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Abstract

In conventional Stokes polarimetry, where the polarimetric information is obtained

from a series of intensity measurements, stable and accurate measurements typically

require the optical elements to be carefully designed. Here, we propose a paradigm

shift where deep neural network assisted polarimeters based on disordered photonic

structures perform high quality polarimetric measurements while completely removing

the need for specially designed polarization analyzers, demonstrating how disordered

photonic structures fabricated without the use of any nanolithography techniques can

enable accurate analysis of optical signals. We implement this concept with disorder-

engineered nano-scatterers that allow for analyzing varying degrees of disorder and cel-

lophane �lm that demonstrate the cost-saving potential of the concept. We demonstrate

polarimetric performances, calibrated using deep neural networks, that are comparable

to commercial polarimeters, does not require prior knowledge of the input wavelength

and show a high degree of mechanical stability.
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Introduction

Polarization is an inherent property of electromagnetic waves describing the geometric orien-

tational degrees of freedom of electric �eld oscillations. Polarimetric measurements provide

essential information about the emitting sources and light-matter interactions and are there-

fore useful in many applications including optical communication, remote sensing, and med-

ical diagnostics. A conventional Stokes polarimeter uses intensity measurements to calculate

the four elements in the Stokes vector.1 The Stokes vector contains information about the

state-of-polarization (SOP) as well as the degree-of-polarization (DOP) of the electric �eld.

The SOP and DOP can be visualized as a point on or within a unit sphere (Poincaré sphere).

The classical rotating waveplate polarimeter, invented in the mid-nineteenth century,2 con-

sists of a rotatable quarter-wave plate followed by a linear polarizer and is still an active area

of research3,4 alongside new methods such as �ber based polarimeters,5 liquid-crystal-based

polarimeters6 and polarimeters based on photoelastic modulators.7 Recent advances in nan-

otechnology have enabled new ways of miniaturizing polarimeters with advantages such as

simplicity, robustness, cost e�ciency and on-chip integration.8�11 Recently, it has been sug-

gested to use random nanostructures for realization of on-chip polarimetry.12 Typically, in

conventional polarimetry the optical elements that manipulate the polarization for intensity

measurements are tailored for speci�c polarizations to maximize the quality of the mea-

surement. This is also the case in metasurface polarimetry where the polarization analyzer

typically consists of carefully designed 2-dimensional nanostructures repeated in periodic or

pseudo-periodic grids,13�16 requiring highly specialized nanofabrication methods. Light scat-

tered in a disordered photonic structure will interfere both during and after the scattering
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process thereby scrambling an input signal into a complex interference pattern, or `speckle

pattern'. Despite the seemingly unpredictable output the scattering is predominantly elastic

and reversible, and no information is lost in what is actually a deterministic process.17,18

This has led to a number of interesting applications and devices including lensless focusing

and imaging,19,20 �at lenses,21,22 increased photovoltaic e�ciency,23 and random lasers.24,25

Polarimetry based on disordered nanostructures o�ers the advantages of more relaxed fab-

rication tolerances compared to the periodic metasurface polarimeters and straightforward

achievement of a large amount of polarization analyzer outputs. However, a polarimeter

using disordered structures is very sensitive to parameters that change the polarization re-

sponse, such as wavelength, position and angle of the input light beam.

Machine learning techniques based on deep neural networks, or deep learning, have re-

cently shown great success and potential in many areas of regression and classi�cation prob-

lems, mainly due to increases in computing power and easy availability of vast amounts of

data.26 In optics, neural networks have found applications in optical imaging, spectroscopy,

optical communication as well as all-optical neural networks.27�30

Here we show that signal-saving polarimeters based on structurally disordered nanoan-

tennas or cellophane �lm, calibrated using a neural network model, produce polarization

measurements with a favorable accuracy compared to previously reported metasurface po-

larimeters as well as commercially available polarimeters. Furthermore, we show that deep

learning can be used to increase the robustness of the polarimeter to parameter changes that

have an in�uence on the polarization response. This is realized by incorporating variations

in wavelength and position of the input light beam relative to the polarimeter into the neural

network model.

