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Agrip

Brj6stakrabbamein er ein helsta orsok krabbameinsdauda medal kvenna a
islandi og um heim allan. Ein forsenda meinvarpsmyndunnar er talin vera st
ad aexlisfrumur virkji proskunarferli sem kallast bandvefsumbreyting (EMT).
Bandvefsumbreyting (EMT) er frumuproskunarferli par sem pekjufrumur
umbreytast i bandvefsfrumur med minni vidlodun og aukna skridgetu. Talio er
ad aexlisfrumur geti virkjad EMT sem auki pa dreifingu aexlisfrumna milli vefja.
EMT einkennist p6 af fjdlda frumusvipgerda (EMP) sem hafa mismunandi
getu til meinvarpsmyndunnar. Efnaskiptabreytingar sem eiga sér stad
samfara EMT og EMP eru illskilgreindar. betta grunnrannsoéknarverkefni
midadi ad pvi ad einkenna efnaskiptasvipgerdir EMT og EMP i peim tilgangi
ad auka skilning & framgangi brjéstakrabbameins, studla ad framtioar
lyfjapréunn og greina hugsanleg lifmork fyrir illkynja eexli i brjostum.

Proteingreining & EMT og EMP frumulikbnum leiddu i ljés breytingar i
efnaskiptaferlum sykrunga. Ensimin UDP-glucose dehydrogenase (UGDH)
og glutamine-fructose-6-phosphate transaminase 2 (GFPT2) syndu mikinn
breytileika i tjaningu samfara EMT annarsvegar og EMP hinsvegar. UGDH
breytir UDP-glikésa i UDP-glukarénsyru og tekur patt i myndun hyalGrénans
i utanfrumuefni. GFPT2 er hradatakmarkandi ensimid i nymyndun sykrunga
og hvatar myndun UDP-N-asetylglikésamins (UDP-GIcNAc) og O-
GlycNAcylation proteina. Fylgni var & milli tjAningar UGDH og lifslikum
sjuklinga. Beeling & tjaningu UGDH hafai ahrif a frumufjélgun, frumuinnras, og
tjaningu EMT merksins SNAI1 og myndun glycerophosphocholines og n-
acetylaspartats. Tjaning GFPT2 haféi einnig &hrif & frumufjélgun, frumuinnras
og stjornun & EMT merkinu vimentin. Tjaning a GFPT2 syndi fylgni vid illkynja
aexli i brjostum med claudin-lag einkenni sérstaklega. GFPT2 tjaning eykst
vio oxunardlag og beeling & GFPT2 haféi &hrif & innanfrumumagn
cystathionines og & hvatberaensimid SQOR. Tjaningu & GFPT2 var styrt af
EGF og insulini bodskiptaferli, hugsanlega i gegnum GSK-33. Ad lokum voru
bodskiptaferli skodud sérstaklega med skimun & fosforyleringu proéteina.
Breytilieki i fosforyleringu proteina samfara EMT og EMP var mestur vegna
mismunandi virkni PDHKs og PAK1 protein kinasa. A heildina litid hefur
verkefnid synt fram & ad UGDH og GFPT2 eru veigamikil i efnaskiptum sykra
samfara EMT og i EMP, i framgangi brjostakrabbameins og ad pessar
breytingar eru mismunandi eftir undirflokkum brjéstakrabbameins.
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Abstract

Breast cancer is the leading cause of cancer deaths among women in
Iceland and worldwide. Epithelial-mesenchymal transition (EMT) is a cellular
developmental process where epithelial cells assume mesenchymal-like
phenotypes through degradation of the extracellular matrix, loss of
adhesions, and increased mobility. It is believed that dissemination of cancer
cells occurs partly following EMT. EMT contains a spectrum of epithelial-
mesenchymal intermediate cell states that impart different degrees of
malignancy. The ability of cells to assume these states is termed epithelial-
mesenchymal plasticity (EMP). This project aimed at characterizing the
metabolic phenotypes of EMT and EMP to obtain knowledge of breast cancer
progression and to identify biomarkers and potential therapeutic targets for
breast cancer treatment.

Proteomics analysis of cell models of EMT and EMP revealed changes to
enzymes involved in glycan metabolism. UDP-glucose dehydrogenase
(UGDH) and glutamine-fructose-6-phosphate transaminase 2 (GFPT2) were
identified as the topmost altered glycan metabolic enzymes in EMT and EMP,
respectively. UGDH converts UDP-glucose into UDP-glucuronic acid and is
involved in the formation of hyaluronan in the extracellular matrix. GFPT2
influences the downstream formation of UDP-N-acetylglucosamine (UDP-
GIcNAc) and protein O-GlycNAcylation. UGDH was associated with patient
survival, affected cell proliferation, cell invasion, and the expression of the
EMT marker SNAILl. siRNA-mediated knockdown of UGDH influenced
glycerophosphocholine (GPC) and increased N-acetylaspartate (NAA) levels.
GFPT2 similiarly influenced cell proliferation, migration, invasion, and
expression of the EMT marker vimentin and was associated with claudin-low
breast cancer. GFPT2 was shown to be a marker of oxidative stress, and
knockdown of GFPT2 affected cystathionine levels and the mitochondrial
enzyme sulfide quinone oxidoreductase (SQOR). Phosphoproteomics
analysis indicated distinct phosphorylation profiles of epithelial versus
mesenchymal cells. Specifically, pyruvate dehydrogenase kinases (PDHKS),
serine/threonine-protein kinase (PAK1), and protein kinase A catalytic subunit
a (PKACA) were differentially regulated across the mesenchymal cell lines
tested.



In conclusion, these results suggest that UGDH and GFPT2 are central to
changes that occur within glycan metabolism following EMT and EMP,
respectively. Both enzymes were associated with cancer progression and
GFPT2, specifically, may serve as a biomarker for cellular oxidative stress
and claudin-low breast cancer. The work furthermore implicates UGDH in
GPC and NAA metabolism.
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1 Introduction

1.1 Breast cancer

The burden of cancer is growing fast worldwide. In 2018, the total cost of
cancer was 199 billion euros in Europe (Hofmarcher et al., 2020). Around
19.3 million new cases of all cancers and 9.9 million cancer-caused deaths
occurred worldwide in 2020. The cancer incidence is expected to rise by 47
%, reaching 28.4 million in the next 20 years, causing a health care burden,
especially in transitioning countries. As of 2020, the top estimated age-
standardized incidence rate of all cancer types worldwide is breast cancer in
females and lung cancer in males. Female breast cancer is the leading cause
of cancer deaths in women. In Iceland, female breast cancer had the highest
cancer incidence rate in 2020 (Sung et al., 2021).

1.1.1 Breast cancer subtypes

Breast cancer is a heterogeneous disease and has been scrupulously
stratified based on hormonal phenotypes, including estrogen receptor (ESR)
positive, progesterone receptor (PR) positive, receptor tyrosine-protein
kinase ERBB2 (HER2) positive, and triple-negative breast cancer (TNBC).
On top of the immunohistochemical stratification, breast cancer can be
further classified based on genomic and transcriptomic evidence—for
example, Ki-67 and breast cancer gene (BRCAL1/2) (Loibl et al., 2021). The
classic molecular characterization of breast cancer based on the 50-gene
PAM50 model has classified it into five intrinsic subtypes: luminal A, luminal
B, HERZ2-enriched, basal-like, and normal-like (Perou et al., 2000; The
Cancer Genome Atlas Network, 2012).

Basal-like constitutes most TNBC, which is heterogeneous, considered
more aggressive, and has a poorer prognosis than other subtypes (Bianchini
et al., 2016). Due to the intrinsic complexity, heterogeneity, and lack of
therapeutic targets, TNBC has been a daunting barrier in clinical practice,
leaving chemotherapy as the only valid therapeutic option (Denkert et al.,
2017). There has been a significant amount of work done to understand the
true nature of TNBC and identify effective targets for diagnostics,
therapeutics, and prognostics (Denkert et al., 2017; Foulkes et al., 2010). The
understanding of TNBC has drastically improved, which leads to more
accurate TNBC subtyping for clinical treatment, and one of the breakthroughs
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has been the immune-checkpoint inhibitors. In addition, both exploring the
crosstalk between tumor cells and tumor microenvironment (TME) and
combining immunotherapy and targeted therapy have shown promise in
conquering TNBC (Bianchini et al., 2022; Denkert et al., 2017). Nonetheless,
more efforts are required and have been made to tackle this problem.

1.1.2 Claudin-low breast cancer

Recently, as an additional molecular subtype of breast cancer, claudin-low
has been investigated more thoroughly due to its aggressiveness (Fougner et
al., 2020; Prat et al., 2010; Radler et al., 2021). MDA-MB-231, MDA-MB-157,
BT549, and HS578T, among others, are widely studied breast cancer
mesenchymal cell lines with claudin-low characteristics (Lawrence et al.,
2015; Prat et al., 2010) and have been utilized in many studies on claudin-
low breast cancer (Patsialou et al., 2015).

Herschkowitz et al. classified and identified claudin-low breast cancer in
2007, seven years after the five intrinsic classifications had been established
(Herschkowitz et al., 2007). In that original publication, the claudin-low breast
cancer subtype was characterized by low expression of claudins (claudin 3,
claudin 4, and claudin 7), occludin, and E-cadherin. The sub-classification of
the claudin-low subtype has hitherto been open for debate. The biological
features represented by claudin-low may coexist with the five intrinsic
subtypes. A claudin-low breast tumor may be classified as non-claudin-low,
moderately claudin-low, extensively claudin-low, or purely claudin-low
(Fougner et al., 2020). Different cell types within the same cellular lineage
(mammary stem cells, luminal progenitor cells, or mature luminal cells) can
transform into different malignancies triggered by oncogenic insults. Hence,
claudin-low breast cancer can be classified into three subgroups based on
the cell-of-origin. Two subgroups were related to epithelial-mesenchymal
transition (EMT), while the third group was associated with normal human
mammary stem cells (Pommier et al., 2020). Radler and colleagues have
demonstrated that manipulation of the oncogene KRAS could induce claudin-
low mammary cancer in luminal epithelial cells (Radler et al., 2021).

1.1.3 Breast cancer metastasis

Metastatic breast cancer accounts for the poor patient prognosis, and the
cure for breast cancer metastasis is elusive. The combination of surgery,
radiation therapy, and chemotherapy, along with targeted approaches and
immunotherapy, is the current standard of care in the clinic (Loibl et al.,
2021). The metastasic breast cancer cells are considerably different from
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primary tumor cells concerning their genetic landscape, the potential to
interact with the immune system and their TME, and cell-type diversity
(Bertucci et al., 2019; Hutchinson et al., 2020). Studies show that circulating
tumor cells (CTCs) have significantly enriched with cells that have undergone
EMT, and the tumor cell population is associated with different transition
states of EMT, rendering different potential in cancer metastasis
(Pastushenko et al., 2018). EMT may facilitate metastatic dissemination
epigenetically without somatic mutations in primary tumor cells (Q.-L. Liu et
al., 2021).

1.2 EMT

1.2.1 The definition of EMT

In 2020, The EMT International Association (TEMTIA) published a
consensus statement intending to standardize EMT research and
reduce discrepancies and misinterpretations due to the plasticity and
heterogeneity of EMT (J. Yang et al., 2020).

A multifaceted and often reversible change in cellular phenotypes
during which epithelial cells lose their apical-basal polarity, modulate
their cytoskeleton and exhibit reduced cell-cell adhesive properties.
Cells may individually or collectively acquire mesenchymal features
and increase motility and invasive ability. Typically, a switch in
intermediate filament usage from cytokeratins to vimentin is observed
after a complete EMT. Cortical actin filament in epithelial cells also
undergoes marked rearrangement during EMT. While the
characteristics of fully epithelial cells are relatively clearly defined,
our current knowledge does not allow us to define the mesenchymal
state with specific cellular characteristic or molecular markers that
are universal end products of all EMT programs. (J. Yang et al.,
2020)

There are two main take-home messages from this guideline. First, EMT
cannot be simply defined based on one or several molecular markers or
EMT-associated transcription factors (EMT-TFs). Second, EMT should be
assessed on the basis of both changes in the cellular characteristics and a
set of molecular markers (J. Yang et al., 2020).
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1.2.2 The history of EMT

Origin of the EMT concept

Although the observation and description of the interconversions that take
place between the epithelial and mesenchymal cell states during embryonic
development can be traced back to the beginning of the 20" century, the
origin of the EMT theory dates back to 1968, when Dr. Elizabeth Hay gave a
speech at the 18" Hahnemann symposium in Baltimore about her
embryogenic research (Hay, 1968). Later, Dr. Hay and colleagues
manipulated the adult and embryonic epithelia in vitro and successfully
transformed epithelium into mesenchymal phenotypes, a phenomenon that
defined EMT as a distinct cellular process (Greenburg and Hay, 1982). In the
20 years that followed, several key features of EMT were defined, including
the loss of E-cadherin; the gain of N-cadherin; and the importance of specific
transcription and growth factors in EMT, such as Snail, Slug, E2A, ZEB1/2,
fibroblast growth factor (FGF), insulin-like growth factor (IGF), transforming
growth factor-B (TGF-B), epidermal growth factor (EGF), and ERBB (Thiery,
2002). In 1991, a pioneer study highlighted E-cadherin as an invasion
suppressor and connected the mesenchymal phenotype to invasiveness,
which paved the way for the hypothesis that EMT can be exploited by
metastatic cancer cells (Frixen et al., 1991).

Mesenchymal-epithelial transition (MET) is a reverse process of EMT,
during which mesenchymal cells regain their apical-basal polarity and
rearrange their cytoskeleton and cell-cell adhesion to form an organized
epithelium. Compared with EMT, MET has been studied less in cancer
research. It is well defined in kidney development and the formation of the
heart and somites (Pei et al., 2019; Thiery, 2002; J. Yang et al., 2020). The
existence of MET is primarily evident by the restoration of E-cadherin, and
the MET process has been confirmed in breast cancer, ovarian cancer, and
pancreatic cancer via probing specific epithelial or mesenchymal markers
(Bakir et al., 2020). At the beginning of the 215t century, a novel and intriguing
theory of cancer was established that incorporated the EMT phenomenon
into cancer metastasis. This theory is illustrated as: normal epithelium —
dysplasia/adenoma — carcinoma in situ — invasion carcinoma via EMT —
intravasation via EMT — extravasation via EMT — formation of distant
carcinoma via MET (Thiery, 2002). In 2003, the term “epithelial-mesenchymal
transition” was officially coined at the first TEMTIA meeting. Since then,
research on EMT has grown drastically, especially over the last 10 years (J.
Yang et al., 2020).
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The classical molecular components in EMT

The downregulation of E-cadherin in EMT was first observed in the
embryonic development of chicks (Edelman et al., 1983), followed by studies
on the loss of E-cadherin in cancer (Frixen et al., 1991). On the contrary, N-
cadherin was observed to be upregulated in EMT during embryogenesis,
though at different sites of the embryo compared with the downregulation of
E-cadherin (Duband et al., 1987). Even though the switch from E-cadherin to
N-cadherin has become a hallmark of EMT (Loh et al., 2019), loss of E-
cadherin has emerged as an essential and central characteristic in EMT
(Lachat et al., 2021). As indicated in the EMT definition, high expression of
the mesenchymal intermediate filament vimentin is another pivotal change in
EMT, which has long been recognized in embryogenic EMT (Greenburg and
Hay, 1988) and is associated with the invasive mesenchymal traits in breast
cancer (Bae et al., 1993).

