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Ágrip 

Brjóstakrabbamein er ein helsta orsök krabbameinsdauða meðal kvenna á 

Íslandi og um heim allan. Ein forsenda meinvarpsmyndunnar er talin vera sú 

að æxlisfrumur virkji þroskunarferli sem kallast bandvefsumbreyting (EMT). 

Bandvefsumbreyting (EMT) er frumuþroskunarferli þar sem þekjufrumur 

umbreytast í bandvefsfrumur með minni viðloðun og aukna skriðgetu. Talið er 

að æxlisfrumur geti virkjað EMT sem auki þá dreifingu æxlisfrumna milli vefja. 

EMT einkennist þó af fjölda frumusvipgerða (EMP) sem hafa mismunandi 

getu til meinvarpsmyndunnar. Efnaskiptabreytingar sem eiga sér stað 

samfara EMT og EMP eru illskilgreindar. Þetta grunnrannsóknarverkefni 

miðaði að því að einkenna efnaskiptasvipgerðir EMT og EMP í þeim tilgangi 

að auka skilning á framgangi brjóstakrabbameins, stuðla að framtíðar 

lyfjaþróunn og greina hugsanleg lífmörk fyrir illkynja æxli í brjóstum.  

Proteingreining á EMT og EMP frumulíkönum leiddu í ljós breytingar í 

efnaskiptaferlum sykrunga. Ensímin UDP-glucose dehydrogenase (UGDH) 

og glutamine-fructose-6-phosphate transaminase 2 (GFPT2) sýndu mikinn 

breytileika í tjáningu samfara EMT annarsvegar og EMP hinsvegar. UGDH 

breytir UDP-glúkósa í UDP-glúkúrónsýru og tekur þátt í myndun hýalúrónans 

í utanfrumuefni. GFPT2 er hraðatakmarkandi ensímið í nýmyndun sykrunga 

og hvatar myndun UDP-N-asetýlglúkósamíns (UDP-GlcNAc) og O-

GlycNAcylation proteina. Fylgni var á milli tjáningar UGDH og lífslíkum 

sjúklinga. Bæling á tjáningu UGDH hafði áhrif á frumufjölgun, frumuinnrás, og 

tjáningu EMT merksins SNAI1 og myndun glycerophosphocholines og n-

acetylaspartats. Tjáning GFPT2 hafði einnig áhrif á frumufjölgun, frumuinnrás 

og stjórnun á EMT merkinu vimentin. Tjáning á GFPT2 sýndi fylgni við illkynja 

æxli í brjóstum með claudin-lág einkenni sérstaklega. GFPT2 tjáning eykst 

við oxunarálag og bæling á GFPT2 hafði áhrif á innanfrumumagn 

cystathionines og á hvatberaensímið SQOR. Tjáningu á GFPT2 var stýrt af 

EGF og insúlíni boðskiptaferli, hugsanlega í gegnum GSK-3β. Að lokum voru 

boðskiptaferli skoðuð sérstaklega með skimun á fosforyleringu próteina. 

Breytilieki í fosforyleringu proteina samfara EMT og EMP var mestur vegna 

mismunandi virkni PDHKs og PAK1 prótein kínasa. Á heildina litið hefur 

verkefnið sýnt fram á að UGDH og GFPT2 eru veigamikil í efnaskiptum sykra 

samfara EMT og í EMP, í framgangi brjóstakrabbameins og að þessar 

breytingar eru mismunandi eftir undirflokkum brjóstakrabbameins. 



 

Lykilorð:  

Illkynja æxli í brjósti; Bandvefsumbreyting; GFPT2, UGDH, 

próteinefnagreining 
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Abstract 

Breast cancer is the leading cause of cancer deaths among women in 

Iceland and worldwide. Epithelial-mesenchymal transition (EMT) is a cellular 

developmental process where epithelial cells assume mesenchymal-like 

phenotypes through degradation of the extracellular matrix, loss of 

adhesions, and increased mobility. It is believed that dissemination of cancer 

cells occurs partly following EMT. EMT contains a spectrum of epithelial-

mesenchymal intermediate cell states that impart different degrees of 

malignancy. The ability of cells to assume these states is termed epithelial-

mesenchymal plasticity (EMP). This project aimed at characterizing the 

metabolic phenotypes of EMT and EMP to obtain knowledge of breast cancer 

progression and to identify biomarkers and potential therapeutic targets for 

breast cancer treatment. 

Proteomics analysis of cell models of EMT and EMP revealed changes to 

enzymes involved in glycan metabolism. UDP-glucose dehydrogenase 

(UGDH) and glutamine-fructose-6-phosphate transaminase 2 (GFPT2) were 

identified as the topmost altered glycan metabolic enzymes in EMT and EMP, 

respectively. UGDH converts UDP-glucose into UDP-glucuronic acid and is 

involved in the formation of hyaluronan in the extracellular matrix. GFPT2 

influences the downstream formation of UDP-N-acetylglucosamine (UDP-

GlcNAc) and protein O-GlycNAcylation. UGDH was associated with patient 

survival, affected cell proliferation, cell invasion, and the expression of the 

EMT marker SNAI1. siRNA-mediated knockdown of UGDH influenced 

glycerophosphocholine (GPC) and increased N-acetylaspartate (NAA) levels. 

GFPT2 similiarly influenced cell proliferation, migration, invasion, and 

expression of the EMT marker vimentin and was associated with claudin-low 

breast cancer. GFPT2 was shown to be a marker of oxidative stress, and 

knockdown of GFPT2 affected cystathionine levels and the mitochondrial 

enzyme sulfide quinone oxidoreductase (SQOR). Phosphoproteomics 

analysis indicated distinct phosphorylation profiles of epithelial versus 

mesenchymal cells. Specifically, pyruvate dehydrogenase kinases (PDHKs), 

serine/threonine-protein kinase (PAK1), and protein kinase A catalytic subunit 

α (PKACA) were differentially regulated across the mesenchymal cell lines 

tested.  



 

In conclusion, these results suggest that UGDH and GFPT2 are central to 

changes that occur within glycan metabolism following EMT and EMP, 

respectively. Both enzymes were associated with cancer progression and 

GFPT2, specifically, may serve as a biomarker for cellular oxidative stress 

and claudin-low breast cancer. The work furthermore implicates UGDH in 

GPC and NAA metabolism. 
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1 Introduction 

1.1 Breast cancer 

The burden of cancer is growing fast worldwide. In 2018, the total cost of 

cancer was 199 billion euros in Europe (Hofmarcher et al., 2020). Around 

19.3 million new cases of all cancers and 9.9 million cancer-caused deaths 

occurred worldwide in 2020. The cancer incidence is expected to rise by 47 

%, reaching 28.4 million in the next 20 years, causing a health care burden, 

especially in transitioning countries. As of 2020, the top estimated age-

standardized incidence rate of all cancer types worldwide is breast cancer in 

females and lung cancer in males. Female breast cancer is the leading cause 

of cancer deaths in women. In Iceland, female breast cancer had the highest 

cancer incidence rate in 2020 (Sung et al., 2021). 

1.1.1  Breast cancer subtypes 

Breast cancer is a heterogeneous disease and has been scrupulously 

stratified based on hormonal phenotypes, including estrogen receptor (ESR) 

positive, progesterone receptor (PR) positive, receptor tyrosine-protein 

kinase ERBB2 (HER2) positive, and triple-negative breast cancer (TNBC). 

On top of the immunohistochemical stratification, breast cancer can be 

further classified based on genomic and transcriptomic evidence—for 

example, Ki-67 and breast cancer gene (BRCA1/2) (Loibl et al., 2021). The 

classic molecular characterization of breast cancer based on the 50-gene 

PAM50 model has classified it into five intrinsic subtypes:  luminal A, luminal 

B, HER2-enriched, basal-like, and normal-like (Perou et al., 2000; The 

Cancer Genome Atlas Network, 2012). 

Basal-like constitutes most TNBC, which is heterogeneous, considered 

more aggressive, and has a poorer prognosis than other subtypes (Bianchini 

et al., 2016). Due to the intrinsic complexity, heterogeneity, and lack of 

therapeutic targets, TNBC has been a daunting barrier in clinical practice, 

leaving chemotherapy as the only valid therapeutic option (Denkert et al., 

2017). There has been a significant amount of work done to understand the 

true nature of TNBC and identify effective targets for diagnostics, 

therapeutics, and prognostics (Denkert et al., 2017; Foulkes et al., 2010). The 

understanding of TNBC has drastically improved, which leads to more 

accurate TNBC subtyping for clinical treatment, and one of the breakthroughs 
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has been the immune-checkpoint inhibitors. In addition, both exploring the 

crosstalk between tumor cells and tumor microenvironment (TME) and 

combining immunotherapy and targeted therapy have shown promise in 

conquering TNBC (Bianchini et al., 2022; Denkert et al., 2017). Nonetheless, 

more efforts are required and have been made to tackle this problem. 

1.1.2  Claudin-low breast cancer 

Recently, as an additional molecular subtype of breast cancer, claudin-low 

has been investigated more thoroughly due to its aggressiveness (Fougner et 

al., 2020; Prat et al., 2010; Radler et al., 2021). MDA-MB-231, MDA-MB-157, 

BT549, and HS578T, among others, are widely studied breast cancer 

mesenchymal cell lines with claudin-low characteristics (Lawrence et al., 

2015; Prat et al., 2010) and have been utilized in many studies on claudin-

low breast cancer (Patsialou et al., 2015). 

Herschkowitz et al. classified and identified claudin-low breast cancer in 

2007, seven years after the five intrinsic classifications had been established 

(Herschkowitz et al., 2007). In that original publication, the claudin-low breast 

cancer subtype was characterized by low expression of claudins (claudin 3, 

claudin 4, and claudin 7), occludin, and E-cadherin. The sub-classification of 

the claudin-low subtype has hitherto been open for debate. The biological 

features represented by claudin-low may coexist with the five intrinsic 

subtypes. A claudin-low breast tumor may be classified as non-claudin-low, 

moderately claudin-low, extensively claudin-low, or purely claudin-low 

(Fougner et al., 2020). Different cell types within the same cellular lineage 

(mammary stem cells, luminal progenitor cells, or mature luminal cells) can 

transform into different malignancies triggered by oncogenic insults. Hence, 

claudin-low breast cancer can be classified into three subgroups based on 

the cell-of-origin. Two subgroups were related to epithelial-mesenchymal 

transition (EMT), while the third group was associated with normal human 

mammary stem cells (Pommier et al., 2020). Radler and colleagues have 

demonstrated that manipulation of the oncogene KRAS could induce claudin-

low mammary cancer in luminal epithelial cells (Radler et al., 2021). 

1.1.3  Breast cancer metastasis 

Metastatic breast cancer accounts for the poor patient prognosis, and the 

cure for breast cancer metastasis is elusive. The combination of surgery, 

radiation therapy, and chemotherapy, along with targeted approaches and 

immunotherapy, is the current standard of care in the clinic (Loibl et al., 

2021). The metastasic breast cancer cells are considerably different from 
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primary tumor cells concerning their genetic landscape, the potential to 

interact with the immune system and their TME, and cell-type diversity 

(Bertucci et al., 2019; Hutchinson et al., 2020). Studies show that circulating 

tumor cells (CTCs) have significantly enriched with cells that have undergone 

EMT, and the tumor cell population is associated with different transition 

states of EMT, rendering different potential in cancer metastasis 

(Pastushenko et al., 2018). EMT may facilitate metastatic dissemination 

epigenetically without somatic mutations in primary tumor cells (Q.-L. Liu et 

al., 2021). 

1.2 EMT 

1.2.1  The definition of EMT 

In 2020, The EMT International Association (TEMTIA) published a 

consensus statement intending to standardize EMT research and 

reduce discrepancies and misinterpretations due to the plasticity and 

heterogeneity of EMT (J. Yang et al., 2020). 

 

A multifaceted and often reversible change in cellular phenotypes 

during which epithelial cells lose their apical-basal polarity, modulate 

their cytoskeleton and exhibit reduced cell-cell adhesive properties. 

Cells may individually or collectively acquire mesenchymal features 

and increase motility and invasive ability. Typically, a switch in 

intermediate filament usage from cytokeratins to vimentin is observed 

after a complete EMT. Cortical actin filament in epithelial cells also 

undergoes marked rearrangement during EMT. While the 

characteristics of fully epithelial cells are relatively clearly defined, 

our current knowledge does not allow us to define the mesenchymal 

state with specific cellular characteristic or molecular markers that 

are universal end products of all EMT programs. (J. Yang et al., 

2020) 

 

There are two main take-home messages from this guideline. First, EMT 

cannot be simply defined based on one or several molecular markers or 

EMT-associated transcription factors (EMT-TFs). Second, EMT should be 

assessed on the basis of both changes in the cellular characteristics and a 

set of molecular markers (J. Yang et al., 2020). 
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1.2.2  The history of EMT 

Origin of the EMT concept 

Although the observation and description of the interconversions that take 

place between the epithelial and mesenchymal cell states during embryonic 

development can be traced back to the beginning of the 20th century, the 

origin of the EMT theory dates back to 1968, when Dr. Elizabeth Hay gave a 

speech at the 18th Hahnemann symposium in Baltimore about her 

embryogenic research (Hay, 1968). Later, Dr. Hay and colleagues 

manipulated the adult and embryonic epithelia in vitro and successfully 

transformed epithelium into mesenchymal phenotypes, a phenomenon that 

defined EMT as a distinct cellular process (Greenburg and Hay, 1982). In the 

20 years that followed, several key features of EMT were defined, including 

the loss of E-cadherin; the gain of N-cadherin; and the importance of specific 

transcription and growth factors in EMT, such as Snail, Slug, E2A, ZEB1/2, 

fibroblast growth factor (FGF), insulin-like growth factor (IGF), transforming 

growth factor-β (TGF-β), epidermal growth factor (EGF), and ERBB (Thiery, 

2002). In 1991, a pioneer study highlighted E-cadherin as an invasion 

suppressor and connected the mesenchymal phenotype to invasiveness, 

which paved the way for the hypothesis that EMT can be exploited by 

metastatic cancer cells (Frixen et al., 1991). 

Mesenchymal-epithelial transition (MET) is a reverse process of EMT, 

during which mesenchymal cells regain their apical-basal polarity and 

rearrange their cytoskeleton and cell-cell adhesion to form an organized 

epithelium. Compared with EMT, MET has been studied less in cancer 

research. It is well defined in kidney development and the formation of the 

heart and somites (Pei et al., 2019; Thiery, 2002; J. Yang et al., 2020). The 

existence of MET is primarily evident by the restoration of E-cadherin, and 

the MET process has been confirmed in breast cancer, ovarian cancer, and 

pancreatic cancer via probing specific epithelial or mesenchymal markers 

(Bakir et al., 2020). At the beginning of the 21st century, a novel and intriguing 

theory of cancer was established that incorporated the EMT phenomenon 

into cancer metastasis. This theory is illustrated as: normal epithelium → 

dysplasia/adenoma → carcinoma in situ → invasion carcinoma via EMT → 

intravasation via EMT → extravasation via EMT → formation of distant 

carcinoma via MET (Thiery, 2002). In 2003, the term “epithelial-mesenchymal 

transition” was officially coined at the first TEMTIA meeting. Since then, 

research on EMT has grown drastically, especially over the last 10 years (J. 

Yang et al., 2020). 
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The classical molecular components in EMT 

The downregulation of E-cadherin in EMT was first observed in the 

embryonic development of chicks (Edelman et al., 1983), followed by studies 

on the loss of E-cadherin in cancer (Frixen et al., 1991). On the contrary, N-

cadherin was observed to be upregulated in EMT during embryogenesis, 

though at different sites of the embryo compared with the downregulation of 

E-cadherin (Duband et al., 1987). Even though the switch from E-cadherin to 

N-cadherin has become a hallmark of EMT (Loh et al., 2019), loss of E-

cadherin has emerged as an essential and central characteristic in EMT 

(Lachat et al., 2021). As indicated in the EMT definition, high expression of 

the mesenchymal intermediate filament vimentin is another pivotal change in 

EMT, which has long been recognized in embryogenic EMT (Greenburg and 

Hay, 1988) and is associated with the invasive mesenchymal traits in breast 

cancer (Bae et al., 1993).  

In the 1990s, a large-scale study set out to identify molecular regulators of 

EMT in embryonic development. Several well-established EMT-TFs were 

identified around the turn of the millennium—for example, Snail, Slug, 

TWIST1, ZEB1, and ZEB2 (Thiery, 2002). Later, these EMT-TFs were also 

found to be involved in cancer malignancy (Batlle et al., 2000; Cano et al., 

2000; Comijn et al., 2001; J. Yang et al., 2004). In 1994, EMT was 

successfully induced by TGF-β in vitro (Miettinen et al., 1994). Ectopic 

expression of the EMT-TFs Snail or TWIST in the epithelial cells was found to 

trigger EMT (Mani et al., 2008). 

1.2.3  EMT in cancer 

EMT is mainly studied in tissue development, wound healing and organ 

fibrosis, and cancer progression. Despite the significance of EMT in 

embryogenesis and fibrogenesis, most EMT studies conducted so far have 

focused on cancer aggressiveness, specifically cancer stem cell (CSC) 

formation, metastasis, and chemoresistance. The plasticity of EMT provides 

comprehensible explanations for tumor extravasation and distant organ 

colonization during cancer metastasis (Lachat et al., 2021). 

Researchers have found evidence to support that both complete and 

partial EMT exist in vivo (Beerling et al., 2016; Pastushenko et al., 2018). 

EMT is highly appreciated in epithelial-tissue-derived tumors (carcinomas), 

and studies have indicated that EMT also occurs in tumors of the central 

nervous system (CNS) and perhaps other non-carcinomas (Wirsik et al., 

2021). The biopsies of cancer patients show various cell phenotypes ranging 
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from epithelial to mesenchymal-like, and the cellular phenotypic plasticity 

causes cancer cells to be resistant to drug treatment (Navas et al., 2020). 

Increasing evidence suggests that EMT participates in both the initiating and 

the final stages of cancer metastasis. Cells at the leading edges of the 

invasive fronts could capture the EMT properties and lead the invasion 

process (Wellner et al., 2009). EMT may promote cell stemness. The 

association between EMT and cancer invasion and metastasis has been 

widely studied. However, the exact mechanisms behind EMT in stemness 

and metastatic dissemination are obscure (Lambert and Weinberg, 2021). 

EMT-TFs are a crucial part of the EMT program and participate in cancer 

initiation, tumor growth, invasion, metastasis, and colonization. In addition to 

the roles of these transcription factors on the activation of the classical EMT 

phenotypes, they are pleiotropic and can link EMT to CSCs. The uncanonical 

functions of EMT-TFs can facilitate cancer malignancy, therapy resistance, 

TME crosstalk, and tumor immune response. Lastly, the EMT-TFs grant EMT 

plasticity (Brabletz et al., 2018; Stemmler et al., 2019). 

EMT is very diverse, tissue-specific, cancer type-specific, and intertwined 

with many regulatory factors and signaling pathways. Some studies have 

reported that metastasis in vivo occurs without EMT (Bakir et al., 2020; 

Fischer et al., 2015; Williams et al., 2019). EMT in cancer is debatable, and 

the source of this controversy originates from three intrinsic and fundamental 

characteristics of EMT and EMT research: complexity, plasticity, and 

suboptimal experimental models. EMT may manifest itself differently in 

different organs or distinct cancer types. The conclusion that EMT is absent 

in metastatic sites based on the absence of overt mesenchymal 

characteristics is insufficient because certain levels of reversion to the 

epithelial state are necessary. In addition, EMT impinges both on cell 

metastasis and on cell survival—for example, chemoresistance. Scientists 

need to be open-minded, considering EMT beyond its effects on cell 

morphology, invasion, and motility (Brabletz et al., 2018). 

One of the future directions is to focus on EMT-TFs and their interactions 

with the TME. Furthermore, more reliable experimental models, for example, 

genetically engineered mouse models (GEMMs) coupled with lineage tracing 

with fluorescent labeling, should be applied to tackle the controversies and 

inconsistencies in this field (Bakir et al., 2020). Researchers need to 

collaborate closely and perform cross-validations of their findings. Moreover, 

the challenges of monitoring all EMT states and following all cancer cells 

from cancer initiation to distant colonization with a focus on the metastatic 
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niche should be overcome. The final goal is to identify clinically meaningful 

targets (Brabletz et al., 2018). 

 The intertwined relationship between EMT and CSCs 

Cancer has long been associated with stem cells, consolidated by the 

observation that a single cell could form tumors in vivo. The successful 

identifications of CSCs in acute myeloid leukemia (AML) and breast cancer 

are two breakthroughs that created great excitement in the cancer research 

community (Clevers, 2011). Since then, the concept of CSCs has been 

accepted and updated. One of the novel improvements of this theory is the 

introduction of the CSC niche. Instead of being solely regulated by the 

intrinsic properties of CSCs, CSCs interact via niche signaling (Batlle and 

Clevers, 2017). One of the appealing aspects of the CSC hypothesis is that it 

explains the inevitable resistance of cancer cells to radiation and 

chemotherapy and the long-term relapse and metastasis in patients with 

cancer. Under the guidance of the CSC theory, several therapeutic 

approaches have been developed in the clinic by targeting major stemness 

pathways, the main stem cell properties, and epigenetic regulations, among 

other factors (Batlle and Clevers, 2017). 

The association between EMT and CSCs was initiated through research 

focusing on how exactly EMT facilitates tumor metastasis. It began with the 

identification of CD44high/CD24low-expressing cells as CSCs (Al-Hajj et al., 

2003). These cells are more invasive in vivo and possess stem cell 

properties. Mani and colleagues then successfully induced EMT by TGF-β 

treatment and ectopic expression of TWIST or Snail, and these treatments 

simultaneously led to the evolution of a population of CD44high/CD24low cells 

(Mani et al., 2008). These efforts linked EMT and CSCs and sparked 

interests to investigate further whether EMT could facilitate CSC formation in 

cancer progression (Wilson et al., 2020). CSCs are intertwined with EMT 

through shared genetic regulators and tumor-initiating capacity, and EMT can 

confer epithelial cells with stem cell properties (Mani et al., 2008). In the 

context of cancer, EMT was initially deemed a vital process for cancer 

migration and invasion. Connecting EMT with CSCs has established the role 

of EMT in cancer initiation and has intensified the importance of EMT in 

cancer development. The mesenchymal cells after EMT and CSCs share lots 

of similarities (Dongre and Weinberg, 2019; Wilson et al., 2020). The exact 

relationship between CSCs and EMT, however, is still under debate (Batlle 

and Clevers, 2017; Lytle et al., 2018). 
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Epidermal growth factor receptor (EGFR) is liable for the CSC and 

metastatic phenotype of breast cancer, and platelet-derived growth factor 

receptors (PDGFRs) promote breast cancer malignancy by directly regulating 

cellular functions and by indirectly remodeling malignant stroma (Butti et al., 

2018). The exact relationship between EGFR and CSCs is elusive. Tam and 

colleagues reported a shift from EGFR to PDGFR signaling in breast CSCs, 

where protein kinase C alpha (PKCα) participates and serves as a 

therapeutic target (Tam et al., 2013). PKCα is universally expressed and 

situated at the central node of several signal transduction pathways, which 

endows the diverse and complex cellular responses of PKCα under a broad 

spectrum of stimuli (Singh et al., 2017). 

Epithelial-mesenchymal plasticity (EMP) represents the norm rather 
than the exception 

The concept of “partial EMT” was proposed roughly 20 years ago (Thiery, 

2002), and EMP is one of the sources for discrepancies in the EMT field. In 

the time since, there has been compelling evidence that EMT does not work 

as a binary switch but possesses a spectrum of epithelial/mesenchymal 

(E/M) intermediate states within which certain E/M states confer the tumor 

with cells malignancy (Liao and Yang, 2020; Sinha et al., 2020) (Figure 1). 

These varieties of intermediate states are orchestrated by complex regulatory 

networks that endow them with different functional characteristics (Dongre 

and Weinberg, 2019; Nieto et al., 2016; Pastushenko and Blanpain, 2019). It 

is believed that EMT can induce CSC stemness. While these CSCs induced 

by EMT are not completely mesenchymal, they reside and are stabilized at 

specific intermediate E/M states (Dongre and Weinberg, 2019). Partial EMT 

can increase cell motility in both single and collective cell migration. 

Recent studies show that different EMT transition states do exist in vivo 

(Pastushenko et al., 2018; Simeonov et al., 2021). There were different 

subpopulations of tumor cells in vivo that possessed different invasiveness, 

plasticity, and functionality, representing different EMT states. Furthermore, 

the metastatic potential in vivo was affected by different hybrid EMTs where 

tumor protein p63 (ΔNp63), TGF-β, and mothers against decapentaplegic 

homolog 2 (SMAD2) were important promotors for epithelial or mesenchymal 

phenotypes, and MET was not the only mechanism for metastasis 

(Pastushenko et al., 2018). More recently, a novel inducible in vivo lineage 

tracer coupled with scRNA-seq named macsGESTALT was introduced to 

study EMT plasticity, which confirmed the notion that EMT is a continuum of 

epithelial-mesenchymal states. Cells post extreme EMT were less metastatic 
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than hybrid EMT cells, and those at the late-stage hybrid states showed the 

most potential to metastasize (Simeonov et al., 2021). 

Apart from relying on specific epithelial or mesenchymal markers (for 

example, CD104 and CD44) to differentiate different EMT phenotypes 

(Kröger et al., 2019), in silico modeling of hybrid EMT provides an alternative 

for investigating the complexity and plasticity of the EMT spectrum. More 

evidence is needed to support whether discrete epithelial and mesenchymal 

states are arrayed along the EMT spectrum or a continuum of the EMT 

intermediate states resides with no distinct boundaries. The EMT spectrum 

may not be linear—it might have various tracks. Sophisticated mathematical 

models hold the potential to tackle these problems and are able to forge new 

insights in this field, and a list of studies using this methodology has 

demonstrated the importance of EMT plasticity in cancer metastasis, 

resistance to therapy, stemness, and immune responses (Jia et al., 2019; 

Jolly et al., 2019; Lu et al., 2013; Tripathi et al., 2020). 

Collective cell migration: A promising theory for cancer invasion 

Single-cell migration is not the only mechanism for cancer cell invasion. 

Collective cancer cell invasion is also important for disseminating tumor cells 

to distal sites; that is, cells invade the peritumoral stroma without losing cell-

cell contacts. The grouped CTCs in patients’ peripheral blood demonstrate 

that collective tumor migration exists in vivo (Aceto et al., 2014; J. M. Hou et 

al., 2011). These cohesive multicellular clusters in breast cancer could be 

abrogated by inhibiting plakoglobin, keratin 14, or p63 (Aceto et al., 2014; 

Cheung et al., 2013). CTCs isolated from patients with breast cancer possess 

many mesenchymal characteristics, and these mesenchymal CTCs are 

associated with the patient’s disease progression and responses to therapy 

(M. Yu et al., 2013). The mesenchymal states of CTCs in patients may reflect 

cancer progressiveness and hold prognostic value (Williams et al., 2019). 

The core of the EMT concept is the function of the EMT cellular program 

in transforming adhesive cells into non-adhesive migrating cells, which has 

been primarily investigated through single-cell migration and invasion assays. 

However, EMT occurs in both a single cell format and a collective of cells (M. 

Yu et al., 2013). The “leader cells” at the tip of the invading cell groups could 

undergo transient or partial EMT induced by microenvironmental cues to 

guide collective cancer cell invasion (Friedl et al., 2012). By adopting a 

microfluidic approach, Wong and colleagues monitored single-cell dynamics 

during cell migration. They reported that cells formed a collective advancing 
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front during migration via EMT, and there are single cells scattered away 

from these cell clusters (Wong et al., 2014). 

  

Figure 1. The EMT and EMP process. 

Epithelial-mesenchymal transition (EMT) is a natural cellular process that can be 
hijacked by cancer cells during cancer metastasis. In the EMT process, epithelial cells 
go through cytoskeleton remodeling, lose the apical-basal cell polarity, weaken cell-
cell and cell-matrix adhesions, and acquire cell motility and the ability to invade the 
basement membrane to form mesenchymal cells. In most cases, epithelial cells 
undergo a certain degree of mesenchymal transition to form “partial” or intermediate 
mesenchymal cells, a phenomenon referred to as epithelial-mesenchymal plasticity 
(EMP). These mesenchymal cells are generally more aggressive and can invade and 
metastasize via extravasation through blood or lymphatic vessels to distal organs (in a 
single-cell form or collectively). Mesenchymal cells transform back to the epithelial 
phenotype at distal organs via mesenchymal-epithelial transition (MET), followed by 
settlement and proliferation. 



 Introduction 

11 

1.2.4  The therapeutic implications of EMT 

As of 2022, there have been 54 clinical trials registered on clinicaltrials.gov 

that directly or indirectly target EMT as therapeutic approaches. Eleven trials 

have breast cancer as one of the targeted conditions. The intrinsic properties 

of partial EMT have created a formidable challenge for EMT-targeting therapy 

due to the difficulties in identifying a druggable intermediate E/M state. 

Targeting the EMT-related modulators, reversing EMT, and inhibiting 

mesenchymal-like cells represent the three main strategies (Voon et al., 

2017). 

EMT-related modulators nuclear factor-kappa B (NF-κB), signal 

transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-

1α (HIF-1α), and TGF-β are four examples out of many potential targets of 

EMT regulatory components (Voon et al., 2017; X. G. Yang et al., 2019). 

Targeting specific EMT-related cancer-inducing regulators will eventually 

cause drug insensitivity. EMT is potentially a pathological manifestation of 

somatic cell reprogramming that renders cellar plasticity, which is 

accountable for chemoresistance (Voon et al., 2017). CSCs with 

mesenchymal characteristics have been deemed the culprit for cancer 

chemoresistance. Inhibiting mesenchymal-like CSCs could potentially 

prevent the resistance to chemotherapy (Voon et al., 2017). Reversing the 

invasive mesenchymal cells back to the epithelial-like phenotype is another 

rationale of EMT therapy. This includes inhibitors on ALK5/TGFβR1, 

mitogen-activated protein kinase (MAPK), proto-oncogene tyrosine-protein 

kinase Src, focal adhesion kinase (FAK), and phosphoinositide 3-kinase 

(PI3K) for their MET-inducing or anti-EMT activities. However, precautions 

should be taken regarding EMT-reversing therapy because MET is involved 

in distant colonization during metastasis (Voon et al., 2017). 

The interaction between EMT and the immune responses has been under 

intense scrutiny (Dongre and Weinberg, 2019). Of note, the EMT-related 

signaling pathway miR-200/ZEB1 has been shown to increase PD-L1 

expression in tumors, and EMT-TFs TWIST can recruit macrophages, 

corroborating the immunosuppressive effects of EMT (L. Chen et al., 2014; 

Low-Marchelli et al., 2013). Targeting EMT might exert synergistic effects on 

immunotherapy. Altered metabolism is one of the main features of EMT 

(Sciacovelli and Frezza, 2017). Glycolysis, lipid metabolism, mitochondrial 

metabolism, pyrimidine metabolism, and more are potential candidates to 

intervene in the EMT process. Targeting EMT-related metabolic pathways is 

another alternative for EMT-associated drug therapies (Ramesh et al., 2020). 
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1.3  Cancer metabolism 

In the following section, I will first generally review metabolic reprogramming 

in cancer and breast cancer, cancer metastasis and EMT, and the interaction 

of metabolism and signaling regulation. Then, I will focus on aspects related 

to this project, specifically glycan metabolism, including two enzymes studied 

in-depth: UDP-glucose dehydrogenase (UGDH) and glutamine fructose-6-

phosphate transaminase 2 (GFPT2), one-carbon metabolism, the 

transsulfuration pathway, reactive oxygen species (ROS) regulation, 

mitochondrial metabolism, and glycerophosphocholine (GPC) and N-

acetylaspartate (NAA) metabolism (Figure 2). 

Figure 2. An overview of the metabolic pathways involved in this project. 

In the hexosamine biosynthetic pathway (HBP), glucose is finally converted into UDP-
N-acetylglucosamine (UDP-GlcNAc), indispensable for protein glycosylation 
modification and glycan formation. Glutamine-fructose-6-phosphate transaminase 2 
(GFPT2) is a rate-limiting enzyme of the HBP. The HBP is intertwined with the 
pentose phosphate pathway (PPP), glycolysis, and the formation of precursors for 
glycosaminoglycans (GAGs) and proteoglycans, essential components in the 
extracellular matrix (ECM). UDP-glucose dehydrogenase (UGDH) is responsible for 
converting UDP-glucose to UDP-glucuronic acid, one of the building blocks of 
hyaluronan in ECM. The product of glycolysis, pyruvate, is converted into acetyl-CoA 
in the mitochondria, which is a substrate in the HBP, along with glutamine. Glutamine 
can be metabolized in the mitochondria to generate acetyl-CoA and aspartate via 
reductive carboxylation, and these two metabolites are then converted into N-
acetylaspartate (NAA). The other two pathways related to this project are choline 
metabolism, in which glycerophosphocholine (GPC) is converted to free choline and 
glycerol-3-phosphate, and the transsulfuration pathway, which is associated with one-
carbon metabolism. Homocysteine participates in the methionine cycle in one-carbon 
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metabolism, within which active methyl-donors are produced. Homocysteine can also 
be converted into cystathionine to generate hydrogen sulfate (H2S) and glutathione in 
the transsulfuration pathway, both of which are involved in reactive oxygen species 
(ROS) regulation. Sulfide quinone oxidoreductase (SQOR), an enzyme that binds to 
the mitochondrial membrane, uses H2S as substrates. 

1.3.1  Cancer and breast cancer metabolism 

Metabolism comprises a series of chemical reactions that occur within living 

cells to provide energy, to produce building blocks, to regulate biological 

processes, and to facilitate cell-cell and cell-extracellular matrix (ECM) 

interactions. Metabolic dysregulation is deeply intertwined with oncogenesis 

(Counihan et al., 2018). Metabolic reprogramming as an emerging hallmark 

of cancer can be grouped into seven categories: (1) altered glucose and 

amino acids uptake; (2) acquired flexibility for nutrient demand; (3) increased 

utilization of the intermediates from glycolysis and the tricarboxylic acid (TCA) 

cycle for biosynthesis and the production of nicotinamide adenine 

dinucleotide phosphate (NADPH); (4) elevated demand for reduced nitrogen 

due to the increased cell growth; (5) alterations in gene expression regulated 

by, for example, acetylation and methylation; (6) exchange with the TME; and 

(7) maintaining redox balance (Pavlova and Thompson, 2016). 

Cancer cells produce energy via glycolysis instead of aerobic respiration 

in the mitochondria, resulting in more lactic acid production than normal cells, 

a phenomenon known as the “Warburg effect,” observed by Otto Warburg in 

1927, which first linked metabolism to oncogenesis (Warburg et al., 1927). 

Apart from aerobic glycolysis, the influences of mitochondrial metabolism 

have started to earn appreciations in carcinogenesis (Porporato et al., 2018). 

The discovery that fructose-2,6-bisphosphate allosterically activates 

phosphofructokinase (PFK) has revolutionized the common understanding of 

metabolites in cellular regulations (Van Schaftingen et al., 1981). To date, 

numerous metabolic enzymes have been implicated in cancer for their 

canonically enzymatic and uncanonically regulatory functions (Martinez-

Reyes and Chandel, 2021). In addition, cancer-associated fibroblasts (CAFs) 

are the most abundant intratumoral cell type to support malignant tumor cell 

growth, survival, and metastasis (Kalluri, 2016). The tumor-promoting effects 

of CAFs are dependent on the production of lactate, counterbalancing the 

TME acidification, activation of autophagy to supply cancer cells with non-

essential amino acids (NEAAs), and regulating glucose uptake (Schworer et 

al., 2019; W. Zhang et al., 2018). These changes agree with the “reverse 

Warburg effect” proposed in 2009, stating that carcinoma cells stimulate the 

Warburg effect or aerobic glycolysis in neighboring stromal CAFs that secrete 
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many energy-rich metabolites, including lactate and pyruvate to “feed” the 

tumor cells (Pavlides et al., 2009). 

Metabolic reprogramming in breast cancer 

The metabolic abnormality of breast cancer has been extensively studied and 

reviewed (D. Zhang et al., 2021). Both primary and metastatic breast cancer 

cells exhibit metabolic heterogeneity (L. Wang et al., 2020). Different breast 

cancer subtypes present distinct metabolic phenotypes (D. Zhang et al., 

2021).  

In TNBC, EGF signaling reprograms glycolysis to accumulate the 

intermediate fructose 1,6 bisphosphate (F1,6BP), which can bind to and 

enhance EGFR activity, leading to augmented aerobic glycolysis, increased 

lactate secretion, and impaired immunosurveillance mediated by cytotoxic T 

cells (S. O. Lim et al., 2016). The transcription factor MYC is 

disproportionately overexpressed in TNBC compared with the other types, 

and fatty acid oxidation intermediates are significantly upregulated for energy 

metabolism in MYC-overexpressing TNBC (Camarda et al., 2016). ESR-

negative breast cancer cells overexpress phosphoglycerate dehydrogenase 

(PHGDH) in the serine biosynthesis pathway to fuel the anaplerosis of the 

TCA (Possemato et al., 2011). HER2-positive breast cancer possesses high 

glutamine metabolic activities (S. Kim et al., 2013).  

The energy sensor AMP-activated protein kinase (AMPK) and fatty acid 

synthase (FASN) have also received considerable attention as therapeutic 

targets for breast cancer treatment (W. Cao et al., 2019; Menendez and 

Lupu, 2017). HIF signaling regulates glucose, amino acids, lipids, and ROS 

metabolism in breast cancer, which can be exploited in combination with 

immune- and endocrine therapy in the clinic (de Heer et al., 2020). In 

addition, hexokinase (HK), pyruvate dehydrogenase kinase 1 (PDK-1), and 

glutaminase, among other enzymes, are promising metabolic targets in 

breast cancer treatment and are being evaluated in clinical trials (L. Wang et 

al., 2020). To date, however, the definitive clinical benefits of interfering with 

metabolism for/alongside breast cancer treatment are lacking (L. Wang et al., 

2020). 

1.3.2  Metabolic reprogramming in metastasis and EMT 

In the cancer metastatic cascade, metabolic rewiring has emerged as an 

important aspect relying on metabolic plasticity and flexibility. The metabolic 

phenotypes between primary tumor cells and cells that have undergone 
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metastasis and those of different metastatic sites are different (Bergers and 

Fendt, 2021). Pyruvate, lactate, glutamine, fatty acids, and more are common 

metabolites with functional plasticity in cancer metastasis, all of which are 

intertwined with various enzymes and signaling regulators and participate in 

cell invasion, circulation, and colonization in the metastatic cascade (Christen 

et al., 2016; Rodrigues et al., 2016; Tasdogan et al., 2020). Cancer cells 

depend on different metabolites to fulfill the same metabolic needs, reflecting 

their metabolic flexibility. Metastasized cancer cells that seeded at distant 

sites demand more energy production (Elia et al., 2018). Fatty acids, glucose, 

proline, lactate, and the ATP-scavenging machinery have been reported to 

accommodate the excess ATP need in cancer cells colonizing distant sites 

(Dupuy et al., 2015; Elia et al., 2017; Loo et al., 2015; J. H. Park et al., 2016). 

