
26th International Conference on Information Technology (IT)
Žabljak, 16 – 19 February, 2022

Speed-Up of Machine Learning for Sound
Localization via High-Performance Computing

Eric Michael Sumner, Marcel Aach, Andreas Lintermann, Runar Unnthorsson, and Morris Riedel

Abstract— Sound localization is the ability of humans to
determine the source direction of sounds that they hear. Emu-
lating this capability in virtual environments can have various
societally relevant applications enabling more realistic virtual
acoustics. We use a variety of artificial intelligence methods,
such as machine learning via an Artificial Neural Network
(ANN) model, to emulate human sound localization abilities.
This paper addresses the particular challenge that the training
and optimization of these models is very computationally-
intensive when working with audio signal datasets. It describes
the successful porting of our novel ANN model code for sound
localization from limiting serial CPU-based systems to powerful,
cutting-edge High-Performance Computing (HPC) resources to
obtain significant speed-ups of the training and optimization
process. Selected details of the code refactoring and HPC
porting are described, such as adapting hyperparameter op-
timization algorithms to efficiently use the available HPC re-
sources and replacing third-party libraries responsible for audio
signal analysis and linear algebra. This study demonstrates that
using innovative HPC systems at the Jülich Supercomputing
Centre, equipped with high-tech Graphics Processing Unit
(GPU) resources and based on the Modular Supercomputing
Architecture, enables significant speed-ups and reduces the
time-to-solution for sound localization from three days to three
hours per ANN model.

I. INTRODUCTION

The Acoustic and Tactile Engineering Lab (ACUTE) of
the Icelandic EuroCC National Competence Center (NCC)1

for Artificial Intelligence (AI) and High-Performance Com-
puting (HPC) performs research and product development for
societally relevant challenges in many applications together
with its European partners (e.g., project Sound of Vision
won the Tech for Society award in 20182). This includes

*This work was performed in the Center of Excellence (CoE) Research
on AI- and Simulation-Based Engineering at Exascale (RAISE) receiving
funding from EU’s Horizon 2020 Research and Innovation Framework
Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733.
Icelandic HPC Competence Center is funded by the EuroCC project that
has received funding from the European HPC Joint Undertaking (JU) under
grant agreement No 951732. The JU receives support from the EU’s Horizon
2020 research and innovation programme.

Eric Michael Sumner (ems36@hi.is), Runar Unnthorsson (runson@hi.is),
and Morris Riedel (morris@hi.is) are with the department of Industrial
Engineering, Mechanical Engineering, and Computer Science, University
of Iceland, Reykjavík, Iceland

Marcel Aach (m.aach@fz-juelich.de), Andreas Lintermann
(a.lintermann@fz-juelich.de), and Morris Riedel (m.riedel@fz-juelich.de)
are with the Jülich Supercomputing Centre, Forschungszentrum Jülich,
Germany

1http://ihpc.is/community
2https://soundofvision.net/sound-of-vision-at-ict-2018/

the development of wearable assistive devices for visually
impaired persons, cochlear implant recipients, and solutions
for delivering accurate virtual acoustics (i.e., sounds gener-
ated by computers) as realistically as possible and on multi-
channel recording/playback.

The lab thus creates and uses large quantities of data;
one particular challenge in virtual acoustics is ’sound lo-
calization’, the ability of humans to determine the source
direction of sounds that they hear [1]. Several lab members
use various AI and Machine Learning (ML) models, such as
an Artificial Neural Network (ANN) [2], with audio signal
datasets to develop emulations of human sound localization.
In addition to identifying the relevant features of these audio
signal datasets, another challenge is to determine the right
ANN model architecture and the best set of hyperparameters
to obtain good model accuracy.

This paper explicitly describes the ANN models’ speed-
up obtained by porting ML application code to cutting-
edge HPC resources, enabling a faster emulation of human
sound localization. The original application code used to
train the ANN model is a Python program usually executed
on laptops of lab members and based on libraries that are
not optimized for HPC environments. Consequently, training
these ANN models takes several days while cutting-edge
supercomputing resources enable a fast training of ANNs
via innovative AI libraries such as PyTorch [3]. Porting
the application to an HPC environment also significantly
improves the overall time to solution for the computationally-
intensive optimization of hyperparameters for these models.
This paper describes how the application code is ported to
the innovative Modular Supercomputing Architecture (MSA)
system Dynamic Exascale Entry Platform Extreme Scale
Technologies (DEEP-EST)3 at Jülich Supercomputing Centre
(JSC)4, speeding up ANN model training and hyperparame-
ter optimization while maintaining the model accuracy.