In the 1990s, a large-scale study set out to identify molecular regulators of
EMT in embryonic development. Several well-established EMT-TFs were
identified around the turn of the millennium—for example, Snail, Slug,
TWIST1, ZEB1, and ZEB2 (Thiery, 2002). Later, these EMT-TFs were also
found to be involved in cancer malignancy (Batlle et al., 2000; Cano et al.,
2000; Comijn et al.,, 2001; J. Yang et al, 2004). In 1994, EMT was
successfully induced by TGF-B in vitro (Miettinen et al., 1994). Ectopic
expression of the EMT-TFs Snail or TWIST in the epithelial cells was found to
trigger EMT (Mani et al., 2008).

1.2.3 EMT in cancer

EMT is mainly studied in tissue development, wound healing and organ
fibrosis, and cancer progression. Despite the significance of EMT in
embryogenesis and fibrogenesis, most EMT studies conducted so far have
focused on cancer aggressiveness, specifically cancer stem cell (CSC)
formation, metastasis, and chemoresistance. The plasticity of EMT provides
comprehensible explanations for tumor extravasation and distant organ
colonization during cancer metastasis (Lachat et al., 2021).

Researchers have found evidence to support that both complete and
partial EMT exist in vivo (Beerling et al., 2016; Pastushenko et al., 2018).
EMT is highly appreciated in epithelial-tissue-derived tumors (carcinomas),
and studies have indicated that EMT also occurs in tumors of the central
nervous system (CNS) and perhaps other non-carcinomas (Wirsik et al.,
2021). The biopsies of cancer patients show various cell phenotypes ranging
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from epithelial to mesenchymal-like, and the cellular phenotypic plasticity
causes cancer cells to be resistant to drug treatment (Navas et al., 2020).
Increasing evidence suggests that EMT participates in both the initiating and
the final stages of cancer metastasis. Cells at the leading edges of the
invasive fronts could capture the EMT properties and lead the invasion
process (Wellner et al., 2009). EMT may promote cell stemness. The
association between EMT and cancer invasion and metastasis has been
widely studied. However, the exact mechanisms behind EMT in stemness
and metastatic dissemination are obscure (Lambert and Weinberg, 2021).

EMT-TFs are a crucial part of the EMT program and participate in cancer
initiation, tumor growth, invasion, metastasis, and colonization. In addition to
the roles of these transcription factors on the activation of the classical EMT
phenotypes, they are pleiotropic and can link EMT to CSCs. The uncanonical
functions of EMT-TFs can facilitate cancer malignancy, therapy resistance,
TME crosstalk, and tumor immune response. Lastly, the EMT-TFs grant EMT
plasticity (Brabletz et al., 2018; Stemmler et al., 2019).

EMT is very diverse, tissue-specific, cancer type-specific, and intertwined
with many regulatory factors and signaling pathways. Some studies have
reported that metastasis in vivo occurs without EMT (Bakir et al., 2020;
Fischer et al., 2015; Williams et al., 2019). EMT in cancer is debatable, and
the source of this controversy originates from three intrinsic and fundamental
characteristics of EMT and EMT research: complexity, plasticity, and
suboptimal experimental models. EMT may manifest itself differently in
different organs or distinct cancer types. The conclusion that EMT is absent
in metastatic sites based on the absence of overt mesenchymal
characteristics is insufficient because certain levels of reversion to the
epithelial state are necessary. In addition, EMT impinges both on cell
metastasis and on cell survival—for example, chemoresistance. Scientists
need to be open-minded, considering EMT beyond its effects on cell
morphology, invasion, and motility (Brabletz et al., 2018).

One of the future directions is to focus on EMT-TFs and their interactions
with the TME. Furthermore, more reliable experimental models, for example,
genetically engineered mouse models (GEMMSs) coupled with lineage tracing
with fluorescent labeling, should be applied to tackle the controversies and
inconsistencies in this field (Bakir et al., 2020). Researchers need to
collaborate closely and perform cross-validations of their findings. Moreover,
the challenges of monitoring all EMT states and following all cancer cells
from cancer initiation to distant colonization with a focus on the metastatic
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niche should be overcome. The final goal is to identify clinically meaningful
targets (Brabletz et al., 2018).

The intertwined relationship between EMT and CSCs

Cancer has long been associated with stem cells, consolidated by the
observation that a single cell could form tumors in vivo. The successful
identifications of CSCs in acute myeloid leukemia (AML) and breast cancer
are two breakthroughs that created great excitement in the cancer research
community (Clevers, 2011). Since then, the concept of CSCs has been
accepted and updated. One of the novel improvements of this theory is the
introduction of the CSC niche. Instead of being solely regulated by the
intrinsic properties of CSCs, CSCs interact via niche signaling (Batlle and
Clevers, 2017). One of the appealing aspects of the CSC hypothesis is that it
explains the inevitable resistance of cancer cells to radiation and
chemotherapy and the long-term relapse and metastasis in patients with
cancer. Under the guidance of the CSC theory, several therapeutic
approaches have been developed in the clinic by targeting major stemness
pathways, the main stem cell properties, and epigenetic regulations, among
other factors (Batlle and Clevers, 2017).

The association between EMT and CSCs was initiated through research
focusing on how exactly EMT facilitates tumor metastasis. It began with the
identification of CD44"igh/CD24'v-expressing cells as CSCs (Al-Hajj et al.,
2003). These cells are more invasive in vivo and possess stem cell
properties. Mani and colleagues then successfully induced EMT by TGF-
treatment and ectopic expression of TWIST or Snail, and these treatments
simultaneously led to the evolution of a population of CD44high/CD24'w cells
(Mani et al., 2008). These efforts linked EMT and CSCs and sparked
interests to investigate further whether EMT could facilitate CSC formation in
cancer progression (Wilson et al., 2020). CSCs are intertwined with EMT
through shared genetic regulators and tumor-initiating capacity, and EMT can
confer epithelial cells with stem cell properties (Mani et al., 2008). In the
context of cancer, EMT was initially deemed a vital process for cancer
migration and invasion. Connecting EMT with CSCs has established the role
of EMT in cancer initiation and has intensified the importance of EMT in
cancer development. The mesenchymal cells after EMT and CSCs share lots
of similarities (Dongre and Weinberg, 2019; Wilson et al., 2020). The exact
relationship between CSCs and EMT, however, is still under debate (Batlle
and Clevers, 2017; Lytle et al., 2018).
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Epidermal growth factor receptor (EGFR) is liable for the CSC and
metastatic phenotype of breast cancer, and platelet-derived growth factor
receptors (PDGFRs) promote breast cancer malignancy by directly regulating
cellular functions and by indirectly remodeling malignant stroma (Butti et al.,
2018). The exact relationship between EGFR and CSCs is elusive. Tam and
colleagues reported a shift from EGFR to PDGFR signaling in breast CSCs,
where protein kinase C alpha (PKCa) participates and serves as a
therapeutic target (Tam et al., 2013). PKCa is universally expressed and
situated at the central node of several signal transduction pathways, which
endows the diverse and complex cellular responses of PKCa under a broad
spectrum of stimuli (Singh et al., 2017).

Epithelial-mesenchymal plasticity (EMP) represents the norm rather
than the exception

The concept of “partial EMT” was proposed roughly 20 years ago (Thiery,
2002), and EMP is one of the sources for discrepancies in the EMT field. In
the time since, there has been compelling evidence that EMT does not work
as a binary switch but possesses a spectrum of epithelial/mesenchymal
(E/M) intermediate states within which certain E/M states confer the tumor
with cells malignancy (Liao and Yang, 2020; Sinha et al., 2020) (Figure 1).
These varieties of intermediate states are orchestrated by complex regulatory
networks that endow them with different functional characteristics (Dongre
and Weinberg, 2019; Nieto et al., 2016; Pastushenko and Blanpain, 2019). It
is believed that EMT can induce CSC stemness. While these CSCs induced
by EMT are not completely mesenchymal, they reside and are stabilized at
specific intermediate E/M states (Dongre and Weinberg, 2019). Partial EMT
can increase cell motility in both single and collective cell migration.

Recent studies show that different EMT transition states do exist in vivo
(Pastushenko et al., 2018; Simeonov et al., 2021). There were different
subpopulations of tumor cells in vivo that possessed different invasiveness,
plasticity, and functionality, representing different EMT states. Furthermore,
the metastatic potential in vivo was affected by different hybrid EMTs where
tumor protein p63 (ANp63), TGF-B, and mothers against decapentaplegic
homolog 2 (SMAD2) were important promotors for epithelial or mesenchymal
phenotypes, and MET was not the only mechanism for metastasis
(Pastushenko et al., 2018). More recently, a novel inducible in vivo lineage
tracer coupled with scRNA-seq named macsGESTALT was introduced to
study EMT plasticity, which confirmed the notion that EMT is a continuum of
epithelial-mesenchymal states. Cells post extreme EMT were less metastatic
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than hybrid EMT cells, and those at the late-stage hybrid states showed the
most potential to metastasize (Simeonov et al., 2021).

Apart from relying on specific epithelial or mesenchymal markers (for
example, CD104 and CD44) to differentiate different EMT phenotypes
(Kroger et al., 2019), in silico modeling of hybrid EMT provides an alternative
for investigating the complexity and plasticity of the EMT spectrum. More
evidence is needed to support whether discrete epithelial and mesenchymal
states are arrayed along the EMT spectrum or a continuum of the EMT
intermediate states resides with no distinct boundaries. The EMT spectrum
may not be linear—it might have various tracks. Sophisticated mathematical
models hold the potential to tackle these problems and are able to forge new
insights in this field, and a list of studies using this methodology has
demonstrated the importance of EMT plasticity in cancer metastasis,
resistance to therapy, stemness, and immune responses (Jia et al., 2019;
Jolly et al., 2019; Lu et al., 2013; Tripathi et al., 2020).

Collective cell migration: A promising theory for cancer invasion

Single-cell migration is not the only mechanism for cancer cell invasion.
Collective cancer cell invasion is also important for disseminating tumor cells
to distal sites; that is, cells invade the peritumoral stroma without losing cell-
cell contacts. The grouped CTCs in patients’ peripheral blood demonstrate
that collective tumor migration exists in vivo (Aceto et al., 2014; J. M. Hou et
al., 2011). These cohesive multicellular clusters in breast cancer could be
abrogated by inhibiting plakoglobin, keratin 14, or p63 (Aceto et al., 2014;
Cheung et al., 2013). CTCs isolated from patients with breast cancer possess
many mesenchymal characteristics, and these mesenchymal CTCs are
associated with the patient’s disease progression and responses to therapy
(M. Yu et al., 2013). The mesenchymal states of CTCs in patients may reflect
cancer progressiveness and hold prognostic value (Williams et al., 2019).

The core of the EMT concept is the function of the EMT cellular program
in transforming adhesive cells into non-adhesive migrating cells, which has
been primarily investigated through single-cell migration and invasion assays.
However, EMT occurs in both a single cell format and a collective of cells (M.
Yu et al., 2013). The “leader cells” at the tip of the invading cell groups could
undergo transient or partial EMT induced by microenvironmental cues to
guide collective cancer cell invasion (Friedl et al., 2012). By adopting a
microfluidic approach, Wong and colleagues monitored single-cell dynamics
during cell migration. They reported that cells formed a collective advancing
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front during migration via EMT, and there are single cells scattered away
from these cell clusters (Wong et al., 2014).

epithelial cells

asement \
extracellular membrane EMP

matrix E MT

blood vessel

distal organ

Figure 1. The EMT and EMP process.

Epithelial-mesenchymal transition (EMT) is a natural cellular process that can be
hijacked by cancer cells during cancer metastasis. In the EMT process, epithelial cells
go through cytoskeleton remodeling, lose the apical-basal cell polarity, weaken cell-
cell and cell-matrix adhesions, and acquire cell motility and the ability to invade the
basement membrane to form mesenchymal cells. In most cases, epithelial cells
undergo a certain degree of mesenchymal transition to form “partial” or intermediate
mesenchymal cells, a phenomenon referred to as epithelial-mesenchymal plasticity
(EMP). These mesenchymal cells are generally more aggressive and can invade and
metastasize via extravasation through blood or lymphatic vessels to distal organs (in a
single-cell form or collectively). Mesenchymal cells transform back to the epithelial
phenotype at distal organs via mesenchymal-epithelial transition (MET), followed by
settlement and proliferation.
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1.2.4 The therapeutic implications of EMT

As of 2022, there have been 54 clinical trials registered on clinicaltrials.gov
that directly or indirectly target EMT as therapeutic approaches. Eleven trials
have breast cancer as one of the targeted conditions. The intrinsic properties
of partial EMT have created a formidable challenge for EMT-targeting therapy
due to the difficulties in identifying a druggable intermediate E/M state.
Targeting the EMT-related modulators, reversing EMT, and inhibiting
mesenchymal-like cells represent the three main strategies (Voon et al.,
2017).

EMT-related modulators nuclear factor-kappa B (NF-kB), signal
transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-
1a (HIF-1a), and TGF-p are four examples out of many potential targets of
EMT regulatory components (Voon et al.,, 2017; X. G. Yang et al., 2019).
Targeting specific EMT-related cancer-inducing regulators will eventually
cause drug insensitivity. EMT is potentially a pathological manifestation of
somatic cell reprogramming that renders cellar plasticity, which is
accountable for chemoresistance (Voon et al, 2017). CSCs with
mesenchymal characteristics have been deemed the culprit for cancer
chemoresistance. Inhibiting mesenchymal-like CSCs could potentially
prevent the resistance to chemotherapy (Voon et al.,, 2017). Reversing the
invasive mesenchymal cells back to the epithelial-like phenotype is another
rationale of EMT therapy. This includes inhibitors on ALK5/TGFBR1,
mitogen-activated protein kinase (MAPK), proto-oncogene tyrosine-protein
kinase Src, focal adhesion kinase (FAK), and phosphoinositide 3-kinase
(PI3K) for their MET-inducing or anti-EMT activities. However, precautions
should be taken regarding EMT-reversing therapy because MET is involved
in distant colonization during metastasis (Voon et al., 2017).