The metabolic rewiring of cancer cells to accommodate the needs for cell 

proliferation, circulation, seeding, and adaptation shows metabolic plasticity 

and flexibility, but concurrently, it also exposes certain metabolic rigidity and 

specific vulnerabilities. For example, blocking proline catabolism and 

inhibiting lactate uptake dramatically affect cancer metastasis (Tasdogan et 

al., 2020). This has led to promising metabolic therapeutic strategies to target 

specific metabolic vulnerabilities depending on different cancer progression 

phases of patients. 

Cancer cells require the pentose phosphate pathway (PPP) to meet the 

anabolic demands for high proliferation and to resist oxidative stress for drug 

resistance. The production of NADPH in the PPP is compensated by AMPK-

mediated NADPH generation under energetic stress, both of which are 

pivotal for cancer cells to overcome oxidative stress during metastasis (Patra 

and Hay, 2014). 

Metabolic reprogramming in EMT 

In carcinogenesis, metabolic rewiring and EMT are entwined (Morandi et al., 

2017; Sciacovelli and Frezza, 2017). EMT leads to broad metabolic 

reprogramming covering but not limited to mitochondrial metabolism; 

hypoxia; and glucose, glutamine, serine, fatty acid, and nucleic acid 

metabolism (M. Li et al., 2019). Shaul and colleagues identified 44 metabolic 

genes associated with mesenchymal features, designated the ‘‘mesenchymal 

metabolic signature’’ (MMS), covering nucleotide, lipid, amino acid, carbon, 

redox, glycan, cofactor, and other metabolic pathways. They reported that the 

pyrimidine-degrading enzyme dihydropyrimidine dehydrogenase (DPYD) and 

its product dihydropyrimidines were responsible for the mesenchymal traits 
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and malignant transformation (Shaul et al., 2014). TGF-β-induced EMT has 

considerable impacts on both glycolysis and mitochondrial metabolism by 

deregulating several related enzymes, such as GLUT1, HK2, fructose-2,6-

biphosphatase 3 (PFKFB3), pyruvate kinase M2 (PKM2), LDHA, PDK-4, 

fumarate hydratase (FH), succinate dehydrogenase (SDH), and IDH (Hua et 

al., 2020). The upregulation of xenobiotic-metabolizing enzymes, including 

drug transporters, cytochrome P450s, and glutathione-related enzymes, after 

EMT renders cancer cells chemoresistance (Fischer et al., 2015). 

EMT can also be shaped by metabolic changes. Increased glycolytic 

activity results in higher production of lactate, which regulates the 

NAD+/NADH ratio to affect the NAD+-dependent enzyme, sirtuin 1 (SIRT1), 

that induces EMT (Eades et al., 2011). In addition, the acidic 

microenvironment has been found to induce EMT (Morandi et al., 2017). 

Hypoxia activates several EMT-TFs (including Snail1, Slug, and TWIST), with 

HIF-1α playing a critical role (J. Jiang et al., 2011). Targeting glutaminase 1 

(GLS1) to impair glutamine metabolism can also disrupt the EMT program 

and hamper tumor growth and metastasis (Morandi et al., 2017). Fatty acids 

are cellular fuel, building blocks in cell membranes, and signaling molecules. 

Fatty acid-binding protein (FABP5) can induce EMT to facilitate metastasis in 

hepatocellular carcinoma cell lines (Ohata et al., 2017). Inhibition of lysine 

demethylase 5B (KDM5B) can activate AMPK to downregulate FASN and 

ATP citrate lyase (ACLY) in fatty acid metabolism, reverse EMT, and 

eventually inhibit breast cancer cell proliferation and migration (Z. G. Zhang 

et al., 2019). The role of FASN is controversial: FASN can be downregulated 

by EMT induction, a change that is inconsistent with the active FASN-driven 

lipogenesis in EMT (Morandi et al., 2017). Moreover, the fatty acid species, 

sphingolipids, and lipid composition, including cholesterol content, are 

affected by EMT and concomitantly shape the EMT program (Eiriksson et al., 

2018; Morandi et al., 2017). SDH5, one of the subunits in the SDH complex 

of the electron transport chain (ETC), activates glycogen synthase kinase 3 

beta (GSK-3β) to suppress Wnt signaling, which in return affects EMT (J. Liu 

et al., 2013). Mitochondrial superoxide dismutase 2 (SOD2) in ROS 

regulation is upregulated after TGF-β-mediated EMT, and partially impaired 

mitochondrial metabolism is associated with ROS and worse patient survival 

in different types of cancer and correlated with the EMT gene signature 

(Edoardo Gaude and Frezza, 2016; Morandi et al., 2017). 
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1.3.3  Crosstalk between oncogenic signaling and metabolism 

Cell metabolism is regulated by a complex network of signaling pathways 

partially mediated via receptor tyrosine kinases (RTKs), such as EGFR, 

IGF1R, PDGFR, and vascular endothelial growth factor receptor (VEGFR). 

They play crucial roles in breast cancer progression (Butti et al., 2018). 

Activation of IGF1R results in the activation of PI3K/AKT and MAPK, which 

leads to ESR downregulation and resistance to tamoxifen (Schiff et al., 2004; 

Vella et al., 2020). PI3K/AKT signaling is intimately related to metabolism 

(Counihan et al., 2018), and PI3K-AKT1 drives the tumor glycolytic 

phenotype (Hoxhaj and Manning, 2020). 

In return, metabolic changes modulate signaling activities and gene 

expression that drive cell migration and invasion (Elia et al., 2018). Enzymes 

may exceed their catalytic roles and exert nonconventional signaling 

regulatory effects, which complicates the role of metabolic enzymes in 

cellular regulations. GSK-3, which was initially identified in glycogen 

metabolism, plays a key role in Wnt signaling and insulin regulation (Cohen 

and Frame, 2001). Insulin-induced activation of PDK-1 and AKT leads to the 

phosphorylation of GSK-3 with the help of PI3K, eventually causing the 

suppression of GSK-3 activity and subsequent stimulation of glycogen 

synthesis (Cohen and Frame, 2001). NF-κB is a well-known transcription 

factor under the regulation of PI3K/AKT and is essential for EMT induction 

and maintenance (Huber et al., 2004). The monocarboxylate transporter 1 

(MCT1), which exchanges lactate across the plasma membrane, has been 

shown to activate NF-κB and promote tumor growth and metastasis, 

independent of its lactate transport function (Z. Zhao et al., 2014). Fatty acid 

metabolism is also intimately related to the signaling regulation of EMT. 

Elevated free fatty acid uptake activates the Wnt and TGF-β signaling 

pathways to induce EMT and promote cancer progression (Nath et al., 2015). 

The unsaturated lipids are significantly increased in ovarian cancer stem 

cells. NF-κB regulates lipid desaturases and the inhibition of which blocks 

NF-κB signaling involved in EMT (J. Li et al., 2017). 

1.3.4  Metabolic reprogramming in glycan metabolism 

The flux through the hexosamine biosynthetic pathway (HBP) and the level of 

UDP-N-acetylglucosamine (UDP-GlcNAc) are upregulated in different cancer 

types. The HBP is closely associated with glycolysis and accounts for 2%-5% 

of total glucose metabolism (Akella et al., 2019; Marshall et al., 1991). 

Glucose, glutamine, fatty acids, and amino acids are substrates of the HBP 

and the main metabolic drivers of tumor growth. Their availability alters the 
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HBP flux and the production of UDP-GlcNAc, supporting the nutrient-sensing 

function of the HBP for metabolic homeostasis (Chiaradonna et al., 2018). 

The end-product of HBP, UDP-GlcNAc, is indispensable for protein O-

GlcNAcylation which is a post-translational protein modification that is 

involved in various signaling, immune, and structural functions (Akella et al., 

2019). O-GlcNAcylation modulates cancer metabolism by regulating 

glycolysis via HIF-1α and GLUT1 (Ferrer et al., 2014), controlling flux into the 

PPP via PFK1 (Yi et al., 2012), influencing glutamine uptake (Wellen et al., 

2010), and by modifying the bioenergetic sensor AMPK (Bullen et al., 2014). 

O-GlcNAc transferase (OGT) is responsible for the covalent O-GlcNAcylation 

modification of proteins by UDP-GlcNAc and is related to DNA damage 

responses in TNBC (Barkovskaya et al., 2019). 

A substantial number of studies have confirmed the connection between 

the HBP and EMT (Akella et al., 2019; K. Taparra et al., 2016). EMT 

increases the UDP-GlcNAc level and modulates the O-glycan and N-glycan 

compositions, and several EMT markers—for example, E-cadherin, TGF-βR, 

and EGFR—are modified by N-linked glycosylation (X. Li et al., 2016). The 

EMT-TF Snail can be stabilized by O-GlcNAcylation modification to instigate 

the EMT program, which directly links glucose metabolism to EMT (S. Y. 

Park et al., 2010). In addition, the EMT-associated regulators TGF-β, NF-κB, 

and FOXO-1 are all subject to potential O-GlcNAcylation modification (Akella 

et al., 2019). Given that the HBP resides at the crossroads of many central 

metabolic pathways, and the downstream product, UDP-GlcNAc, is primarily 

responsible for protein O-GlcNAcylation and O-linked and N-linked glycans 

that regulate many oncogenes, targeting the HBP is appealing for cancer 

therapeutics (Akella et al., 2019; Chiaradonna et al., 2018). 

UDP-GlcNAc, along with UDP-glucuronic acid (UDP-GlcA), UDP-xylose, 

UDP-galactose, and UDP-N-acetylgalactosamine, are UDP-activated 

nucleotide sugars serving as building blocks for the ubiquitous 

glycosaminoglycans (GAGs). GAGs are polysaccharides that comprise four 

main categories, namely chondroitin sulfate/dermatan sulfate (CS/DS), 

heparin/heparan sulfate (HS), hyaluronan (HA), and keratan sulfate (KS). 

GAGs partake in a plethora of cellular functions spanning signal regulation, 

ECM remodeling, TME modulation, and immunosurveillance, which are 

culpable for oncogenesis (Morla, 2019). For example, HA is abundant in the 

ECM and can bind to and activate CD44 (C. Chen et al., 2018). HS 

proteoglycans are involved in the ligand-receptor complex formation in FGF-2 

signaling in breast carcinomas (Mundhenke et al., 2002). The CS 
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proteoglycan versican is highly deposited in the peritumoral stroma in primary 

breast cancer and may promote cancer progression (Ricciardelli et al., 2002). 

UGDH: One of the main enzymes in glycan metabolism identified in this 
project 

In 1956, Strominger and colleagues identified and purified the enzyme UGDH 

from calf liver homogenate and confirmed that UGDH catalyzes UDP-glucose 

(UDP-Glc) to UDP-GlcA (Strominger et al., 1957). UDP-GlcA is an 

indispensable unit of GAGs (such as HA) and proteoglycans and a glucuronyl 

donor to endogenous and exogenous compounds conjugated as 

glucuronides in liver. UGDH uses NAD+ as an oxidant and catalyzes UDP-

Glc to UDP-GlcA while generating NADH in a two-step oxidation.  

Earlier studies had investigated the functions of UGDH in embryonic 

development. UGDH shapes tissue morphogenesis via HA-mediated 

pressure stimulus (Munjal et al., 2021). Concerning the functions of UGDH in 

glucuronidation reaction of xenobiotics, UGDH was reported to be under the 

influence of xenobiotic treatments (Vatsyayan et al., 2005). HA is one of the 

main products produced by UGDH and constitutes the main part of the ECM. 

Thus far, the pathological effects of UGDH have mainly been attributed to the 

function of UGDH in the generation of UDP-GlcA and the subsequent 

production of HA and other GAGs and proteoglycans. HA may facilitate 

cancer invasion, chondrogenic matrix accumulation, and osteoarthritis 

(Clarkin et al., 2011; Clarkin et al., 2011; Passi et al., 2019; Wen et al., 2014). 

Given the significance of the ECM and HA composition in cancer progression 

(Vigetti and Passi, 2014) and the essential role of UGDH in HA formation, the 

biological function of UGDH in cancer development has been increasingly 

appreciated in the last five years. 

UGDH in cancer 

UGDH inhibition can decrease the proliferation rate of the human breast 

cancer cell line MCF-7 and the HCT-8 colorectal cell line (Hwang et al., 2008; 

T. P. Wang et al., 2010) and reduce the prostate cancer cell colony formation 

(Scoglio et al., 2016). Moreover, small interfering RNA (siRNA)-mediated 

UGDH knockdown in these cells delayed the spheroid formation and 

hampered the cell migration and invasion abilities, which were compensated 

by adding exogenous HA (T. P. Wang et al., 2010). In addition to prostate 

cancer, breast cancer, and colorectal cancer, UGDH in cancer 

aggressiveness and chemoresistance has also been implicated in melanoma, 

non-small cell lung carcinoma, glioblastoma, and ovarian cancer (Deen et al., 
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2016; Lin et al., 2020; Oyinlade et al., 2018; Paul et al., 2016). UGDH 

knockdown decreased cell proliferation and migration in glioblastoma cells in 

vitro and inhibited tumor growth and migration in vivo (Oyinlade et al., 2018). 

Similarly, UGDH was highly expressed in a very invasive ovarian cell line, 

and UGDH knockdown impaired ovarian cancer cell proliferation, migration, 

and ovarian tumor growth in xenograft mouse models (Lin et al., 2020). 

UGDH is negatively correlated with the survival of patients with TNBC who 

received chemotherapy, perhaps due to the glucuronidation of xenobiotics by 

UGDH (Vitale et al., 2021). The inhibitory effects of the UGDH inhibitor—4-

methylumbelliferone (4-MU)—on breast cancer formation, growth, and 

invasion via inhibiting HA synthesis manifest similarly to those of UGDH 

knockouts (Arnold et al., 2019).  

Recently, Wang et al. (2019) reported that phosphorylation of UGDH by 

EGFR at tyrosine 473 could enhance the stability of SNAI1 mRNA to facilitate 

lung cancer metastasis by attenuating the UDP-Glc-mediated SNAI1 mRNA 

decay. This study has proposed a new mechanism of UGDH in cancer 

progression mediated by UDP-Glc (X. Wang et al., 2019). Finally, UGDH 

could serve as a sero-diagnostic marker to facilitate the prognosis of patients 

with early lung adenocarcinoma (Hagiuda et al., 2019). 

UGDH in EMT 

The first evidence of UGDH in EMT was the observation of upregulation of 

UGDH in epithelial breast cancer cells after E-cadherin knockdown (Vergara 

et al., 2015). Later, Arnold and colleagues noticed that UGDH was one of the 

top dysregulated genes in mesenchymal-like breast cancer, and several 

mesenchymal-like characteristics could be inhibited by depleting UDP-GlcA 

(Arnold et al., 2019). Furthermore, UGDH depletion inhibited the EMT-TFs 

SNAI1 and Smad interacting protein-1 (SIP-1) and the mesenchymal marker 

N-cadherin but increased the epithelial marker E-cadherin (Lin et al., 2020; X. 

Wang et al., 2019). Even though Teoh et al. (2020) had observed similar 

effects of UGDH on UDP-GlcA production, breast cancer migration, and in 

vivo tumor growth and metastasis, they claimed that UGDH knockout did not 

impair EMT in the mouse mammary cancer cells on account of the increased 

EMT markers fibronectin (FN1) and EMT-TFs homeobox protein SIX1. 

Nevertheless, they also reported E-cadherin upregulation with UGDH 

knockout (Teoh et al., 2020). 
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UGDH regulation and the regulatory roles of UGDH 

UGDH can be upregulated by TGF-β and downregulated by hypoxia and is 

regulated by the transcription factor specificity protein 1 (SP1) (Bontemps et 

al., 2003). In addition, the zinc-finger transcription factor c-Krox, in 

cooperation with SP1/SP3, inhibits UGDH in chondrocytes, while the steroid 

hormone estradiol 17β-E2 stimulates UGDH in articular chondrocytes 

(Beauchef et al., 2005). Furthermore, the Epstein-Barr virus oncogene latent 

membrane protein 2A (LMP2A) can upregulate UGDH by activating the 

extracellular signal-regulated kinase (ERK) and PI3K/AKT pathways and 

eventually initiate the binding ability of SP1 to the promotor region of UGDH 

(Pan et al., 2008). The regulation of MEK-ERK on UGDH was confirmed in 

articular surface cells; however, the TGF-β-mediated p38MAPK activity is more 

dominant in regulating UGDH in these cells (Clarkin et al., 2011). The 

regulatory effects of transcription factors SP1/3 and c-Krox on UGDH and the 

involvement of p38MAKP were validated in human primary chondrocytes (Wen 

et al., 2014). UGDH is also a downstream target of the binding activity of 

Krüppel-like factor 4 (KLF4) and methylated CpG and is regulated by KLF4 in 

a DNA methylation-dependent manner (Oyinlade et al., 2018). A recent study 

showed that the glycoprotein Slit2 has regulatory effects on UGDH in CD34+ 

fibrocytes isolated from peripheral blood mononuclear cells (Fernando and 

Smith, 2021). Taken together, UGDH is regulated by multiple signaling 

pathways at the genetic, post-transcriptional, and post-translational levels. 

Interestingly, studies also suggest that UGDH can exert regulatory effects, 

affecting the expression of important cellular regulators including Notch1 and 

peroxisome proliferator-activated receptor gamma (PPARγ) and, 

subsequently, lipid metabolism (Arnold et al., 2019; Zimmer et al., 2016). In 

addition, the regulatory role of UGDH has also been implicated in controlling 

the cell cycle checkpoints via p21 and p27 and affecting the ERK/MAPK 

pathway and phosphorylation of AKT (Hagiuda et al., 2019; Lin et al., 2020). 

Lastly, UGDH catalyzes a reaction that can significantly influence the 

NAD+/NADH ratio, and NAD+ and NADH strongly control the metabolic 

activity of SIRT1 (Anderson et al., 2017). 

GFPT2: The second main glycan enzyme identified in this project 

In 1999, human GFPT2 was first subcloned by polymerase chain reaction 

(PCR), based on the expressed-sequence tag (EST) sequence that is similar 

to human GFPT1. The homology between human GFPT1 and human GFPT2 

is 75%-80%, while there is 97%-98% similarity between human GFPT2 and 

mouse GFPT2 (Oki et al., 1999). Structure analysis reveals that the 
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glutaminase domain of GFPT2 possesses a flexible loop structure, potentially 

contributing to its functional flexibility. Enzyme kinetics suggest that the 

efficiency of GFPT2 in synthesizing glucosamine-6-phosphate is lower than 

other GFPTs. GFPT2 also hinders the productivity of glutamine hydrolysis 

(Oliveira et al., 2021). 

Although GFPT2 has enzymatic activities that resemble GFPT1, these 

two enzymes have different tissue distributions (Hu et al., 2004) and are 

regulated differently (Hu et al., 2004; Kuang et al., 2008; Ruegenberg et al., 

2020). GFPT1 is negatively regulated by its product, UDP-GlcNAc, while 

GFPT2 is only weakly affected (Hu et al., 2004). GFPT2 reacts to EGF 

stimulation and is upregulated in the presence of EGF in mice (Richani et al., 

2014). GFPT2 has been identified as a molecular marker for embryonic 

definitive endoderm (Lawton et al., 2013; P. Wang et al., 2012). Many studies 

have suggested GFPT2 has a distinct gene expression pattern associated 

with ethnicity and is involved in antipsychotic-medication-induced weight 

gain, excess adiposity, diabetes, chronic obstructive pulmonary disease, and 

cardiac/cardiovascular functions (Belke, 2011; Coomer and Essop, 2014; 

Gabel et al., 2017; Kresovich et al., 2017; Prasad et al., 2010; H. Yu et al., 

2016; H. Yu et al., 2021; H. Zhang et al., 2004). Recent studies show that 

GFPT2 is involved in myocardial infarction in mice. GFPT2 plays a role in the 

hypoxia/reoxygenation-induced myocardial cell damage where GFPT2 is 

regulated by KLF5-miR-27a axis and activates the TGF-β/Smad2/3 signaling 

pathway (Tian et al., 2021). GFPT2 expression is not presented in cardiac 

myocytes but is highly abundant in cardiac fibroblasts (Nabeebaccus et al., 

2021). It serves as a marker for a subpopulation of cardiac fibroblasts and 

affects the functions of these cells (Li Wang et al., 2021). 

GFPT2 regulation in cancer and EMT 

GFPT2 is reported to be under the regulation of bone morphogenetic protein 

2 (BMP-2), NF-κB, SIRT6, inositol-requiring enzyme (IRE1α), spliced X-Box 

binding protein 1 (sXBP1), and FoxO1 (Al-Mukh et al., 2020; Mirmalek-Sani 

et al., 2009; Panarsky et al., 2020; Qiao et al., 2021; Szymura et al., 2019). It 

regulates NF-κB (p65) via O-GlcNAcylation to form a feedback loop for its 

regulation (L. Liu et al., 2020). GFPT2 correlates with SNAI1 and TWIST1 

(Kekoa Taparra et al., 2019), is associated with tumor progression, and is 

upregulated after EMT in breast cancer, non-small cell lung cancer (NSCLC), 

lung adenocarcinoma, colon adenocarcinoma, and serous ovarian cancer (J. 

Kim et al., 2020; D. Li et al., 2021; Shaul et al., 2014; Simpson et al., 2012; 

Szymura et al., 2019; Kekoa Taparra et al., 2019; Verbovsek et al., 2014; L. 
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Zhang et al., 2021; W. Zhang et al., 2018; Zhou et al., 2019). It interacts with 

TGF-β1 and increases TGF-β1 production (Prasad et al., 2010). In turn, TGF-

β1 upregulates GFPT2 gene expression (W. Zhang et al., 2018). GFPT2 can 

promote EMT in serous ovarian cancer via O-GlcNAcylation of β-catenin 

(Zhou et al., 2019). It holds potential as a therapeutic target in NSCLC with 

concurrent KRAS and LKB1 mutations that emulates claudin-low breast 

cancer (H. S. Kim et al., 2013; J. Kim et al., 2020), indicating the role of the 

LKB1-AMPK pathway in GFPT2 regulation. GFPT2 is one of the upregulated 

claudin-low signature genes in TNBC (H. S. Kim et al., 2013; Prat et al., 

2010). Its level is elevated in breast cancer biopsies (Oikari et al., 2018). 

The uncanonical functions of GFPT2 

Although most studies on GFPT2 have focused on the function of GFPT2 in 

generating UDP-GlcNAc and the downstream effects of O-GlcNAcylation on 

specific targets, the regulatory role of GPFT2 is not limited to protein O-

GlcNAcylation. GFPT2—highly expressed in CAFs in lung adenocarcinoma—

correlates with glucose uptake in the TME and facilitates tumor progression 

via metabolic reprogramming in TME (W. Zhang et al., 2018). Studies have 

reported the role of GFPT2 in responding to oxidative stress (Nivet et al., 

2013; Zitzler et al., 2004). GFPT2 protects cells from peroxide-induced 

oxidative stress (Zitzler et al., 2004). Homozygosity of one GFPT2 mutation 

leads to increased ROS in spermatozoa and decreases sperm mobility in 

men (Askari et al., 2019). A recent study showed that the mRNA level of 

GFPT2 decreased after glyoxalase 1 (GLO1) knockout, and GLO1 detoxifies 

methylglyoxal in a glutathione-dependent manner (Jandova and Wondrak, 

2020). It is worth noting that GFPT2 expression changes upon virus 

infections (X. Xu et al., 2020; Y. Zhao et al., 2019), and treating cells with 

scrambled siRNAs could increase GFPT2 expression (Oikari et al., 2016). 

Recent studies have reported that GFPT2-overexpressing tumor cells are 

associated with chemoresistance, TME regulation and interference with 

immune cells in immunotherapy (X. Ding et al., 2022; J. Li et al., 2022). 

1.3.5  Metabolic reprogramming of one-carbon metabolism and 
the transsulfuration pathway 

One-carbon metabolism includes biochemical pathways encompassing both 

the folate and methionine cycles to produce and transfer one-carbon units or 

methyl groups. Serine, glycine, and choline are all active one-carbon unit 

donors (Newman and Maddocks, 2017). The folate cycle plays a part in 

nucleotide synthesis and antioxidant defense, and the methionine cycle 
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regulates the provision of methyl groups for DNA, histone, and protein 

methylation modifications, which are major epigenetic regulations in 

mammalian cells (Friso et al., 2017; M. Yang and Vousden, 2016). The ratio 

of two intermediates in the methionine cycle—S-adenosylhomocysteine and 

S-adenosylmethionine (SAH:SAM)—is reflective of the cellular methylation 

capacity (Weber and Birsoy, 2019). Cancer cells may utilize one-carbon units 

for nucleotide synthesis, methylation modification, and NADH/NADPH 

production. To complete the methionine cycle, methionine needs to be 

recycled by re-methylation of homocysteine which participates in the 

transsulfuration pathway for synthesis of cysteine and glutathione.  

In the transsulfuration pathway, homocysteine is converted into 

cystathionine and further into cysteine on which tumor cells are heavily reliant 

(J. K. M. Lim et al., 2019). The end-product, cysteine, is a precursor for de 

novo glutathione synthesis where glutamate and glycine are also involved, 

and glutathione is a ubiquitous antioxidant. Zhu and colleagues reported that 

with limited sources of extracellular cysteine, tumor cells rely on the 

transsulfuration pathway for de novo cysteine synthesis to support cell growth 

(J. Zhu et al., 2019). Apart from the production of cysteine, the 

transsulfuration pathway is also primarily responsible for the endogenous 

production of the gaseous signaling molecule hydrogen sulfide (H2S). Weber 

and colleagues argued that H2S, cystathionine, and homocysteine in the 

transsulfuration pathway are all possibly accountable for increased tumor 

growth (Weber and Birsoy, 2019). Cystathionine-β-synthase (CBS) is the first 

and rate-limiting enzyme in the transsulfuration pathway. It catalyzes the 

conversion of homocysteine into cystathionine, the upregulation of which 

induces altered expression of genes in various pathways that favor 

carcinogenesis and EMT. The CBS-H2S signaling axis promotes cell growth 

and metastasis in colorectal cancer (Phillips et al., 2017). Cystathionine is 

recognized as an oncometabolite in breast cancer, protects cancer cells 

against ROS and drug-induced apoptosis, and maintains homeostasis of both 

mitochondria and ER (Sen et al., 2016). 

1.3.6  Metabolic reprogramming in ROS regulation and 
mitochondrial metabolism 

Excess ROS can be detrimental for cancer cells. The superoxide anion (O2
-) 

generated from the ETC is one of the main sources of ROS (Idelchik et al., 

2017). The input of glutamine has strong impacts on ROS via glutamate, a 

precursor for de novo glutathione synthesis. Cancer cells have increased the 

defense mechanism against ROS; it can be induced by matrix detachment 
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during cancer cell circulation (L. Jiang et al., 2016). Detached and 

disseminated cancer cells in circulation form clusters to increase their 

antioxidant defense (Labuschagne et al., 2019). ROS activates a variety of 

EMT-TFs and ultimately facilitates EMT and the progression of tumorigenesis 

(Hayes et al., 2020). 

The loss of anchorage dependency of cancer cells causes mitochondrial 

perturbations and ROS production, which can be ameliorated by cell 

clustering to achieve successful distant colonization (Labuschagne et al., 

2019). Oxidative phosphorylation (OXPHOS) and mitochondrial functionality 

are most affected in cancer and associated with EMT (Edoardo Gaude and 

Frezza, 2016). Aside from ROS formation, mitochondrial dysregulation also 

results in the accumulation of fumarate, succinate, and 2-hydroxyglutarate (2-

HG), which have been shown to be oncogenic and causes functional deficits 

in mitochondrial outer membrane permeabilization (MOMP) to protect 

neoplastic cells against regulated cell death (RCD) (E. Gaude and Frezza, 

2014; Izzo et al., 2016). Metabolic dysregulation in mitochondria affects 

malignant transformation, cancer cell proliferation, resistance to RCD, 

interaction with the stroma, metastatic dissemination, resistance to 

therapeutics, immunosurveillance, and EMT (Porporato et al., 2018). The 

mitochondrial metabolite fumarate can repress the demethylation of 

antimetastatic miR-200 mediated by the ten-eleven translocation (TET) 

methylcytosine dioxygenases to suppress miR-200 and overexpress EMT-TF 

ZEB2 (Sciacovelli et al., 2016). 

Mitochondrial dysfunction affects H2S homeostasis, and H2S is associated 

with ROS production and oxidative stress (Quinzii and Lopez, 2021). Sulfide 

quinone oxidoreductase (SQOR) resides at the mitochondrial membrane and 

catalyzes the commitment step of H2S oxidation by coupling the reduction of 

coenzyme Q (CoQ, also referred to as ubiquinone), which is a component of 

the mitochondrial ETC. The H2S level is closely regulated by both CoQ and 

glutathione (Quinzii and Lopez, 2021) and tightly controlled by SQOR via H2S 

oxidation (Jackson et al., 2012). 

1.3.7  GPC and NAA 

GPC is a potential target for breast cancer treatment 

Activated choline metabolism is a hallmark of cancer progression (Glunde et 

al., 2011; Egidio Iorio et al., 2016). GPC is involved in the catabolic pathway 

of phosphatidylcholine (PtdCho), which is the most abundant phospholipid in 

the cell membrane to produce choline. GPC is vital for choline synthesis, and 
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most studies have focused on the Kennedy pathway and the production of 

PtdCho in choline metabolism. Recently, however, an abnormal GPC level in 

cancer is emerging as a target for cancer treatment (Glunde et al., 2011; 

Sonkar et al., 2019). In addition, GPC exerts cellular osmotic regulatory 

functions under osmoregulation of the phospholipases and the 

glycerophosphocholine phosphodiesterases (GPC-PD) GDPD5, which was 

first found in renal medullary cells (Gallazzini and Burg, 2009). GDPD5 

knockdown results in the accumulation of GPC and the increased ability of 

cells to produce proteoglycans, which indicates that GDPD5 regulates the 

intracellular osmotic stress via GPC (Okazaki et al., 2019). Silencing GPC-

PD decreases the level of lipid metabolites, suggesting a close relationship 

between GPC and downstream lipid metabolism (Stewart et al., 2012). 

Breast cancer cells treated with drugs (the PI3K inhibitor BEZ235, the 

Hsp190 inhibitor 17-AAG, doxorubicin, the nonsteroidal anti-inflammatory 

agent indomethacin, and the AKT inhibitor perifosine) exhibit increased GPC 

via upregulation of phospholipase A2 (PLA2) (Brandes et al., 2010; Cheng et 

al., 2017; Glunde et al., 2006; Siver A. Moestue et al., 2013; Su et al., 2012), 

and GPC possesses antioxidant and anti-inflammatory effects (Tokes et al., 

2015). Even though the treatment of cells in culture with chemical reagents 

results in increased GPC expression, a decrease in GPC indicates better 

survival in patients during neoadjuvant chemotherapy (M. D. Cao et al., 

2012). Earlier studies had used the phosphocholine (PC)/GPC ratio as an 

indicator for tumor malignancy, an approach that has aroused inconsistency 

and controversy. The elevated PC/GPC ratio, or the so-called GPC-to-PC 

switch, has been associated with escalated malignant transformation in vitro 

(Cheng et al., 2017). However, there is a lower PC/GPC ratio in the most 

aggressive animal tumor models and patients with the worst survival (M. D. 

Cao et al., 2016; Siver A. Moestue et al., 2010). In both basal-like breast 

cancer xenografts and tissue samples from patients with TNBC, GPC 

concentrations are higher with a GPC/PC ratio > 1 compared with luminal-like 

and ESR+/PR+ tumors (Siver A. Moestue et al., 2010). These findings 

indicate that the GPC level is positively correlated with breast tumor 

malignancy (S. A. Moestue et al., 2012). GPC plays important roles in choline 

metabolism in cancer, but the regulatory mechanism of GPC is poorly 

understood. Both choline kinase alpha (CHKα) and GDPD5 have been 

positively correlated with the GPC concentration in breast cancer xenografts 

(Grinde et al., 2014). PI3K, HIF-1α, and HIF-2α have been reported to 

regulate the GPC level (Bharti et al., 2018; Lau et al., 2017). 
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NAA in cancer 

NAA is synthesized by aspartate N-acetyltransferase (NAT8L) from acetyl-

CoA and aspartate and metabolized by aspartoacylase (ASPA) to generate 

aspartate and acetate, which is further metabolized into acetyl-CoA for 

energy metabolism and lipid synthesis. NAA is the second most abundant 

metabolite in the brain, and most studies on NAA are related to brain 

pathology (Bogner-Strauss, 2017; Miyake et al., 1981). NAA is higher in 

tumors than normal tissues, a phenomenon that might be caused by 

increased expression of NAT8L and associated with glutamine availability 

(Lou et al., 2016; Zand et al., 2016). Several studies have reported that 

overexpression of NAT8L facilitates cancer progression, and silencing NAT8L 

can decrease the NAA level, inhibit cell proliferation, and reduce tumor 

growth (Lou et al., 2016; Zand et al., 2016). NAT8L is associated with worse 

survival in patients with different cancer types and under the control of 

oncogene RhoC (Wynn et al., 2016). Conversely, ASPA is downregulated in 

cancer, suggesting that tumor cells rely on NAA rather than its downstream 

products. The secreted NAA in the peripheral blood may serve as a clinical 

biomarker for cancer malignancy. The exact roles of NAA, NAT8L, and ASPA 

in cancer metabolism need to be further elucidated (Bogner-Strauss, 2017). 

GPC and NAA are connected via lipid metabolism 

Choline—including GPC—and NAA are two of the metabolites well-detected 

in the brain via magnetic resonance spectroscopy (MRS). Tsougos and 

colleagues reported that the peritumoral choline/NAA ratio could differentiate 

glioblastomas from intracranial metastasis with high specificity (Tsougos et 

al., 2012). GPC and NAA are not components of the same metabolic 

pathway. Nevertheless, both GPC and NAA are closely connected to lipid 

metabolism that is partially regulated by the potent regulator PPARγ, a 

transcription factor involved in a variety of metabolic activities (Ahmadian et 

al., 2013). PPARγ activation may contribute to cancer cell proliferation, 

apoptosis, angiogenesis, and metastasis (Yousefnia et al., 2018). The exact 

relationship between GPC and NAA is elusive. 

1.4 The D492, HMLE, and PMC42 EMT cell models 

Different cells of origin, or cancer-initiating cells, may reflect and contribute to 

heterogeneous behaviors and phenotypes in cancer. Each cell line reflects 

tumors in vivo differently and has different clinical relevancy. A better 

understanding of the cell lines chosen to study is a prerequisite to drawing 
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reliable conclusions from the investigation. In the next section, I will briefly 

review the cell lines used in this project. 

1.4.1  The isogenic EMT cell lines D492, D492M, and D492HER2 

In 2002, the D492 cell line was generated in the pursuit of finding neoplastic 

stem cells in the human mammary gland on the assumption that breast 

cancer cells are of a luminal epithelial lineage and originate from terminal 

duct lobular units (TDLU). Patients underwent reduction mammoplasty for 

cosmetic reasons, and a group of MUC-/ESA+ cells were selected from 

primary cultures of the biopsies. These cells were further immortalized with 

human papilloma virus (HPV)-16 E6/E7 to generate the immortal D492 cell 

line. These cells are of a luminal epithelial lineage, but they express both 

luminal (K8, K19) and myoepithelial (K5/6, K14) cytokeratins, thus showing 

the basal-like phenotype. D492 has epithelial stem cell properties, and it can 

differentiate into luminal and myoepithelial cells and form the entire TDLU 

with branching morphogenesis. D492 cells are non-tumorigenic and have a 

diploid karyotype (Gudjonsson et al., 2002). 

Nine years after the generation of D492, the D492M cell line was 

spontaneously generated by co-culturing D492 cells with human breast 

endothelial cells (BRENCs) inside a reconstituted basement membrane 

(rBM). By isolating and subculturing a single spindle-like mesenchymal cell 

colony, the D492M cell line was established and acquired a stable passaging 

ability. Compared with the parent cell line D492, the D492M cell line has 

downregulated epithelial E-cadherin as well as keratins 5, 6, 14, and 19, and 

upregulated mesenchymal vimentin, N-cadherin, alpha-smooth muscle actin 

(α-SMA), Thy-1, thrombin receptor (PAR1), and CD70. In addition, the EMT-

TFs FOXC1 and FOXC2 are upregulated in D492M. In addition to a gain of 

mesenchymal properties, D492M cells possess a cancer stem cell 

phenotype, supported by the increased proportion of the CD44high/CD24low 

cells. Like D492, the D492M cell line is not tumorigenic. The EMT-inducing 

ability of the endothelial cells is related to the endothelium-derived soluble 

factors. The exact factors that induce EMT are elusive; however, hepatocyte 

growth factor (HGF) has been confirmed to play a role in the formation of 

D492M cells because HGF inhibition could significantly decrease the number 

of D492M colonies (Sigurdsson et al., 2011). After establishing the 

mesenchymal D492M cell line, efforts have been made to reverse the EMT 

process in D492M. Co-expression of miR-200c-141 and ΔNp63 restored the 

properties of the parent cell line D492 (Hilmarsdóttir et al., 2015). 
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EMT in the D492M cell line was induced by spontaneous stimulation, 

while the mesenchymal features in the D492HER2 cell line were introduced 

by forced expression of the oncogene HER2 (ERBB2) in D492. The 

D492HER2 cells have increased EMT-TF ZEB1 and have lost epithelial K14 

and K19, E-cadherin, P-cadherin, and p63. Furthermore, miR-200c-141, the 

epithelial morphogenic regulator, is also downregulated in D492HER2 cells. 

Apart from the EMT markers, D492HER2 cells have also gained the loss-of-

contact growth ability. Based on the observation that HER2 overexpression 

decreased the EGFR level in D492, overexpressing EGFR in D492HER2 

cells restored some of the epithelial markers, including K14, K19, and E-

cadherin. However, this partial reverse of EMT in D492HER2 cells by EGFR 

overexpression only appeared in 3D rBM culture. Furthermore, injecting 

D492HER2 cells into mammary fat pads of NSGTM mice gave rise to tumors, 

which were attenuated by EGFR overexpression (Ingthorsson et al., 2016). 

The D492HER2 cell line appears to represent a more intermediate state of 

EMT compared with the D492M cell line (Morera et al., 2019). 

1.4.2  The common EMT cell model HMLE-HMLEM 

A widely studied EMT cell model is the HMLE cell lines, which were 

established in Professor Weinberg’s lab in 2000. Like D492, the HMLE 

epithelial cell line was derived from normal breast biopsies of reduction 

mammoplasty. They express E-cadherin, basal K14, and luminal K18, 

indicating these cells are bipotential or multipotential. To immortalize these 

cells, both the simian virus 40 (SV-40) large T antigen (LT) oncogene and the 

hTERT gene that encodes the catalytic subunit of the human telomerase 

enzyme were introduced. The immortalized cells lack the ability to form 

tumors in nude mice (Elenbaas et al., 2001). 

