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Abstract 

Electron paramagnetic resonance (EPR) spectroscopy is routinely used to study the structure 

and dynamics of nucleic acids, to obtain information about their functions. A prerequisite for 

most EPR studies of nucleic acids is the incorporation of paramagnetic centers called “spin 

labels” at specific positions and this technique is known as site-directed spin-labeling (SDSL).  

This doctoral dissertation describes the development of two new methods of site-

directed spin-labeling of RNA, the first of which focuses on utilizing noncovalent interactions 

between an RNA aptamer and a ligand connected to a paramagnetic spin label. The malachite 

green (MG) aptamer is known to bind to dyestuffs MG and tetramethylrosamine (TMR). In 

this study, spin-labeled derivatives of MG and TMR were prepared and their binding affinity 

to the aptamer was investigated by using EPR spectroscopy. A pyrrolidine-based nitroxide 

derivative of TMR was found to bind completely to the aptamer at 25 ˚C with a dissociation 

constant (KD) of 66 nM, as determined by fluorescence titration studies. This spin-labeling 

approach is the first example of noncovalent and site-directed spin-labeling that involves a 

native (unmodified) RNA. Pulsed electron-electron double resonance (PELDOR) was used to 

measure a distance of 3.3 nm between the spin-labeled ligand and an isoindoline-based spin 

label that was covalently attached to the aptamer. In a related study, the noncovalent binding 

of a new class of benzimidazole-fused isoindoline nitroxides to bind to abasic sites in duplex 

DNA and RNA was explored. Five spin-labeled nitroxides were screened using an in-house 

devised “combinatorial approach”, out of which binding affinity of two spin labels were 

studied in detail. 

A post-synthetic spin-labeling approach was also developed, where a nucleophilic 2′-

amino group in RNA was reacted with two aromatic isoindoline nitroxides having an 

isothiocyanate modification, thereby forming a thiourea bond upon conjugation to RNA. The 

isothiocyanate spin-labels were found to have a minor effect on RNA duplex stability. 

Furthermore, they showed limited mobility after incorporation into RNA, as judged by 

continuous wave EPR, which enhances their usefulness for distance measurement studies 

using pulsed-EPR techniques. A tetraethyl isoindoline derivative was found to be 

substantially resistant towards reduction by ascorbic acid, which makes this label a promising 

candidate to perform in-cell distance measurements using PELDOR. 



Útdráttur 

Rafeindasegullitrófsgreiningu (e. electron paramagnetic resonance (EPR) spectroscopy) er 

beitt reglubundið í rannsóknum á byggingu og hreyfingu kjarnsýra, til að varpa ljósi á 

starfsemi þeirra og hlutverk. EPR rannsóknir á kjarnsýrum krefjast innleiðingar meðseglandi 

kjarna (spunamerkja) á ákveðinn stað, en sú aðferð kallast staðbundin spunamerking (e. site-

directed spin-labeling, SDSL). 

Þessi doktorsritgerð lýsir þróun tveggja nýrra aðferða til staðbundinnar 

spunamerkingar á ríbósakjarnsýrum (e. ribonucleic acid, RNA). Fyrri aðferðin byggir á 

myndun ósamgildra tengja milli RNA aptamers og tengils sem ber spunamerki. Malachite 

green (MG) aptamerinn er þekktur fyrir að bindast litarefnunum MG og tetrametýlrósamíni 

(TMR). Smíðaðar voru spunamerktar afleiður af MG og TMR og bindisækni þeirra í 

aptamerinn rannsökuð með EPR. Flúrljómunarmælingar við 25 °C sýndu að TMR-afleitt 

pyrrólidín nítroxíð bast að fullu við aptamerinn, með klofningsfastann (KD) 66 nM. Þessi 

spunamerkingaraðferð er fyrsta dæmið um staðbundna spunamerkingu á óbreyttu RNA. 

PELDOR (e. pulsed electron-electron double resonance) var notað til þess að mæla 3,3 nm 

fjarlægð á milli spuna-merkta tengilsins og ísóindólín-afleidds spunamerks, sem bundið var 

samgildum tengjum við aptamerinn. Í tengdri rannsókn var bindisækni bensímídasól-

ísóindólín nítroxíða í basalaust kirni í tvístrendu DNA og RNA rannsökuð. Tenging fimm 

nítroxíða var rannsökuð með skimun á bindisækni þeirra í blöndu af DNA og RNA 

tvístrendingum. Bindisækni tveggja þeirra var svo rannsökuð nánar. 

Einnig var þróuð aðferð til að spunamerkja RNA eftir smíði þess (e. post-synthetic spin 

labeling), þar sem kjarnsækinn 2‘-amínó hópur á RNA var hvarfaður við tvö arómatísk 

ísóindólín nítroxíð sem innihéldu ísóþíósýanat virknihóp og mynda því þíóúrea tengi við 

RNA. Þessi nýju spunamerki hafa lítil áhrif á stöðugleika RNA tvístrendinga. Ennfremur 

sýndi EPR greining að þessi spunamerki höfðu takmarkaðan hreyfanleika eftir innleiðingu í 

RNA, sem eykur notagildi þeirra til fjarlægðamælinga með PELDOR. 

Tetraetýlísóindólínafleiðan var fremur stöðug í viðurvist askorbínsýru sem lofar góðu fyrir 

notkun þess sem spunarmerkis með EPR mælingum í frumum. 
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1 Objective and Scope of the PhD Thesis 

To understand functions of biopolymers, it is essential to investigate their structure and 

dynamics. In this regard, electron paramagnetic resonance (EPR) spectroscopy has emerged as 

a valuable technique that is routinely used to study structure and dynamics of nucleic acids. A 

prerequisite for most EPR studies of nucleic acids is the technique of incorporation of 

paramagnetic entities called “spin labels” at chosen positions, known as site-directed spin 

labeling (SDSL). Although several methods of SDSL have been already developed, most of 

them are tedious and involve substantial effort. Therefore, it is of interest to develop simpler 

approaches for SDSL.  

This doctoral dissertation is primarily based on development of two new methods of 

spin-labeling of nucleic acids. The first, delineated in Chapter 3, focuses on utilizing 

noncovalent interactions between an RNA and a paramagnetic spin label. Moreover, Chapter 

4 deals with further investigation of an already established noncovalent spin-labeling 

approach which involves spin labels that bind noncovalently to abasic sites in duplex nucleic 

acids. The other newly-developed method, described in Chapter 5, is based on the 

development of a post-synthetic spin-labeling strategy where the RNA and the paramagnetic 

spin label are connected covalently.  

The noncovalent spin-labeling approach described in Chapter 3 utilizes an RNA 

aptamer which is known to bind to small molecule dyes of the malachite green family. The 

basic concept of this strategy relies on modifying the dyes paramagnetically and allowing 

them to bind to the RNA aptamer, thereby forming an RNA-ligand complex that involves a 

noncovalent association and possesses properties that permit investigation using EPR 

spectroscopy. This noncovalent spin-labeling approach is the first example of spin-labeling 

where a completely unmodified RNA has been used. Moreover, once the spin label has been 

prepared, this method potentially becomes an effortless “mix and measure” approach which 

can be used by researchers that require highly simplified spin-labeling techniques.  Also, this 

method presents the first example of noncovalent spin-labeling where the spin-labeled ligand 

binds to the nucleic acid at room temperature, thereby enhancing the practical usability of this 
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approach. Additionally, in collaboration with Prof. Thomas Prisner at Goethe University in 

Frankfurt, Germany; distance measurement between the spin-labeled ligand and a spin label 

that was covalently linked to the aptamer was carried out. It can be speculated that this 

approach of spin-labeling has the potential to be very useful in the future to spin-label long 

RNAs that are predominantly prepared by enzymatic methods. 

In a related study, delineated in Chapter 4, the approach of noncovalent spin-labeling 

was further explored where a new class of benzimidazole-isoindoline nitroxides was 

evaluated as spin labels that were found to bind to abasic sites in duplex DNA and RNA. This 

project was run in collaboration with Dr. Kye-Simeon Masters based at Queensland University 

of Technology, Brisbane, Australia. In this study, binding of two spin labels were studied in 

detail that displayed enhanced binding affinity to abasic sites, albeit at low temperatures.  

Finally, Chapter 5 describes another new approach for spin-labeling that was developed 

during the course of this doctoral study. This technique was based on a post-synthetic spin-

labeling strategy. In this approach, nucleophilic 2′-amino groups in RNA were reacted with 

two aromatic isoindoline nitroxides having an isothiocyanate modification to form a rigid 

thiourea linkage between the RNA and the spin labels. The aromatic isothiocyanate spin labels 

were synthesized by Dr. Anil P. Jagtap in the Sigurdsson group. This new method is perhaps 

the quickest method of covalent spin-labeling, where spin-labeled RNAs can potentially be 

obtained in just a few hours. Moreover, the isothiocyanate spin-labels were found to have 

limited mobility in the RNA that would render them as interesting and useful candidates for 

measurements of distance and orientation using pulsed-EPR studies. Also, one of the spin 

labels was found to be highly resistant towards reduction, which makes this label a very 

promising candidate to perform in-cell distance measurement experiments. 
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2 Introduction 

Nucleic acids belong to the category of biomolecules that play major roles in sustaining all 

forms of life. Delving into history, it was the Swiss scientist Friedrich Miescher who isolated a 

few unknown phosphate-rich chemicals way back in 1869 and named them “nucleons”, that 

later came to be known as nucleic acids.[1-4] In 1938, William Astbury and Florence Bell 

attempted to study the first X–ray diffraction pattern of DNA, but they were unable to 

propose its naturally-existing structure.[5] Rosalind Franklin, came very close to elucidating the 

correct structure of DNA in 1952, by producing the first ever high-resolution crystallographic 

photographs of DNA fibers.[6,7] However, the most significant and well-known discovery in 

this field was done by James Watson and Francis Crick, who in 1953, discovered the first 

double helical structure of DNA that has been hailed as one of the most path-breaking 

scientific discoveries in the previous century.[8]  

Nucleic acids comprise of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). 

They are mainly known to play the classical roles of storage and transfer of genetic 

information in all known living organisms. DNA functions as a long-term storage unit for 

genetic information that are passed from one generation into subsequent generations. RNA 

functions in converting genetic information from genes into the amino acid sequences of 

proteins.[9] Initially, RNA was sub-divided into three main types according to their functions, 

viz., transfer RNA (tRNA), messenger RNA (mRNA), and ribosomal RNA (rRNA).  Messenger 

RNA functions as carriers of genetic sequence information between DNA and ribosomes, 

directing protein synthesis; ribosomal RNA is a major component of the ribosome and transfer 

RNA serves as the carrier module for amino acids to be used in protein synthesis, and is 

responsible for decoding the mRNA.[10,11]  

However, it has been revealed in recent decades that nucleic acids have several other 

cellular functions in addition to facilitating genetic information storage and transfer. RNA is 

known to have a broader functional range; for example, it is a major component of 

nucleoprotein complexes involved with translation and processing of mRNA.[12,13]  Some 

RNAs catalyze reactions, referred to as ribozymes, for example peptide bond formation in a 
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ribosome.[14] Additionally, some specific regulatory segments of mRNA have been found to be 

responsible for controlling gene expression. These components came to be known as 

riboswitches that are capable of targeting and capturing small target molecules.[15-17] Also, 

similar to naturally-occurring riboswitches, some artificial nucleic acids called aptamers were 

identified that bind a variety of targets. An in-depth account of aptamers has been included in 

chapter 3 of this doctoral thesis. It has also been brought to light that RNA is capable of 

blocking the expression of certain genes referred to as “gene silencing” and the RNAs that are 

involved in such functions are known as small interfering RNA (siRNA) and micro RNA 

(miRNA).[18,19]  

2.1 Techniques for Structure Determination of Nucleic 

Acids 

Due to the great importance of nucleic acids today, it has become essential to study their 

structure and dynamics because these are the properties that help us to gain insight into their 

complete range of functions. Over the last few decades, a variety of biochemical and 

biophysical techniques have been developed that are routinely used to study the structure and 

dynamics of nucleic acids. Amongst them, the most powerful and sophisticated technique is 

X–ray crystallography, which is capable of providing “photographical” information about the 

three-dimensional molecular structure and precise arrangements of atoms in space.[20] 

Although this technique is highly informative and widely used, it comes with some 

disadvantages. Firstly, it is a prerequisite to obtain a sufficiently large and regular single 

crystal of the sample to be studied by X-ray. It is often a daunting and time-consuming task to 

obtain a single crystal for large biomolecules like nucleic acids. Secondly, biomolecules cannot 

be studied in their preferred solution state by this technique. Thirdly, the conformation of a 

nucleic acid in a crystal might not be a biologically-active one.[21] And finally, as X-ray 

provides a static view, conformational changes that govern and affect functions, cannot be 

studied by X-ray. 

Nuclear magnetic resonance (NMR) spectroscopy is another widely used high-

resolution technique that is used to study nucleic acids. NMR provides structural information 

of the nucleic acids in solution, thus revealing their conformation under their innate 

biologically relevant conditions.[22-25] However, NMR also has a few limitations. For example, 
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NMR of nucleic acids often requires relatively large amounts of isotopically-labeled samples. 

Furthermore, NMR studies are usually restricted to nucleic acids that are smaller than 50 

kDa.[26] This is because the increased anisotropy associated with slower tumbling of large 

molecules in solution causes broadening of the NMR peaks. Moreover, NMR is a time-

consuming process. For example, it might take up to a few months to analyze an entire set of 

experimental data necessary to estimate a three-dimensional structure for a mid-sized nucleic 

acid or protein. 

Another common technique for studying structure of nucleic acids is Förster resonance 

energy transfer (FRET), also known as fluorescence resonance energy transfer, which is 

capable of measuring distances between two or more fluorophores in the nanometer range.[27]  

In addition to enabling single-molecule studies,[28,29] this technique can also be used to study 

nucleic acids under biologically-relevant conditions. Although not a very high-resolution 

technique, FRET is widely used owing to its sensitivity. Unlike NMR, FRET requires a very 

little amount of sample for analysis or structure determination. Moreover, it is less time-

consuming than NMR. However, it has demerits too. For example, FRET requires 

incorporation of at least a pair of rather bulky chromophores, that can be difficult to 

incorporate and can alter the native structure of the biomolecule that is to be studied.  

Another useful technique to investigate the structure and dynamics of nucleic acids is 

electron paramagnetic resonance (EPR) spectroscopy, which will be described in the following 

sections. 

2.2 EPR Spectroscopy 

EPR spectroscopy, also known as electron spin resonance (ESR), was first reported by 

Zavoisky in 1945.[30,31] EPR is applicable for the study of the local environments of 

paramagnetic centers, and is a highly useful technique to study structure and dynamics of 

biomolecules like nucleic acid and proteins.[32] Similar to NMR, EPR is based on the principles 

of magnetic resonance that involves spins of unpaired electrons, such as those present in free 

radicals. As NMR involves nuclear spins, EPR detects transitions of electron spins from a 

lower to a higher energy level, induced by absorption of microwave electromagnetic radiation 

in the presence of an applied external magnetic field. Some transition metals are paramagnetic 

and have been used for EPR studies.[33-35] However, free unpaired electrons like nitroxides 
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(Figure 2.1 A) are paramagnetic, and thus, EPR-active too (Figure 2.1 B) and are more widely 

used for EPR-based investigations.[36,37] Most of the paramagnetic reporter groups are usually 

smaller as compared to the exogenous fluorophores used for FRET, thus making them less 

perturbing to the native structure of biopolymers. EPR provides structural information by 

measuring distances between two paramagnetic centers incorporated within nucleic acids.[38] 

Also, information about dynamics can be obtained from line-broadening of the EPR spectra 

and from orientation studies using pulsed-EPR.[39-43] 

 

Figure 2.1. (A) A piperidine-based nitroxide radical TEMPO ((2,2,6,6-Tetramethylpiperidin-1-yl)oxyl). (B) 

CW-EPR spectrum of a nitroxide radical. 

The technique of EPR can be classified into two main types, continuous wave- (CW) and 

pulsed-EPR. CW-EPR spectra are recorded by putting a paramagnetic sample into a 

microwave-irradiated field having a constant frequency and sweeping the external magnetic 

field until the resonance condition is fulfilled. CW-EPR can be used to measure distances of up 

to 25 Å through analysis of peak broadening.[44,45] In pulsed EPR, the spectrum is recorded by 

exciting a large frequency range simultaneously with a single high-power microwave pulse of 

given frequency at a constant magnetic field.[46] One of the most commonly used pulsed EPR 

techniques is called pulsed electron-electron double resonance (PELDOR), which sometimes, 

is also referred to as double electron-electron resonance (DEER).[47,48]  PELDOR is capable of 

measuring longer-range distances between 15-100 Å[38,49-53] and has been extensively used to 

measure distances between two paramagnetic centers in nucleic acids.[43,54,55] 

Nucleic acids are not inherently paramagnetic and, therefore, it is necessary to modify 

them with paramagnetic atoms or groups, referred to as spin labels. As mentioned before, 

although there are some examples of paramagnetic metal ions like Gd (III) and Mn (II) that 

have been used as spin probes,[34,35] bench-stable nitroxides are the most commonly used spin 

labels.[56] Many of these nitroxide radicals are commercially available or can be readily 
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synthesized using standard techniques of synthetic organic chemistry, which helped them in 

gaining popularity as spin labels for EPR studies.  

2.3 Site-Directed Spin-Labeling (SDSL) 

From the perspective of EPR-based studies, the spin labels need to be incorporated at specific 

sites of interest within nucleic acids, referred to as site-directed spin-labeling (SDSL).[36,41,57-61] 

While performing SDSL, spin labels can be attached to nucleic acids either covalently or 

noncovalently (Figure 2.2). Moreover, there are two main strategies that have been applied for 

covalent SDSL. The first one utilizes spin-labeled phosphoramidites that are incorporated at 

specific positions during automated chemical synthesis of the nucleic acid, shown 

schematically in Figure 2.2 A, and sometimes referred to as the “classical” phosphoramidite 

method. 

 

Figure 2.2. Strategies for site-directed spin labeling (SDSL). (A) The “classical” phosphoramidite approach. 

(B) Post-synthetic spin-labeling. (C) Noncovalent spin-labeling. A pyrrolidine-based spin label has been used 

to represent a nitroxide spin label. Nucleotides are represented by links that form oligonucleotide chains.[62] 

This figure has been reproduced with permission from Methods Enzymol., 2015, 563, 397-414. 
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The second SDSL strategy is post-synthetic spin labeling, where spin labels are 

incorporated after either chemical or enzymatic synthesis of the oligonucleotide (Figure 2.2 B). 

The third strategy of SDSL relies on noncovalent interactions like hydrogen bonding and π-

stacking between the spin label and the nucleic acid (Figure 2.2 C). The three techniques are 

described briefly in the following sections. 

2.3.1 The Phosphoramidite Approach 

Nucleoside phosphoramidites are derivatives of nucleosides and act as the key building 

blocks in solid-phase synthesis of nucleic acids. A generic structure of an RNA 

phosphoramidite is shown in Figure 2.3, where the 5′- and the 2′-hydroxyl groups are 

protected, while the phosphoramidite group is at the 3′-position. After synthesis of the RNA 

using the solid-phase synthesis method, the oligonucleotide is deprotected to obtain the 

desired unprotected RNA. The main advantage of the phosphoramidite method is that spin 

labels with specific and desired structural features can be inserted at chosen sites, which might 

not be possible using post-synthetic labeling.[63]  

 

 

Figure 2.3. A phosphoramidite building block for an RNA oligonucleotide. PG is a protecting group for the 

2′-hydroxy group and B is a nucleobase.  



9 

However, this particular approach is a laborious method of spin-labeling that involves 

substantial prowess in synthetic organic chemistry, which might be a challenge for researchers 

that have expertise predominantly in biochemistry or molecular biology. Another drawback of 

this method is that the spin labels get exposed to the reagents used during the oligonucleotide 

synthesis, which sometimes result in partial reduction of the nitroxide radicals.[64,65] 

2.3.2 The Post-Synthetic Spin-Labeling Approach 

Post-synthetic spin-labeling is another important and widely-used method for covalent 

incorporation of spin labels at specific sites for SDSL (Figure 2.2 B). This strategy requires 

oligonucleotides that have uniquely reactive groups at specific sites where the spin label can 

be incorporated after undergoing a chemical reaction.[62,66-71] Such modified oligonucleotides 

are usually prepared by the classical phosphoramidite method, often using commercially 

available reagents. This makes this method especially appealing to a broader range of 

researchers, because both the modified oligonucleotide and a suitable spin label can often be 

either purchased or readily prepared. The other merit of this method is that the spin label does 

not get exposed to the reagents used in the chemical synthesis of oligonucleotides, as is the 

case with the phosphoramidite approach. However, although this approach is usually very 

specific, a drawback of this method is the possibility of non-specific labeling due to the 

nucleophilic groups present in the nucleic acids, such as the exocyclic amino groups of the 

nucleobases, the N7 of purines, and non-bridging oxygen atoms of the phosphodiesters. 

Moreover, incomplete spin labeling is also a well-known drawback of this method. 

2.3.3 The Noncovalent Spin-Labeling Approach 

Attaching a spin label noncovalently to a nucleic acid avoids the various challenges faced 

while connecting via a covalent bond. Although some examples of noncovalent spin labels 

that bind non-specifically to nucleic acids have previously been known,[72-75] our research 

group has developed some useful techniques that involve highly specific noncovalent 

association of spin labels with nucleic acids. These techniques are based on the ligand-receptor 

interactions where the spin label acts as a ligand and an abasic site in a DNA/RNA acts as a 

receptor. Notably, in one of the studies, this abasic site in the DNA provided a binding site for 

the spin labeled ligand ç, a derivative of cytosine, which bound a guanine on the 

complementary strand through hydrogen bonding and π-stacking (Figure 2.4).[76] The binding 
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of the spin label to the DNA duplex was monitored by EPR spectroscopy and it was seen that 

at -30 ˚C, the label was fully and specifically bound to the abasic site. This method of 

noncovalent spin-labeling is considerably simpler than other approaches like the 

phosphoramidite method and the post-synthetic approach. For one thing, synthesis of the 

spin-labeled ç is easier and secondly, sample preparation step is very simple. Merely mixing of 

the spin label and the modified nucleic acid suffices the sample preparation and enables one 

to take EPR measurements directly, eliminating the need of any additional purification step.  

 
 

Figure 2.4. (A) Structure of ç and its base-pairing scheme with guanine (G) (left) and an abasic site in DNA 

(right). (B) A molecular model of the noncovalent spin-labeling approach based on the nitroxide ç (bold) and a 

duplex DNA (light) containing an abasic site. The EPR spectra shown are of the unbound spin label (left) and 

of the bound spin label (right) in duplex DNA containing an abasic site at –30 °C. This figure has been 

reproduced with permission from Eur. J. Org. Chem., 2012, 2291-2301. 

This noncovalent spin-labeling strategy has several advantages over the two covalent 

spin-labeling approaches, namely, the phosphoramidite method and post-synthetic labeling. 

For example, it is easier to synthesize ç as compared to similar spin-labeled phosphoramidites. 

Also, smaller amounts of the spin label are usually required for this approach as compared to 

the covalent approaches. Another important benefit of this strategy over the phosphoramidite 

method is that the spin label is not exposed to the chemicals used for the oligonucleotide 

synthesis. Also, the simplicity of this potentially “mix and measure” spin-labeling method can 

be easily used by non-chemists. 

However, this approach too, has a few disadvantages. For one thing, ç bound to an 

abasic site in a DNA duplex only at a very low temperature (-30 ˚C), limiting its applicability 

to be used under physiological conditions that involve ambient temperature. Moreover, it 

failed to bind well to a similar RNA duplex containing an abasic site. Also, it was found that 

only a few flanking sequences showed complete binding to the abasic site. Additionally, it was 
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experimentally observed that incorporation of two binding sites into the same duplex resulted 

in incomplete binding.[77]  

Substantial improvements in the shortcomings of ç were made by developing Ǵ (Figure 

2.5. A), a spin-labeled derivative of guanine, which was found to bind with high affinity and 

specificity to abasic sites in duplex RNA (Figure 2.5 B).[78] ç required a multistep synthesis, 

whereas Ǵ was prepared in a single step from readily available starting materials. Also, it was 

seen that Ǵ bound substantially well to nucleic acids containing abasic sites, especially RNA 

duplexes at higher temperatures.[78] Another improvement of Ǵ over ç was that, flanking 

sequence for the latter had minor effect on the binding. Additionally, Ǵ allowed accurate 

measurement of inter-spin distances between two spin labels using PELDOR.[78]  

 

Figure 2.5. (A) Structure of Ǵ (B) CW EPR data of Ǵ (left) and Ǵ bound to a RNA duplex containing an 

abasic site at -20 ˚C (right). 

However, all the existing strategies of spin-labeling developed thus far, including 

formation of an abasic site, involve chemical modification of the nucleic acids, which can be a 

limiting factor for preparing long spin-labeled oligonucleotides. In the next chapter, a new 

approach that enables spin labeling of unmodified RNA will be described, which can 

potentially be applied to spin-label long RNAs that can be prepared by in vitro transcription. 
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3 Noncovalent Spin-Labeling of Unmodified 

RNA: The Aptamer Approach 

Spin-labeling, in combination with EPR, is an efficient method to study structure and 

dynamics of nucleic acids. However, all the existing spin-labeling techniques developed thus 

far require modification of the nucleic acids.  Therefore, it is important to develop spin-

labeling approaches for unmodified nucleic acids, which will enable labeling of long RNAs 

that are difficult to prepare by chemical methods. To this end, an aptamer-based spin-labeling 

approach was developed. 

3.1 Nucleic Acid Aptamers 

Aptamers are short, single-stranded nucleic acids that are known to bind to a wide variety of 

ligands with high binding affinity and specificity by folding into a well-defined three-

dimensional structure.[79] Two research groups independently discovered aptamers by 

identifying RNA molecules that bind to small organic dyes[80] and to the bacteriophage T4 

DNA polymerase.[81] The name “aptamer” came from a word chimera built up from the Latin 

expression “aptus” (to fit) and the Greek word “meros” (part).[80] Aptamers have been 

reported to bind amino acids,[82] drugs,[83] proteins[84] and other small molecules.[85] Most of the 

known aptamers known are RNA aptamers, although there are DNA aptamers as well.[86] 

Aptamers are also found in nature in the form of riboswitches. A riboswitch is usually a part 

of an mRNA molecule that can directly bind a small target molecule, and whose binding of 

the target affects the gene's activity.[87]  

Due to their unique and strong binding properties, aptamers have found a wide range 

of applications in development of bioanalytical assays,[88,89] inhibition of enzymes and 

receptors,[90,91] target validation,[92] drug screening,[93] imaging of cellular organelles,[94] and 

development of biosensors[95] etc. Owing to their huge range of applications, aptamers are 

considered to be promising candidates for medicinal research and are regarded as one of the 

major discoveries in nucleic acid science during the past decades. 