The interaction between EMT and the immune responses has been under
intense scrutiny (Dongre and Weinberg, 2019). Of note, the EMT-related
signaling pathway miR-200/ZEB1 has been shown to increase PD-L1
expression in tumors, and EMT-TFs TWIST can recruit macrophages,
corroborating the immunosuppressive effects of EMT (L. Chen et al., 2014;
Low-Marchelli et al., 2013). Targeting EMT might exert synergistic effects on
immunotherapy. Altered metabolism is one of the main features of EMT
(Sciacovelli and Frezza, 2017). Glycolysis, lipid metabolism, mitochondrial
metabolism, pyrimidine metabolism, and more are potential candidates to
intervene in the EMT process. Targeting EMT-related metabolic pathways is
another alternative for EMT-associated drug therapies (Ramesh et al., 2020).
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1.3 Cancer metabolism

In the following section, | will first generally review metabolic reprogramming
in cancer and breast cancer, cancer metastasis and EMT, and the interaction
of metabolism and signaling regulation. Then, | will focus on aspects related
to this project, specifically glycan metabolism, including two enzymes studied
in-depth: UDP-glucose dehydrogenase (UGDH) and glutamine fructose-6-
phosphate transaminase 2 (GFPT2), one-carbon metabolism, the
transsulfuration pathway, reactive oxygen species (ROS) regulation,
mitochondrial metabolism, and glycerophosphocholine (GPC) and N-
acetylaspartate (NAA) metabolism (Figure 2).
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Figure 2. An overview of the metabolic pathways involved in this project.

In the hexosamine biosynthetic pathway (HBP), glucose is finally converted into UDP-
N-acetylglucosamine (UDP-GIcNAc), indispensable for protein glycosylation
modification and glycan formation. Glutamine-fructose-6-phosphate transaminase 2
(GFPT2) is a rate-limiting enzyme of the HBP. The HBP is intertwined with the
pentose phosphate pathway (PPP), glycolysis, and the formation of precursors for
glycosaminoglycans (GAGs) and proteoglycans, essential components in the
extracellular matrix (ECM). UDP-glucose dehydrogenase (UGDH) is responsible for
converting UDP-glucose to UDP-glucuronic acid, one of the building blocks of
hyaluronan in ECM. The product of glycolysis, pyruvate, is converted into acetyl-CoA
in the mitochondria, which is a substrate in the HBP, along with glutamine. Glutamine
can be metabolized in the mitochondria to generate acetyl-CoA and aspartate via
reductive carboxylation, and these two metabolites are then converted into N-
acetylaspartate (NAA). The other two pathways related to this project are choline
metabolism, in which glycerophosphocholine (GPC) is converted to free choline and
glycerol-3-phosphate, and the transsulfuration pathway, which is associated with one-
carbon metabolism. Homocysteine participates in the methionine cycle in one-carbon
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metabolism, within which active methyl-donors are produced. Homocysteine can also
be converted into cystathionine to generate hydrogen sulfate (H2S) and glutathione in
the transsulfuration pathway, both of which are involved in reactive oxygen species
(ROS) regulation. Sulfide quinone oxidoreductase (SQOR), an enzyme that binds to
the mitochondrial membrane, uses H:S as substrates.

1.3.1 Cancer and breast cancer metabolism

Metabolism comprises a series of chemical reactions that occur within living
cells to provide energy, to produce building blocks, to regulate biological
processes, and to facilitate cell-cell and cell-extracellular matrix (ECM)
interactions. Metabolic dysregulation is deeply intertwined with oncogenesis
(Counihan et al., 2018). Metabolic reprogramming as an emerging hallmark
of cancer can be grouped into seven categories: (1) altered glucose and
amino acids uptake; (2) acquired flexibility for nutrient demand; (3) increased
utilization of the intermediates from glycolysis and the tricarboxylic acid (TCA)
cycle for biosynthesis and the production of nicotinamide adenine
dinucleotide phosphate (NADPH); (4) elevated demand for reduced nitrogen
due to the increased cell growth; (5) alterations in gene expression regulated
by, for example, acetylation and methylation; (6) exchange with the TME; and
(7) maintaining redox balance (Pavlova and Thompson, 2016).

Cancer cells produce energy via glycolysis instead of aerobic respiration
in the mitochondria, resulting in more lactic acid production than normal cells,
a phenomenon known as the “Warburg effect,” observed by Otto Warburg in
1927, which first linked metabolism to oncogenesis (Warburg et al., 1927).
Apart from aerobic glycolysis, the influences of mitochondrial metabolism
have started to earn appreciations in carcinogenesis (Porporato et al., 2018).
The discovery that fructose-2,6-bisphosphate allosterically activates
phosphofructokinase (PFK) has revolutionized the common understanding of
metabolites in cellular regulations (Van Schaftingen et al., 1981). To date,
numerous metabolic enzymes have been implicated in cancer for their
canonically enzymatic and uncanonically regulatory functions (Martinez-
Reyes and Chandel, 2021). In addition, cancer-associated fibroblasts (CAFs)
are the most abundant intratumoral cell type to support malignant tumor cell
growth, survival, and metastasis (Kalluri, 2016). The tumor-promoting effects
of CAFs are dependent on the production of lactate, counterbalancing the
TME acidification, activation of autophagy to supply cancer cells with non-
essential amino acids (NEAAs), and regulating glucose uptake (Schworer et
al.,, 2019; W. Zhang et al., 2018). These changes agree with the “reverse
Warburg effect” proposed in 2009, stating that carcinoma cells stimulate the
Warburg effect or aerobic glycolysis in neighboring stromal CAFs that secrete
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many energy-rich metabolites, including lactate and pyruvate to “feed” the
tumor cells (Pavlides et al., 2009).

Metabolic reprogramming in breast cancer

The metabolic abnormality of breast cancer has been extensively studied and
reviewed (D. Zhang et al., 2021). Both primary and metastatic breast cancer
cells exhibit metabolic heterogeneity (L. Wang et al., 2020). Different breast
cancer subtypes present distinct metabolic phenotypes (D. Zhang et al.,
2021).

In TNBC, EGF signaling reprograms glycolysis to accumulate the
intermediate fructose 1,6 bisphosphate (F1,6BP), which can bind to and
enhance EGFR activity, leading to augmented aerobic glycolysis, increased
lactate secretion, and impaired immunosurveillance mediated by cytotoxic T
cells (S. O. Lim et al, 2016). The transcription factor MYC s
disproportionately overexpressed in TNBC compared with the other types,
and fatty acid oxidation intermediates are significantly upregulated for energy
metabolism in MYC-overexpressing TNBC (Camarda et al.,, 2016). ESR-
negative breast cancer cells overexpress phosphoglycerate dehydrogenase
(PHGDH) in the serine biosynthesis pathway to fuel the anaplerosis of the
TCA (Possemato et al., 2011). HER2-positive breast cancer possesses high
glutamine metabolic activities (S. Kim et al., 2013).

The energy sensor AMP-activated protein kinase (AMPK) and fatty acid
synthase (FASN) have also received considerable attention as therapeutic
targets for breast cancer treatment (W. Cao et al., 2019; Menendez and
Lupu, 2017). HIF signaling regulates glucose, amino acids, lipids, and ROS
metabolism in breast cancer, which can be exploited in combination with
immune- and endocrine therapy in the clinic (de Heer et al., 2020). In
addition, hexokinase (HK), pyruvate dehydrogenase kinase 1 (PDK-1), and
glutaminase, among other enzymes, are promising metabolic targets in
breast cancer treatment and are being evaluated in clinical trials (L. Wang et
al., 2020). To date, however, the definitive clinical benefits of interfering with
metabolism for/alongside breast cancer treatment are lacking (L. Wang et al.,
2020).

1.3.2 Metabolic reprogramming in metastasis and EMT

In the cancer metastatic cascade, metabolic rewiring has emerged as an
important aspect relying on metabolic plasticity and flexibility. The metabolic
phenotypes between primary tumor cells and cells that have undergone
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metastasis and those of different metastatic sites are different (Bergers and
Fendt, 2021). Pyruvate, lactate, glutamine, fatty acids, and more are common
metabolites with functional plasticity in cancer metastasis, all of which are
intertwined with various enzymes and signaling regulators and participate in
cell invasion, circulation, and colonization in the metastatic cascade (Christen
et al., 2016; Rodrigues et al., 2016; Tasdogan et al., 2020). Cancer cells
depend on different metabolites to fulfill the same metabolic needs, reflecting
their metabolic flexibility. Metastasized cancer cells that seeded at distant
sites demand more energy production (Elia et al., 2018). Fatty acids, glucose,
proline, lactate, and the ATP-scavenging machinery have been reported to
accommodate the excess ATP need in cancer cells colonizing distant sites
(Dupuy et al., 2015; Elia et al., 2017; Loo et al., 2015; J. H. Park et al., 2016).

The metabolic rewiring of cancer cells to accommodate the needs for cell
proliferation, circulation, seeding, and adaptation shows metabolic plasticity
and flexibility, but concurrently, it also exposes certain metabolic rigidity and
specific vulnerabilities. For example, blocking proline catabolism and
inhibiting lactate uptake dramatically affect cancer metastasis (Tasdogan et
al., 2020). This has led to promising metabolic therapeutic strategies to target
specific metabolic vulnerabilities depending on different cancer progression
phases of patients.

Cancer cells require the pentose phosphate pathway (PPP) to meet the
anabolic demands for high proliferation and to resist oxidative stress for drug
resistance. The production of NADPH in the PPP is compensated by AMPK-
mediated NADPH generation under energetic stress, both of which are
pivotal for cancer cells to overcome oxidative stress during metastasis (Patra
and Hay, 2014).

Metabolic reprogramming in EMT

In carcinogenesis, metabolic rewiring and EMT are entwined (Morandi et al.,
2017; Sciacovelli and Frezza, 2017). EMT leads to broad metabolic
reprogramming covering but not limited to mitochondrial metabolism;
hypoxia; and glucose, glutamine, serine, fatty acid, and nucleic acid
metabolism (M. Li et al., 2019). Shaul and colleagues identified 44 metabolic
genes associated with mesenchymal features, designated the “mesenchymal
metabolic signature” (MMS), covering nucleotide, lipid, amino acid, carbon,
redox, glycan, cofactor, and other metabolic pathways. They reported that the
pyrimidine-degrading enzyme dihydropyrimidine dehydrogenase (DPYD) and
its product dihydropyrimidines were responsible for the mesenchymal traits
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and malignant transformation (Shaul et al., 2014). TGF-B-induced EMT has
considerable impacts on both glycolysis and mitochondrial metabolism by
deregulating several related enzymes, such as GLUT1, HK2, fructose-2,6-
biphosphatase 3 (PFKFB3), pyruvate kinase M2 (PKM2), LDHA, PDK-4,
fumarate hydratase (FH), succinate dehydrogenase (SDH), and IDH (Hua et
al., 2020). The upregulation of xenobiotic-metabolizing enzymes, including
drug transporters, cytochrome P450s, and glutathione-related enzymes, after
EMT renders cancer cells chemoresistance (Fischer et al., 2015).

EMT can also be shaped by metabolic changes. Increased glycolytic
activity results in higher production of lactate, which regulates the
NAD*/NADH ratio to affect the NAD*-dependent enzyme, sirtuin 1 (SIRT1),
that induces EMT (Eades et al, 2011). In addition, the acidic
microenvironment has been found to induce EMT (Morandi et al., 2017).
Hypoxia activates several EMT-TFs (including Snaill, Slug, and TWIST), with
HIF-1a playing a critical role (J. Jiang et al., 2011). Targeting glutaminase 1
(GLS1) to impair glutamine metabolism can also disrupt the EMT program
and hamper tumor growth and metastasis (Morandi et al., 2017). Fatty acids
are cellular fuel, building blocks in cell membranes, and signaling molecules.
Fatty acid-binding protein (FABP5) can induce EMT to facilitate metastasis in
hepatocellular carcinoma cell lines (Ohata et al., 2017). Inhibition of lysine
demethylase 5B (KDM5B) can activate AMPK to downregulate FASN and
ATP citrate lyase (ACLY) in fatty acid metabolism, reverse EMT, and
eventually inhibit breast cancer cell proliferation and migration (Z. G. Zhang
et al., 2019). The role of FASN is controversial: FASN can be downregulated
by EMT induction, a change that is inconsistent with the active FASN-driven
lipogenesis in EMT (Morandi et al., 2017). Moreover, the fatty acid species,
sphingolipids, and lipid composition, including cholesterol content, are
affected by EMT and concomitantly shape the EMT program (Eiriksson et al.,
2018; Morandi et al., 2017). SDH5, one of the subunits in the SDH complex
of the electron transport chain (ETC), activates glycogen synthase kinase 3
beta (GSK-3B) to suppress Wnt signaling, which in return affects EMT (J. Liu
et al., 2013). Mitochondrial superoxide dismutase 2 (SOD2) in ROS
regulation is upregulated after TGF-B-mediated EMT, and partially impaired
mitochondrial metabolism is associated with ROS and worse patient survival
in different types of cancer and correlated with the EMT gene signature
(Edoardo Gaude and Frezza, 2016; Morandi et al., 2017).
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1.3.3 Crosstalk between oncogenic signaling and metabolism

Cell metabolism is regulated by a complex network of signaling pathways
partially mediated via receptor tyrosine kinases (RTKs), such as EGFR,
IGF1R, PDGFR, and vascular endothelial growth factor receptor (VEGFR).
They play crucial roles in breast cancer progression (Butti et al., 2018).
Activation of IGF1R results in the activation of PI3BK/AKT and MAPK, which
leads to ESR downregulation and resistance to tamoxifen (Schiff et al., 2004;
Vella et al., 2020). PISK/AKT signaling is intimately related to metabolism
(Counihan et al.,, 2018), and PI3K-AKT1 drives the tumor glycolytic
phenotype (Hoxhaj and Manning, 2020).