3



Principles and design

Stokes polarimetry requires projective measurements of the content of speci�c polarization

states in the incident light beam. This is performed using a polarization analyzer whose

transmitted intensities are proportional to the speci�c polarization states. In order to ob-

tain the required number of features, the polarization analyzer either splits the measure-

ment in time (time-division) or splits the measurement over space (amplitude-division or

wavefront-division). The waveplate polarimeter, which is an example of a time-division po-

larimeter, typically uses a discrete Fourier transform to obtain the Stokes vector,31 whereas

division-of-intensity polarimetry introduces an analyzer matrix, A, that links the polariza-

tion information to measured intensities. Using linear transformation, the Stokes vector S

is reconstructed from the intensity measurements I of the light manipulated by the ana-

lyzer, i.e. S = A−1I. The analyzer matrix is obtained from calibration.32�34 The rows in the

analyzer matrix, the analyzer vectors, are proportional to the polarizations investigated by

the analyzer. It can be shown that the polarimetric error is minimized when the analyzer

vectors are equally spaced on the Poincare sphere.35 In order to minimize measurement er-

ror, the analyzer vector polarizations must therefore be selected carefully, and the physics

of the polarization analyzer must be well-controlled (fabrication tolerances must be low).

For metasurface polarimeters this means that the size, shape and position of the scatter-

ing nanostructures needs to be very precise and control of parameters such as deposition

thickness, etch depth, undercut, and/or anisotropy becomes important for the performance

of the polarimeter. However, if the number of analyzer vectors are large and the direction

of the vectors are randomly distributed over the entire Poincaré sphere, as is the case for a

disordered polarization-dependent scattering medium, then it is no longer necessary to care-

fully design the polarization analyzer. The fabrication of a polarimeter based on a random

polarization-dependent medium is therefore potentially much simpler and cheaper than a

conventional polarimeter.

We have fabricated polarization-dependent scattering media using gold nanoantennas of
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random orientation and quasi-random position. The random metasurfaces were patterned

using electron-beam lithography on a transparent material allowing control over the antenna

shapes and the degree of randomness. Additionally, a cellophane �lm has been employed

as polarization analyzer to emphasize the simplicity of polarimeters based on disordered

materials.

Electron micrographs of nanoantenna patterns are shown in Fig. 1. Fig. 1a�c consists

of identical gold nanoantennas with sizes of approximately 250Ö60Ö20 nm. Fullwave simu-

lations of the optical response of individual gold nanorods show localized surface plasmon

resonance peaks at around 1550 nm.36 The antennas are con�ned within unit cells with a

size of two times the antenna length to acheive su�cient intensity of the scattered light.

In Fig. 1c each antenna is assigned a random orientation and position within the unit cell,

resulting in a polarization analyzer with analyzer vectors distributed randomly across all

polarization states. Restricting the antenna orientations to a limited set of angles as in

Fig. 1b or a �xed angle as in Fig. 1a will set a constraint on the polarizations selected by the

analyzer and will limit the performance of the polarimeter. A design with quasi-randomly

positioned gold nanodisks is an alternative approach to nanorods with random orientations

(Fig. 1d). In this case changing the shape of the disks from circular to elliptical (see inset)

will similarly result in a constraint on the analyzer vectors.

The optical setup, as shown in Fig. 2a, was operated using near-infrared light (1530�1565 nm)

from a tunable �ber laser (Tunics-Plus from GN Nettest). The light was directed from

a deterministic polarization controller (DPC5500 from Thorlabs) to the polarization ana-

lyzer (the sample containing disordered photonic structures) via a mechanically cleaved bare

single-mode �ber (SMF-28). The distance between the �ber and the analyzer was 500 µm to

achieve a resonable number of speckles received by the camera. The reference polarization

of the transmitted light was measured by a commercial waveplate polarimeter (PAN5710IR3

from Thorlabs). The o�-axis speckle pattern arising from scattering by the disordered array

of nanoantennas or the cellophane �lm was recorded with a 320Ö256-pixel InGaAs camera
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(a) (b)

(c) (d)

Figure 1: Electron micrograph images of gold nanopatterns. (a)�(c) Gold nanorods with
quasi-random positions and (a) �xed vertical orientation, (b) random orientation inside an
angular interval of 70°�110°, (c) random orientation. (d) Electron micrograph of circular
nanodisks with a radius of approximately 150 nm and a unit cell size of 700 nm. The inset
shows a nanostructure of elliptical nanodisks with a = 150 nm and b = 75 nm.
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(C10633 from Hamamatsu). A 10X/0.25 optical microscope lens and an extension tube was

used to remove background light.