The generation of the mesenchymal counterpart of the HMLE cell line, 

referred to as HMLEM in this project, was based on two assumptions: First, 

CSCs have acquired EMT, and to identify targets selectively aiming at CSCs 

and leaving out the non-CSCs, EMT needs to be induced and the key 

regulatory genes of mesenchymal states need to be studied. Second, forced 

overexpression of specific EMT inducers does not adequately reflect the 

behaviors of the mesenchymal cells that arise in vivo. Hence, the HMLEM 

cell line, referred to as naturally arising mesenchymal cells (NAMECs) in the 

original publication, was produced by screening and isolating cells with stable 

mesenchymal phenotypes after 1-minute trypsinization and replating the 

HMLE cells. These cells have elevated levels of the mesenchymal markers 

vimentin, N-cadherin, and FN1 as well as the EMT-TFs TWIST, Snail, Slug, 
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and ZEB1. They have lost E-cadherin. Like the D492M cell line, HMLEM cells 

are predominately CD44high/CD24low. HMLE cells, deemed non-CSCs, 

possess stronger EGFR signaling than HMLEM cells, which are considered 

to be CSCs, while HMLEM cells have switched to PDGFR signaling. This 

agrees with the observation in D492HER2 that HER2 overexpression 

decreased the EGFR level in D492 cells, and EGFR overexpression impeded 

the mesenchymal characteristics in D492HER2 cells (Ingthorsson et al., 

2016; Tam et al., 2013). 

1.4.3  The MET cell model PMC42LA-PMC42ET 

The third EMT cell model used in this project is the PMC42 cell lines, 

comprising the mesenchymal PMC42ET cell line from Dr. Robert Whitehead 

(Whitehead et al., 1983) and the epithelial PMC42LA cell line generated by 

Dr. Leigh Ackland (Ackland et al., 2001). There are two major differences 

between the PMC42 model and the other two EMT models. First, the 

mesenchymal PMC42ET cells were isolated from a pleural effusion from a 

woman with metastatic breast cancer without the need for immortalization. 

Second, the epithelial PMC42LA was established from its mesenchymal 

counterpart by initiating MET. These cells possess karyotypic heterogeneity 

and chromosomal instability. The mesenchymal PMC42ET cells are 

heterogenous and believed to have stem cell characteristics on account of 

their ability to differentiate into several morphological phenotypes. They do 

not form tumors in vivo. A hormone mixture comprising estrogen, 

progesterone, dexamethasone, insulin, and prolactin, in combination with a 

porous filter coated with Matrigel, induced cell transformation in PMC42ET 

cells to generate PMC42LA cells. The PMC42LA cell line is a stable variant 

of the PMC42ET cell line treated with lactogenic hormones and can be 

stimulated by EGF (Ackland et al., 2003) and secreted factors from 

carcinoma-associated fibroblasts (Lebret et al., 2007) to undergo EMT. 

PMC42LA cells express the milk-specific proteins β-casein, K8 and K18, and 

E-cadherin (H. Hugo et al., 2007). 

1.5 The multi-omics era in molecular biology 

The insufficiency of the genomic and transcriptomic data to reflect and predict 

the actual protein expression and the cellular proteoform acquires views 

directly from the proteomic perspective (Akbani et al., 2014). Studies have 

confirmed the better performance of proteomic profiling for clinical relevance 

compared with transcriptomic approaches (Akbani et al., 2014; J. Wang et 

al., 2017). This project was built on proteomic analysis of the EMT cell lines. 
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Hereafter, I will review proteomics and metabolomics in the multi-omics era 

propelled by myriad technical achievements. 

1.5.1  The rise of proteomics 

Proteomics is the large-scale systematic study of a collection of proteins and 

protein post-translational modification (PTMs) with the aid of the mass-

spectrometry-based detection methods and computational analysis for 

protein identification and quantification to generate biological insights. It has 

been utilized extensively in EMT and TNBC research (Mathias and Simpson, 

2009; Miah et al., 2016). Apart from the global proteome, there are proteomic 

approaches to study specific sub-sections of the proteome, such as the 

membrane proteome, the glycoproteome, the secretome, lysosomal proteins, 

and palmitoylation proteomics, and the most frequently studied 

phosphoproteomics (Buccitelli and Selbach, 2020). 

Bottom-up, middle-down, and top-down proteomic approaches 

The idea of analyzing the whole proteome arose in 1970s with the 

development of two-dimensional (2D) gel electrophoresis (James, 1997). As 

mass spectrometry (MS) has improved, especially the introduction of the 

electrospray ionization (ESI) technique in 1989, the situation for proteomics 

has advanced tremendously (Fenn et al., 1989; Mann, 2016). With the 

advancement of liquid chromatography (LC), the advent of bioinformatics, the 

foundation of online databases to facilitate the downstream proteomic 

analysis, and the breakthroughs in the electrospray nano-LC-MS/MS 

technique, MS-based proteomics has improved dramatically in terms of 

sensitivity, complexity, and throughput (Mann, 2016). 

There are two alternative strategies in proteomics, namely top-down 

proteomics, where intact protein ions or large protein fragments are subjected 

to LC-MS, and bottom-up proteomics, which analyzes digested peptides and 

is the most widely used proteomic approach (Aebersold and Mann, 2016). In 

bottom-up proteomics, proteins are extracted from the biological samples 

followed by enzymatic digestion into peptides by, for example, trypsin, and 

the resulting mixture of peptides (typically contain 7-20 amino acid residues) 

are separated, ionized, and analyzed via LC-MS/MS. The raw data generated 

from the LC-MS/MS platform are analyzed by specifically designed 

computational pipelines and further explored for biological meanings. Top-

down proteomics is still in its early stage of development to improve the depth 

of discovery, and bottom-up proteomics holds several pitfalls including 

discovery of PTMs; this limitation hinders the further growth of the proteomic 
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field. To overcome the disadvantages of both strategies, scientists have 

recently proposed a middle-down approach. Similarly to bottom-up 

proteomics, the middle-down approach relies on proteases, such as OmpT, 

Sap9, and IdeS, to generate longer peptides. Nevertheless, bottom-up 

proteomics remains the workhorse of proteomic sequencing (Pandeswari and 

Sabareesh, 2019). 

Discovery and targeted proteomics 

Discovery (or “shotgun”) proteomics by means of data-dependent acquisition 

(DDA), targeted proteomics by selected reaction monitoring (SRM), and 

multiplexed fragmentation of all peptides via data-independent acquisition 

(DIA) are three main approaches in bottom-up proteomics. Antibody-based 

immunoassays, for example, western blot and reverse-phase protein array 

(RPPA), are widely utilized to target specific proteins, relying on valid 

antibodies that are expensive and not available for every protein. The 

drawbacks of the immunoassays can be overcome by targeted proteomic 

approaches, which would be groundbreaking for cancer research and help 

identify clinically significant molecular biomarkers (Faria et al., 2017). Several 

studies have implemented combining discovery and targeted proteomics and 

have shown promising results (Biarc et al., 2014; Hill et al., 2009). That 

having been said, “shotgun” proteomics with DDA is still the most frequently 

used method in the proteomic community and was carried out in this project 

for the systematic proteomic profiling of the EMT cell lines. Two independent 

DDA proteomic experiments based on two disparate quantitative strategies 

were conducted in this project to ensure data accuracy and repeatability, and 

potential targets were selected based on a deep understanding of the EMT 

cell lines and a scrupulous literature review (Figure 3). 
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Figure 3. General workflow of LFQ and SILAC proteomics. 

D492, D492M, and D492HER2 cells were subjected to LFQ and SILAC proteomic 
analysis in this project. LFQ: label-free quantification; SILAC: stable isotope labeling 
by amino acids in cell culture; Arg: arginine; Lys: lysine; DDA: data-dependent 
analysis; DIA: data-independent analysis; LC: liquid chromatography; MS: mass 
spectrometry; FDR: false discovery rate. 

Quantitative proteomics 

Quantitative proteomics can be categorized into relative and absolute 

quantification, as well as labeling and label-free quantitative methods. Label-

free quantification (LFQ) and intensity-based absolute quantification (iBAQ) 

are common relative and absolute proteomic quantification algorithms, 

respectively (Cox et al., 2014; Nagaraj et al., 2011). Stable isotope labeling 

by amino acids in cell culture (SILAC), stable isotope dimethyl labeling, 

isobaric tags for relative and absolute quantitation (iTRAQ), and tandem 

mass tag (TMT) labeling are popular labeling methods applied in proteomics. 

The SILAC approach is used to cultivate cells in different types of media 

containing either normal amino acids (arginine and lysine) or amino acids 

labeled with heavy isotopes (13C, 15N, or deuterium). Cells fully incorporated 

with the respective “light” or “heavy” labels are mixed and analyzed 

simultaneously in LC-MS/MS to generate ratios for all the proteins while 

reducing batch effects (Ong and Mann, 2006). In this project, we mainly 

employed two proteomic approaches established on two quantification 

methods, namely LFQ and SILAC, supported by the absolutely quantitative 

iBAQ. Both approaches have been widely used in EMT research (Figure 3) 

(Biarc et al., 2014; D. Chen et al., 2015; Palma Cde et al., 2016; G. R. Yan et 

al., 2011). 
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Secretomics and phosphoproteomics  

Eukaryotic cells are highly compartmentalized to partition cellular functions, 

an organization that accentuates the importance of protein subcellular 

localization and dynamics. The protein composition of different organelles, 

along with the secreted protein mediators (secretome), can be enriched, 

purified, and analyzed with proteomic approaches. By analyzing the secreted 

soluble molecules in the extracellular compartment, the factors associated 

with EMT in the microenvironment can be detected. For example, factors 

increasing angiogenesis were observed to be elevated in the extracellular 

environment during the EMT process induced by the pleiotropic Y-box-

binding protein 1 (YBX1/YB-1) and may play a role in endothelial cell 

interactions (Gopal et al., 2015).  

A PTM intrinsically causes a protein mass shift that can be captured by 

MS-based proteomics, making proteomics a well-suited methodology to study 

protein PTMs. Protein phosphorylation is ubiquitous in cells to regulate 

cellular functions. In addition to the typical sample preparation procedures of 

DDA-based bottom-up proteomics, an extra enrichment step for 

phosphorylated peptides is needed for phosphoproteomic sample preparation 

(Figure 3). Phosphoproteomics has revealed two main characteristics of 

protein phosphorylation. First, it happens unexpectedly fast, with the 

maximum phosphorylation reached within seconds. Second, the functional 

phosphorylation sites are abundant, reflected by the high stoichiometry 

(Aebersold and Mann, 2016). With the fast development of the 

phosphoproteomic strategy to render deep coverage of the 

phosphoproteome, it is estimated that more than 75 % of the proteome 

(researchers now believe the number could be more than 90 %) could be 

phosphorylated (Aebersold and Mann, 2016). The efficient identification and 

quantification of the global phosphoproteome in cells by phosphoproteomics 

have been utilized to decipher the EMT-dependent drug resistance 

mechanism in TNBC (Golkowski et al., 2020). 

The current problems and future of proteomics 

Bottom-up proteomics has greatly dominated the proteomic field to date, 

relying on the availability of tractable experimental and computational 

methods. However, it has inevitable flaws, such as loss of information on 

PTMs and protein-protein interactions. The interest in top-down proteomics 

has grown considerably to discover the proteoform systematically (B. Chen et 

al., 2018). Although most of the state-of-the-art proteomic methods can yield 

a high number of identified proteins, they fail to characterize proteins with 
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high sequence coverage. The average amino acid coverage for an identified 

protein in one sample is around 33 %. In addition, single-nucleotide variants 

and novel splice junctions, which can be observed in DNA and RNA 

sequencing, are poorly captured by proteomic sequencing (Alfaro et al., 

2021). 

Single-cell proteomics has emerged in recent years. On account of the 

intrinsic characteristics of proteomics, there is no generalized workflow for 

single-cell proteomics, which is still in its infancy with many obstacles to 

tackle (Marx, 2019). Nanodroplet processing in one pot for trace samples 

(nanoPOTS) and single-cell proteomics by mass spectrometry (SCoPE-MS) 

are two advanced MS-based techniques that enable identifying and 

quantifying more than 1,000 proteins in a single cell (Alfaro et al., 2021). 

Other strategies include DNA-facilitated and nanopore-based single-molecule 

protein sequencing, paving the way for the promising future of single-cell 

proteomics (Alfaro et al., 2021). 

Thanks to the great achievement of proteomic technology and the 

contribution of the Human Proteome Project (HPP), as of January 2020, 

more than 90 % of the human proteome had been identified (Overall, 2020). 

With the flourishing technologies of single-cell proteomics, spatial proteomics, 

proteome dynamics (protein-protein interactions), and multi-omics, 

proteomics will help scientists understand the human proteome even better.  

1.5.2  Metabolomics: A missing puzzle in multi-omics 

The metabolome is the entire collection of small chemicals involved in the 

cellular metabolic network. These chemical entities or metabolites are not 

only biomarkers for downstream effects of genes and proteins but also 

regulators of biological processes. Small metabolites can express their 

regulatory functions by chemical modification and metabolite-macromolecule 

interactions. Every popular modification of macromolecules (i.e., DNA, RNA, 

and protein) requires the participation of small molecules to covalently bind to 

it, including acetyl-CoA for acetylation, palmitoyl-CoA for palmitoylation, 

succinyl-CoA for succinylation, SAM for methylation, UDP-Glc and UDP-

GlcNAc for glycosylation, and more. A list of metabolites, such as lysine and 

glutamine, can act as riboswitches to turn on or off the translational process 

and activate or inhibit specific proteins (Rinschen et al., 2019). Abnormal 

levels of specific metabolites are closely linked to carcinogenesis, and this 

group of metabolites is termed oncometabolite. 2-HG, succinate, and 

fumarate are typical oncometabolites that have been found accumulated in 

cancer (Rinschen et al., 2019). Oncometabolites do not simply serve as 
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biomarkers to indicate the dysregulation of certain enzymes; rather, they 

have regulatory functions through a variety of epigenetic modifications and 

PTMs. One of the examples of metabolites with bioactivity is fumarate, which 

reacts with the thiol groups of the cysteine residues in KEAP1, a key 

regulator of the transcription factor NRF2, to inhibit the normal function of 

KEAP1 (Adam et al., 2011). NRF2 is a critical regulator for glutathione 

synthesis and affects cellular oxidative stress, which is associated with 

cancer malignancy (Pillai et al., 2022). 

The revolutionized concept that the metabolome represents not only the 

readout of the genome and proteome but also intimately controls gene and 

protein behaviors has urged scientists to integrate metabolomics into the 

multi-omics strategy. Metabolomics is the methodology to identify 

systematically bioactive metabolites with either discovery-oriented untargeted 

or broad-scale targeted profiling analyses. It starts with the identification of 

metabolite features with specific mass-to-charge ratios (m/z) on an LC-MS 

platform, followed by data mining including statistical analysis and metabolite 

identification based on spectral libraries and public metabolite databases 

(Figure 4). Ogrodzinski and colleagues recently combined genomics and 

metabolomics and identified that MMTV-MYC-driven tumors with EMT 

properties preferentially used the nucleotide salvage pathway, whereas 

tumors with the papillary subtypes favored de novo nucleotide biosynthesis, 

demonstrating that different types of breast cancer have distinct metabolic 

phenotypes, a factor that could be exploited to develop subtype-specific 

therapeutics (Ogrodzinski et al., 2021). 

Figure 4. General workflow of a typical metabolomics study. 

A typical metabolomic study workflow comprises metabolite extraction, LC-MS/MS 
analysis, metabolite identification, and metabolite quantification. An internal standard 
metabolite mix that includes a list of well-detected metabolites with heavy isotope 
labels is added into the samples for quality control. The extracted metabolite samples 
are then analyzed in the LC-MS/MS system with pre-defined modes and acquisition 
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methods. Identified peak features are annotated with the human metabolome 
database (hmdb) and Metlin. The MassLynx software from Waters is used for 
metabolite quantification. DDA: data-dependent acquisition; MSe: data-independent 
acquisition; LC: liquid chromatography; MS: mass spectrometry. 

1.6  Our previous work on the metabolism of EMT 

Metabolomic data can be integrated with transcriptomic and proteomic data 

to investigate systematically biological activities, which is exemplified by 

genome-scale metabolic network reconstructions (GEMs). In GEMs, the 

gene-protein-metabolic reaction relationships for all the metabolic genes in a 

study entity (e.g., Escherichia coli or mammalian cells) are computationally 

constructed to simulate and predict metabolic fluxes in different study 

conditions. To date, the in silico reconstruction of metabolic phenotypes via 

GEMs is best studied in microbes (Fang et al., 2020). Isotope-based tracing 

(flux analysis)—for example, 13C- or 15N-assisted tracing, can be used to 

track the fate of a specific metabolite and the activity of the associated 

enzymes in a time-dependent manner to determine the activeness of a 

biochemistry pathway.  

In our lab, we have employed various approaches including 13C tracing 

with 13C-labeled glucose and glutamine, GEMs, targeted and untargeted 

metabolomic identification and quantification, and lipid profiling to explore the 

metabolic changes post-EMT. We have observed that epithelial and 

mesenchymal cells have distinct lipidomic profiles in the D492 and HMLE 

EMT models. PtdCho and triacylglycerol (TAG) are increased after EMT, 

while PtdCho- and phosphatidylethanolamine (PtdE) plasmalogens and 

diacylglycerols (DAG) are decreased in mesenchymal cells. The fatty acids 

are, on average, shorter and more unsaturated in mesenchymal cells, a 

phenomenon that may be associated with increased membrane fluidity 

(Eiriksson et al., 2018). GEMs are constraint-based computational modeling 

of the cellular metabolic phenotypes. The epithelial and mesenchymal 

models of D492 were built based on the RNA-seq and microarray analyses of 

the cellular transcriptome and the quantification of the uptake and secretion 

of 43 metabolites. Interrogation of these in silico models revealed that D492 

epithelial cells possess more glutathione, consume more glucose, and 

secrete more lactate, while the amino acid anaplerosis and fatty acid 

oxidation fuel the mesenchymal D492M cells (Halldorsson et al., 2017). 

Recently, with the help of 13C labeling, we have found that mesenchymal 

cells can increase the flux via pyruvate carboxylase to replenish the TCA 

cycle and escalate the flux to citrate formation via reductive carboxylation, 

while D492 cells mainly oxidize glutamine in the TCA cycle. In addition, 
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glucose contributes more to fatty acid synthesis than glutamine in D492 cells, 

while the opposite occurs in D492M cells (Karvelsson et al., 2021). 

1.7  Project summary 

In my Ph.D. project, I focused on the metabolic definition of EMT in breast 

cancer by using breast EMT cell lines with proteomic approaches supported 

by metabolomics and functional analyses (Figure 5). This project was 

intended to define the metabolic phenotypes in the process of fundamental 

spontaneous EMT (Figure 5A) and that of EMP or partial EMT (Figure 5B). 

The D492 (D492-D492M), HMLE (HMLE-HMLEM), and PMC42 (PMC42LA-

PMC42ET) breast EMT cell models are suitable candidates for the metabolic 

definition of the essential EMT process on account of their non-tumorigenic 

properties and the spontaneously induced mesenchymal traits. The 

characteristics of these cell lines enabled focusing on the fundamental EMT 

process without the influences of any specific tumorigenic/carcinogenic 

dominators nor the influences of possessing one or several dominating EMT-

related pathways to ensure the plasticity and intrinsic traits of EMT. The 

isogenic D492 cell lines (D492, D492M, D492HER2) residing at different 

positions on the EMT spectrum were selected to study the metabolism of 

EMP. D492 and D492M cells present typical epithelial and mesenchymal 

phenotypes, respectively, with no tumorigenic abilities, while D492HER2 cells 

have gone through EMT and possess partial mesenchymal features and the 

potential to invade. 

In this report, I first generally characterized the breast EMT cell lines used 

in this project to study EMT and EMP, followed by extensive proteomic 

analyses, which revealed a list of EMT and EMP markers and metabolic 

enzymes significantly changed post different types of EMT. Next, I identified 

and further studied the enzymes UGDH and GFPT2, which were 

representative of the metabolic changes in the rudimentary EMT and partial 

EMP processes. In recent years, both UGDH and GFPT2 have drawn the 

attention of oncologists and have been reported to be associated with EMT 

and survival of patients with cancer. I confirmed that both UGDH and GFPT2 

are tumor promotors dysregulated in mesenchymal cells and further explored 

the upstream signaling regulations and downstream cellular functions of 

these two enzymes beyond their catalytical activities. Finally, I analyzed the 

SILAC phosphoproteomic data to define the altered phosphorylation 

phenotypes among the mesenchymal cell lines D492M and D492HER2 and 

the epithelial cell line D492 (unpublished data). 
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Figure 5. An overview of the study workflows in this project. 

The study workflows illustrate the breast cell lines and main methodologies used in 
this project, and this figure contains two sections: (1) investigation of the fundamental 
spontaneous EMT (A); (2) investigation of the EMP or partial EMT (B). (A) In the first 
section, the proteomes of D492 (D492-D492M), HMLE (HMLE-HMLEM), and PMC42 
(PMC42LA-PMC42ET) EMT cell models (or epithelial-mesenchymal cell line pairs) 
are detected by an LFQ proteomic approach. The topmost dysregulated metabolic 
enzyme detected in all three EMT models is UGDH. Of which the upstream signaling 
regulation and downstream functions are investigated. A metabolomic study is 
conducted to study the metabolic effects of UGDH by siRNA-mediated knockdown of 
UGDH in three mesenchymal cell lines D492M, HMLEM, and PMC42ET. (B) In the 
second section, the proteomes of the D492, D492M, and D492HER2 cell lines are 
analyzed by single-shot LFQ supported by a SILAC proteomics approach. GFPT2 is 
one of the top dysregulated enzymes in the partial mesenchymal D492HER2 cell line 
compared with the other two cell lines: D492 and D492M. Based on the literature, 
GFPT2 is part of the mesenchymal metabolic signature (Shaul et al., 2014). To study 
further, the cells are treated with siRNAs targeting GFPT2 to investigate the upstream 
signaling regulation and downstream functions of GFPT2. MDA-MB-231 is employed 
to study the function of UGDH and GFPT2 along with the other D492 cell lines. The 
phosphoproteomes of D492, D492M, and D492HER2 are analyzed by SILAC, which 
succeeds in a broad coverage of the phosphorylated proteins (unpublished data). 
Adapted from (Q. Wang et al., 2021; Q. Wang et al., 2021). Adapted with permission. 
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2 Aims 

The main objective of this Ph.D. project was to characterize the EMT 

metabolic phenotypes in the human breast gland by implementing proteomic 

approaches.  

The non-binary characteristic of EMT triggered the second objective of 

this project to define the breast EMP on the proteomic level with a focus on 

metabolism.  

This project further aimed to interrogate the interaction between signaling 

regulation and metabolism in EMT and EMP via a SILAC phosphoproteomics 

approach. 

The final goal was to identify and characterize specific metabolic targets in 

EMT and EMP to facilitate breast cancer therapeutic development. The 

specific objectives in the final goal included confirming the roles of the 

metabolic enzymes identified in promoting cancer malignancy (including cell 

proliferation, migration, invasion, and EMT), investigating the canonical and 

non-canonical functions of the enzymes, and understanding their upstream 

regulations. 
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3 Materials and methods 

All cell lines used in this project were kindly provided by the Stem Cell 

Research Unit at the Faculty of Medicine, University of Iceland. The D492, 

D492M, D492HER2, and D492DEE cell lines were established by the Stem 

Cell Research Unit. The HMLE cell lines (HMLE and HMLEM) were originally 

from the publication by Prof. Robert A. Weinberg’s lab. The PMC42 cell lines 

(PMC42LA and PMC42ET) were provided originally by the University of 

Queensland. 

3.1  Cell culture 

The in-house generated D492, D492M, D492HER2, and D492DEE cell lines 

were cultured in serum-free H14 medium, which contained the base medium 

Dulbecco´s modified Eagle´s medium-F12 (DMEM/F12 without glutamine, 

Thermo, 21331020) supplemented with 250 ng/ml insulin (Merck, I6634), 10 

µg/ml transferrin (Merck, T2252), 10 ng/ml EGF (PeproTech, AF-100-15), 2.6 

ng/ml Na-selenite (BD Biosciences, 354201), 10-10 M estradiol (Sigma, 

E2758), 1.4 x 10-6 M hydrocortisone (Sigma, H0888), 0.15 IU prolactin 

(PeproTech, 100-07), 100 IU penicillin & 0.1 mg/ml streptomycin (Gibco™, 

15140122), and 2 mM glutamine (Thermo, 25030024). The MDA-MB-231 cell 

line was cultured in RPMI 1640 (with HEPES, L-glutamine, and phenol red, 

Thermo, 52400025) supplemented with 10 % fetal bovine serum (FBS, 

Gibco™ 10270106) and 100 IU penicillin & 0.1 mg/ml streptomycin. The 

HMLE cell lines (HMLE and HMLEM) were cultured in DMEM/F12 

supplemented with 10 µg/ml insulin, 10 ng/ml EGF, 1.4 x 10-6 M 

hydrocortisone, 100 IU penicillin & 0.1 mg/ml streptomycin, and 2 mM 

glutamine. The PMC42 cell lines (PMC42LA and PMC42ET) were cultured in 

RPMI 1640 medium supplemented with 10 % FBS and 100 IU penicillin & 0.1 

mg/ml streptomycin. 

DMEM-F12 was replaced by “DMEM:F-12 for SILAC” (Thermo, 88370) 

with “light-”, “medium-”, or “heavy-” labeled arginine or lysine (Cambridge 

Isotope Laboratories) in the SILAC-labeling proteomic experiment. 

Specifically, the light label (L-arginine, L-lysine), medium label (L-arginine-
13C6 hydrochloride (Arg+6 Da), L-lysine-4,4,5,5-d4 hydrochloride (Lys+4 Da)), 

and heavy label (L-arginine-13C6,15N4 hydrochloride (Arg+10 Da), L-lysine-
13C6,15N2 hydrochloride (Lys+8 Da)) were applied for the SILAC experiment. 
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In the 13C-tracing experiment, 13C-labeled 1,2-glucose, 13C-labeled 1-

glutamine, and 13C-labeled 5-glutamine (Cambridge Isotope Laboratories) 

replaced the non-labeled glucose or glutamine in the medium, and the base 

medium used was “DMEM, no glucose, no glutamine, no phenol red” 

(Thermo, A1443001). In the siRNA-mediated transient knockdown 

experiment, penicillin and streptomycin were excluded from the cell culture 

according to the vendor’s instruction. The serum-free H14 medium was 

supplemented with 10 % FBS in the lower chamber in the invasion assay. All 

the cell lines were cultured at 37 °C with 5 % CO2 for routine maintenance, 

and cells were routinely checked for mycoplasma contamination. 

3.2  LFQ proteomics 

3.2.1  Protein sample preparation 

D492, D492M, D492HER2, and D492DEE were cultured in T75 flasks in 

triplicates (three T75 flasks for each cell line) with a seeding density of 

600,000 cells/flask. 72 hours after cell seeding, proteins were harvested at 

around 90 % confluency. Specifically, cells were first washed twice with ice-

cold phosphate-buffered saline (PBS) then lysed by 450 µl lysis buffer 

containing 4 % sodium dodecyl sulfate (SDS, MP Biomedicals™) in 100mM 

Tris (Sigma). Flasks were then kept on ice for 10 min. Next, the cell lysates 

were transferred to 1.5 ml Eppendorf tubes and spun at 20,718 rcf for 20 

minutes at 4 °C after five freeze (-80 °C)/thaw (room temperature, RT) 

cycles. After centrifugation, the supernatant was collected and aliquoted in 

new tubes and stored at -80 °C. Later, the protein concentration was 

quantified with BCA protein quantification assay (PierceTM). The HMLE and 

PMC42 cell lines followed the same procedures for the protein sample 

preparation. 

3.2.2  Peptide sample preparation 

In the first LFQ experiment containing the D492 (D492 and D492M), HMLE 

(HMLE and HMLEM), and PMC42 (PMC42LA and PMC42ET) cell lines, 12-

15 µg of the total protein was precipitated by chloroform/methanol, 

reconstituted in 50 mM ammonium bicarbonate (NH4HCO3), reduced with 1 

M dithiothreitol (DTT) and 200 mM iodoacetamide (IAA), and digested with 

1.5 μg trypsin. Peptides were desalted using C18 STAGETIP after tryptic 

digestion as described in the literature (Rappsilber et al., 2003), after which 

peptides were vacuum-dried in a SpeedVac and resuspended in 0.1 % formic 

acid (FA) for injection. 
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The peptide preparation procedure for the second LFQ experiment 

containing D492, D492M, D492HER2, and D492DEE followed the filter-aided 

sample preparation (FASP) protocol where total proteins equivalent to 300 µg 

in 150 µl from each sample were reduced with 100 mM DTT, followed by 

sample processing based on the FASP protocol (Wiśniewski et al., 2009). 

Proteins were digested twice with trypsin (3 µg x 2) on the filters at 30 °C. 

The first digestion was done overnight, then for another 6 hours in a final 

volume of 200 µl. The digested peptides were further desalted with C18 solid-

phase extraction cartridges (Empore, Agilent technologies) and resuspended 

in 50 µl 1 % FA. The peptide quantification was measured with pierce 

quantitative colorimetric peptide assay (product 23275, Thermo Scientific). 

3.2.3  LC-MS/MS analysis 

In the first LFQ experiment, the peptide analysis was carried out on an LC-

MS/MS platform that comprised an Easy-nLC 1200 UHPLC system (Thermo 

Fisher Scientific) interfaced with a QExactive HF orbitrap mass spectrometer 

(Thermo Fisher Scientific) through a nanospray ESI ion source (Thermo 

Fisher Scientific). Peptides were injected into a C18 trap column (Acclaim 

PepMap100, 75 μm i. d. x 2 cm, C18, 3 μm, 100 Å, Thermo Fisher Scientific) 

and further separated on a C18 analytical column (Acclaim PepMap100, 75 

μm i. d. x 50 cm, C18, 2 μm, 100 Å, Thermo Fisher Scientific). Peptides were 

separated with a multistep gradient running method with buffer A (0.1 % FA) 

and buffer B (80 % acetonitrile (ACN, CH3CN), 0.1% FA). The gradient 

started from 2%-10% buffer B in 10 min followed by 10%-50% buffer B in 130 

min, and 50%-100% buffer B in 20 min with the final step 20 min with 100 % 

buffer B. Before the next injection, the HPLC was re-equilibrated with 2 % 

buffer B. The flow rate was set to 250 nl/min. The eluted peptides were 

analyzed on QExactive HF mass spectrometer operating in positive ion- and 

DDA mode with the following parameters: electrospray voltage, 1.9 kV; HCD 

fragmentation with normalized collision energy, 29; automatic gain control 

(AGC) target value of 3 x 106 for orbitrap MS and that of 1 x 105 for MS/MS 

scans. Each MS scan (m/z 350–1650) was acquired at a resolution of 

120,000 FWHM, followed by 15 MS/MS scans triggered for AGC targets 

above 2 x 103, at a maximum ion injection time of 100 ms for MS and 100 ms 

for MS/MS scans. 

In the second LFQ experiment, the digested peptides by trypsin were first 

separated using an Ultimate 3000 RSLC nanoflow LC system (Thermo Fisher 

Scientific). Approximately 130 ng of protein was loaded onto an Acclaim 
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PepMap100 nanoViper C18 trap column (100 µm inner-diameter, 2 cm; 

Thermo Fisher Scientific) with a constant flow of 5 µl/min. Peptides were 

eluted onto an EASY-Spray PepMap RSLC nanoViper column after trap 

enrichment (C18, 2 µm, 100 Å, 75 µm, 50 cm; Thermo Fisher Scientific) and 

separated with a linear gradient of 2%-35% solvent B (80 % ACN with 0.08 % 

FA) and Solvent A (0.1 % FA) over 124 min with a constant flow of 300 nl/min 

and column temperature of 50 °C. The HPLC system was coupled to a linear 

ion trap orbitrap hybrid mass spectrometer (LTQ-Orbitrap Velos, Thermo 

Fisher Scientific) via an EASY-Spray ion source (Thermo Fisher Scientific). 

The spray voltage was routinely set to 1.8 kV, and the temperature of the 

heated capillary was set to 250 °C. Full-scan MS survey spectra (335 - 1,800 

m/z) in profile mode were acquired in the orbitrap with a resolution of 60,000 

after accumulation of 1,000,000 ions. The top fifteen peptide ions with the 

most intensities from the preview scan in the orbitrap were fragmented by 

collision-induced dissociation (CID, normalized collision energy, 35 %; 

activation Q, 0.250; and activation time, 10 ms) in the LTQ after the 

accumulation of 5,000 ions. Maximal filling times were 1,000 ms for the full 

scans and 150 ms for the MS/MS scans. Precursor ion charge state 

screening was enabled, and all unassigned charge states and singly charged 

species were rejected. To improve the mass accuracy, the lock mass option 

was enabled for survey scans (Olsen et al., 2005). Data were acquired by the 

Xcalibur software. 

3.2.4  Peptide and protein identification and quantification 

In the first LFQ experiment for the D492, HMLE, and PMC42 EMT models, 

proteins were identified and quantified by MS data processing in Thermo 

Scientific™ Proteome Discoverer™ (PD, version 2.3, Thermo). Preview 

version 2.3.5 from Protein Metrics Incorporate (Kil et al., 2011) was used to 

inspect the raw files and determine optimal search criteria. A set of search 

parameters were set up, namely, (1) enzyme specified as trypsin with 

maximum two missed cleavages allowed; (2) acetylation of protein N-terminal 

including loss-of-Methionine; (3) oxidation of methionine; (4) deamidation of 

asparagine/glutamine as dynamic PTM; (5) carbamidomethylation of cysteine 

as static; (6) precursor mass-tolerance of 10 PPM while fragment mass-

tolerance of 0.02 dalton. PD’s node (Spectrum Files RC) was set up to query 

the raw files against the human proteome downloaded from UniProt (homo 

sapiens, file name UP000005640, date October 2018) with the static 

modification to recalibrate and detect features with the Minora node. The 

internal contaminants database was also queried along with the human 



 Materials and methods 

47 

proteome using the Sequest search engine available in PD (Eng et al., 1994). 

For both protein and peptide identifications/peptide-spectra-matches (PSM), 

the false-discovery-rate (FDR) was set to 1 % for downstream analysis of 

these PSM; only unique peptides with high confidence were used for the final 

protein group identification. Peak abundances were extracted by integrating 

the area under the peak curve. The abundance for each protein group was 

normalized by the total abundance of all identified peptides at FDR < 1 %. 

Summed up median values for all unique peptide ion abundances mapped to 

respective protein using LFQ scaled on all average with Precursor Ion 

Quantifier node for PD were used (Horn et al., 2016). 

The raw data files (D492, D492M, D492HER2, and D492DEE four cell 

lines in triplicates) obtained for each experiment from mass spectrometry 

were collated into a single quantitated dataset using MaxQuant (version 

1.5.2.8) (Cox and Mann, 2008) and the search engine Andromeda (Cox et 

al., 2011). Enzyme specificity was set to trypsin, allowing for cleavage N-

terminal to proline residues and between aspartic acid and proline residues. 

The other parameters were: (1) variable modifications - methionine oxidation, 

protein N-acetylation, gln → pyro-glu, Phospho (STY), deamidation (NQ); (2) 

fixed modifications, cysteine carbamidomethylation; (3) database for 

searching: Uniprot-human-up5640 (160516); (4) LFQ: min ratio count, 2 (5) 

MS/MS tolerance: FTMS - 10 ppm , ITMS - 0.6 Da; (6) maximum peptide 

length, 6; (7) maximum missed cleavages, 2; (8) maximum labeled amino 

acids, 3; (9) FDR, 1 %. LFQ intensities were reported individually for each 

sample and were given as a relative protein quantitation across all samples. 

LFQ intensities were represented by a normalized intensity profile generated 

by algorithms described by Cox (Cox et al., 2014). They form a matrix with 

the number of samples and the number of protein groups as dimensions. The 

same setups were applied for the iBAQ quantification in the LFQ experiment.  

In both experiments, the valid protein identification was defined as “at 

least two out of three replicates in one cell line must have at least one 

identified peptide”. Furthermore, the valid protein quantification was defined 

as below: “at least two out of three replicates in at least one cell line must 

have detectable intensity”. 
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3.3  SILAC (phospho)proteomics 

3.3.1  Protein sample preparation 

For the SILAC proteomics and phosphoproteomics analysis, the cell lines 

D492M, D492, and D492HER2 were fully incorporated with “light”, “medium”, 

and “heavy” stable isotopes of arginine and lysine, respectively, before 

protein collection. Cells were first cultured in T25 flasks with respective 

isotopes of arginine and lysine to get fully labeled cell populations for D492, 

D492M, and D492HER2. Specifically, the D492 and D492M cells were 

cultured in the “medium” and “light” labeled medium respectively for six 

culture passages to ensure that all the cells had reached to the fully labeled 

status, while the D492HER2 cells were cultured in the “heavy” labeled 

medium for five passages. Cells were propagated in T75 flasks (Santa cruz), 

then cultured in T182 flasks (Santa cruz) in triplicates to harvest enough 

proteins, and the seeding density was 1,500,000 cells/flask. The cell number 

for seeding was calculated to be consistent with the first LFQ proteomic 

experiment. Same protein extraction procedures were carried out for the 

SILAC proteomic and phosphoproteomic experiments as described in the 

protein preparation section for the LFQ experiments. The only difference was 

that the lysis buffer was supplemented with one tablet of PhosSTOP 

phosphatase inhibitors (Roche) and one tablet of cOmplete mini EDTA-free 

protease inhibitors (Roche) for protein extraction in the SILAC experiments. 

3.3.2  Peptide sample preparation 

Protein digestion with FASP 

The extracted proteins were solubilized in 150 µl of the protein lysis buffer, 

which contained Tris HCl (100 mM, pH 7.6) with 4 % SDS and 100 mM DTT. 

First, protein extracts were heated at 95 °C, and to reduce the viscosity of the 

lysates, DNA was shredded by sonication. Then, samples were centrifuged 

and processed following the FASP protocol with some modifications 

(Wiśniewski et al., 2009). Proteins were alkylated in 100 µl IAA at a final 

concentration of 50 mM for 15 min after lysates were passed through the 

filters (Nanosep, 10k, PALL Life Sciences) which were washed four times 

with 200 µl 8 M urea in Tris-HCl (100 mM, pH 8) and twice with 200 µl 40 mM 

ammonium bicarbonate (NH4HCO3). Proteins were then digested twice with 

trypsin (3.3 µg x 2) on the filters at 30 °C. The first digestion was done 

overnight followed by another 6 hours in 200 µl ammonium bicarbonate at 40 

mM. The resulting tryptic peptides were eventually desalted with C18 solid-

phase extraction cartridges (Empore, Agilent technologies). 
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High pH reverse-phase peptide fractionation 

Samples (4 mg) were dissolved in 200 μL of 10 mM ammonium formate 

(NH4HCO2) buffer (pH 9.5), and peptides were fractionated using high pH 

reverse-phase (RP) chromatography. A C18 column from Waters (XBridge 

peptide BEH, 130 Å, 3.5 µm, 4.6 x 150 mm, Ireland) with a guard column 

(XBridge, C18, 3.5 µm, 4.6 x 20 mm, Waters) was used on an Ultimate 3000 

HPLC (Thermo-Scientific). Buffer A used for fractionation consisted of 10 mM 

ammonium formate in milliQ water, and buffer B used for fractionation 

consisted of 10 mM ammonium formate in 90 % ACN. Both buffers were 

adjusted with ammonia to pH 9.5. Fractions were collected at 1 min intervals 

using a WPS-3000FC autosampler (Thermo-Scientific). Column and guard 

column were equilibrated with 2 % buffer B for 20 min at a constant flow rate 

of 0.75 ml/min and a constant temperature of 21 °C. Samples equivalent to 

185 µl were loaded onto the column at 0.75 ml/min, and the separation 

gradient started from 2 % buffer B to 5 % buffer B in 6 min, then from 5 % 

buffer B to 60 % buffer B within 55 min. The column was washed at 100 % 

buffer B for 7 min, then equilibrated at 2 % buffer B for 20 min, as mentioned 

above. The collection of sample fractions started 1 min after injection and 

stopped after 80 min (80 fractions in total, 750 µl per fraction). Each peptide 

fraction was acidified immediately after elution from the column by adding 20 

to 30 µl 10 % FA to each tube in the autosampler. The total number of 

fractions concatenated was set to 10. 96 % of material from each fraction 

was used for the enrichment of phosphorylated peptides, and 4 % was used 

for total proteome analysis. The fraction content from each set was dried prior 

to further analysis in the phosphorylated peptide enrichment step. 