The remainder of this paper is structured as follows.
Section II provides a brief introduction to important concepts,
i.e. HPC, ANN models with hyperparameter optimization,
and sound localization methods. Section III then describes
the studied model and the porting strategies employed,
including a detailed description of the HPC systems and
libraries used. Section IV presents a discussion of the porting
results and speed-up achievements. The paper ends with
some concluding remarks in Sec. V.

3https://fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/DEEP-EST/_node.html
4https://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html978-1-6654-2127-0/22/$31.00 ©2022 IEEE

II. BACKGROUND

This section provides a brief introduction to important
concepts for the experiment: Section II-A describes the
architecture of HPC systems in general, Sec. II-B describes
relevant ML concepts, and Sec. II-C describes the physical
mechanism of sound localization.

A. High-Performance Computing

HPC refers to running applications on computing systems
which feature a large number of interconnected processors,
and also to software tools which efficiently make use of
these systems. With this computing power, it is possible to
run tasks much faster than is possible on a single machine
with just a few processors. HPC systems are particularly re-
quired when processing large datasets with computationally-
intensive models.

The goal of an MSA is to improve the overall performance
of programs by providing different hardware components
for different types of computations. In this case, the su-
percomputer consists of several computing modules with
distinct hardware configurations, connected by an efficient
communication system [4]. Neural networks can benefit from
such an MSA, e.g. by scheduling the data loading on the
Central Processing Units (CPUs) of a compute node and
running the compute-intensive training on the corresponding
GPUs.

B. Neural Networks and Hyperparameter Optimization

In general, the performance of an ML model strongly
depends on its hyperparameters. In the case of ANNs [2],
these hyperparameters are related to the optimizer like the
batch size, learning rate, or momentum. Parameters of the
overall architecture such as the number of layers, neurons
per layer, or specifications of the data pre-processing steps
are also hyperparameters. Usually, the user needs to set these
parameters manually at the beginning of the training.

Hyperparameter optimization describes the process of
searching for the hyperparameters of a model which achieve
the best possible performance. This search is compute-
intensive as it requires a full model training run for many
combinations of different hyperparameter values. Several
methods are used to reduce these computational costs, such
as terminating unpromising training runs early and predicting
good hyperparameter combinations via Bayesian optimiza-
tion [5].

C. Sound Localization

As incoming sound waves interact with the outer ear,
internal reflections mutually interfere, modifying the signal
received by the eardrum. The human auditory system uses
spectral features introduced by this process to determine the
sound source’s direction [1].

For point sources in the far field, this filtering effect can be
characterized as a direction-dependent, linear, time-invariant
audio filter, known as the Head-Related Transfer Function
(HRTF). As each person’s ears have a unique geometry, they
likewise have a unique HRTF; determining the relationship

between ear geometry and the corresponding HRTF is an
area of active research.

HRTF records are stored in the Spatially-Oriented Format
for Acoustics (SOFA) [6] file format. As there is no known
closed-form representation of an HRTF, this contains im-
pulse responses sampled along elevation, azimuth, and time
dimensions. This data array is stored in Network Common
Data Form5 alongside metadata specifying the sampling rates
and other details of the data collection process.

III. EXPERIMENT

The experiment is based on an existing computational
model from our earlier work [7], which emulates human
sound localization: Given an audio signal that arrives at
the listener’s eardrums, it estimates a vector that points
to the sound source. This existing model, which was not
developed with HPC in mind, serves as the control and is
compared to a new implementation for an HPC environment.
Section III-A describes the computational hardware used for
this experiment. Section III-B describes the data source and
how it is used. Section III-C then provides an overview of
the model’s operation. Finally, Secs. III-D and III-E describe
the measures taken to adapt the original application to the
HPC environment.