For polarization measurements with the �xed light source position we recorded 120

speckle images at each wavelength step of 0.2 nm. For measurements with variable light

source position 240 polarizations were measured at each wavelength step and before each

measurement the position of the single-mode �ber was set to a random value within a

20Ö20Ö20 µm grid using a piezoelectric motorized xyz stage. The polarization was ran-

domized using the polarization controller's SOP scrambler and the laser power was varied

between 1.5 and 3.0mW. The setup was automated to allow for rapid collection of large data

sets required for neural network training with variation of parameters such as polarization,

wavelength, laser power, and position of the light beam relative to the sample.

Analytical model

Knowing the position and orientation of each nanoantenna the scattered speckle pattern can

be calculated analytically using the dipole approximation. This model does not take into

account antenna interactions or fabrication imperfections and it is therefore suited for sim-

ulating the general behavior of the speckle pattern although the exact experimental speckle

image cannot be predicted.

The far-�eld radiation pattern of a plasmonic nanoantenna with length less than a wave-

length can be modelled reasonably well as a short dipole.37 The electric �eld of a short dipole

antenna in the far-�eld is given by

E = iηkl
e−ikr

4πr
F(θ, φ)I (1)

where k = 2π/λ is the angular wavenumber, l is the length of the antenna, the characteristic

impedance is a function of the permittivity and permeability η =
√
µ/ε, r is the distance

depending on the observation point and θ, φ are the corresponding angles. I is the excitation
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Figure 2: (a) A schematic of the measurement setup showing a �ber laser connected to a
deterministic polarization controller (DPC) with a 1550 nm single-mode �ber. A cleaved �ber
is aligned to the polarization analyzer (the grey sample) using an xyz stage. A commercial
free-space polarimeter (POL) measures the reference polarization and an infrared camera
records the scattered speckle pattern. (b) Geometry of an array of nanorod antennas with
quasi-random position in the xy plane and arbitrary orientation.
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current. The angular-dependent vector F(θ, φ) gives the directional characteristics of the

antenna, i.e. it re�ects that the far�eld of a dipole is not uniform in space. The total electric

�eld of an N-element antenna ensemble in the xy-plane (see Fig. 2b) is the sum of the electric

�elds of the individual antennas, with distance to the observation point rn. In the far-�eld

1/rn is approximated with 1/r and exp(−ikrn) with exp(−ik(r−dncos(ξn))), where dn is the

Euclidian norm of the antenna-coordinates in the xy-plane, which is normal to the incident

light. The electric �eld of multiple antennas, therefore, becomes

E = iηkl
e−ikr

4πr

N∑
n=1

Fn(θ, φ)e
ikdncos(ξn)In = iηkl

e−ikr

4πr
G (2)

where G is the so-called array factor that determines the radiation pattern.38 cos(ξn) =

cos(θ)cos(φ − φn) and (dn, φn) are the polar coordinates of a convenient reference point of

the nth element. Since the scattered �eld strength is proportional to the incoming �eld along

the long axis of the dipole, the excitation current for the nanorod antenna is given by

In = cos(βn + π/4)cos(ψ) + sin(βn + π/4)sin(ψ)eiδ (3)

where ψ and δ describe the polarization of the incoming light using the Jones vector model

of polarization in complex number representation.39 βn is the rotation of the nth dipole away

from the x axis in the xy-plane. The excitation current of a cylindrical nanoantenna is

rotationally invariant (In = cos(ψ) + sin(ψ)eiδ) and I2n = 1. The angular-dependent vector

is equal to40

F(θ, φ) = sin(φ− βn)φ̂− cos(φ− βn)sin(θ)θ̂ (4)

where φ̂ and θ̂ are azimuthal and polar unit vectors.