Phosphorylated peptide enrichment 

The peptides with phosphorylation modification were enriched using 

MagReSyn-TiIMAC beads (Resyn Biosciences) and Magnetic Rack 

(DynaMag-2, Life Technologies). The ratio of tryptic peptides to TiIMAC 

beads were set at ratio 1:5. Beads were first washed using Magnetic Rack 

with 80 µl 1 % ammonium hydroxide (NH4OH) or ammonia, followed with 200 

µl ACN. TiIMAC beads were equilibrated for 2 min with gentle mixing in 200 

µl loading buffer consisting of 1 M glycolytic acid, 80 % ACN, and 5 % 

trifluoroacetic acid (TFA). Dried samples were resuspended in 100 µl loading 

buffer and added to TiIMAC beads, and the mixture was incubated with 

gentle mixing for 20 min at RT. Samples were then washed with 200 µl 

loading buffer for 2 min successively, followed by three times with 200 µl of 1 

% TFA in 80 % ACN, and in the end with 200 µl of 0.2 % TFA in 10 % ACN. 

The phosphorylated peptides were eluted from beads using 80 µl of 1 % 
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ammonia three times, with pH immediately lowered to 2 using 10 % FA by 

gentle mixing. Eluted phosphorylated peptides were pooled together then 

dried in SpeedVac at RT, finally stored at -80 °C before the LC-MS/MS 

analysis. 

3.3.3  LC-MS/MS analysis 

Peptide analysis for the total and phosphorylated proteome was performed 

on a Velos-Pro orbitrap (Thermo Scientific) mass spectrometer coupled with 

a Dionex Ultimate 3000 RS (Thermo Scientific). The LC buffers used were 

the following:  buffer A (2 % ACN and 0.1 % FA in milliQ water (v/v)) and 

buffer B (80 % ACN and 0.08 % FA in milliQ water (v/v). All fractions from 

both total and phosphorylated proteome were reconstituted in 50 µl of 1 % 

FA. An aliquot (10 μL of total proteome while 15 μL of the phosphorylated 

proteome) of each fraction were loaded onto a trap column (100 μm × 2 cm, 

PepMap nanoViper C18 column, 5 μm, 100 Å, Thermo Scientific) which had 

equilibrated in buffer A for 19 min at 10 μL/min. The trap column was washed 

at the same flow rate for 6 min then switched in-line with a resolving C18 

column (75 μm × 50 cm, PepMap RSLC C18 column, 2 μm, 100 Å, Thermo 

Scientific) at a constant temperature of 50 °C. Peptides were eluted at a 

constant flow rate of 300 nl/min with a linear gradient from 5 % buffer B to 35 

% buffer B within 124 min from the column, which was then washed for 20 

min at 98 % buffer B and re-equilibrated for 19 min in 5 % buffer B. LTQ-

Orbitap Velos Pro was operated in DDA positive ionization mode. The source 

voltage was set to 2.6 Kv, and the capillary temperature was 250 °C. 

A scan cycle comprised MS1 scan (range from 335 m/z to 1,800 m/z) in 

the velos-pro orbitrap followed by 15 sequential dependent MS2 scans (the 

threshold value was set at 5,000, and the minimum injection time was set at 

200 ms) in LTQ with CID. The resolution of the Orbitrap Velos was set at 

60,000 after the accumulation of 1,000,000 ions. Precursor ion charge state 

screening was enabled, with all unassigned charge states and singly charged 

species rejected. Multistage activation for neutral loss ions was activated only 

for the analysis of phosphorylated peptides. To improve mass accuracy, the 

lock mass option was enabled for survey scans. The mass spectrometer was 

calibrated on the first day that the runs were performed to ensure mass 

accuracy. 

3.3.4  Peptide and protein identification and quantification 

The raw data files for D492, D492M, and D492HER2 obtained from the mass 

spectrometer for each experiment were collated into a single quantitated 
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dataset using MaxQuant (version 1.5.2.8) (Cox and Mann, 2008) and the 

search engine Andromeda (Cox et al., 2011). Enzyme specificity was set to 

trypsin, allowing for cleavage N-terminal to proline residues and between 

aspartic acid and proline residues. The other parameters applied in this study 

were listed, namely, (1) variable modifications: methionine oxidation, protein 

N-acetylation, gln → pyro-glu, Phospho (STY); (2) fixed modifications: 

cysteine carbamidomethylation; (3) database for protein searching: Uniprot-

human_dec2017 (171216); (4) heavy label: R10K8, medium label: R6K4; (5) 

MS/MS tolerance: FTMS - 10 ppm, ITMS - 0.6 Da; (6) maximum peptide 

length, 6; (7) maximum missed cleavages, 2; (8) maximum labeled amino 

acids, 3; (9) FDR, 1 %. The peak area of labeled arginine/lysine divided by 

the peak area of non-labeled arginine/lysine for each single-scan mass 

spectrum was calculated for each arginine- and/or lysine-containing peptide 

as the peptide ratios. Peptide ratios for all arginine- and lysine-containing 

peptides sequenced for each protein were averaged. Data were normalized 

using 1/median ratio value for each identified protein group per labeled 

sample. The phosphorylated peptides were normalized using the non-

phosphorylated protein 1/median values to correct for mixing errors and 

compared against the individual non-phosphorylated protein ratio itself to 

correct for protein regulation interactions.  

The iBAQ quantification analysis for the SILAC experiment followed 

similar setups with several different parameters: (1) variable modifications: 

methionine oxidation, protein N-acetylation, Phospho (STY), deamidation 

(NQ); (2) database for searching: Homo_sapiens.GRCh38.pep.all (108481); 

(3) MS/MS tolerance: FTMS - 20 ppm, ITMS - 0.5 Da. 

Valid SILAC quantification for each protein was defined as when two out 

of three replicates for each sample ratio were generated with valid SILAC 

ratios. Valid phosphoproteomic quantification for each phosphorylation site 

was filtered by localization probability > 0.75 in all three replicates for each 

sample ratio. 

3.4  Data Availability 

The mass spectrometry proteomics data (the first LFQ experiment) have 

been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-

Riverol et al., 2018) partner repository with the dataset identifier PXD024164.  

The mass spectrometry proteomics data (the second LFQ experiment) 

have been deposited to the ProteomeXchange Consortium via the PRIDE 

partner repository with the dataset identifier PXD025600.  
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The mass spectrometry (phospho)proteomics data (SILAC) have been 

deposited to the ProteomeXchange Consortium via the PRIDE partner 

repository with the dataset identifier PXD025858. 

3.5  Transient knockdown with siRNAs and quantitative 
reverse transcription PCR (RT-qPCR) 

Cells were seeded either at 60,000 cells/well in 48-well plates or at 480,000 

cells/well in 6-well plates. Prior to cell seeding, plates were coated with 

respective control siRNA (Silencer™ Select Negative Control, 4390843), 

GFPT2 target siRNAs (Silencer® Select siGFPT2, s19305 and s19306), 

GSK3B target siRNAs (Silencer® Select siGSK3B, s6239 and s6241), RELA 

target siRNAs (Silencer® Select siRELA, s11914 and s11915), UGDH target 

siRNA (Silencer® Select siUGDH, s409 and s410), and PDGFRB target 

siRNA (Silencer® Select siPDGFRB, s10240) as well as Lipofectamine™ 

RNAiMAX Transfection Reagent (Thermo). Cells were transfected at 37 °C 

and 5 % CO2 for 48 hours with a final siRNA concentration of 10 nM. The 

sense and antisense sequences of all the siRNAs were listed in Table 1. 

 

Table 1. Sequences of the siRNAs used in this project. 

 

Cells were cultured in 48-well plates for 72 hours in the RT-qPCR 

experiments, followed by total RNA extraction with TRI Reagent™ Solution 

(Invitrogen™). RNA concentration was determined in NanoDrop One 

(Thermo). 1,000 ng of RNA were used for cDNA synthesis on the thermal 

cycler (MJ research, PTC-225, Peltier Thermal Cycler) using High-Capacity 

cDNA Reverse Transcription Kit (Thermo). Gene expression was measured 

with SYBR Green (Luna® Universal qPCR Master Mix, NEW ENGLAND 

BioLabs) on Bio-Rad CFX384 Touch™ Real-Time PCR Detection System 

(Bio-Rad). Primers were selected either based on literature, from 

PrimerBank, or designed on Primer3Plus website. Primer sequences for 

genes studied in this project were listed in Table 2. 

No. Target Gene Symble siRNA ID Sense (5' -> 3') Antisense (5' -> 3')

1 GFPT2 s19305 GACCGAAUUUCACUACAAAtt UUUGUAGUGAAAUUCGGUCtt

2 GFPT2 s19306 GAUGAUGUCUGAAGACCGAtt UCGGUCUUCAGACAUCAUCaa

3 GSK3B s6239 CUCAAGAACUGUCAAGUAAtt UUACUUGACAGUUCUUGAGtg

4 GSK3B s6241 GCUAGAUCACUGUAACAUAtt UAUGUUACAGUGAUCUAGCtt

5 RELA s11914 CCCUUUACGUCAUCCCUGAtt UCAGGGAUGACGUAAAGGGat

6 RELA s11915 GGAGUACCCUGAGGCUAUAtt UAUAGCCUCAGGGUACUCCat

7 UGDH s409 GGGUAACGGUUGUUGAUGUtt ACAUCAACAACCGUUACCCtg

8 UGDH s410 CAACAGCGAUUGGAAUGGAtt UCCAUUCCAAUCGCUGUUGct

9 PDGFRB s10240 Not available Not available
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Table 2. Sequences of the primers used in this project. 

 

3.6  Crystal violet assay 

The crystal violet assay was conducted for the normalization of the metabolic 

measurements in the metabolomic experiment with UGDH knockdown and 

for the glutathione assay in which cells were counted by this assay. In short, 

cells were fixed with 100 % cold MeOH and stained with 0.25 % crystal violet 

(Merck, C.I. 42555). After washing, stained cells were dissolved into 100 µl of 

10 % acetic acid and measured at 570 nm in the microplate reader 

(SpectraMax® M3, Molecular Devices LLC). 

3.7  Metabolomics analysis 

In the GFPT2 knockdown experiment, D492, D492M, and D492HER2 cells in 

triplicates were transfected with control siRNA (scramble), target siRNA 

(siGFPT2), or neither (wide-type) for 48 hours in 6-well plates, then cultured 

for another 24 hours before metabolite extraction. Intensities of the 

metabolites were normalized to total protein concentration measured by BCA 

assay. In the UGDH knockdown experiment, the D492M, HMLEM, and 

PMC42ET cell lines in sextuplicate were transfected with control siRNA 

(scramble) and target siRNA (siUGDH) following the same procedures for 

siGFPT2 with the intensities of the metabolites normalized to the crystal violet 

signals. In the 13C-labeling experiments, wide-type cells were cultured in T25 

flasks in triplicates, and after cells reached 80 % confluency, the medium was 

Genes Primers Sequences (5'to3')

Forward ATCCTTGCTTCGCCAAATGC

Reverse TTCAGTATCGTCCTTGGAGCAC

Forward TTTCTGTGCTGTCCAACCCTGA

Reverse CTCTCTGGCCCTCTGGAGTTTC

Forward ACCACGTACAAGGGTCAGGT

Reverse GGCATCAGCATCAGTCACTT

Forward CCTGCTTATCCTTGTGCTGA

Reverse CCTGGTCTTCTTCTCCTCCA

Forward CTTCAGGAAGACAGGGAAGCGA

Reverse TAACAGTGAGGTTCCGCTCCTG

Forward GGCAGCAAGGTAACCACAGT

Reverse GATGGCAACCGATTCTCCAG

Forward GAAGAACGTGCACGAGGTGAAG

Reverse TCCCAAACCCCCAGATGAAGTC

Forward GCCGAGCAACTTTGATCAACGA

Reverse GCAGTTCTTGGAGGCCAGAAAC

Forward CCAGACCAACAACAACCCCT

Reverse TCACTCGGCAGATCTTGAGC

Forward ACTATGCCGCGCTCTTTCCT

Reverse AGTCCTGTGGGGCTGATGTG

Forward CTTCCTGGGTGAGTGGAGACTG

Reverse GAGGGAAATGAGGGCAGGACTT

GFPT2

UGDH

CDH1

CDH2

PDGFRB

RELA

SNAI1

ACTB

SQOR

GSK3B

PRCKA
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changed to ones without glucose or glutamine. After culturing cells in the 

medium deprived of glucose or glutamine for four hours (as Time 0), labeled 
13C 1,2-glucose or 13C 1(5)-glutamine was added. Metabolites were extracted 

at time 0 and after 6 hours.  

Before metabolite extraction, cells were first washed with sterile saline 

solution. Metabolites were extracted with cold 80 % MeOH (MeOH: dH2O, 

80:20) containing an isotopically labeled internal standard mix (Table 3) as 

instructed in an in-house protocol. Briefly, after adding 80 % MeOH into the 

cell culture, cells were scraped off, and cell lyases were centrifuged. Next, 

the supernatant was taken and vacuum-dried. The extracted metabolites 

were analyzed on the ultra-performance liquid chromatography (UPLC) 

coupled with ESI qTOF mass spectrometry (SYNAPT G2, Waters) according 

to published protocols (Rolfsson et al., 2017). Briefly, the metabolites lysates 

were loaded onto a BEH amide column (Acquity, 1.7 µm, 2.1 x 150 mm, 

Waters) to achieve chromatographic separation by hydrophilic interaction 

liquid chromatography (HILIC). Two running conditions (acidic and basic) and 

two ionization modes (negative and positive) were used for the 

chromatographic separation, including acidic negative, acidic positive, and 

basic negative modes. The running buffers for the acidic condition included 

buffer A (0.1 % FA in ACN (v/v)) and buffer B (0.1 % FA in milliQ water (v/v)), 

while for the basic condition, the mobile phases were buffer A (100 % ACN) 

and buffer B (20 mM ammonium acetate (pH 9.4, NaOH)). 

The metabolite identification and quantification were conducted in 

MassLynx software (Waters, version 4.2) from Waters. The targeted 

metabolites were identified based on an in-house built library, which was 

generated by identifying expected metabolites with chromatographic retention 

time, accurate mass, and their ion adducts and fragments. For untargeted 

metabolites identification, the publicly deposited spectrum from the online 

human metabolome database (HMDB) (Wishart et al., 2018) and METLIN (C. 

A. Smith et al., 2005) were used to cross-reference the data collected from 

this project. The integration of the area under the peak curve for each 

targeted metabolite was conducted in TargetLynx (Waters, version 4.2).  

For the 13C-labeling tracer experiments, data were analyzed in 

TargetLynx, and IsoCore was used to correct for the abundances of naturally 

heavy isotopes (Millard et al., 2012). We normalized the mean enrichment of 
13C in UDP-GlcNAc to the total amount of UDP-GlcNAc and presented it as 

relative 13C incorporation. 
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Table 3. The composition of the internal standard mix. 

The isotopically labeled metabolites in the internal standard mix for the metabolic 
experiments were listed. Reprinted from (Q. Wang et al., 2021). Reprinted with 
permission. 

 

Table 4. The main metabolites identified and quantified in this project were listed. 

The first four metabolites were involved in the EMT section in this project (paper I), 
while the rest of the metabolites were involved in the EMP section (paper II). 

 

3.8  Untargeted metabolomics analysis 

The R package XCMS was used in the untargeted data analysis (Colin A. 

Smith et al., 2006) for automatic chromatographic peak-picking (the 

centWave algorithm) (Tautenhahn et al., 2008) and retention time alignment 

No. Metabolites Mass Rention Time Mode

1 UDP-Glucose 565.0476 8.47 Basic, Negative

2 UDP-Glucuronic acid 579.028 8.58 Basic, Negative

3 Glycerophosphocholine 109.041+242.078 4.79 Acidic, Negative

4 Acetylaspartate 174.03868 2.83 Acidic, Negative

5 UDP-N-acetylglucosamine 606.074 6.58 Acidic, Negative

6 Glutamate 146.0459 4.35 Acidic, Negative

7 Cystathionnine 221.0596 5.38 Acidic, Negative

8 Reduced Glutathione 306.077+272.09 4.28 Acidic, Negative

9 N-acetylglucosamine-1-phosphate 300.0484 5.21 Acidic, Negative

No. Internal Standards Concentrations (µg/mL)

1 Adenine (
15

N2) 50

2 Alanine (d4) 1000

3 AMP (
13

C10, 
15

N5) 50

4 Arginine (
13

C6) 50

5 Carnitine (d9) 20

6 Citric acid (
13

C6) 50

7 Cysteine (
13

C3, 
15

N) 50

8 Glucose (
13

C6) 2100

9 Glutamic Acid (d5) 30

10 Glutamine (
15

N2) 50

11 Lysine (d4) 90

12 Malonic acid (d4) 50

13 Octanoic Acid (d15) 150

14 Phenylalanine (d2) 72

15 Phtalic Acid (d4) 50

16 Succinic acid (d4) 50
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between samples (the OBI-Warp algorithm) (Tsugawa et al., 2015). Features 

that eluted in the first 66 seconds were omitted from further analysis. Feature 

intensities were normalized by quality-control sample-based robust LOESS 

(locally estimated scatterplot smoothing) signal correction (QC-RLSC) (Dunn 

et al., 2011), which was implemented by the R package NormalizeMets (De 

Livera et al., 2018). All features with over 25 % relative standard deviation 

(RSD) in the QC samples were omitted from further analysis for quality 

assurance. To obtain mean-centered and normally-distributed feature 

intensity values with equal variance, the generalized logarithmic 

transformation (glog) (Durbin et al., 2002) and autoscaling were applied. 

3.9  Cell proliferation assay 

Cells were seeded in 96-well plates at 10,000 cells/well in quadruplicates. 

Both GFPT2 and UGDH knockdowns followed the protocol described in the 

above section. In the GFPT2 knockdown experiment, 24 hours after cell 

seeding for D492 and D492M while 48 hours for D492HER2, cells were 

placed under the microscope (LEICA CTR 6500, bright field, 10x) with 5 % 

CO2 at 37 °C for real-time monitoring and multiple data acquisition. This was 

controlled by software Micro-Manager (version 1.4.22). Three spots were 

chosen in each well, and photos were taken every 6 hours. Cell growth was 

monitored for 66 hours for D492 and D492M while 42 hours for D492HER2. 

Photos were batch-processed with Macro in software ImageJ 1.52p, and cell 

numbers were normalized to the starting time point for monitoring under the 

microscope. The same procedures were performed in the UGDH knockdown 

experiment for the D492M and D492HER2 cell lines. 

3.10  Scratch migration assay 

In the GFPT2 knockdown experiment, the scratch assay was performed in 

the IncuCyte ZOOM system (2018A) following the manufacturer’s 

instructions. Cells in triplicates were seeded at 40,000 cells/well in 96-well 

plates (Essen bioscience, ImageLock, 4379). GFPT2 knockdown followed the 

procedures described in the above section. Briefly, cells were scratched and 

put into the IncuCyte after 48 hours of transfection with siRNAs. The 

IncuCyte ZOOM system took pictures every 2 hours. Two positions in each 

well were chosen, and cells were monitored for around 72 hours to reach full 

wound closure. Images were analyzed in the software IncuCyte ZOOM 

(2018A), and the wound confluence data were exported from the same 

software. 
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3.11  Transwell invasion assay 

The D492M and D492HER2 cells were cultured with siRNA transfection 

(Scramble, siGFPT2, and siUGDH) for 48 hours in a 6-well plate, and the 

protocol for the GFPT2 and UGDH knockdown procedure was described 

above. Cells were then re-seeded into filter units (Falcon® Permeable 

Support for 24-well Plate with 8.0 µm Transparent PET Membrane, 353097) 

coated with Matrigel (Corning® Matrigel® Matrix, 356234) at a density of 

30,000 cells/well. Firstly, the filter inserts were coated with 100 µl 1:10 diluted 

Matrigel for 20-30 min at 37 °C. Secondly, 300 µl of cell suspension was 

added on top of the filter units. Thirdly, 500 µl of H14 medium with 10 % FBS 

were added to the wells in the 24-well plates below the filters. Finally, cells 

were incubated at 37 °C and 5 % CO2 for 48 hours. To normalize the different 

cell numbers in the filter units, cells were seeded into a 24-well plate along 

with the filter units and cultured in the same way as cells in the filter units. 

To count the invasive cells below the filter units, non-invasive cells on top 

of the filters were first removed with cotton swabs, followed by fixation with 

paraformaldehyde (PFA, 3.7 %, Sigma, 252549) and DAPI staining (1:5000, 

Sigma, D9542). 10 images per filter unit were then taken by the EVOS® FL 

Auto Imaging System (10x, Thermo), followed by the batch analysis of the 

images in Macro ImageJ 1.52p. 

3.12  Western blot 

The D492 cells were incubated with the GFPT2 siRNAs as described above 

in the knockdown experiment. Protein lysates were extracted with RIPA 

buffer (PierceTM, 89900, Thermo) supplemented with protease & 

phosphatase inhibitors (HaltTM, 1861284, Thermo) and quantified with BCA 

protein assay. Proteins were separated by the 4%-12% Bis-Tris gels 

(NuPAGETM, Thermo), transferred to polyvinylidene fluoride (PVDF) 

membranes (IPFL00010, Immobilon®), and probed with antibodies against O-

GlcNAcylation (1:200 dilution; sc-59623; Santa Cruz Biotechnology) and the 

loading control β-actin (1:2,000; MA5-15739; Thermo). The western blot 

detection reagents were Clarity MaxTM Western ECL substrate (Bio-Rad), and 

plots were imaged in the Molecular Imager® ChemiDocTM XRS+ Systems 

(Bio-Rad). The protein abundance between samples was quantified and 

compared via densitometry quantification of western blots carried out in the 

software ImageJ 1.52p. 
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3.13  Hydrogen peroxide (H2O2) and reduced glutathione 
(GSH) treatment and growth factor deprivation 

MDA-MB-231 cells were seeded in 24-well plates at 300,000 cells/well and 

cultured for 48 hours, followed by treatment with 2µM H2O2 (Honeywell, 

18304H) for 2 hours.  

MDA-MB-231 cells were seeded in 24-well plates at 200,000 cells/well 

and cultured for 24 hours, followed by treatment with 50 mg/L reduced 

glutathione (GSH, Sigma, G4251) for 48 hours. Cells were changed with 

fresh GSH-containing medium 2 hours before the RNA extraction.  

MDA-MB-231 cells were cultured in the H14 medium as described for the 

D492 cell lines. The cells were then seeded in 24-well plates at 200,000 

cells/well and cultured for 24 hours, followed by treatments with medium 

deprived of insulin or EGF for 48 hours. The fresh medium was changed for 

the cells 2 hours before the RNA extraction.  

In the above experiments, the GFPT2 gene expression was tested by RT-

qPCR as described in the above section.  

3.14  Glutathione assay 

The glutathione levels were measured with the GSH/GSSG-Glo™ Assay 

from Promega (V6611), covering both reduced (GSH) and oxidized (GSSG) 

glutathione. Cells in quadruplicates were seeded at 20,000 cells/well in 96-

well plates. GFPT2 knockdown and H2O2 treatment followed the protocols 

described in the above section. The glutathione levels were measured 24 

hours after the medium was changed. The luminescence signal was detected 

in the microplate reader (SpectraMax® M3, Molecular Devices) with white 

and opaque 96-well plates (BRANDplates®, 781965). To normalize the 

glutathione level, cells were counted using a crystal violet assay as described 

in the previous section. 

3.15  Statistical analysis and bioinformatics 

All experiments performed in the first study on EMT and UGDH (paper I) 

were at least in triplicates. The metabolomics analysis of the UGDH 

knockdown in D492M, HMLEM, and PMC42ET was in sextuplicate. The 

proteomic data were analyzed in Perseus (Version 1.6.14.0, data imputation 

based on a normal distribution with width as 0.3 and down shift as 1.8, 

Permutation-based FDR < 0.05) (Tyanova et al., 2016) and R (Version 4.0.0). 

The figures reported in this study were generated in R. The statistical 
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significance for all the two-sample comparisons was derived from the two-

sided Student’s T-test (Welsch, p < 0.05). All error bars represented standard 

deviation (SD). The Gene Ontology (GO) functional annotation was carried 

out in the DAVID online platform (DAVID Bioinformatics Resources 6.8) with 

default settings (Huang da et al., 2009; Huang da et al., 2009). The 

Reactome pathway analysis was conducted with the online Reactome tool 

(Pathway browser version 3.7; Reactome database release: 75) with default 

settings (Jassal et al., 2019). Proteins with significance above a certain 

threshold (permutation-based FDR < 0.05) were included in the GO 

annotation and Reactome pathway analysis. Patient survival analyses were 

conducted by the online tool kmplot.com (basal breast cancer patients, split 

patients by auto select best cutoff) (Györffy et al., 2010). 

In the second study on EMP and GFPT2 (paper II), we utilized two 

quantitative methods for proteomics analysis (single-shot LFQ and ten-

fraction SILAC) to increase the data validity and the reproducibility of the 

findings. In the LFQ experiment, four cell lines (D492, D492M, D492HER2, 

and D492DEE) in three biological replicates (12 samples in total) were 

analyzed, and the proteins with statistical significance were thoroughly 

described. In the SILAC experiment, three cell lines (D492, D492M, and 

D492HER2) in three biological replicates (nine samples in total) were 

analyzed and described. Due to the limitations with the SILAC methods 

(maximum labeling capacity is three), the D492DEE cell line was expelled 

from the SILAC experiment. The epithelial D492 cell line was used as the 

control for the D492M and D492HER2 mesenchymal cell lines in both LFQ 

and SILAC. Statistical analysis for all the comparisons between different 

treatments was carried out in R and Perseus (two-sided one or two sample(s) 

Student’s T-test). All error bars represented SD. 

The R packages “ComplexHeatmap”, “ggdendro”, and “dendextend” 

(Galili, 2015; Z. Gu et al., 2016) were used to generate the heatmaps and 

dendrogram in this project. The volcano plots were plotted in R using data 

that were first analyzed and organized in Perseus (version 1.6.2.3, replace 

missing values from normal distribution, width = 0.3 and down shift = 1.8, 

two-sided Student’s T-test for LFQ, one sample T-test for SILAC, 

Permutation-based FDR). GO annotation was carried out in Perseus (version 

1.6.12.0, Fisher exact test, Benjamini-Hochberg FDR) (Tyanova et al., 2016). 

All identified proteins from the SILAC experiment were used as background 

for the GO annotation. The KEGG pathway enrichment was performed by the 

R package “pathfindR” (100 iterations; Protein-protein interaction: Biogrid; p-

values adjustment: "bonferroni", adjusted p-value threshold: 0.05) (Ulgen et 
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al., 2019). Reactome metabolic pathway enrichment was conducted with the 

default parameters on the Reactome website (Version 65, 67, and 72 were 

used for D492 vs. D492M, D492 vs. D492HER2, and D492M vs. D492HER2, 

respectively) (Jassal et al., 2019) then plotted in R as treemaps. Proteins 

involved in the metabolic pathways (enrichment FDR < 0.05) were mapped in 

the protein interaction networks created in STRING (Version 11.0; k-means 

clustering, minimum required interaction scores: medium confidence 0.400) 

(Szklarczyk et al., 2019) and visualized in Cytoscape (version 3.5.1/Version 

3.6.1) (Shannon et al., 2003). The R packages “survminer” and “survival” 

were used for the survival analysis in breast cancer patients, and the top and 

bottom 20th percentile of patients were included in the analysis. The data of 

patients with breast cancer were downloaded from The Cancer Genome 

Atlas (TCGA) cBioPortal (Breast Invasive Carcinoma (TCGA, Provisional)) 

(Hoadley et al., 2018). The EMT markers referred to in this project were 

downloaded from the online EMT marker database (Min Zhao et al., 2015). 

The GFPT2 RNA expression data in breast cell lines and breast cancer 

patients were downloaded from the Cancer Cell Line Encyclopedia (CCLE) 

database (Ghandi et al., 2019), the Harvard Medical School (HMS) LINCS 

database (Koleti et al., 2017), and TCGA cBioPortal (Breast Cancer 

(METABRIC, Nature 2012 & Nat Commun 2016)) (The Cancer Genome Atlas 

Network, 2012). The proteins identified and quantified in both LFQ and 

SILAC were plotted as scatter plots in R (Pearson). 

In both the EMT and EMP studies, the phosphoproteomic data were 

analyzed in the Ingenuity Pathway Analysis (IPA) (QIAGEN, version from 

2018) for pathway enrichment and in Perseus for motif enrichment analysis. 

All the R codes used for analysis and plotting on UGDH can be found on 

https://github.com/QiongW56/UGDH_Publication_2021. (Paper I) 

All the R codes used for analysis and plotting on GFPT2 can be found on 

https://github.com/QiongW56/GFPT2_Publication_2021. (Paper II) 

https://github.com/QiongW56/UGDH_Publication_2021
https://github.com/QiongW56/GFPT2_Publication_2021
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4 Results and discussion 

4.1  Proteomic profiling of the EMT and EMP programs 

The notion that EMT is a driver for cancer pathogenesis has propelled the 

drastic growth of the EMT research field. EMT is not a binary process but 

rather with a continuum of intermediate states to render cells phenotypic 

plasticity. We employed three epithelial-mesenchymal breast cell line pairs to 

study the essential non-tumorigenic spontaneous EMT program and three 

isogenic breast cell lines with plasticity and tumorigenicity to study the 

invasive EMP program. The background and phenotypes of all the cell lines 

were introduced, and the proteomic changes of both the EMT and EMP 

programs by comparing different cell lines were analyzed, followed by 

functional annotation of the proteomic changes. 

4.1.1  Characterize the D492, HMLE, and PMC42 EMT cell models 
(paper I) 

The D492 (D492-D492M), HMLE (HMLE-HMLEM), and PMC42 (PMC42LA-

PMC42ET) EMT cell models were chosen and characterized to study EMT 

(Figure 6). The D492 and HMLE epithelial cell lines were generated from 

normal breast reduction mammoplasty with different cell immortalization 

methods. The D492 epithelial cells were basal-like with stem cell properties, 

while the D492 mesenchymal cells were derived spontaneously from the 

epithelial cells after coculture with endothelial cells. HMLE cells isolated from 

breast tissue contained both luminal and basal epithelial cells, and the 

mesenchymal counterpart was induced spontaneously by instant 

trypsinization (1 minute). On the contrary, the PMC42 mesenchymal cells 

were derived from pleural effusion from the metastatic site in a breast cancer 

patient, and the epithelial counterpart was produced spontaneously by 

hormone treatment via MET. All the cell lines held certain levels of 

myoepithelial or basal features of breast epithelial cells and were not 

tumorigenic. 

Genetic manipulation to induce EMT, such as overexpression of EMT-

related growth factors, transcription factors, and microRNAs, may lead to 

unwanted effects that diminish the plasticity and flexibility of the EMT 

program  (Aharonov et al., 2020; Cano et al., 2000; Krebs et al., 2017; Tam 

et al., 2013; Y. Yu et al., 2018). The three breast EMT cell models symbolize 

the natural EMT program in human breast gland development and have been 
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adopted in various studies and contributed indubitably to the understanding 

of the underlying mechanism of EMT (Bhatia et al., 2019; Briem et al., 2019; 

Kröger et al., 2019). 

 

Figure 6. Breast spontaneous EMT cell models. 

The three breast EMT cell models (epithelial-mesenchymal cell line pairs) used to 
study the essential spontaneous EMT were introduced and compared in terms of their 
tissue origin, methods of immortalization, cell type markers, methods of EMT 
induction, and tumorigenicity in vivo. Reprinted from (Q. Wang et al., 2021). Reprinted 
with permission. 

Proteomic analysis of the three EMT cell models revealed that cell lines 

with the same tissue origin were more similar in spite of their epithelial or 

mesenchymal properties (Figure 7A). The proteomes of the PMC42 cell lines 

were distant from those of D492 and HMLE models (Figure 7B). 873 valid 

proteins in total were identified and quantified in the proteomic analysis. 21.5 

% of the valid proteins in the D492 cell model, 49.9 % of those in HMLE, and 

22.9 % in PMC42 were significantly altered after EMT (Permutation-based 

FDR < 0.05) (Figure 7C). Within the significantly changed proteins after 

EMT, 55.9 % in the D492 model, 18.8 % in the HMLE model, while 63.5 % in 

the PMC42 model were upregulated (Figure 7D). 

The failure of the epithelial-mesenchymal characteristics being 

determinant for the cell line clustering suggests that the impacts of the 

spontaneous switches between the epithelial and mesenchymal states are 

less profound than the inherited genetic background among the cell lines 

(Figure 7A). Both D492 and HMLE are derived from normal breast tissue, 
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while PMC42 is isolated from the metastatic site of a breast cancer patient, 

which may be responsible for the alienation of PMC42 (Figure 7B). 

The D492 and PMC42 cell models shared similar percentages of the 

altered proteome after EMT, which was more than two times lower than that 

of the HMLE proteome (Figure 7C). Furthermore, both D492 and PMC42 

models had relatively more proteins upregulated after EMT. However, less 

than 20 % of the changed proteins in the HMLE model were upregulated 

(Figure 7D). It suggests that the HMLE epithelial cell line is more epithelial-

like than the other two epithelial cell lines. 

Figure 7. Comparison of the proteomes among the three breast EMT cell models and 
during the EMT process. 

(A) PCA analysis of the proteomes of the three EMT models clustered the cell lines 
with the same tissue origin together, while the epithelial (or mesenchymal) proteomic 
phenotypes of these cell lines were not close enough to cluster. (B) The proteome of 
D492 was more similar to that of HMLE than PMC42. (C) 21.5 % of the detected 
proteome in the D492 EMT model were significantly altered after EMT (Permutation-
based FDR < 0.05), while 49.9 % in HMLE and 22.9 % in PMC42 were significantly 
changed. (D) 55.9 % of the significantly changed proteome in the D492 EMT model, 
18.8 % in HMLE, and 63.5 % in PMC42 were upregulated. Reprinted from (Q. Wang 
et al., 2021). Reprinted with permission. 
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We further mapped the log2 fold changes and -log10 p values of all the 

detected proteins to filter and identify consistent and significant changes 

among all the EMT cell models (Figure 8). Most of the proteins had failed to 

yield consistent changes, empathizing the heterogenicity of the EMT program 

and supporting that EMT is a context-specific biological process. 

GO annotation of the significantly altered proteins after EMT in the three 

EMT cell models revealed that changes to the biological process (BP) “cell-

cell adhesion” were prevalent among all models (Figure 9A-C). The HMLE 

and PMC42 cell models had changed their biological functions to a similar 

extent, with the PMC42 model sharing its top seven GO-BP terms with 

HMLE. The estrangement of D492 from the other cell models in EMT-related 

functional changes was confirmed by the Reactome pathway enrichment 

analysis (Figure 9D-F). Response to cell stress and alteration in IGF and 

interleukin-12 signaling were pathways reshaped in the D492 model after 

EMT, while changes in the protein translational process were mainly involved 

in the HMLE and PMC42 cell models. 

The protein expression profile of the D492 cell lines was similar to that of 

HMLE compared with PMC42 (Figure 7B); however, the altered biological 

functions post-EMT were discordant between these two EMT cell models 

(Figure 9). In HMLE and PMC42, the epithelial-mesenchymal switch is 

mainly promoted by the changed translational activities, suggesting that 

these cells rely on the translational machinery to reshape their proteomic 

landscapes during the phenotypic switch. The extravagant difference to the 

altered protein profile between HMLE and PMC42 suggests that the cell lines 

have customized their needs for protein translation in EMT induction (Figure 

9C-D). The D492 EMT cell model suffices the transition by altering cell 

responses to stress and signaling regulations, suggesting that these cells, 

relying on the cell plasticity imparted by the stem cell-like properties of the 

D492 epithelial cells, commit to post-translational approaches to fulfill EMT. 

These findings indicate that certain distinct cell properties, such as stem cell 

properties, can be dominant for EMT induction, surpassing the proteomic 

similarity, and cells with discordant proteomes can rely on similar functional 

mechanisms tailored to their intrinsic characteristics to induce EMT. 

The D492, HMLE, and PMC42 EMT cell models are three sets of cell lines 

with distinct genetic backgrounds and heterogenous EMT processes. D492M, 

HMLEM, and PMC42ET represent three distinct mesenchymal phenotypes, 

supporting that the mesenchymal cell state is very diverse and can not be 

well-defined by certain sets of markers (J. Yang et al., 2020). These 
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mesenchymal cell types may be subject to further oncogenic insults and 

eventually cause different levels of oncological severity. These findings 

support the emerging concept: The intrinsic properties induced by the cell of 

origin are the foundation and determinant of the subsequent oncogenic 

events, which can profoundly affect cancer malignancy (Puisieux et al., 

2018). 
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Figure 8. Proteomic changes after EMT in the three EMT models. 

The log2 ratios (epithelial/mesenchymal) of the detected proteins, along with the -
log10(p value), were plotted for the D492 EMT cell model (A), HMLE EMT cell model 
(B), and PMC42 EMT cell model (C) based on the proteomic analysis. The proteins 
with FDR (Permutation-based) < 0.05 and fold change > 2 were colored. The p value, 
which equals to 0.03 (-log10(p value) = 1.5), was indicated by the horizontal dash 
lines, while the fold change at 2-fold was highlighted by the vertical dash lines. The 
normal label-marked proteins had log2(fold change) > 3, i.e., UCHL1, CTGF, 
SERPINE1, FLNC, AKAP12, GLUL, ITGB4, JUP, S100A2, NDRG1, ITGA6, and 
SERPINB5 in the D492 model (A); ANPEP, MAP1B, SERPINE1, DPYSL3, DKK1, 
ITGA6, ITGB4, DSP, LGALS7, KRT18, and S100A2 in the HMLE model (B); while 
VIM, HIST1H1B, SERPINE1, TGM2, CD70, CTSZ, CHORDC1, PKP3, and CKB in 
the PMC42 model (C). Metabolic proteins with log2(fold change) > 1 for the D492 cell 
model, 1.5 for the HMLE and PMC42 cell models were bold label-marked, for 
example, UCHL1, UGDH, GLUL, and LDHA in D492 (A); UGDH, FDFT1, ASS1, and 
AHCY in HMLE (B); and PGM1, UAP1, OAT, ASS1, and SULT1A3 in PMC42 (C). 
Reprinted from (Q. Wang et al., 2021). Reprinted with permission. 
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Figure 9. Functional changes after EMT in the three EMT models. 