Aptamers are selected from a random library or “pool” of nucleic acids by an iterative 

process of adsorption, recovery and re-amplification. This process has been termed systematic 

evolution of ligands by exponential (SELEX) enrichment (Figure 3.1).[81] This method is also 
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referred to as “in vitro selection” or “in vitro evolution”.[96] The SELEX technique selects 

aptamers with high binding affinity to a variety of target ligands. The classical SELEX method 

begins with the synthesis of a very large oligonucleotide library composed of random 

sequences. The library is then incubated with the desired target molecule under conditions 

suitable for binding. Next, the unbound nucleic acids are partitioned from those bound 

specifically to the target molecule, which are then eluted from the target molecule and 

amplified. This selection procedure is reiterated for several rounds until the resulting 

sequences are highly enriched. The selected nucleic acids are subjected to sequencing and 

evaluation of their binding to the target.  

 

Figure 3.1. A general scheme for the systematic evolution of ligands by exponential (SELEX) enrichment 

process. Figure courtesy of Integrated DNA Technologies Inc. 
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3.1.1 The Malachite Green Aptamer 

A 38-nucleotide RNA aptamer was discovered by in vitro selection that targeted the dyestuff 

malachite green (MG) (Figure 3.2, 1).[97] The ligand bound the aptamer with substantially 

strong affinity having a dissociation constant (KD) of 200 nM.[98] Ligands structurally similar to 

malachite green were also found to bind to the MG-binding aptamer, thus highlighting the 

versatility of this aptamer.[99] For example, a dye called tetramethylrosamine (TMR) (Figure 

3.2, 2) was found to have a five-fold higher affinity (KD ~ 40 nM) as compared to malachite 

green. The structural difference between malachite green and tetramethylrosamine is marked 

by only a single oxygen atom that bridges two of the aromatic rings to form a partial planar 

structure. This particular property was hypothesized to attribute to the superior binding of 

TMR over MG as the aptamer does not need to expend energy to align the two rings in the 

same plane in space.[99]  

 

Figure 3.2. Structures of dyes that are known to bind to the MG aptamer. 

Pyronin Y  (Figure 3.2, 3), which is identical to TMR, except that it lacks a free phenyl 

ring attached to the xanthene moiety, was shown to bind to the aptamer having a KD of 225 

nM. However, crystal violet 4, that differed from malachite green simply by addition of a 

dimethylamine to the free phenyl ring, did not show any significant binding to the aptamer 

(KD > 1 mM). It was hypothesized that as the net positive charge was distributed to the third 

amine group in crystal violet, favorable electrostatic interactions between the amine and the 

backbone phosphate groups were reduced, that led to a drop in the binding affinity.[99]  Also 

the fact that crystal violet shows a significant propeller twist in all the three rings, was 

attributed to be a likely reason for its inferior binding to the aptamer. 

Both X-ray and NMR structures of the TMR- and MG-bound aptamer complexes, 

respectively, revealed that the ligand binding-site in the aptamer was defined by an 
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asymmetric internal loop flanked by a pair of helices (Figure 3.3 A).[99,100] Also, it was known 

from the crystal structure that the binding was mainly stabilized by base-stacking and 

formation of noncanonical base pairs.[99] The binding pocket of the aptamer was found to be a 

series of stacked nucleotide tiers and the ligand was revealed to be intercalated within these 

tiers and is placed horizontally in the binding pocket (Figure 3.3 B). Additionally, electrostatic 

interactions between the cationic ligand and the anionic RNA contributed to the binding. 

Strikingly enough, interactions through hydrogen bonds between the heteroatoms on the 

ligand and the RNA were found to be completely absent.  

 

Figure 3.3. (A) Secondary structure of the RNA aptamer-TMR complex showing the position of the ligand in 

red, (B) X-ray structure of TMR (red) bound to the aptamer (grey). 

It was later revealed that not only structurally similar ligands were tolerated by the 

aptamer, the RNA is versatile enough to endure structural changes in the ligand as well, with 

respect to various types of substitutions.[101] However, modifications were found to be possible 

only in limited areas of MG. The two conjugated aromatic rings containing the 

dimethylamino-modifications were deeply buried within the binding pocket. Therefore, any 

kind of modification in those parts of the ligand was speculated to negatively impact the 

binding. The only region where modifications would be tolerated was either the “para” or the 

“meta” position of the non-nitrogen bearing aromatic ring of MG (Figure 3.4, 1).  

Substitutions by small groups like a methoxyl at the para-position of MG (Figure 3.4, 5) 

showed inferior binding to the aptamer and raised the KD to 1.43 µM. However, the same 

substitution at the meta-position (Figure 3.4, 6) bound substantially strongly to the aptamer 

(KD  = 150 nM). Also, another derivative of MG with hexyloxy groups substituted at both the 
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meta- and para-positions (Figure 3.4, 7) gave a modest KD of 1.82 µM. Additionally, it was 

known that when a bulky group, such as 4-methoxystyrene, was substituted at the para-

position (Figure 3.4, 8) modest binding to the aptamer was obtained with a KD of 540 nM. 

Interestingly, similar derivatization at the meta-position of MG (Figure 3.4, 9) displayed no 

binding to the aptamer.  

  

Figure 3.4. Arrows indicating possible sites of modifications in MG 1. Structures and dissociation constants 

(KD) of m-methoxy derivative of TMR 5, p-methoxy derivative of TMR 6, MG substituted by long-chain alkyl 

groups in both the meta- and para-positions 7, 4-methoxystyryl derivatives of MG at para-position 8 and 

meta-position 9. 

3.2 Design of Spin Labels for the MG Aptamer 

To spin label an RNA like the MG aptamer without chemically modifying the RNA, the only 

option is to convert the ligand into a nitroxide. In line with previous findings, it was clear that 

the point of attachment of a nitroxide radical would essentially be either at the meta- or the 

para-position of the unsubstituted aromatic ring. Simple molecular modeling based on the 

crystal structure of TMR bound to the MG aptamer revealed that the nitroxide radical 

essentially had to be connected to MG/TMR with a long and straight tether, such as an 
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acetylene functional group, that would enable the label to jut out of the narrow gap in the 

binding pocket into the solution (Figure 3.5 A). The initial plan was to identify MG-derived 

spin label(s) that bind well, and then prepare their TMR derivatives with the aim of increasing 

their binding affinity further. Another reason behind synthesizing spin labeled derivatives of 

MG was that the syntheses looked simpler than that for TMR-based spin labels. 

 

Figure 3.5. (A) A molecular model of the crystal structure of the MG aptamer bound to TMR, showing 

possible sites of modifications in TMR. (B) A piperidine-based acetylene-linked nitroxide (10) and spin-labeled 

derivatives of malachite green (11, 12 and 13) that were planned to be synthesized. 

Accordingly, a piperidine-based nitroxide 10 ((4-ethynyl-2,2,6,6-tetramethyl-3,6-

dihydropyridin-1-yl)-oxyl)[102] was proposed to be attached to the meta- and para-positions of 

MG to afford spin-labeled candidates 11 and 12, respectively (Figure 3.5 B). It was planned to 

have a halogen at the desired meta- or para-position of the unsubstituted phenyl ring, which 

would be utilized to perform the Sonogashira reaction at that position to conjugate the 

acetylene-linked nitroxides. A labile halogen like iodine was the first choice, for the fact that 

iodine is the best leaving group/atom amongst all the halogens. 

In addition to the piperidine-based spin labels, an isoindoline-based nitroxide derivative 

of malachite green 13 was planned to be synthesized where the unsubstituted aromatic ring 
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would be replaced by a tetraethyl-isoindoline nitroxide to check how the binding is affected if 

both the meta- and para-positions of the triaryl dye are blocked, similar to nitroxide 7. 

3.2.1 Synthesis of Spin-Labeled Derivatives of Malachite Green 

The synthesis of the meta- and para- modified MG 11 and 12 (Scheme 3.1) started with 

lithiating either 1,3- (15) or 1,4-diiodo benzene (16) that was allowed to react with Michler’s 

ketone 14 to obtain meta- and para-iodo substituted intermediates 17 and 18, respectively. 

Those were converted to meta- and para-iodo substituted malachite greens 19 and 20, 

respectively, by stirring in hydrochloric acid, which were further subjected under Sonogashira 

reaction conditions to couple with  nitroxide 10, which was synthesized in-house following a 

reported protocol,[102] to obtain spin-labeled malachite greens 11 and 12. 

  

Scheme 3.1. Synthetic scheme used to obtain the meta- and para-substituted spin-labeled malachite greens 11 

and 12, respectively. 

The synthesis of the isoindoline-derived malachite green 13 followed an altogether 

different route (Scheme 3.2). The synthesis began with deprotecting a benzyl-protected 

isoindoline 21 which was brominated in situ to obtain intermediate 22, which was further 

oxidized to afford nitroxide 23 (Scheme 3.2 A). In the second part, nitroxide 23 was lithiated 

and reacted with Michler’s ketone 24 to obtain intermediate 25 which under acidic conditions 

yielded the final spin-labeled isoindoline 13 (Scheme 3.2 B). 
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Scheme 3.2. Synthetic scheme used to obtain the isoindoline-based spin-labeled derivative of MG (13). 

However, purification issues were encountered while executing these synthetic 

schemes, although they looked simple on paper. Being derivatives of commercial dyes, the 

lithiation step generated intense green-colored impurities that appeared as overlapping bands 

on preparative TLC. However, after a lot of hardship, all the three spin labels 11, 12 and 13 

were obtained in workable amounts by performing repeated chromatographic separations. 

3.2.2 EPR Studies of the Binding of MG-derivatives with the Aptamer 

Unfortunately, the pyrrolidine-based MG-derived spin labels 11 and 12 showed very poor 

solubility in aqueous medium and the binding studies could not be accomplished. They were 

found to be insoluble even in a buffered system of 2% DMSO + 30% ethylene glycol + 68% 

water. No improvements were seen by raising the percentage of DMSO up to 5%. Increasing 

the content of DMSO any further was not a valid option because DMSO is a known 

denaturing agent and it was obvious that excess of DMSO would negatively affect the 

binding.  Moreover, stability issues were encountered when suspension of nitroxides 11 in 12 

in aqueous buffers even for a couple of hours led to discoloration of the otherwise intensely 

green-colored solution. It was later learnt that the central carbon atom of MG is highly 

susceptible to an attack by a base such as a hydroxide ion (OH¯), which oxidizes MG to 

convert it to a colorless MG-OH form (Figure 3.6).[103] 
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Figure 3.6. Attack of a hydroxide ion into the central carbon of MG to form colorless MG-OH. 

The isoindoline-derived MG spin label 13 showed better aqueous solubility and its 

binding with the MG aptamer was studied by EPR (Figure 3.7). However, 13 did not appear to 

be a promising spin label because first of all, the binding was completely non-specific as 

similar broadening was observed for the sample containing a non-binding mutant aptamer as 

the negative control. In other words, it was concluded that although restricted motion of the 

spin label was observed, it was not due to its binding in the binding pocket. Moreover, 

aggregation or precipitation of 13 in solution was evident from the noisy baseline of the EPR 

spectra, even at 10 ˚C.  

Since none of the MG-derived spin labels yielded promising results, either due to 

stability and solubility issues, or due to binding non-specifically to the aptamer, a series of 

TMR-derived nitroxides were synthesized to check if better results could be obtained. 
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Figure 3.7. EPR data for the isoindoline-derived MG 13 bound to the aptamer (left column), mutant RNA 

(middle column) and without any RNA (right column). EPR spectra were recorded as a function of 

temperature. All data were recorded in 10 mM phosphate, 100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0. 

3.2.3 Spin-Labeled Derivatives of Tetramethylrosamine (TMR) 

Since all attempts to obtain good MG-derived spin labels went futile, it was decided to 

synthesize a series of spin-labeled derivatives of TMR in anticipation of obtaining better 

stability and specific binding properties. To begin with, only “meta”-substituted spin-labeled 

TMR-derivatives were proposed to be synthesized (Figure 3.8). In addition to the piperidine-

derivative 26, two more spin-labeled derivatives of TMR having acetylene tethers were 

designed, one with a pyrrolidine-based spin label 27 ((2,2,5,5-tetramethyl-3-(prop-1-yn-1-yl)-

2,5-dihydro-1H-pyrrol-1-yl)-oxyl)[104] and the other, an isoindoline nitroxide having 

tetramethyl substituents 28 ((5-ethynyl-1,1,3,3-tetramethylisoindolin-2-yl)-oxyl).[105,106]  
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Figure 3.8. Spin-labeled derivatives of tetramethylrosamine that were proposed to be synthesized. 

3.2.4 Synthesis of Spin-Labeled Derivatives of Tetramethylrosamine 

The syntheses of the spin-labeled TMR derivatives began by reacting 3-iodobenzaldehyde 29 

with 3-N,N-dimethylaminophenol 30 to obtain ring-opened diol intermediate 31 (Scheme 3.3). 

The ring-closed iodo-intermediate 32 was obtained by stirring 31 in sulfuric acid, which under 

Sonogashira cross-coupling conditions with 10, 33 and 34 afforded the final spin-labeled TMRs 

26, 27 and 28, respectively. 

Although the reactions looked straight-forward, purification was the main issue while 

executing this scheme, as anticipated beforehand. Because TMR and its derivatives are 

characterized by an intense red colour, it was extremely difficult to isolate intermediate 32 and 

final paramagnetic compounds 26, 27 and 28 from the impurities generated from the reactions 

that had equally intense characteristic red color. However, repeated chromatographic 

attempts yielded workable amount of the desired spin-labeled nitroxides.  
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Scheme 3.3. Synthetic scheme for synthesizing the spin-labeled derivatives of TMR 26, 27 and 28. 

 

3.2.5 EPR Studies for the Binding of TMR-Derived Spin Labels 

The binding of the spin-labeled probes 26, 27 and 28 to the malachite green aptamer was 

studied by EPR spectroscopy (Figure 3.9). As before, the data were recorded in a phosphate 

buffer dissolved in an aqueous solution containing 2% DMSO and 30% ethylene glycol.[76] 

From the EPR data recorded at 20 ˚C, we could conclude that all the nitroxides bound 

specifically to the binding pocket of the aptamer, although to varying extent; a slow-moving 

component emerged in all the samples where the ligand was bound to the aptamer that 

suggested binding. Absence of a similar broadening with the mutant RNA (negative control) 

indicated that the binding was specific. It was observed that two of the spin-labeled TMRs, 26 

and 28 had only bound partially to the MG aptamer which was concluded by presence of a 

sharp fast-moving component that usually originates from the rapid tumbling motion of a 

freely rotating nitroxide in solution. The isoindoline-modified spin label of TMR 28 showed 
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comparable, albeit slightly better binding profile on EPR as compared to the piperidine-

derived 26. However, the pyrrolidine-based TMR spin label 27 appeared to be the best spin 

label synthesized in this entire series and exhibited full and specific binding to the MG 

aptamer, which was inferred by absence of any fast-moving component in the EPR spectra for 

the sample containing 27 bound to the MG aptamer.  

 

Figure 3.9. EPR data of the spin labels 26, 27 and 28 without any RNA (left), when bound to the MG aptamer 

(centre) and mutant RNA (right, negative control). All data were recorded at +20 ˚C in 10 mM phosphate, 100 

mM NaCl, 0.1 mM Na2EDTA, pH 7.0. 

An extensive temperature-dependent EPR spectroscopic study was performed for the 

pyrrolidine-derived spin label 27 (Figure 3.10).  No sharp fast-moving component was 

observed in the sample for the label bound to TMR, not even at +30 ˚C. A degree of rigidity of 

the label was evident by the peaks splitting between high and low fields even at +10 ˚C and no 

non-specific binding was observed up to this temperature. At -10 ˚C though, a minute amount 

of non-specific binding was seen deduced from a slightly broadened EPR spectra for the 

negative control sample but the label was rigidly bound for the aptamer sample.  At lower 

temperatures, slight aggregation was observed in the sample without RNA, but the extent of 

aggregation was found to be much lower than that obtained for the previous labels 26 and 28. 
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Figure 3.10. EPR data for the spin-labeled TMR 27 bound to the aptamer (left column), control RNA (middle 

column) and without any RNA (right column). EPR spectra were recorded as a function of temperature. All 

data were recorded in 10 mM phosphate, 100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0. 

3.2.6 Determination of Dissociation Constants (KD) for 26, 27 and 28 by 

Fluorescence Titration 

To further characterize binding of the spin-labeled derivatives of TMR bound to the malachite 

green aptamer, dissociation constants (KD) for binding of the ligands were determined by 

performing fluorescence titration experiments. Upon binding to the aptamer, fluorescence 

intensities of MG 1 and its structurally-related derivatives like TMR 2, pyronin Y 3 and crystal 

violet 4 are known to increase by more than thousand fold.[107,108]  

Therefore, additive amounts of the aptamer were added to a fixed amount of each of the 

spin-labeled ligands 26, 27 and 28 until saturation was reached. Fluorescence was found to be 

quenched upon binding of the ligands to the aptamer. By normalizing and inversing the 

maximum fluorescence intensity data to fit into a simple ligand binding equation, dissociation 

constants (KD) of the spin-labeled ligands were calculated by curve-fitting (Figure 3.11). 

Although perfect fits were not obtained, a rough estimation of the dissociation constants was 

obtained by this method. The best-binding derivative 27 showed a dissociation constant (KD) 

of 66 nM (Figure 3.11 A), whereas isoindoline-derived 28 and pyrrolidine-derived 26 showed 

dissociation constants of 95 nM (Figure 3.11 B) and 101 nM (Figure 3.11 C), respectively. These 
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values are in line with the data obtained from EPR in that 27 proved to be the best binder in 

the series, whereas 26 and 28 had already shown partial binding to the aptamer as judged by 

EPR, and were expected to show higher KD values than 27.   

 

Figure 3.11. Dissociation constants (KD) by fluorescence titration for the TMR-derived spin labels (A) 27,  KD = 

66 nM, (B) 28,  KD = 95 nM and (C) 26,  KD = 101 nM. θ denotes the fraction of ligand binding sites in the 

aptamer that are occupied by the spin label, the dotted line indicates the experimentally obtained data points 

and the solid line represents the fitted curve. Data were recorded in 10 mM phosphate, 100 mM NaCl, 0.1 mM 

Na2EDTA, pH 7.0 at 20 ˚C.  
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3.3 Distance Measurements by PELDOR on the Malachite 

Green Aptamer  

To further confirm that the spin-labeled TMR derivative 27 binds specifically to the malachite 

green aptamer, distance measurement studies by PELDOR spectroscopy were planned. The 

prerequisite for any pulsed-EPR based studies is the presence of a biradical system in the 

sample of interest. In the current aptamer-spin labeled complex, a biradical unit can be 

generated by two ways. The first option was to prepare an aptamer sequence that would be a 

dimer possessing two binding pockets, principally binding two equivalents of the spin label. 

However, this approach was envisioned to be somewhat complicated as placing the two 

binding domains with a fixed distance and orientation between them might not be trivial.  

The other option was to covalently spin label a suitable position in the helical regions of 

the aptamer. As discussed in chapter 2, there are two possible ways to attach a spin label 

covalently to a nucleic acid.[36] The first method is the phosphoramidite approach which is 

tedious and time-consuming. Moreover, as the label is prone to get reduced, this is not a 

reliable method to spin label long RNAs like the 38-nucleotide malachite green aptamer. The 

other method, i.e., the post-synthetic approach is easier and less time-consuming. Therefore, 

the in-house developed approach for post-synthetic spin-labeling of reactive 2′-amino groups 

of uridine in RNA described in detail in Chapter 5, was used to covalently attach an 

isoindoline-based nitroxide to the aptamer (Scheme 3.4).[69] 

 

Scheme 3.4. An in-house developed post-synthetic spin labeling scheme used to covalently label the 

malachite green aptamer for inter-spin distance measurement studies using PELDOR. 
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Based on the molecular modeling of the crystal structure, labeling the 2′-amino group of 

U36 in the MG aptamer at the stem-loop (Figure 3.12 A) would separate the two spin labels by 

a distance of 3.3 nm, which is an optimum distance for PELDOR measurements (Figure 3.12 

B).[109,110] The spin label can also exist as another rotamer which is obtained by rotating the 

single bond connecting the isoindoline and the thiourea by 180˚, yielding an inter-spin 

distance of 3.5 nm. The molecular model showed that a covalently-attached tetraethyl 

isoindoline spin label located at this position would clearly jut out of the RNA into the 

solution without hindering the binding (Figure 3.12 B).  

 

Figure 3.12. (A) Secondary structure of the malachite green aptamer bound to TMR (red) showing the 

position of covalently modified U36 (blue) with a 2′-amino uridine. (B) A molecular model showing the 

positions of the two spin labels (covalent label: blue, TMR core: red, pyrrolidine nitroxide modification on 

TMR: green); the structure of the covalently attached label is shown (blue) in a box. (C) PELDOR data with the 

time trace and distance distribution (inset) indicating a mean inter-spin distance of 3.3 nm (33 Å). 

PELDOR distance measurements, performed at our collaborator Prof. Thomas Prisner’s 

research group based at the University of Frankfurt, showed a clear oscillation that arose due 

to dipolar coupling between spins from the two spin labels in the aptamer system. Summing 

up the time traces and performing Tikhonov regularization,[111] a mean distance of 3.3 nm was 

obtained (Figure 3.12 B), which was in very good agreement with the distances obtained from 

simple molecular modeling. 
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3.4 Conclusion  

On our quest of noncovalent spin-labeling of unmodified RNA, we prepared a series of 

malachite green-derived nitroxide spin labels as ligands for the malachite green aptamer. Two 

spin labels based on malachite green were found to be unstable, whereas a third isoindoline-

based MG derivative bound non-specifically to the aptamer. Better results were obtained by 

preparing spin-labeled derivatives of TMR. Although two TMR-based spin labels bound only 

partially to the aptamer at ambient temperature, remarkably, a pyrrolidine-based spin label 27 

showed full and specific binding even at ambient temperature. By fluorescence titration 

studies, it was shown that all three TMR-based spin labels had dissociation constants in the 

sub-micromolar range. Also, an accurate distance obtained by PELDOR between 

noncovalently bound 27 and a covalently attached spin label within the aptamer system 

confirmed that 27 was indeed bound to the binding pocket of the aptamer as had been 

presumed. 

There are several merits of this research. Most importantly, this is the first example of 

spin-labeling of unmodified nucleic acids. Additionally, this is the first example of 

noncovalent spin labeling at room temperature. Also, for the first time, distance measurement 

by pulsed EPR between a noncovalent and a covalent label incorporated into the same 

biopolymer was carried out. In the future, this research will open doors to spin-label long 

RNAs that can be prepared solely by enzymatic methods.  



31 

4 Noncovalent Spin-Labeling with 

Benzimidazole-Isoindoline Nitroxides 

4.1 Introduction 

In this project, the technique of noncovalent spin-labeling was further explored by 

investigating nucleic acid binding properties of a series of novel benzimidazole-based 

isoindoline nitroxides. This project was pursued in collaboration with Dr. Kye-Simeon 

Masters’ research group based at the Queensland University of Technology, Brisbane, 

Australia who synthesized this new class of nitroxides. Our role in this initiative was to 

evaluate these benzimidazole-based isoindoline nitroxides as potential spin labels for 

noncovalent spin-labeling. 

Isoindoline nitroxides have long been established as bench-stable free radicals.[106,112-115] 

Additionally, they have found considerable importance as paramagnetic probes for spin-

labeling using EPR spectroscopy.[63,76,78,116] On the other hand, pyrido(1,2-a)benzimidazoles are 

known to be highly fluorescent [117-119]. Therefore, it was envisioned that if isoindoline 

nitroxides are fused with fluorophores like pyrido(1,2-a)benzimidazoles, they might be useful 

as bi-functional probes for nucleic acid binding studies. It was hypothesized that, first of all, 

these nitroxides would retain their key property of detection by EPR, and secondly, their 

reduced diamagnetic version could be of use as (pro)fluorescent probes, because nitroxides 

are known to quench fluorescence through an intermolecular electron-exchange interaction 

between their ground-state and the excited-state fluorophore.[120,121]  

The nitroxides that were investigated in this study are shown in Figure 4.1. Nitroxide 35 

is the basic benzimidazole-fused isoindoline nitroxide, whereas 36 and 37 are benzannulated 

derivatives of 35. Nitroxides 38 and 39 were designed to have a purine-type moiety fused to 

the isoindoline nitroxide. Since 38 and 39 had more nitrogen atoms on their aromatic ring 

systems, they were presumed to be more hydrophilic than 35, 36 and 37. 
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Figure 4.1. Structures of the benzimidazole-based isoindoline nitroxides 35, 36, 37, 38 and 39 that were 

analyzed in this investigation. 

4.2 Results and Discussion 

4.2.1 Synthesis of the Benzimidazole-Based Isoindoline Nitroxides 

Our collaborators synthesized this new class of spin labels by applying a variation of the 

Buchwald-Hartwig coupling and copper-catalyzed C–H amination as key steps.[122] The 

synthesis of 35 is shown as an example in Scheme 4.1. Methoxyamine 40 was coupled with 2-

chloropyridine 41 to obtain amidine intermediate 42.[123] Cyclization of N-aryl-N-pyridylamine 

42 was performed using catalytic amounts of copper(II) acetate and pentafluorobenzoic 

acid[124] to afford intermediate 43 with 43% yield. The final nitroxide 35 was obtained in 95% 

yield by m-CPBA oxidation. Compounds 36-39 were prepared by a similar synthetic strategy. 

 

Scheme 4.1. Synthetic scheme for obtaining benzimidazole-based isoindoline nitroxide 35. The syntheses 

were carried out by Dr. Kye-Simeon Masters’ research group based at the Queensland University of 

Technology, Brisbane, Australia. 
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4.2.2 The “Combinatorial Approach” for Screening Promising Candidates 

To swiftly assess this new series of nitroxides, a “combinatorial approach” was devised to 

screen the binding of each spin label to multiple oligonucleotides at once. Each sample 

contained the spin label with four DNA duplexes (or four RNA duplexes), each of which 

contained an abasic site placed opposite to four different orphan bases, A, C, G and T/U. Each 

duplex was in twofold excess relative to the spin label to ensure that the label bound 

completely to the oligonucleotides. Each of the nitroxides would bind to the duplex to which it 

had the highest affinity and the extent of binding would be manifested by broadening of the 

EPR spectra (see below).  