Speckle patterns obtained using equations (2)�(4) and the speci�c dimensions of the

optical setup are compared with experimentally acquired images of scattered light in Fig. 3.

The distance between �ber and metasurface is varied to change the number of nanoantennas
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illuminated by the light source to change the speckle size. It is seen that the simulated speckle

size matches the experimental speckle size resonably well. A line of bright speckles in the

middle of the simulated image from left to right, most clearly discerned in Fig. 3a, is a result

of the unit cell constraint, which adds a periodicity to the pattern. These pseudo-grating

orders are absent in the experimental speckle patterns due to antenna interactions.

(a) (b) (c)

(d) (e) (f)

Figure 3: Simulated and experimental speckle images. (a)�(c) Simulated speckle images
of (a) a 100Ö100 µm random gold nanorod pattern, (b) a 50Ö50 µm random gold nanorod
pattern, and (c) a 12Ö12 µm random gold nanorod pattern. (d)�(f) Images of scattered light
from random gold nanorod pattern recorded by an infrared camera. Distances between �ber
and metasurface are (d) 500 µm, (e) 300µm, (f) 30 µm.

Neural Network Architectures

It has been shown that deep neural networks can be used to take advantage of the inherent

wavelength sensitivity of a metasurface polarimeter by producing a calibration that allows

for measurement of the Stokes vector in a wide wavelength range without prior knowledge

of the wavelength.41 A polarimeter based on disordered photonic structures is not only very
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sensitive to wavelength changes but also to mechanical vibrations and displacements. A deep

neural network calibration that incorporates these mechanical variations in the learning pro-

cess would therefore be expected to increase the stability of the polarimeter considerably. In

this work, we explored two di�erent network architectures: the multilayer perceptron (MLP),

which accepts vectors as input and is one of the simplest neural network architectures and

the convolutional neural network (CNN), which accepts tensors as inputs. The MLP model

treats each input feature on exactly the same footing whereas the CNN model incorporates

2-dimensional information in the learning process by using a convolution operation.42 The

two neural network architectures are illustrated in Fig. 4. At a particular input wavelength,

the relationship between the Stokes vector and the output (the scattered light intensities)

can be well approximated by a linear transformation. We therefore considered the accuracy

of the polarization measurement obtained using a linear regression model (LRM) for a given

wavelength and position of light input to represent a benchmark of the irreducible error of

the polarimeter device at that wavelength. A description of hyperparameters and training

of the neural networks are found in the supplementary material.

Results

The speckle images recorded by the infrared camera contain 320Ö256 pixels and are down-

sampled using average pooling with a pool size of 16Ö16 before applying the MLP and LRM

models in order to minimize redundant information by roughly matching the pixel size with

the speckle size. Each speckle is an independent polarization analyzer depending on position

and orientation of the nanoantennas and interference of the polarization components of the

scattered light as described by the analytical model. After downsampling, the number of fea-

tures or analyzer vectors in A is therefore 320, plotted in Fig. 5 for three nanorod structures

with varying orientational constraints, measured at a wavelength of 1550 nm. The �gure

shows the normalized analyzer vectors of the three nanostructures plotted on a Poincaré

11



(a)

Speckle image

Output

...
...

...

Output layer

Fully connected layers
Input layer

(b)

Speckle image
Convolutional layer

Feature maps
Feature maps

Pooling layer

Fully connected layer

Output

...

Figure 4: Schematics of the two neural network types: (a) the multilayer perceptron (MLP)
and (b) the convolutional neural network (CNN). The MLP consists of fully connected
layers: an input, an output, and one or more hidden layers. Every node in the hidden
layer is activated by a nonlinear activation function after receiving input features that are
multiplied with weigths and added a bias. The CNN adds two more types of layers: the
convolutional layer that creates feature maps by convolving a �lter around the input image
and pooling layer that downsamples the input maps by applying an average or max �lter to
non-overlapping regions of the input maps.
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sphere. The analyzer vectors of the metasurface with random antenna orientation and posi-

tion are distributed randomly across the entire sphere thus forming a good basis for Stokes

space, whereas the analyzer vectors accumulate increasingly around the negative S1 axis

(vertical linear polarization) as the orientational restriction on the nanorods is increased.