(A-C) The top 10 of the most dysregulated biological processes (BP) were listed for 
the D492 cell model (A), the HMLE cell model (B), and the PMC42 cell model (C), 
respectively. The GO terms were listed according to the -log10(p value) in a 
descending order. The gene numbers contained in each GO term were plotted as 
dots/line. The functional annotation of the GO-BP terms was performed on the DAVID 
platform (DAVID Bioinformatics Resources 6.8). (D-F) The Reactome pathway 
analysis was conducted for the D492 cell model (D), HMLE cell model (E), and 
PMC42 cell model (F) (Pathway browser version 3.7; Reactome database release: 
75). Both the GO annotation and Reactome pathway analysis were analyzed with the 
proteins significantly altered in each EMT cell model (Permutation-based FDR < 0.05). 
Both the DAVID GO annotation and Reactome pathway analysis were performed with 
default settings on the platforms. Reprinted from (Q. Wang et al., 2021). Reprinted 
with permission. 

4.1.2  Characterize the D492, D492M, and D492HER2 EMP cell 
model (paper II) 

To discriminate proteomic phenotypes that confer cell invasiveness from 

migration, the cell line trio, epithelial D492, mesenchymal D492M, and partial 

mesenchymal D492HER2 formed the EMP cell model and was analyzed in 

the same proteomic experimental setup (Figure 10). D492 is a normal 

human breast epithelial cell line with basal-like and stem cell properties and 

is capable of initiating EMT and of differentiating into both luminal epithelial 

and myoepithelial cells. D492M was generated by spontaneous EMT 

induction from D492 and is non-tumorigenic with typical mesenchymal 

phenotypes and with increased migratory ability. D492HER2 cells possess 

certain mesenchymal traits with more potential for invasiveness, 

representative of the EMT plasticity. 

The proteomic analysis confirmed that D492HER2 is more similar to 

D492M than D492 on the protein level, with 462 differently expressed 

proteins identified between D492HER2 and D492M while 535 proteins in 

D492HER2 different from D492 (Figure 11). The significant difference to 

proteome between D492M and D492 (715 altered proteins) exceeded that 

between D492HER2 and D492 (535 altered proteins), confirming that 

D492HER2 locates in-between the epithelial D492 and mesenchymal 

D492M, retaining the epithelial-mesenchymal intermediate phenotype. The 

smaller number of signature proteins (signature proteins: a set of proteins 

uniquely dysregulated in one cell line compared with the other two cell lines) 

in D492HER2 (84 proteins) further confirmed that D492HER2 is an 

intermediate state between D492 and D492M. 
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Figure 10. Generation of D492M and D492HER2 from D492 in the EMP cell model. 

The D492M and D492HER2 cell lines were generated from the D492 cell line. To 
generate D492M cells, D492 cells were cocultured with endothelial cells (BRENCs or 
HUVECs) to generate spindle colonies, followed by the subculture of the spindle 
colonies to generate the new stable cell line D492M, which is not tumorigenic. To 
generate D492HER2 cells, the HER2 (ERBB) receptor was overexpressed on D492 
cells via transfection of the HER2-containing lentiviral plasmids, followed by a 
selection of the successfully transfected cells based on eGFP expression. In the end, 
the stable D492HER2 cell line was generated, which could form tumors in mice. 
Reprinted from (Q. Wang et al., 2021). Reprinted with permission. 

Figure 11. The difference to the proteomes among the EMP cell lines. 

Based on both the LFQ and SILAC proteomic analysis, there were 715 proteins 
significantly different between D492 and D492M, 535 proteins changed significantly 
from D492 to D492HER2, while 462 proteins were significantly different between 
D492M and D492HER2 (LFQ: Student’s two-sample T-test, Permutation-based FDR 
< 0.05 & SILAC: Student’s one-sample T-test, p value < 0.05). There were 312 
proteins differently expressed in D492 compared with the other two cell lines 
(signature proteins for D492), and 97 differently expressed proteins in D492M 
(signature proteins for D492M), while 84 signature proteins in D492HER2 (LFQ: 
ANOVA, Permutation-based FDR < 0.05 & Coefficient of Variation of SILAC ratios < 
0.1). 
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EMT is a heterogenous process with as yet no universal criteria to define 

it. Groger et al. carried out a meta-analysis for EMT gene expression studies 

and identified an EMT-core gene list containing 130 dysregulated genes post-

EMT (Gröger et al., 2012). Shaul and colleagues identified a list of metabolic 

markers in mesenchymal cell lines (MMS) that comprised 44 enzymes (Shaul 

et al., 2014). To characterize the EMP cell model in the framework of EMT, 

we compared the protein expression of the general and metabolic 

mesenchymal markers from the literature among D492, D492M, D492HER2 

(Figure 12A-B). There was good consistency between LFQ and SILAC, with 

SILAC being more compatible with the literature. The EMT gene expression 

profile of the EMP model and that of the literature are concordant, apart from 

aldehyde dehydrogenase family 1 member A3 (ALDH1A3), 4-

hydroxyphenylpyruvate dioxygenase-like protein (HPDL), aldo-keto reductase 

1 member B1 (AKR1B1), and microsomal glutathione S-transferase 1 

(MGST1). 

ALDH1A3 and HPDL were reported to be decreased, while AKR1B1 and 

MGST1 were increased in the mesenchymal cells (Gröger et al., 2012; Shaul 

et al., 2014), which was contradictory to the EMP cell model. ALDH1A3 

catalyzes the formation of retinoic acid and is important for embryonic 

development. HPDL localizes in mitochondria, and the biological function of 

which is less studied. AKR1B1 is an NADPH-dependent enzyme catalyzing 

the reduction of aldehydes and ketones. MGST1 regulates glutathione 

metabolism, oxidative stress, and cell detoxification. All four enzymes are 

reported to facilitate cancer progression (Duan et al., 2016; X. Wu et al., 

2017; Ye et al., 2021; Zeng et al., 2020), and the discordance dampens their 

strength as reliable EMT markers. 

D492HER2 cell proteome is closer to that of D492M than D492, albeit 

unequivocal differences (Figure 12A-B). EMT marker expression in clusters 

C2 and C4 (Figure 12A) was discordant between D492HER2 and D492M, 

empathizing the accountabilities of these EMT markers in EMT plasticity. 

Established on the reported proteomic fingerprints of 20 common breast 

epithelial cell lines (Lawrence et al., 2015), the unsupervised hierarchical 

clustering analysis revealed that D492 and D492M were basal-like breast cell 

lines, complying with the prior categorization of D492 (Sigurdsson et al., 

2011), while D492HER2 was grouped with the “mesenchymal-like/claudin-

low” cell lines based on both SILAC and LFQ (Figure 12C). 

MCF10A cells express stem cell-like markers, and this cell line is non-

tumorigenic and derived from normal breast tissue, which highly resembles 
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D492 (Bhat-Nakshatri et al., 2010; Neve et al., 2006; Qu et al., 2015; Soule et 

al., 1990). MDA-MB-468 is tumorigenic with metastatic capacity and was 

clustered with D492M possibly in consequence of its mesenchymal traits 

(Cailleau et al., 1978; H. J. Hugo et al., 2017; Neve et al., 2006). D492HER2 

was clustered with the tumorigenic MDA-MB-157, originally isolated from 

metastatic human breast carcinoma (Cailleau et al., 1978; Neve et al., 2006; 

Young et al., 1974), and classified as a “mesenchymal-like/claudin-low” cell 

line based on both LFQ and SILAC. D492 and D492M imitate basal-like 

breast cells, while D492HER2 appears to be an intermediate phenotype with 

claudin-low properties diverting from D492 and D492M. 

These findings strengthen the isogenic D492 cell lines as a valuable tool 

to study EMP and to define the molecular plasticity of EMT on the proteomic 

level. 
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Figure 12. Dysregulation of the general and metabolic EMT markers in the EMP cell 
model and cell line classification of D492, D492M, and D492HER2. 

(A) Groger et al. was a published independent study on EMT marker dysregulation via 
a meta-analysis of gene expression studies (GES) of EMT, with a focus on different 
cell types and treatment modalities (Gröger et al., 2012). Based on this study, the 
identified EMT markers in the EMP cell model were confirmed. 26 out of the 130 EMT 
markers reported in the literature were detected in both the LFQ and SILAC datasets. 
EPCAM and IL18 were inconsistent between LFQ and SILAC, with the SILAC results 
being more similar to the literature. ALDH1A3 was inconsistent between the literature 
and this study. (B) Dysregulated metabolic EMT makers in the EMP model were 
compared with the MMS reported in Shaul et al., where the mRNA expression profiles 
of 1,704 metabolic genes in 978 human cancer cell lines were analyzed (Shaul et al., 
2014). The LFQ and SILAC quantification of all the metabolic EMT proteins agreed 
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with each other except for NT5E, with SILAC being more consistent with the literature. 
Compared with the literature, HPDL, AKR1B1, and MGST1 altered oppositely in the 
EMP model. (C) Classification of the EMP cell model. Both the LFQ and SILAC raw 
data were re-quantified by the iBAQ quantification method in MaxQuant, and the 
expression of proteins identified in both literature and this study was used for the 
hierarchical clustering. D492, D492M, and D492HER2 were clustered with other pre-
classified breast cell lines (Lawrence et al., 2015). In the literature, the breast 
epithelial cell lines commonly used in literature were classified into four groups: 
“luminal”, “basal-like 1,” “basal-like 2,” and “mesenchymal-like/claudin-low.” Based on 
the analysis, LFQ (left) classified D492 as “basal-like 1” (in blue), D492M as “basal-
like 2” (in red), and D492HER2 as “mesenchymal-like/claudin-low” (in orange), while 
SILAC (right) classified D492 as “basal-like 2” (in red), D492M as “basal-like 1” (in 
blue), and D492HER2 as “mesenchymal-like/claudin-low” (in orange). Reprinted from 
(Q. Wang et al., 2021). Reprinted with permission. 

To characterize the proteomic changes post different types of EMT in the 

EMP cell model, supported by both LFQ and SILAC, we plotted the log2 fold 

changes and -log10 p values of all the detected proteins from both LFQ and 

SILAC and outlined the utmost changes among the three cell lines with 

arbitrary thresholds (Figure 13). The topmost consistent non-metabolic 

change between D492HER2 and D492M was ERBB, owing to the 

transfection of the ERBB receptors into D492HER2 (Figure 13A-B). FLNC, 

ERBB, SERPINB5, S100A14, ANXA3, and LAD1 were consistently altered 

between D492HER2 and D492 (Figure 13C-D), while ITGB4 and S100A14 

were outlined by the comparison between D492M and D492 (Figure 13E-F). 

The increased FLNC in the mesenchymal cells agrees with the 

involvement of FLNC in cell cytoskeleton modeling. SERPINB5 plummeted 

after EMT, supporting that SERPINB5 is an epithelial marker and competent 

for tumor suppression (Vecchi et al., 2008). ANXA3 has been reported to 

participate in chemoresistance (Tong et al., 2018), and the higher level of 

ANXA3 in D492 confirms the higher resistance of D492 to drug treatment 

(Barkovskaya et al., 2021). The ANXA3 expression in prostate cancer 

specimens is essentially reduced, making ANXA3 a prognostic marker in 

favor of patient survival (Köllermann et al., 2008). S100A14 has recently 

been reported to possess oncogenic effects in breast cancer (Xukun Li et al., 

2020). It is drastically decreased in both D492HER2 and D492M, pinpointing 

its importance for D492. LAD1 is reported to be phosphorylated by EGF to 

promote tumor aggressiveness in breast cancer, which conflicts with the high 

level of LAD1 in D492 (Roth et al., 2018). S100A14 and LAD1 are reported 

oncogenes but significantly decreased in the mesenchymal cells, suggesting 

higher levels of S100A14 and LAD1 are not necessarily associated with 

higher carcinogenicity. 
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Reactome pathway analysis revealed that mitochondrial translation was 

primarily dysregulated in the partial EMT process represented by D492HER2 

(Figure 14B), reflecting the significance of energy metabolism in cancer 

malignancy (Bergers and Fendt, 2021). 

Figure 13. Proteomic changes among different cell lines in the EMP cell model were 
quantified by LFQ and SILAC. 

Statistical analysis of the LFQ and SILAC proteome expression between two different 
cell lines in the EMP cell model: D492HER2 vs. D492M (A-B), D492 vs. D492HER2 
(C-D), D492 vs. D492M (E-F). Proteins with significance and fold change > 2 were 
colored (LFQ: Student´s T-test, two-sample tests, Permutation-based FDR < 0.05; 
SILAC: Student´s T-test, one-sample tests, p value < 0.05). Metabolic enzymes were 
normally labeled for those that were differentially expressed in two cell lines and 
consistent between LFQ and SILAC. Proteins were boldly labeled for those that 
possessed significant difference and were with fold changes above certain thresholds 
(at least 4-fold difference between D492HER2 and D492M, 4-fold between 
D492HER2 and D492, and 6-fold between D492 and D492M). Horizontal dash lines 
indicated the -log10(p value) at 1.5, and vertical dash lines indicated the fold change 
at 2-fold. The top altered proteins between D492M and D492HER2 were PRSS23, 
CTGF, TAGLN, POMC, CADM3, KRT1, CDH2, DCD, PCSK1N, AKR1C1, ALDH1A3, 
and ERBB2, involved in cell adhesion and metabolism. The top differently expressed 
proteins in D492HER2 and D492 were AKAP12, FLNC, ERBB, RCN3, MYL9, 
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SERPINB5, ITGB4, ITGA6, DSP, S100A14, S100A2, LAD1, ANXA3, and PKP2, 
which were mainly involved in cell adhesion, structure, cell-cell interaction, and 
signaling. Similar to the difference observed with the other cell lines, the top differently 
altered proteins between D492 and D492M included AKAP12, CTGF, FLNC, 
SERPINE1, MYL9, TAGLN, ITGB4, ITGA6, ANXA3, SERPINB5, NDRG1, DSP, 
S100A14, FGFBP1, S100A2, LAMA3, and LAMB3. Reprinted from (Q. Wang et al., 

2021). Reprinted with permission. 
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Figure 14. Functional changes among different cell lines in the EMP cell model. 

Dysregulated Reactome metabolic pathways were enriched in D492HER2 vs. D492M 
(A), D492HER2 vs. D492 (B), and D492M vs. D492 (C). Proteins significantly 
changed between two cell lines in both LFQ and SILAC were included for the 
Reactome pathway analysis. Student’s T-test, Permutation-based FDR < 0.05, one 
sample T-test, p value of SILAC ratio < 0.05. Reprinted from (Q. Wang et al., 2021). 
Reprinted with permission. 

4.2  Search for breast EMT markers 

In this section, I described the consistent EMT markers identified in the 

essential spontaneous EMT program among the three EMT cell models. 

Moreover, the proteomic profile of the partial mesenchymal D492HER2 in the 

EMP cell model was explored by comparing the proteome of D492HER2 with 

that of the epithelial D492 and mesenchymal D492M. 

4.2.1  Common EMT markers were identified (paper I) 

Heterogenicity and plasticity are two of the main molecular properties of the 

EMT program, which encourages the field to identify a set of consistent and 

reliable markers to define EMT. We identified 13 consistently changed 

proteins post-EMT, within which 4 metabolic enzymes were discovered. 

One hallmark of EMT is the switch between E-cadherin (CDH1) and N-

cadherin (CDH2) expression (Loh et al., 2019). Forasmuch as the proteomic 

data were unable to detect CDH1 and CDH2, real-time PCR was applied for 

probing the RNA expression of these two EMT markers. The downregulated 

CDH1 and upregulated CDH2 in all three EMT cell models confirmed the E-

cadherin and N-cadherin switch in EMT (Figure 15A-B). 

The consistently dysregulated proteins after EMT in all three EMT cell 

models were summarized (Figure 15C). The upregulated VIM, LGALS1, and 

SERPINE1 and downregulated PKP3 in the mesenchymal cells were EMT 

markers recorded in a public EMT database (M. Zhao et al., 2019). A 

thorough literature review for the identified EMT targets revealed that all had 

been connected to EMT, albeit to different extents, with many pending to be 

explored in the context of EMT (Table 5). The regulation of these EMT 

markers was further confirmed in the tumorigenic breast mesenchymal cell 

line D492HER2 in the context of cancer progression, with the same trends in 

changes seen for all the targets detected in D492HER2 (Table 5). It indicates 

that these makers are not responsible for the tumor initiation but are critical 

for EMT and are potentially involved in cancer malignancy. 
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VIM, SERPINE1, LGALS1, and PKP3 have been related to EMT in 

different cancer types (Aigner et al., 2007; Bacigalupo et al., 2015; Bedi et al., 

2014; Hui Li et al., 2017; Pavón et al., 2012; F. Xu et al., 2017; Yamagami et 

al., 2020; J. Yang et al., 2020). Vimentin, a type III intermediate filament and 

a well-known EMT marker, shapes cell structure and modifies cell movement 

and adhesion (Mendez et al., 2010). SERPINE1, a key player in endothelial 

homeostasis, is highly upregulated in EMT. However, the function of 

SERPINE 1 in EMT is poorly understood. The possible role of SERPINE1 in 

EMT is to affect the function of urokinase-type plasminogen activator receptor 

(uPAR) to regulate ECM degradation (Yamagami et al., 2020). LGALS1 is a 

carbohydrate-binding protein. A study showed that upregulation of LGALS1 

decreased CDH1 and increased SNAI1 (Bacigalupo et al., 2015). PKP3 is an 

epithelial marker and is under the control of EMT transcription regulator ZEB1 

(Aigner et al., 2007; Bedi et al., 2014). 

Figure 15. Consistently altered proteins post-EMT in all three EMT cell models. 

(A-B) The RNA expression of CDH1 was downregulated (A), while that of CDH2 was 
upregulated after EMT in all three EMT cell models (B). Student’s T-test, *: p < 0.05; 
**: p < 0.01; ***: p < 0.001. (C) The proteomic analysis identified 13 proteins 
significantly changed (Student’s T-test, p < 0.05) in all three EMT models and with the 
same up- or down-regulated directions. Within these proteins, SERPINE1, RPL26L1, 
PLOD2, UGDH, LGALS1, and VIM were upregulated, while JUP, PKP3, MTCH2, 
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ATP2A2, FDFT1, SORD, and TSTA3 were downregulated after EMT. UGDH, FDFT1, 
SORD, and TSTA3 were metabolic proteins. Reprinted from (Q. Wang et al., 2021). 
Reprinted with permission. 

4.2.2  Distinct proteomic signatures of the EMP cell line (paper II) 

Accordingly, D492HER2 resides at the EMT spectrum created by the 

epithelial D492 and mesenchymal D492M, with increased invasiveness. 

Identifying the altered proteome in D492HER2 compared with the other cell 

lines (signature proteins) advances the searching for accountable markers in 

the EMT-involved oncogenicity. 65 out of the 84 identified dysregulated 

proteins in D492HER2 were upregulated, implying increased cellular 

activities (Table 6). The proteomic signature consisted of a broad range of 

proteins with diverse cellular functions, covering DNA replication, RNA 

transcription, protein translation, cell structure and movement, transport, cell 

signaling, and metabolism. 

Focusing on the distinctive metabolic phenotype in D492HER2, GFPT2, 

SLC16A3, ALDH9A1, HK1, MGEA5, ACLY, and NDUFAB1 were 

upregulated, while cytosolic FH, SOD2, and GLA were downregulated. 

SLC16A3 encodes monocarboxylate transporters, carrying lactate, keto 

bodies, and more across the plasma membrane, and is a marker for 

increased dependence for glycolysis (Halestrap, 2013). ALDH9A1 belongs to 

aldehyde dehydrogenases, correlated with cell proliferation (Muzio et al., 

2012). HK1 participates in glucose metabolism. Cytosolic FH has been 

shown as a tumor suppressor and part of the DNA damage response (Yogev 

et al., 2010). GFPT2 that generates UDP-GlcNAc, MGEA5 that removes O-

GlcNAc, and GLA that hydrolyzes glycolipids are enzymes related to glycans. 

ACLY is a lipogenic enzyme critical for the de novo lipid synthesis by 

converting cytoplasmic citrate to acetyl-CoA and oxaloacetate and is a key 

player in cancer metabolism (Zaidi et al., 2012). NDUFAB1 is also known as 

acyl carrier protein (ACP), takes part in the type II fatty acid synthesis in 

mitochondria, and has been shown to regulate mitochondrial bioenergetics 

and ROS metabolism to affect cell viability (Feng et al., 2009; T. Hou et al., 

2019). SOD2 is an oxidant scavenger in mitochondria (Idelchik et al., 2017) 

and is one of the few enzymes downregulated in D492HER2, possibly 

owning the impaired mitochondria. 

Taken together, D492HER2 regulates many oncogenic enzymes required 

for cell proliferation, lipid synthesis, glycan metabolism, mitochondria and 

ROS regulation, DNA damage response, and central carbon metabolism, 

rendering it more invasiveness than the other two EMP cell lines.
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Table 5. Consistent proteomic changes in EMT. 

The expression of consistently changed proteins among the three EMT cell models was reported. The EMT targets were significantly 
different (Student’s T-test, p < 0.05). The literature related to each target in terms of EMT was also listed. Changes of these targets in 
another breast mesenchymal cell line with tumorigenicity (D492HER2) were consistent with the findings in this study. Reprinted from (Q. 
Wang et al., 2021). Reprinted with permission. 
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Table 6. Signature proteins in partial mesenchymal D492HER2. 

Proteins were significantly down-/up- regulated in D492HER2 compared with the other two cell types (D492 and D492M) based on both LFQ 
and SILAC. The z-score values of the protein expression in D492HER2 were reported. Data used were from (Q. Wang et al., 2021). 

Footnotes:  

a: in the LFQ experiment, the statistical analysis was ANOVA, and proteins with FDR < 0.05 were listed.  

b: in the SILAC experiment, proteins with Coefficient of Variation (CV) of SILAC ratios < 0.1 were listed.  

Protein ID Protein Name Gene Name LFQ_D492HER2 a
ANOVA.FDR_D492HER2 SILAC_D492HER2 b

CV_D492HER2

Q9NR33 DNA polymerase epsilon subunit 4 POLE4 -2.123 0.006 -1.133 0.064

Q53Y83 Galactosidase, alpha GLA -2.031 0.012 -1.152 0.065

Q5VXV3 SET SET -1.828 0.002 -1.150 0.048

O95758-1 Isoform 1 of Polypyrimidine tract-binding protein 3 PTBP3 -1.629 0.001 -1.154 0.003

A0A024R829 Polymerase (DNA directed), epsilon 3 (P17 subunit), isoform CRA_a POLE3 -1.553 0.002 -1.152 0.032

Q9BPX3 Condensin complex subunit 3 NCAPG -1.471 0.009 -1.145 0.001

Q9NQG5 Regulation of nuclear pre-mRNA domain-containing protein 1B RPRD1B -1.390 0.001 -1.140 0.013

A0A024R2Q3 Catenin (Cadherin-associated protein), beta 1, 88kDa, isoform CRA_a CTNNB1 -1.370 0.001 -1.150 0.066

P19105 Myosin regulatory light chain 12A MYL12A -1.219 0.000 -1.148 0.040

Q5VXN0 Ribosome production factor 2 homolog (Fragment) RPF2 -1.058 0.012 -1.147 0.079

A0A024R694 Actinin, alpha 1, isoform CRA_a ACTN1 -0.920 0.002 -1.142 0.070

O75643 U5 small nuclear ribonucleoprotein 200 kDa helicase SNRNP200 -0.850 0.001 -1.155 0.021

P04179-4 Isoform 4 of Superoxide dismutase [Mn], mitochondrial SOD2 -0.828 0.030 -1.137 0.013

A0A024R395 MRE11 meiotic recombination 11 homolog A (S. cerevisiae), isoform CRA_a MRE11A -0.781 0.000 -1.136 0.081

Q53Y51 D-dopachrome tautomerase DDT -0.776 0.017 -1.154 0.040

P40616-2 Isoform 2 of ADP-ribosylation factor-like protein 1 ARL1 -0.717 0.042 -1.142 0.050

Q6FGX3 RAB6A protein RAB6A -0.355 0.009 -1.146 0.009

P38159 RNA-binding motif protein, X chromosome RBMX -0.216 0.008 -1.133 0.053

P07954-2 Isoform Cytoplasmic of Fumarate hydratase, mitochondrial FH -0.164 0.037 -1.143 0.034

Q9UPN1 Serine/threonine-protein phosphatase (Fragment) PPP1CC 0.098 0.004 1.155 0.060

P62070 Ras-related protein R-Ras2 RRAS2 0.118 0.005 1.078 0.088

Q9NXH9-2 Isoform 2 of tRNA (guanine(26)-N(2))-dimethyltransferase TRMT1 0.129 0.002 1.136 0.011

Q53T99 Ribosome biogenesis protein WDR12 WDR12 0.199 0.039 1.153 0.084

C9J2Y9 DNA-directed RNA polymerase subunit beta POLR2B 0.307 0.002 0.841 0.006

Q7Z417 Nuclear fragile X mental retardation-interacting protein 2 NUFIP2 0.362 0.013 1.119 0.073

Q7Z3B4-3 Isoform 3 of Nucleoporin p54 NUP54 0.371 0.010 1.134 0.067

J3KNL6 Protein transport protein sec16 SEC16A 0.468 0.003 1.154 0.035

Q06830 Peroxiredoxin-1 PRDX1 0.502 0.003 1.086 0.022

Q6IAX5 Eukaryotic translation initiation factor 3 subunit E EIF3E 0.525 0.004 1.002 0.066

Q8WXF1 Paraspeckle component 1 PSPC1 0.562 0.012 1.142 0.078
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Table 6. (Continued) 

Footnotes:  

a: in the LFQ experiment, the statistical analysis was ANOVA, and proteins with FDR < 0.05 were listed.  

b: in the SILAC experiment, proteins with Coefficient of Variation (CV) of SILAC ratios < 0.1 were listed. 

Protein ID Protein Name Gene Name LFQ_D492HER2 a
ANOVA.FDR_D492HER2 SILAC_D492HER2 b

CV_D492HER2

B4DVQ5 Eukaryotic translation initiation factor 3 subunit C EIF3C 0.573 0.001 1.116 0.085

Q0VGA5 SARS protein SARS 0.577 0.010 1.116 0.003

O15371-2 Isoform 2 of Eukaryotic translation initiation factor 3 subunit D EIF3D 0.622 0.003 0.972 0.079

Q9Y262 Eukaryotic translation initiation factor 3 subunit L EIF3L 0.623 0.007 1.071 0.068

P78406 mRNA export factor RAE1 0.630 0.001 1.059 0.060

Q7Z7E8 Ubiquitin-conjugating enzyme E2 Q1 UBE2Q1 0.635 0.038 1.034 0.046

O14561 Acyl carrier protein, mitochondrial NDUFAB1 0.720 0.010 1.128 0.036

P55795 Heterogeneous nuclear ribonucleoprotein H2 HNRNPH2 0.779 0.021 1.014 0.088

A0A024RCR5 Bromodomain containing 2, isoform CRA_b BRD2 0.779 0.044 1.110 0.063

P42285 Superkiller viralicidic activity 2-like 2 SKIV2L2 0.817 0.000 1.143 0.051

Q6FHL9 PEA15 protein PEA15 0.872 0.001 1.154 0.017

A0A024R370 TATA element modulatory factor 1, isoform CRA_a TMF1 0.898 0.011 1.133 0.021

Q14157-4 Isoform 4 of Ubiquitin-associated protein 2-like UBAP2L 0.907 0.005 0.942 0.052

A0A024R1T9 ATP-citrate synthase ACLY 0.914 0.000 1.108 0.060

Q9UKL0 REST corepressor 1 RCOR1 0.946 0.023 0.913 0.038

A0A140VJJ2 S-formylglutathione hydrolase ESD 0.953 0.001 1.154 0.038

A0A024R9T6 HCG17415, isoform CRA_a SLAIN2 0.955 0.015 1.118 0.067

O95490-2 Isoform 2 of Adhesion G protein-coupled receptor L2 ADGRL2 1.018 0.000 1.138 0.046

A0A024R6K8 Tryptophanyl-tRNA synthetase, isoform CRA_a WARS 1.025 0.020 1.148 0.042

Q5JTV8-3 Isoform 3 of Torsin-1A-interacting protein 1 TOR1AIP1 1.029 0.001 1.029 0.019

O60502 Protein O-GlcNAcase MGEA5 1.036 0.006 1.141 0.057

A0A0S2Z3H8 GNAS complex locus isoform 1 (Fragment) GNAS 1.040 0.002 1.124 0.051

A0A024RDU9 General transcription factor IIF subunit 2 GTF2F2 1.063 0.024 1.108 0.062

A0A024RDR0 High-mobility group box 1, isoform CRA_a HMGB1 1.066 0.001 1.126 0.044

Q9BV57 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase ADI1 1.071 0.002 1.146 0.088

Q9Y678 Coatomer subunit gamma-1 COPG1 1.073 0.000 0.814 0.085

Q14566 DNA replication licensing factor MCM6 MCM6 1.173 0.003 1.127 0.051

Q9NQC3-5 Isoform 5 of Reticulon-4 RTN4 1.194 0.006 1.024 0.073

Q9H7D7-2 Isoform 2 of WD repeat-containing protein 26 WDR26 1.200 0.001 0.980 0.030

P49792 E3 SUMO-protein ligase RanBP2 RANBP2 1.201 0.001 1.092 0.052

Q96CP5 PMPCB protein (Fragment) PMPCB 1.204 0.003 1.134 0.003

Q14008 Cytoskeleton-associated protein 5 CKAP5 1.265 0.000 0.822 0.015



 Results and discussion 

81 

Table 6. (Continued) 

Footnotes:  

a: in the LFQ experiment, the statistical analysis was ANOVA, and proteins with FDR < 0.05 were listed.  

b: in the SILAC experiment, proteins with Coefficient of Variation (CV) of SILAC ratios < 0.1 were listed. 

 

 

Protein ID Protein Name Gene Name LFQ_D492HER2 a
ANOVA.FDR_D492HER2 SILAC_D492HER2 b

CV_D492HER2

Q9NZT2-2 Isoform 2 of Opioid growth factor receptor OGFR 1.266 0.000 1.029 0.010

A0A024R4G1 Leucine rich repeat containing 47, isoform CRA_a LRRC47 1.308 0.001 1.121 0.035

Q9C0C9 (E3-independent) E2 ubiquitin-conjugating enzyme UBE2O 1.313 0.014 0.803 0.023

Q9NVI7-2 Isoform 2 of ATPase family AAA domain-containing protein 3A ATAD3A 1.335 0.000 1.003 0.035

P30085 UMP-CMP kinase CMPK1 1.365 0.001 1.030 0.042

A0A024RC61 Aminopeptidase ANPEP 1.395 0.000 1.131 0.058

P19367-4 Isoform 4 of Hexokinase-1 HK1 1.397 0.001 1.092 0.063

P35606-2 Isoform 2 of Coatomer subunit beta COPB2 1.399 0.001 1.056 0.028

A0A0S2Z4X9 Glutamine-fructose-6-phosphate transaminase 2 isoform 1 (Fragment) GFPT2 1.441 0.000 1.146 0.052

O60664-4 Isoform 4 of Perilipin-3 PLIN3 1.479 0.000 1.154 0.009

A0A024R313 Glycosyltransferase 8 domain containing 1, isoform CRA_a GLT8D1 1.506 0.006 1.126 0.009

Q5H9A7 Metalloproteinase inhibitor 1 TIMP1 1.531 0.002 1.109 0.092

O43493-2 Isoform TGN46 of Trans-Golgi network integral membrane protein 2 TGOLN2 1.563 0.001 1.146 0.032

Q9UMS4 Pre-mRNA-processing factor 19 PRPF19 1.587 0.019 1.146 0.024

E7EVA0 Microtubule-associated protein MAP4 1.649 0.001 1.155 0.020

P49189 4-trimethylaminobutyraldehyde dehydrogenase ALDH9A1 1.649 0.001 0.894 0.012

A0A024R8U1 Solute carrier family 16 (Monocarboxylic acid transporters), member 3, isoform CRA_aSLC16A3 1.791 0.002 0.825 0.033

A0A024QZW7 Nucleoporin 153kDa, isoform CRA_a NUP153 1.800 0.004 1.142 0.035

Q9NVD7 Alpha-parvin PARVA 1.847 0.039 1.126 0.076

P53621 Coatomer subunit alpha COPA 1.881 0.001 0.956 0.046

Q01433-3 Isoform Ex1A-3 of AMP deaminase 2 AMPD2 1.928 0.002 1.001 0.017

O14579 Coatomer subunit epsilon COPE 2.089 0.004 1.108 0.012
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4.3  Metabolic alteration in breast EMT 

Herein we set out to explore the uniformly changed metabolic proteins in the 

EMT cell models in breast epithelium. In addition, the abnormally regulated 

enzymes among the EMP breast cell lines were also depicted. 

4.3.1  The commonly altered metabolic targets post-EMT (paper I) 

The metabolic enzymes FDFT1, SORD, and TSTA3 were significantly 

downregulated, while UGDH was upregulated and altered the most (Figure 

16A-D). The upregulation of UGDH after EMT was confirmed on the RNA 

level and further validated in the context of breast cancer progression. The 

increasing trends in the UGDH RNA expression after EMT were observed in 

all EMT cell models (Figure 16E), and the protein expression of UGDH was 

higher in the tumorigenic breast mesenchymal cell line D492HER2 compared 

with D492, consistent with the non-tumorigenic D492M (Figure 16F). 

The EMT-associated functions of the metabolic targets FDFT1, SORD, 

and TSTA3 have not been well investigated in literature (Figure 16). FDFT1, 

or squalene synthase, also short for SQR, is involved in cholesterol 

metabolism and has been related to cancer metastasis (Ha and Lee, 2020). 

FDFT1 is marginally associated with the survival of patients with basal breast 

cancer, according to kmplot.com. However, it has not been associated with 

EMT. SORD oxidizes sorbitol to fructose in the polyol pathway to metabolize 

the excess glucose, and a study has shown that a stable knockdown of 

SORD could block EMT (Schwab et al., 2018). This observation is 

contradictory to what has been seen in this study, where SORD is 

downregulated in the mesenchymal cells. TSTA3, also known as GFUS, 

catalyzes the production of GDP-fucose, which is an essential substrate for 

fucosylation. TSTA3 has been proposed as an oncogenic target, and high 

expression of TSTA3 is correlated with poor survival in patients with breast 

cancer based on kmplot.com and esophageal squamous cell carcinoma (Sun 

et al., 2016; J. Yang et al., 2018). Since TSTA3 is downregulated in EMT, this 

suggests that the poor survival rate in patients with high TSTA3 expression is 

not related to EMT. 

The well-known functions of UGDH include production of hyaluronan, 

glucuronidation of xenobiotics, synthesis of proteoglycans, and influences on 

protein glycosylation. Recently, many studies have reported that UGDH is 

involved in cancer progression and participates in tumor growth, metastasis, 

and patient survival (Arnold et al., 2019; Goodwin et al., 2019; Huang et al., 
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2010; Lin et al., 2020; Oyinlade et al., 2018; Teoh et al., 2020). UGDH has 

been associated with EMT; however, the exact role of UGDH in EMT is 

complex and inexplicit (Arnold et al., 2019; Lin et al., 2020; Teoh et al., 2020; 

Vergara et al., 2015; X. Wang et al., 2019). Arnold et al. has recently found 

that UGDH is a clinically relevant metabolic enzyme that is highly expressed 

in mesenchymal-like breast cancers (Arnold et al., 2019). Of late, Wang and 

colleagues published on NATURE LETTER, reporting that UGDH controls 

the availability of UDP-Glc to regulate the main EMT transcription factor 

SNAI1 (X. Wang et al., 2019). The upregulation of UGDH in both D492M and 

D492HER2 (Figure 16F) suggests that UGDH engages in the mesenchymal 

characteristics in cancer invasiveness. 

Figure 16. Consistently altered metabolic proteins post-EMT in all three EMT cell 
models with UGDH altered the most. 

(A-D) The metabolic targets, i.e., FDFT1, SORD, TSTA3, and UGDH, were identified 
in the proteomic analysis and changed consistently in all three EMT cell models. (E) 
The mesenchymal cell lines in all three EMT cell models consistently expressed a 
higher level of the UGDH RNA. (F) The UGDH protein levels in D492 and D492M 
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were confirmed in the EMP datasets and further confirmed in the tumorigenic breast 
mesenchymal cell line D492HER2. Student’s T-test, *: p < 0.05; **: p < 0.01; ***: p < 
0.001. FDFT1: farnesyl-diphosphate farnesyltransferase 1; SORD: sorbitol 
dehydrogenase; TSTA3: GDP-L-fucose synthetase; UGDH: UDP-glucose 
dehydrogenase. Reprinted from (Q. Wang et al., 2021). Reprinted with permission. 

4.3.2  Different metabolic profiles of the EMP cell model (paper II) 

In this chapter, we identified metabolic proteins with more than two-fold 

changes in expression between two types of cell lines, and these changes 

were confirmed by both LFQ and SILAC with a pre-defined significance 

threshold (Figure 17A). We grouped the identified enzymes into 6 clusters on 

account of the six possible comparison profiles among the three cell lines. 

These metabolic targets extended several KEGG metabolic pathways with 

several targets previously connected to EMT (Table 7). Most enzymes were 

associated with the metabolism of glycan precursors, i.e., PYGB, PGM3, 

UGDH, PGM2L1, GALNT7, GFPT2, and GALE, which were indiscriminately 

spanned among different clusters. GFPT2 and FAH were solely highly 

expressed in the partial mesenchymal D492HER2, with GFPT2 being more 

significant. The highest RNA expression of GFPT2 was detected in 

D492HER2 (Figure 17B), supporting the proteomic result (Figure 17C). 

FAH is a key enzyme of the tyrosine catabolic pathway and is widely 

studied in tyrosinemia (M. Zhu et al., 2019). GFPT2 catalyzes fructose-6-

phosphate into glucosamine-6-phosphate, concurrently converting glutamine 

into glutamate, and is the rate-limiting enzyme in the HBP. The end-product 

of the HBP is UDP-GlcNAc, an indispensable nucleotide sugar that partakes 

in protein glycosylation. Various transcription factors, signaling mediators, 

and metabolic enzymes are modulated by O-GlcNAcylation in cancer, and 

glycans are critical for ECM modeling in a malignant environment 

(Chiaradonna et al., 2018; K. Taparra et al., 2016). Protein GlcNAcylation 

facilitates breast cancer metastasis and tumorigenesis (Y. Gu et al., 2010). 

The function and regulation of GFPT2 in protein O-GlcNAcylation have drawn 

a considerable amount of attention by virtue of the UDP-GlcNAc production 

by GFPT2 (L. Liu et al., 2020; Szymura et al., 2019; Zhou et al., 2019). 

GFPT2 is one of the MMS genes identified by Shaul and colleagues (Shaul et 

al., 2014) and is associated with the mesenchymal phenotypes of invasive 

breast cancer (Simpson et al., 2012). It has also been reported that GFPT2 

engages in regulating cellular oxidative stress, the mechanism of which 

remains yet unclear, likely owing to the glutaminolysis mediated by GFPT2 

(Askari et al., 2019; Chao et al., 2021; Zitzler et al., 2004). We concentrated 

on GFPT2 as the key mesenchymal feature in cancer progression. 
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Figure 17. Altered metabolic proteins post two types of EMT processes in the EMP 
cell model with GFPT2 altered the most in D492HER2 compared with the other two 
cell lines. 