A. Experimental HPC Setup

This experiment leverages the DEEP-EST HPC system
at JSC in Germany, which features an MSA-based design.
Two different computing modules are used simultaneously to
speed up the ANN training. Multiple Extreme Scale Booster
(ESB) module nodes with V100 NVIDIA GPUs are used
as ‘worker nodes’, with each node processing a different
set of ANN hyperparameters. One Cluster Module (CM)
node is used as a ‘head node’ to coordinate and select the
hyperparameters evaluated by each worker node.

B. Data Source and Usage

The data for this experiment come from the 48 HRTF
records in the ITA-HRTF dataset [8]. Each of these records
contain 360◦ of azimuth data and 160◦ of elevation data,
sampled in 5◦ increments. These 2,304 impulse responses
have a resolution of 172.3 Hz.

Each neural network is trained against a single HRTF
record, to emulate the behavior of a single individual. Half
a second of white noise is convolved by each of the impulse
responses and the resulting waveforms are presented to the
feature extraction stage of the model. For evaluation, 20%
of the waveforms are randomly reserved, and the remaining
80% form the training set. The subtended angle between
the true source direction and the network’s prediction is
calculated for each waveform in the evaluation set, and
the 95th percentile of these error angles is reported as the
model’s accuracy.

A hyperparameter search is employed to find a common
set of parameters that is suitable for all of the HRTF records.
During this search, the performance of 3 HRTFs is directly

5https://www.unidata.ucar.edu/software/netcdf/

optimized, subjects 1, 3, and 5: For each trial in the search,
the most pessimistic result of these three is considered the
true result of the trial. After the search concludes, models
are trained for the remaining 45 subjects in the database and
analyzed for potential overfitting.

C. Model Operation and HPC Opportunities

Figure 1 summarizes the core model. White noise is
convolved with a single direction’s impulse response from
the HRTF, producing a waveform for analysis. The feature
extraction stage then processes this waveform, producing a
vector of differences between the left and right channels
in three parts: the broadband amplitude difference, band-
limited amplitude differences, and band-limited phase delays.
This feature vector is presented to the input layer of a
feed-forward neural network, and the network’s output is
compared to the original source direction. These errors are
used to update the internal weights of the network, resulting
in an estimator for the location of sounds which have been
transformed by the HRTF used to train the model.

There are several hyperparameters, highlighted in orange
in Fig. 1, without strong justification in the prior literature:
The window size used to calculate audio features, the number
of frequency bins to include in the feature vector, and the
training schedule for the backpropagation algorithm. An
Optuna search [9] explores this hyperparameter space to
optimize the model for both accuracy and training cost.
This produces results comparable to human performance, as
reported by Bronkhorst [10].

On a 6-core, 2.6 GHz Intel i7-10750H processor, this
process takes 3 days to complete. There are two major
opportunities for increased parallelism: The feature extrac-
tion and neural-network training processes are both defined
in terms of operations on large matrices, which can be
calculated in parallel by a GPU. Also, each Optuna trial is
calculated in isolation from the others; they can be distributed
onto separate compute nodes with minimal communication
overhead.

D. Adapting the Model for GPU Computation

The linear algebra and signal convolution routines in the
control implementation are provided by NumPy [11]. The
CuPy package [12] is a drop-in replacement for NumPy

Feed-
Forward
Neural
Network
Training
Schedule

Virtual
Location

Estimated
LocationSimulated

Audio

*

HRTF

Broadband
Level Difference

Freq. Band 1..n
Level Difference

Freq. Band 1..m
Phase DelayWindow

Size

Audio
Feature
Extraction

White
Noise

Error
(Hyperparameters indicated in Orange)

Fig. 1. Overview of the sound localization model.

which uses NVIDIA’s CUDA6 system to store and process
the data solely within GPU memory. This replacement went
smoothly, but there is a maintenance hazard: Each version
of CuPy works with only one version of CUDA; if the
system CUDA version is changed, CuPy must be manually
uninstalled and a different version needs to be installed.