The randomly oriented nanorod antennas each select for a speci�c linear polarization and

the quasi-random antenna positions result in random phase shifts between interfering scat-

tering �elds that gives the analyzer vectors a random ellipticity. If all antennas are arranged

vertically, then they only analyze one polarization (vertical linear polarization). The scat-

tered light from all antennas will be of same polarization in a given direction and interference

will therefore not change the ellipticity. Theoretically, the antenna design restricted to ver-

tical orientations will not be able to function as a polarimeter, but antenna interactions

will create su�cient variation of the analyzer vectors for the device to perform (low qual-

ity) polarization measurements. The validity of these arguments are supported by using

the anytical model to extract the analyzer vectors. Complementary plots to Fig. 5a-c using

the analytical model are found in the supplementary material. The intensity of scattered

light from circular nanodisk antennas is not polarization-dependent. The nanodisk design

therefore rely on antenna interactions.43 Elliptical nanodisk will experience reduced antenna

interaction especially along the semi-minor axis (b) and will behave more like the vertically

oriented nanorod design as b is decreased. The e�ect of antenna design on the polarimeter

performance is shown in Fig. 5d. Each of the designs are measured with 12,000 datapoints

of random polarization states across a wavelength range of 1540�1560 nm in steps of 0.2 nm

and a laser power varied between 1.5 and 3.0mW. The di�erence between polarization mea-

surements using the MLP model and reference polarizations is shown as angular error on the

Poincaré sphere. The angular error decreases as the analyzer vector position becomes more

evenly distributed over the Poincaré sphere. The measurements show that with a su�cient

number of analyzers, disorder is not undesirable, it is instrumental in obtaining high quality

polarization measurements.
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Figure 5: (a)�(c) Analyzer vector positions on a Poincaré sphere for three metasurface designs
(360° views of the plots are found in supplementary material). The color of the dots illustrates
the angular distance to the nearest analyzer vector from green (minimum distance) to red
(maximum distance). Each design contains gold nanorods with quasi-random position in a
unit cell and random orientation in a range of angles: (a) 85°�95°, (b) 60°�120° and (c) 0°�
180° (no constraints on angular orientation). (d) Tukey boxplots showing the angular error
between measured polarization states and reference polarizations measured by a commercial
polarimeter. The �rst 6 boxes plot the data from nanorod design with decreasing constraints
on the nanorod orientation. The last two boxes to the right plot data belonging to the
nanodisk antenna designs with elliptical shape, where the semi-minor axis is half the length
of the semi-major axis, and circular shape (Fig. 1d).
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Fig. 6a compares the angular error of the three calibration methods (LRM, MLP, and

CNN). The �gure shows the angular error for a polarimeter based on the metasurface with

randomly placed and oriented gold nanorods (Fig. 1c). The data set consists of 21,000

measurements distributed across the full C-band (1530�1565 nm) in steps of 0.2 nm. The

laser power was varied between 1.5 and 3.0mW. The CNN performs better than the MLP,

since it is able to extract the 2-dimensional information contained in the speckle images.

Furthermore, it performs just as well as the linear model. When a neural network calibration

is used the polarization can therefore be measured without prior knowledge of the wavelength

(inside the calibrated wavelength range) with the same accuracy as can be obtained with a

calibration using the linear model where exact knowledge of the wavelength is required. The

performance of the polarimeter is comparable to the accuracy of a commercial polarimeter

as illustrated with a dashed line.

The performance of the polarimeter based on disordered photonic structures is sensitive

to positional displacements. It was therefore sought to include eventual displacements in the

learning model. This was realized by deliberately changing the position of the light source

(the �ber tip) relative to the analyzer before each measurement to a random xyz coordinate

within a 20Ö20Ö20 µm grid using a piezoelectric motorized xyz stage. The measurements

were made at a frequency of about 0.15 s−1 and are considered quasi-static with respect to

time. Vibrational oscillations of di�erent frequency are not included in the training data.