(A) Metabolic proteins that expressed differentially in D492HER2 vs. D492M, 
D492HER2 vs. D492, and D492M vs. D492 were manually identified and plotted 
(Student’s T-test, permutation-based FDR < 0.05 for LFQ, one sample T-test, p value 
of SILAC < 0.05, more than 2-fold in both LFQ and SILAC). The median relative 
SILAC expression of each target for D492, D492M, and D492HER2 was used for 
plotting. The metabolic targets were manually clustered into six clusters. The relative 
expression of each metabolic protein was indicated in the color bar, scaling from blue 
to red, representing the lowest to the highest expression. The identified metabolic 
targets were classified into two groups based on the literature (Shaul et al., 2014): 
Mesenchymal (Mes) and non-mesenchymal (Non-Mes). n.a: not available in the 
literature. (B-D) The expression of GFPT2 in the EMP cell model. On the RNA level 
(B), GFPT2 expressed at the highest level in D492HER2, while it had the lowest 
expression in D492. (C) The GFPT2 protein expression was the highest in D492HER2 
confirmed by both LFQ (left) and SILAC (right), followed by D492M, with D492 
expressed the lowest. (D) D492DEE was the negative control cell line of D492HER2 
for HER2 overexpression, the low GFPT2 level in D492DEE indicated that the 
increased expression of GFPT2 in D492HER2 was not due to the cell handling 
process in HER2 induction. Student’s T-test, *: p < 0.05; **: p < 0.01; ***: p < 0.001. 
GFPT2: glutamine-fructose-6-phosphate transaminase 2; LFQ: label-free 
quantification; SILAC: stable isotope labeling by amino acids in cell culture. Reprinted 
from (Q. Wang et al., 2021). Reprinted with permission.
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Table 7. Main metabolic targets dysregulated in the EMP cell model. Reprinted from (Q. Wang et al., 2021). Reprinted with permission. 

The significantly altered metabolic targets were listed by comparing D492HER2 with D492M, D492HER2 with D492, and D492M with D492 
(Permutation-based FDR < 0.05) with at least 2-fold difference, confirmed by LFQ and SILAC. The reported log2 ratios were the average of 
the LFQ and SILAC ratios. The relevant transcription factors and literature were reported for each target based on literature review. 
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4.4  Glycan metabolism alters in breast EMT 

The enzyme UGDH identified in EMT and GFPT2 identified in EMP are both 

involved in glycan metabolism. UGDH catalyzes the oxidation of UDP-Glc 

into UDP-GlcA, while GFPT2 is the rate-limiting enzyme in the HBP to 

produce UDP-GlcNAc. Glycan, the branched structure that comprises 

monosaccharide units, is responsible for protein glycosylation, a common 

PTM. Cellular glycome is diverse and vital for normal cellular functions 

(Schjoldager et al., 2020). We confirmed the oncogenic properties of UGDH 

and GFPT2, investigated their influences on the metabolic network, and 

probed the upstream signaling regulations of these two enzymes. 

4.4.1  UGDH is highly expressed in mesenchymal cells (paper I) 

For UGDH, we confirmed the effects of UGDH on patient survival, cell 

proliferation, cell invasion, and the RNA expression of SNAI1 in the 

mesenchymal cell lines D492M and D492HER2. We further explored the 

perturbation of UGDH knockdown on metabolism in mesenchymal cells. 

Finally, we interrogated the regulatory signaling pathways that control cellular 

UGDH expression. 

UGDH knockdown affects patient survival, cell proliferation and 
invasion, and SNAI1 expression 

UGDH has been reported to affect patient survival (Teoh et al., 2020), cell 

proliferation (Lin et al., 2020; Oyinlade et al., 2018), cell invasion (Arnold et 

al., 2019), cell migration (Oyinlade et al., 2018; Teoh et al., 2020), and SNAI1 

expression (X. Wang et al., 2019). 

The output from the online KM plotter, kmplot.com, revealed that the 

elevated UGDH expression was negatively correlated with the survival of 

patients with basal breast cancer, in consonance with the literature (Figure 

18A). On account of the oncological traits of UGDH, we included two types of 

breast mesenchymal cells, the non-tumorigenic D492M and tumorigenic 

D492HER2, to confirm the effects of UGDH on cell proliferation, cell invasion, 

and SNAI1 expression via siRNA silencing. Same as stated in the literature, 

knockdown of UGDH impaired cell growth (Figure 18B-C) and invasion 

(Figure 18D-E) in both D492M and D492HER2, and the RNA expression of 

SNAI1 was also hampered by UGDH knockdown (Figure 18F-G). 

All the mesenchymal cells in the three EMT cell models have increased 

the expression of UGDH after EMT (Figure 16) yet remained non-

tumorigenic, which is not directly in accordance with the negative correlation 
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between UGDH and cancer patient survival (Figure 18A) and with the 

observation that abated UGDH diminished cell proliferation and invasion 

(Figure 18B-E). It suggests that UGDH is not a decisive player in the tumor 

initiation process, albeit cells with tumorigenicity may depend on UGDH to 

reinforce malignancy. The inhibition of SNAI1 by decreased UGDH (Figure 

18F-G) strengthens the connection between UGDH and EMT and pinpoints 

that UGDH exerts uncanonical regulatory functions, exceeding its catalytic 

capacity arguably via glycosylation. 
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Figure 18. Functional analysis of the UGDH knockdown in the mesenchymal cells. 

(A) The expression of UGDH was negatively correlated with the patient survival in 
basal breast cancer patients based on the Kaplan-Meier plot from kmplot.com. (B-C) 
UGDH knockdown via siRNA decreased cell proliferation in the non-tumorigenic 
D492M (B) and tumorigenic D492HER2 (C) cell lines. (D-E) UGDH knockdown via 
siRNA reduced cell invasion in the non-tumorigenic D492M (D) and tumorigenic 
D492HER2 (E) cell lines. (F-G) The EMT transcription factor SNAI1 was 
downregulated with the siRNA knockdown of UGDH in the non-tumorigenic D492M 
(F) and tumorigenic D492HER2 (G) cell lines. Student’s T-test, **: p < 0.01; ***: p < 
0.001. SNAI1: or Snail, zinc finger protein SNAI1. Reprinted from (Q. Wang et al., 
2021). Reprinted with permission. 

UGDH is associated with the expression of GPC and NAA 

To evaluate the impact of UGDH on metabolism, we treated the 

mesenchymal cells D492M, HMLEM, and PMC42ET in the three EMT cell 

models with siRNA that silences UGDH and carried out targeted and 

untargeted metabolomics analysis. Notwithstanding the knockdown of 

UGDH, the metabolomes of the cell lines with the same background were 

clustered together (Figure 19A-B), suggesting that the absence of UGDH is 

unable to achieve distinct metabolic phenotypes. The metabolome of D492M 

was more comparable to that of HMLEM than PMC42ET (Figure 19B), which 

was in agreement with the proteome clustering (Figure 7B). In line with the 

literature, the substrate of UGDH, UDP-Glc, was increased in all the 

mesenchymal cell lines with the knockdown of UGDH (Figure 19C), while the 

product of UGDH, UDP-GlcA, was decreased (Figure 19D), both of which 

are crucial for normal cellular functions and impact broadly on cellular 

activities (Arnold et al., 2019; X. Wang et al., 2019). 

We next conducted an untargeted metabolomics analysis to uncover the 

metabolic influences of UGDH in a systemic manner. The knockdown of 

UGDH significantly reduced the intracellular level of GPC (Figure 19E) and 

upregulated that of NAA (Figure 19F) in all the mesenchymal cell lines, with 

GPC being affected more prominently. Detections of GPC and NAA in the 

epithelial D492, non-tumorigenic mesenchymal D492M, and tumorigenic 

mesenchymal D492HER2 showed that GPC was higher in both D492M and 

D492HER2 compared with D492 (Figure 19G), indicating that GPC may be 

negatively correlated with UGDH and highly expressed in mesenchymal cells 

albeit tumorigenicity. The knockdown of UGDH was confirmed to decrease 

GPC and increase NAA in D492HER2 and MDA-MB-231 (Figure 20A-D). To 

further investigate the connection between GPC and the mesenchymal state, 

we did a correlation analysis using published datasets in literature (H. Li et 

al., 2019; Shaul et al., 2014) but did not observe any significant correlation 
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(Figure 20E), suggesting that the higher GPC levels in the D492 

mesenchymal cell lines are irrelevant to their mesenchymal traits. In addition, 

UGDH knockdown via siRNA did not yield consistent and significant changes 

to choline and phosphocholine (Figure 20F-G). 

GPC is a choline precursor and a key component in the choline metabolic 

pathway. Abnormal choline metabolism along with elevated GPC level has 

emerged as a hallmark of cancer pathogenesis (Sonkar et al., 2019). 

Increased GPC level has been associated with worse patient survival (M. D. 

Cao et al., 2012) and is observed in basal-like breast cancer xenograft and 

ESR-negative breast cancer patients (Giskeødegård et al., 2010; Siver A. 

Moestue et al., 2010). Abated GPC level with chemotherapies presages 

better survival in patients with breast cancer (M. D. Cao et al., 2012). GPC is 

suggested to be involved in EMT, but the mechanism is elusive (Bharti et al., 

2018; Koch et al., 2016). Our results have associated GPC with UGDH, 

which is upregulated in mesenchymal cells (Figure 19E). However, further 

investigation is needed to clarify the mechanism. 

GPC is engaged in choline synthesis, and NAA is intimately related to 

acetyl-CoA and central carbon metabolism. We conducted in silico 

knockdown of UGDH using tailored GEMs of D492 to query if changes in 

metabolic fluxes with UGDH knockdown might act on the processing of GPC 

and NAA (Halldorsson et al., 2017; Karvelsson et al., 2021). Metabolic fluxes 

of keratan and hyaluronan metabolism, the pentose phosphate pathway, and 

central carbon metabolic pathways were altered (Table 8), with trivial 

changes observed to the flux of GPC metabolism. 

The affected metabolic pathways predicted by the in-silico knockdown of 

UGDH in GEMs (Table 8) suggest a rerouting of glucose flux away from 

UDP-GlcA formation and into central carbon metabolism, potentially causing 

the upregulation of NAA (Figure 19F). The negligible impact on GPC implies 

that decreased GPC with UGDH knockdown is likely caused by changes from 

altered glycosylation rather than perturbation of the metabolic flux balance. 

Stable cellular osmotic pressure is critical for cells to carry out normal cell 

activities for survival. Both GPC and proteoglycans are prominent osmotic 

regulators functioning as intracellular and extracellular osmolytes, 

respectively (Okazaki et al., 2019). The knockdown of UGDH causes reduced 

proteoglycans and extracellular osmotic pressure, which the decreased 

intracellular GPC may counteract. 

UGDH regulates signaling pathways and genes related to lipid 

metabolism, for example, SNAI1, SIP-1, ERK/MAPK, SIX1, and PPARγ 
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(Arnold et al., 2019; Lin et al., 2020; Teoh et al., 2020; X. Wang et al., 2019). 

Lipid metabolism, downstream of choline/PtdCho metabolism (E. Iorio et al., 

2005), is controlled by the transcription receptor PPARγ (Ahmadian et al., 

2013; Tontonoz and Spiegelman, 2008). UGDH inhibits PPAR signaling to 

regulate lipid metabolism (Arnold et al., 2019). In line with the literature, 

phosphoproteomics analysis showed higher UGDH expression is associated 

with downregulated PPARγ signaling (Figure 20H), proposing that the 

knockdown of UGDH decreases GPC via PPARγ. Furthermore, 

phospholipase A2 group XV (PLA2G15) from the cPLA2 group catalyzes the 

hydrolysis of phospholipids and possibly the formation of GPC from PtdCho 

and is regulated by ERK signaling (Menzel et al., 2012; Ulisse et al., 2000). In 

highly invasive ovarian cancer cells, the knockdown of UGDH diminishes the 

phosphorylation of ERK (pERK) (Lin et al., 2020). The higher GPC and 

PLA2G15 in the mesenchymal D492M and D492HER2 (Figure 19G & 

Figure 20I) imply that UGDH affects GPC via pERK-PLA2G15. Collectively, 

UGDH may indirectly regulate GPC via pERK-PLA2G15 and/or PPARγ to 

balance the intra- and extracellular osmotic pressure, although further 

investigation is needed. 
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Figure 19. Metabolomics analysis of the UGDH knockdown in the mesenchymal cells. 

(A) PCA analysis clustered the same cell lines together based on the differences of 
the metabolomes among different EMT cell models, in spite of UGDH knockdown. (B) 
The metabolome of the D492 mesenchymal cells was similar to that of the HMLE 
mesenchymal cells than PMC42. (C) UDP-glucose (UDP-Glc), the substrate of the 
reaction catalyzed by UGDH, was increased with the siRNA knockdown of UGDH in 
all mesenchymal cell lines confirmed by two siRNAs; however, one siRNA failed to 
obtain the significance. (D) UDP-glucuronate (UDP-GlcA), the product of the reaction 
catalyzed by UGDH, decreased with the siRNA knockdown of UGDH in all the 
mesenchymal cell lines confirmed by two siRNAs; however, one siRNA in D492M 
failed to yield significance. (E-F) siRNA knockdown of UGDH significantly decreased 
the intracellular glycerophosphocholine (GPC) and increased acetylaspartate (NAA) in 
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all the mesenchymal cell lines confirmed by two siRNAs. (G) The intracellular GPC 
level was higher in the tumorigenic mesenchymal D492HER2 than in the non-
tumorigenic D492M and the epithelial D492. Student’s T-test, *: p < 0.05; **: p < 0.01; 
***: p < 0.001. UGDH: UDP-glucose dehydrogenase. Reprinted from (Q. Wang et al., 
2021). Reprinted with permission. 

 

Table 8. Metabolic pathways affected by UGDH via in silico analysis. 

In silico knockdown of UGDH in GEMs that were built previously on the D492 EMT 
cell model (Karvelsson et al., 2021) suggested that metabolic pathways with changed 
metabolic fluxes were involved in keratan, hyaluronan, glycan, central carbon 
metabolism. UGDH: UDP-glucose dehydrogenase. 
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Figure 20. The altered GPC and NAA expression with the siUGDH treatment in 
D492HER2 and MDA-MB-231 and the possible roles of PPAR signaling and 
PLA2G15 in regulating GPC. 

(A-D) In the tumorigenic D492HER2 and malignant MDA-MB-231, the intracellular 
glycerophosphocholine (GPC) level was decreased (A, C), while the acetylaspartate 
(NAA) level was increased (B, D) after the siUGDH treatment, consistent with the 
other mesenchymal cell lines. (E) Correlation analysis suggested that the GPC level is 
not correlated with the mesenchymal traits. (F-G) Other important metabolites, i.e., 
choline and phosphocholine, are not consistently and significantly associated with 
UGDH knockdown. (H) Arnold et al. reported that UGDH decreased the PPAR 
expression to regulate lipid metabolic genes (Arnold et al., 2019). We performed a 
phosphoproteomics analysis on the D492 EMT cell model to confirm the negative 
correlation between UGDH and PPAR signaling. The PPAR signaling was 
downregulated in the mesenchymal D492M cells with highly expressed UGDH. The 
IPA pathways were listed in a descending order based on the –log10(p value), and 
the z-scores of the pathways were plotted by dots/line. Red: overrepresented in the 
mesenchymal D492M; blue: overrepresented in the epithelial D492. (I) PLA2G15 is 
higher in both D492M and D492HER2 compared with D492 and is an enzyme 
potentially involved in the hydrolysis of PtdCho into GPC in choline metabolism. 
cPLA2 is under the regulation of ERK/MAPK, and UGDH has been reported to 
regulate the phosphorylation of ERK (pERK) (Lin et al., 2020; Menzel et al., 2012; 
Ulisse et al., 2000), suggesting that the knockdown of UGDH may decrease GPC via 
pERK and PLA2G15. Student’s T-test, *: p < 0.05; **: p < 0.01; ***: p < 0.001. UGDH: 
UDP-glucose dehydrogenase. PLA2G15: phospholipase A2 group XV. Reprinted from 
(Q. Wang et al., 2021). Reprinted with permission. 

UGDH is under the regulation of PDGFRB potentially via NF-κB-
p65 

Employing the secretomic data of the D492 EMT model (Steinhaeuser et al., 

2020), we interrogated the UGDH signaling regulation. The growth factors 

IGF, TGF-β, and PDGFD were increasingly secreted into the medium by 

D492M (Figure 21A). We engaged in investigating PDGF signaling in 

regulating UGDH on account of the highly expressed PDGFRB in the 

mesenchymal cells (Figure 21B) and the secreted PDGFD by D492M 

(Figure 21C) accompanying the dysregulated target of the PDGF signaling 

PKC (Figure 21D). Both RELA (the gene that codes NF-κB-p65), the 

downstream target of the PDGFR signaling (Naidu et al., 2017; Shimamura et 

al., 2002), and UGDH were downregulated with PDGFRB knockdown in the 

mesenchymal cells (Figure 21E-G). Furthermore, the UGDH RNA level was 

reduced with RELA knockdown in the mesenchymal cells (Figure 21H-I). 

Various regulators are related to UGDH, such as Slit2, SP1, TGF-β, 

hypoxia, p38MAPK, LMP2A, and PI3K/Akt, empathizing that UGDH is under 

the control of a regulatory network (Bontemps et al., 2003; Clarkin et al., 

2010; Fernando and Smith, 2020; Pan et al., 2008). The PDGF signaling and 

its downstream target NF-κB can mediate these regulators and are involved 
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in cancer progression and EMT (Huber et al., 2004; Naidu et al., 2017; Tam 

et al., 2013). The EGFR-to-PDGFR signaling switch in the formation of CSC 

and EMT (Tam et al., 2013) is in consonance with the higher level of 

PDGFRB and secretion of PDGFD in the mesenchymal cells, indicating that 

the PDGFRB signaling is overrepresented in mesenchymal cells (Figure 

21A-C). Phospholipase C, PI3K/Akt, and PKCα are common downstream 

targets of the PDGFR signaling (Tam et al., 2013; H. Wang et al., 2012), and 

the upregulation of these regulators support the increased PDGFD-PDGFRB 

signaling in mesenchymal cells (Figure 20H & Figure 21D). These findings 

agree with the literature (Z. Wang et al., 2010; Q. Wu et al., 2013). The 

inhibitions of PDFGRB and NF-κB-p65 impeded the UGDH expression 

(Figure 21E-I), confirming that PDGFRB regulates UGDH via NF-κB-p65. 

Taken together, UGDH contributes to cancer progression and takes part 

in a collaborative signaling and metabolism network. 
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Figure 21. The upstream signaling regulation of UGDH. 

(A) The significantly differently secreted growth factors from the cell medium cultured 
with D492 EMT cells were listed (Permutation-based FDR < 0.05). (B) Based on the 
RPPA analysis (Barkovskaya et al., 2021), the protein expression of PDGFRB was 
higher in the mesenchymal cells than the epithelial cells in the D492 model. (C) The 
growth factor PDGFD was secreted in the mesenchymal cells in the D492 EMT 
model. (D) The motif enrichment analysis of the phosphorylation sites detected in the 
phosphoproteomic data yielded plausibly disturbed kinases of the D492 EMT model. 
PKC kinase activity, among others, was highly enriched in EMT based on the motif 
enrichment analysis of the phosphorylated proteome in the D492 EMT model. Motif 
enrichment terms (Enrichment factors >= 2) were reported and ranked based on the –
log10(p value) in a descending order. (E) The knockdown efficiency of the PDGFRB 
siRNA was about 80 % in the D492M cell line. (F) After the siRNA knockdown of 
PDGFRB in D492M, RELA (the gene that codes NF-κB-p65) was decreased. (G) 
UGDH was also reduced by the siRNA knockdown of PDGFRB in D492M. (H) The 
knockdown efficiency of the first RELA siRNA was around 80 % in D492M. (I) UGDH 
was decreased by the first siRNA knockdown of RELA in D492M. Student’s T-test, **: 
p < 0.01; ***: p < 0.001. RPPA: reverse phase protein array; PDGF: platelet-derived 
growth factor; RELA: or NF-κB, nuclear factor-kappa B; UGDH: UDP-glucose 
dehydrogenase. Reprinted from (Q. Wang et al., 2021). Reprinted with permission. 

4.4.2  GFPT2 is associated with cancer malignancy (paper II) 

GFPT2 knockdown affects cell proliferation, EMT, invasion, and 
migration, and it is highly expressed in claudin-low breast cancer 

Recently, GFPT2 has gained emerging attention in multiple cancer types and 

has been shown to regulate cell migration and invasion in NSCLC (Szymura 

et al., 2019), ovarian cancer cell lines (Zhou et al., 2019), and colorectal 

cancer (L. Liu et al., 2020). GFPT2, as an MMS gene, was shown to 

decrease the EMT marker vimentin in ovarian cancer (Shaul et al., 2014; 

Zhou et al., 2019). In light of the reported oncogenic properties of GFPT2 and 

its influence on EMT, we confirmed that GFPT2 promotes the advancement 

of breast cancer and affects vimentin in breast mesenchymal cell lines. The 

proliferation (Figure 22A-B) and vimentin expression (Figure 22C-D) in the 

mesenchymal cell lines D492M and D492HER2 were dampened, and the 

invasiveness of D492HER2 was decreased (Figure 22E) by the knockdown 

of GFPT2. Cell migration was also hindered by GFPT2 knockdown in the 

three cell lines, although it was unable to secure the significance in the 

mesenchymal cell lines (Figure 22F). 

Considering the clinical significance, we further explored the gene 

expression of GFPT2 across various breast cancer cell lines verified by two 

data sources and in patients with different breast cancer types. GFPT2 was 

highly expressed in claudin-low breast cell lines and breast cancer patients 

compared with the other types (Figure 23). This is in compliance with the 
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previous result from the cell line clustering analysis that the high-GFPT2-

expressing D492HER2 clusters with the claudin-low breast cell lines (Figure 

12C). Claudin-low breast cancer has been deemed a distinct breast cancer 

subtype as of its discovery. Of late, two publications on NATURE 

communications reported the re-definition and sub-classification of claudin-

low breast cancer, questioned the current claudin-low classifier, and 

concluded that claudin-low breast cancer is heterogeneous and in need of 

efforts and cautions to define it (Fougner et al., 2020; Pommier et al., 2020). 

GFPT2 was predicted by Prat et al. to be a claudin-low gene signature in 

TNBC (Prat et al., 2010), compatible with this study. Additionally, GFPT2 has 

been reported to promote the malignancy of the KRAS and LKB1 co-mutant 

NSCLC, which is a type of malignant lung cancer emulating claudin-low 

breast cancer (H. S. Kim et al., 2013; J. Kim et al., 2020).  

Collectively, these findings indicate that GFPT2 is a marker for claudin-

low breast cancer. 

Figure 22. Functional analysis of the GFPT2 knockdown. 

(A-B) The cell proliferation of D492M (A) and D492HER2 (B) were decreased by the 
siRNA-mediated knockdown of GFPT2 four days from cell seeding. (C-D) The EMT 
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marker vimentin (VIM) was reduced by the knockdown of GFPT2 in the mesenchymal 
cell lines D492M (C) and D492HER2 (D). (E) The knockdown of GFPT2 hindered the 
cell invasion of D492HER2. (F) The knockdown of GFPT2 hampered the cell 
migration of D492. The decreasing trends of cell growth without significance were 
seen in D492M and D492HER2. Student’s T-test, *: p < 0.05; **: p < 0.01; ***: p < 
0.001. KD: Knock Down. GFPT2: glutamine-fructose-6-phosphate transaminase 2. 
Reprinted from (Q. Wang et al., 2021). Reprinted with permission. 

Figure 23. The GFPT2 expression in different breast cell lines and cancer patients. 

Higher expression of GFPT2 was shown in both basal and claudin-low breast cell 
lines and breast cancer patients. (A) GFPT2 was highly expressed in basal and 
claudin-low cell lines while lower in HER2-positive and luminal cell lines based on an 
open-source database – CCLE (left panel) (Ghandi et al., 2019). The trend was 
confirmed by another open-source database – HMS LINCS (right panel) (Koleti et al., 
2017). (B) GFPT2 was highly expressed in patients with claudin-low cancer while 
lower in patients with HER2-positive and luminal cancer according to the TCGA data 
(Breast Cancer (METABRIC, Nature 2012 & Nat Commun 2016)). GFPT2: glutamine-
fructose-6-phosphate transaminase 2. Reprinted from (Q. Wang et al., 2021). 
Reprinted with permission. 

GFPT2 is responsible for tuning the HBP flux 

UDP-GlcNAc is indispensable for the PTM of proteins via O-GlcNAcylation. 

GFPT2 modulates the availability of UDP-GlcNAc as the precursors for O-

GlcNAcylation. The knockdown of GFPT2 dampened the protein O-

GlcNAcylation in D492 (Figure 24), supporting the role of GFPT2 in 

regulating the HBP and the production of UDP-GlcNAc. 

We further confirmed the function of GFPT2 in the HBP via metabolomics. 

We analyzed the metabolomes of the EMP cell model with a targeted 

metabolomic approach and noticed that the metabolome of D492HER2 was 

more like that of D492M than D492 (Figure 25A), confirming that D492HER2 
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is an intermediate state of D492 and D492M. UPLC-MS analysis of UDP-

GlcNAc revealed that D492HER2 expressed a significantly higher amount of 

UDP-GlcNAc than the other two cell lines, with its intracellular concentration 

of UDP-GlcNAc increased roughly four-fold than D492M while 10-fold than 

D492 (Figure 25B). The substantial amount of UDP-GlcNAc in D492HER2 is 

inadequate to deduct the activeness of the metabolic fluxes encircling UDP-

GlcNAc. We further traced the enrichment of the 13C isotopologue labels in 

UDP-GlcNAc from either 1,2-13C glucose, 1-13C glutamine, or 5-13C glutamine 

to check the metabolic fluxes into UDP-GlcNAc from different carbon 

sources. The carbons in UDP-GlcNAc were mainly derived from glucose 

compared with glutamine (Figure 25C), and the relatively small amounts of 

carbons from 5-13C glutamine are indicative of an alternate carbon 

contribution to UDP-GlcNAc through reductive carboxylation. Considering the 

cellular amount of UDP-GlcNAc, D492HER2 had the highest enrichment of 

13C in UDP-GlcNAc from 1,2-13C glucose, indicating the absolute metabolite 

flux of UDP-GlcNAc and the HBP activity are more active in D492HER2. 

GFPT2 has been reported to be associated with glucose uptake, independent 

of GLUT1 (Chao et al., 2021; W. Zhang et al., 2018), which may facilitate the 

increased pool and flux of UDP-GlcNAc in D492HER2. There was no 

observable 13C enrichment in UDP-GlcNAc from 1-13C glutamine on the 

grounds that the carbon in the first position of glutamine is unlikely to be 

incorporated into UDP-GlcNAc through either oxidative TCA or citrate-derived 

cytosolic acetyl-CoA. These data suggest that the higher level and increased 

metabolic flux of UDP-GlcNAc are in line with the upregulated GFPT2 in 

D492HER2.  

In accordance with the enzymatic functions of GFPT2 that include UDP-

GlcNAc production in the HBP and glutamate generation via glutaminolysis 

(Oki et al., 1999), the knockdown of GFPT2 has led to a significant decrease 

in intracellular concentration of UDP-GlcNAc in both D492M and D492HER2 

(Figure 25D) and has dropped in the glutamate level in all the cell lines 

(Figure 25E). It confirms that the upregulated GFPT2 is accountable for the 

increased HBP flux. Furthermore, we also observed that the treatment of 

siGFPT2 had significantly diminished the intracellular cystathionine level in all 

the cell lines (Figure 25F). 
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Figure 24. Western blot of protein O-GlycNAcylation with GFPT2 knockdown. 

Western blot analysis indicated that the protein O-GlcNAcylation was hindered by the 
knockdown of GFPT2 in D492 cells treated with two siRNA that interfere with GFPT2, 
and this experiment used β-actin as the loading control. Reprinted from (Q. Wang et 
al., 2021). Reprinted with permission. 
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Figure 25. Metabolomics analysis of the EMP cell model and the GFPT2 knockdown. 

(A) The metabolome of D492HER2 was similar to that of D492M compared with 
D492. (B) D492HER2 expressed a higher level of UDP-GlcNAc compared with the 
other cell lines. (C) Carbons incorporation from 1,2-13C glucose (Glc) into UDP-
GlcNAc were higher compared with 5-13C glutamine (Gln) and 1-13C Gln in all three 
cell lines after cell culture for six hours. No carbons were incorporated from 1-13C Gln 
in all three cell lines. D492HER2 had a higher carbon incorporation rate into UDP-
GlcNAc from both 1,2-13C Glc and 5-13C Gln compared with D492 and D492M. The 
carbon incorporation rate into UDP-GlcNAc from 1,2-13C Glc was higher in D492M 
compared with D492. (D) The production of UDP-GlcNAc in both D492M and 
D492HER2 was decreased with the knockdown of GFPT2. (E) Glutamate was 
decreased with the GFPT2 knockdown in the D492 EMT model. (F) Cystathionine 
was decreased significantly with the knockdown of GFPT2 in all three cell lines. 
Student’s T-test, *: p < 0.05; **: p < 0.01; ***: p < 0.001. KD: Knock Down. UDP-
GlcNAc: UDP-N-acetylglucosamine. Reprinted from (Q. Wang et al., 2021). Reprinted 
with permission. 

GFPT2 is a marker for oxidative stress 

GFPT2 may affect the de novo GSH synthesis via glutamine-derived 

glutamate (Simpson et al., 2012). The knockdown of GFPT2 led to reduced 

intracellular glutamate levels (Figure 25E); however, the impact was 

insubstantial. We concomitantly observed a reduction in the intracellular 

cystathionine levels in all the cell lines (Figure 25F). Like glutamate, 

cystathionine is one of the precursors for the de novo synthesis of GSH by 

engaging in the transsulfuration pathway and concurrently producing H2S. 

Knockdown of GFPT2 negligibly affected the GSH level (data not shown), 

indicating that GFPT2 is not a dominant regulator of GSH. 

The gene-metabolite correlation analysis using the NCI60 cancer cell line 

panel implied that GFPT2 and GSH were negatively correlated (Figure 26A). 

There was no correlation observed neither for the oxidized glutathione 

(GSSG) nor for GFPT1 (data not shown), implying the distinctive relationship 

between GFPT2 and GSH. Overexpression of GFPT2 increases cell viability 

and protects cells against the H2O2 treatment (Zitzler et al., 2004). Treatment 

with H2O2 significantly increased the RNA expression of GFPT2 (Figure 26B) 

and concomitantly reduced the GSH level (Figure 26D), with no influences 

on the total glutathione (Figure 26C). In addition, treatment with GSH 

decreased the RNA expression of GFPT2 (Figure 26E). The highest amount 

of GSH (Figure 26F) and lowest expression of GFPT2 in D492 compared 

with D492M and D492HER2 (Figure 17), which are consistent with the 

increased cell stress in the mesenchymal cells as previously reported 

(Eiriksson et al., 2018; Halldorsson et al., 2017), support the negative 

correlation between GFPT2 and GSH. On the grounds of the previous result 
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that GFPT2 did not regulate GSH, these findings suggest that the RNA 

expression of GFPT2 is negatively adjusted according to the intracellular 

level of GSH. 

In view of the decreased cystathionine with the knockdown of GFPT2 

(Figure 25F) and the involvement of cystathionine in the production of H2S, 

GFPT2 may modulate the intracellular H2S homeostasis to resist oxidative 

stress. SQOR locates on the mitochondrial membrane and oxidizes H2S and 

glutathione to regenerate ubiquinol. SQOR was consistently downregulated 

by the knockdown of GFPT2 (Figure 26G-J), indicating that the knockdown 

of GFPT2 may lead to the diminished production of H2S via cystathionine to 

further hinder the downstream enzyme SQOR. However, further investigation 

is needed to elucidate the link between GFPT2 and H2S. Nonetheless, the 

decreased cystathionine and SQOR after the knockdown of GFPT2 have 

associated GFPT2 with H2S and mitochondrial metabolism. H2S signaling 

facilitates EMT (Ascencao et al., 2021; M. Wang et al., 2020), the relationship 

of which is still elusive and controversial (Guo et al., 2016). Mitochondrial 

dysfunction is involved in EMT (Sessions and Kashatus, 2021) and breast 

cancer (Lunetti et al., 2019), and GFPT2 is connected to SLP-2, which is 

involved in mitochondrial regulation (Chao et al., 2021). Dysregulation in 

GFPT2, H2S metabolism, and mitochondrial functions may be part of the 

partial EMT process in claudin-low breast cancer. 

Taken together, these findings suggest that the RNA level of GFPT2 is 

regulated by redox balance and the increased expression of GFPT2 is a 

marker for cellular oxidative stress, which plays an important role in EMT 

(Giannoni et al., 2012) and breast cancer progression (Jezierska-Drutel et al., 

2013). GFPT2 may protect cells from oxidative stress via GFPT2-

cystathionine-H2S-SQOR-mitochondria homeostasis. 
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Figure 26. GFPT2 is a marker for oxidative stress. 

(A) A negative correlation between GFPT2 and GSH was observed by the gene-
metabolite correlation analysis in the NCI60 cancer cell line panel. (B) The RNA 
expression of GFPT2 was significantly upregulated in MDA-MB-231 with 2 µM H2O2 
treatment. (C) The H2O2 treatment did not affect the total glutathione level in MDA-
MB-231. (D) The H2O2 treatment significantly decreased the GSH level in MDA-MB-
231. (E) The GFPT2 gene expression was significantly downregulated by the 
treatment of 50 mg/L of GSH in MDA-MB-231. (F) The epithelial D492 had a 
significantly higher level of GSH than the mesenchymal D492M and D492HER2. (G-
J) The knockdown of GPFT2 with siRNA significantly decreased the RNA expression 
of SQOR in D492 (G), D492M (H), D492HER2 (I), and MDA-MB-231 (J). Student’s T-
test, *: p < 0.05; **: p < 0.01; ***: p < 0.001. GSH: reduced glutathione; GFPT2: 
glutamine-fructose-6-phosphate transaminase 2; SQOR: sulfide quinone 
oxidoreductase. Reprinted from (Q. Wang et al., 2021). Reprinted with permission. 
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GFPT2 is under the regulation of EGF and insulin signaling, and 
it is suppressed by GSK-3β 

GFPT2 is under the regulation of an intrinsically complex signaling network 

and related to various growth factors and transcriptional regulators, including 

EGF, TGF-β, TNF, NF-κB, SIRT6, sXBP1, and SLP-2, etc. (Chao et al., 

2021; Panarsky et al., 2020; Richani et al., 2014; Szymura et al., 2019; W. 

Zhang et al., 2018). Mutant KRAS can enhance the flux into HBP via GFPT2 

that is intensified by the loss of LKB1 (J. Kim et al., 2020). 

The growth factors TGF-β, IGF, TNF, and EGF, had secreted differently 

into the medium between D492HER2 and D492 based on the analysis of the 

secretomic data (Steinhaeuser et al., 2020) (Figure 27A), all of which have 

been confirmed to regulate GFPT2 apart from IGF (Richani et al., 2014; 

Szymura et al., 2019; W. Zhang et al., 2018). The removal of insulin and EGF 

resulted in the decreased expression of GFPT2 (Figure 27B-C). The higher 

expression of IGF1R in D492HER2 (Figure 27D) supports that the activities 

of the IGF signaling are more active in D492HER2. 

Phosphoproteomics analysis identified the upregulated ERK/MAPK 

signaling in D492HER2, a common EGF/IGF downstream pathway. The 

kinase enrichment analysis also highlighted the enrichment of the GSK-3β 

and PKCα substrates (Figure 27E-F). GSK-3 is one of the central regulators 

of biological activities and under the inhibition of insulin/IGF1 and ERK/MAPK 

(Beurel et al., 2015; Cohen and Frame, 2001; Q. Ding et al., 2005; Riis et al., 

2020). We further explored GSK-3β inasmuch as it responds to oxidative 

stress (Niringiyumukiza et al., 2019; Riis et al., 2020; Schafer et al., 2004; C. 

Yan et al., 2020) and partakes in Wnt signaling, which is of importance to the 

EMT program (Yook et al., 2006). The phosphorylation of GSK-3β was higher 

in D492HER2, suggesting GSK-3β is inactivated (Figure 27G) (X. M. Xu et 

al., 2005). GSK-3β were increased on both the RNA and protein levels, 

indicating D492 has increased activity of the GSK-3β kinase (Figure 27H-I). 

The knockdown of GSK-3β resulted in an increase of the GFPT2 expression 

(Figure 27J), indicating that GSK-3β suppresses GFPT2. These findings 

suggest that the lower expression of GFPT2 in D492 is mediated by the 

increased activities of GSK-3β. 

In summary, GFPT2 is a tumor promotor highly expressed in 

mesenchymal cells with partial EMT and a marker for claudin-low breast 

cancer and oxidative stress. It is under the regulation of insulin and EGF and 

the kinase GSK-3β. 
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Figure 27. The upstream signaling regulation of GFPT2. 

(A) Several growth factors, such as TGF, IGF, TNF, EGF, and FGF, were secreted 
differently between D492HER2 and D492 based on the analysis of their secretome 
(FDR < 0.05, Fold change > =2). (B-C) We adapted the MDA-MB-231 cell line in the 
FBS-free H14 medium to investigate the effects of the growth factors EGF and IGF on 
GFPT2. The GFPT2 RNA expression was decreased in the MDA-MB-231 cell line 
with removals of either EGF (B) or insulin (C). (D) The SILAC proteomic data 
suggested that the protein level of IGF1R was higher in D492HER2 than in D492. (E) 
The top eight Ingenuity Canonical Pathways from the phosphoproteomics data 
analysis showed ERK/MAPK signaling was activated in D492HER2. Activated 
pathways in D492HER2 were labeled in orange, while pathways activated in D492 
were marked in blue. Dots were the absolute value of activation Z-scores. Pathways 
were listed in a descending order based on the -log 10(p value). (F) Motif enrichment 
from Perseus (Version 1.6.14.0) suggested that several kinases, such as GSK-3, 
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Casein kinase, and PKA, were enriched differently in D492HER2 compared with 
D492. (G) According to the phosphoproteomics analysis, GSK-3β was highly 
phosphorylated at position serine 9, inhibiting the activation of GSK-3β in D492HER2 
compared with D492. (H-I) Both the RNA (H) and protein (I) expression of GSK-3β in 
D492HER2 and D492 showed the higher abundance of GSK-3β in D492 compared 
with D492HER2. (J) The knockdown of GSK-3β with the first siRNA increased the 
GFPT2 RNA expression in D492. Student’s T-test, **: p < 0.01; ***: p < 0.001. EGF: 
epidermal growth factor; IGF1R: insulin-like growth factor 1 receptor; GSK3B: 
glycogen synthase kinase 3 beta; GFPT2: glutamine-fructose-6-phosphate 
transaminase 2. Reprinted from (Q. Wang et al., 2021). Reprinted with permission. 

GFPT2 is under the regulation of PKCα (unpublished). 