The data obtained by this approach showed that all the nitroxides had affinity to abasic 

sites in duplex DNA and RNA, albeit with varying degrees (Figure 4.2). A spin label bound to 

a large biomolecule like a nucleic acid duplex tumbles slower in solution and results in a 

broader EPR spectrum that reflects a shorter rotational correlation time, which is usually 

manifested by generation of a slow-moving component in the EPR spectrum (indicated by a 

red arrow in Figure 4.2).[76] For both the DNA and the RNA duplexes, nitroxide 39 was found 

to be the best binder because its ratio between the slow- and fast-moving components was the 

highest among all the nitroxides. In order to identify the best-suiting orphan base for each 

nitroxide, an extensive evaluation of all the nitroxides was planned, starting with 35 and 36, 

which were the first samples we received. 
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Figure 4.2. DNA and RNA duplex sequences and EPR data for nitroxides 35, 36, 37, 38 and 39 screened as per 

the “combinatorial approach”. All data were recorded at -10 ˚C. Binding studies were performed in phosphate 

buffer (10 mM phosphate, 100 mM NaCl, 0.1 mM Na2EDTA, pH = 7.0) containing 2% DMSO and 30% ethylene 

glycol. 

4.2.3 Binding Studies of Nitroxides 35 and 36 using EPR spectroscopy 

Binding of 35 and 36 to separate DNA and RNA duplexes, each containing an abasic site 

placed opposite to different orphan bases (Figure 4.3 a) was elaborately studied in order to 

identify the best binding conditions.[76,78] The EPR data for nitroxide 35 revealed partial 

binding to the DNA duplexes, especially when the abasic site was placed opposite to G and C, 

as judged by the emergence of a slow moving component at -30 ˚C (denoted by a red arrow in 

Figure 4.3 b). However, slight broadening of the EPR spectra was also observed in the control 

samples having an unmodified DNA duplex, indicating occurrence of some non-specific 

binding.[122] Almost no binding for 35 was observed when the abasic site was placed opposite 

to A and T. On the other hand, much better results were obtained when nitroxide 35 was 

incubated with an RNA duplex containing an abasic site, in particular opposite C, and modest 

binding was observed when placed opposite to U (Figure 4.3 c). The label did not bind at all 

when G and A were the orphan bases. In the case of RNA, the binding was clearly specific 

since the unmodified RNA duplex showed almost no indication of binding to nitroxide 35. 
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Figure 4.3. (a) DNA and RNA duplexes used for EPR binding studies where “_” denotes an abasic site and X 

the complementary base. The EPR spectra show the extent of binding of 35 and 36 to duplex DNA (b) and 

RNA (c), respectively. Letters above each spectrum denote the base opposite to the abasic site. For unmodified 

duplexes, “_” and X stand for C and G, respectively. Binding studies were performed in phosphate buffer (10 

mM phosphate, 100 mM NaCl, 0.1 mM Na2EDTA, pH = 7.0) containing 2% DMSO and 30% ethylene glycol at 

−30 °C. The red arrow indicates the slow moving (bound) component and the circle shows signs of 

aggregation. 

In contrast to 35, the EPR data for nitroxide 36 revealed significant and substantial 

improvement in binding to abasic sites in both DNA and RNA duplexes, presumably due to 

the extra aromatic ring that facilitated additional stacking interactions. For DNA, the highest 

affinity was observed for an abasic site complementary to C or T, where nearly full binding 

was achieved at -30 ˚C (Figure 4.3 b). However, considerable non-specific binding was also 

observed which resulted in broadening of the spectra for the sample with unmodified DNA 

duplex. Although the extra aromatic character of 36 led to better binding, it also showed signs 

of aggregation in the EPR indicated by an overall noisier baseline (highlighted by a circle in 

Figure 4.3 c), especially for the sequences that had limited affinity for the spin label. This also 

indicated that binding assisted in solubilizing the labels. The EPR data of nitroxide 36 in the 

presence of RNA duplexes surprisingly resembled those for DNA (Figure 4.3 c). However, 

close observation revealed less RNA binding, compared with DNA, when the abasic site was 

placed opposite to A and slightly more binding to C, the latter of which showed almost 

complete binding. Similar detailed analyses of nitroxides 37, 38 and 39 are currently underway 

and will be reported in due course. 
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4.3 Conclusion  

This international collaborative project was aimed at identifying a new class of benzimidazole-

isoindoline nitroxide spin labels by fusing EPR-detectable isoindoline nitroxide radicals to a 

fluorescent pyrido(1,2-a)benzimidazole moiety. Binding of a series of benzimidazole-

isoindoline nitroxides to duplex DNA and RNA containing abasic sites were studied by a 

combinatorial approach. Two of the nitroxides 35 and 36, were studied in detail and the latter 

was found to be the better binder especially to RNA duplexes having an abasic site with C and 

U as the orphan bases.[122] Three other nitroxides of the same series 37, 38 and 39 are currently 

being analyzed in order to identify the best nucleic acid binder in this entire series.  
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5 Post-Synthetic Spin-Labeling of 2′-Amino 

Groups in RNA with Aromatic Isoindolines 

5.1 Background 

As mentioned in the introductory part in chapter 2, the post-synthetic approach is a 

particularly appealing method of spin-labeling because, in most cases, both the spin label and 

the oligonucleotide that contains a uniquely reactive functional group, can be purchased. 

Moreover, introduction of the spin label after the synthesis of the nucleic acid prevents 

exposing the label to the variety of strong oligomer-synthesizing reagents, as is the case with 

the phosphoramidite approach,[65,125] and thus, partial reduction of the radical is avoided. 

However, this technique has some drawbacks. First, the reaction can take place at undesired 

sites, which might lead to non-specific spin-labeling.[126] Second, this technique sometimes 

causes incomplete extent of labeling, which may turn out to be a hassle while purifying the 

end product. 

Post-synthetic spin labeling can, in principle, be performed at a number of sites in an 

RNA oligonucleotide, viz., the nucleobase,[127] the sugar[128,129] or at the phosphodiester 

region.[130,131] The 2′-position of the sugar is of particular interest because it is the only site in 

the sugar that is available for internal labeling of a nucleic acid. Furthermore, when attached 

at the 2′-position, the spin label projects out into the minor groove, thus making it a sterically-

comfortable position of attachment. 

Post-synthetic labeling of 2′-amino groups is a facile and selective approach for labeling 

the 2′-position of the sugar, because the aliphatic 2′-amino group is more nucleophilic than the 

aromatic amines on the nucleobases or the hydroxyl groups on the sugars and the 

phosphodiester linkages. This facilitates easy conversion of the 2′-amino groups to ureas[66,67] 

and amides.[44] Moreover, RNA oligonucleotides having 2′-amino modifications are 

commercially available or can be synthesized in-house on an automated synthesizer using 2′-

amino-modified phosphoramidites that can be readily purchased. Thus, easy availability of 

starting materials makes this approach highly attractive.  

The 2′-amino group has been spin-labeled through reaction with a succinimidyl ester of 

a pyrrolidine-derived nitroxide spin label to yield an amide-modified spin label; however, this 
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modification was found to cause considerable destabilization of RNA duplexes (Figure 5.1, 

lower scheme).[44] The 2′-amino group in RNA has also been modified to form a urea linkage 

using 4-isocyanato TEMPO (45) (Figure 5.1, higher scheme).[66,67] This spin labeling method 

has been quite popular among many other research groups and it is particularly useful owing 

to the fact that both the 2′-amino modified RNA and the spin label, 4-isocyanato TEMPO (45), 

are commercially available.  

 

Scheme 5.1. Spin-labeling of 2′-amino position in RNA by amide modification 48 (lower), and by urea 

modification 46 (higher). 

However, despite its usefulness, using aliphatic isocyanates has a few disadvantages. 

Firstly, 4-isocyanato TEMPO (45) is fairly reactive. Therefore, to slow down hydrolysis of the 

spin label, the reaction has to be performed under controlled conditions, i.e., at a low 

temperature of -8 ˚C. Secondly, at this sub-zero temperature, RNA, especially longer ones, are 

susceptible to forming secondary structures, thus making the reaction sluggish. And thirdly, 

since TEMPO is a six-membered aliphatic ring, it is known to undergo different 

conformational changes (viz., chair and boat), which is not a desired property for EPR studies 

because the more rigid the spin label is, more is the information that can usually be obtained 

from EPR. 

5.2 Spin-Labeling at 2′-Amino Position Using Aromatic 

Isothiocyanates 

As the post-synthetic labeling method of 2′-amino group in RNA with aliphatic isocyanates is 

associated with the above mentioned problems, we embarked upon trying to improve this 
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method by introducing new spin-labeling reagents, which are isothiocyanate derivatives of 

aromatic isoindoline nitroxides.  This project was carried out in collaboration with Dr. Anil 

Jagtap in our research group who prepared both the tetramethyl- (51) and tetraethyl- (52) 

derivatives of this isoindoline spin-labeling reagent. These aromatic isothiocyanate spin labels 

were reacted with a 14-nucleotide 2′-amino modified RNA IX (5′-GACCUCG(2′-

NH2U)AUCGUG-3′), forming a highly stable thiourea linkage (Scheme 5.2).[62,69] 

 

Scheme 5.2. Preparation of spin-labeling reagents 51 and 52 from their respective precursors 49 and 50, 

respectively (performed by Dr. Anil P. Jagtap); and their reaction with the 2′-amino modified RNA 

oligonucleotide IX [5′-GAC CUC G(2′-NH2U)A UCG UG] to yield spin-labeled oligonucleotides X and XI. 

 

By using these new spin labeling reagents, we were able to circumvent all the problems 

that were associated with the aliphatic isocyanate spin labels. Firstly, the aromatic isoindoline 

isothiocyanate spin-labeling reagents 51 and 52 are stable nitroxides. Secondly, owing to their 

stability, the reactions were performed at higher temperatures (37 ˚C) which prevented the 

RNA from forming secondary structures. And thirdly, compared to 4-isocyanato TEMPO (45), 

isothiocyanates 51 and 52 have rigid planar structures devoid of any inherent flexibility. 

The kinetics and efficiency of the spin labeling reactions of 2′-amino-modified RNA IX 

with aromatic isothiocyanate spin labels 51 and 52 were studied by using denatured 

polyacrylamide gel electrophoresis (DPAGE) (Figure 5.1). Small amounts of reaction mixture 

were extracted after specific intervals of time and after 8 h, all the samples were run together 
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on DPAGE. It is evident from both the time-course profiles that reaction of RNA IX with 51 

was faster than that of 52. After 30 min, a prominent new band was seen to have appeared for 

51 (Figure 5.1A); whereas after the same duration, a faint new band was seen for 52 (Figure. 

5.1B). The new slower-moving band corresponded to an RNA with increased mass which was 

assumed to be the spin-labeled RNA (X or XI). It was clear that the reaction of 51 was 

completed in 2 h whereas the reaction of 52 got over in just over 4 h. No undesired side 

products could be detected in either reaction. 

 

Figure 5.1. Time-courses of spin-labeling reactions of RNA IX with (A) 51 and (B) 52. 

It was also important to know if the reactions were selective to the 2′-amino group in 

RNA and that the isothiocyanate spin labels were not reacting with other functional groups, 

such as the exocyclic amines in the bases. Therefore, an unmodified RNA oligonucleotide XII 

(5′-GACCUCGUAUCGUG-3′) was subjected to the reaction conditions with 51 and heated at 

60 °C. Aliquots were collected at specific time points and analyzed by DPAGE (Figure 5.2). No 

change was observed in the mobility of the unmodified oligonucleotide, even after heating for 

48 h, proving that the spin-labeling procedure is highly specific to 2′-amino groups in RNA. 

 

Figure 5.2. DPAGE analysis showing the different time-points of sample collection of reaction of 

isothiocyanate 51 with the unmodified oligonucleotide XII (5′-GAC CUC GUA UCG UG). Lane B contains 

spin-labeled RNA X and lane A is a mixture of the spin-labeled RNA X and an aliquot after running the 

reaction for 48 h. 
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The purified spin-labeled oligonucleotides X and XI were analyzed using MALDI-TOF, 

which verified the incorporation of the spin labels. CD spectra of the duplexes of X and XI 

showed negative and positive molar ellipticities at ca. 210 nm and 262-264 nm, respectively, in 

excellent agreement with the reported values for A-form RNA duplexes.[132]  

It was also important to investigate if the spin labels 51 and 52, after incorporation into 

the 2′-amino-modified RNA affected their duplex stability. To gauge their melting 

temperatures (TM), thermal denaturation experiments were performed. It was interesting to 

note that only very minor destabilization of 1.2 ˚C and 2.0 ˚C were observed for the duplexes 

labeled with tetramethyl- (51) and the tetraethyl-derivative (52), respectively, relative to an 

unmodified duplex. The corresponding TEMPO-labeled RNA duplex, prepared by reacting 4-

isocyanato-TEMPO with oligonucleotide IX, was considerably less stable showing a 

destabilization of 5.3 ˚C.[69] 

The spin-labeled oligonucleotides were subsequently analyzed by EPR spectroscopy. 

EPR data, first of all, confirmed successful attachment of the spin labels to the RNA 

oligonucleotides. Secondly, it was also a final proof that the spin labels were intact, otherwise 

no EPR signal would have been obtained. And thirdly, EPR data gave valuable information 

about the mobilities of the spin labels.[69] Figure 5.3 shows the EPR spectroscopic data for all 

the three labels 51, 52 and 45 in single strands as well as in duplexes. EPR spectra of all the 

labels were slightly broadened in single-stranded RNAs indicating reduced mobility due to 

slower tumbling in solution. In duplexes however, the EPR spectra of 51 and 52 were much 

broader as compared to that of the TEMPO-modified duplex. This was somewhat surprising 

because although the TEMPO is a flexible label, as mentioned before, the extent of broadening 

of 51 and 52 implied that the labels were almost fully immobile. Additionally, the data 

indicated that the isoindoline spin labels were excellent candidates for investigating structure 

and dynamics of nucleic acids by EPR spectroscopy. 
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Figure 5.3. EPR spectra of the spin-labeled oligonucleotides in phosphate buffer, recorded at 10 ˚C. 

The reduced mobility of the isoindoline spin labels 51 and 52, as judged by EPR 

analysis, was somewhat surprising because rotation along single bonds connecting either ends 

of the thiourea linker was anticipated to be possible which would have endowed some 

flexibility to the label. However, careful observation in the molecular model (Figure 5.4) 

yielded a possible explanation for the unexpected rigidity of the labels. The molecular model 

shows the sulfur atom in yellow, nestled comfortably between the oxygen atom of the 2′-

position of uridine and the oxygen belonging to the tetrahydrofuran ring of the following 

nucleotide towards the 3′-end (Figure 5.4 B and C). Due to the resulting snug fit, the sulfur 

appeared to be “locked” at this particular conformation. Although the spin label can exist as 

another rotamer which is obtained by rotating the single bond connecting the isoindoline and 

the thiourea by 180˚, rotation of this bond does not alter the position of the sulfur atom. 

Therefore, molecular modeling concluded and confirmed that the label is indeed fully 

immobile and the sulfur atom is responsible for endowing the extra rigidity. 
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Figure 5.4. Molecular models of the RNA duplex 51 (grey) shown in entirety (A) and as close-ups from two 

different dimensions (B) and (C). Conjugated spin label 51 has been shown in red except for the sulfur atom 

that has been colored yellow. 

5.2.1 Stability of the Spin Labels 51 and 52 in Reducing Environment 

The next step for us was to test the stability of the spin labels in reducing environments. This 

is because in-cell distance measurement by PELDOR is an important aspect of studying 

structure and dynamics of nucleic acids by EPR.[55,133,134] It was therefore, necessary to check 

the stabilities of the spin labels under cellular conditions, where several reducing agents are 

present. Ascorbic acid is a known cellular reducing agent and often used to evaluate the 

stability of nitroxides.[135-137] Therefore, to check the stability of the spin labels in RNA under 

reducing conditions, the spin-labeled RNAs were reacted with ascorbic acid in a phosphate 

buffer and the EPR signal decay was plotted as a function of time (Figure. 5.5). 
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Figure 5.5. Ascorbate reduction data for RNA duplexes labeled with spin labels 45 (circle), 51 (triangle) and 

52 (square) in 5 mM ascorbic acid, 10 mM phosphate, 100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0. Inset shows a 

longer time course (12 h) for duplex containing 52. 

All the three labels 51, 52 and 45, were tested for stability in RNA duplexes (Figure 5.5). 

It was evident that that isocyanato-TEMPO containing duplex was the least stable one under 

reducing conditions as the EPR signal decayed completely in less than 10 min. The duplex of 

the tetramethyl isoindoline-modified RNA X showed better stability as compared isocyanato-

TEMPO containing duplex because the EPR signal survived till 20 min and disintegrated to an 

equilibrium thereafter. The duplex for the tetraethyl isoindoline-modified RNA XI appeared 

to be highly resistant to reduction as its signal showed very little disintegration after 2 h. This 

prompted us to study this particular sample for longer duration and ca. 85% of the spin label 

was found to be intact even after 12 h.[69] Thus, we could conclude that the tetraethyl spin label 

52 is a highly promising candidate for performing in-cell distance measurement experiments 

using pulsed EPR techniques. 

Distance measurement between two paramagnetic centers or spin labels using pulsed 

EPR techniques such as PELDOR, is an advanced method to study structure and dynamics of 

biomolecules.[138,139] Since the tetraethyl isothiocyanate 52 proved to be highly resistant 

towards reduction, it was decided to use it to label RNA duplex samples and perform in-cell 
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distance measurement studies. PELDOR is also expected to give further information about the 

orientation of the spin labels. 

For this purpose, three duplex RNA samples (Table 5.1) were prepared for inter-spin 

distance measurements. Overhangs were introduced to prevent end-to-end stacking of 

duplexes. Distance measurement experiments on these samples are currently underway.  

Table 5.1. RNA duplexes prepared for in-cell PELDOR measurements. Nucleotides in blue indicate 

overhangs that were introduced to prevent end-to-end stacking of the duplexes, X represents uridine labeled 

post-synthetically with tetraethyl isothiocyanate 52. 

S. No. Sequence 
Modelled 

Distance (nm) 

XIII 
5′-A GCG AXG UUA UCU AGA UAA CAU CGC-3′ 

    3′-CGC UAC AAU AGA UCU AUU GXA GCG A-5′ 
4.7 

XIV 
    5′-GCG AXG UUA UCU AGA UAA CAU CGC A-3′ 

3′-A CGC UAC AAU AGA UCU AUU GXA GCG-5′ 
4.7 

XV 
5′-U GCG AXG UUA UCU AGA UAA CAU CGC-3′ 

    3′-CGC UAC AAU AGA UCU AUU GXA GCG U-5′ 
4.7 

5.3 Conclusion  

A new approach for post-synthetic spin labeling of 2′-amino groups in RNA was developed 

using aromatic isoindoline nitroxides having isothiocyanate functional groups.  The reactions 

were found to be swift with one of the labeling reactions reaching completion in less than 2 h. 

The nitroxides were well tolerated in RNA duplexes causing minimal destabilization. 

Moreover, EPR data of these duplexes showed that they were substantially immobile, thus 

making them excellent candidates for studying structure and dynamics of nucleic acids by 

pulsed EPR. Finally, the tetraethyl spin label 52 proved to be an exceptional candidate for in-

cell PELDOR distance measurements as it demonstrated considerable stability under 

reductive conditions of ascorbic acid after its incorporation into RNA. 
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6 Conclusions 

In this PhD thesis, development of two new approaches of spin-labeling has been described. 

One of the new methods is based on an aptamer-ligand binding approach that has been 

utilized in the context of noncovalent spin-labeling for the first time. Moreover, this method is 

the first example of spin-labeling that enables one to label unmodified nucleic acids. This 

approach is based on the adaptive binding of the malachite green aptamer that is known to 

bind to the dyestuffs malachite green and tetramethyl rosamine. In our study, these ligands 

have been modified by attaching nitroxide spin labels to them and it was observed that the 

aptamer was able to bind completely one of the ligands at room temperature which is the first 

example of noncovalent spin-labeling at ambient conditions. Further, this noncovalent spin-

labeling approach was used for determination of a distance between a spin-labeled ligand and 

a spin label that was covalently attached to the aptamer in collaboration with Prof. Thomas 

Prisner’s research laboratory at the University of Frankfurt. In future, this method can be 

utilized for spin-labeling of long RNAs that are difficult to synthesize chemically and are 

mostly prepared by enzymatic methods. 

In a related study of noncovalent spin-labeling that was undertaken with our 

collaborators in Dr. Kye-Simeon Masters’ research group based at the Queensland University 

of Technology in Australia, a new class of benzimidazole-based isoindoline nitroxides was 

evaluated as spin labels for abasic sites in duplex DNA and RNA. In this study, five such first-

in-class benzimidazole-isoindoline hybrids were screened using a combinatorial chemistry-

based approach developed in-house, out of which, binding efficiency of two spin labels were 

analyzed in detail. Additionally, the reduced versions of these nitroxides can be of use as 

(pro)fluorescent probes because nitroxides are known to quench fluorescence through an 

intermolecular electron-exchange interaction between their ground-state and the excited-state 

fluorophore. 

Another new method of spin-labeling was developed using a post-synthetic approach, 

where 2′-amino groups in RNA were reacted with two aromatic isoindoline nitroxides that 

were modified with isothiocyanate functional groups, thus forming a thiourea linkage with 

the RNA. This was an in-house collaborative project and the spin labels were prepared by Dr. 

Anil P. Jagtap. It was observed that the new spin labels caused minimum destabilization of the 
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RNA duplexes as judged by melting temperature and CD experiments. Also, these spin labels 

were found to be very rigid, as investigated by CW-EPR spectroscopy, thus making them 

promising candidates for distance measurement studies using pulsed EPR techniques like 

PELDOR. Additionally, the tetraethyl-isoindoline derivative was found to be highly resistant 

towards reduction in presence of ascorbic acid. This particular property of the spin label is 

expected to be very important as far as in-cell pulsed EPR-based distance measurements 

studies are concerned, as traditional nitroxides are susceptible towards rapid reduction in the 

presence of reducing agents in cells. 
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ABSTRACT: We report the synthesis of a new class of molecules which are hybrids of long-lived tetramethylisoindolinoxyl
(TMIO) radicals and the pyrido[1,2-a]benzimidazole (PyrImid) scaffold. These compounds represent a new lead for
noncovalently binding nucleic acid probes, as they interact with nucleic acids with previously unreported C (DNA) and C/U
(RNA) complementarity, which can be detected by electron paramagnetic resonance (EPR) techniques. They also have
promising properties for fluorimetric analysis, as their fluorescent spin-quenched derivatives exhibit a significant Stokes shift.

Research has established nitroxides1 as the most prominent
class of bench-stable free radicals,2 and they have therefore

been adapted to a diverse array of applications.3 Ongoing
efforts have capitalized upon opportunities for the application
of structurally diverse nitroxide compounds as antioxidants
(free-radical scavengers of superoxides),4 stabilizers in the
materials industry,5 and both chemical (radical clocks6) and
biological (cellular redox7) probes. Recent examples of these
include biologically active agents, including roles that can be
considered as both metabolically “active” (e.g., chemo-
therapeutic antioxidant8) and “passive” (e.g., electron para-
magnetic resonance probes9). A prime example of the latter is
the use of nitroxides as site-directed spin labels in the analysis
of the structure and dynamics of nucleic acids,10 thereby
providing information about their function.11 This involves
EPR studies upon a probe molecule bound to RNA or DNA. As
the spin label becomes more constrained (by binding to a
nucleotide), the EPR spectrum becomes increasingly aniso-
tropic,12,11b which gives information about local structure and
orientations in distance measurements.5 Binding is also
flanking-sequence dependent, providing information about
neighboring nucleotides.13

Introduction of the requisite spin label is usually achieved by
either covalent incorporation of a nitroxide-bearing nucleobase
analogue into the nucleic acid sequence14 or by postsynthetic
covalent linkage of the spin label to a functionality of the
nucleic acid.15 More recently, Sigurdsson and co-workers have
pioneered noncovalent binding of c ̧ (“c-spin”), which is the
nucleobase of the nucleoside Ç (Figure 1).16 This site-directed

spin label is a nucleobase isostere of cytidine. It forms stable
Watson−Crick pairing with guanine residues and π−π
interactions with adjacent base pairs, enabling it to be added
to a variety of preformed nucleic acid polymers. A contrasting
method for analysis of nucleic acids is with the use of
fluorescent noncovalent binders for spectrophotometric titra-
tion. In a recent example, Ihmels and co-workers have
described the application of quinizolinium scaffolds such as
“F” as new probes for abasic DNA.17 Despite these recent
advances in nucleic acid probe technology, noncovalently
binding spin labels with complementarity for cytidine (C),
thymine (T), adenine (A), and uracil (U) await discovery.
A compound class that may provide an opportunity to

achieve this goal are pyrido[1,2-a]benzimadoles, or “PyrImids”.