The angular errors for these measurements are shown in Fig. 6b. With a mean angular

error of 0.77° using MLP and 0.53° with CNN the neural network calibration results in a

considerably lower error than the linear model (3.8°). The incorporation of wavelength and

positional variations in the neural network models allows us to simultaneously measure the

input wavelength and light source position, see Fig. S1 in the supplementary material.

It should be emphasized that the disordered polarization analyzer is well approximated

by a linear model when wavelength and position is �xed (see Fig. 6a, LRM boxplot). The

polarimeter is therefore no di�erent than a conventional polarimeter such as the rotating-
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Figure 6: (a) Angular error of polarimeter based on gold nanorods using three calibration
methods: linear regression model (LRM) with as many calibrations as measured wavelengths,
multilayer perceptron neural network model (MLP), and convolutional neural network model
(CNN). The position of the light source (cleaved single-mode �ber) is �xed. The dashed
horizontal line indicates the angular error speci�cation of a commercial �ber polarimeter
(Thorlabs IPM5300). (b) Angular error for a nanorod antenna design using three calibration
methods: LRM, MLP, and CNN, when (in addition to wavelength) the position of the light
source is varied within a 20Ö20Ö20 µm grid. (c)�(d) Angular error for a cellophane based
polarimeter using three calibration methods: LRM, MLP, and CNN when position of the
light source is (c) �xed and (d) varied within a 20Ö20Ö20 µm grid. Above each boxplot is
shown the varied parameters (except from polarization) that are unknown to the relevant
model.
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waveplate polarimeter. Machine learning methods are introduced only to alleviate the sen-

sitivities of the linear model to small changes in wavelength and position. Deep learning

methods are very powerful tools for solving complex problems, but it is very di�cult to

extract how they arrive at the solution. However, it is clear that the more sensitive the an-

alyzer is to a varied parameter, the higher accuracy the model can obtain. Since the speckle

pattern changes at a higher rate with wavelength than position the neural network models

are therefore more e�cient in predicting the wavelength parameter, see also supplementary

material.

The measurements show that the neural network calibration improves the tolerance to

mechanical instabilities of the polarimeter and suggest that accurate and robust polarimeters

can be fabricated at extremely low cost using random metasurfaces. A fabrication procedure

for a polarization analyzer based on disordered metallic nanoantennas could therefore consist

simply of drying a drop of nanoparticles in colloidal suspension on a transparent surface44 to

replace high cost, low volume approaches such as electron-beam lithography. To emphasize

this argument, we have replaced the random metasurface analyzer with a simple cellophane

�lm. The results, plotted in Fig. 6c�d, show that the performance of the cellophane based

polarimeter is comparable to the polarimeter based on metal nanoantennas. Cellophane is a

birefringent material made of long, parallel strings of regenerated cellulose �bers arranged in

a pseudo-grating.45 The general shape of the scattered speckle pattern from the cellophane

�lm is similar to the random metasurface speckle pattern. The light transmitted through

the random metasurface is unscattered and therefore preserves its polarization whereas the

cellophane is birefringent and therefore modi�es the transmitted polarization. The cello-

phane �lm used in the experiment thus behaves like an imperfect quarter-wave plate. The

cellophane-�lm polarimeter demonstrates that high quality polarimetric measurement can

be achieved with extreme low-cost materials.
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Summary

In summary, we have demonstrated deep neural network enhanced polarimeters based on

disordered photonics structures, challenging the prevailing concepts of high-precision en-

gineered polarization analyzers. The presented technology has the potential to provide a

new class of extreme low-cost polarimeters and opens new avenues for the design of optical

devices.
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Michael Juhl and Kristjan Leosson

Fabrication and characterization of deep neural network assisted polarimeters based on dis-

ordered photonic structures, demonstrating how disordered photonic structures fabricated

without the use of any nanolithography techniques can enable accurate analysis of optical

signals.
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