PKCα (gene name: PRKCA) is highly expressed in D492HER2 and D492M 

than in D492 (Figure 12A). PKCα signaling is dysregulated in EMT as stated 

in literature (Tam et al., 2013), which aligns with the above-discussed data. In 

light of the central role of PKCα in gene regulation, we explored the potential 

regulatory functions of PKCα on GFPT2. siRNA-mediated knockdown of 

PKCα significantly increased the GFPT2 expression on the RNA level in both 

D492M and D492HER2 (Figure 28), which was unexpected since both PKCα 

and GFPT2 are upregulated in mesenchymal cells, indicating a possible 

positive association between these two genes. The increase of GFPT2 with 

PKCα knockdown was confirmed on the protein level in these two cell lines, 

albeit to a lesser degree (Figure 29). The lesser influence of PKCα 

knockdown on GFPT2 on the protein level than the RNA level is possibly due 

to the lagged protein expression of GFPT2 following the increased mRNA. 

The mechanism by which siRNA-mediated PKCα knockdown increases 

GFPT2 is unknown. Knockdown of PKCα can protect cells against H2O2 

treatment (Saberi et al., 2008), which is consistent with the statement that 

GFPT2 protects cells against H2O2 (Zitzler et al., 2004). This evidence 

supported that PKCα inhibited GFPT2. Since SIRT6 inhibits GFPT2 

(Szymura et al., 2019), and SIRT6 can be degraded by AKT1 

phosphorylation (Thirumurthi et al., 2014), One explanation, though purely 

speculative, is PKCα – AKT1 – SIRT6 – GFPT2. Specifically, PKCα inhibits 

AKT1 (Hsu et al., 2018) to upregulate SIRT6, leading to GFPT2 

downregulation. Further studies are required to confirm this theory and 

provide more evidence on the mechanism by which PKCα negatively 

regulates GFPT2. 

 



 Results and discussion 

109 

Figure 28. RT-qPCR analysis of GFPT2 with siPKCα treatment. 

D492M and D492HER2 were treated with the siRNA targeting PKCα, and the RNA 
expression of GFPT2 was detected 72 hours after siRNA-mediated PKCα knockdown 
via RT-qPCR. The knockdown efficiency of the siRNA targeting PKCα was about 50 – 
60 % in both D492M (A) and D492HER2 (C). The RNA expressions of GFPT2 were 
significantly increased after knockdown of PKCα in both cell lines (B, D). PRKCA is 
the gene name of PKCα. Student’s T-test, ***: p < 0.001. PRKCA: or PKCα, protein 
kinase C alpha; GFPT2: glutamine-fructose-6-phosphate transaminase 2. 

Figure 29. Western blot analysis of GFPT2 with siPKCα treatment. 

(A) D492M and D492HER2 were treated with the siRNA targeting PKCα, and the 
protein expression of GFPT2 was detected 72 hours after siRNA treatment via 
western blot. (B) Western Blots were quantified by densitometry data in ImageJ 
software. The protein expressions of GFPT2 were increased after knockdown of 
PKCα in both cell lines. Loading control: β-actin. PRKCA: or PKCα, protein kinase C 
alpha; GFPT2: glutamine-fructose-6-phosphate transaminase 2. 
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4.5  Reconstruction and upgrade of the D492 GEMs (paper 
III) 

In paper III, the metabolic network of EMT was reconstructed within GEMs 

using either transcriptomic or proteomic data from the D492 breast EMT cell 

lines (D492 and D492M cells) based on a previously built model, termed 

iBreast2886 (Figure 30). The proteomic GEM showed higher accuracy in 

predicting metabolic flux than transcriptomic data. This computational model 

predicted two features of EMT, which were confirmed in the lab: (1) 

cholesterol metabolism alteration in EMT; (2) higher dependency on 

argininosuccinate lyase (ASL) in EMT. iBreast2886 holds potential for 

interpreting cancer gene expression data in the clinic. 

Correlation analysis of the proteomic and RNA-seq data yielded a 

correlation efficiency of 0.46 (Spearman’s rank correlation coefficient), 

suggesting a low consistency between gene expression on the RNA and 

protein levels. Two major factors impacting the differences between 

transcriptome and proteome are PTMs and protein turnover. Metabolic 

reactions enriched in cholesterol metabolism were identified as key factors in 

the transition between epithelial and mesenchymal states. Cholesterol 

synthesis inhibition showed that D492 relies more on this pathway than 

D492M. Gene essentiality analysis of the proteomic GEM identified ASL as 

an essential gene in EMT, and application of the breast cancer clinical data in 

this model revealed that ASL was essential for the survival of patients with 

ER-negative breast cancer. ASL is a urea cycle enzyme that converts 

aspartate and citrulline into fumarate and arginine. The roles of ASL in EMT 

are speculated to be (1) influencing proline synthesis via ornithine 

aminotransferase (OAT); (2) affecting the fumarate production for the TCA 

cycle; (3) decreasing the conversion of oxaloacetate (OAA) to aspartate to 

increase anaplerotic fueling of the TCA cycle. 
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Figure 30. Reconstruction and upgrade of the D492 GEMs using the proteomic 
dataset. 

(A) Different data types generated different metabolic fluxes when they were applied 
for the reconstruction of the D492 GEMs. Proteomic data-based GEM showed higher 
accuracy than other data types. (B) Correlation analysis revealed a low consistency of 
gene expression between the RNA level and the protein level (Spearman’s rank 
correlation coefficient). (C) Metabolic reactions in cholesterol metabolism were highly 
enriched in the metabolic difference in EMT. (D) Gene essentiality analysis of the 
proteomic GEM identified ASL, among others, as an essential gene in EMT. ***: p < 
0.001. ASL: argininosuccinate lyase. Reprinted from (Karvelsson et al., 2021). 
Reprinted with permission. 
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4.6  Deep mining of the phosphoproteomic data 
(unpublished data) 

Hereafter, I analyzed and reported the phosphoproteomic data collected from 

the SILAC experiment for the epithelial D492, mesenchymal D492M, and 

partial mesenchymal D492HER2, with emphasis on the top dysregulated 

protein phosphorylation sites between different cell lines and the metabolism-

signaling interactions. The phosphoproteomic data were only marginally 

reported in paper I and II to support the signaling regulation of GFPT2 and 

UGDH, and an in-depth analysis of this dataset was lacking. On account of 

the regulatory functions and broad coverage of protein phosphorylation in 

cellular activities, the following analysis was intended to better understand 

the phosphorylation alteration in EMT and the different mesenchymal states 

with a focus on metabolism. 

The raw data were filtered to identify the topmost changed phosphosites 

with valid identification and quantification (Table 9). The top altered 

phosphosites between D492M and D492, D492HER2 and D492, and 

D492HER2 and D492M were listed in the Appendix (223 phosphosites, 158 

phosphosites, and 149 phosphosites, respectively). 

 

Table 9. Workflow for analysis of the phosphoproteomic dataset.  

The phosphoproteomic data were first screened based on the localization probability 
(localization probability > 0.75 for all three replicates). Two out of three replicates 
detected with valid SILAC ratios were deemed valid phosphosite identification, and 
the missing ratios were imputated based on a normal distribution. The three SILAC 
ratios for each phosphosite were tested in statistical analysis for significance (one-
sample Student’s T-test p value < 0.05). Phosphosites that did not pass the statistical 
analysis but with fold changes of more than 2 in all three replicates were also deemed 
valid differences. Finally, phosphosites were filtered by fold changes (fold change >= 
2). At the end of data filtering and analysis, 223 phosphosites, 158 phosphosites, and 
149 phosphosites were significantly different between D492M and D492, D492HER2 
and D492, and D492HER2 and D492M, respectively, and these phosphosites were 
reported in the Appendix. 
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4.6.1  Phosphorylated metabolic alteration in EMT 

The identified phosphorylated enzymes significantly altered between D492M 

and D492 were reported (Figure 31), and the topmost dysregulated enzymes 

were plotted (Figure 32). Pyruvate dehydrogenase E1 component subunit 

alpha (PDHA1) was differently phosphorylated at three positions (serine 300, 

serine 293, and serine 232), which were all higher in D492M compared with 

D492. In addition, 7-dehydrocholesterol reductase (DHCR7) at serine 14 was 

also highly phosphorylated in D492M. Conversely, phosphorylations of very-

long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 (HACD3) at position 

serine 135 and fructose-bisphosphate aldolase A (ALDOA) at serine 46 were 

significantly higher in D492.  

Under aerobic conditions, the product of glycolysis, pyruvate, is 

transported into the mitochondrial matrix and completely oxidized to CO2 in 

the TCA cycle. During this process, the pyruvate dehydrogenase (PDH) 

complex, in which PDHA1 plays a key role, catalyzes the irreversible 

conversion of pyruvate into acetyl-CoA, linking glycolysis and the TCA cycle. 

The PDH complex is regulated by PDK-1, which is dysregulated in cancer 

(Flynn et al., 2000). The anaplerosis of pyruvate into the TCA cycle via 

pyruvate carboxylase (PC) in breast cancer cells can promote cell mobility 

(Phannasil et al., 2015). The enzymatic activities of PDHA1 can be inhibited 

by phosphorylation modification of the enzyme at serine 300, 293, and 232 

induced by pyruvate dehydrogenase kinase (PDHKs or PDKs) (Fujita et al., 

2020). Phosphorylation of PDHA1 at serine 293 has been shown to increase 

cell motility and the expression of EMT markers, such as CDH2, vimentin, 

and SNAI1, which is in line with the phenotypes of D492M (J. Zhang et al., 

2019).  
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DHCR7 is responsible for the final step in cholesterol production, 

converting 7-dehydrocholesterol to cholesterol. Both AMPK and protein 

kinase A (PKA) have been reported to decrease the DHCR7 activities after 

being treated with kinase inhibitors (Prabhu et al., 2017). Protein Kinase D1 

(PRKD1) has been reported to regulate the phosphorylation of DHCR7 at 

serine 14, which can induce its enzymatic activity (Franz-Wachtel et al., 

2012).  

HACD3 is an enzyme in the long-chain fatty acids elongation cycle, and 

the phosphorylation of HACD3 at serine 135 has been reported before but 

with no responsible kinases identified (Carrier et al., 2016).  

ALDOA participates in glycolysis, where it catalyzes fructose-1,6-

bisphosphate to glyceraldehyde 3-phosphate in a reversible manner. The 

phosphorylation of ALDOA at serine 46 can also be regulated by PRKD1 

(Franz-Wachtel et al., 2012). 

Figure 31. Differently phosphorylated metabolic enzymes between D492M and D492. 

The metabolic enzymes differently phosphorylated between D492M and D492 (one-
sample Student’s T-test p value < 0.05) were plotted. Phosphosites that did not pass 
the statistical analysis but with fold changes of more than 2 in all three replicates were 
also deemed valid differences. These metabolic enzymes reported were manually 
identified. Red: highly expressed in D492M compared with D492. Blue: highly 
expressed in D492 compared with D492M. Yellow numbers: p values. Rectangle size: 
the bigger the size, the bigger the difference. 
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Figure 32. Top differences between D492M and D492. 

The top differently phosphorylated metabolic enzymes between D492M and D492 
were plotted. PDHA1: pyruvate dehydrogenase E1 component subunit alpha; 
DHCR7: 7-dehydrocholesterol reductase; HACD3: very-long-chain (3R)-3-
hydroxyacyl-CoA dehydratase 3; ALDOA: fructose-bisphosphate aldolase A. One 
sample T-test, *: p < 0.05; **: p < 0.01. 

4.6.2  Phosphorylated metabolic alteration in EMP 

The identified phosphorylated enzymes significantly altered between 

D492HER2 and D492 were reported (Figure 33), and the topmost 

dysregulated enzymes were plotted (Figure 34). Fructose-bisphosphate 

aldolase C (ALDOC) at serine 45, isoform 2 of pantothenate kinase 2 

(mitochondrial, PANK2) at serine 45, and HACD3 at serine 135 were highly 

phosphorylated in D492 compared with D492HER2. On the contrary, the 

phosphorylation levels of fatty acid synthase (FASN) at serine 2236 and ATP-

dependent 6-phosphofructokinase (platelet type, PFKP) at serine 386 were 

higher in D492HER2.  

PANK2 plays a critical role in the biosynthesis of coenzyme A. Both 

HACD3 and fructose-bisphosphate aldolases (ALDOA and ALDOC) were 

highly phosphorylated in D492 compared with the other two mesenchymal 

cell lines. FASN is involved in the de novo biosynthesis of long-chain 

saturated fatty acids, while PFKP is responsible for the first committing step 

of glycolysis, phosphorylating fructose 6-phosphate to fructose 1,6-
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bisphosphate. Phosphorylation of PFKP at serine 386 is associated with cell 

growth and motility, as well as carcinogenic effects (Fan et al., 2021). 

 

Figure 33. Differently phosphorylated metabolic enzymes between D492HER2 and 
D492. 

The metabolic enzymes differently phosphorylated between D492HER2 and D492 
(one-sample Student’s T-test p value < 0.05) were plotted. Phosphosites that did not 
pass the statistical analysis but with fold changes of more than 2 in all three replicates 
were also deemed valid differences. These metabolic enzymes reported were 
manually identified. Orange: highly expressed in D492HER2 compared with D492. 
Blue: highly expressed in D492 compared with D492HER2. Yellow numbers: p 
values. Rectangle size: the bigger the size, the bigger the difference. 
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Figure 34. Top differences between D492HER2 and D492. 

The top differently phosphorylated metabolic enzymes between D492HER2 and D492 
were plotted. ALDOC: fructose-bisphosphate aldolase C; PANK2: isoform 2 of 
pantothenate kinase 2, mitochondrial; HACD3: very-long-chain (3R)-3-hydroxyacyl-
CoA dehydratase 3; FASN: fatty acid synthase; PFKP: ATP-dependent 6-
phosphofructokinase, platelet type. One sample T-test, *: p < 0.05; **: p < 0.01. 

4.6.3  Phosphorylated metabolic alteration in cancer malignancy 

The identified phosphorylated enzymes significantly altered between 

D492HER2 and D492M were reported (Figure 35), and the topmost 

dysregulated enzymes were plotted (Figure 36). Similar to the differences 

between D492M and D492, the phosphorylation levels of PDHA1 and 

DHCR7 were higher in D492M than in D492HER2. 
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Figure 35. Differently phosphorylated metabolic enzymes between D492HER2 and 
D492M. 

The metabolic enzymes differently phosphorylated between D492HER2 and D492M 
(one-sample Student’s T-test p value < 0.05) were plotted. Phosphosites that did not 
pass the statistical analysis but with fold changes of more than 2 in all three replicates 
were also deemed valid differences. These metabolic enzymes reported were 
manually identified. Red: highly expressed in D492M compared with D492HER2. 
Orange: highly expressed in D492HER2 compared with D492M. Yellow numbers: p 
values. Rectangle size: the bigger the size, the bigger the difference. 
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Figure 36. Top differences between D492HER2 and D492M. 

The top differently phosphorylated metabolic enzymes between D492HER2 and 
D492M were plotted. PDHA1: pyruvate dehydrogenase E1 component subunit alpha; 
DHCR7: 7-dehydrocholesterol reductase. One sample T-test, *: p < 0.05; **: p < 0.01; 
***: p < 0.001. 

In summary, the topmost dysregulated phosphorylations of enzymes 

between the epithelial and mesenchymal cell lines are mainly involved in 

glycolysis, fatty acid synthesis and elongation, cholesterol production, and 

coenzyme A metabolism. The high phosphorylation levels of PDHA1 suggest 

that the metabolic fluxes in complete mesenchymal D492M are diverted from 

the TCA cycle, possibly to facilitate fatty acid metabolism (Halldorsson et al., 

2017). The induced activities of DHCR7 in D492M via phosphorylation at 

serine 14 agree with the need for cholesterols in the mesenchymal cells for 

cell plasma membrane formation. 

4.6.4  Kinases responsible for the identified phosphosites 

Proteins are phosphorylated by various kinases. The known kinases 

responsible for the phosphorylation of metabolic enzymes differentially 

expressed between two different cell lines were identified based on the 

platform PhosphoSitePlus: https://www.phosphosite.org/homeAction.action 

(Hornbeck et al., 2015). All metabolic phosphosites reported to be differently 

expressed between cell lines were known sites that had been reported in 

literature except for COASY and HMGCS. However, most of these 

phosphosites were phosphorylated by unknown kinases. The metabolic 

phosphosites identified in the previous sections and their responsible kinases 

are listed in Table 10. PDHA1 was highly phosphorylated in D492M 

compared with both D492 and D492HER2. CAD and PGAM1 were lesser 

phosphorylated in D492HER2 compared with both D492 and D492M. 

Pyruvate dehydrogenase kinases (PDHKs) were highly active in the more 

https://www.phosphosite.org/homeAction.action
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complete mesenchymal cell line D492M than both D492 and D492HER2, 

while Serine/threonine-protein kinase (PAK1) and protein kinase A catalytic 

subunit α (PKACA) were less active in the partial mesenchymal D492HER2 

compared with D492 and D492M. 

 

Table 10. Kinases responsible for known phosphosites. 

The kinases responsible for metabolic phosphosites different between two cell lines 
(reported above) were identified by the database PhosphoSitePlus. The phosphosites 
with known kinases were reported in this table. PDHA1 can be phosphorylated at 
serine 300, 293, and 232 by PDHKs and was highly phosphorylated in D492M. The 
phosphorylation of GYS1 can be induced at position serine 645 by p38 and GSK-3β. 
CDK1 is the candidate kinase for PIK3C2A phosphorylated at serine 259. CAD can be 
phosphorylated at position serine 1343 by PKACA, and PGAM1 can be 
phosphorylated at serine 118 by PAK1. Both CDK1 and CDK2 can phosphorylate 
PAICS at position serine 27. At last, PKACA is responsible for the phosphorylation of 
ITPR3 at position serine 916. PDHA1 was highly phosphorylated in D492M compared 
with both D492 and D492HER2. CAD and PGAM1 were lesser phosphorylated in 
D492HER2 compared with both D492 and D492M. 

Comparison Phosphosites Kinases Expression

PDHA1_pS300 PDHK4;PDK1;PDHK2;PDHK3;PDHK1 Higer in D492M

PDHA1_pS293 PDHK4;PDK1;PDHK2;PDHK3;PDHK1 Higer in D492M

PDHA1_pS232 PDK1;PDHK2;PDHK1 Higer in D492M

GYS1_pS645 P38B;GSK3B Higer in D492M

PIK3C2A_pS259 CDK1 Higer in D492

CAD_pS1343 PKACA Higher in D492

PGAM1_pS118 PAK1 Higher in D492

PDHA1_pS293 PDHK4;PDK1;PDHK2;PDHK3;PDHK1 Higher in D492M

PDHA1_pS300 PDHK4;PDK1;PDHK2;PDHK3;PDHK1 Higher in D492M

PDHA1_pS232 PDK1;PDHK2;PDHK1 Higher in D492M

PAICS_pS27 CDK1;CDK2 Higher in D492M

PGAM1_pS118 PAK1 Higher in D492M

ITPR3_pS916 PKACA Higher in D492M

CAD_pS1343 PKACA Higher in D492M

D492M vs. D492

D492HER2 vs. D492M

D492HER2 vs. D492
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5 Summary and conclusions 

This project first defined the phenotypes of EMT and EMP in breast 

epithelium metabolically via proteomic and phosphoproteomic approaches, 

then it identified potential metabolic targets for therapeutic treatments, and 

finally it investigated the metabolism-signaling relationship in different 

mesenchymal states. The main findings in this project were summarized in 

Figure 37 and Figure 38, surrounding UGDH and GFPT2, respectively. 

Since this project was a discovery-based proteomic study, the main findings, 

which deserve further attention, could not be followed up within the scope of 

secured funding and time. The mechanism by which the mesenchymal gene 

UGDH regulates GPC in choline metabolism is unclear. The explanation for 

which the partial mesenchymal gene GFPT2 affects cystathionine and SQOR 

in transsulfuration metabolism is lacking. There were speculation and 

hypotheses that need the support of experimental data. The signaling 

regulation of UGDH and GFPT2 proposed in this project needs to be 

confirmed in other cell types with similar properties and requires to be further 

elucidated. In addition, the main findings deduced from the 

phosphoproteomic analysis of the EMP cell models were not followed up.  

For future perspective, cell lines with stable knockouts and with 

overexpression of UGDH and GFPT2 need to be established for further 

studies of these two genes. Of more interest to us are the roles of UGDH in 

choline and lipid metabolism and the importance of GFPT2 in cells with 

defective mitochondria. More generally used breast cell lines and protein 

assays, for example, western blots, need to be included to confirm the 

findings from this project and corroborate the conclusions observed on the 

RNA level. In vivo studies are required to verify the cancer promoting roles of 

these two enzymes especially in tumor metastasis. The identification of 

PDHK, PAK1, and PKACA from the phosphoproteomic study needs to be 

followed up by applying similar functional assays, such as siRNA-mediated 

knockdown, migration, and invasion assays, and more, to evaluate the 

importance of these kinases in different mesenchymal cell states and explore 

the potentials of these kinases to distinguish aggressive and non-aggressive 

mesenchymal cells for breast cancer clinical therapies. The valid findings can 

be generalized beyond the scope of breast cancer. 
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Figure 37. Summary of the study on spontanous EMT.  

UGDH catalyzes UDP-Glc into UDP-GlcA, an indispensable unit for GAGs, 
proteoglycans, and ECM. In this study, UGDH was highly expressed in the 
mesenchymal cells and affected cancer patient survival, mesenchymal cell 
proliferation and invasion, and the EMT transcription factor SNAI1, and it was under 
the control of the PDGFRB-NFκB pathway. UGDH knockdown significantly decreased 
the intracellular GPC level and increased the NAA level in all the mesenchymal cell 
lines. NAA is closely linked to the central carbon metabolism and is potentially 
affected by the mass-action effects of UGDH knockdown. GPC is an intracellular 
osmolyte and part of the choline metabolism. Knockdown of UGDH hindered the 
formation of proteoglycans and further decreased the extracellular osmotic pressure, 
which could be counteracted by the reduced intracellular osmotic pressure induced by 
GPC. We hypothesized that UGDH knockdown affected PPARλ-lipid metabolism 
and/or pERK-PLA2G15 to regulate GPC and to ease the osmotic stress. UGDH: 
UDP-glucose dehydrogenase; UDP-Glc: UDP-glucose; UDP-GlcA: UDP-glucuronic 
acid; GAGs: glycosaminoglycans; ECM: extracellular matrix; EMT: epithelial-
mesenchymal transition; SNAI1: zinc finger protein SNAI1; PDGFRB: platelet-derived 
growth factor receptor B; NFκB: nuclear factor-kappa B; GPC: 
glycerophosphocholine; NAA: N-acetylaspartate; PPARλ:  peroxisome proliferator-

activated receptor gamma; pERK: phosphorylated extracellular signal-regulated 

kinase; PLA2G15: phospholipase A2 group XV. Reprinted from (Q. Wang et al., 
2021). Reprinted with permission. 
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Figure 38. Summary of the study on EMP.  

GFPT2 is the rate-limiting enzyme in the HBP and was upregulated in mesenchymal 
cells, especially in partial EMT represented by the D492HER2 cell line. It affected the 
EMT program regulator vimentin, the HBP flux, cell growth, and cell invasion, and it 
was overexpressed in claudin-low breast cancer cell lines and patients with claudin-
low breast cancer. GFPT2 was regulated by oxidative stress (H2O2 and GSH) and 
signaling regulators (insulin and EGF, and GSK-3β). GFPT2 knockdown decreased 
the intracellular cystathionine level and the SQOR RNA expression in the 
transsulfuration pathway, indicating that GFPT2 is potentially involved in the H2S 
metabolism and mitochondrial homeostasis. The underscored metabolites were 
measured in this study. GFPT2: glutamine-fructose-6-phosphate transaminase 2; 
HBP: hexosamine biosynthetic pathway; EMT: epithelial-mesenchymal transition; 
H2O2: hydrogen peroxide; GSH: reduced glutathione; EGF: epidermal growth factor; 
GSK-3β: glycogen synthase kinase 3 beta; SQOR: sulfide quinone oxidoreductase; 
H2S: hydrogen sulfate. Reprinted from (Q. Wang et al., 2021). Reprinted with 
permission.
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Appendix 

Appendix Table 1. The topmost dysregulated phosphorylation sites by 

comparing D492M with D492 after statistical analysis of the SILAC 

phosphoproteomic dataset (fold change >= 2, one-sample Student’s T-test p 

value < 0.05; p > 0.05 and fold change >= 2 in all three replicates). Blue: 

active in D492; Red: active in D492M. NA: gene name is not available. 

Phosphorylation Site
Uniprot 

Protein ID
Protein Name

Median_Log2

(D492/D492M)
p Value

COL17A1_pS148 Q9UMD9 Isoform 2 of Collagen alpha-1(XVII) chain 5.341 0.019

CRYBG1_pS280 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 3.123 0.004

COL17A1_pS93 Q9UMD9 Isoform 2 of Collagen alpha-1(XVII) chain 3.058 0.108

FAM83B_pS869 Q5T0W9 Protein FAM83B 3.009 0.006

AKAP12_pS1395 Q02952 A-kinase anchor protein 12 2.750 0.000

LMNB2_pS424 Q03252 Lamin-B2 2.642 0.001

CRYBG1_pS299 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 2.587 0.002

TNS4_pS350 Q8IZW8 Tensin-4 2.365 0.100

LRBA_pS2485 P50851 Isoform 2 of Lipopolysaccharide-responsive and beige-like anchor protein 2.345 0.035

NA_pS31 B2RA03 cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), mRNA 2.270 0.002

FAM62A_pS820 Q9BSJ8 Family with sequence similarity 62 (C2 domain containing), member A, isoform CRA_b 2.179 0.003

AKAP12_pS96 Q02952 A-kinase anchor protein 12 2.167 0.027

NA_pS10 B2RA03 cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), mRNA 2.138 0.009

COL17A1_pS85 Q9UMD9 Isoform 2 of Collagen alpha-1(XVII) chain 2.116 0.007

AKAP12_pS75 Q02952 A-kinase anchor protein 12 2.061 0.005

EHD2_pS470 Q9NZN4 EH-domain containing 2, isoform CRA_a 2.052 0.001

CRYBG1_pT397 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 2.032 0.009

FLNC_pS2146 Q14315 Filamin-C 1.893 0.029

LSM14A_pS192 Q8ND56 Isoform 2 of Protein LSM14 homolog A 1.839 0.164

NUP153_pS330 P49790 Nucleoporin 153kDa, isoform CRA_a 1.817 0.002

RAC1_pS71 P63000 Ras-related C3 botulinum toxin substrate 1 (Rho family, small GTP binding protein Rac1) 1.774 0.020

TNS4_pS253 Q8IZW8 Tensin-4 1.748 0.045

NA_pS177 B2RDZ9 cDNA, FLJ96850 1.738 0.011

PKP2_pS197 Q99959 Isoform 1 of Plakophilin-2 1.698 0.079

NUP153_pS333 P49790 Nucleoporin 153kDa, isoform CRA_a 1.696 0.002

CD2AP_pS458 Q9Y5K6 CD2-associated protein 1.694 0.001

EI24_pS46 O14681 Etoposide induced 2.4 mRNA, isoform CRA_a 1.683 0.013

DSP_pS176 P15924 Desmoplakin 1.626 0.150

DSP_pS2815 P15924 Desmoplakin 1.601 0.014

DSP_pS2821 P15924 Desmoplakin 1.601 0.014

NA_pS60 B2RA03 cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), mRNA 1.476 0.008

NA_pS7 B2RA03 cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), mRNA 1.469 0.001

DSP_pS2825 P15924 Desmoplakin 1.467 0.099

HEL113_pS325 V9HWE1 Epididymis luminal protein 113 1.451 0.002

CRYBG1_pS424 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 1.426 0.001

CRYBG1_pS427 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 1.418 0.001

PAK2_pT143 Q13177 Serine/threonine-protein kinase PAK 2 1.394 0.004

SARG_pS133 Q9BW04 Specifically androgen-regulated gene protein 1.361 0.040

HEL-S-43_pS5 V9HWH9 Protein S100 1.357 0.002

BIN1_pT292 O00499 Bridging integrator 1, isoform CRA_a 1.353 0.053

AKAP12_pS286 Q02952 A-kinase anchor protein 12 1.343 0.041

UBE1_pS46 P22314 Testicular secretory protein Li 63 1.334 0.001

NA_pS42 B2RA03 cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), mRNA 1.333 0.010

ITGB4_pS1069 P16144 Integrin beta 1.330 0.106

JUP_pS665 P14923 Junction plakoglobin isoform 1 (Fragment) 1.322 0.075

WDR44_pS561 Q5JSH3 Isoform 2 of WD repeat-containing protein 44 1.283 0.004

EPHA2_pS897 P29317 EPH receptor A2, isoform CRA_a 1.278 0.024

HIST1H4L_pS48 P62805 Histone H4 1.256 0.010

RAB7A_pS72 P51149 RAB7, member RAS oncogene family, isoform CRA_a 1.243 0.023

NA_pS266 B4E2X3 cDNA FLJ56024 1.240 0.007

RAB3GAP1_pS537 Q15042 RAB3 GTPase activating protein subunit 1 1.223 0.019

AKAP12_pS283 Q02952 A-kinase anchor protein 12 1.200 0.013

HACD3_pS135 Q9P035 Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 1.197 0.005

BIN1_pS272 O00499 Bridging integrator 1, isoform CRA_a 1.189 0.004

PAK2_pS141 Q13177 Serine/threonine-protein kinase PAK 2 1.189 0.051

RPLP2_pS17 P05387 Ribosomal protein, large, P2, isoform CRA_a 1.162 0.011

HEL70_pS576 V9HWC0 Epididymis luminal protein 70 1.159 0.004

SNAP23_pS20 O00161 Synaptosomal-associated protein 1.156 0.009

EPHA2_pS901 P29317 EPH receptor A2, isoform CRA_a 1.149 0.012

PRKAR1A_pS83 P10644
Protein kinase, cAMP-dependent, regulatory, type I, alpha (Tissue specific extinguisher 1), 

isoform CRA_a
1.127 0.017

ARFGEF1_pS1569 Q9Y6D6
ADP-ribosylation factor guanine nucleotide-exchange factor 1(Brefeldin A-inhibited), 

isoform CRA_a
1.122 0.012

HEL113_pS7 V9HWE1 Epididymis luminal protein 113 1.112 0.017

NA_pS1124 A0A1P7ZIM8 LMO7b 1.079 0.010

NA_pS1130 A0A1P7ZIM8 LMO7b 1.079 0.010

DDI2_pS194 Q5TDH0 Protein DDI1 homolog 2 1.074 0.017

TMEM201_pS454 Q5SNT2 Transmembrane protein 201 1.060 0.007

CTNND1_pS914 O60716 Isoform 1A of Catenin delta-1 1.059 0.011

ARHGAP35_pS1179 Q9NRY4 Rho GTPase-activating protein 35 1.051 0.033

DSG2_pS680 Q14126 Desmoglein-2 1.047 0.033

ZFYVE16_pS946 Q7Z3T8 Zinc finger, FYVE domain containing 16, isoform CRA_a 1.043 0.126

SCRIB_pS504 Q14160 Protein scribble homolog 1.026 0.032

PSAT1_pS331 Q9Y617 Phosphoserine aminotransferase 1.006 0.017
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Appendix Table 1 – continued. 

 

 

 

 

 

Phosphorylation Site
Uniprot 

Protein ID
Protein Name

Median_Log2

(D492/D492M)
p Value

HEL-S-270_pS12 V9HW65 Annexin -1.002 0.015

NA_pS2 B3KU62 cDNA FLJ39243 fis, clone OCBBF2008283, highly similar to Protein NDRG1 -1.004 0.023

PHIP_pS1315 Q8WWQ0 PH-interacting protein -1.009 0.008

STOML2_pT327 Q9UJZ1 Stomatin-like protein 2, mitochondrial -1.010 0.000

IGF2BP2_pS162 Q9Y6M1 Isoform 2 of Insulin-like growth factor 2 mRNA-binding protein 2 -1.011 0.002

GBF1_pS1780 Q92538 Isoform 3 of Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 -1.012 0.017

RPL4_pS295 P36578 60S ribosomal protein L4 -1.014 0.030

ADD3_pS649 Q9UEY8 Isoform 1 of Gamma-adducin -1.018 0.048

UBE4B_pS105 O95155 Isoform 2 of Ubiquitin conjugation factor E4 B -1.018 0.045

SLK_pS777 Q9H2G2 Isoform 2 of STE20-like serine/threonine-protein kinase -1.020 0.048

NOP56_pS563 O00567 Nucleolar protein 56 -1.020 0.004

IGF2BP2_pS164 Q9Y6M1 Isoform 2 of Insulin-like growth factor 2 mRNA-binding protein 2 -1.025 0.001

LAMTOR1_pS27 Q6IAA8 Ragulator complex protein LAMTOR1 -1.026 0.024

EML3_pS176 Q32P44 Echinoderm microtubule-associated protein-like 3 -1.030 0.002

NUP50_pS193 Q9UKX7 Isoform 2 of Nuclear pore complex protein Nup50 -1.031 0.025

SMG8_pS742 Q8ND04 Protein SMG8 -1.033 0.019

BAG3_pS377 O95817 BAG family molecular chaperone regulator 3 -1.037 0.006

SCRIB_pT1342 Q14160 Protein scribble homolog -1.038 0.000

MAP4_pT1462 P27816 Microtubule-associated protein -1.040 0.034

NA_pS139 A8K7N0 cDNA FLJ75556, highly similar to Homo sapiens ribosomal protein L14, mRNA -1.041 0.021

YRDC_pS60 Q86U90 YrdC domain-containing protein, mitochondrial -1.046 0.028

NA_pS413 B3KMW2
cDNA FLJ12778 fis, clone NT2RP2001740, moderately similar to Ubiquitin carboxyl-

terminal hydrolase 36 (EC 3.1.2.15)
-1.047 0.033

DCP1A_pS487 Q9NPI6 Isoform 2 of mRNA-decapping enzyme 1A -1.056 0.001

PKP3_pT571 Q9Y446 Plakophilin-3 -1.062 0.075

NA_pS204 B7Z3E3 Reticulon -1.067 0.001

ARHGEF10_pS27 O15013 Rho guanine nucleotide exchange factor 10 (Fragment) -1.067 0.084

SLK_pS779 Q9H2G2 Isoform 2 of STE20-like serine/threonine-protein kinase -1.081 0.048

RASAL2_pS877 Q9UJF2 Isoform 2 of Ras GTPase-activating protein nGAP -1.082 0.123

RASAL2_pS880 Q9UJF2 Isoform 2 of Ras GTPase-activating protein nGAP -1.082 0.123

PARG_pS178 Q86W56 Isoform 3 of Poly(ADP-ribose) glycohydrolase -1.084 0.059

AHNAK_pS5752 Q09666 Neuroblast differentiation-associated protein AHNAK -1.086 0.057

UTP14A_pS437 Q9BVJ6 U3 small nucleolar RNA-associated protein 14 homolog A -1.088 0.062

LIMD1_pS277 Q9UGP4 LIM domain-containing protein 1 -1.088 0.012

HTT_pS1874 P42858 Huntingtin -1.096 0.019

ZNF106_pS1025 Q9H2Y7 Zinc finger protein 106 -1.101 0.111

ZNF106_pS1026 Q9H2Y7 Zinc finger protein 106 -1.101 0.111

IRS2_pT527 Q9Y4H2 Insulin receptor substrate 2 -1.109 0.050

IRS2_pS523 Q9Y4H2 Insulin receptor substrate 2 -1.109 0.050

PKP3_pS238 Q9Y446 Plakophilin-3 -1.123 0.014

TNKS1BP1_pS836 Q9C0C2 Tankyrase 1 binding protein 1, 182kDa, isoform CRA_a -1.124 0.017

NA_pS14 A8K0D2 cDNA FLJ77740, highly similar to Homo sapiens 7-dehydrocholesterol reductase, mRNA -1.126 0.005

PAK2_pS197 Q13177 Serine/threonine-protein kinase PAK 2 -1.127 0.023

NA_pS109 A0A1U9X609 ABCF1 -1.128 0.004

MAP7D1_pS125 Q3KQU3 Isoform 4 of MAP7 domain-containing protein 1 -1.130 0.038

ERBB2_pS1024 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -1.131 0.045

SPAG9_pS265 O60271 C-Jun-amino-terminal kinase-interacting protein 4 -1.135 0.009

SPAG9_pS268 O60271 C-Jun-amino-terminal kinase-interacting protein 4 -1.135 0.009

SARM1_pS40 Q6SZW1 SARM1 protein (Fragment) -1.137 0.052

EIF3E_pS399 P60228 Eukaryotic translation initiation factor 3 subunit E -1.138 0.023

VCL_pS721 P18206 Vinculin, isoform CRA_c -1.141 0.027

STIM2_pS680 Q9P246 Stromal interaction molecule 2 -1.142 0.043

STIM2_pS719 Q9P246 Stromal interaction molecule 2 -1.144 0.043

NA_pS56 A0A109NGN6 Proteasome subunit alpha type -1.162 0.005

ZNF22_pS49 P17026 Zinc finger protein 22 (KOX 15), isoform CRA_a -1.164 0.000

PKP3_pT308 Q9Y446 Plakophilin-3 -1.171 0.015

THRAP3_pS575 Q9Y2W1 Thyroid hormone receptor-associated protein 3 -1.176 0.018

LARP7_pS300 Q4G0J3 La-related protein 7 -1.184 0.006

NA_pS293 A8K2W3 cDNA FLJ78516 -1.185 0.024

TRAM1_pS279 Q15629 Translocating chain-associated membrane protein 1 -1.205 0.036

SH3KBP1_pS474 Q96B97 Isoform 2 of SH3 domain-containing kinase-binding protein 1 -1.210 0.133

SH3KBP1_pS472 Q96B97 Isoform 2 of SH3 domain-containing kinase-binding protein 1 -1.210 0.133

FKBP15_pS1164 Q5T1M5 FK506-binding protein 15 -1.214 0.000

MAP7D1_pS116 Q3KQU3 Isoform 4 of MAP7 domain-containing protein 1 -1.228 0.001

ITGB4_pS1387 P16144 Integrin beta -1.242 0.068

LARP1_pT1071 Q6PKG0 La-related protein 1 -1.246 0.015

MAP7D1_pS113 Q3KQU3 Isoform 4 of MAP7 domain-containing protein 1 -1.262 0.138

AHNAK_pS3182 Q09666 Neuroblast differentiation-associated protein AHNAK -1.263 0.009
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Phosphorylation Site
Uniprot 

Protein ID
Protein Name

Median_Log2

(D492/D492M)
p Value

COBLL1_pS256 Q53SF7 Isoform 4 of Cordon-bleu protein-like 1 -1.269 0.006

COBLL1_pT260 Q53SF7 Isoform 4 of Cordon-bleu protein-like 1 -1.269 0.006

LARP7_pS299 Q4G0J3 La-related protein 7 -1.271 0.001

JUND_pS90 P17535 Transcription factor jun-D -1.285 0.088

PEA15_pS116 Q15121 PEA15 protein -1.292 0.002

MEF2D_pS121 Q14814 Isoform MEF2DA0 of Myocyte-specific enhancer factor 2D -1.311 0.019

HSP90AB1_pS452 P08238 Heat shock protein 90kDa alpha (Cytosolic), class B member 1, isoform CRA_a -1.317 0.041