In return, metabolic changes modulate signaling activities and gene
expression that drive cell migration and invasion (Elia et al., 2018). Enzymes
may exceed their catalytic roles and exert nonconventional signaling
regulatory effects, which complicates the role of metabolic enzymes in
cellular regulations. GSK-3, which was initially identified in glycogen
metabolism, plays a key role in Wnt signaling and insulin regulation (Cohen
and Frame, 2001). Insulin-induced activation of PDK-1 and AKT leads to the
phosphorylation of GSK-3 with the help of PI3K, eventually causing the
suppression of GSK-3 activity and subsequent stimulation of glycogen
synthesis (Cohen and Frame, 2001). NF-kB is a well-known transcription
factor under the regulation of PI3K/AKT and is essential for EMT induction
and maintenance (Huber et al., 2004). The monocarboxylate transporter 1
(MCT1), which exchanges lactate across the plasma membrane, has been
shown to activate NF-kB and promote tumor growth and metastasis,
independent of its lactate transport function (Z. Zhao et al., 2014). Fatty acid
metabolism is also intimately related to the signaling regulation of EMT.
Elevated free fatty acid uptake activates the Wnt and TGF- signaling
pathways to induce EMT and promote cancer progression (Nath et al., 2015).
The unsaturated lipids are significantly increased in ovarian cancer stem
cells. NF-kB regulates lipid desaturases and the inhibition of which blocks
NF-kB signaling involved in EMT (J. Li et al., 2017).

1.3.4 Metabolic reprogramming in glycan metabolism

The flux through the hexosamine biosynthetic pathway (HBP) and the level of
UDP-N-acetylglucosamine (UDP-GIcNAc) are upregulated in different cancer
types. The HBP is closely associated with glycolysis and accounts for 2%-5%
of total glucose metabolism (Akella et al., 2019; Marshall et al., 1991).
Glucose, glutamine, fatty acids, and amino acids are substrates of the HBP
and the main metabolic drivers of tumor growth. Their availability alters the
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HBP flux and the production of UDP-GIcNAc, supporting the nutrient-sensing
function of the HBP for metabolic homeostasis (Chiaradonna et al., 2018).

The end-product of HBP, UDP-GIcNACc, is indispensable for protein O-
GlcNAcylation which is a post-translational protein modification that is
involved in various signaling, immune, and structural functions (Akella et al.,
2019). O-GIcNAcylation modulates cancer metabolism by regulating
glycolysis via HIF-1a and GLUT1 (Ferrer et al., 2014), controlling flux into the
PPP via PFK1 (Yi et al., 2012), influencing glutamine uptake (Wellen et al.,
2010), and by modifying the bioenergetic sensor AMPK (Bullen et al., 2014).
O-GIcNAc transferase (OGT) is responsible for the covalent O-GlcNAcylation
modification of proteins by UDP-GIcNAc and is related to DNA damage
responses in TNBC (Barkovskaya et al., 2019).

A substantial number of studies have confirmed the connection between
the HBP and EMT (Akella et al.,, 2019; K. Taparra et al.,, 2016). EMT
increases the UDP-GIcNAc level and modulates the O-glycan and N-glycan
compositions, and several EMT markers—for example, E-cadherin, TGF-BR,
and EGFR—are modified by N-linked glycosylation (X. Li et al., 2016). The
EMT-TF Snail can be stabilized by O-GlcNAcylation modification to instigate
the EMT program, which directly links glucose metabolism to EMT (S. Y.
Park et al., 2010). In addition, the EMT-associated regulators TGF-3, NF-«kB,
and FOXO-1 are all subject to potential O-GIcNAcylation modification (Akella
et al., 2019). Given that the HBP resides at the crossroads of many central
metabolic pathways, and the downstream product, UDP-GIcNAc, is primarily
responsible for protein O-GIcNAcylation and O-linked and N-linked glycans
that regulate many oncogenes, targeting the HBP is appealing for cancer
therapeutics (Akella et al., 2019; Chiaradonna et al., 2018).

UDP-GIcNAc, along with UDP-glucuronic acid (UDP-GIcA), UDP-xylose,
UDP-galactose, and UDP-N-acetylgalactosamine, are UDP-activated
nucleotide sugars serving as building blocks for the ubiquitous
glycosaminoglycans (GAGs). GAGs are polysaccharides that comprise four
main categories, namely chondroitin sulfate/dermatan sulfate (CS/DS),
heparin/heparan sulfate (HS), hyaluronan (HA), and keratan sulfate (KS).
GAGs partake in a plethora of cellular functions spanning signal regulation,
ECM remodeling, TME modulation, and immunosurveillance, which are
culpable for oncogenesis (Morla, 2019). For example, HA is abundant in the
ECM and can bind to and activate CD44 (C. Chen et al., 2018). HS
proteoglycans are involved in the ligand-receptor complex formation in FGF-2
signaling in breast carcinomas (Mundhenke et al., 2002). The CS
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proteoglycan versican is highly deposited in the peritumoral stroma in primary
breast cancer and may promote cancer progression (Ricciardelli et al., 2002).

UGDH: One of the main enzymes in glycan metabolism identified in this
project

In 1956, Strominger and colleagues identified and purified the enzyme UGDH
from calf liver homogenate and confirmed that UGDH catalyzes UDP-glucose
(UDP-GIc) to UDP-GIcA (Strominger et al, 1957). UDP-GIcA is an
indispensable unit of GAGs (such as HA) and proteoglycans and a glucuronyl
donor to endogenous and exogenous compounds conjugated as
glucuronides in liver. UGDH uses NAD* as an oxidant and catalyzes UDP-
Glc to UDP-GIcA while generating NADH in a two-step oxidation.

Earlier studies had investigated the functions of UGDH in embryonic
development. UGDH shapes tissue morphogenesis via HA-mediated
pressure stimulus (Munjal et al., 2021). Concerning the functions of UGDH in
glucuronidation reaction of xenobiotics, UGDH was reported to be under the
influence of xenobiotic treatments (Vatsyayan et al., 2005). HA is one of the
main products produced by UGDH and constitutes the main part of the ECM.
Thus far, the pathological effects of UGDH have mainly been attributed to the
function of UGDH in the generation of UDP-GIcA and the subsequent
production of HA and other GAGs and proteoglycans. HA may facilitate
cancer invasion, chondrogenic matrix accumulation, and osteoarthritis
(Clarkin et al., 2011; Clarkin et al., 2011; Passi et al., 2019; Wen et al., 2014).
Given the significance of the ECM and HA composition in cancer progression
(Vigetti and Passi, 2014) and the essential role of UGDH in HA formation, the
biological function of UGDH in cancer development has been increasingly
appreciated in the last five years.

UGDH in cancer

UGDH inhibition can decrease the proliferation rate of the human breast
cancer cell line MCF-7 and the HCT-8 colorectal cell line (Hwang et al., 2008;
T. P. Wang et al., 2010) and reduce the prostate cancer cell colony formation
(Scoglio et al.,, 2016). Moreover, small interfering RNA (siRNA)-mediated
UGDH knockdown in these cells delayed the spheroid formation and
hampered the cell migration and invasion abilities, which were compensated
by adding exogenous HA (T. P. Wang et al., 2010). In addition to prostate
cancer, breast cancer, and colorectal cancer, UGDH in cancer
aggressiveness and chemoresistance has also been implicated in melanoma,
non-small cell lung carcinoma, glioblastoma, and ovarian cancer (Deen et al.,
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2016; Lin et al.,, 2020; Oyinlade et al., 2018; Paul et al., 2016). UGDH
knockdown decreased cell proliferation and migration in glioblastoma cells in
vitro and inhibited tumor growth and migration in vivo (Oyinlade et al., 2018).
Similarly, UGDH was highly expressed in a very invasive ovarian cell line,
and UGDH knockdown impaired ovarian cancer cell proliferation, migration,
and ovarian tumor growth in xenograft mouse models (Lin et al., 2020).
UGDH is negatively correlated with the survival of patients with TNBC who
received chemotherapy, perhaps due to the glucuronidation of xenobiotics by
UGDH (Vitale et al., 2021). The inhibitory effects of the UGDH inhibitor—4-
methylumbelliferone (4-MU)—on breast cancer formation, growth, and
invasion via inhibiting HA synthesis manifest similarly to those of UGDH
knockouts (Arnold et al., 2019).

Recently, Wang et al. (2019) reported that phosphorylation of UGDH by
EGFR at tyrosine 473 could enhance the stability of SNAI1 mRNA to facilitate
lung cancer metastasis by attenuating the UDP-Glc-mediated SNAI1 mRNA
decay. This study has proposed a new mechanism of UGDH in cancer
progression mediated by UDP-Glc (X. Wang et al., 2019). Finally, UGDH
could serve as a sero-diagnostic marker to facilitate the prognosis of patients
with early lung adenocarcinoma (Hagiuda et al., 2019).

UGDH in EMT

The first evidence of UGDH in EMT was the observation of upregulation of
UGDH in epithelial breast cancer cells after E-cadherin knockdown (Vergara
et al., 2015). Later, Arnold and colleagues noticed that UGDH was one of the
top dysregulated genes in mesenchymal-like breast cancer, and several
mesenchymal-like characteristics could be inhibited by depleting UDP-GICA
(Arnold et al., 2019). Furthermore, UGDH depletion inhibited the EMT-TFs
SNAI1 and Smad interacting protein-1 (SIP-1) and the mesenchymal marker
N-cadherin but increased the epithelial marker E-cadherin (Lin et al., 2020; X.
Wang et al., 2019). Even though Teoh et al. (2020) had observed similar
effects of UGDH on UDP-GIcA production, breast cancer migration, and in
vivo tumor growth and metastasis, they claimed that UGDH knockout did not
impair EMT in the mouse mammary cancer cells on account of the increased
EMT markers fibronectin (FN1) and EMT-TFs homeobox protein SIX1.
Nevertheless, they also reported E-cadherin upregulation with UGDH
knockout (Teoh et al., 2020).
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UGDH regulation and the regulatory roles of UGDH

UGDH can be upregulated by TGF- and downregulated by hypoxia and is
regulated by the transcription factor specificity protein 1 (SP1) (Bontemps et
al., 2003). In addition, the zinc-finger transcription factor c-Krox, in
cooperation with SP1/SP3, inhibits UGDH in chondrocytes, while the steroid
hormone estradiol 17p-Ez stimulates UGDH in articular chondrocytes
(Beauchef et al., 2005). Furthermore, the Epstein-Barr virus oncogene latent
membrane protein 2A (LMP2A) can upregulate UGDH by activating the
extracellular signal-regulated kinase (ERK) and PI3K/AKT pathways and
eventually initiate the binding ability of SP1 to the promotor region of UGDH
(Pan et al., 2008). The regulation of MEK-ERK on UGDH was confirmed in
articular surface cells; however, the TGF-B-mediated p38MAPK activity is more
dominant in regulating UGDH in these cells (Clarkin et al., 2011). The
regulatory effects of transcription factors SP1/3 and c-Krox on UGDH and the
involvement of p38MAKP were validated in human primary chondrocytes (Wen
et al., 2014). UGDH is also a downstream target of the binding activity of
Kruppel-like factor 4 (KLF4) and methylated CpG and is regulated by KLF4 in
a DNA methylation-dependent manner (Oyinlade et al., 2018). A recent study
showed that the glycoprotein Slit2 has regulatory effects on UGDH in CD34+
fibrocytes isolated from peripheral blood mononuclear cells (Fernando and
Smith, 2021). Taken together, UGDH is regulated by multiple signaling
pathways at the genetic, post-transcriptional, and post-translational levels.

Interestingly, studies also suggest that UGDH can exert regulatory effects,
affecting the expression of important cellular regulators including Notch1 and
peroxisome  proliferator-activated receptor gamma (PPARy) and,
subsequently, lipid metabolism (Arnold et al., 2019; Zimmer et al., 2016). In
addition, the regulatory role of UGDH has also been implicated in controlling
the cell cycle checkpoints via p21 and p27 and affecting the ERK/MAPK
pathway and phosphorylation of AKT (Hagiuda et al., 2019; Lin et al., 2020).
Lastly, UGDH catalyzes a reaction that can significantly influence the
NAD*/NADH ratio, and NAD* and NADH strongly control the metabolic
activity of SIRT1 (Anderson et al., 2017).

GFPT2: The second main glycan enzyme identified in this project

In 1999, human GFPT2 was first subcloned by polymerase chain reaction
(PCR), based on the expressed-sequence tag (EST) sequence that is similar
to human GFPT1. The homology between human GFPT1 and human GFPT2
is 75%-80%, while there is 97%-98% similarity between human GFPT2 and
mouse GFPT2 (Oki et al.,, 1999). Structure analysis reveals that the
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glutaminase domain of GFPT2 possesses a flexible loop structure, potentially
contributing to its functional flexibility. Enzyme kinetics suggest that the
efficiency of GFPT2 in synthesizing glucosamine-6-phosphate is lower than
other GFPTs. GFPT2 also hinders the productivity of glutamine hydrolysis
(Oliveira et al., 2021).

Although GFPT2 has enzymatic activities that resemble GFPT1, these
two enzymes have different tissue distributions (Hu et al., 2004) and are
regulated differently (Hu et al., 2004; Kuang et al., 2008; Ruegenberg et al.,
2020). GFPT1 is negatively regulated by its product, UDP-GIcNAc, while
GFPT2 is only weakly affected (Hu et al., 2004). GFPT2 reacts to EGF
stimulation and is upregulated in the presence of EGF in mice (Richani et al.,
2014). GFPT2 has been identified as a molecular marker for embryonic
definitive endoderm (Lawton et al., 2013; P. Wang et al., 2012). Many studies
have suggested GFPT2 has a distinct gene expression pattern associated
with ethnicity and is involved in antipsychotic-medication-induced weight
gain, excess adiposity, diabetes, chronic obstructive pulmonary disease, and
cardiac/cardiovascular functions (Belke, 2011; Coomer and Essop, 2014,
Gabel et al., 2017; Kresovich et al., 2017; Prasad et al., 2010; H. Yu et al.,
2016; H. Yu et al., 2021; H. Zhang et al., 2004). Recent studies show that
GFPT2 is involved in myocardial infarction in mice. GFPT2 plays a role in the
hypoxia/reoxygenation-induced myocardial cell damage where GFPT2 is
regulated by KLF5-miR-27a axis and activates the TGF-$/Smad2/3 signaling
pathway (Tian et al., 2021). GFPT2 expression is not presented in cardiac
myocytes but is highly abundant in cardiac fibroblasts (Nabeebaccus et al.,
2021). It serves as a marker for a subpopulation of cardiac fibroblasts and
affects the functions of these cells (Li Wang et al., 2021).