Received: July 20, 2014
Published: October 28, 2014

Figure 1. Nitroxide c ̧ (EPR detection),16 quinizolinium F
(spectrophotometric titration),17 and DNA intercalator G (anti-
cancer).21
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These interesting imidazole-containing heterocycles are known
to possess biological activities, including antipyretic,18 anti-
biotic,19 and anticancer effects.20 The latter property arises
through the isosterism of PyrImid derivatives such as
benzimidazo[1,2-a]quinazoline, G, with purines, which enables
their nucleic acid intercalation. Hranjec, Kralj, Zamola, and co-
workers found21 that derivatives such as G (Figure 1) arrest
cellular mitosis through their interaction with topoisomerase II,
thereby inhibiting growth of human colorectal and other cancer
cells. PyrImids are furthermore highly fluorescent22 and possess
a remarkable Stokes shift.
Isoindolinoxyl radicals based upon “TMIO”, or 1,1,3,3-

tetramethylisoindolin-2-oxyl, are one of the most rigid and
stable nitroxide classes commonly prepared. Importantly, these
nitroxides have a moiety that strongly suppresses fluorescence23

when in conjugation with a fluorophore; the fluorescence can
be (re)generated by “spin-deletion” via one of several methods.
It seemed that the marriage of the key features of both PyrImid
“A” and TMIO “B” cores may result from simply super-
imposing the C6 aryl ring of the core in each to create a hybrid
molecular probe, “C” (Scheme 1). It was hypothesized that the

probe would retain the features of each of the individual
progenitor compounds: the (pro)fluorescence, notable Stokes
shift, nucleobase isosterism/intercalation, and detection by
electron paramagnetic resonance (EPR). To facilitate the
development of this project, direct and modular methods for
the synthesis of the “PyrImid” core via C−H fuctionalization
have been developed by the research groups of Zhu24 and
Maes.25

The synthesis of an array of π-extended and rigid nitroxides
may be readily achieved through the application of Buchwald−
Hartwig coupling to form N-arylamidines26 and copper-
catalyzed C−H amination to cyclize the subsequent methyl-
protected TMIO derivatives; these has recently benefitted from
the use of a methoxyamine protecting group strategy.27

Beginning from known TMIO derivatives, the methoxyamines
123 and 327 (Scheme 2) can be generated in high yields via
Fenton chemistry. Subsequent coupling of either 2-chloropyr-
idine (with 1) or 2-aminoquinoline (with 3) can be achieved
through Buchwald−Hartwig amination under the conditions of
Maes and co-workers26b,c to yield amidines 2 and 4 in yields
which varied depending upon the substrates (90−16%, with 2-
chloroquinoline failing to deliver 4).
Cyclizations of N-aryl-N-pyridylamine 2 and N-aryl-N-

quinylamine 4 were performed with conditions developed by

Maes and co-workers.25 Catalytic amounts of cupric acetate
monohydrate and a fluorinated benzoic acid ligand, 2,3,4,5,6-
pentafluorobenzoic acid (PFBA, Scheme 2), were applied to the
amidines in DMSO under an atmosphere of oxygen to effect
Cu-mediated C−H amination/oxidative cyclization to the
aromatic products 5 and 6, which were isolated in workable
yields (19−43%) following purification. The existing procedure
was notably improved by the use of diethyl ether as eluent to
quickly deliver the TMIOMe−PyrImid derivative as a sharp
band (cf. NH3 in methanol/CH2Cl2 in the reported method).
The subsequent m-CPBA deprotection, which proceeds via N-
oxidation and Cope-like elimination,27 delivered the spin-
labeled targets in high yields (89−95%).
In line with previously characterized PyrImid derivatives,

TMIOMe−Pyrimid hybrid 5 was discovered to produce a
significant Stokes shift (165 nm, Figure 2). In the case of π-

extended 6, this was even greater (179 nm). Alkoxyamines 5
and 6, once deprotected to the nitroxide radicals 7 and 8,
exhibited a decreased fluorescence, particularly in the case of 8
(see the Supporting Information). These properties provide
supporting evidence for the potential application of compounds
related to 7 and 8 as a profluorescent nitroxide (PFN) probes.
Structural confirmation and crystal packing analysis for the

Scheme 1. Fusion of TMIO and PyrImid

Scheme 2. Synthesis of PyrImid-TMIO Hybrids 7 and 8

Figure 2. UV (solid line) and fluorescence (dashed line) spectra for
Compounds 5 and 6.
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novel structures of 5 and 6 were achieved by X-ray
diffractometry (see the Supporting Information).
Using EPR spectroscopy, nitroxide radicals 7 and 8 were

evaluated as spin labels for noncovalent binding (see the
Supporting Information) to an abasic site in DNA and RNA
duplexes at temperatures ranging from 0 to −30 °C (Figure 3

and Figures SI1−SI4, Supporting Information). A spin label
bound to a nucleic acid duplex moves slower and results in a
wider EPR spectrum that reflects a shorter rotational
correlation time.16b Prior to recording EPR data, it was
confirmed by thermal denaturation experiments and circular
dichroism (CD) that the DNA and RNA oligonucleotides were
in duplex form under the conditions used for ligand binding
(see the Supporting Information). The EPR data revealed
partial binding of nitroxide 7 to DNA as judged by the
emergence of a slow moving component at low temperatures
(denoted by an arrow in Figure 3b), which was also observed in
the control experiment, indicating some nonspecific binding.
However, there was slight, but noticeable, specific binding (ca.
10%) observed at −30 °C when G or C was the orphan base
opposite to the abasic site. More substantial binding was
observed when 7 was incubated with an RNA duplex
containing an abasic site, in particular opposite C (ca. 40%)
and U (ca. 25%). In addition, the binding was clearly specific
since the unmodified RNA duplex showed no indication of
binding to nitroxide 7 (Figure 3c).
In contrast to 7, the EPR data for nitroxide 8 revealed

significant and substantially increased binding to both DNA
and RNA, presumably due to the extra aromatic ring that
facilitates additional stacking interactions. For DNA, the highest
affinity was observed for an abasic site complementary to C or
T, where nearly all of the label was bound at −30 °C; however,
some nonspecific binding was also observed (Figure 3b).
Although the extra aromatic character of 8 led to better
binding, it also showed signs of aggregation in the EPR spectra
(denoted by a circle in Figure 3c), especially for the sequences
that had limited affinity for the spin label. The EPR data of

nitroxide 8 in the presence of RNA duplexes surprisingly
resembled those for DNA (Figure 3c). However, close
observation revealed less RNA binding, compared with DNA,
when the abasic site was placed opposite to A and slightly more
binding to C, the latter of which showed complete binding.
In summary, we have developed an expedient route for the

synthesis of a promising new class of hybrid PyrImid−TMIO
probes while retaining the useful properties of each of the
parent compounds and may provide a mechanism for
fluorescence/EPR detection. Nitroxide 8 provided complete
binding to C as an orphan base in an abasic DNA or RNA
duplex, previously inaccessible, target site. Further structural
refinement of this exciting new class of probes in terms of
nucleobase specificity, optical properties, and solubility under
biological conditions is in progress, and the results will be
reported in due course.
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Supporting Information 
 

General Experimental 

All chemicals and solvents were used as commercially supplied without further purification, unless 
otherwise noted. 2-Methoxy-1,1,3,3-tetramethylisoindolin-2-amine (1) was synthesised according to 
the procedure of Bottle and co-workers,i likewise 5-bromo-2-methoxy-1,1,3,3-
tetramethylisoindoline (3) was prepared by the method of Bottle and co-workers .ii 2-Chloropyridine 
(99%), 2-chloroquinoline (99%), cupric acetate monohydrate (≥99%), palladium diacetate (98%), (±)-
2,2'-bis(diphenylphosphino)-1,1'-binaphthyl [(±)-BINAP] (97%) and pentafluorobenzoic acid (99%) 
were supplied by Aldrich. Toluene (analytical reagent grade, obtained from Chemsupply Australia) 
was dried over freshly-pressed sodium wire prior to use. Both anhydrous powdered cesium 
carbonate (99%) and dimethylsulfoxide (Reagentplus ≥99.5% purity) were obtained from Aldrich. 
Buchwald-Hartwig coupling and Cu-catalysed C–H amination were adapted from the methodology of 
Maes and co-workers.iii Column chromatography was performed on Davisil (LC60A, 40-63um Grace). 
NMR data were recorded on a Varian Infinity-Plus 400 spectrometer (1H at 400 MHz; 13C at 100 
MHz), and resonances are reported in terms of chemical shift (δ) in parts per million (ppm) 
referenced to the solvent peak; coupling constants (J) are given in Hertz (Hz) and the number of 
protons per signal as nH. Splitting is reported as br. = broad, s = singlet, d = doublet, dd = doublet of 
doublets and m = multiplet. 

 

Preparation and Characterisation of Compounds 

N O
Me

H2N
 

2-Methoxy-1,1,3,3-tetramethylisoindolin-5-amine (1) 

Prepared by the method of Bottle, Belfield and co-workers.i 

1H NMR (400 MHz, CDCl3): δ = 6.88 (d, J = 7.83 Hz, 1H), 6.56 (dd, J = 8.22, 1.96 Hz, 1H), 6.42 (d, J = 
1.96 Hz, 1H), 3.77 (s, 3H), 3.60 (br. s, 2H), 1.39 (br. s, 12H); 13C NMR (101 MHz , CDCl3): 146.3, 145.2, 



135.8, 122.2, 114.7, 108.4, 67.1, 66.7, 65.4 (isoindoline methyl peaks not visible due to rapid ring 
flipping on the NMR time-scale); HRMS (+ESI): Calculated (C13H21N2O+): 221.1654; Found: 221.1696  

N O
Me

N
H

N

 

2-Methoxy-1,1,3,3-tetramethyl-N-(pyridin-2-yl)isoindolin-5-amine (2) 

To a 5 mL microwave vial (Biotage) were added palladium acetate (3 mol%), (±)-2,2'-
bis(diphenylphosphino)-1,1'-binaphthyl [(±)-BINAP] (5 mol%) and toluene (anhydrous, 2.0 mL, 0.10 
M relative to the limiting reagent), and the resulting mixture then stirred under a shower of argon 
for 10 minutes. After this time, 2-methoxy-1,1,3,3-tetramethylisoindolin-5-amine, 1,(limiting 
reagent, 44.0 mg, 0.20 mmol) and 2-chloropyridine (45.0 mg, 0.40 mmol) were added alongside 
cesium carbonate (195 mg, 0.60 mmol, 3.00 eq.). The reaction vial was capped under argon and 
heated to 115 °C with vigorous stirring for 48 hours. After this time the crude reaction mixture was 
diluted with CH2Cl2, silica gel added, the volatiles removed by rotary evaporation under diaphragm 
pump vacuum (to 30 MBar) and the amidine compound was isolated by column chromatography on 
silica gel with ethyl acetate/hexanes (1:9, 1:4, then 1:1), which gave the title compound 2 as a beige 
wax; 53.3 mg, 0.18 mmol, 90% yield. 

1H NMR (400 MHz, CDCl3):  δ = 8.18 (d, J = 3.91 Hz, 1H) 7.40–7.54 (m, 1H) 7.18 (dd, J = 7.83, 1.57 Hz, 
1H) 6.99–7.08 (m, 2H) 6.83 (d, J = 8.22 Hz, 1H) 6.65–6.78 (m, 2H) 3.72–3.86 (m, 3H) 1.44 (br. s, 12 H); 
13C NMR (101 MHz , CDCl3): δ = 156.4, 148.4, 146.4, 140.2, 139.5, 137.7, 122.3, 120.4, 114.7, 114.2, 
107.8, 67.1, 66.9, 65.5. (isoindoline methyl peaks not visible due to rapid ring flipping on the NMR 
time-scale). HRMS (+ESI): Calculated (C18H25N3O+): 298.1919; Found: 298.1969. 

N O
Me

Br
 

5-Bromo-2-methoxy-1,1,3,3-tetramethylisoindoline (3) 

Prepared by the method of Bottle and co-workers.ii 

1H NMR (400 MHz, CDCl3): δ = 7.35 (dd, J = 8.05, 1.87 Hz, 1H), 7.23 (d, J = 1.84 Hz, 1H), 6.98 (d, J = 
8.05 Hz, 1H), 3.78 (s, 3H), 1.42 (br. s, 12H); HRMS (+ESI): Calculated (C13H19NBrO+): 284.0650; Found: 
284.0697. 

 

N O
Me

N
H

N

 

N-(2-Methoxy-1,1,3,3-tetramethylisoindolin-5-yl)quinolin-2-amine (4) 

To a 5 mL microwave vial (Biotage) were added palladium acetate (7.5 mg, 0.033 mmol, 3 mol%), (±)-
2,2'-bis(diphenylphosphino)-1,1'-binaphthyl [(±)-BINAP] (28.3 mg,0.045 mmol, 4 mol%) and toluene 
(anhydrous, 11.0 mL, 0.10 M relative to the limiting reagent), and the resulting mixture then stirred 
under a shower of argon for 10 minutes. After this time 5-bromo-2-methoxy-1,1,3,3-



tetramethylisoindoline, 3, (limiting reagent, 320 mg, 1.13 mmol) and 2-aminoquinoline (195.0 mg, 
1.35 mmol) were added alongside cesium carbonate (1.10 g, 3.38 mmol, 3.00 eq.). The reaction vial 
was capped under argon and heated to 115 °C with vigorous stirring for 48 hours. After this time the 
crude reaction mixture was diluted with CH2Cl2, silica gel added, the volatiles removed by rotary 
evaporation under diaphragm pump vacuum (to 30 MBar) and the amidine compound was isolated 
by column chromatography eluting with CH2Cl2, then gradient methanol/CH2Cl2 (1:199, 1:99, 1:49, 
1:32 and 1:16), which gave the title compound 4 as a beige wax; 61.0 mg, 0.18 mmol, 16% yield. 

1H NMR (400 MHz, CDCl3):  δ = 7.85 (d, J = 9.00 Hz, 1 H), 7.69 (dd, J = 7.83 Hz, 1 H), 7.59 (d, J = 7.83, 
1H), 7.53 (t, J =7.63 Hz, 1 H), 7.32 (d, J =7.83 Hz, 1 H), 7.18 - 7.29 (m, 2 H), 7.04 (d, J = 7.83 Hz, 1 H), 
6.92 (d, J = 9.00 Hz, 1 H), 3.76 (s, 3 H), 1.42 (br. s, 12 H); 13C NMR (101 MHz , CDCl3): δ = 154.7, 147.6, 
146.3, 140.4, 139.2, 137.8, 129.8, 127.4, 126.5, 124.1, 123.0, 122.2, 120.4, 114.4, 111.5, 67.1, 66.9, 
65.5  (isoindoline methyl peaks not visible due to rapid ring flipping on the NMR time-scale). HRMS 
(+ESI): Calculated (C22H26N3O+): 348.2076; Found: 348.2264. 

 

N O
MeN

N
 

2-Methoxy-1,1,3,3-tetramethyl-2,3,4a,10a-tetrahydro-1H-pyrido[1',2':1,2]imidazo[4,5-f]isoindole 
(5) 

2-Methoxy-1,1,3,3-tetramethyl-N-(pyridin-2-yl)isoindolin-5-amine, 2, (67.5 mg, 0.25 mmol), catalytic 
cupric acetate monohydrate (6.8 mg, 0.034 mmol, 15 mol%), 2,3,4,5,6-pentafluorobenzoic acid (7.2 
mg, 0.034 mmol, 15 mol%) and DMSO (1.00 mL) were added to a 10 mL microwave vial. The 
resulting reaction mixture was stirred under a flow of oxygen for 5 minutes, during which time all 
the copper salt dissolved, prior to sealing under oxygen with a pressure cap. The reaction vessel was 
then supplied with additional oxygen balloon by a needle through the cap septum and heated by a 
temperature-calibrated aluminium hotplate at 122 °C for 24 h. After this time, the vial was unsealed 
and the reaction mixture taken up in ethyl acetate (10 mL), then washed with concentrated 
NH4OH(aq)/water (1:9, 50 mL). The organic phase was then washed with H2O (2 x 10 mL), dried over 
Na2SO4 and the volatiles removed by rotary evaporation under diaphragm pump vacuum (to 30 
MBar). The resulting residue was isolated by column chromatography on silica gel eluting with 
diethyl ether - the products location on the column can be visualised in a dark fume-hood using a UV 
light wand (336 nm) - to deliver the title compound 5 as a brown wax, 31.9 mg, 0.108 mmol, 43% 
yield. 

1H NMR (400 MHz, CDCl3):  δ = 8.44 (d, J = 7.0 Hz, 1 H), 7.66 (d, J = 9.4 Hz, 1 H), 7.62 (s, 1 H), 7.59 (s, 
1 H), 7.39 (ddd, J = 0.8, 5.9, 7.8 Hz, 1 H), 6.83 (t, J = 6.7 Hz, 1 H), 3.83 (s, 3 H), 1.55 (br. s, 12 H); 13C 
NMR (101 MHz , CDCl3): δ = 148.4, 144.3, 144.2, 139.7, 128.8, 128.2, 124.9, 117.9, 112.3, 110.1, 
103.2, 67.0, 66.9, 65.5 (isoindoline methyl peaks not visible due to rapid ring flipping on the NMR 
time-scale). HRMS (+ESI): Calculated (C18H23N3O+): 296.1763; Found: 296.1790. 

 

 

 



N O
MeN

N
 

10-Methoxy-9,9,11,11-tetramethyl-10,11-dihydro-9H-isoindolo[5',6':4,5]imidazo[1,2-a]quinolone 
(6) 

N-(2-Methoxy-1,1,3,3-tetramethylisoindolin-5-yl)quinolin-2-amine, 4, (45.0 mg, 0.13 mmol), catalytic 
cupric acetate monohydrate (6.5 mg, 0.033 mmol, 25 mol%) and 2,3,4,5,6-pentafluorobenzoic acid 
(6.9 mg, 0.033 mmol, 15 mol%) and DMSO (2.00 mL) were added to a 10 mL microwave vial. The 
resulting reaction mixture was stirred under a flow of oxygen for 5 minutes, during which time all 
the copper salt dissolved, prior to sealing under oxygen with a pressure cap. The reaction vessel was 
then supplied with additional oxygen balloon by a needle through the cap septum and heated by a 
temperature-calibrated aluminium hotplate at 145 °C for 36 h. After this time, the vial was unsealed 
and the reaction mixture taken up in ethyl acetate (10 mL), then washed with concentrated 
NH4OH(aq)/water (1:9, 50 mL). The organic phase was then washed with H2O (2 x 10 mL), dried over 
Na2SO4 and the volatiles removed by rotary evaporation under diaphragm pump vacuum (to 30 
MBar). The resulting residue was isolated by column chromatography on silica gel eluting with 
diethyl ether /hexanes (3:2)- the products location on the column can be visualised in a dark fume-
hood using a UV light wand (336 nm) - to deliver the title compound 6 as a brown oil which formed a 
wax upon standing, 8.5 mg, 0.025 mmol, 19% yield. 

1H NMR (400 MHz, CDCl3):  δ = 8.58 (d, J = 8.61 Hz, 1H), 8.06 (s, 1 H), 7.85 (d, J = 7.83 Hz, 1 H), 7.80 
(t, J = 7.83 Hz, 1 H), 7.71 (s, 1 H), 7.67 (d, J = 8.0 Hz, 1 H), 7.62 (d, J = 8.0 Hz, 1 H), 7.50 (t, J = 7.43 Hz, 
1 H), 3.85 (s, 3 H), 1.34 - 1.91 (m, 12 H); 13C NMR (101 MHz , CDCl3) δ = 148.3, 144.7, 142.7, 141.2, 
135.7, 130.7, 130.6, 129.6, 124.1, 123.5, 117.9, 115.2, 113.1, 106.8, 67.3, 67.0, 65.6 (isoindoline 
methyl peaks not visible due to rapid ring flipping on the NMR time-scale). HRMS (+ESI): Calculated 
(C22H24N3O+): 346.1919; Found: 346.1957. 

 

N
N

N
O

 

10,11-Dihydro-[5',6':4,5]imidazo[1,2-a]quinolon-9H-9,9,11,11-tetramethylisoindolin-2-yloxyl (7) 

To a stirred solution of 2-methoxy-1,1,3,3-tetramethyl-2,3,4a,10a-tetrahydro-1H-
pyrido[1',2':1,2]imidazo[4,5-f]isoindole, 5, (4.9 mg, 0.16 mmol) in CH2Cl2 (1.00 mL) was added meta-
chloroperbenzoic acid (m-CPBA, 77% by weight, 5.0 mg, 0.050 mmol, 3.0 eq.). The reaction was 
monitored by TLC and a second portion of m-CPBA was added after 0.5 h. After 1 h, the reaction 
mixture was diluted with CH2Cl2 (10 mL) and washed with H2O (2 x 5 mL), dried over Na2SO4 and the 
volatiles removed by rotary evaporation under diaphragm pump vacuum (to 30 MBar). There were 
several components in the reaction mixture (as determined by TLC). The product was isolated by 
planar chromatography on silica with MeOH/CH2Cl2 (1:8) to furnish the product as a pale-yellow 
powder; 1.8 mg, 6.4 x 10-3 mmol, 40% yield. HRMS (+ESI): Calculated (C17H19N3O+): 281.1523; Found: 
281.1633. 



N O
N

N
 

10,11-Dihydro-[5',6':4,5]imidazo[1,2-a]quinolon-9H-9,9,11,11-tetramethylisoindolin-2-yloxyl (8) 

[[Note-care was taken with stoichiometry and reaction duration in this step in order to prevent 
formation of aromatic N-oxides]] To a stirred solution of 10-methoxy-9,9,11,11-tetramethyl-10,11-
dihydro-9H-isoindolo[5',6':4,5]imidazo[1,2-a]quinolone, 6, (2.7 mg, 7.8 x 10-3 mmol) in CH2Cl2 
was added meta-chloroperbenzoic acid (m-CPBA, 77% by weight, 1.8 mg, 7.8 x 10-3 mmol, 
1.00 eq.). The reaction was monitored by TLC and two more equally-sized portions of m-
CPBA were added after 6 h and 12 h. After 24 h, the reaction mixture was passed through a 
short silica plug with ethyl acetate/hexane (3:2) and the volatiles removed by rotary 
evaporation under diaphragm pump vacuum (to 30 MBar) to furnish the title compound 8 
as a pale-yellow crystalline solid; 2.3 mg, 7.0 x 10-3 mmol, 89% yield. HRMS (+ESI): Calculated 
(C21H21N3O+): 331.1679; Found: 331.1733. 
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UV/Vis and Fluorescence Spectra 

Spectrofluorimetry was undertaken with a Varian Cary Eclipse fluorescence spectrophotometer. 
UV/Vis spectroscopy was performed with a Varian Cary 50 spectrophotometer. Samples were 
prepared at concentrations of 1.0 µM in acetonitrile (UV Spec Grade). 

 

Colour-coded lines for each methoxylamine compounds 5 and 6 show the UV absorbance (solid line, 
Figure SI1) and the fluorescence (dashed line). Excitation was performed at the corresponding 
wavelength of maximum measured absorbance. 

 

 

Figure SI1: Compounds 5 and 6 
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Colour-coded lines for each nitroxyl radicals 7 and 8 show the UV absorbance (solid line, Figure SI2) 
and the fluorescence (dashed line). Excitation was performed at the corresponding wavelength of 
maximum measured absorbance. (A possible cause for the decreased fluorescence of 8 is that 
aggregation is occurring (as seen in EPR studies, possibly via p-stacking effects related of the kind 
observed in the solid state, see below). 

 

 
Figure SI2: Compounds 7 and 8 
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DNA/RNA synthesis and purification 

All DNA and RNA oligonucleotides were synthesized in-house on an automated ASM800 DNA 
synthesizer (BIOSSET Ltd.) using phosphoramidite chemistry. All phosphoramidites and CPG columns 
were purchased from ChemGenes Corp., USA. Reagents and solvents were purchased from Sigma-
Aldrich Co. Acetonitrile for oligomer synthesis was purchased from Tedia®, USA. Syntheses were 
performed on 1 µmol scale on 1000 Å CPG columns. The DNAs were deprotected using a 
concentrated aqueous ammonia solution at 55 ℃ for 8 h. For RNAs, general deprotection was done 
using a 1:1 solution of methylamine and ammonia heated for 40 minutes at 65 ℃ whereas TBDMS 
deprotection was performed using triethylamine trihydrofluoride, heated at 55 ℃ for 90 minutes, 
followed by precipitation in 1-butanol. All oligonucleotides were subsequently purified by 20 % 
denaturing polyacrylamide gel electrophoresis (DPAGE) and extracted from the gel slices using 
“crush and soak” with Tris buffer containing 250 mM NaCl, 10 mM Tris, 1 mM Na2EDTA, pH 7.5. The 
solutions were filtered through 0.45 µm, 25 mm diameter GD/X syringe filters (Whatman®, USA) and 
were subsequently desalted using Sep-Pak cartridges (Waters, USA), following instructions provided 
by the manufacturer. Dried oligonucleotides were dissolved in sterilized and de-ionised water (200 
µL for each oligonucleotide). Concentrations of the oligonucleotides were determined by UV 
absorbance at 260 nm using a Perkin Elmer™ Inc. Lambda 25 UV/Vis spectrometer.  

 

Protocol for Evaluating Binding of TMIO-PyrImid Hybrids with Abasic Nucleic 
Acids by EPR 

Stock solutions of TMIO-PyrImids 7 and 8 were prepared in absolute ethanol. 1 nmol of TMIO-
PyrImid 7 or 8, 2 nmol of abasic DNA/RNA and 2.4 nmol of the desired complementary strand were 
taken from their respective stock solutions, mixed and concentrated to dryness on a Thermo 
Scientific™ Speedvac™. The residue was dissolved in phosphate buffer (10 µL) [10 mM Na2HPO4, 100 
mM NaCl, 0.1 mM Na2EDTA, pH 7.0] and the strands were annealed in an MJ Research PTC 200 
Thermal Cycler using the following protocol: 90 ℃ for 2 mins, 60 ℃ for 5 mins, 50 ℃ for 5 mins 
followed by 40 ℃ for 5 mins and 22 ℃ for 15 mins. Prior to EPR measurements, the solvent was 
evaporated on the Speedvac and the residue dissolved in a solution of 2% DMSO, 30% ethylene 
glycol and 68% sterile water (10 µL) yielding a final TMIO-PyrImid concentration of 100 µM. This 
solution was transferred into a quartz EPR capillary tube (BLAUBRAND®-intraMARK) and EPR 
measurements were performed over a range of temperatures from 0 ℃ to -30 ℃ with intervals of 
10 ℃ on an X-band EPR spectrometer (Miniscope MS 200, Magnettech, Germany) with 100 kHz 
modulation frequency, 1.0 G modulation amplitude and 2.0 mW microwave power and using 50 
to 60 scans for each sample. The temperature was regulated by a Magnettech temperature 
controller M01. Oligonucleotide sequences are shown in Figure 3a and Figures SI1-SI4. 

 

Duplex stability  
 
To ascertain the stability of DNA/RNA duplexes, thermal denaturation curves of select 
oligonucleotides were determined using a Perkin Elmer™ PTP-1 and PCB 150 Water Peltier System. 



DNA/RNA samples (3.0 nmol of each strand) were dissolved in phosphate buffer (100 μL) (10 mM 
phosphate, 100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0), annealed using the following protocol: 90 ℃ 
for 2 mins, 60 ℃ for 5 mins, 50 ℃ for 5 mins, 40 ℃ for 5 mins and 22 ℃ for 15 mins. Samples that 
were prepared in this manner and to be measured in 2% DMSO and 30% ethylene glycol were dried 
on a Speedvac and the aforementioned solution was then added. Prior to recording TM data, the 
samples were diluted to 1.0 mL with the desired solvent and degassed using argon. The samples 
were heated up from 10 °C to 90 °C (1.0 °C/min) while recording the absorbance at 260 nm.  