The ANN feature vector is a set of spectral features calcu-
lated over windowed audio. In the control implementation,
key parts of this algorithm are provided by the Librosa [13]
package. The nnAudio [14] package reimplements these
algorithms as convolutional neural networks within PyTorch.
nnAudio has a similar, but not identical, API to that of
Librosa. The largest change is the use of PyTorch tensors
as input and output instead of NumPy arrays. Fortunately,
CuPy provides zero-copy conversion routines between its
own GPU-based arrays and GPU-resident PyTorch tensors.

There exist two major GPU-based ML libraries to choose
from, PyTorch and TensorFlow [15]. As PyTorch is a de-
pendency of this project through nnAudio, it is the natural
choice for the main neural network implementation. The
ANN in the control implementation is provided by Scikit-
learn [16], which is more opinionated than PyTorch. In
particular, PyTorch provides a turnkey solution only for the
inner details of the training loop– the stopping condition and
batching strategy must be hand-written. Additionally, Scikit-
learn includes many common training features by default,
such as parameter normalization. In order to obtain compa-
rable results, these must be manually enabled in PyTorch.

E. Parallelizing the Hyperparameter Search
Hyperparameter search algorithms have two fundamen-

tally different types of work to do: They must both decide
which sets of hyperparameters should be tested and also run
the trials to test the selected hyperparameters. These two
workloads place different stresses on the underlying hard-
ware. Given the principles of MSAs, they should therefore
be assigned to different node types. Optuna, however, is
designed for these two workloads to run on the same node.

DEEP-EST provides a Message-Passing Interface (MPI)
service [17] to facilitate communication between different
nodes. In addition to the standard MPI functions, the MPI for
Python implementation [18] also provides facilities to mar-
shal arbitrary Python objects through MPI communication
channels. These facilities are used to communicate between
two different programs running within the same HPC task.

A cluster node lacking a GPU is responsible for running
the Optuna algorithm, selecting appropriate hyperparameter
sets to be tested. Each of these hyperparameter sets is then
transmitted over MPI to one of a pool of worker processes.
The worker process uses the GPU present on an ESB node
to train and evaluate the model, and then reports the results
back to the Optuna process via MPI. The number of worker
processes in the pool is a tunable parameter; 30 were used for
this experiment. As each Optuna trial involves the training
and evaluation of 3 models, this allowed 10 trials to proceed
in parallel.

6https://developer.nvidia.com/cuda-zone

IV. HPC RESULTS AND DISCUSSION

Both the control and experimental implementations per-
form an Optuna study consisting of 375 trials, each trial
consisting of the training and evaluation of 3 different mod-
els. The optimal hyperparameters found by these searches
are then used to train models for 45 otherwise unused
HRTFs; the accuracy of each model is defined as the 95th

percentile subtended error angle. The accuracy distribution
of these 45 models show no significant difference between
the control and experimental implementations, with a mean
of 19◦ and standard deviation of 4◦. This is comparable
to human performance on the same task, as reported by
Bronkhorst [10].

The time to solution for the experimental implementation
is approximately 4% of the control implementation: 3 hours
in place of 3 days. In terms of efficiency, the experimental
implementation trains and evaluates each model with a single
GPU in roughly the same amount of time as the control
implementation requires for the same task with a 6-core
CPU. This reduced time-to-solution has enabled lab members
to expand the hyperparameter search space to, for example,
explore other network architectures; this research is ongoing.

The control implementation has two key properties that fa-
cilitated the porting process: Most of the computation is del-
egated to popular third-party modules, which have attracted
the development of GPU-based counterparts. Also, the com-
putation is structured as a series of mostly-independent trials
which allows a simple but effective multi-node strategy.

The choices of third-party software used for this project
are based on a cursory review of the available options,
with particular emphasis placed on ease of integration with
the preexisting codebase. Other projects may benefit from
different choices, such as Ray Tune [19] for hyperparameter
searches or TensorFlow for ANN training.

V. CONCLUSIONS

This study demonstrates that, with only moderate engi-
neering effort, it is often possible to port CPU-based sci-
entific software to an HPC environment. Algorithms which
perform a process of iterative refinement, such as model
optimization via a hyperparameter search, are particularly
suited to an HPC environment: Multiple speculative trials can
be performed in parallel without altering the code responsible
for evaluating an individual trial. Performing more trials
in parallel will eventually reduce the effectiveness of such
algorithms, as there are fewer prior results to base later
trials on. In the particular case of a hyperparameter search,
however, the 10-way parallelism used in this experiment
appears to be significantly below this theoretical limit.