GFPT2 regulation in cancer and EMT

GFPT2 is reported to be under the regulation of bone morphogenetic protein
2 (BMP-2), NF-kB, SIRT®6, inositol-requiring enzyme (IRE1a), spliced X-Box
binding protein 1 (sXBP1), and FoxO1 (Al-Mukh et al., 2020; Mirmalek-Sani
et al., 2009; Panarsky et al., 2020; Qiao et al., 2021; Szymura et al., 2019). It
regulates NF-kB (p65) via O-GlcNAcylation to form a feedback loop for its
regulation (L. Liu et al., 2020). GFPT2 correlates with SNAI1 and TWIST1
(Kekoa Taparra et al., 2019), is associated with tumor progression, and is
upregulated after EMT in breast cancer, non-small cell lung cancer (NSCLC),
lung adenocarcinoma, colon adenocarcinoma, and serous ovarian cancer (J.
Kim et al., 2020; D. Li et al., 2021; Shaul et al., 2014; Simpson et al., 2012;
Szymura et al., 2019; Kekoa Taparra et al., 2019; Verbovsek et al., 2014; L.
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Zhang et al., 2021; W. Zhang et al., 2018; Zhou et al., 2019). It interacts with
TGF-B1 and increases TGF-B1 production (Prasad et al., 2010). In turn, TGF-
B1 upregulates GFPT2 gene expression (W. Zhang et al., 2018). GFPT2 can
promote EMT in serous ovarian cancer via O-GIcNAcylation of (3-catenin
(Zhou et al., 2019). It holds potential as a therapeutic target in NSCLC with
concurrent KRAS and LKB1 mutations that emulates claudin-low breast
cancer (H. S. Kim et al., 2013; J. Kim et al., 2020), indicating the role of the
LKB1-AMPK pathway in GFPT2 regulation. GFPT2 is one of the upregulated
claudin-low signature genes in TNBC (H. S. Kim et al.,, 2013; Prat et al.,
2010). Its level is elevated in breast cancer biopsies (Oikari et al., 2018).

The uncanonical functions of GFPT2

Although most studies on GFPT2 have focused on the function of GFPT2 in
generating UDP-GIcNAc and the downstream effects of O-GIcNAcylation on
specific targets, the regulatory role of GPFT2 is not limited to protein O-
GlcNAcylation. GFPT2—highly expressed in CAFs in lung adenocarcinoma—
correlates with glucose uptake in the TME and facilitates tumor progression
via metabolic reprogramming in TME (W. Zhang et al., 2018). Studies have
reported the role of GFPT2 in responding to oxidative stress (Nivet et al.,
2013; Zitzler et al.,, 2004). GFPT2 protects cells from peroxide-induced
oxidative stress (Zitzler et al., 2004). Homozygosity of one GFPT2 mutation
leads to increased ROS in spermatozoa and decreases sperm mobility in
men (Askari et al., 2019). A recent study showed that the mRNA level of
GFPT2 decreased after glyoxalase 1 (GLO1) knockout, and GLO1 detoxifies
methylglyoxal in a glutathione-dependent manner (Jandova and Wondrak,
2020). It is worth noting that GFPT2 expression changes upon virus
infections (X. Xu et al., 2020; Y. Zhao et al., 2019), and treating cells with
scrambled siRNAs could increase GFPT2 expression (Oikari et al., 2016).
Recent studies have reported that GFPT2-overexpressing tumor cells are
associated with chemoresistance, TME regulation and interference with
immune cells in immunotherapy (X. Ding et al., 2022; J. Li et al., 2022).

1.3.5 Metabolic reprogramming of one-carbon metabolism and
the transsulfuration pathway

One-carbon metabolism includes biochemical pathways encompassing both
the folate and methionine cycles to produce and transfer one-carbon units or
methyl groups. Serine, glycine, and choline are all active one-carbon unit
donors (Newman and Maddocks, 2017). The folate cycle plays a part in
nucleotide synthesis and antioxidant defense, and the methionine cycle
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regulates the provision of methyl groups for DNA, histone, and protein
methylation modifications, which are major epigenetic regulations in
mammalian cells (Friso et al., 2017; M. Yang and Vousden, 2016). The ratio
of two intermediates in the methionine cycle—S-adenosylhomocysteine and
S-adenosylmethionine (SAH:SAM)—is reflective of the cellular methylation
capacity (Weber and Birsoy, 2019). Cancer cells may utilize one-carbon units
for nucleotide synthesis, methylation modification, and NADH/NADPH
production. To complete the methionine cycle, methionine needs to be
recycled by re-methylation of homocysteine which participates in the
transsulfuration pathway for synthesis of cysteine and glutathione.

In the transsulfuration pathway, homocysteine is converted into
cystathionine and further into cysteine on which tumor cells are heavily reliant
(J. K. M. Lim et al., 2019). The end-product, cysteine, is a precursor for de
novo glutathione synthesis where glutamate and glycine are also involved,
and glutathione is a ubiquitous antioxidant. Zhu and colleagues reported that
with limited sources of extracellular cysteine, tumor cells rely on the
transsulfuration pathway for de novo cysteine synthesis to support cell growth
(J. Zhu et al, 2019). Apart from the production of cysteine, the
transsulfuration pathway is also primarily responsible for the endogenous
production of the gaseous signaling molecule hydrogen sulfide (H2S). Weber
and colleagues argued that H:S, cystathionine, and homocysteine in the
transsulfuration pathway are all possibly accountable for increased tumor
growth (Weber and Birsoy, 2019). Cystathionine--synthase (CBS) is the first
and rate-limiting enzyme in the transsulfuration pathway. It catalyzes the
conversion of homocysteine into cystathionine, the upregulation of which
induces altered expression of genes in various pathways that favor
carcinogenesis and EMT. The CBS-H2S signaling axis promotes cell growth
and metastasis in colorectal cancer (Phillips et al., 2017). Cystathionine is
recognized as an oncometabolite in breast cancer, protects cancer cells
against ROS and drug-induced apoptosis, and maintains homeostasis of both
mitochondria and ER (Sen et al., 2016).

1.3.6 Metabolic reprogramming in ROS regulation and
mitochondrial metabolism

Excess ROS can be detrimental for cancer cells. The superoxide anion (O2)
generated from the ETC is one of the main sources of ROS (Idelchik et al.,
2017). The input of glutamine has strong impacts on ROS via glutamate, a
precursor for de novo glutathione synthesis. Cancer cells have increased the
defense mechanism against ROS; it can be induced by matrix detachment
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during cancer cell circulation (L. Jiang et al., 2016). Detached and
disseminated cancer cells in circulation form clusters to increase their
antioxidant defense (Labuschagne et al., 2019). ROS activates a variety of
EMT-TFs and ultimately facilitates EMT and the progression of tumorigenesis
(Hayes et al., 2020).

The loss of anchorage dependency of cancer cells causes mitochondrial
perturbations and ROS production, which can be ameliorated by cell
clustering to achieve successful distant colonization (Labuschagne et al.,
2019). Oxidative phosphorylation (OXPHOS) and mitochondrial functionality
are most affected in cancer and associated with EMT (Edoardo Gaude and
Frezza, 2016). Aside from ROS formation, mitochondrial dysregulation also
results in the accumulation of fumarate, succinate, and 2-hydroxyglutarate (2-
HG), which have been shown to be oncogenic and causes functional deficits
in mitochondrial outer membrane permeabilization (MOMP) to protect
neoplastic cells against regulated cell death (RCD) (E. Gaude and Frezza,
2014; 1zzo et al.,, 2016). Metabolic dysregulation in mitochondria affects
malignant transformation, cancer cell proliferation, resistance to RCD,
interaction with the stroma, metastatic dissemination, resistance to
therapeutics, immunosurveillance, and EMT (Porporato et al., 2018). The
mitochondrial metabolite fumarate can repress the demethylation of
antimetastatic miR-200 mediated by the ten-eleven translocation (TET)
methylcytosine dioxygenases to suppress miR-200 and overexpress EMT-TF
ZEB2 (Sciacovelli et al., 2016).

Mitochondrial dysfunction affects H.S homeostasis, and H:S is associated
with ROS production and oxidative stress (Quinzii and Lopez, 2021). Sulfide
quinone oxidoreductase (SQOR) resides at the mitochondrial membrane and
catalyzes the commitment step of HzS oxidation by coupling the reduction of
coenzyme Q (CoQ, also referred to as ubiquinone), which is a component of
the mitochondrial ETC. The H2S level is closely regulated by both CoQ and
glutathione (Quinzii and Lopez, 2021) and tightly controlled by SQOR via H2S
oxidation (Jackson et al., 2012).

1.3.7 GPC and NAA

GPC is a potential target for breast cancer treatment

Activated choline metabolism is a hallmark of cancer progression (Glunde et
al., 2011; Egidio lorio et al., 2016). GPC is involved in the catabolic pathway
of phosphatidylcholine (PtdCho), which is the most abundant phospholipid in
the cell membrane to produce choline. GPC is vital for choline synthesis, and
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most studies have focused on the Kennedy pathway and the production of
PtdCho in choline metabolism. Recently, however, an abnormal GPC level in
cancer is emerging as a target for cancer treatment (Glunde et al., 2011;
Sonkar et al., 2019). In addition, GPC exerts cellular osmotic regulatory
functions under osmoregulation of the phospholipases and the
glycerophosphocholine phosphodiesterases (GPC-PD) GDPD5, which was
first found in renal medullary cells (Gallazzini and Burg, 2009). GDPD5
knockdown results in the accumulation of GPC and the increased ability of
cells to produce proteoglycans, which indicates that GDPD5 regulates the
intracellular osmotic stress via GPC (Okazaki et al., 2019). Silencing GPC-
PD decreases the level of lipid metabolites, suggesting a close relationship
between GPC and downstream lipid metabolism (Stewart et al., 2012).

Breast cancer cells treated with drugs (the PI3K inhibitor BEZ235, the
Hsp190 inhibitor 17-AAG, doxorubicin, the nonsteroidal anti-inflammatory
agent indomethacin, and the AKT inhibitor perifosine) exhibit increased GPC
via upregulation of phospholipase A2 (PLA2) (Brandes et al., 2010; Cheng et
al., 2017; Glunde et al., 2006; Siver A. Moestue et al., 2013; Su et al., 2012),
and GPC possesses antioxidant and anti-inflammatory effects (Tokes et al.,
2015). Even though the treatment of cells in culture with chemical reagents
results in increased GPC expression, a decrease in GPC indicates better
survival in patients during neoadjuvant chemotherapy (M. D. Cao et al.,
2012). Earlier studies had used the phosphocholine (PC)/GPC ratio as an
indicator for tumor malignancy, an approach that has aroused inconsistency
and controversy. The elevated PC/GPC ratio, or the so-called GPC-to-PC
switch, has been associated with escalated malignant transformation in vitro
(Cheng et al., 2017). However, there is a lower PC/GPC ratio in the most
aggressive animal tumor models and patients with the worst survival (M. D.
Cao et al., 2016; Siver A. Moestue et al., 2010). In both basal-like breast
cancer xenografts and tissue samples from patients with TNBC, GPC
concentrations are higher with a GPC/PC ratio > 1 compared with luminal-like
and ESR*/PR* tumors (Siver A. Moestue et al., 2010). These findings
indicate that the GPC level is positively correlated with breast tumor
malignancy (S. A. Moestue et al., 2012). GPC plays important roles in choline
metabolism in cancer, but the regulatory mechanism of GPC is poorly
understood. Both choline kinase alpha (CHKa) and GDPD5 have been
positively correlated with the GPC concentration in breast cancer xenografts
(Grinde et al., 2014). PI3K, HIF-1la, and HIF-2a have been reported to
regulate the GPC level (Bharti et al., 2018; Lau et al., 2017).
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NAA in cancer

NAA is synthesized by aspartate N-acetyltransferase (NAT8L) from acetyl-
CoA and aspartate and metabolized by aspartoacylase (ASPA) to generate
aspartate and acetate, which is further metabolized into acetyl-CoA for
energy metabolism and lipid synthesis. NAA is the second most abundant
metabolite in the brain, and most studies on NAA are related to brain
pathology (Bogner-Strauss, 2017; Miyake et al., 1981). NAA is higher in
tumors than normal tissues, a phenomenon that might be caused by
increased expression of NAT8L and associated with glutamine availability
(Lou et al., 2016; Zand et al., 2016). Several studies have reported that
overexpression of NAT8L facilitates cancer progression, and silencing NAT8L
can decrease the NAA level, inhibit cell proliferation, and reduce tumor
growth (Lou et al., 2016; Zand et al., 2016). NAT8L is associated with worse
survival in patients with different cancer types and under the control of
oncogene RhoC (Wynn et al., 2016). Conversely, ASPA is downregulated in
cancer, suggesting that tumor cells rely on NAA rather than its downstream
products. The secreted NAA in the peripheral blood may serve as a clinical
biomarker for cancer malignancy. The exact roles of NAA, NAT8L, and ASPA
in cancer metabolism need to be further elucidated (Bogner-Strauss, 2017).

GPC and NAA are connected via lipid metabolism

Choline—including GPC—and NAA are two of the metabolites well-detected
in the brain via magnetic resonance spectroscopy (MRS). Tsougos and
colleagues reported that the peritumoral choline/NAA ratio could differentiate
glioblastomas from intracranial metastasis with high specificity (Tsougos et
al., 2012). GPC and NAA are not components of the same metabolic
pathway. Nevertheless, both GPC and NAA are closely connected to lipid
metabolism that is partially regulated by the potent regulator PPARy, a
transcription factor involved in a variety of metabolic activities (Ahmadian et
al., 2013). PPARy activation may contribute to cancer cell proliferation,
apoptosis, angiogenesis, and metastasis (Yousefnia et al., 2018). The exact
relationship between GPC and NAA is elusive.

1.4 The D492, HMLE, and PMC42 EMT cell models

Different cells of origin, or cancer-initiating cells, may reflect and contribute to
heterogeneous behaviors and phenotypes in cancer. Each cell line reflects
tumors in vivo differently and has different clinical relevancy. A better
understanding of the cell lines chosen to study is a prerequisite to drawing
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reliable conclusions from the investigation. In the next section, | will briefly
review the cell lines used in this project.

1.4.1 The isogenic EMT cell lines D492, D492M, and D492HER?2

In 2002, the D492 cell line was generated in the pursuit of finding neoplastic
stem cells in the human mammary gland on the assumption that breast
cancer cells are of a luminal epithelial lineage and originate from terminal
duct lobular units (TDLU). Patients underwent reduction mammoplasty for
cosmetic reasons, and a group of MUC-/ESA* cells were selected from
primary cultures of the biopsies. These cells were further immortalized with
human papilloma virus (HPV)-16 E6/E7 to generate the immortal D492 cell
line. These cells are of a luminal epithelial lineage, but they express both
luminal (K8, K19) and myoepithelial (K5/6, K14) cytokeratins, thus showing
the basal-like phenotype. D492 has epithelial stem cell properties, and it can
differentiate into luminal and myoepithelial cells and form the entire TDLU
with branching morphogenesis. D492 cells are non-tumorigenic and have a
diploid karyotype (Gudjonsson et al., 2002).