Melting temperatures (TMs) of the RNA duplexes  I (abasic) and II (unmodified) (Table SI1)in aqueous 
phosphate buffer showed a difference in TMs of ca. 20 ℃, indicating that introduction of an abasic 
site in an RNA duplex substantially destabilizes the duplex. When 2% DMSO and 30% ethylene glycol 
were used, RNA duplexes I and II showed a drop in TMs of ca. 11-12 ℃. However, despite the 
destabilization caused by the abasic site and the organic cosolvent, the results clearly demonstrate 
that the RNA oligonucleotides exist as duplexes in the ligand binding experiments. 

Duplex RNA sequence Buffered solution* TM 

I 5'-GAC CUC G_A UCG UG 
3’-CUG GAG CCU AGC AC 

H2O 52 ℃ 
2% DMSO + 30% ethylene glycol 41 ℃ 

II 5'-GAC CUC GCA UCG UG 
3’-CUG GAG CGU AGC AC 

H2O 73 ℃ 
2% DMSO + 30% ethylene glycol 61 ℃ 

                *10 mM phosphate, 100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0; RNA concentration 3 µM. 
Table SI1: Melting temperatures (TMs) of RNA duplexes. ‘_’ denotes an abasic site. 

 

Table SI2 shows the melting temperatures (TMs) of the DNA duplexes, which are ca. 10 ℃ lower than 
for the RNA duplexes, as expected. In aqueous phosphate buffer, duplex III (abasic) showed lower TM 

of ca. 20 ℃ than duplex IV (unmodified), echoing the trend observed with RNA, where introduction 
of an abasic site lowered the TM of the duplexes. When 2% DMSO and 30% ethylene glycol were 
used, DNA duplex III and IV caused a further decrease in TMs of ca. 12-14 ℃, as observed with the 
RNA duplexes, indicating that including the organic cosolvents destabilized the RNA duplexes. 
However, all results indicate that the DNA oligonucleotides exist as duplexes under the conditions 
used for evaluation of ligand binding. 

Duplex DNA Sequence Buffered solution* Spin label TM 

III 5'-GAC CTC G_A TCG TG 
3’-CTG GAG CCT AGC AC 

H2O  - 43 ℃ 
2 % DMSO + 30 % ethylene glycol 31 ℃ 

III 5'-GAC CTC G_A TCG TG 
3’-CTG GAG CCT AGC AC 2 % DMSO + 30 % ethylene glycol Nitroxide 7 31 ℃ 

Nitroxide 8 31 ℃ 

IV 5'-GAC CTC GCA TCG TG 
3’-CTG GAG CGT AGC AC 

H2O  - 63.5 ℃ 
2 % DMSO + 30 % ethylene glycol 49 ℃ 

              *10 mM phosphate, 100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0; DNA concentration 3 µM. 
Table SI2: Melting temperatures (TMs) of DNA duplexes. ‘_’ denotes an abasic site. 

 
In two separate experiments, TMIO-PyrImid 7 in one case and 8 in the other (3.0 nmol each) were 
added along with DNA duplex III in 2% DMSO and 30% ethylene glycol (EPR-binding conditions) to 
check whether introduction of a ligand capable of binding to an abasic site stabilized the duplex.1iv 
However, a TM of 31 ℃ was obtained in both cases, indicating no change in duplex stability, which 



was not unexpected because both TMIO-PyrImid 7 and 8 only displays noncovalent binding at much 
lower temperatures.  

To further confirm formation of duplexes in our EPR-binding conditions, circular dichroism (CD) 
spectra of DNA duplexes were recorded in a Jasco J-810 spectropolarimeter. DNA samples (3.0 nmol 
of each strand) were mixed, annealed and dried as per the protocol stated in the TM measurement 
section. Prior to recording CD spectra, the samples were dissolved in a 200 µL aqueous solution of 
2% DMSO, 30% ethylene glycol containing phosphate buffer ingredients yielding a concentration of 
15 µM for each strand. Cuvette with 1 mm path length was used for the CD measurements and data 
were recorded from 350 nm to 225 nm at 5 ℃ (Figure SI3).  

The spectra of DNA duplex III (abasic) displayed negative and positive molar ellipticities at ca. 245 
nm and 273 nm respectively whereas duplex IV (unmodified) showed negative and positive molar 
ellipticities at ca. 250 nm and 274 nm respectively; both in excellent agreement with the 
characteristic B-DNA duplex values,2v thus confirming formation of duplexes under the experimental 
conditions used to evaluate binding of 7 and 8 to an abasic site. 

 
Figure SI3: CD spectra of 14-mer DNA duplex III (red line) and IV (blue line) recorded at 5 ℃ in an 
aqueous solution containing 2% DMSO, 30% ethylene glycol, 10 mM phosphate, 100 mM NaCl and 
0.1 mM Na2EDTA at pH 7.0. 
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Figure SI4: EPR binding data of nitroxide 7 with 14-mer DNA duplex containing an abasic site. EPR 
spectra are plotted from left to right as a function of base opposite the abasic site (the orphan base) 
and done as a function of decreased temperatures. All spectra were phase corrected and aligned 
with respect to the central peak. 

 

 

 

 



 

Figure SI5: EPR binding data of nitroxide 7 with 14-mer RNA duplex containing an abasic site. EPR 
spectra are plotted from left to right as a function of base opposite the abasic site (the orphan base) 
and done as a function of decreased temperatures. All spectra were phase corrected and aligned 
with respect to the central peak. 

 



 

Figure SI6: EPR binding data of nitroxide 8 with 14-mer DNA duplex containing an abasic site. EPR 
spectra are plotted from left to right as a function of base opposite the abasic site (the orphan base) 
and done as a function of decreased temperatures. All spectra were phase corrected and aligned 
with respect to the central peak. 

 



 

 

Figure SI7: EPR binding data of nitroxide 8 with 14-mer RNA duplex containing an abasic site. EPR 
spectra are plotted from left to right as a function of base opposite the abasic site (the orphan base) 
and done as a function of decreased temperatures. All spectra were phase corrected and aligned 
with respect to the central peak. 

  



Crystallographic Data 1: Structure 

Data were collected for both compounds 5 and 6 at 173(2) K under the software control of CrysAlis 
CCDx on an Oxford Diffraction Gemini Ultra diffractometer using Mo Kα radiation generated from a 
sealed tube. Data reduction was performed using CrysAlis REDx. Multiscan empirical absorption 
corrections were applied using spherical harmonics, implemented in the SCALE3 ABSPACK scaling 
algorithm, within CrysAlis REDx, and subsequent computations were carried out using the WinGX-
32x graphical user interface. The structures were refined with SHELXL-97x. Full occupancy non-
hydrogen atoms were refined with anisotropic thermal parameters. C─H hydrogen atoms were 
included in idealized positions, and a riding model was used for their refinement.   

 

 

2-Methoxy-1,1,3,3-tetramethyl-2,3,4a,10a-tetrahydro-1H-pyrido[1',2':1,2]imidazo[4,5-f]isoindole 
(Compound 5) 

Formula C18H21N3O 

M = 295.38, monoclinic, space group P21/c (#14), a = 9.6129(5) Å, b = 12.3517(6) Å, c = 13.4019(6) Å, 
α = 90.00, β = 100.539(5), γ = 90.00°, V = 1564.44(13) Å3, Z = 4, crystal size 0.30 × 0.29 × 0.27 mm, 
colourless, habit block, temperature 173.00(2) K, λ(Mo-Kα) = 0.71073, µ(Mo-Kα) = 0.08 mm-1, 
T(Empirical)min,max = 0.889, 1.000, θ max = 28.72, θ min = 3.30, hkl range -12 to 11, -15 to 16, -17 to 17,  
N = 11015, Nind = 3670 (Rint = 0.019), Nobs = 3178 (I > 2σ(I)), residuals R1(F, 2σ) = 0.043, wR2(F2, all) = 
0.111, GoF(all) = 0.95, ∆ρmin,max = -0.20, 0.30 e Å-3. 



 

10-Methoxy-9,9,11,11-tetramethyl-10,11-dihydro-9H-isoindolo[5',6':4,5]imidazo[1,2-a]quinolone 
(Compound 6) 

Formula C22H23N3O 

M = 345.43, monoclinic, space group P21/c (#14), a = 15.0277(8) Å, b = 7.7067(4) Å, c = 16.0253(7) Å, 
α = 90.00, β = 104.035(5), γ = 90.00°, V = 1800.55(14) Å3, Z = 4, crystal size 0.44 × 0.14 × 0.03 mm, 
colourless, habit plate, temperature 173.00(2) K, λ(Mo-Kα) = 0.71073, µ(Mo-Kα) = 0.08 mm-1, 
T(Empirical)min,max = 0.959, 1.000, θ max = 28.93, θ min = 3.34, hkl range -18 to 19, -10 to 8, -10 to 21,  N 
= 13347, Nind = 4177 (Rint = 0.026), Nobs = 3367 (I > 2σ(I)), residuals R1(F, 2σ) = 0.045, wR2(F2, all) = 
0.105, GoF(all) = 1.02, ∆ρmin,max = -0.22, 0.25 e Å-3. 

  



Crystallographic Data 2: Packing 

The crystal packing of 5 consists only of hydrogen bonding between the ‘tetramethyl’ C─H hydrogens 
and the C6 ring of a neighbour molecule, whereas 6 has this same form of hydrogen bonding in 
addition to one form of π-stacking, offset face-to-face interaction. In both structures, the crystal 
packing shows that the methoxyamine groups are at opposite ends for each pair of molecule. The 
intermolecular distance between these moieties in 5 is shorter than in 6.  
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Site-directed spin labeling of 20-amino groups in
RNA with isoindoline nitroxides that are resistant
to reduction†

Subham Saha,‡ Anil P. Jagtap‡ and Snorri Th. Sigurdsson*

Two aromatic isothiocyanates, derived from isoindoline nitroxides,

were synthesized and selectively reacted with 20-amino groups in

RNA. The spin labels displayed limited mobility in RNA, making them

promising candidates for distance measurements by pulsed EPR.

After conjugation to RNA, a tetraethyl isoindoline derivative showed

significant stability under reducing conditions.

Electron paramagnetic resonance (EPR) spectroscopy is a biophysical
technique that is routinely applied for the study of the structure and
dynamics of nucleic acids in order to gain insights into their
mechanism of action.1 Structural information is usually derived
from distance measurements, in particular using pulsed techniques,
such as pulsed electron–electron double resonance (PELDOR),2 also
known as double electron-electron resonance (DEER). Information
about dynamics can be derived from line-shape analysis of
continuous wave (CW) EPR spectra,3 from the width of distance
distributions4 and by analysis of orientation-dependent PELDOR
measurements.1d,5

Most EPR studies of nucleic acids require incorporation of
paramagnetic reporter groups at specific sites, a technique
referred to as site-directed spin labeling (SDSL).1a,e,6 Aminoxyl
radicals, usually called nitroxides, are common spin labels that
can be attached to the desired site in the nucleic acid of interest
with a covalent bond, although there are examples of noncovalent
labeling.7 Two main approaches have been used for covalent spin-
labeling of nucleic acids.8 The phosphoramidite method utilizes
spin-labeled phosphoramidites as building blocks for automated
chemical synthesis of the spin-labeled oligonucleotide.9 This
strategy usually involves significant synthetic effort10 and the spin
label is exposed to reagents used in nucleic acid synthesis that can
partially reduce the nitroxide.11 The other covalent SDSL approach
involves a post-synthetic modification of the nucleic acid, wherein

a spin-labeling reagent reacts with a specific reactive functional
group within the nucleic acid.12 Post-synthetic spin-labeling
usually requires less effort than the classical phosphoramidite
approach and can often be performed with commercially available
reagents.

Post-synthetic modification of 20-amino groups in RNA is an
efficient method for site-directed spin labeling of oligonucleotides.13

20-Amino-modified RNAs are commercially available or can
alternately be prepared using commercially available phosphor-
amidites. This 20-labeling method has been used to incorporate the
paramagnetic 20-ureido-TEMPO [(2,2,6,6-tetramethylpiperidin-
1-yl)oxyl] at specific sites by reaction of 20-amino groups with
4-isocyanato-TEMPO.12c However, isocyanates are relatively
reactive and, therefore, prone to hydrolysis and can react with
other functional groups of the nucleic acid.14 Thus, special care
is required while handling this reagent and when carrying out
the spin-labeling reaction.13b In addition, incomplete labeling
has been observed for some long RNAs, presumably due to the
formation of secondary structures under the spin-labeling
conditions (�8 1C), which may slow down the spin-labeling
reaction relative to the competing hydrolysis of the isocyanate.
Therefore, it is of interest to find more suitable reagents to
react with 20-amino groups in oligonucleotides, which would
make this spin-labeling strategy even more useful.

This report describes the spin-labeling of 20-amino groups in
RNA using isoindoline-derived aromatic isothiocyanates. Aromatic
isothiocyanates are more stable than isocyanates and yet reactive
enough to modify 20-amino groups in RNA.15 We show here that the
isothiocyanate spin labels react very efficiently with 20-amino uridine
in RNA, forming a stable thiourea linkage. Moreover, the spin-labeling
reactions were carried out at 37 1C in the presence of a denaturing
agent (DMF), which minimizes the formation of secondary structures
that might reduce the efficiency of 20-amino labeling.

Two spin-labeling reagents were prepared, isothiocyanates 1
and 2 (Scheme 1), in a single step using readily accessible
starting materials. When isoindolines are utilized for spin-
labeling, tetramethyl derivatives are normally used,10b,c,16 but
isoindoline 2 was included because tetraethyl derivatives have
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been shown to be more resistant towards reduction.17 1,1,3,3-
Tetramethylisoindolin-5-amine-2-oxyl (3)17b,18 and its corresponding
tetraethyl derivative (4)17b were treated with thiophosgene to obtain
the isothiocyanate spin-labeling reagents 1 and 2 in 82% and 57%
yields, respectively (Scheme 1). Unlike 4-isocyanato-TEMPO, aromatic
isothiocyanates 1 and 2 were found to be stable solids and did not
require special precautions when prepared or handled.

Spin-labeling reagents 1 and 2 were reacted with the 20-amino-
modified RNA oligonucleotide 50-GAC CUC G(20-NH2U)A UCG UG (I)
at 37 1C, in borate buffer (pH 8.6) containing 50% DMF. Samples
were removed at specific intervals of time and analyzed by
denaturing polyacrylamide gel electrophoresis (DPAGE) analysis
(Fig. 1). A new product was formed in each reaction that
migrated slower than the parent oligonucleotide, thus indicating
successful covalent attachment of the spin labels to the RNA.
Tetramethyl-derivative 1 reacted faster than 2; the former fully
converted RNA I within 4 h and the latter in 8 h, to the corres-
ponding spin-labeled derivatives. Selective reaction at the 20-amino
group was verified by the lack of reaction between 1 and an
unmodified RNA, even after heating at 60 1C for 48 h (Fig. S3, ESI†).

The spin-labeled oligonucleotides II and III were purified by
DPAGE to give II and III in ca. 75–80% yields. It is noteworthy
that ethanol precipitation of RNA II gave material of the same
purity, as judged by EPR and DPAGE, (Page S7, ESI†), making it
a very rapid spin-labeling method. MALDI-TOF analysis of the
oligonucleotides showed the mass expected for the spin-labeled
oligomers (Fig. S4, ESI†). Circular dichroism (CD) spectroscopy

of the corresponding spin-labeled RNA duplexes IV and V
showed negative and positive molar ellipticities at ca. 210 nm
and 262–264 nm, respectively (Fig. S5, ESI†), values that are
characteristic of A-form RNA duplexes.19 The thermodynamic
stabilities of the spin-labeled RNA duplexes were determined by
thermal denaturation (TM) experiments (Table S3 and Fig. S6, ESI†).
Only minor destabilization of 1.2 1C and 2.0 1C were observed for the
tetramethyl- and the tetraethyl-derivative, respectively, relative to an
unmodified duplex. The corresponding TEMPO-labeled RNA duplex
VII, prepared by reaction of 4-isocyanato-TEMPO with oligo-
nucleotide I,13b was considerably less stable (DTM = �5.3 1C).

The EPR spectra of II and III (Fig. 2) show broadening of the
EPR spectral lines relative to spin labels 1 and 2 (Fig. S1 and S2,
ESI†), which is consistent with their covalent attachment to the
RNA. The EPR spectra of single stranded oligonucleotides II and III
were also compared with the corresponding TEMPO-derived oligo-
nucleotide VI, which had a noticeably narrower spectrum. The
narrow spectrum of VI presumably reflects in part the inherent
flexibility of TEMPO, in which the six-membered ring can sample
different conformations. The EPR spectra of the corresponding
RNA duplexes (Fig. 2, IV, V, VII) were considerably broader than for

Scheme 1 Preparation of spin-labeling reagents 1 and 2 and their reaction with the 20-amino modified RNA oligonucleotide I [50-GAC CUC
G(20-NH2U)A UCG UG] to yield spin-labeled oligonucleotides II and III.

Fig. 1 A time-course of the spin-labeling reactions between the 20-amino
oligonucleotide I and the aromatic isothiocyanates 1 (A) and 2 (B). Reaction
conditions: 1 mM RNA, 50 mM 1, 50 mM borate buffer (pH 8.6), 50% DMF.

Fig. 2 EPR spectra of the spin-labeled oligonucleotides at 10 1C (10 mM
phosphate, 100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0). UX indicates the
position of the spin-labeled uridine and roman numerals under the spectra
identify the oligonucleotides (see Table S1, ESI†).
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the single strand and again, the EPR spectra of the isoindoline-
derived duplexes (IV and V) were broader than that of the TEMPO-
modified duplex (VII). It was somewhat surprising to see how broad
the spectra for isoindoline nitroxide-labeled duplexes IV and V
were, with both the high- and low-field peaks splitting at 10 1C (see
Fig. S7, ESI,† for other temperatures), given the fact that rotation is
possible around bonds in the linker. Since the thiourea can be
regarded as a stiff tether, flexibility is restricted to rotation between
two single bonds, namely the one connecting the 20-C and the 20-N
as well as the bond between the urea and the isoindoline.
Molecular modeling (Fig. 3) showed that there is only one low-
energy rotamer for the C–N bond, in which the large sulfur atom is
lodged between two oxygen atoms on the spin-labeled nucleotide:
the 30-oxygen and the oxygen of the tetrahydrofuran ring, resulting
in a snug fit for the sulfur atom. Otherwise, the label is projected
away from the nucleic acid; the limited mobility indicates that there
is restricted rotation around the bond connecting the isoindoline to
the urea, as might be expected because of conjugation.

In-cell EPR spectroscopy has emerged as a promising technique
to study nucleic acids in vivo.20 Pyrrolidine- and piperidine-based
nitroxides have very limited stabilities in reductive environments21

and are thus considered to be ineffective spin labels for in-cell EPR
studies. On the other hand, isoindolines have shown higher
stability towards reduction, especially tetraethyl derivatives.17 The
stabilities of the spin-labeled duplexes IV, V and VII were tested in
the presence of ascorbic acid, which is a known cellular reducing
agent and often used to evaluate the stability of nitroxides.17b,21a,22

Fig. 4 shows a normalized EPR signal as a function of time. There
was a striking difference in the stability of the different spin labels:
the TEMPO label was fully reduced within 10 min and the tetra-
methyl isoindoline within an hour, while ca. 90% of the tetraethyl
isoindoline label still remained intact after 10 h (Fig. 4, inset). It is

also noteworthy that the stabilities of the nitroxide radicals were
slightly higher after being conjugated to the RNA oligonucleotides.
For example, under identical conditions, 5% of simple tetramethyl
isoindoline derivatives remained after 2 h,17b while 12% of RNA
duplex IV (Fig. S9, ESI†) still had an intact spin label. Taken
together, these ascorbate experiments indicate that the tetraethyl
derivative is a promising spin label for in-cell EPR studies. However,
a more detailed study of spin-label stability under cellular condi-
tions, where other reducing agents (e.g. glutathione) are present,
will be conducted and reported in due course.

In summary, we have described an efficient method for post-
synthetic spin-labeling of 20-amino groups with aromatic isothio-
cyanates using two new isoindoline-derived spin labels. This diver-
gent synthetic approach can be used for a variety of isoindoline spin
labels and has three major advantages over the previously described
20-TEMPO derivative. First, the new spin labels have only a minor
effect on the thermal stability of RNA duplexes. Second, the isoindo-
line labels have limited mobility independent of the nucleic acid
duplex to which they are attached, which should make them useful
for distance measurements. Third, the tetraethyl isoindoline con-
jugated to RNA exhibits high stability towards reduction, making it a
promising candidate for in-cell EPR studies. This spin-labeling
strategy should also be useful for spin-labeling long RNAs, either
through direct derivatization of 20-amino groups or by ligation of
oligonucleotides containing the tetraethyl spin label, which is carried
out in the presence of a reducing agent.

This work was supported by the Icelandic Research Fund
(141062-051). S. S. and A. P. J. gratefully acknowledge doctoral
fellowships provided by the University of Iceland. The authors thank
Dr S. Jonsdottir for assistance with collecting analytical data for
structural characterization of compounds prepared and members of
the Sigurdsson research group for critical reading of the manuscript.
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List of abbreviations 

DPAGE Denaturing polyacrylamide gel electrophoresis 

EPR  Electron paramagnetic resonance 

DMF  N,N-Dimethylformamide 

MALDI-TOF Matrix-assisted laser desorption/ionization - time of flight 

HR-ESI-MS High-resolution electrospray ionization mass spectrometry 

TLC  Thin layer chromatography      

IR  Infrared spectroscopy      

CD  Circular dichroism          

TBDMS tert-butyldimethylsilyl 

UV  Ultraviolet   

CW  Continuous wave 

MMFF  Merck Molecular Force Field 

 

Synthetic procedures 

General materials and methods 

All reagents and CHCl3, used as a solvent for reactions, were purchased from Sigma Aldrich 

and used without further purification. Water was purified on a MILLI-Q water purification 

system. TLC was carried out using glass plates pre-coated with silica gel (0.25 mm, F-254) 

from Silicycle, Canada. All synthesized compounds were visualized by UV light. Flash 

column chromatography was performed using ultra pure flash silica gel (Silicycle, 230-400 

mesh size, 60 Å). All moisture and air-sensitive reactions were carried out in oven-dried 

glassware under an inert argon atmosphere. Nitroxide radicals show broadening and loss of 

NMR signals due to their paramagnetic nature,1, 2 and therefore, the NMR data for the 

isoindoline spin labels have not been shown. Mass spectrometric analyses of all organic 

compounds were performed on an HR-ESI-MS (Bruker, MicrOTOF-Q) in a positive ion 

mode. 
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1,1,3,3-Tetramethylisoindolin-5-isothiocyanate-2-oxyl (1) 

A solution of thiophosgene (0.041 mL, 0.54 mmol) in CHCl3 (1 mL) was added dropwise to a 

solution of 1,1,3,3-tetramethylisoindolin-5-amine-2-oxyl3 (3) (0.100 g, 0.49 mmol) in CHCl3 

(3.5 mL). The reaction mixture was stirred at 24 °C for 2 h, diluted with CH2Cl2 (5 mL) and 

the organic layer was washed successively with NaOH solution (4 mL, 1 M), water (2 x 5 

mL) and brine (5 mL). The organic layer was dried over anhydrous Na2SO4, filtered and 

concentrated in vacuo to obtain the crude product, which was purified by flash column 

chromatography (silica) using a gradient elution (EtOAc:pet. ether; 0:100 to 5:95) to give 1 

(0.098 g, 82%) as a yellowish solid. 

TLC: (Silica gel, 20% EtOAc in pet. ether), Rf (3) = 0.2, Rf (1) = 0.5.   

EPR: Compound 1 shows characteristic EPR triplet of a nitroxide radical (Fig. S1). 

HRMS: Calculated for C13H15N2OS: 247.09, found 270.0802 (M+Na+).  

IR: Shows the characteristic isothiocyanato (-NCS) stretching frequency at 2120 cm-1. 

 

Fig. S1. EPR spectrum of 1,1,3,3-tetramethylisoindolin-5-isothiocyanate-2-oxyl (1) recorded in EtOH at 25 °C. 
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1,1,3,3-Tetraethylisoindolin-5-isothiocyanate-2-oxyl (2) 

A solution of thiophosgene (0.032 mL, 0.42 mmol) in CHCl3 (1 mL) was added dropwise to a 

solution of 1,1,3,3-tetraethylisoindolin-5-amine-2-oxyl3 (4) (0.100 g, 0.38 mmol) in CHCl3 

(3.5 mL). The reaction mixture was stirred at 24 °C for 2 h, diluted with CH2Cl2 (5 mL) and 

the organic layer was washed successively with NaOH solution (4 mL, 1 M), water (2 x 5 

mL) and brine (5 mL). The organic layer was dried over anhydrous Na2SO4, filtered and 

concentrated in vacuo to obtain the crude product, which was purified by flash column 

chromatography (silica) using a gradient elution (EtOAc:pet. ether; 0:100 to 5:95) to give 

1,1,3,3-tetraethylisoindolin-5-isothiocyanate-2-oxyl (2) (0.066 g, 57%) as a yellowish solid. 

TLC: (Silica gel, 20% EtOAc in pet. ether), Rf (4) = 0.2, Rf (2) = 0.8. 

EPR: Compound 2 shows characteristic EPR triplet of a nitroxide radical (Fig. S2).       

HRMS: Calculated for C17H23N2OS: 303.15, found 326.1426 (M+Na+).  

IR: Shows the characteristic isothiocyanato (-NCS) stretching frequency at 2120 cm-1. 

 

Fig. S2. EPR spectrum of 1,1,3,3-tetraethylisoindolin-5-isothiocyanate-2-oxyl (2) recorded in EtOH at 25 °C. 
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RNA synthesis and purification 

All unmodified RNA oligonucleotides and 2′-amino uridine-modified oligonucleotide I were 

synthesized in-house on an automated ASM800 DNA synthesizer (BIOSSET Ltd., Russia) 

using phosphoramidite chemistry. All phosphoramidites, the activator 5-benzylthiotetrazole, 

acetonitrile for oligomer synthesis and controlled pore glass (CPG) columns (1000 Å) were 

purchased from ChemGenes Corp., USA. All other reagents and solvents were purchased 

from Sigma-Aldrich Co. Syntheses were performed on a 1 µmol scale by trityl-off synthesis. 