This trial parallelization can be effectively combined with
other strategies to speed up individual instances of the
computation. This includes not only replacing third-party
packages with GPU-based implementations, as demonstrated
here, but also the incorporation of packages which can spread
individual computations across multiple compute nodes. One
such package is Horovod [20], which uses multiple nodes to
speed up the training of a single ANN.

By utilizing these two classes of improvement, the time
to solution for a particular problem can be greatly reduced.
This, in turn, allows scientists to test a larger number of more
complex hypotheses in a given amount of time, improving
the overall quality of results.

REFERENCES

[1] J. Hebrank and D. Wright, “Spectral cues used in the localization of
sound sources on the median plane,” The Journal of the Acoustical
Society of America, vol. 56, no. 6, pp. 1829–1834, 1974.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” tech. rep., California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

[3] A. Paszke, S. Gross, et al., “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, pp. 8024–8035, 2019.

[4] E. Suarez, N. Eicker, and T. Lippert, “Supercomputer Evolution at
JSC,” vol. 49 of Publication Series of the John von Neumann Institute
for Computing (NIC) NIC Series, (Jülich, Germany), pp. 1 – 12, 2018.

[5] S. Falkner, A. Klein, and F. Hutter, “BOHB: Robust and efficient
hyperparameter optimization at scale,” in Proceedings of the 35th
International Conference on Machine Learning, pp. 1436–1445, 2018.

[6] AES Standard for file exchange - Spatial acoustic data format. AES69-
2020, Audio Engineering Society, Inc., 2020.

[7] E. M. Sumner, R. Unnthorsson, and M. Riedel, “Replicating human
sound localization with a multi-layer perceptron.” Submitted to 19th
Sound and Music Computing Conference, Saint-Étienne, France, 2022.

[8] R. Bomhardt, M. de la Fuente, and J. Fels, “A high-resolution head-
related transfer function and three-dimensional ear model database,”
Proceedings of Meetings on Acoustics, vol. 29, no. 1, p. 050002, 2016.

[9] T. Akiba, S. Sano, et al., “Optuna: A next-generation hyperparameter
optimization framework,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
KDD ’19, (New York, USA), p. 2623–2631, 2019.

[10] A. Bronkhorst, “Localization of real and virtual sound sources,”
Journal of the Acoustical Society of America, vol. 98, 11 1995.

[11] C. R. Harris, K. J. Millman, et al., “Array programming with NumPy,”
Nature, vol. 585, pp. 357–362, Sept. 2020.

[12] R. Okuta, Y. Unno, et al., “Cupy: A numpy-compatible library for
nvidia gpu calculations,” in Proceedings of Workshop on Machine
Learning Systems (LearningSys) in the 31st Annual Conference on
Neural Information Processing Systems (NIPS), 2017.

[13] B. McFee, C. Raffel, et al., “librosa: Audio and music signal analysis
in python,” in Proceedings of the 14th python in science conference,
vol. 8, pp. 18–25, Citeseer, 2015.

[14] K. W. Cheuk, H. Anderson, et al., “nnaudio: An on-the-fly gpu
audio to spectrogram conversion toolbox using 1d convolutional neural
networks,” IEEE Access, vol. 8, pp. 161981–162003, 2020.

[15] M. Abadi, A. Agarwal, et al., “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015. Software available from
tensorflow.org.

[16] F. Pedregosa, G. Varoquaux, et al., “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[17] MPI: A Message-Passing Interface Standard. Version 4.0, Message
Passing Interface Forum, 2021.

[18] L. Dalcín, R. Paz, and M. Storti, “Mpi for python,” J. Parallel Distrib.
Comput., vol. 65, p. 1108–1115, sep 2005.

[19] R. Liaw, E. Liang, et al., “Tune: A research platform for distributed
model selection and training,” arXiv preprint arXiv:1807.05118, 2018.

[20] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