Nine years after the generation of D492, the D492M cell line was
spontaneously generated by co-culturing D492 cells with human breast
endothelial cells (BRENCs) inside a reconstituted basement membrane
(rBM). By isolating and subculturing a single spindle-like mesenchymal cell
colony, the D492M cell line was established and acquired a stable passaging
ability. Compared with the parent cell line D492, the D492M cell line has
downregulated epithelial E-cadherin as well as keratins 5, 6, 14, and 19, and
upregulated mesenchymal vimentin, N-cadherin, alpha-smooth muscle actin
(a-SMA), Thy-1, thrombin receptor (PAR1), and CD70. In addition, the EMT-
TFs FOXC1 and FOXC2 are upregulated in D492M. In addition to a gain of
mesenchymal properties, D492M cells possess a cancer stem cell
phenotype, supported by the increased proportion of the CD44high/CD24'ow
cells. Like D492, the D492M cell line is not tumorigenic. The EMT-inducing
ability of the endothelial cells is related to the endothelium-derived soluble
factors. The exact factors that induce EMT are elusive; however, hepatocyte
growth factor (HGF) has been confirmed to play a role in the formation of
D492M cells because HGF inhibition could significantly decrease the number
of D492M colonies (Sigurdsson et al.,, 2011). After establishing the
mesenchymal D492M cell line, efforts have been made to reverse the EMT
process in D492M. Co-expression of miR-200c-141 and ANp63 restored the
properties of the parent cell line D492 (Hilmarsdéttir et al., 2015).
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EMT in the D492M cell line was induced by spontaneous stimulation,
while the mesenchymal features in the D492HER?2 cell line were introduced
by forced expression of the oncogene HER2 (ERBB2) in D492. The
D492HER?2 cells have increased EMT-TF ZEB1 and have lost epithelial K14
and K19, E-cadherin, P-cadherin, and p63. Furthermore, miR-200c-141, the
epithelial morphogenic regulator, is also downregulated in D492HER2 cells.
Apart from the EMT markers, D492HER2 cells have also gained the loss-of-
contact growth ability. Based on the observation that HER2 overexpression
decreased the EGFR level in D492, overexpressing EGFR in D492HER2
cells restored some of the epithelial markers, including K14, K19, and E-
cadherin. However, this partial reverse of EMT in D492HER?2 cells by EGFR
overexpression only appeared in 3D rBM culture. Furthermore, injecting
D492HER?2 cells into mammary fat pads of NSG™ mice gave rise to tumors,
which were attenuated by EGFR overexpression (Ingthorsson et al., 2016).
The D492HER?2 cell line appears to represent a more intermediate state of
EMT compared with the D492M cell line (Morera et al., 2019).

1.4.2 The common EMT cell model HMLE-HMLEM

A widely studied EMT cell model is the HMLE cell lines, which were
established in Professor Weinberg's lab in 2000. Like D492, the HMLE
epithelial cell line was derived from normal breast biopsies of reduction
mammoplasty. They express E-cadherin, basal K14, and luminal K18,
indicating these cells are bipotential or multipotential. To immortalize these
cells, both the simian virus 40 (SV-40) large T antigen (LT) oncogene and the
hTERT gene that encodes the catalytic subunit of the human telomerase
enzyme were introduced. The immortalized cells lack the ability to form
tumors in nude mice (Elenbaas et al., 2001).

The generation of the mesenchymal counterpart of the HMLE cell line,
referred to as HMLEM in this project, was based on two assumptions: First,
CSCs have acquired EMT, and to identify targets selectively aiming at CSCs
and leaving out the non-CSCs, EMT needs to be induced and the key
regulatory genes of mesenchymal states need to be studied. Second, forced
overexpression of specific EMT inducers does not adequately reflect the
behaviors of the mesenchymal cells that arise in vivo. Hence, the HMLEM
cell line, referred to as naturally arising mesenchymal cells (NAMECS) in the
original publication, was produced by screening and isolating cells with stable
mesenchymal phenotypes after 1-minute trypsinization and replating the
HMLE cells. These cells have elevated levels of the mesenchymal markers
vimentin, N-cadherin, and FN1 as well as the EMT-TFs TWIST, Snail, Slug,
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and ZEB1. They have lost E-cadherin. Like the D492M cell line, HMLEM cells
are predominately CD44hgh/CD24'v, HMLE cells, deemed non-CSCs,
possess stronger EGFR signaling than HMLEM cells, which are considered
to be CSCs, while HMLEM cells have switched to PDGFR signaling. This
agrees with the observation in D492HER2 that HER2 overexpression
decreased the EGFR level in D492 cells, and EGFR overexpression impeded
the mesenchymal characteristics in D492HER2 cells (Ingthorsson et al.,
2016; Tam et al., 2013).

1.4.3 The MET cell model PMC42LA-PMC42ET

The third EMT cell model used in this project is the PMC42 cell lines,
comprising the mesenchymal PMC42ET cell line from Dr. Robert Whitehead
(Whitehead et al., 1983) and the epithelial PMC42LA cell line generated by
Dr. Leigh Ackland (Ackland et al., 2001). There are two major differences
between the PMC42 model and the other two EMT models. First, the
mesenchymal PMC42ET cells were isolated from a pleural effusion from a
woman with metastatic breast cancer without the need for immortalization.
Second, the epithelial PMC42LA was established from its mesenchymal
counterpart by initiating MET. These cells possess karyotypic heterogeneity
and chromosomal instability. The mesenchymal PMCA42ET cells are
heterogenous and believed to have stem cell characteristics on account of
their ability to differentiate into several morphological phenotypes. They do
not form tumors in vivo. A hormone mixture comprising estrogen,
progesterone, dexamethasone, insulin, and prolactin, in combination with a
porous filter coated with Matrigel, induced cell transformation in PMC42ET
cells to generate PMC42LA cells. The PMC42LA cell line is a stable variant
of the PMCA42ET cell line treated with lactogenic hormones and can be
stimulated by EGF (Ackland et al., 2003) and secreted factors from
carcinoma-associated fibroblasts (Lebret et al., 2007) to undergo EMT.
PMCA42LA cells express the milk-specific proteins B-casein, K8 and K18, and
E-cadherin (H. Hugo et al., 2007).

1.5 The multi-omics era in molecular biology

The insufficiency of the genomic and transcriptomic data to reflect and predict
the actual protein expression and the cellular proteoform acquires views
directly from the proteomic perspective (Akbani et al., 2014). Studies have
confirmed the better performance of proteomic profiling for clinical relevance
compared with transcriptomic approaches (Akbani et al., 2014; J. Wang et
al., 2017). This project was built on proteomic analysis of the EMT cell lines.
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Hereafter, | will review proteomics and metabolomics in the multi-omics era
propelled by myriad technical achievements.

1.5.1 The rise of proteomics

Proteomics is the large-scale systematic study of a collection of proteins and
protein post-translational modification (PTMs) with the aid of the mass-
spectrometry-based detection methods and computational analysis for
protein identification and quantification to generate biological insights. It has
been utilized extensively in EMT and TNBC research (Mathias and Simpson,
2009; Miah et al., 2016). Apart from the global proteome, there are proteomic
approaches to study specific sub-sections of the proteome, such as the
membrane proteome, the glycoproteome, the secretome, lysosomal proteins,
and palmitoylation proteomics, and the most frequently studied
phosphoproteomics (Buccitelli and Selbach, 2020).

Bottom-up, middle-down, and top-down proteomic approaches

The idea of analyzing the whole proteome arose in 1970s with the
development of two-dimensional (2D) gel electrophoresis (James, 1997). As
mass spectrometry (MS) has improved, especially the introduction of the
electrospray ionization (ESI) technigue in 1989, the situation for proteomics
has advanced tremendously (Fenn et al., 1989; Mann, 2016). With the
advancement of liquid chromatography (LC), the advent of bioinformatics, the
foundation of online databases to facilitate the downstream proteomic
analysis, and the breakthroughs in the electrospray nano-LC-MS/MS
technique, MS-based proteomics has improved dramatically in terms of
sensitivity, complexity, and throughput (Mann, 2016).

There are two alternative strategies in proteomics, namely top-down
proteomics, where intact protein ions or large protein fragments are subjected
to LC-MS, and bottom-up proteomics, which analyzes digested peptides and
is the most widely used proteomic approach (Aebersold and Mann, 2016). In
bottom-up proteomics, proteins are extracted from the biological samples
followed by enzymatic digestion into peptides by, for example, trypsin, and
the resulting mixture of peptides (typically contain 7-20 amino acid residues)
are separated, ionized, and analyzed via LC-MS/MS. The raw data generated
from the LC-MS/MS platform are analyzed by specifically designed
computational pipelines and further explored for biological meanings. Top-
down proteomics is still in its early stage of development to improve the depth
of discovery, and bottom-up proteomics holds several pitfalls including
discovery of PTMs; this limitation hinders the further growth of the proteomic
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field. To overcome the disadvantages of both strategies, scientists have
recently proposed a middle-down approach. Similarly to bottom-up
proteomics, the middle-down approach relies on proteases, such as OmpT,
Sap9, and IdeS, to generate longer peptides. Nevertheless, bottom-up
proteomics remains the workhorse of proteomic sequencing (Pandeswari and
Sabareesh, 2019).

Discovery and targeted proteomics

Discovery (or “shotgun”) proteomics by means of data-dependent acquisition
(DDA), targeted proteomics by selected reaction monitoring (SRM), and
multiplexed fragmentation of all peptides via data-independent acquisition
(DIA) are three main approaches in bottom-up proteomics. Antibody-based
immunoassays, for example, western blot and reverse-phase protein array
(RPPA), are widely utilized to target specific proteins, relying on valid
antibodies that are expensive and not available for every protein. The
drawbacks of the immunoassays can be overcome by targeted proteomic
approaches, which would be groundbreaking for cancer research and help
identify clinically significant molecular biomarkers (Faria et al., 2017). Several
studies have implemented combining discovery and targeted proteomics and
have shown promising results (Biarc et al., 2014; Hill et al., 2009). That
having been said, “shotgun” proteomics with DDA is still the most frequently
used method in the proteomic community and was carried out in this project
for the systematic proteomic profiling of the EMT cell lines. Two independent
DDA proteomic experiments based on two disparate quantitative strategies
were conducted in this project to ensure data accuracy and repeatability, and
potential targets were selected based on a deep understanding of the EMT
cell lines and a scrupulous literature review (Figure 3).
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D492, D492M, and D492HER?2 cells were subjected to LFQ and SILAC proteomic
analysis in this project. LFQ: label-free quantification; SILAC: stable isotope labeling
by amino acids in cell culture; Arg: arginine; Lys: lysine; DDA: data-dependent
analysis; DIA: data-independent analysis; LC: liquid chromatography; MS: mass
spectrometry; FDR: false discovery rate.

Quantitative proteomics

Quantitative proteomics can be categorized into relative and absolute
gquantification, as well as labeling and label-free quantitative methods. Label-
free quantification (LFQ) and intensity-based absolute quantification (iBAQ)
are common relative and absolute proteomic quantification algorithms,
respectively (Cox et al., 2014; Nagaraj et al., 2011). Stable isotope labeling
by amino acids in cell culture (SILAC), stable isotope dimethyl labeling,
isobaric tags for relative and absolute quantitation (iTRAQ), and tandem
mass tag (TMT) labeling are popular labeling methods applied in proteomics.
The SILAC approach is used to cultivate cells in different types of media
containing either normal amino acids (arginine and lysine) or amino acids
labeled with heavy isotopes (*3C, °N, or deuterium). Cells fully incorporated
with the respective “light” or “heavy” labels are mixed and analyzed
simultaneously in LC-MS/MS to generate ratios for all the proteins while
reducing batch effects (Ong and Mann, 2006). In this project, we mainly
employed two proteomic approaches established on two quantification
methods, namely LFQ and SILAC, supported by the absolutely quantitative
iBAQ. Both approaches have been widely used in EMT research (Figure 3)
(Biarc et al., 2014; D. Chen et al., 2015; Palma Cde et al., 2016; G. R. Yan et
al., 2011).
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Secretomics and phosphoproteomics

Eukaryotic cells are highly compartmentalized to partition cellular functions,
an organization that accentuates the importance of protein subcellular
localization and dynamics. The protein composition of different organelles,
along with the secreted protein mediators (secretome), can be enriched,
purified, and analyzed with proteomic approaches. By analyzing the secreted
soluble molecules in the extracellular compartment, the factors associated
with EMT in the microenvironment can be detected. For example, factors
increasing angiogenesis were observed to be elevated in the extracellular
environment during the EMT process induced by the pleiotropic Y-box-
binding protein 1 (YBX1/YB-1) and may play a role in endothelial cell
interactions (Gopal et al., 2015).

A PTM intrinsically causes a protein mass shift that can be captured by
MS-based proteomics, making proteomics a well-suited methodology to study
protein PTMs. Protein phosphorylation is ubiquitous in cells to regulate
cellular functions. In addition to the typical sample preparation procedures of
DDA-based bottom-up proteomics, an extra enrichment step for
phosphorylated peptides is needed for phosphoproteomic sample preparation
(Figure 3). Phosphoproteomics has revealed two main characteristics of
protein phosphorylation. First, it happens unexpectedly fast, with the
maximum phosphorylation reached within seconds. Second, the functional
phosphorylation sites are abundant, reflected by the high stoichiometry
(Aebersold and Mann, 2016). With the fast development of the
phosphoproteomic  strategy to render deep coverage of the
phosphoproteome, it is estimated that more than 75 % of the proteome
(researchers now believe the number could be more than 90 %) could be
phosphorylated (Aebersold and Mann, 2016). The efficient identification and
guantification of the global phosphoproteome in cells by phosphoproteomics
have been utilized to decipher the EMT-dependent drug resistance
mechanism in TNBC (Golkowski et al., 2020).

The current problems and future of proteomics

Bottom-up proteomics has greatly dominated the proteomic field to date,
relying on the availability of tractable experimental and computational
methods. However, it has inevitable flaws, such as loss of information on
PTMs and protein-protein interactions. The interest in top-down proteomics
has grown considerably to discover the proteoform systematically (B. Chen et
al., 2018). Although most of the state-of-the-art proteomic methods can yield
a high number of identified proteins, they fail to characterize proteins with
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high sequence coverage. The average amino acid coverage for an identified
protein in one sample is around 33 %. In addition, single-nucleotide variants
and novel splice junctions, which can be observed in DNA and RNA
sequencing, are poorly captured by proteomic sequencing (Alfaro et al.,
2021).