After completion of RNA synthesis, the oligonucleotides were deprotected and cleaved from 

the resin by adding a 1:1 solution (2 mL) of CH3NH2 (8 M in EtOH) and NH3 (33% w/w in 

H2O) and heating for 40 min at 65 °C.   The solvent was removed in vacuo and the TBDMS-

protection groups were removed by incubation in NEt3:3HF	
  (600 µL) for 90 min at 55 °C in 

DMF (200 µL), followed by addition of water (200 µL). The resulting solution was 

transferred into a 50 mL Falcon tube and the RNA was precipitated by adding 1-butanol (20 

mL, 12 h at -80 °C). All oligonucleotides were subsequently purified by 20% DPAGE and 

extracted from the gel slices using the “crush and soak method” with Tris buffer containing 

250 mM NaCl, 10 mM Tris, 1 mM Na2EDTA, pH 7.5. The solutions were filtered through 

0.45 µm, 25 mm diameter GD/X syringe filters (Whatman, USA) and were subsequently 

desalted using Sep-Pak cartridges (Waters, USA), following the instructions provided by the 

manufacturer. Dried oligonucleotides were dissolved in sterilized and deionized water (200 

µL for each oligonucleotide). Concentrations of the oligonucleotides were determined by UV 

absorbance at 260 nm using a Perkin Elmer Inc. Lambda 25 UV/Vis spectrometer and 

calculated by Beer′s law. Isocyanato-TEMPO-modified RNA oligonucleotide VI was 

prepared following a previously reported procedure.4 Table S1 shows the complete list of all 

the modified and unmodified RNA oligonucleotides along with the structure of the 

modifications. 
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Table S1. List of all RNA oligonucleotides. 

Modification (UX) RNA  Sequence 

	
  

I 5'-GAC CUC G(2'-NH2U)A UCG UG-3' 

	
  

II 5'-GAC CUC GUXA UCG UG-3' 

	
  

III 5'-GAC CUC GUXA UCG UG-3' 

	
  

IV 5'-GAC CUC GUXA UCG UG-3' 
3'-CUG GAG CA U AGC AC-5' 

	
  

V 5'-GAC CUC GUXA UCG UG-3' 
3'-CUG GAG CA U AGC AC-5' 

	
  

VI 5'-GAC CUC GUXA UCG UG-3' 

	
  

VII 5'-GAC CUC GUXA UCG UG-3' 
3'-CUG GAG CA U AGC AC-5' 

	
  

VIII 5'-GAC CUC G(2'-NH2U)A UCG UG-3' 
3'-CUG GAG C       A U AGC AC-5' 

-­‐	
   IX 5'-GAC CUC GUA UCG UG-3' 

-­‐	
   X 5'-GAC CUC GUA UCG UG-3' 
3'-CUG GAG CAU AGC AC-5' 
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General procedure for RNA spin-labeling with 1 and 2  

A solution of RNA oligonucleotide I (40 nmol) in 100 mM borate buffer, pH 8.6 (20 µL) was 

added to a solution of 1 or 2 (2 µmol) in DMF (20 µL). The reaction mixture was heated at 

37 °C for 8 h, followed by addition of sterile water (200 µL) and extraction with EtOAc (6 x 

500 µL) to remove any unreacted spin label. For RNA II, an EtOH precipitation was 

performed [5 µL of 3M sodium acetate (pH 4.6), 300 µL of cold (-20 °C) absolute ethanol 

and storing at -80 °C for 4 h] to remove the rest of the free-spin contaminant. RNA II 

obtained by precipitation was of similar purity (as judged by EPR and DPAGE), as observed 

for II that was purified further by 20% DPAGE, to obtain 32 nmol of RNA oligonucleotide II 

(76%). DPAGE purification of RNA oligonucleotide III yielded 34 nmol (80%) after the 

EtOAc extraction.  
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Investigating if reaction of 1 with RNA results in non-specific labeling 

To test the selectivity of the spin labeling strategy, a solution of RNA oligonucleotide IX (40 

nmol) in borate buffer (20 µL, 100 mM, pH 8.6) was added to a solution of 1 (2 µmol) in 

DMF (20 µL) and heated at 60 °C. Aliquots were collected at specific time points (described 

in Table S2) and analyzed by DPAGE (Fig. S3). No change was observed in the mobility of 

the unmodified oligonucleotide, even after heating for 48 h (Fig. S3, lane D), proving that the 

spin labeling procedure is highly specific to 2′-amino groups in RNA. Spin-labeled RNA II 

was used as a marker for modified RNA. 

      Table S2. Table describing the control reactions (showed in Fig. S7). 

Lane  RNA Temperature Duration 

A 5′-GAC CUC GUA UCG UG --- 0 h 

B 5′-GAC CUC GUA UCG UG 60 °C 12 h 

C 5′-GAC CUC GUA UCG UG 60 °C 24 h 

D 5′-GAC CUC GUA UCG UG 60 °C 48 h 
 

 
Fig. S3. DPAGE analysis of reaction of 1 and I. Lanes A-D are described in Table S2, Lane F contains spin-
labeled RNA II and lane E is an equimolar mixture of lanes D and F. 
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Analyses of spin-labeled oligonucleotides 

Instruments and methods 

MALDI-TOF analyses of the RNA oligonucleotides were performed on a Bruker Daltonics 

Autoflex III. The instrument was calibrated with external standards prior to measuring the 

mass of the spin-labeled oligonucleotides and 3-hydroxypicolinic acid was used as the 

matrix. Prior to analysis by CD, thermal denaturation and EPR, an appropriate quantity of 

each RNA stock solution was dried on a Thermo Scientific ISS 110 Speedvac and dissolved 

in phosphate buffer (10 mM phosphate, 100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0). RNA 

duplexes were formed by annealing in an MJ Research PTC 200 Thermal Cycler using the 

following protocol: 90 °C for 2 min, 60 °C for 5 min, 50 °C for 5 min, 40 °C for 5 min and 22 

°C for 15 min. CD spectra of RNA duplexes were recorded in a Jasco J-810 

spectropolarimeter. Cuvettes with 1 mm path length were used and the CD data were 

recorded from 350 nm to 200 nm at 25 °C.   Thermal denaturation curves of the 

oligonucleotides were obtained using a Perkin Elmer PTP-1 and PCB 150 Water Peltier 

System. Prior to recording TM data, the samples were diluted to 1.0 mL with phosphate 

buffer, making the final concentration 3 µM and degassed using argon. The samples were 

heated up from 10 °C to 90 °C (1.0 °C/min) while recording the absorbance at 260 nm. EPR 

spectroscopy was performed to judge the mobilities of the spin-labeled oligonucleotides and 

measured over a range of temperatures from 30 °C to -10 °C, with intervals of 10 °C on an X-

band EPR spectrometer (Miniscope MS 200, Magnettech, Germany) with 100 kHz 

modulation frequency, 1.0 G modulation amplitude and 2.0 mW microwave power and using 

60 to 100 scans for each sample after placing them into a quartz capillary tube 

(BLAUBRAND®-intraMARK). The temperature was regulated by a Magnettech 

temperature controller M01.  
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MALDI-TOF analyses  

To verify incorporation of the spin labels into the oligonucleotides, they were analyzed by 

MALDI-TOF experiments. Fig. S4 shows the MALDI-TOF spectra of spin-labeled 

oligonucleotides II (5′-GAC CUC GU1A UCG UG-3′) (4667.121, calcd. 4666.711) and III 

(5′-GAC CUC GU2A UCG UG-3′) (4722.435, calcd. 4722.771).  

 
Fig. S4. MALDI-TOF spectra of spin-labeled oligonucleotides II (A) and III (B). 
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Circular dichroism (CD) spectra 

CD spectra were recorded to determine if modifications on the oligonucleotides altered the 

RNA duplex conformation.  Fig. S5 shows the CD spectra of RNA duplexes IV, V, VIII and 

X. All the RNA duplexes showed negative and positive molar ellipticities at ca. 210 nm and 

262-264 nm, respectively. 

 

 
Fig. S5. CD spectra of 14-mer RNA duplex IV (red), V (blue), VIII (green) and X (black) (12.5 µM each) 
recorded at 25 °C in phosphate buffer (10 mM phosphate, 100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0). 
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Thermal denaturation experiments 

To investigate if the spin labels affect RNA duplex stability, thermal denaturation 

experiments were performed. Fig. S6 shows representative melting curves for RNA duplexes, 

showing cooperative melting transitions. The TM values were determined from the first 

derivatives of the melting curves and summarized in Table S3.  

 
Fig. S6. Thermal denaturation curves of unmodified duplex X (A), as well as spin-labeled duplexes IV (B), 
V (C) and VII (D). 

 

Table S3. Melting temperatures (TM) of the RNA duplexes. 

Modification  RNA Duplex sequences TM (°C) Δ TM (°C) 

-	
   X 5'-GAC CUC GUA UCG UG-3' 
3'-CUG GAG CAU AGC AC-5' 68.5 ± 0.5 -  

	
  

VIII 5'-GAC CUC G(2'-NH2U)A UCG UG-3' 
3'-CUG GAG C       A U AGC AC-5' 66.3 ± 0.5 -2.2 

	
  

IV 5'-GAC CUC GUXA UCG UG-3' 
3'-CUG GAG CA U AGC AC-5' 67.3 ± 0.7 -1.2 

	
  

V 5'-GAC CUC GUXA UCG UG-3' 
3'-CUG GAG CA U AGC AC-5' 66.5 ± 0.9 -2.0 

	
  

VII 5'-GAC CUC GUXA UCG UG-3' 
3'-CUG GAG CA U AGC AC-5' 63.2 ± 0.5 -5.3 
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Electron paramagnetic resonance (EPR) spectra 

Fig. S7 shows EPR spectra of single strands (A) and duplexes (B) at different temperatures. 

As expected, the spectra become broader upon cooling. Furthermore, the spectral width for 

duplexes IV and V were significantly wider than for the single-stranded counterparts, 

indicating that duplex formation severely restricted the mobility of the spin labels. Therefore, 

molecular modeling was performed on the spin-labeled duplexes (See Page S14). 

 
 
Fig. S7. CW EPR data of spin-labeled RNA single strands II, III, VI (A) and duplexes IV, V and VII (B) 
plotted as a function of decreased temperature. All spectra were phase corrected and aligned with respect to the 
central peak. 
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Molecular modeling 

A molecular model for an RNA duplex was generated in Spartan′10 using the “nucleotide” 

constructing feature and the spin label was constructed using the “organic” construction tool. 

Energy of the spin label was minimized using the minimizer built into Spartan, which is 

based on the MMFF force field. The spin label was then connected to the desired position in 

the RNA using the “make bond” tool. Fig. S8A shows the resulting structure as obtained 

from PyMOL, in a space-filling display. The sulfur atom (yellow) nestled snugly between 

two oxygen atoms of the spin-labeled nucleotide, the 3′-oxygen and the oxygen within the 

corresponding ribose sugar ring (Fig. S8B-C), restricting its motion.  

 
 
Fig. S8. Molecular model of the RNA duplex IV (grey) shown in entirety (A) and as close-ups from two 
different dimensions (B) and (C). Conjugated spin label 1 has been shown in red except for the sulfur atom that 
has been coloured yellow. 
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Stability of spin-labeled RNAs towards ascorbate reduction 

To check the stability of the spin labels in RNA under reducing conditions, the spin-labeled 

RNAs were reacted with ascorbic acid (5 mM ascorbic acid, 200 µM spin-labeled RNA, 10 

mM phosphate, 100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0) and the EPR signal decay was 

plotted as a function of time (Fig. S9). Ethyl isoindoline-derived oligonucleotides III and V 

were found to be highly stable and thus, their decay curves have been plotted up to 12 h. 

Methyl isoindoline-derived RNAs II and IV were moderately stable (2 h plots) whereas 

isocyanato-TEMPO-labeled oligonucleotides VI and VII were found to be rapidly reduced.  

 
Fig. S9. Ascorbic acid reduction curves for single-stranded RNA oligonucleotides III, II, VI (left column) and 
their corresponding duplexes V, IV and VII (right column). All curves were fitted with their exponential 
functions (red line). 
 
 
Due to the large excess of ascorbic acid, reduction of the radicals followed (pseudo) first 

order kinetics. The EPR signal decay curves were fitted with a first order exponential 

function and their half-lives (t1/2) were calculated accordingly. Table S4 shows the half-lives 

of the tetramethyl isoindoline- and 4-isocyanato TEMPO-labeled oligonucleotides. Single-
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stranded tetramethyl isoindoline-labeled RNA II showed a t1/2 of 6.7 min whereas it increased 

slightly to 7.2 min as duplex IV. The TEMPO label was the least stable one with the single 

strand VI and duplex VII showing half-lives of 0.7 min and 2.2 min, respectively. Reduction 

kinetics of the tetraethyl isoindoline-labeled RNAs III and V did not follow exponential 

decay, but ca. 90% was still intact after 12 h. 

 
          Table S4. Half-lives (t1/2) of select RNA sequences. 

Modification  RNA Sequence t1/2 

	
  

II 5'-GAC CUC GUXA UCG UG-3' 6.7 min 

	
  

IV 5'-GAC CUC GUXA UCG UG-3' 
3'-CUG GAG CA U AGC AC-5' 7.2 min 

	
  

VI 5'-GAC CUC GUXA UCG UG-3' 0.7 min 

	
  

VII 5'-GAC CUC GUXA UCG UG-3' 
3'-CUG GAG CA U AGC AC-5' 2.2 min 

 

 

 

References 

1. T. D. Lee and J. F. Keana, J. Org. Chem., 1975, 40, 3145-3147. 
2. Y. Li, X. Lei, X. Li, R. G. Lawler, Y. Murata, K. Komatsu and N. J. Turro, Chem. 

Commun., 2011, 47, 12527-12529. 
3. A. P. Jagtap, I. Krstić, N. C. Kunjir, R. Hänsel, T. F. Prisner and S. T. Sigurdsson, 

Free Radical Res., 2014, 49, 1-25. 
4. T. E. Edwards and S. T. Sigurdsson, Nat. Protoc., 2007, 2, 1954-1962. 

 

 

HN

S

H
N

N O

HN

S

H
N

N O

HN

O

H
N

N
O

HN

O

H
N

N
O



193 

Paper III 

 

  

Paper III 





CHAPTER FIFTEEN

Site-Directed Spin Labeling of RNA
by Postsynthetic Modification of
20-Amino Groups
Subham Saha, Anil P. Jagtap, Snorri Th. Sigurdsson1
Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
1Corresponding author: e-mail address: snorrisi@hi.is

Contents

1. Introduction 398
1.1 The Phosphoramidite Method for SDSL 400
1.2 Postsynthetic Spin-Labeling 401

2. 20-Amino Spin-Labeling with Aliphatic Isocyanates and Aromatic Isothiocyanates 404
2.1 Spin-Labeling of 20-Amino Groups in RNA with 4-Isocyanato-TEMPO 405
2.2 Synthesis of Isothiocyanate-Containing Spin Labels 406
2.3 Spin Labeling of 20-Amino Groups in RNA with Isothiocyanates 407
2.4 Analysis of Spin-Labeled Oligonucleotides 409

3. Summary and Conclusions 410
Acknowledgments 411
References 411

Abstract

To elucidate mechanisms that govern functions of nucleic acids, it is essential to under-
stand their structure and dynamics. Electron paramagnetic resonance (EPR) spectros-
copy is a valuable technique that is routinely used to study those aspects of nucleic
acids. A prerequisite for most EPR studies of nucleic acids is incorporation of spin labels
at specific sites, known as site-directed spin labeling (SDSL). There are two main strat-
egies for SDSL through formation of covalent bonds, i.e., the phosphoramidite approach
and postsynthetic spin-labeling. After describing briefly the advantages and disadvan-
tages of these two strategies, postsynthetic labeling of 20-amino groups in RNA is delin-
eated. Postsynthetic labeling of 20-amino groups in RNA using 4-isocyanato-TEMPO has
long been established as a useful approach. However, this method has some drawbacks,
both with regard to the spin-labeling protocol and the flexibility of the spin label itself.
Recently reported isothiocyanate-substituted aromatic isoindoline-derived nitroxides
can be used to quantitatively and selectively modify 20-amino groups in RNA and do
not have the drawbacks associated with 4-isocyanato-TEMPO. This chapter provides
a detailed description of the postsynthetic spin-labeling methods of 20-amino groups
in RNA with a special focus on using the aromatic isothiocyanate spin labels.

Methods in Enzymology, Volume 563 # 2015 Elsevier Inc.
ISSN 0076-6879 All rights reserved.
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397

http://dx.doi.org/10.1016/bs.mie.2015.07.017


1. INTRODUCTION

Nucleic acids are essential molecules for sustaining life. DNA and

RNA are responsible for storage, expression, and transmission of genetic

information—DNA carries the genetic information, whereas RNA has var-

ied functions, such as transferring genetic information and acting as a chief

constituent of ribonucleoprotein complexes involved with mRNA

processing and translation. RNA can also catalyze reactions; a prominent

example is formation of peptide bonds by the ribosome (Nissen, Hansen,

Ban, Moore, & Steitz, 2000). RNA has also been implied in the catalytic

function of the spliceosome (Fica et al., 2013). Recently discovered siRNAs

play a notable role in RNA interference, where they inhibit particular gene

expressions (Brummelkamp, Bernards, & Agami, 2002). Moreover,

riboswitches have an important role in regulating gene expression

(Mandal & Breaker, 2004).

It is of interest to know the structure and dynamics of nucleic acids,

because these properties govern their functions. There are several biochem-

ical and biophysical techniques that have been applied for the study of

the structure and function of nucleic acids. The most powerful technique

is undoubtedly X-ray crystallography, which is capable of providing a

“photographic” representation of the three-dimensional molecular struc-

ture. However, this highly informative technique requires a sufficiently large

and regular single crystal, which can be a daunting task to obtain for nucleic

acids. In addition, a crystal structure might not represent a biologically active

conformation. Moreover, an X-ray structure provides a static view, whereas

conformational changes are usually required to carry out specific functions.

Another high-resolution technique to study nucleic acid structure is nuclear

magnetic resonance (NMR) spectroscopy, which provides structural infor-

mation of the nucleic acid in solution, thus revealing their conformation

under biologically relevant conditions. However, NMR of nucleic acids

often requires relatively large amounts of isotopically labeled samples. Fur-

thermore, NMR studies are usually restricted to nucleic acids that are smaller

than 50 kDa (Xu &Matthews, 2013), because the increased anisotropy asso-

ciated with slower tumbling of large molecules in solution causes peak

broadening. Another common technique for studying nucleic acids is

F€orster resonance energy transfer, which is capable of measuring distances

in the nanometer range. This technique can also be used to study nucleic

acids under biologically relevant conditions, in addition to enabling
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single-molecule studies (Roy, Hohng, & Ha, 2008; Sisamakis, Valeri,

Kalinin, Rothwell, & Seidel, 2010). However, since natural nucleic acids

do not possess any fluorescent chromophores, a prerequisite for this tech-

nique is the incorporation of a pair of rather bulky fluorophores.

The technique that will be addressed here is electron paramagnetic res-

onance (EPR) spectroscopy, which is applicable for the study of paramag-

netic centers. EPR can provide structural information for biomolecules

through measurement of distances between paramagnetic centers, using

continuous wave (CW)- or pulsed EPR. CW EPR can be used to measure

distances up to 25 Å through analysis of peak broadening (Kim, Murali, &

DeRose, 2004; Macosko, Pio, Tinoco, & Shin, 1999). Pulsed EPR, such as

pulsed electron–electron double resonance, also called double electron–

electron resonance, can yield distances of 15–100 Å (Duss, Yulikov,

Jeschke, & Allain, 2014; Jeschke, 2012; Milov, Salikhov, & Shirov, 1981;

Reginsson & Schiemann, 2011; Schiemann & Prisner, 2007). EPR is also

capable of probing the orientation of paramagnetic centers, which can pro-

vide information about both structure and dynamics (Denysenkov, Prisner,

Stubbe, & Bennati, 2006; Marko et al., 2011; Schiemann, Cekan, Margraf,

Prisner, & Sigurdsson, 2009). EPR is valuable for studying dynamics on a

range of timescales (Marko et al., 2011; Nguyen & Qin, 2012; Sowa &

Qin, 2008). Thus, EPR is a multifaceted tool that can provide valuable

insights into both structure and dynamics of nucleic acids.

Nucleic acids are not inherently paramagnetic and, therefore, it is nec-

essary to modify themwith paramagnetic atoms or groups, referred to as spin

labels. Although there are some examples of paramagnetic metal ions that

have been used as spin probes (Goldfarb, 2014; Hunsicker-Wang,

Vogt, & DeRose, 2009; Schiemann, Fritscher, Kisseleva, Sigurdsson, &

Prisner, 2003), the most commonly used spin labels are aminoxyl radicals,

usually called nitroxides. Many of these nitroxide radicals are commercially

available or can be readily synthesized using standard techniques of organic

synthesis. Therefore, nitroxides have found extensive use as spin labels.

Although there are examples of noncovalent spin labeling of nucleic acids

with nitroxides (Belmont et al., 1998; Chalmers et al., 2014; Maekawa

et al., 2010; Shelke, Sandholt, & Sigurdsson, 2014; Shelke & Sigurdsson,

2010), the most common spin-labeling approach for nucleic acids is attach-

ment of spin labels through covalent bonds.

There are several methods available for incorporation of spin labels at the

end of nucleic acids (Shelke & Sigurdsson, 2012, 2013), but end-labeling has

limited applicability for EPR studies. Therefore, this text focuses on
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methods for incorporation of spin labels at internal sites. Moreover, it will

address how spin labels can be incorporated at specific sites of choice,

referred to as site-directed spin labeling (SDSL). There are two main strat-

egies that have been applied for covalent SDSL (Fig. 1). The first one utilizes

spin-labeled phosphoramidites that are incorporated at specific positions

during automated chemical synthesis of the nucleic acid (Shelke &

Sigurdsson, 2012), shown schematically in Fig. 1A, and sometimes referred

to as the phosphoramidite method. The second SDSL strategy is post-

synthetic spin labeling, where spin labels are incorporated after the synthesis

of the oligonucleotide, by either chemical or enzymatic methods (Fig. 1B).

The main features of these two spin-labeling strategies, the pho-

sphoramidite method and postsynthetic labeling, will be described briefly

below. Both of these SDSL routes are useful and complement each other.

A facile approach for postsynthetic labeling of 20-amino groups in RNAwill

subsequently be described in detail.

1.1 The Phosphoramidite Method for SDSL
Nucleoside phosphoramidites are derivatives of natural nucleosides and

serve as building blocks in solid-phase synthesis of nucleic acids.

A generic structure of a phosphoramidite is shown in Fig. 2A, where the

50-hydroxyl group of a ribonucleoside is protected as a 50-dimethoxytrityl

(DMT) ether, while the phosphoramidite group is at the 30-position. The
20-position also needs to be protected when synthesizing RNA. The main

advantage of the phosphoramidite method is that spin labels with specific

and desired structural features can be inserted at chosen sites, which might

not be possible using postsynthetic labeling.

Figure 1 Strategies for site-directed spin labeling through covalent bonding. (A) The
phosphoramidite approach. (B) Postsynthetic spin-labeling. A pyrrolidine-based spin
label is used as a representative nitroxide spin label. Nucleotides are represented by
links that form oligonucleotide chains.
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There are several examples of spin labels that have been incorporated

into DNA by the phosphoramidite method (Shelke & Sigurdsson, 2012).

However, there is only one example of a spin-labeled nucleoside that has

been incorporated into RNA by this method, the nucleoside Çm

(Fig. 2B). Çm is a rigid spin label containing a nitroxide that has been fused

to a nucleobase (H€obartner, Sicoli, Wachowius, Gophane, & Sigurdsson,

2012). Synthesis of spin-labeled phosphoramidites usually requires a substan-

tial effort and involves a high degree of expertise in synthetic organic chem-

istry. Another drawback is the exposure of the spin labels to the reagents used

during the oligonucleotide synthesis, which may result in partial reduction

of the nitroxide radical. For example, iodine/water, which has traditionally

been used to oxidize the phosphorous atoms from P(III) to P(V), needs to be

replaced by tert-butyl hydroperoxide to avoid degradation of the radical

(Cekan, Smith, Barhate, Robinson, & Sigurdsson, 2008; Piton et al.,

2007). Moreover, the acid treatment, which removes the DMT groups from

the 50-end of the growing chain during elongation, can also result in decom-

position of nitroxide spin labels, depending on their stability.

1.2 Postsynthetic Spin-Labeling
Postsynthetic spin labeling is the other main method of choice for incorpo-

ration of spin labels at specific sites (Fig. 1B). This strategy requires oligonu-

cleotides that have uniquely reactive groups at specific sites where the spin

label is to be incorporated. Such oligomers are normally prepared by the

phosphoramidite method, often using commercially available reagents. This

is a useful feature of this method, because both the modified oligonucleotide

and a suitable spin label can often be either purchased or readily prepared.

The other merit of this method is that the spin label does not get exposed

Figure 2 (A) Phosphoramiditemonomer building block. PG is a protecting group for the
20-hydroxy group. B is a nucleobase. (B) The rigid spin label Çm that has been incorpo-
rated into RNA by the phosphoramidite method.
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to the reagents used in the chemical synthesis of oligonucleotides. However,

a drawback of this method is the possibility of nonspecific labeling due to the

nucleophilic groups present in the nucleic acids, such as the exocyclic amino

groups of the nucleobases, the N7 of purines, and nonbridging oxygen

atoms of the phosphodiesters. In addition, incomplete spin labeling is also

a well-known drawback of this method.

There are a number of sites on a nucleotide in RNA that can in principle

be spin labeled postsynthetically, namely the nucleobase, the sugar, and the

phosphodiester backbone. Postsynthetic spin labeling of a nucleobase can,

for example, be performed by the reaction of 4-thiouridine with a suitable

spin-labeling reagent. Figure 3A shows such examples, where thiol-specific

methane-thiosulfonate spin-labeling reagents have been reacted with

4-thiouridine in RNA to yield a variety of spin-labeled oligomers

(Qin, Hideg, Feigon, & Hubbell, 2003; Qin, Iseri, & Oki, 2006).