OSBP_pS240 P22059 Oxysterol-binding protein 1 -1.328 0.000

NA_pT108 A0A1U9X609 ABCF1 -1.337 0.011

LARP7_pS298 Q4G0J3 La-related protein 7 -1.340 0.003

LIMA1_pS132 Q9UHB6 Isoform 4 of LIM domain and actin-binding protein 1 -1.347 0.002

VCL_pS290 P18206 Vinculin, isoform CRA_c -1.362 0.014

KIF14_pS1292 Q15058 Kinesin-like protein KIF14 -1.362 0.034

NA_pS1166 Q2TTR7 Receptor protein-tyrosine kinase -1.370 0.016

RPL28_pS115 P46779 60S ribosomal protein L28 -1.381 0.001

OSBPL3_pS251 Q9H4L5 Oxysterol-binding protein-related protein 3 -1.383 0.000

TEX2_pS196 Q8IWB9 Testis-expressed protein 2 -1.396 0.120

ARHGAP1_pS51 Q07960 Rho GTPase-activating protein 1 -1.406 0.004

CCDC6_pS367 Q16204 Coiled-coil domain containing 6, isoform CRA_a -1.406 0.009

PDHA1_pS293 P08559 Pyruvate dehydrogenase E1 component subunit alpha -1.431 0.003

NRBP1_pS11 Q9UHY1 Nuclear receptor-binding protein -1.447 0.047

NRBP1_pS2 Q9UHY1 Nuclear receptor-binding protein -1.447 0.053

DLG5_pT874 Q8TDM6 Isoform 4 of Disks large homolog 5 -1.458 0.002

DLG5_pS890 Q8TDM6 Isoform 4 of Disks large homolog 5 -1.458 0.002

DSG2_pS782 Q14126 Desmoglein-2 -1.476 0.023

RPS6KA4_pS347 O75676 Ribosomal protein S6 kinase -1.484 0.002

RPS6KA4_pS343 O75676 Ribosomal protein S6 kinase -1.484 0.002

SPECC1L_pS384 Q69YQ0 Isoform 2 of Cytospin-A -1.499 0.019

ERRFI1_pT127 Q9UJM3 ERBB receptor feedback inhibitor 1 -1.512 0.120

MYO18A_pS1970 Q92614 Unconventional myosin-XVIIIa -1.519 0.003

NA_pS295 B3KU62 cDNA FLJ39243 fis, clone OCBBF2008283, highly similar to Protein NDRG1 -1.529 0.005

NA_pS292 B3KU62 cDNA FLJ39243 fis, clone OCBBF2008283, highly similar to Protein NDRG1 -1.529 0.194

AKAP13_pS1914 Q12802 Isoform 3 of A-kinase anchor protein 13 -1.564 0.019

SYNE1_pS7900 Q8NF91 Nesprin-1 -1.565 0.001

NA_pS16 A0A109NGN6 Proteasome subunit alpha type -1.587 0.008

SPECC1L_pS385 Q69YQ0 Isoform 2 of Cytospin-A -1.592 0.001

AHNAK_pS5400 Q09666 Neuroblast differentiation-associated protein AHNAK -1.612 0.120

EPHA2_pS570 P29317 EPH receptor A2, isoform CRA_a -1.613 0.037

PDHA1_pS232 P08559 Pyruvate dehydrogenase E1 component subunit alpha -1.651 0.131

ERCC6L_pS1069 Q2NKX8 DNA excision repair protein ERCC-6-like -1.684 0.153

HEL-S-102_pS15 V9HW43 Epididymis secretory protein Li 102 -1.688 0.024

GIT1_pS508 Q9Y2X7 ARF GTPase-activating protein GIT1 -1.734 0.010

PAWR_pS259 Q96IZ0 PRKC apoptosis WT1 regulator protein -1.748 0.042

NA_pS298 B3KU62 cDNA FLJ39243 fis, clone OCBBF2008283, highly similar to Protein NDRG1 -1.765 0.065

ERBB2_pS1077 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -1.806 0.001

AHNAK_pS5731 Q09666 Neuroblast differentiation-associated protein AHNAK -1.843 0.058

SPECC1L_pS389 Q69YQ0 Isoform 2 of Cytospin-A -1.852 0.012

RAB23_pS188 Q9ULC3 RAB23, member RAS oncogene family, isoform CRA_a -1.869 0.060

NA_pS148 Q71U35 Transcriptional enhancer factor TEF-5 -1.892 0.004

PKP2_pS155 Q99959 Isoform 1 of Plakophilin-2 -1.911 0.108

PKP2_pS154 Q99959 Isoform 1 of Plakophilin-2 -1.911 0.108

PKP2_pS151 Q99959 Isoform 1 of Plakophilin-2 -1.911 0.108

AHNAK_pT4766 Q09666 Neuroblast differentiation-associated protein AHNAK -1.919 0.037

MYO18A_pS1974 Q92614 Unconventional myosin-XVIIIa -1.945 0.029

AHNAK_pT4100 Q09666 Neuroblast differentiation-associated protein AHNAK -1.953 0.017

ITGB4_pT1417 P16144 Integrin beta -1.983 0.186

NA_pS268 B2R6N9
cDNA, FLJ93042, highly similar to Homo sapiens signal sequence receptor, alpha 

(translocon-associated protein alpha) (SSR1), mRNA
-1.983 0.002

ERRFI1_pT131 Q9UJM3 ERBB receptor feedback inhibitor 1 -1.994 0.054

CAMK2D_pS319 Q13557 Isoform Delta 6 of Calcium/calmodulin-dependent protein kinase type II subunit delta -2.007 0.028

CAMK2D_pS315 Q13557 Isoform Delta 6 of Calcium/calmodulin-dependent protein kinase type II subunit delta -2.007 0.028

RPS6KA4_pS627 O75676 Ribosomal protein S6 kinase -2.043 0.010

AHNAK_pS5857 Q09666 Neuroblast differentiation-associated protein AHNAK -2.153 0.096

AHNAK_pT4430 Q09666 Neuroblast differentiation-associated protein AHNAK -2.158 0.034

NOP56_pS569 O00567 Nucleolar protein 56 -2.208 0.000

NOP56_pS570 O00567 Nucleolar protein 56 -2.208 0.000

AHNAK_pS5830 Q09666 Neuroblast differentiation-associated protein AHNAK -2.213 0.092

CTNND1_pS47 O60716 Isoform 1A of Catenin delta-1 -2.263 0.005

AHNAK_pT3716 Q09666 Neuroblast differentiation-associated protein AHNAK -2.277 0.040

RRAGC_pT96 Q9HB90 Ras-related GTP-binding protein C -2.387 0.001

CTNNB1_pS191 P35222 Catenin (Cadherin-associated protein), beta 1, 88kDa, isoform CRA_a -2.393 0.002

ZNF106_pS1370 Q9H2Y7 Zinc finger protein 106 -2.409 0.004

PDHA1_pS300 P08559 Pyruvate dehydrogenase E1 component subunit alpha -2.413 0.058

SH3KBP1_pS193 Q96B97 Isoform 2 of SH3 domain-containing kinase-binding protein 1 -2.449 0.012

CTNND1_pS4 O60716 Isoform 1A of Catenin delta-1 -2.486 0.014

ITGB4_pS1404 P16144 Integrin beta -2.545 0.087

AHNAK_pS5620 Q09666 Neuroblast differentiation-associated protein AHNAK -2.627 0.008

CDH1_pS793 P12830 E-cadherin 1 -2.631 0.016

NA_pT290 B3KU62 cDNA FLJ39243 fis, clone OCBBF2008283, highly similar to Protein NDRG1 -2.660 0.001

CAMSAP2_pS835 Q08AD1 Isoform 2 of Calmodulin-regulated spectrin-associated protein 2 -3.479 0.018

ABLIM3_pS282 O94929 Isoform 2 of Actin-binding LIM protein 3 -3.567 0.013

ITGB4_pS1534 P16144 Integrin beta -4.577 0.003
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Appendix Table 2. The topmost dysregulated phosphorylation sites by 

comparing D492HER2 with D492 after statistical analysis of the SILAC 

phosphoproteomic dataset (fold change >= 2, one-sample Student’s T-test p 

value < 0.05; p > 0.05 and fold change >= 2 in all three replicates). Tenne: 

active in D492HER2; Blue: active in D492. NA: gene name is not available. 

 

Phosphorylation Site
Uniprot 

Protein ID
Protein Name

Median_Log2(D492

HER2/D492)
p Value

RPS6KA4_pS627 O75676 Ribosomal protein S6 kinase 5.198 0.005

CAV1_pY6 Q03135 Caveolin 2.862 0.028

AHNAK_pS5731 Q09666 Neuroblast differentiation-associated protein AHNAK 2.702 0.160

RASAL2_pS880 Q9UJF2 Isoform 2 of Ras GTPase-activating protein nGAP 2.679 0.073

RASAL2_pS877 Q9UJF2 Isoform 2 of Ras GTPase-activating protein nGAP 2.679 0.073

AHNAK_pS5830 Q09666 Neuroblast differentiation-associated protein AHNAK 2.646 0.088

RRAGC_pT96 Q9HB90 Ras-related GTP-binding protein C 2.643 0.001

AHNAK_pS5857 Q09666 Neuroblast differentiation-associated protein AHNAK 2.173 0.082

ERBB2_pS968 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 1.947 0.011

CDC42EP2_pS109 O14613 Cdc42 effector protein 2 1.946 0.003

HEL-S-270_pS12 V9HW65 Annexin 1.848 0.002

CCDC6_pS367 Q16204 Coiled-coil domain containing 6, isoform CRA_a 1.811 0.005

MYO18A_pS1974 Q92614 Unconventional myosin-XVIIIa 1.810 0.013

MYO18A_pS1970 Q92614 Unconventional myosin-XVIIIa 1.810 0.013

CDH1_pS793 P12830 E-cadherin 1 1.788 0.025

ITGB4_pS1534 P16144 Integrin beta 1.713 0.037

CTNNB1_pS191 P35222 Catenin (Cadherin-associated protein), beta 1, 88kDa, isoform CRA_a 1.643 0.019

AHNAK_pS5400 Q09666 Neuroblast differentiation-associated protein AHNAK 1.627 0.159

AKAP13_pS1914 Q12802 Isoform 3 of A-kinase anchor protein 13 1.491 0.009

MAP4_pT1462 P27816 Microtubule-associated protein 1.483 0.004

HEL-S-270_pY30 V9HW65 Annexin 1.416 0.001

CTNND1_pS4 O60716 Isoform 1A of Catenin delta-1 1.415 0.034

NA_pT290 B3KU62
cDNA FLJ39243 fis, clone OCBBF2008283, highly similar to Protein 

NDRG1
1.410 0.091

MAP7D1_pS116 Q3KQU3 Isoform 4 of MAP7 domain-containing protein 1 1.398 0.000

IRS2_pS388 Q9Y4H2 Insulin receptor substrate 2 1.373 0.012

COBLL1_pS256 Q53SF7 Isoform 4 of Cordon-bleu protein-like 1 1.370 0.089

COBLL1_pT260 Q53SF7 Isoform 4 of Cordon-bleu protein-like 1 1.370 0.089

MAP7D1_pS113 Q3KQU3 Isoform 4 of MAP7 domain-containing protein 1 1.366 0.123

MAP7D1_pS125 Q3KQU3 Isoform 4 of MAP7 domain-containing protein 1 1.366 0.073

ERBB2_pS1144 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 1.364 0.030

ADD3_pS645 Q9UEY8 Isoform 1 of Gamma-adducin 1.362 0.078

ADD3_pS649 Q9UEY8 Isoform 1 of Gamma-adducin 1.362 0.097

STOML2_pT327 Q9UJZ1 Stomatin-like protein 2, mitochondrial 1.343 0.006

TFAM_pS195 Q00059 TFAM protein (Fragment) 1.332 0.002

NOP56_pS569 O00567 Nucleolar protein 56 1.324 0.001

NOP56_pS570 O00567 Nucleolar protein 56 1.324 0.001

NOP56_pS563 O00567 Nucleolar protein 56 1.324 0.001

PAK2_pS197 Q13177 Serine/threonine-protein kinase PAK 2 1.317 0.029

OSBP_pS240 P22059 Oxysterol-binding protein 1 1.314 0.005

PLEKHA5_pS471 Q9HAU0 Pleckstrin homology domain-containing family A member 5 1.299 0.044

SF3B1_pT328 O75533 Splicing factor 3B subunit 1 1.297 0.069

DSG2_pS782 Q14126 Desmoglein-2 1.295 0.032

ERBIN_pS1158 Q96RT1 Isoform 5 of Erbin 1.293 0.037

PAWR_pS259 Q96IZ0 PRKC apoptosis WT1 regulator protein 1.260 0.032

ERBB2_pT671 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 1.256 0.196

ERRFI1_pT131 Q9UJM3 ERBB receptor feedback inhibitor 1 1.237 0.051

GIT1_pS508 Q9Y2X7 ARF GTPase-activating protein GIT1 1.235 0.043

NA_pS293 A8K2W3 cDNA FLJ78516 1.221 0.015

MAP4_pS723 P27816 Microtubule-associated protein 1.202 0.041

NRBP1_pS11 Q9UHY1 Nuclear receptor-binding protein 1.196 0.069

NRBP1_pS2 Q9UHY1 Nuclear receptor-binding protein 1.196 0.070

NA_pY1172 Q2TTR7 Receptor protein-tyrosine kinase 1.164 0.042

NOP56_pS519 O00567 Nucleolar protein 56 1.164 0.026

NOP56_pS520 O00567 Nucleolar protein 56 1.164 0.026

ERRFI1_pT127 Q9UJM3 ERBB receptor feedback inhibitor 1 1.157 0.094

SLC8A1_pS389 P32418 Sodium/calcium exchanger 1 1.143 0.096

TNS4_pS7 Q8IZW8 Tensin-4 1.137 0.027

CTNND1_pS47 O60716 Isoform 1A of Catenin delta-1 1.120 0.005

PRRC2C_pT2682 Q9Y520 Isoform 4 of Protein PRRC2C 1.085 0.084

PPP1R13L_pS187 Q8WUF5
Protein phosphatase 1, regulatory (Inhibitor) subunit 13 like, isoform 

CRA_a
1.085 0.016

RAPH1_pS853 Q70E73 Ras-associated and pleckstrin homology domains-containing protein 1 1.083 0.011

NA_pT108 A0A1U9X609 ABCF1 1.072 0.005

NA_pY1110 Q2TTR7 Receptor protein-tyrosine kinase 1.071 0.010

AHNAK_pS5448 Q09666 Neuroblast differentiation-associated protein AHNAK 1.063 0.107

DCP1A_pS487 Q9NPI6 Isoform 2 of mRNA-decapping enzyme 1A 1.062 0.029

SF3B2_pS307 Q13435 Splicing factor 3B subunit 2 1.054 0.048
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Appendix Table 2 – continued. 

 

 

 

 

 

 

 

 

Phosphorylation Site
Uniprot 

Protein ID
Protein Name

Median_Log2(D492

HER2/D492)
p Value

HACD3_pS135 Q9P035 Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 -1.003 0.023

AHNAK_pS210 Q09666 Neuroblast differentiation-associated protein AHNAK -1.006 0.154

TNS4_pS350 Q8IZW8 Tensin-4 -1.007 0.082

PKP2_pS155 Q99959 Isoform 1 of Plakophilin-2 -1.009 0.000

PKP2_pS151 Q99959 Isoform 1 of Plakophilin-2 -1.015 0.017

NUP153_pS333 P49790 Nucleoporin 153kDa, isoform CRA_a -1.016 0.003

CTNND1_pS352 O60716 Isoform 1A of Catenin delta-1 -1.017 0.014

PANK2_pS45 Q9BZ23 Isoform 2 of Pantothenate kinase 2, mitochondrial -1.039 0.018

FAM83H_pS513 Q6ZRV2 Protein FAM83H -1.041 0.013

TACC3_pS25 Q9Y6A5 Transforming acidic coiled-coil-containing protein 3 -1.044 0.078

CTNND1_pS346 O60716 Isoform 1A of Catenin delta-1 -1.045 0.100

CTNND1_pS349 O60716 Isoform 1A of Catenin delta-1 -1.045 0.100

MAP7D1_pS428 Q3KQU3 Isoform 4 of MAP7 domain-containing protein 1 -1.049 0.009

TMEM201_pS454 Q5SNT2 Transmembrane protein 201 -1.058 0.069

ALDOC_pS45 P09972 Fructose-bisphosphate aldolase -1.063 0.001

EPS8L2_pS17 Q9H6S3 Epidermal growth factor receptor kinase substrate 8-like protein 2 -1.069 0.073

TMPO_pS362 P42166 Thymopoietin, isoform CRA_c -1.071 0.004

GPS1_pS454 Q13098 COP9 signalosome complex subunit 1 -1.074 0.021

CTNND1_pS252 O60716 Isoform 1A of Catenin delta-1 -1.088 0.037

CRYBG1_pS427 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 -1.102 0.000

DSP_pS22 P15924 Desmoplakin -1.104 0.098

TAOK1_pS9 Q7L7X3 TAO kinase 1, isoform CRA_a -1.108 0.025

NA_pS350 B2RCI6
cDNA, FLJ96094, highly similar to Homo sapiens numb homolog 

(Drosophila) (NUMB), mRNA
-1.108 0.112

STK38_pS264 Q15208 Serine/threonine kinase 38, isoform CRA_a -1.112 0.189

UBE1_pS46 P22314 Testicular secretory protein Li 63 -1.115 0.002

NUP153_pS330 P49790 Nucleoporin 153kDa, isoform CRA_a -1.120 0.021

EHD2_pS470 Q9NZN4 EH-domain containing 2, isoform CRA_a -1.126 0.001

CRYBG1_pS424 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 -1.129 0.000

IRS2_pS1203 Q9Y4H2 Insulin receptor substrate 2 -1.133 0.012

NA_pS266 B4E2X3 cDNA FLJ56024 -1.139 0.002

GPS1_pS448 Q13098 COP9 signalosome complex subunit 1 -1.160 0.014

AKAP12_pS283 Q02952 A-kinase anchor protein 12 -1.165 0.015

IRS2_pS973 Q9Y4H2 Insulin receptor substrate 2 -1.165 0.126

ATXN2_pS545 Q99700 Ataxin-2 (Fragment) -1.171 0.003

TNKS1BP1_pS987 Q9C0C2 Tankyrase 1 binding protein 1, 182kDa, isoform CRA_a -1.175 0.005

HEL113_pS325 V9HWE1 Epididymis luminal protein 113 -1.186 0.005

NES_pS398 P48681 Nestin, isoform CRA_c -1.190 0.170

RAC1_pS71 P63000
Ras-related C3 botulinum toxin substrate 1 (Rho family, small GTP 

binding protein Rac1)
-1.213 0.047

ZFYVE16_pS946 Q7Z3T8 Zinc finger, FYVE domain containing 16, isoform CRA_a -1.217 0.033

FAM62A_pS820 Q9BSJ8
Family with sequence similarity 62 (C2 domain containing), member A, 

isoform CRA_b
-1.221 0.003

CHORDC1_pT47 Q9UHD1 Cysteine and histidine-rich domain (CHORD)-containing 1, isoform CRA_c -1.233 0.014

PHKA2_pS729 P46019 Phosphorylase b kinase regulatory subunit alpha, liver isoform -1.239 0.058

PSAT1_pS344 Q9Y617 Phosphoserine aminotransferase -1.299 0.041

DSP_pS176 P15924 Desmoplakin -1.308 0.002

CTNND1_pS268 O60716 Isoform 1A of Catenin delta-1 -1.309 0.022

CTNND1_pS269 O60716 Isoform 1A of Catenin delta-1 -1.309 0.022

HEL113_pS42 V9HWE1 Epididymis luminal protein 113 -1.370 0.007
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Appendix Table 2 – continued. 

 

 

 

 

 

 

 

 

 

 

Phosphorylation Site
Uniprot 

Protein ID
Protein Name

Median_Log2(D492

HER2/D492)
p Value

WDR44_pS561 Q5JSH3 Isoform 2 of WD repeat-containing protein 44 -1.410 0.004

PKP2_pS251 Q99959 Isoform 1 of Plakophilin-2 -1.427 0.200

CTNND1_pS230 O60716 Isoform 1A of Catenin delta-1 -1.438 0.023

HIST1H4L_pS48 P62805 Histone H4 -1.447 0.017

RPL34_pS12 P49207 Ribosomal protein L34, isoform CRA_a -1.460 0.151

AKAP12_pS286 Q02952 A-kinase anchor protein 12 -1.469 0.034

TNS3_pS1149 Q68CZ2 Tensin-3 -1.487 0.044

TNKS1BP1_pS1024 Q9C0C2 Tankyrase 1 binding protein 1, 182kDa, isoform CRA_a -1.493 0.033

ITPR3_pS916 Q14573 Inositol 1,4,5-trisphosphate receptor type 3 -1.503 0.013

HEL113_pS56 V9HWE1 Epididymis luminal protein 113 -1.516 0.009

HEL113_pS51 V9HWE1 Epididymis luminal protein 113 -1.516 0.009

BIN1_pT292 O00499 Bridging integrator 1, isoform CRA_a -1.522 0.118

AHNAK_pS332 Q09666 Neuroblast differentiation-associated protein AHNAK -1.548 0.012

NA_pS177 B2RDZ9 cDNA, FLJ96850 -1.566 0.000

SEPT9_pS12 A0A024R8V0 Septin 9, isoform CRA_a -1.571 0.059

DST_pS1909 Q03001 Isoform 3 of Dystonin -1.587 0.046

EI24_pS46 O14681 Etoposide induced 2.4 mRNA, isoform CRA_a -1.625 0.010

SCRIB_pS504 Q14160 Protein scribble homolog -1.636 0.010

NA_pS60 B2RA03
cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), 

mRNA
-1.669 0.003

ITGB4_pT1417 P16144 Integrin beta -1.679 0.109

SARG_pS133 Q9BW04 Specifically androgen-regulated gene protein -1.774 0.156

AKAP12_pS75 Q02952 A-kinase anchor protein 12 -1.797 0.173

FLNC_pS2146 Q14315 Filamin-C -1.889 0.007

NA_pS42 B2RA03
cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), 

mRNA
-1.918 0.002

PKP2_pS197 Q99959 Isoform 1 of Plakophilin-2 -1.920 0.001

LMNB2_pS424 Q03252 Lamin-B2 -1.999 0.001

COL17A1_pS148 Q9UMD9 Isoform 2 of Collagen alpha-1(XVII) chain -2.041 0.009

ITGB4_pS1413 P16144 Integrin beta -2.139 0.015

NA_pS10 B2RA03
cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), 

mRNA
-2.296 0.024

ITGB4_pS1069 P16144 Integrin beta -2.303 0.009

NA_pS31 B2RA03
cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), 

mRNA
-2.304 0.011

CRYBG1_pS280 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 -2.424 0.029

AKAP12_pS96 Q02952 A-kinase anchor protein 12 -2.479 0.069

FAM83B_pS869 Q5T0W9 Protein FAM83B -2.516 0.021

CRYBG1_pT397 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 -2.563 0.003

AKAP12_pS1395 Q02952 A-kinase anchor protein 12 -2.848 0.001

ERBB2_pY975 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -2.880 0.011

CRYBG1_pS299 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 -2.964 0.000

ERBB2_pS1070 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -3.622 0.011

ERBB2_pS1024 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -3.660 0.001

ITGB4_pS1424 P16144 Integrin beta -3.760 0.000

ERBB2_pS1036 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -3.815 0.006

ERBB2_pS1048 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -4.040 0.012
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Appendix Table 3. The topmost dysregulated phosphorylation sites by 

comparing D492HER2 with D492 after statistical analysis of the SILAC 

phosphoproteomic dataset (fold change >= 2, one-sample Student’s T-test p 

value < 0.05; p > 0.05 and fold change >= 2 in all three replicates). Tenne: 

active in D492HER2; Red: active in D492M. NA: gene name is not available. 

 

 

 

 

 

 

Phosphorylation Site
Uniprot 

Protein ID
Protein Name

Median_Log2(D492

HER2/D492M)
p Value

COL17A1_pS93 Q9UMD9 Isoform 2 of Collagen alpha-1(XVII) chain 3.886 0.086

CAV1_pY6 Q03135 Caveolin 3.692 0.013

COL17A1_pS148 Q9UMD9 Isoform 2 of Collagen alpha-1(XVII) chain 3.467 0.017

COL17A1_pS61 Q9UMD9 Isoform 2 of Collagen alpha-1(XVII) chain 3.295 0.146

RPS6KA4_pS627 O75676 Ribosomal protein S6 kinase 3.088 0.037

COL17A1_pS85 Q9UMD9 Isoform 2 of Collagen alpha-1(XVII) chain 2.904 0.012

CD2AP_pS458 Q9Y5K6 CD2-associated protein 2.626 0.117

COL17A1_pS62 Q9UMD9 Isoform 2 of Collagen alpha-1(XVII) chain 2.597 0.025

TNS4_pS253 Q8IZW8 Tensin-4 2.257 0.083

NA_pS1124 A0A1P7ZIM8 LMO7b 1.715 0.014

NA_pS1130 A0A1P7ZIM8 LMO7b 1.715 0.014

LRBA_pS2485 P50851
Isoform 2 of Lipopolysaccharide-responsive and beige-like 

anchor protein
1.660 0.030

CTNND1_pS320 O60716 Isoform 1A of Catenin delta-1 1.590 0.074

DSP_pS2815 P15924 Desmoplakin 1.516 0.033

DSP_pS2821 P15924 Desmoplakin 1.516 0.033

DSP_pS2825 P15924 Desmoplakin 1.516 0.097

RAB7A_pS72 P51149 RAB7, member RAS oncogene family, isoform CRA_a 1.508 0.064

EPHA2_pS901 P29317 EPH receptor A2, isoform CRA_a 1.498 0.008

CEP170B_pS1109 Q9Y4F5 Isoform 3 of Centrosomal protein of 170 kDa protein B 1.392 0.008

PKP3_pS313 Q9Y446 Plakophilin-3 1.349 0.093

RASAL2_pS880 Q9UJF2 Isoform 2 of Ras GTPase-activating protein nGAP 1.334 0.059

RASAL2_pS877 Q9UJF2 Isoform 2 of Ras GTPase-activating protein nGAP 1.334 0.059

SNAP23_pS20 O00161 Synaptosomal-associated protein 1.246 0.021

ERBB2_pS968 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 1.179 0.073

TNS4_pS350 Q8IZW8 Tensin-4 1.164 0.188

ZC3HAV1_pS335 Q7Z2W4 Zinc finger CCCH-type antiviral protein 1 1.160 0.018

EPHA2_pS897 P29317 EPH receptor A2, isoform CRA_a 1.122 0.006

PRKAR1A_pS83 P10644
Protein kinase, cAMP-dependent, regulatory, type I, alpha 

(Tissue specific extinguisher 1), isoform CRA_a
1.106 0.016

PANK4_pT406 Q9NVE7 Pantothenate kinase 4 1.105 0.064

CHD4_pS1524 Q14839 Chromodomain-helicase-DNA-binding protein 4 1.067 0.096

CHD4_pS1528 Q14839 Chromodomain-helicase-DNA-binding protein 4 1.067 0.096

EPHA2_pS892 P29317 EPH receptor A2, isoform CRA_a 1.041 0.119

SETX_pS1019 Q7Z333 Isoform 3 of Probable helicase senataxin 1.033 0.148

FAM62A_pS820 Q9BSJ8
Family with sequence similarity 62 (C2 domain containing), 

member A, isoform CRA_b
1.029 0.000

JAM3_pS230 Q9BX67 Isoform 2 of Junctional adhesion molecule C 1.028 0.003

NA_pY1172 Q2TTR7 Receptor protein-tyrosine kinase 1.020 0.097

NA_pS73 B3KN59
cDNA FLJ13673 fis, clone PLACE1011858, highly similar to 

BAG family molecular chaperone regulator 2
1.013 0.004

HEL-S-270_pY30 V9HW65 Annexin 1.013 0.013
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Appendix Table 3 – continued. 

 

 

 

Phosphorylation Site
Uniprot 

Protein ID
Protein Name

Median_Log2(D492

HER2/D492M)
p Value

CTNND1_pT900 O60716 Isoform 1A of Catenin delta-1 -1.004 0.015

TNKS1BP1_pT1282 Q9C0C2 Tankyrase 1 binding protein 1, 182kDa, isoform CRA_a -1.005 0.070

HTT_pS432 P42858 Huntingtin -1.005 0.022

DKFZp761I0921_pS692 Q68CX0 Transporter (Fragment) -1.006 0.099

PPP1R13L_pS102 Q8WUF5
Protein phosphatase 1, regulatory (Inhibitor) subunit 13 like, 

isoform CRA_a
-1.011 0.003

CDAN1_pS276 Q8IWY9 Isoform 1 of Codanin-1 -1.026 0.055

NA_pS298 B3KU62
cDNA FLJ39243 fis, clone OCBBF2008283, highly similar to 

Protein NDRG1
-1.026 0.116

TOP2A_pS1374 P11388 DNA topoisomerase 2-alpha -1.031 0.139

TOP2A_pS1377 P11388 DNA topoisomerase 2-alpha -1.031 0.139

BAIAP2L1_pS261 Q9UHR4
Brain-specific angiogenesis inhibitor 1-associated protein 2-like 

protein 1
-1.031 0.001

MST065_pS15 Q549C5 HCG2010808, isoform CRA_a -1.036 0.007

SAP30BP_pS22 Q9UHR5 Isoform 2 of SAP30-binding protein -1.040 0.055

MYBBP1A_pS1308 Q9BQG0 Myb-binding protein 1A -1.040 0.004

MYBBP1A_pS1314 Q9BQG0 Myb-binding protein 1A -1.040 0.004

STIM2_pS680 Q9P246 Stromal interaction molecule 2 -1.040 0.003

PDLIM2_pS161 Q96JY6 PDZ and LIM domain protein 2 -1.042 0.014

TNKS1BP1_pS1024 Q9C0C2 Tankyrase 1 binding protein 1, 182kDa, isoform CRA_a -1.043 0.044

CAD_pS1343 P27708 CAD protein -1.048 0.102

PLEKHF2_pS16 Q9H8W4 Pleckstrin homology domain-containing family F member 2 -1.049 0.006

SLK_pS779 Q9H2G2 Isoform 2 of STE20-like serine/threonine-protein kinase -1.051 0.070

SLK_pS777 Q9H2G2 Isoform 2 of STE20-like serine/threonine-protein kinase -1.051 0.054

NAP1L4_pS5 Q99733 Nucleosome assembly protein 1-like 4, isoform CRA_b -1.053 0.021

HEL113_pS42 V9HWE1 Epididymis luminal protein 113 -1.054 0.022

TNKS1BP1_pS1029 Q9C0C2 Tankyrase 1 binding protein 1, 182kDa, isoform CRA_a -1.068 0.046

TACC3_pS25 Q9Y6A5 Transforming acidic coiled-coil-containing protein 3 -1.076 0.003

NOP56_pS563 O00567 Nucleolar protein 56 -1.078 0.019

SH3KBP1_pS474 Q96B97 Isoform 2 of SH3 domain-containing kinase-binding protein 1 -1.080 0.056

SH3KBP1_pS472 Q96B97 Isoform 2 of SH3 domain-containing kinase-binding protein 1 -1.080 0.056

SARM1_pS40 Q6SZW1 SARM1 protein (Fragment) -1.084 0.043

REPS1_pS272 Q96D71
Isoform 3 of RalBP1-associated Eps domain-containing protein 

1
-1.092 0.077

REPS1_pS273 Q96D71
Isoform 3 of RalBP1-associated Eps domain-containing protein 

1
-1.092 0.077

HEL-S-49_pS21 V9HWK1 Triosephosphate isomerase -1.094 0.003

LASP1_pS146 Q14847 LIM and SH3 protein 1, isoform CRA_b -1.097 0.128

TP53BP1_pS1618 Q12888 TP53-binding protein 1 -1.106 0.008

YRDC_pS60 Q86U90 YrdC domain-containing protein, mitochondrial -1.106 0.014

EIF4B_pS498 P23588 Eukaryotic translation initiation factor 4B -1.110 0.004

LASP1_pT68 Q14847 LIM and SH3 protein 1, isoform CRA_b -1.113 0.021

SPECC1L_pS384 Q69YQ0 Isoform 2 of Cytospin-A -1.117 0.040

PKP3_pT308 Q9Y446 Plakophilin-3 -1.123 0.143

IRS2_pS560 Q9Y4H2 Insulin receptor substrate 2 -1.127 0.040

IGF2BP2_pS164 Q9Y6M1 Isoform 2 of Insulin-like growth factor 2 mRNA-binding protein 2 -1.129 0.001

CTNND1_pS352 O60716 Isoform 1A of Catenin delta-1 -1.137 0.000

CTNND1_pS349 O60716 Isoform 1A of Catenin delta-1 -1.137 0.179

AHNAK_pS210 Q09666 Neuroblast differentiation-associated protein AHNAK -1.144 0.108

TNKS1BP1_pS987 Q9C0C2 Tankyrase 1 binding protein 1, 182kDa, isoform CRA_a -1.147 0.050

C15orf52_pS133 Q6ZUT6 Isoform 4 of Uncharacterized protein C15orf52 -1.169 0.187

ITPR3_pS916 Q14573 Inositol 1,4,5-trisphosphate receptor type 3 -1.179 0.071

PDLIM4_pS120 P50479 PDZ and LIM domain protein 4 -1.183 0.006

NA_pS185 B3KN57
cDNA FLJ13654 fis, clone PLACE1011477, highly similar to 

Sorting nexin-2
-1.192 0.017

IGF2BP2_pS162 Q9Y6M1 Isoform 2 of Insulin-like growth factor 2 mRNA-binding protein 2 -1.193 0.003
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Appendix Table 3 – continued. 

 

Phosphorylation Site
Uniprot 

Protein ID
Protein Name

Median_Log2(D492

HER2/D492M)
p Value

AHNAK_pS5552 Q09666 Neuroblast differentiation-associated protein AHNAK -1.201 0.016

TMPO_pS362 P42166 Thymopoietin, isoform CRA_c -1.203 0.009

CENPF_pS2996 P49454 Centromere protein F -1.204 0.011

CTNND1_pS230 O60716 Isoform 1A of Catenin delta-1 -1.224 0.030

NA_pS1166 Q2TTR7 Receptor protein-tyrosine kinase -1.225 0.079

HEL113_pS56 V9HWE1 Epididymis luminal protein 113 -1.230 0.034

HEL113_pS51 V9HWE1 Epididymis luminal protein 113 -1.230 0.034

NA_pS14 A8K0D2
cDNA FLJ77740, highly similar to Homo sapiens 7-

dehydrocholesterol reductase, mRNA
-1.242 0.003

SBDS_pT5 Q9Y3A5 Shwachman-Bodian-Diamond syndrome isoform 1 (Fragment) -1.245 0.007

STIM2_pS719 Q9P246 Stromal interaction molecule 2 -1.250 0.004

NAP1L4_pS7 Q99733 Nucleosome assembly protein 1-like 4, isoform CRA_b -1.251 0.018

HNRNPA3_pS14 P51991 Heterogeneous nuclear ribonucleoprotein A3 -1.258 0.066

CTNND1_pS47 O60716 Isoform 1A of Catenin delta-1 -1.261 0.014

PEA15_pS116 Q15121 PEA15 protein -1.262 0.005

NAP1L4_pS12 Q99733 Nucleosome assembly protein 1-like 4, isoform CRA_b -1.274 0.001

CENPF_pS3007 P49454 Centromere protein F -1.334 0.017

PDHA1_pS293 P08559 Pyruvate dehydrogenase E1 component subunit alpha -1.347 0.006

PHACTR4_pS411 Q8IZ21 Isoform 3 of Phosphatase and actin regulator 4 -1.359 0.054

NA_pS16 A0A109NGN6 Proteasome subunit alpha type -1.387 0.004

ERBB2_pS1053 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -1.390 0.056

RIPOR1_pS22 Q6ZS17 Isoform 2 of Rho family-interacting cell polarization regulator 1 -1.391 0.001

VCL_pS721 P18206 Vinculin, isoform CRA_c -1.400 0.000

HSP90AB1_pS452 P08238
Heat shock protein 90kDa alpha (Cytosolic), class B member 1, 

isoform CRA_a
-1.418 0.027

TEX2_pS196 Q8IWB9 Testis-expressed protein 2 -1.421 0.002

PKP3_pS314 Q9Y446 Plakophilin-3 -1.421 0.102

AHNAK_pS5620 Q09666 Neuroblast differentiation-associated protein AHNAK -1.426 0.107

HEL-S-102_pS15 V9HW43 Epididymis secretory protein Li 102 -1.443 0.149

SPECC1L_pS385 Q69YQ0 Isoform 2 of Cytospin-A -1.521 0.014

PDLIM2_pS134 Q96JY6 PDZ and LIM domain protein 2 -1.535 0.006

PDLIM2_pS137 Q96JY6 PDZ and LIM domain protein 2 -1.535 0.015

TP53BP1_pS1678 Q12888 TP53-binding protein 1 -1.544 0.016

TP53BP1_pS1673 Q12888 TP53-binding protein 1 -1.544 0.016

NA_pS148 Q71U35 Transcriptional enhancer factor TEF-5 -1.565 0.002

PDHA1_pS232 P08559 Pyruvate dehydrogenase E1 component subunit alpha -1.612 0.030

TNS3_pS1154 Q68CZ2 Tensin-3 -1.623 0.019

TNS3_pS1149 Q68CZ2 Tensin-3 -1.623 0.019

PKP3_pT571 Q9Y446 Plakophilin-3 -1.625 0.028

SPECC1L_pS389 Q69YQ0 Isoform 2 of Cytospin-A -1.700 0.008

EIF3E_pS399 P60228 Eukaryotic translation initiation factor 3 subunit E -1.750 0.001

ITGB4_pS1413 P16144 Integrin beta -1.845 0.125

PLCB3_pS537 Q01970
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-

3
-1.887 0.125

ERCC6L_pS1069 Q2NKX8 DNA excision repair protein ERCC-6-like -1.919 0.199

ZNF106_pS1370 Q9H2Y7 Zinc finger protein 106 -1.951 0.001

PDHA1_pS300 P08559 Pyruvate dehydrogenase E1 component subunit alpha -1.980 0.134

SEPT9_pS12 A0A024R8V0 Septin 9, isoform CRA_a -1.990 0.014

PKP2_pS251 Q99959 Isoform 1 of Plakophilin-2 -2.006 0.149

VCL_pS290 P18206 Vinculin, isoform CRA_c -2.048 0.002

RAB23_pS188 Q9ULC3 RAB23, member RAS oncogene family, isoform CRA_a -2.352 0.001

SH3KBP1_pS193 Q96B97 Isoform 2 of SH3 domain-containing kinase-binding protein 1 -2.548 0.008

ITGB4_pS1424 P16144 Integrin beta -3.174 0.092

ERBB2_pS1077 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -3.303 0.005

CAMSAP2_pS835 Q08AD1 Isoform 2 of Calmodulin-regulated spectrin-associated protein 2 -3.522 0.006

ABLIM3_pS282 O94929 Isoform 2 of Actin-binding LIM protein 3 -3.525 0.016

ERBB2_pY975 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -3.544 0.001

ERBB2_pY847 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -3.734 0.019

ERBB2_pS1048 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -4.226 0.005

ERBB2_pS1070 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -4.897 0.004

ERBB2_pS1024 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -5.930 0.006

ERBB2_pS1036 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -6.706 0.029