Single-cell proteomics has emerged in recent years. On account of the
intrinsic characteristics of proteomics, there is no generalized workflow for
single-cell proteomics, which is still in its infancy with many obstacles to
tackle (Marx, 2019). Nanodroplet processing in one pot for trace samples
(nanoPOTS) and single-cell proteomics by mass spectrometry (SCoPE-MS)
are two advanced MS-based techniques that enable identifying and
quantifying more than 1,000 proteins in a single cell (Alfaro et al., 2021).
Other strategies include DNA-facilitated and nanopore-based single-molecule
protein sequencing, paving the way for the promising future of single-cell
proteomics (Alfaro et al., 2021).

Thanks to the great achievement of proteomic technology and the
contribution of the Human Proteome Project (HPP), as of January 2020,
more than 90 % of the human proteome had been identified (Overall, 2020).
With the flourishing technologies of single-cell proteomics, spatial proteomics,
proteome dynamics (protein-protein interactions), and multi-omics,
proteomics will help scientists understand the human proteome even better.

1.5.2 Metabolomics: A missing puzzle in multi-omics

The metabolome is the entire collection of small chemicals involved in the
cellular metabolic network. These chemical entities or metabolites are not
only biomarkers for downstream effects of genes and proteins but also
regulators of biological processes. Small metabolites can express their
regulatory functions by chemical modification and metabolite-macromolecule
interactions. Every popular modification of macromolecules (i.e., DNA, RNA,
and protein) requires the participation of small molecules to covalently bind to
it, including acetyl-CoA for acetylation, palmitoyl-CoA for palmitoylation,
succinyl-CoA for succinylation, SAM for methylation, UDP-Glc and UDP-
GIcNAc for glycosylation, and more. A list of metabolites, such as lysine and
glutamine, can act as riboswitches to turn on or off the translational process
and activate or inhibit specific proteins (Rinschen et al., 2019). Abnormal
levels of specific metabolites are closely linked to carcinogenesis, and this
group of metabolites is termed oncometabolite. 2-HG, succinate, and
fumarate are typical oncometabolites that have been found accumulated in
cancer (Rinschen et al., 2019). Oncometabolites do not simply serve as
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biomarkers to indicate the dysregulation of certain enzymes; rather, they
have regulatory functions through a variety of epigenetic modifications and
PTMs. One of the examples of metabolites with bioactivity is fumarate, which
reacts with the thiol groups of the cysteine residues in KEAP1, a key
regulator of the transcription factor NRF2, to inhibit the normal function of
KEAP1 (Adam et al.,, 2011). NRF2 is a critical regulator for glutathione
synthesis and affects cellular oxidative stress, which is associated with
cancer malignancy (Pillai et al., 2022).

The revolutionized concept that the metabolome represents not only the
readout of the genome and proteome but also intimately controls gene and
protein behaviors has urged scientists to integrate metabolomics into the
multi-omics strategy. Metabolomics is the methodology to identify
systematically bioactive metabolites with either discovery-oriented untargeted
or broad-scale targeted profiling analyses. It starts with the identification of
metabolite features with specific mass-to-charge ratios (m/z) on an LC-MS
platform, followed by data mining including statistical analysis and metabolite
identification based on spectral libraries and public metabolite databases
(Figure 4). Ogrodzinski and colleagues recently combined genomics and
metabolomics and identified that MMTV-MYC-driven tumors with EMT
properties preferentially used the nucleotide salvage pathway, whereas
tumors with the papillary subtypes favored de novo nucleotide biosynthesis,
demonstrating that different types of breast cancer have distinct metabolic
phenotypes, a factor that could be exploited to develop subtype-specific
therapeutics (Ogrodzinski et al., 2021).
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Figure 4. General workflow of a typical metabolomics study.

A typical metabolomic study workflow comprises metabolite extraction, LC-MS/MS
analysis, metabolite identification, and metabolite quantification. An internal standard
metabolite mix that includes a list of well-detected metabolites with heavy isotope
labels is added into the samples for quality control. The extracted metabolite samples
are then analyzed in the LC-MS/MS system with pre-defined modes and acquisition
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methods. Identified peak features are annotated with the human metabolome
database (hmdb) and Metlin. The MassLynx software from Waters is used for
metabolite quantification. DDA: data-dependent acquisition; MS®: data-independent
acquisition; LC: liquid chromatography; MS: mass spectrometry.

1.6 Our previous work on the metabolism of EMT

Metabolomic data can be integrated with transcriptomic and proteomic data
to investigate systematically biological activities, which is exemplified by
genome-scale metabolic network reconstructions (GEMSs). In GEMs, the
gene-protein-metabolic reaction relationships for all the metabolic genes in a
study entity (e.g., Escherichia coli or mammalian cells) are computationally
constructed to simulate and predict metabolic fluxes in different study
conditions. To date, the in silico reconstruction of metabolic phenotypes via
GEMs is best studied in microbes (Fang et al., 2020). Isotope-based tracing
(flux analysis)—for example, 13C- or 15N-assisted tracing, can be used to
track the fate of a specific metabolite and the activity of the associated
enzymes in a time-dependent manner to determine the activeness of a
biochemistry pathway.

In our lab, we have employed various approaches including 13C tracing
with 13C-labeled glucose and glutamine, GEMSs, targeted and untargeted
metabolomic identification and quantification, and lipid profiling to explore the
metabolic changes post-EMT. We have observed that epithelial and
mesenchymal cells have distinct lipidomic profiles in the D492 and HMLE
EMT models. PtdCho and triacylglycerol (TAG) are increased after EMT,
while PtdCho- and phosphatidylethanolamine (PtdE) plasmalogens and
diacylglycerols (DAG) are decreased in mesenchymal cells. The fatty acids
are, on average, shorter and more unsaturated in mesenchymal cells, a
phenomenon that may be associated with increased membrane fluidity
(Eiriksson et al., 2018). GEMs are constraint-based computational modeling
of the cellular metabolic phenotypes. The epithelial and mesenchymal
models of D492 were built based on the RNA-seq and microarray analyses of
the cellular transcriptome and the quantification of the uptake and secretion
of 43 metabolites. Interrogation of these in silico models revealed that D492
epithelial cells possess more glutathione, consume more glucose, and
secrete more lactate, while the amino acid anaplerosis and fatty acid
oxidation fuel the mesenchymal D492M cells (Halldorsson et al., 2017).
Recently, with the help of 13C labeling, we have found that mesenchymal
cells can increase the flux via pyruvate carboxylase to replenish the TCA
cycle and escalate the flux to citrate formation via reductive carboxylation,
while D492 cells mainly oxidize glutamine in the TCA cycle. In addition,
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glucose contributes more to fatty acid synthesis than glutamine in D492 cells,
while the opposite occurs in D492M cells (Karvelsson et al., 2021).

1.7 Project summary

In my Ph.D. project, | focused on the metabolic definition of EMT in breast
cancer by using breast EMT cell lines with proteomic approaches supported
by metabolomics and functional analyses (Figure 5). This project was
intended to define the metabolic phenotypes in the process of fundamental
spontaneous EMT (Figure 5A) and that of EMP or partial EMT (Figure 5B).
The D492 (D492-D492M), HMLE (HMLE-HMLEM), and PMC42 (PMC42LA-
PMCA42ET) breast EMT cell models are suitable candidates for the metabolic
definition of the essential EMT process on account of their non-tumorigenic
properties and the spontaneously induced mesenchymal traits. The
characteristics of these cell lines enabled focusing on the fundamental EMT
process without the influences of any specific tumorigenic/carcinogenic
dominators nor the influences of possessing one or several dominating EMT-
related pathways to ensure the plasticity and intrinsic traits of EMT. The
isogenic D492 cell lines (D492, D492M, D492HER?2) residing at different
positions on the EMT spectrum were selected to study the metabolism of
EMP. D492 and D492M cells present typical epithelial and mesenchymal
phenotypes, respectively, with no tumorigenic abilities, while D492HER?2 cells
have gone through EMT and possess partial mesenchymal features and the
potential to invade.

In this report, | first generally characterized the breast EMT cell lines used
in this project to study EMT and EMP, followed by extensive proteomic
analyses, which revealed a list of EMT and EMP markers and metabolic
enzymes significantly changed post different types of EMT. Next, | identified
and further studied the enzymes UGDH and GFPT2, which were
representative of the metabolic changes in the rudimentary EMT and partial
EMP processes. In recent years, both UGDH and GFPT2 have drawn the
attention of oncologists and have been reported to be associated with EMT
and survival of patients with cancer. | confirmed that both UGDH and GFPT2
are tumor promotors dysregulated in mesenchymal cells and further explored
the upstream signaling regulations and downstream cellular functions of
these two enzymes beyond their catalytical activities. Finally, | analyzed the
SILAC phosphoproteomic data to define the altered phosphorylation
phenotypes among the mesenchymal cell lines D492M and D492HER2 and
the epithelial cell line D492 (unpublished data).
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Figure 5. An overview of the study workflows in this project.

The study workflows illustrate the breast cell lines and main methodologies used in
this project, and this figure contains two sections: (1) investigation of the fundamental
spontaneous EMT (A); (2) investigation of the EMP or partial EMT (B). (A) In the first
section, the proteomes of D492 (D492-D492M), HMLE (HMLE-HMLEM), and PMC42
(PMC42LA-PMCA42ET) EMT cell models (or epithelial-mesenchymal cell line pairs)
are detected by an LFQ proteomic approach. The topmost dysregulated metabolic
enzyme detected in all three EMT models is UGDH. Of which the upstream signaling
regulation and downstream functions are investigated. A metabolomic study is
conducted to study the metabolic effects of UGDH by siRNA-mediated knockdown of
UGDH in three mesenchymal cell lines D492M, HMLEM, and PMC42ET. (B) In the
second section, the proteomes of the D492, D492M, and D492HER?2 cell lines are
analyzed by single-shot LFQ supported by a SILAC proteomics approach. GFPT2 is
one of the top dysregulated enzymes in the partial mesenchymal D492HER?2 cell line
compared with the other two cell lines: D492 and D492M. Based on the literature,
GFPT2 is part of the mesenchymal metabolic signature (Shaul et al., 2014). To study
further, the cells are treated with siRNAs targeting GFPT2 to investigate the upstream
signaling regulation and downstream functions of GFPT2. MDA-MB-231 is employed
to study the function of UGDH and GFPT2 along with the other D492 cell lines. The
phosphoproteomes of D492, D492M, and D492HER?2 are analyzed by SILAC, which
succeeds in a broad coverage of the phosphorylated proteins (unpublished data).
Adapted from (Q. Wang et al., 2021; Q. Wang et al., 2021). Adapted with permission.

39






2 Aims

The main objective of this Ph.D. project was to characterize the EMT
metabolic phenotypes in the human breast gland by implementing proteomic
approaches.

The non-binary characteristic of EMT triggered the second objective of
this project to define the breast EMP on the proteomic level with a focus on
metabolism.

This project further aimed to interrogate the interaction between signaling
regulation and metabolism in EMT and EMP via a SILAC phosphoproteomics
approach.

The final goal was to identify and characterize specific metabolic targets in
EMT and EMP to facilitate breast cancer therapeutic development. The
specific objectives in the final goal included confirming the roles of the
metabolic enzymes identified in promoting cancer malignancy (including cell
proliferation, migration, invasion, and EMT), investigating the canonical and
non-canonical functions of the enzymes, and understanding their upstream
regulations.
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3 Materials and methods

All cell lines used in this project were kindly provided by the Stem Cell
Research Unit at the Faculty of Medicine, University of Iceland. The D492,
D492M, D492HER?2, and D492DEE cell lines were established by the Stem
Cell Research Unit. The HMLE cell lines (HMLE and HMLEM) were originally
from the publication by Prof. Robert A. Weinberg’s lab. The PMC42 cell lines
(PMC42LA and PMC42ET) were provided originally by the University of
Queensland.

3.1 Cell culture

The in-house generated D492, D492M, D492HER2, and D492DEE cell lines
were cultured in serum-free H14 medium, which contained the base medium
Dulbecco’s modified Eagle’s medium-F12 (DMEM/F12 without glutamine,
Thermo, 21331020) supplemented with 250 ng/ml insulin (Merck, 16634), 10
png/ml transferrin (Merck, T2252), 10 ng/ml EGF (PeproTech, AF-100-15), 2.6
ng/ml Na-selenite (BD Biosciences, 354201), 101 M estradiol (Sigma,
E2758), 1.4 x 10® M hydrocortisone (Sigma, H0888), 0.15 IU prolactin
(PeproTech, 100-07), 100 IU penicillin & 0.1 mg/ml streptomycin (Gibco™,
15140122), and 2 mM glutamine (Thermo, 25030024). The MDA-MB-231 cell
line was cultured in RPMI 1640 (with HEPES, L-glutamine, and phenol red,
Thermo, 52400025) supplemented with 10 % fetal bovine serum (FBS,
Gibco™ 10270106) and 100 IU penicillin & 0.1 mg/ml streptomycin. The
HMLE cell lines (HMLE and HMLEM) were cultured in DMEM/F12
supplemented with 10 pg/ml insulin, 10 ng/ml EGF, 1.4 x 10% M
hydrocortisone, 100 IU penicillin & 0.1 mg/ml streptomycin, and 2 mM
glutamine. The PMC42 cell lines (PMC42LA and PMC42ET) were cultured in
RPMI 1640 medium supplemented with 10 % FBS and 100 IU penicillin & 0.1
mg/ml streptomycin.

DMEM-F12 was replaced by “DMEM:F-12 for SILAC” (Thermo, 88370)
with “light-”, “medium-", or “heavy-" labeled arginine or lysine (Cambridge
Isotope Laboratories) in the SILAC-labeling proteomic experiment.
Specifically, the light label (L-arginine, L-lysine), medium label (L-arginine-
13Cs hydrochloride (Arg+6 Da), L-lysine-4,4,5,5-d4 hydrochloride (Lys+4 Da)),
and heavy label (L-arginine-13Cs,'5N4 hydrochloride (Arg+10 Da), L-lysine-
13Ce,15N2 hydrochloride (Lys+8 Da)) were applied for the SILAC experiment.
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In the 3C-tracing experiment, '3C-labeled 1,2-glucose, *C-labeled 1-
glutamine, and 13C-labeled 5-glutamine (Cambridge Isotope Laboratories)
replaced the non-labeled glucose or glutamine in the medium, and the base
medium used was “‘DMEM, no glucose, no glutamine, no phenol red”
(Thermo, A1443001). In the siRNA-mediated transient knockdown
experiment, penicillin and streptomycin were excluded from the cell culture
according to the vendor’s instruction. The serum-free H14 medium was
supplemented with 10 % FBS in the lower chamber in the invasion assay. All
the cell lines were cultured at 37 °C with 5 % CO:2 for routine maintenance,
and cells were routinely checked for mycoplasma contamination.