4-Thiouridine can also be spin labeled through alkylation (Ramos &

Varani, 1998). Another facile postsynthetic method is the reaction of

phosphorothioates, in which one of the nonbridging oxygen atoms has been

replaced with sulfur by oxidation with a sulfurizing agent during

oligonucleotide synthesis, with alkylating agents (Fig. 3B; Grant, Boyd,

Herschlag, & Qin, 2009; Qin, Butcher, Feigon, & Hubbell, 2001). This

method requires the use of a deoxynucleotide at the phosphorothioate site

to prevent cleavage of the RNA strand. Exocyclic amino groups in RNA

have also been modified with a spin label (Sicoli, Wachowius, Bennati, &

H€obartner, 2010) using the “convertible nucleoside” approach

(Macmillan & Verdine, 1990). In this method, a derivative of a nucleoside

possessing a leaving group on its nucleobase (the convertible nucleoside) is

Figure 3 Representative examples of postsynthetic spin-labeling of nucleobases and
phosphodiesters. (A) Attachment of spin labels at 4-thiouridine. (B) Spin-labeling at
phosphate backbone. (C) Labeling of exocyclic amino groups of cytosine through the
convertible nucleoside approach. R1 and R2¼H or CH3, X¼H or Br, and B is a
nucleobase.
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incorporated into RNA through solid-phase synthesis. After the synthesis of

the full-length oligomer, it is treated with an amine-based nucleophile,

which substitutes the leaving group on the nucleobase, and becomes cova-

lently attached. Figure 3C shows an example, where TEMPOwas utilized as

the nucleophile (Sicoli et al., 2010).

Spin labels have also been incorporated at the 20-position of sugars in oli-
gonucleotides using postsynthetic methods (Fig. 4). The 20-position is the

only site that is readily available for labeling of sugars at internal positions

of nucleic acids. Moreover, a spin label attached at the 20-position gets pro-

jected out of the minor groove, causing minimal structural perturbation of

the labeled RNA. Spin labels have been incorporated into 20-positions of
RNA using the Cu(I)-catalyzed Huisgen–Meldal–Sharpless [3+2] cycload-

dition reaction (click chemistry), yielding triazole-linked spin labels

(Büttner, Javadi-Zarnaghi, & H€obartner, 2014; Flaender et al., 2008;

Fig. 4A).

Postsynthetic labeling of 20-amino groups is another particularly facile

and selective approach for labeling the 20-position; the aliphatic 20-amino

group is more nucleophilic than the aromatic amines on the nucleobases

or the hydroxyl groups on the phosphodiester and can be converted to ureas

and esters (Fig. 4B). Moreover, RNA oligonucleotides having 20-amino

modification(s) are commercially available or can be synthesized in-house

on an automated synthesizer using commercially available 20-amino-

modified phosphoramidites. Thus, easy availability of 20-amino-modified

RNAs makes this approach attractive. The 20-amino group has been spin

labeled through reaction with a succinimidyl ester of a pyrrolidine-derived

Figure 4 (A) Postsynthetic spin labeling of RNA at the 20-position by using cycloaddition
reaction between an azide and an alkyne. (B) Postsynthetic spin labeling at 20-amino
position through formation of urea or amide linkage.
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nitroxide spin label to yield amide-modified spin label (Fig. 4B); however,

this modification was found to cause considerable destabilization of RNA

duplexes (Kim et al., 2004). Spin labeling of 20-amino groups through reac-

tions with aliphatic isocyanates and aromatic isothiocyanates is a more useful

route than amide formation and is described in detail below.

2. 20-AMINO SPIN-LABELING WITH ALIPHATIC
ISOCYANATES AND AROMATIC ISOTHIOCYANATES

The first example of spin labeling of the 20-position in RNA was the

reaction of 4-isocyanato-TEMPO (1) with 20-amino groups in RNA, for-

ming a urea linkage (Fig. 5; Edwards, Okonogi, Robinson, & Sigurdsson,

2001). Spin-labeled oligonucleotides, prepared by this method, were used

to study the structure-dependent dynamics of the transactivation response

RNA (Edwards, Okonogi, & Sigurdsson, 2002; Edwards, Robinson, &

Sigurdsson, 2005; Edwards & Sigurdsson, 2002, 2003) and the hammerhead

ribozyme by EPR spectroscopy (Edwards & Sigurdsson, 2005). This spin-

labeling method has been used by several other research groups and has the

advantage that the starting materials are commercially available. However, it

also has a few drawbacks. First, the isocyanate functional group is highly

reactive and can lead to incomplete labeling in RNA due to a competing

hydrolysis reaction, requiring a careful control of the reaction conditions.

Second, at the low temperatures under which the spin-labeling reaction

is performed, long RNAs sometimes form secondary structures that reduce

Figure 5 Spin labeling at the 20-amino position of the oligonucleotide I by isocyanate 1
and isothiocyanate spin-labeling reagents 2 and 3. U, uracil.
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the reactivity of 20-amino groups and result in low yields. In addition,

TEMPO is not the optimal spin label for EPR studies due to its inherent

flexibility.

To overcome these shortcomings of 4-isocyanato-TEMPO, a new class

of spin labels for 20-amino labeling has recently been introduced: isoindoline-

derived nitroxides 2 and 3 have an aromatic isothiocyanate functional group,

which forms a stable thiourea linker upon reaction with 20-amino groups

(Fig. 5; Saha, Jagtap, & Sigurdsson, 2015). Aromatic isothiocyanates are less

reactive than aliphatic isocyanates,which allows the reaction to be carried out

at a higher temperature without any nonspecific labeling. Performing these

reactions at higher temperature in the presence of an organic cosolvent

reduces RNA secondary structure and thus avoids potential reduced reactiv-

ity of the 20-amino group. The detailed protocols of the preparation of these

spin-labeling reagents and their incorporation into 20-amino sites in RNA

will be described in the latter part of this chapter.

2.1 Spin-Labeling of 20-Amino Groups in RNA with
4-Isocyanato-TEMPO

Isocyanate1, the spin-labeling reagent for this protocol, canbeeitherpurchased

(TorontoResearchChemicals) or synthesizedusing a previously reported pro-

tocol (Edwards et al., 2001; Edwards & Sigurdsson, 2007). As previously men-

tioned, the 20-amino-modified oligonucleotides are also commercially

available. A representative 20-amino spin-labeling protocol (Edwards et al.,

2001; Edwards & Sigurdsson, 2007, 2014) using isocyanate 1 is as follows:

(1) To a solution of 20-amino-modified RNA I (i.e., 50-GACCUCG

(20-NH2U)AUCGUG-30) (30 nmol), previously precipitated to

exchange ammonium ions with sodium ions, in boric acid buffer

(15 μL, 70 mM, pH 8.6) was added formamide (9 μL). The resulting

solution was cooled in a rock salt/ice water bath (�8 °C). It is rec-
ommended to perform this reaction in a cold room (4 °C), which helps
keeping the temperature low during transfer of reagents. The low tem-

perature minimizes the competing isocyanate hydrolysis reaction and

ensures the specificity of the labeling reaction toward the 20-amino

groups.

(2) The solution was treated with freshly prepared 1 (9 μL) in anhydrous

N,N-dimethylformamide (DMF) and incubated for 1 h at �8 °C.
The solution of 1 was prepared by dissolving 1 (1 mg) in anhydrous

DMF (67.6 μL) to a final concentration 75 mM. Isocyanates are electro-

philic functional groups and as such they are reactive toward a variety of
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nucleophiles, including amines and water. Therefore, anhydrous and

amine-free DMF should be used.

(3) To ensure complete spin labeling, it is advisable to add a second

aliquot of freshly prepared 1 in DMF (9 μL) after 1 h and a third aliquot
after 2 h.

(4) The extent of the spin-labeling reaction can be determined by a dena-

turing polyacrylamide gel electrophoresis (DPAGE) analysis. An aliquot

from the reaction mixture (1 μL) was run on 20% DPAGE gel along

with the starting RNA I; one lane contained an equimolar mixture

of the starting RNA and the RNA present in the reaction. The

spin-labeled RNA displays reduced mobility on DPAGE (see

Section 2.3 for an example of DPAGE analysis of 20-amino spin label-

ing). DPAGE can be readily used to monitor the extent of spin labeling

of oligonucleotides of up to ca. 20 nt long; for longer RNA sequences,

it may be a challenge to gauge the difference in the mobilities of spin-

labeled and unlabeled material. A quantitative conversion to spin-

labeled RNA is usually observed. Non- or partial spin labeling indicates

decomposition of isocyanate 1. The purity of 1 can be examined by

thin-layer chromatography (TLC) (silica gel, 5% MeOH:CH2Cl2, Rf

(1)¼0.7) and IR spectroscopy (RNCO stretching at 2100–2270 cm�1).

(5) On completion of the reaction, H2O (100 μL) was added to the reac-

tion mixture, the solution was washed with CHCl3 (4�300 μL), and
the solvent was removed in vacuo.

(6) The spin-labeled RNA was precipitated in EtOH (NaOAc (5 μL, 3M,

pH 4.6) and EtOH (300 μL), �80 °C, 4 h) and purified by 20%

DPAGE. The gel slices containing spin-labeled material were excised,

extracted using the “crush and soak method” with Tris buffer (250 mM

NaCl, 10 mM Tris, 1 mM Na2EDTA, pH 7.5), and subsequently

desalted using Sep-pak C18 cartridges following the manufacturer’s

instructions, to obtain the final product (28 nmol).

2.2 Synthesis of Isothiocyanate-Containing Spin Labels
Spin labeling with 2 and 3 is a newly published method at the time of this

writing and thus, these reagents are not yet commercially available. There-

fore, the protocol for their preparation has been included. In short, 2 and 3

were prepared by reaction of their corresponding amino derivatives 4 and 5

with thiophosgene (Fig. 6), according to the following representative pro-

tocol for the synthesis of 2:
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(1) A solution of 1,1,3,3-tetramethylisoindoline-5-amine-2-oxyl (4) ( Jagtap

et al., 2015; Mileo et al., 2013) (100 mg, 0.49 mmol) in CHCl3 (3.5 mL)

was treated dropwise with a solution of thiophosgene (0.041 mL,

0.54 mmol) in CHCl3 (1 mL) at 24 °C. (Note: Thiophosgene is a toxic

reagent and it is strongly recommended to perform the reaction in an

efficiently ventilated fume hood.) The progress of the reaction was

monitored by TLC (20% EtOAc:pet. ether, Rf (4)¼0.2, Rf (2)¼0.8).

(2) After stirring for 2 h at 24 °C, the reaction mixture was washed succes-

sively with aq. NaOH (4 mL, 1 M), H2O (2�5 mL) and brine (5 mL).

(3) The organic layer was dried over anhydrous sodium sulfate, filtered, and

concentrated in vacuo. The crude product was purified by flash column

chromatography using a gradient elution (EtOAc:pet. ether from 0:100

to 5:95) to give 2 as a yellow solid (98 mg, 82%).

Spin-labeling reagent 3 was prepared from its corresponding amino deriv-

ative 5 (1,1,3,3-tetraethylisoindoline-5-amine-2-oxyl) ( Jagtap et al., 2015)

in the same manner. Isothiocyanates 2 and 3 are stable solids that have not

shown any detectable decomposition after storing at �20 °C for several

months.

2.3 Spin Labeling of 20-Amino Groups in RNA with
Isothiocyanates

The main difference between the protocols for spin labeling with

isothiocyanates 2 and 3 and isocyanate 1 is that the spin-labeling reactions

were performed at 37 °C for 2 and 3, compared with �8 °C for 1.

A detailed representative protocol for this spin-labeling method is as follows:

(1) A solution of an isothiocyanate spin label (2 or 3) (2 μmol) in DMF

(20 μL) was added to a solution of RNA oligonucleotide I (40 nmol)

in borate buffer (20 μL, 100 mM, pH 8.6) and heated at 37 °C for

8 h. For isothiocyanate 2, we observed a precipitate at the end of the

reaction which was extracted into an organic solvent (see next step).

Figure 6 Synthesis of isothiocyanate spin-labeling reagents 2 and 3.
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(2) Sterile water was added (200 μL) and the excess labeling reagent was

removed by extracting the aqueous reaction mixture with EtOAc

(6�500 μL). Each of the EtOAc washings was collected separately,

and the presence of excess unreacted spin label was monitored. TLC

(silica gel, 20% EtOAc:pet. ether, Rf (2 or 3)¼0.8) could only be used

to detect the presence of spin label in the first two rounds of extraction.

In addition, EPR spectroscopy could be used to monitor the whole

extraction process; the last EtOAc washing should not show any

EPR activity.

(3) In spite of the washings in step 2, we have observed traces of unattached

spin contaminants in the spin-labeled RNA (especially using 2), which

were removed by EtOH precipitation: (NaOAc (5 μL, 3 M, pH 4.6)

and EtOH (300 μL), �80 °C, 4 h) to yield 30–34 nmol of spin-labeled

RNA. Note: Further purification of the spin-labeled RNA from the

precipitation by DPAGE yielded a product which was of similar purity

as the precipitated RNA as judged by EPR and DPAGE.

As mentioned in the spin-labeling protocol of 1, DPAGE is a useful method

to ascertain the extent of RNA spin labeling with 1, 2, and 3. It is also useful

for determining the time course of a spin-labeling reaction, just as TLC is

useful for monitoring the extent of chemical reactions. Figure 7 shows a

DPAGE analysis of samples taken from the spin-labeling reaction mixtures

(1 μL) after specific intervals of time. The spin-labeled oligonucleotide

showed reduced mobility as compared to the starting 20-amino RNA,

owing to its increased mass. For example, the sample containing 2, which

Figure 7 (A) Time course of spin-labeling reaction of RNA sequence I with 2. (B) Time
course of spin-labeling reaction of RNA sequence I with 3. (C) Control reaction on
unmodified sequence for checking out specificity of the labeling reaction with isothio-
cyanate spin label 2. Lane SL contains spin-labeled RNA III, and Co is an equimolar mix-
ture of SL and reaction mixture after 48 h.
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was removed from the reaction mixture after 0.5 h, clearly showed two

bands (Fig. 7A), indicating that the reaction was still not complete. How-

ever, the band corresponding to the starting oligonucleotide had disappeared

after 2 h, showing that RNA I had been converted to its spin-labeled deriv-

ative III. In contrast, when tetraethyl-derivative 3 was used as the labeling

reagent, 90% of the same RNA I was converted to IV in 4 h (Fig. 7B),

showing that 2 was more reactive than 3. All of the RNA for both reagents

had fully reacted after 8 h.

One of the potential drawbacks of postsynthetic labeling is nonspecific

reaction of reagents at unwanted sites in RNA. For example, reacting ali-

phatic isocyanates with unmodified RNA at 37 °C yields modified RNA

(Sigurdsson & Eckstein, 1996). To determine specificity of the 20-amino

spin labeling with aromatic isothiocyanates, isothiocyanate 2 was reacted

with an unmodified RNA oligonucleotide of the same sequence as 20-
amino-labeled oligomer I. Although the spin-labeling reactions of I were

performed at 37 °C, the unmodified RNA was heated with 2 at 60 °C
and reacted for 48 h to assess the degree of potential nonspecific labeling.

Figure 7C shows no detectable conversion of the unlabeled RNA to slower

moving products, demonstrating the selectivity of 2 for 20-amino groups

in RNA.

2.4 Analysis of Spin-Labeled Oligonucleotides
After the reaction of a 20-amino-modified oligonucleotide with a spin-

labeling reagent and isolation of the product, incorporation of the spin label

into the RNA should be verified. Several techniques are routinely used for

this purpose. Analysis by DPAGE and HPLC can be used to verify that the

oligonucleotide has been modified, but other methods must be used to ver-

ify incorporation of an intact spin label (Edwards & Sigurdsson, 2014). Even

mass spectrometry (MALDI-TOF) cannot distinguish between a nitroxide

and its hydroxylamine derivative, which may result from an unlikely reduc-

tion of the spin label. Digestion of the oligonucleotide, followed by HPLC

analysis and coinjection with an authentic sample of the spin label lesion, is a

useful technique for that purpose (Edwards & Sigurdsson, 2014). However,

the most direct method for detecting radicals is EPR spectroscopy.

Oligonucleotides labeled with a nitroxide radical show a characteristic

three-peak pattern by EPR. EPR can also be used to detect and quantify

free spin label contaminants. A free spin label tumbles rapidly in solution,

giving a narrow EPR spectrum, but after attachment to RNA, the EPR lines
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become broader due to slower tumbling in solution. In the spin-labeling

reaction with 2, we detected the presence of an importunate unattached spin

contaminant by EPR, which was still present after DPAGE purification.

This impurity was removed by performing repeated ethyl acetate washes

after the spin-labeling reaction, followed by ethanol precipitation. EPR

can also be used to perform a spin-count experiment that quantifies the

amount of nitroxide, which can be compared to the amount of oligonucle-

otides determined by UV spectroscopy.

In addition to verifying spin label incorporation, EPR spectroscopy gives

valuable information about the mobility of the spin label, independent of the

nucleic acid. Figure 8 shows the EPR spectra of oligonucleotides labeled

with 1, 2, and 3. It is noteworthy that the spectra of the isoindoline-derived

spin labels are broader, compared to the TEMPO derivative, especially for

the RNA duplexes. This shows that the isoindoline spin labels are less

mobile and should, therefore, be more useful for studies of the structure

and dynamics of nucleic acids.

3. SUMMARY AND CONCLUSIONS

Gaining understanding of RNA function through studies of structure

and dynamics is an active area of research. SDSL, in combination with EPR

spectroscopy, is fast turning out to be a valuable method for such studies.

There are two main approaches for spin labeling, the phosphoramidite

method and postsynthetic spin labeling. Among these, the latter strategy

5�-GACCUCGUXAUCGUG
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Figure 8 EPR spectra of the spin-labeled oligonucleotides at 10 °C (10 mM phosphate,
100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0). UX indicates the position of the spin-labeled
uridine.
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requires minimal effort and is less time consuming. In this chapter, we have

described postsynthetic spin labeling of 20-amino groups in RNA using two

classes of spin labels, aliphatic isocyanates and aromatic isothiocyanates. The

aromatic isothiocyanates are particularly useful and do not suffer from any of

the potential drawbacks associated with the postsynthetic labeling strategy,

for example, incomplete and/or nonspecific labeling. Spin labeling with

isothiocyanates is easy to perform and gives quantitative yields in a short

period of time, with no detectable nonspecific labeling. These

isoindoline-based spin labels are promising candidates for use in distance

measurement with pulsed EPR as they showed reduced mobility by

EPR, compared to a TEMPO-based spin label. Moreover, the

isoindoline-derived spin labels are stable under reducing conditions (Saha

et al., 2015), which makes them promising candidates for in-cell EPR

spectroscopy.
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Jagtap, A. P., Krstić, I., Kunjir, N. C., Hänsel, R., Prisner, T. F., & Sigurdsson, S. T. (2015).
Sterically shielded spin labels for in-cell EPR spectroscopy: Analysis of stability in
reducing environment. Free Radical Research, 49(1), 78–85.

Jeschke, G. (2012). DEER distance measurements on proteins. Annual Review of Physical
Chemistry, 63, 419–446.

Kim, N. K., Murali, A., & DeRose, V. J. (2004). A distance ruler for RNA using EPR and
site-directed spin labeling. Chemistry and Biology, 11(7), 939–948.

Macmillan, A. M., & Verdine, G. L. (1990). Synthesis of functionally tethered
oligodeoxynucleotides by the convertible nucleoside approach. Journal of Organic
Chemistry, 55(24), 5931–5933.

Macosko, J. C., Pio, M. S., Tinoco, I., & Shin, Y. K. (1999). A novel 50 displacement spin-
labeling technique for electron paramagnetic resonance spectroscopy of RNA. RNA,
5(9), 1158–1166.

412 Subham Saha et al.

http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0040
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0040
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0040
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0040
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0045
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0045
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0045
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0050
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0050
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0050
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0055
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0055
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0055
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0060
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0060
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0065
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0065
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0065
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0070
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0070
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0070
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0075
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0075
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0075
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0075
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0075
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0080
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0080
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0085
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0085
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0085
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0085
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0090
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0090
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0090
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0095
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0095
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0095
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0100
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0100
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0100
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0100
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0105
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0105
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0110
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0110
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0110
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0115
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0115
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0120
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0120
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0125
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0125
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0125
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0130
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0130
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0130
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0130


Maekawa, K., Nakazawa, S., Atsumi, H., Shiomi, D., Sato, K., Kitagawa, M., et al. (2010).
Programmed assembly of organic radicals on DNA. Chemical Communications, 46(8),
1247–1249.

Mandal, M., & Breaker, R. R. (2004). Gene regulation by riboswitches. Nature Reviews.
Molecular Cell Biology, 5(6), 451–463.

Marko, A., Denysenkov, V., Margraft, D., Cekan, P., Schiemann, O., Sigurdsson, S. T.,
et al. (2011). Conformational flexibility of DNA. Journal of the American Chemical Society,
133(34), 13375–13379.

Mileo, E., Etienne, E., Martinho, M., Lebrun, R., Roubaud, V., Tordo, P., et al. (2013).
Enlarging the panoply of site-directed spin labeling electron paramagnetic resonance
(SDSL-EPR): Sensitive and selective spin-labeling of tyrosine using an isoindoline-based
nitroxide. Bioconjugate Chemistry, 24(6), 1110–1117.

Milov, A., Salikhov, K., & Shirov,M. (1981). Application of the double resonance method to
electron spin echo in a study of the spatial distribution of paramagnetic centers in solids.
Soviet Physics—Solid State, 23, 565–569.

Nguyen, P., & Qin, P. Z. (2012). RNA dynamics: Perspectives from spin labels.Wiley Inter-
disciplinary Reviews RNA, 3(1), 62–72.

Nissen, P., Hansen, J., Ban, N., Moore, P. B., & Steitz, T. A. (2000). The structural basis of
ribosome activity in peptide bond synthesis. Science, 289(5481), 920–930.

Piton, N., Mu, Y., Stock, G., Prisner, T. F., Schiemann, O., & Engels, J. W. (2007). Base-
specific spin-labeling of RNA for structure determination. Nucleic Acids Research, 35(9),
3128–3143.

Qin, P. Z., Butcher, S. E., Feigon, J., & Hubbell, W. L. (2001). Quantitative analysis of the
isolated GAAA tetraloop/receptor interaction in solution: A site-directed spin labeling
study. Biochemistry, 40(23), 6929–6936.

Qin, P. Z., Hideg, K., Feigon, J., & Hubbell, W. L. (2003). Monitoring RNA base structure
and dynamics using site-directed spin labeling. Biochemistry, 42(22), 6772–6783.

Qin, P. Z., Iseri, J., & Oki, A. (2006). A model system for investigating lineshape/structure
correlations in RNA site-directed spin labeling. Biochemical and Biophysical Research Com-
munications, 343(1), 117–124.

Ramos, A., &Varani, G. (1998). A newmethod to detect long-range protein-RNA contacts:
NMR detection of electron-proton relaxation induced by nitroxide spin-labeled RNA.
Journal of the American Chemical Society, 120(42), 10992–10993.

Reginsson, G. W., & Schiemann, O. (2011). Studying bimolecular complexes with pulsed
electron–electron double resonance spectroscopy. Biochemical Society Transactions, 39,
128–139.

Roy, R., Hohng, S., & Ha, T. (2008). A practical guide to single-molecule FRET. Nature
Methods, 5(6), 507–516.

Saha, S., Jagtap, A. P., & Sigurdsson, S. T. (2015). Site-directed spin labeling of 20-amino
groups in RNAwith isoindoline nitroxides that are resistant to reduction.Chemical Com-
munications, 51, 13142–13145.

Schiemann, O., Cekan, P., Margraf, D., Prisner, T. F., & Sigurdsson, S. T. (2009). Relative
orientation of rigid nitroxides by PELDOR: Beyond distance measurements in nucleic
acids. Angewandte Chemie, International Edition, 48(18), 3292–3295.

Schiemann, O., Fritscher, J., Kisseleva, N., Sigurdsson, S. T., & Prisner, T. F. (2003). Struc-
tural investigation of a high-affinity Mn-II binding site in the hammerhead ribozyme by
EPR spectroscopy and DFT calculations. Effects of neomycin B on metal-ion binding.
ChemBioChem, 4(10), 1057–1065.

Schiemann, O., & Prisner, T. F. (2007). Long-range distance determinations in bio-
macromolecules by EPR spectroscopy. Quarterly Reviews of Biophysics, 40(1), 1–53.

Shelke, S. A., Sandholt, G. B., & Sigurdsson, S. T. (2014). Nitroxide-labeled pyrimidines for
non-covalent spin-labeling of abasic sites in DNA and RNA duplexes.Organic & Biomo-
lecular Chemistry, 12(37), 7366–7374.

413Site-Directed Spin Labeling of RNA

http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0135
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0135
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0135
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0140
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0140
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0145
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0145
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0145
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0150
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0150
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0150
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0150
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0155
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0155
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0155
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0160
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0160
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0165
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0165
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0170
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0170
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0170
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0175
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0175
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0175
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0180
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0180
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0185
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0185
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0185
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0190
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0190
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0190
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0195
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0195
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0195
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0200
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0200
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf9000
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf9000
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf9000
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf9000
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0205
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0205
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0205
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0210
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0210
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0210
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0210
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0215
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0215
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0220
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0220
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0220


Shelke, S. A., & Sigurdsson, S. T. (2010). Noncovalent and site-directed spin labeling of
nucleic acids. Angewandte Chemie, International Edition, 49(43), 7984–7986.

Shelke, S. A., & Sigurdsson, S. T. (2012). Site-directed spin labelling of nucleic acids. Euro-
pean Journal of Organic Chemistry, 2012(12), 2291–2301.

Shelke, S. A., & Sigurdsson, S. T. (2013). Site-directed nitroxide spin labeling of biopoly-
mers. In C. R. Timmel & J. R. Harmer (Eds.), Structural information from spin-labels
and intrinsic paramagnetic centres in the biosciences, (pp. 121–162). Germany: Springer.

Sicoli, G., Wachowius, F., Bennati, M., & H€obartner, C. (2010). Probing secondary struc-
tures of spin-labeled RNA by pulsed EPR spectroscopy.Angewandte Chemie, International
Edition, 49(36), 6443–6447.

Sigurdsson, S. T., & Eckstein, F. (1996). Site specific labelling of sugar residues in
oligoribonucleotides: Reactions of aliphatic isocyanates with 20 amino groups. Nucleic
Acids Research, 24(16), 3129–3133.

Sisamakis, E., Valeri, A., Kalinin, S., Rothwell, P. J., & Seidel, C. A. M. (2010). Accurate
single-molecule FRET studies using multiparameter fluorescence detection. Methods in
Enzymology, 475, 455–514.

Sowa, G. Z., &Qin, P. Z. (2008). Site-directed spin labeling studies on nucleic acid structure
and dynamics. Progress in Nucleic Acid Research and Molecular Biology, 82, 147–197.

