.5), 40 other O stars, and 12 Wolf-Rayet stars, mostly
of the extremely luminousWNh type (which are still burning
hydrogen in their cores and have nitrogen at their surfaces).

For non-GRB related SNe, such as the very nearby
peculiar type II SN 1987A (in the LMC, 𝐷 ∼ 50 kpc),
constraining the nature of its progenitor was made possible
due to a combination of a spatially resolved SN remnant and
an enormously rich photometric and spectroscopic dataset
compiled over a time-span of nearly three decades. These
observations have shown that the most likely progenitor of
SN 1987A was the merger of a binary system [240, 489],
which can explain the triple-ringed structure seen in HST
images [490], as well as explain the He-enriched outer
layers of the blue supergiant progenitor [491]. It was also
shown that type IIb SN 1993J (∼3.5Mpc) likely originated
from a binary system via analysis of its early LC [492],
hydrodynamical modelling [493], and by detection of the
preexplosion progenitor star in spatially resolvedHST images
[494] and a possible companion [495]. The direct imaging
revealed the progenitor was a red supergiant, where excess
of UV and 𝐵-band flux implied the presence of a hot stellar
companion, or it was embedded in an unresolved young
stellar cluster. These studies are possible because of the close
proximity of the SNe to our vantage point as observers on
Earth. However, the nearest GRB to date is GRB 980425,
which, at ∼40Mpc, means the progenitor is too distant to
be direct imaged. For any progress to be made concerning
single versus binary progenitors, nearby events are required
that will allow either for exceptionally detailed observations
to be obtained and modelled or even the remote chance of
directly detecting the progenitor. For lack of better ideas, what
we then require is a healthy dose of patience.

10.2. From GRB-SNe to ULGRB-SNe to SLSNe. As discussed
previously, the most luminous GRB-SNe to date is SN 2011kl,
which had a peak absolute magnitude of ≈−20mag [496].
This is roughly 0.5–1.0mag brighter than most GRB-SNe,
but still one magnitude fainter than those associated with
SLSNe, which peaked at ≈−21mag [104]. Moreover, it appears
that SN 2011kl is not the only object that falls in this gap
between ordinary SNe and SLSNe: four objects discovered
by PTF and the SNLS have similar peak absolute magnitudes
and LC evolution as SN 2011kl [497]. No accompanying 𝛾-
ray emission was detected for any of these events, which
begs the question of whether they are off-axis ULGRB-SNe
or represent yet another type of explosion transient.

In contrast to the cases of GRB-SNe whose optical light
curves appear to be mainly powered by heating arising from
56Ni decay, it seems that most SLSNe cannot be explained



Advances in Astronomy 27

by the simple radioactive heat deposition model. Instead
the luminosity of SLSNe appears to be either driven by
energy input from a magnetar [226, 227] or powered by the
interaction between SN ejecta and the CSM, which is the
likely mechanism for SNe IIn. Indeed, one could argue that
the magnetar model is the most promising model to explain
the luminosity of SLSNe-Ic. For the most luminous SNe Ic,
such as SN 2010ay [498] and SN 2011kl, if the former event
arose from radioactive heating, the ratio of the inferred nickel
mass to the total ejecta mass was too large, implying that the
radioactive heat deposition model was not a viable model.
Instead it is possible that events such as this could be powered
by both nickel decay and a magnetar [499]. Then, for true
SLSNe-Ic, nickel heating can be ignored, and conversely for
SNe Ic, including GRB-SNe, magnetar input is negligible. It
is only for SNe Ic (all types) with peak absolute magnitudes
that exceed ≈−20mag that both energy sources must be
considered. Clearlymore observations of luminous SNe Ic are
needed to test this hypothesis.

One final point of interest is determining whether all
ULGRB-SNe are superluminous compared with GRB-SNe
or whether GRB 111209A/SN 2011kl is a one-off event. As
stated previously, the number of GRB-SNe is very small, and
only two are considered here: the aforementioned case and
ULGRB 101225A. Modelling of the (observer-frame) 𝑖-band
LC of the accompanying SN in the latter event showed that
its brightness was not exceptional: we found 𝑘 = 0.96 ± 0.05
and 𝑠 = 1.02 ± 0.03 (Table 3), which implies that some
ULGRB-SNe have luminosities that are similar to those of
other GRB-SNe. Moreover, the definition of an ULGRB is
important: here we have defined an ULGRB as an event that
is still detected after several thousand seconds by a gamma-
ray instrument. This definition is inherently detector- and
redshift-dependent. Based on this definition alone, it appears
that GRB 091127 is also an ULGRB; an inspection of the
third version of the Swift/BAT catalog [500] reveals that this
event was detected by BAT at more than 5000 s. In turn,
accompanying SN 2009nz is also quite typical of the general
GRB-SN population, with 𝑘 = 0.89 ± 0.01 and 𝑠 = 0.88 ±
0.01. However, our definition is of course limited and does
not include additional facts of this situation: First, the BAT
detection at the late times is very marginal, with a signal-to-
noise ratio of just 4.36 (where a value of 7.0 is required in
a typical image-trigger threshold). Secondly, the BAT event
data value of𝑇90 is only 7.42 s, whereas the BAT value in [500]
is obtained in surveymode.Thus an alternative interpretation
of the extended GRB emission seen in the survey data is
that it is soft gamma-rays emitted by the very bright X-ray
afterglow and not from the prompt emission. In summary,
more unambiguous ULGRB events at redshifts lower than
unity are needed in order to measure the properties of their
accompanying SN and address the peculiar nature of GRB
111209A/SN 2011kl.
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