Xu, Y., &Matthews, S. (2013). TROSYNMR spectroscopy of large soluble proteins. Topics
in Current Chemistry, 335, 97–119.

414 Subham Saha et al.

http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0225
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0225
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0230
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0230
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0235
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0235
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0235
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0240
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0240
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0240
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0240
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0245
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0245
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0245
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0245
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0250
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0250
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0250
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0255
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0255
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0260
http://refhub.elsevier.com/S0076-6879(15)00421-8/rf0260


213 

 

Paper IV 

  

Paper IV 



214 

 



Noncovalent Spin-Labeling of RNA: The Aptamer Approach 
 

Subham Saha1, Thilo Hetzke2, Thomas F. Prisner2 and Snorri Th. Sigurdsson1* 
1
University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, 

Iceland. E-mail: snorrisi@hi.is 

2
Institute of Physical and Theoretical Chemistry, J. W. Goethe University, Max-von-Laue-Str. 7, 

60438 Frankfurt (Germany) 

 
 

Draft, 2
nd

 June 2017 
 

 
Experimental Section  
 
 
Chemical specifications: 

 

Chemicals were purchased from Sigma-Aldrich Chemical Company and Acros, Belgium, and 

were used without further purification.  All solvents were distilled from calcium hydride before 

use and stored over activated 4 Å molecular sieves under nitrogen. TLC was carried out using 

glass plates pre-coated with silica gel (Kieselgel 60 F254, 0.2 mm, Merck).  Visualisation was 

done by UV light.  Silica gel was purchased from Silicycle, and used for medium pressure 

chromatography (‘flash’-chromatography). 
1
H and 

13
C NMR spectra were recorded at the 

frequencies stated, using deuterated solvents as internal standards.  400 MHz spectra were 

recorded on a Bruker Avance 400 spectrometer.  Residual proton signals from the deuterated 

solvents were used as references [D2O (4.81 ppm), d6-DMSO (2.50 ppm), chloroform (7.26 

ppm), d4-MeOH (4.84 and 3.31 ppm)] for 
1
H spectra.  The residual 

13
C signals from the 

deuterated solvents being used as references [d6-DMSO (39.7 ppm), chloroform (77.0 ppm), d4-

MeOH (49.05 ppm)] for 
13

C spectra.  All coupling constants were measured in Hertz. All 

moisture sensitive reactions were carried out in flame-dried glassware using nitrogen or argon 

from standard industrial cylinders, dried through an activated silica column. 

 

 

mailto:snorrisi@hi.is


2 

 

 

 

Synthesis of 19. 2M n-BuLi (3.64 mL, 1.2 equivalents) was added dropwise under argon to a 

solution of 1,3-diiodobenzene 15 (2 g, 0.00607 mol) in freshly dried THF (24.3 mL) at -78 ˚C. 

This was allowed to stir for 2 hours at -78 . Following this, a solution of Michler’s ketone 14 

(1.62 g, 0.00607 mol) in THF (36.4 mL) was added drop wise. The reaction mixture was allowed 

to reach room temperature and was left to stir for 18 hours. After completion of the reaction 

(TLC), the reaction mixture was quenched by adding water and extracted with ethyl acetate and 

washed with water and brine to obtain 2 g (70%) crude of 17. TLC analysis revealed this 

compound to be highly unstable and therefore, the crude material was immediately used for the 

next step. This was dissolved in methanol (84.7 mL) and hydrochloric acid (1.2 equiv.) was 

added to it dropwise and immediately the colour changed to dark green. This was refluxed at 90 

˚C for 2 hours following which all solvents were evaporated out under reduced pressure and the 

crude reaction mixture was extracted in 10% methanol in dichloromethane and washed with 

water and brine. This was purified using 60-200 mesh size silica gel column chromatography and 

pure compound 19 was eluted in 6% methanol-dichloromethane to obtain 1.2 g (63%) as a dark 

green solid. 

TLC (Silica gel, 40% EtOAc in petroleum ether), Rf (17) = 0.6 

TLC (Silica gel, 10% methanol in dichloromethane), Rf (19) = 0.2 

 

1
H-NMR (400MHz, CDCl3): δ 3.35 (s, 12H, NH3 X 4), 6.95 (d, 4H, a, J = 9.2 Hz), 7.23-7.22 (m, 

2H, e+f), 7.29 (d, 2H, b, J = 9.2 Hz), 7.56 (s, 1H, c), 7.93-7.90 (m, 1H, d). 

 

Mass spectrometry: Calculated mass = 455.1 

                                Observed mass = 455.09 
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Figure 1: 1H NMR spectrum of 19. 

 
Figure 2: 13

C NMR spectrum of 19. 
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Figure 3: Mass spectrum for 19. 
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Synthesis of 11. To a stirred solution of 19 (0.050 g, 0.109 mmol) and nitroxide 10 (0.058 g, 

0.329 mmol) in DMF (1 mL), copper iodide (0.002 g, 0.0109 mmol) was added, followed by 

triethylamine (0.5 mL, 0.274 mmol) was added to the reaction mixture. After degassing with 

argon for a couple of minutes, bis(triphenylphosphine)palladium(II) chloride (0.0077 g, 0.0109 

mmol) was added and this reaction mixture was heated at 70 ˚C for 18 h. After completion of the 

reaction (TLC), the reaction mixture was washed with water and brine and extracted in ethyl 

acetate. The crude reaction mixture was purified by preparative TLC. The plate was run thrice in 

35% ethyl acetate in petroleum ether and eluted in 5% methanol in dichloromethane. 8 mg of the 

spin probe 6 was obtained in 29% yield. 

 

TLC (Silica gel, 30% ethyl acetate in petroleum ether), Rf (6) = 0.5 

 

1
H-NMR (400 MHz, Methanol-d4) δ = 7.38 (s, 1H), 7.06 (s, 1H), 6.94 (s, 2H), 6.59 (s, 2H), 3.03 

(d, J=7.1, 1H), 2.80 (s, 6H), 1.18 (t, J=6.9, 3H), 0.78 (s, 2H). 

 

Mass spectrometry: Calculated mass = 505.31 

                                Observed mass = 505.309 
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Figure 4: 1H NMR spectrum for 11. 

 

  

Figure 5: Mass spectrum for 11. 
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Synthesis of 20. 2M n-BuLi (3.64 mL, 1.2 equivalents) was added dropwise under argon to a 

solution of 1,4-diiodobenzene 16 (2 g, 0.00607 mol) in freshly dried THF (24.3 mL) at -78 ˚C. 

This was allowed to stir for 2 hours at -78 ˚C. This was followed by dropwise addition of a 

solution of Michler’s ketone 14 (1.62 g, 0.00607 mol) in THF (36.4 mL). The reaction mixture 

was allowed to reach room temperature and was left to stir for 18 hours. The reaction mixture 

was quenched by adding water after completion of the reaction (TLC). This was extracted with 

ethyl acetate and washed with water and brine to obtain 1.6 g (73%) crude of 18. TLC analysis 

revealed this compound to be highly unstable and therefore, the crude material was immediately 

used for the next step. This bis(4-(dimethylamino)phenyl)(4-iodophenyl)methanol 18 (1.6 g, 

0.00388 mol) was dissolved in methanol (67.7 mL) and hydrochloric acid (1.2 equivalents) was 

added to it dropwise and immediately the colour changed to dark green. This was refluxed at 90 

˚C for 2 hours following which all solvents were evaporated out under reduced pressure and the 

crude reaction mixture was extracted in 10% methanol in dichloromethane and washed with 

water and brine. This was purified using 60-200 mesh size silica gel column chromatography and 

pure compound 20 was eluted in 6% methanol-dichloromethane to obtain 1.23 g (71%) as a dark 

green solid. 

 

TLC (Silica gel, 40% EtOAc in petroleum ether), Rf (18) = 0.6 

TLC (Silica gel, 10% methanol in dichloromethane), Rf (20) = 0.2 

 

1
H-NMR (400MHz, CDCl3): δ 3.43 (s, 12H, NH3 X 4), 7.07-7.01 (m, 6H, a+c), 7.40-7.38 (d, 

4H, b, J = 9.2 Hz), 7.93-7.91 (dd, 2H, d). 

 

Mass spectrometry: Calculated mass = 455.1 

                                  Observed mass = 455.09 
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Figure 6: 1H NMR spectrum of 20.  

 

 

Figure 7: 13
C NMR spectrum of 20 
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Figure 8: Mass spectrum for 20. 
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Synthesis of 12. To a stirred solution of 20 (0.050 g, 0.109 mmol) and 10 (0.058 g, 0.329 mmol) 

in DMF (1 mL), copper iodide (0.002 g, 0.0109 mmol) was added, followed by triethylamine 

(0.5 mL, 0.274 mmol). Bis(triphenylphosphine)palladium(II) chloride (0.0077 g, 0.0109 mmol) 

was added after degassing with argon for a 5 minutes and this reaction mixture was heated at 70 

˚C for 18 h. After completion of the reaction (TLC), the reaction mixture was washed with water 

and brine and extracted in ethyl acetate. The crude reaction mixture was purified thrice by 

preparative TLC. The plates were run in 35% ethyl acetate in petroleum ether and eluted in 5% 

methanol in dichloromethane. 8.5 mg of the final spin probe 12 was obtained in 32% yield. 

 

TLC (Silica gel, 30% ethyl acetate in petroleum ether), Rf (12) = 0.5 

 

1
H NMR (400 MHz, Methanol-d4) δ = 7.34 (d, J=8.2, 1H), 7.08 (dd, J=12.9, 5.7, 1H), 6.95 (dd, 

J=15.5, 7.9, 1H), 6.60 (d, J=7.7, 1H), 3.23 (s, 2H), 3.10 (q, J=7.3, 6H), 2.81 (d, J=2.8, 3H), 1.21 

(t, J=7.3, 11H), 0.83 – 0.75 (m, 1H). 

 

Mass spectrometry: Calculated mass = 505.31 

                                Observed mass  = 505.309 

  



11 

 

 

Figure 9: 1H NMR spectrum of 20. 

 

 

Figure 10: Mass spectrum for 12 
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Synthesis of 22. To a solution of 2-benzyl-1,1,3,3-tetraethylisoindoline 21 (0.5 g, 0.00155 mol) 

in freshly dried CH2Cl2 (4.7 mL) was added a solution of Br2 (0.088 mL, 0.00342 mol) in 

CH2Cl2 (3.11 mL) at 0 ˚C. AlCl3 (0.726 g, 0.00545 mol) was added immediately and this was 

stirred at 0 ˚C for 1 hour. After completion of the reaction (TLC), the reaction mixture was 

poured into a glass beaker with 15 g of ice. The aqueous layer was basified with 10N NaOH and 

extracted in CH2Cl2 twice. The combined CH2Cl2 layers were washed with brine. The crude 

reaction mixture was purified by 60-200 silica gel column chromatography. Pure compound was 

eluted in 1.5% methanol in dicholoromethane to obtain 166 mg (30 %) of compound 22. 

 

TLC (Silica gel, 10% MeOH in CH2Cl2), Rf (compound 22) = 0.5 

 

1
H-NMR (400MHz, CDCl3): δ = 7.36 (ddd, J=19.7, 13.7, 7.5, 2H, d+e), 6.97 (d, J=8.1, 1H, c), 

1.82 – 1.59 (m, 9H, a), 0.98 – 0.82 (m, 14H, b). 

 

13
C NMR: δ 150.15, 146.65, 129.67, 127.82, 127.56, 125.79, 125.64, 124.05, 120.38, 77.42, 

77.10, 76.79, 68.34, 68.20, 33.76, 33.72, 8.90. 

 

Mass spectrometry: For C16H24BrN, calculated mass: 309.11, observed mass: 310.11 
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Figure 11: 1H NMR spectrum of compound 22 

 

 
Figure 12: 13

C NMR spectrum of compound 22 
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Synthesis of 23. To a stirred solution of compound 22 (0.50 g, 0.00161 mol) in dry CH2Cl2, m-

CPBA (0.556g, 0.00322 mol) was added at 0 ˚C and the reaction mixture was allowed to stir at 

room temperature overnight. After completion of the reaction (TLC), this was washed with water 

and extracted in dichloromethane and washed with brine. The crude reaction mixture was 

purified by 60-200 silica gel column chromatography. Pure compound was eluted in 5% ethyl 

acetate in petroleum ether to obtain 450 mg (59%) of compound 23. 

 

TLC (Silica gel, 20% ethyl acetate in petroleum ether), Rf (compound 23) = 0.8 

 

1
H-NMR (400MHz, CDCl3): δ = 7.25 (dd, J=8.1, 1.5, 1H), 7.11 (d, J=1.4, 1H), 6.84 (d, J=8.1, 

1H), 1.90 (ddd, J=14.1, 7.4, 2.2, 4H), 1.63 (ddd, J=14.0, 7.3, 2.7, 4H), 0.75 (dd, J=16.2, 7.6, 

12H). 

 

13
C NMR: δ 151.32, 145.33, 141.82, 129.38, 129.29, 129.15, 128.41, 126.63, 125.32, 120.19, 

119.52, 112.21, 77.57, 77.26, 76.94, 72.36, 72.26, 28.65, 28.61, 9.17, 9.12. 

 

Mass spectrometry: For C16H23BrNO•, calculated mass: 324.1, observed mass: 347 (sodium 

adduct) 
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Figure 13: 1H NMR spectrum of compound 23. PH stands for phenyl hydrazine. 

 

Figure 14: 13
C NMR spectrum of compound 23. PH stands for phenyl hydrazine. 
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Synthesis of 13. To a solution of compound 23 (0.038 g, 0.000116 mol) in freshly dried THF 

(0.467 mL), 2M n-BuLi (0.064 mL, 0.000128 mol) was added dropwise under argon at -78 ˚C. 

This was stirred for 35 minutes at -78 ˚C following which a solution of 24 (0.031 g, 0.000116 

mol) in THF (0.701 mL) was added. This was allowed stir at -78   for 30 minutes and then left 

at room temperature for 18 hours. After completion of the reaction (TLC), the reaction mixture 

was quenched by adding water at 0˚C. The reaction mixture was extracted with ethyl acetate and 

washed with water and brine to obtain 10 mg (16%) crude of (25). TLC analysis revealed this 

compound to be highly unstable and therefore, the crude material was immediately used for the 

next step. 1.25M methanolic HCl (0.012 mol, 0.8 equiv.) was added at room temperature to 

compound 25 (0.010g, 0.0000194 mol) dissolved in methanol (0.291 mL). This was stirred at 

ambient temperature for 5 minutes, followed which, it was concentrated to dryness and 

azeotroped with toluene. The crude compound was purified in thrice using preparative TLC 

which was run in 10% methanol in dichloromethane and eluted in 250 mL 8% methanol in 

dichloromethane to afford 10 mg (82%) of compound 13. 

 

TLC (Basified silica gel, 40% EtOAc in petroleum ether), Rf (compound 25) = 0.4 

TLC (Silica gel, 10% methanol in dichloromethane), Rf (13) = 0.2 

 

1
H NMR (400 MHz, Methanol-d4) δ = 7.39 (s, 2H), 6.98 (s, 2H), 3.26 (s, 6H), 2.82 (s, 1H), 1.94 

(s, 1H), 1.20 (d, J=9.3, 14H), 0.83 – 0.75 (m, 3H). 

 

Mass spectrometry: For C33H43N3O•+, calculated mass = 497.34,  

                                                                              Found = 497.3443  
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Figure 15: 1H NMR spectrum of compound 13. 

 

 
Figure 16: Mass spectrum of spin label 13 
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Synthesis of 31. 3-Iodobenzaldehyde 29 (0.170 g, 0.732 mmol) was added to a stirred solution 

of 3-dimethylaminophenol 30 (0.200 g, 1.46 mmol) in propionic acid (1.5 mL). p-TsOH (0.016 

g, 0.0975 mmol) was added to it and this was heated for 16 hours at 80 ˚C., following which, the 

reaction mixture was diluted with ethyl acetate and water. The aqueous layer was basified using 

90% KOH (aq.). The crude product was then extracted in ethyl acetate and washed with water. 

The organic layer was separated and dried under anhydrous Na2SO4, decanted and concentrated 

under reduced pressure. The crude product was purified by flash column chromatography (60-

200 mesh size silica gel). Pure compound was eluted in 40% EtOAc-petroleum ether. 

Furthermore, the product was concentrated and recrystallized in dichloromethane-petroleum 

ether to obtain light brown coloured solid product 31 (0.110 g, 30 % yield). 

 

TLC (Silica gel, 70% Ethyl acetate in Petroleum ether), Rf (31) = 0.4  

 

1
H NMR (400 MHz, DMSO-d

6
) δ = 8.95 (s, 2H), 7.58 – 7.37 (m, 1H), 7.26 (s, 1H), 7.09 – 6.91 

(m, 2H), 6.45 (d, J=8.4, 2H), 6.18 (d, J=2.5, 2H), 6.10 (dd, J=8.5, 2.5, 2H), 5.73 (s, 1H), 2.81 (s, 

12H). 

 

 

Mass spectrometry: Mass calculated for C23H25IN2O2 = 488.1 

                                   Mass observed for C23H25IN2O2 = 489.1 
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Figure 17: 1H NMR spectrum of compound 31.  

 

 

Figure 18: 13
C NMR spectrum of compound 31. 
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Synthesis of 32. Concentrated sulphuric acid (6.76 mL, 5mL/mmol) was added at 0  to 

compound 31 (0.660 g, 1.35 mmol) in a vial. The vial was sealed and the reaction was stirred at 

room temperature for 48 hours. The work up was done in dark as the product 32 is sensitive to 

light. The reaction mixture poured into 100 g of ice. It was then washed with water and extracted 

in 9% methanol in dichloromethane and dried using Na2SO4. The crude product was purified in 

60-200 mesh size silica gel column chromatography and the pure fractions were eluted in 8% 

methanol in dichloromethane. The purified product obtained was concentrated in a rotavapour 

under dark conditions (covered appropriately with aluminium foil) and dried under high vacuum 

to obtain a dark purple product. This was further purified twice using preparative TLC under 

darkness to obtain 99 mg (15%) of compound 32. 

 

TLC (Silica gel, 10% methanol in dichloromethane), Rf (32) = 0.1 

 

1
H NMR (400 MHz, Methanol-d4) δ = 8.07 (dt, J=7.9, 1.4, 1H), 7.91 (t, J=1.7, 1H), 7.55 (dt, 

J=7.6, 1.4, 1H), 7.47 (t, J=7.8, 1H), 7.33 (d, J=9.5, 2H), 7.10 (dd, J=9.5, 2.5, 2H), 6.93 (d, J=2.5, 

2H), 3.34 (d, J=0.9, 12H). 

 

Mass spectrometry: Calculated for C23H22IN2O+ = 469.0771 

                                                                     Found = 469.0773 

 



21 

 

 

Figure 19. 1H NMR spectrum of 32. 

 

 

 

Figure 20: 13
C NMR spectrum of compound 32.  
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Compound 26. Iodo- intermediate 32 (0.027 g, 0.0575 mmol) and nitroxide 10 (0.030 g, 0.172 

mmol) were dissolved in 0.5 mL of dimethylformamide and 0.5 mL of triethylamine. Copper 

iodide (0.001 g, 0.00575 mmol) was added and this was degassed with argon for 5 minutes. 

Under argon, bis(triphenylphosphine)palladium(II) chloride (0.004 g, 0.00575 mmol) was added 

and this was heated at 60 ˚C overnight. The crude reaction mixture was passed through a 

filtration column (60-200 mesh size silica gel) and eluted in 10% methanol in dichloromethane. 

This was concentrated and extracted in ethyl acetate and washed with excess of water and 

purified in 60-200 mesh size silica gel column chromatography where the desired spot was 

obtained in 4% methanol in dichloromethane. To obtain purer compound, preparative TLC was 

done twice to obtain 8 mg of 26 with 27% yield. 

 

TLC (Silica gel, 20% methanol in dichloromethane), Rf (26) = 0.4 

 

1
H NMR (400 MHz, Methanol-d4) δ = 7.59 – 7.43 (m, 2H), 3.23 (s, 2H), 2.83 (s, 1H), 1.19  

(s, 3H), 0.84 – 0.75 (m, 1H), 0.79 (s, 1H). 

 

Mass spectrometry: Mass calculated for C34H37N3O2
+

 
˚
 = 519.29 

                                  Mass obtained for C34H37N3O2
+

 
˚
   = 519.2834  
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Figure 21. 1H NMR spectrum of 26. 

 

 

Figure 22. Mass spectrum of spin probe 26. 
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Compound 27. Iodo- intermediate 32 (0.030 g, 0.0639 mmol) and nitroxide 33 (0.031 g, 0.191 

mmol) were dissolved in 0.5 mL of dimethylformamide and 0.5 mL of triethylamine. Copper 

iodide (0.0012 g, 0.00639 mmol) was added and this was degassed with argon for 5 minutes. 

Under argon, bis(triphenylphosphine)palladium(II) chloride (0.0044 g, 0.00639 mmol) was 

added and this was heated at 60˚C overnight. The crude reaction mixture was passed through a 

filtration column (60-200 mesh size silica gel) and eluted in 10% methanol in dicholoromethane. 

This was concentrated and extracted in ethyl acetate and washed with excess of water and 

purified in 60-200 mesh size silica gel column chromatography where the desired spot was 

obtained in 4% methanol in dichloromethane. To obtain purer compound, preparative TLC was 

done twice to obtain 8.3 mg of 27 with 29% yield. 

 

TLC (Silica gel, 20% methanol in dichloromethane), Rf (27) = 0.3 

 

1
H NMR (400 MHz, Methanol-d4) δ = 7.29 (d, J=8.5, 1H), 7.05 (s, 1H), 6.92 (s, 1H), 3.24 (s, 

4H), 1.19 (s, 4H), 0.78 (s, 2H). 

 

Mass spectrometry: Mass calculated for C33H35N3O2
+

 
˚
 = 505.2724 

                                Mass obtained for C33H35N3O2
+

 
˚
 = 505.2710 
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 Figure 23. 1H NMR spectrum of 27. 
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Compound 28. Iodo- intermediate 32 (0.035 g, 0.0745 mmol) and nitroxide 34 (0.047 g, 0.223 

mmol) were dissolved in 0.5 mL of dimethylformamide and 0.5 mL of triethylamine. Copper 

iodide (0.0014 g, 0.00745 mmol) was added and this was degassed with argon for 5 minutes. 

Under argon, bis(triphenylphosphine)palladium(II) chloride (0.0052 g, 0.00745 mmol) was 

added and this was heated at 60˚C overnight. The crude reaction mixture was passed through a 

filtration column (60-200 mesh size silica gel) and eluted in 10% methanol in dichloromethane. 

This was concentrated and extracted in ethyl acetate and washed with excess of water and 

purified in 60-200 mesh size silica gel column chromatography where the desired spot was 

obtained in 6% methanol in dichloromethane. To obtain purer compound, preparative TLC was 

done twice to obtain 7.8 mg of 28 with 34% yield. 

 

TLC (Silica gel, 20% methanol in dichloromethane), Rf (28) = 0.2 

 

1
H NMR (400 MHz, Methanol-d4) δ = 7.64 (s, 0H), 7.55 (s, 0H), 7.32 (d, J=8.4, 1H), 7.05 (d, 

J=9.0, 1H), 6.93 (d, J=8.5, 1H), 3.24 (d, J=2.8, 8H), 2.05 (d, J=1.0, 0H), 1.49 (s, 2H), 1.34 – 1.26 

(m, 4H), 1.19 (s, 1H). 

 

Mass spectrometry: Mass calculated for C37H37N3O2
+

 
˚
 = 555.2880 

                                  Mass obtained for C37H37N3O2
+

 
˚
 = 555.2833 
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 Figure 24. 1H NMR spectrum of 28. 
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Figure 25: EPR spectra of nitroxide 13 with MG aptamer (left column), with non-binding mutant (middle column) and 

without any RNA (right column). EPR spectra have been shown as a function of decreased temperature. All spectra were 

phase corrected and aligned with respect to the central peak. Data recorded in a phosphate buffer [10 mM Na2HPO4, 100 

mM NaCl, 0.1 mM Na2EDTA, pH 7.0] dissolved in 2% DMSO, 30% ethylene glycol and 68% sterile water. 
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Figure 26: EPR spectra of nitroxide 26 with MG aptamer (left column), with non-binding mutant (middle column) and 

without any RNA (right column). EPR spectra have been shown as a function of decreased temperature. All spectra were 

phase corrected and aligned with respect to the central peak. Data recorded in a phosphate buffer [10 mM Na2HPO4, 100 

mM NaCl, 0.1 mM Na2EDTA, pH 7.0] dissolved in 2% DMSO, 30% ethylene glycol and 68% sterile water. 
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Figure 27: EPR spectra of nitroxide 28 with MG aptamer (left column), with non-binding mutant (middle column) and 

without any RNA (right column). EPR spectra have been shown as a function of decreased temperature. All spectra were 

phase corrected and aligned with respect to the central peak. Data recorded in a phosphate buffer [10 mM Na2HPO4, 100 

mM NaCl, 0.1 mM Na2EDTA, pH 7.0] dissolved in 2% DMSO, 30% ethylene glycol and 68% sterile water. 
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Figure 28: EPR spectra of nitroxide 28 with MG aptamer (left column), with non-binding mutant (middle column) and 

without any RNA (right column). EPR spectra have been shown as a function of decreased temperature. All spectra were 

phase corrected and aligned with respect to the central peak. Data recorded in a phosphate buffer [10 mM Na2HPO4, 100 

mM NaCl, 0.1 mM Na2EDTA, pH 7.0] dissolved in 2% DMSO, 30% ethylene glycol and 68% sterile water. 
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Figure 29: Fluorescence titration spectra of binding of nitroxide 27 (0.45 nmol in 3000 µL) with increasing amounts of 

MG aptamer. Data recorded in a phosphate buffer (10 mM Na2HPO4, 100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0). 
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Figure 30: Fluorescence titration spectra of binding of nitroxide 28 (0.45 nmol in 3000 µL) with increasing amounts of 

MG aptamer. Data recorded in a phosphate buffer (10 mM Na2HPO4, 100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0). 
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Figure 31: Fluorescence titration spectra of binding of nitroxide 26 (0.45 nmol in 3000 µL) with increasing amounts of 

MG aptamer. Data recorded in a phosphate buffer (10 mM Na2HPO4, 100 mM NaCl, 0.1 mM Na2EDTA, pH 7.0). 
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