3.2 LFQ proteomics

3.2.1 Protein sample preparation

D492, D492M, D492HER2, and D492DEE were cultured in T75 flasks in
triplicates (three T75 flasks for each cell line) with a seeding density of
600,000 cells/flask. 72 hours after cell seeding, proteins were harvested at
around 90 % confluency. Specifically, cells were first washed twice with ice-
cold phosphate-buffered saline (PBS) then lysed by 450 ul lysis buffer
containing 4 % sodium dodecyl sulfate (SDS, MP Biomedicals™) in 100mM
Tris (Sigma). Flasks were then kept on ice for 10 min. Next, the cell lysates
were transferred to 1.5 ml Eppendorf tubes and spun at 20,718 rcf for 20
minutes at 4 °C after five freeze (-80 °C)/thaw (room temperature, RT)
cycles. After centrifugation, the supernatant was collected and aliquoted in
new tubes and stored at -80 °C. Later, the protein concentration was
quantified with BCA protein quantification assay (PierceTM). The HMLE and
PMC42 cell lines followed the same procedures for the protein sample
preparation.

3.2.2 Peptide sample preparation

In the first LFQ experiment containing the D492 (D492 and D492M), HMLE
(HMLE and HMLEM), and PMC42 (PMC42LA and PMC42ET) cell lines, 12-
15 pg of the total protein was precipitated by chloroform/methanol,
reconstituted in 50 mM ammonium bicarbonate (NHsHCOs3), reduced with 1
M dithiothreitol (DTT) and 200 mM iodoacetamide (IAA), and digested with
1.5 pg trypsin. Peptides were desalted using C18 STAGETIP after tryptic
digestion as described in the literature (Rappsilber et al., 2003), after which
peptides were vacuum-dried in a SpeedVac and resuspended in 0.1 % formic
acid (FA) for injection.
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The peptide preparation procedure for the second LFQ experiment
containing D492, D492M, D492HER?2, and D492DEE followed the filter-aided
sample preparation (FASP) protocol where total proteins equivalent to 300 ug
in 150 pl from each sample were reduced with 100 mM DTT, followed by
sample processing based on the FASP protocol (Wisniewski et al., 2009).
Proteins were digested twice with trypsin (3 pug x 2) on the filters at 30 °C.
The first digestion was done overnight, then for another 6 hours in a final
volume of 200 pl. The digested peptides were further desalted with C18 solid-
phase extraction cartridges (Empore, Agilent technologies) and resuspended
in 50 pul 1 % FA. The peptide quantification was measured with pierce
gquantitative colorimetric peptide assay (product 23275, Thermo Scientific).

3.2.3 LC-MS/MS analysis

In the first LFQ experiment, the peptide analysis was carried out on an LC-
MS/MS platform that comprised an Easy-nLC 1200 UHPLC system (Thermo
Fisher Scientific) interfaced with a QExactive HF orbitrap mass spectrometer
(Thermo Fisher Scientific) through a nanospray ESI ion source (Thermo
Fisher Scientific). Peptides were injected into a C18 trap column (Acclaim
PepMap100, 75 ym i. d. x 2 cm, C18, 3 ym, 100 A, Thermo Fisher Scientific)
and further separated on a C18 analytical column (Acclaim PepMap100, 75
umi. d. x 50 cm, C18, 2 um, 100 A, Thermo Fisher Scientific). Peptides were
separated with a multistep gradient running method with buffer A (0.1 % FA)
and buffer B (80 % acetonitrile (ACN, CHsCN), 0.1% FA). The gradient
started from 2%-10% buffer B in 10 min followed by 10%-50% buffer B in 130
min, and 50%-100% buffer B in 20 min with the final step 20 min with 100 %
buffer B. Before the next injection, the HPLC was re-equilibrated with 2 %
buffer B. The flow rate was set to 250 nl/min. The eluted peptides were
analyzed on QExactive HF mass spectrometer operating in positive ion- and
DDA mode with the following parameters: electrospray voltage, 1.9 kV; HCD
fragmentation with normalized collision energy, 29; automatic gain control
(AGC) target value of 3 x 108 for orbitrap MS and that of 1 x 10°% for MS/MS
scans. Each MS scan (m/z 350-1650) was acquired at a resolution of
120,000 FWHM, followed by 15 MS/MS scans triggered for AGC targets
above 2 x 108, at a maximum ion injection time of 100 ms for MS and 100 ms
for MS/MS scans.

In the second LFQ experiment, the digested peptides by trypsin were first
separated using an Ultimate 3000 RSLC nanoflow LC system (Thermo Fisher
Scientific). Approximately 130 ng of protein was loaded onto an Acclaim
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PepMap100 nanoViper C18 trap column (100 pm inner-diameter, 2 cm;
Thermo Fisher Scientific) with a constant flow of 5 pl/min. Peptides were
eluted onto an EASY-Spray PepMap RSLC nanoViper column after trap
enrichment (C18, 2 um, 100 A, 75 um, 50 cm; Thermo Fisher Scientific) and
separated with a linear gradient of 2%-35% solvent B (80 % ACN with 0.08 %
FA) and Solvent A (0.1 % FA) over 124 min with a constant flow of 300 nl/min
and column temperature of 50 °C. The HPLC system was coupled to a linear
ion trap orbitrap hybrid mass spectrometer (LTQ-Orbitrap Velos, Thermo
Fisher Scientific) via an EASY-Spray ion source (Thermo Fisher Scientific).
The spray voltage was routinely set to 1.8 kV, and the temperature of the
heated capillary was set to 250 °C. Full-scan MS survey spectra (335 - 1,800
m/z) in profile mode were acquired in the orbitrap with a resolution of 60,000
after accumulation of 1,000,000 ions. The top fifteen peptide ions with the
most intensities from the preview scan in the orbitrap were fragmented by
collision-induced dissociation (CID, normalized collision energy, 35 %;
activation Q, 0.250; and activation time, 10 ms) in the LTQ after the
accumulation of 5,000 ions. Maximal filling times were 1,000 ms for the full
scans and 150 ms for the MS/MS scans. Precursor ion charge state
screening was enabled, and all unassigned charge states and singly charged
species were rejected. To improve the mass accuracy, the lock mass option
was enabled for survey scans (Olsen et al., 2005). Data were acquired by the
Xcalibur software.

3.2.4 Peptide and protein identification and quantification

In the first LFQ experiment for the D492, HMLE, and PMC42 EMT models,
proteins were identified and quantified by MS data processing in Thermo
Scientific™ Proteome Discoverer™ (PD, version 2.3, Thermo). Preview
version 2.3.5 from Protein Metrics Incorporate (Kil et al., 2011) was used to
inspect the raw files and determine optimal search criteria. A set of search
parameters were set up, namely, (1) enzyme specified as trypsin with
maximum two missed cleavages allowed; (2) acetylation of protein N-terminal
including loss-of-Methionine; (3) oxidation of methionine; (4) deamidation of
asparagine/glutamine as dynamic PTM; (5) carbamidomethylation of cysteine
as static; (6) precursor mass-tolerance of 10 PPM while fragment mass-
tolerance of 0.02 dalton. PD’s node (Spectrum Files RC) was set up to query
the raw files against the human proteome downloaded from UniProt (homo
sapiens, file name UP000005640, date October 2018) with the static
modification to recalibrate and detect features with the Minora node. The
internal contaminants database was also queried along with the human
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proteome using the Sequest search engine available in PD (Eng et al., 1994).
For both protein and peptide identifications/peptide-spectra-matches (PSM),
the false-discovery-rate (FDR) was set to 1 % for downstream analysis of
these PSM; only unique peptides with high confidence were used for the final
protein group identification. Peak abundances were extracted by integrating
the area under the peak curve. The abundance for each protein group was
normalized by the total abundance of all identified peptides at FDR < 1 %.
Summed up median values for all unique peptide ion abundances mapped to
respective protein using LFQ scaled on all average with Precursor lon
Quantifier node for PD were used (Horn et al., 2016).

The raw data files (D492, D492M, D492HER2, and D492DEE four cell
lines in triplicates) obtained for each experiment from mass spectrometry
were collated into a single quantitated dataset using MaxQuant (version
1.5.2.8) (Cox and Mann, 2008) and the search engine Andromeda (Cox et
al.,, 2011). Enzyme specificity was set to trypsin, allowing for cleavage N-
terminal to proline residues and between aspartic acid and proline residues.
The other parameters were: (1) variable modifications - methionine oxidation,
protein N-acetylation, gin — pyro-glu, Phospho (STY), deamidation (NQ); (2)
fixed modifications, cysteine carbamidomethylation; (3) database for
searching: Uniprot-human-up5640 (160516); (4) LFQ: min ratio count, 2 (5)
MS/MS tolerance: FTMS - 10 ppm , ITMS - 0.6 Da; (6) maximum peptide
length, 6; (7) maximum missed cleavages, 2; (8) maximum labeled amino
acids, 3; (9) FDR, 1 %. LFQ intensities were reported individually for each
sample and were given as a relative protein quantitation across all samples.
LFQ intensities were represented by a normalized intensity profile generated
by algorithms described by Cox (Cox et al., 2014). They form a matrix with
the number of samples and the number of protein groups as dimensions. The
same setups were applied for the iBAQ quantification in the LFQ experiment.

In both experiments, the valid protein identification was defined as “at
least two out of three replicates in one cell line must have at least one
identified peptide”. Furthermore, the valid protein quantification was defined
as below: “at least two out of three replicates in at least one cell line must
have detectable intensity”.
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3.3 SILAC (phospho)proteomics

3.3.1 Protein sample preparation

For the SILAC proteomics and phosphoproteomics analysis, the cell lines
D492M, D492, and D492HER?2 were fully incorporated with “light”, “medium”,
and “heavy” stable isotopes of arginine and lysine, respectively, before
protein collection. Cells were first cultured in T25 flasks with respective
isotopes of arginine and lysine to get fully labeled cell populations for D492,
D492M, and D492HER2. Specifically, the D492 and D492M cells were
cultured in the “medium” and “light” labeled medium respectively for six
culture passages to ensure that all the cells had reached to the fully labeled
status, while the D492HER2 cells were cultured in the “heavy” labeled
medium for five passages. Cells were propagated in T75 flasks (Santa cruz),
then cultured in T182 flasks (Santa cruz) in triplicates to harvest enough
proteins, and the seeding density was 1,500,000 cells/flask. The cell number
for seeding was calculated to be consistent with the first LFQ proteomic
experiment. Same protein extraction procedures were carried out for the
SILAC proteomic and phosphoproteomic experiments as described in the
protein preparation section for the LFQ experiments. The only difference was
that the lysis buffer was supplemented with one tablet of PhosSTOP
phosphatase inhibitors (Roche) and one tablet of cOmplete mini EDTA-free
protease inhibitors (Roche) for protein extraction in the SILAC experiments.

3.3.2 Peptide sample preparation
Protein digestion with FASP

The extracted proteins were solubilized in 150 pl of the protein lysis buffer,
which contained Tris HCI (100 mM, pH 7.6) with 4 % SDS and 100 mM DTT.
First, protein extracts were heated at 95 °C, and to reduce the viscosity of the
lysates, DNA was shredded by sonication. Then, samples were centrifuged
and processed following the FASP protocol with some modifications
(Wisniewski et al., 2009). Proteins were alkylated in 100 pl IAA at a final
concentration of 50 mM for 15 min after lysates were passed through the
filters (Nanosep, 10k, PALL Life Sciences) which were washed four times
with 200 pl 8 M urea in Tris-HCI (100 mM, pH 8) and twice with 200 pl 40 mM
ammonium bicarbonate (NHsHCO3). Proteins were then digested twice with
trypsin (3.3 pg x 2) on the filters at 30 °C. The first digestion was done
overnight followed by another 6 hours in 200 pl ammonium bicarbonate at 40
mM. The resulting tryptic peptides were eventually desalted with C18 solid-
phase extraction cartridges (Empore, Agilent technologies).
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High pH reverse-phase peptide fractionation

Samples (4 mg) were dissolved in 200 yL of 10 mM ammonium formate
(NH4HCO2) buffer (pH 9.5), and peptides were fractionated using high pH
reverse-phase (RP) chromatography. A C18 column from Waters (XBridge
peptide BEH, 130 A, 3.5 um, 4.6 x 150 mm, Ireland) with a guard column
(XBridge, C18, 3.5 um, 4.6 x 20 mm, Waters) was used on an Ultimate 3000
HPLC (Thermo-Scientific). Buffer A used for fractionation consisted of 10 mM
ammonium formate in milliQ water, and buffer B used for fractionation
consisted of 10 mM ammonium formate in 90 % ACN. Both buffers were
adjusted with ammonia to pH 9.5. Fractions were collected at 1 min intervals
using a WPS-3000FC autosampler (Thermo-Scientific). Column and guard
column were equilibrated with 2 % buffer B for 20 min at a constant flow rate
of 0.75 ml/min and a constant temperature of 21 °C. Samples equivalent to
185 ul were loaded onto the column at 0.75 ml/min, and the separation
gradient started from 2 % buffer B to 5 % buffer B in 6 min, then from 5 %
buffer B to 60 % buffer B within 55 min. The column was washed at 100 %
buffer B for 7 min, then equilibrated at 2 % buffer B for 20 min, as mentioned
above. The collection of sample fractions started 1 min after injection and
stopped after 80 min (80 fractions in total, 750 pl per fraction). Each peptide
fraction was acidified immediately after elution from the column by adding 20
to 30 pl 10 % FA to each tube in the autosampler. The total number of
fractions concatenated was set to 10. 96 % of material from each fraction
was used for the enrichment of phosphorylated peptides, and 4 % was used
for total proteome analysis. The fraction content from each set was dried prior
to further analysis in the phosphorylated peptide enrichment step.

Phosphorylated peptide enrichment

The peptides with phosphorylation modification were enriched using
MagReSyn-TiIMAC beads (Resyn Biosciences) and Magnetic Rack
(DynaMag-2, Life Technologies). The ratio of tryptic peptides to TiIMAC
beads were set at ratio 1:5. Beads were first washed using Magnetic Rack
with 80 pl 1 % ammonium hydroxide (NH4OH) or ammonia, followed with 200
pl ACN. TiIMAC beads were equilibrated for 2 min with gentle mixing in 200
pl loading buffer consisting of 1 M glycolytic acid, 80 % ACN, and 5 %
trifluoroacetic acid (TFA). Dried samples were resuspended in 100 pl loading
buffer and added to TIIMAC beads, and the mixture was incubated with
gentle mixing for 20 min at RT. Samples were then washed with 200 pl
loading buffer for 2 min successively, followed by three times with 200 pl of 1
% TFA in 80 % ACN, and in the end with 200 pl of 0.2 % TFA in 10 % ACN.
The phosphorylated peptides were eluted from beads using 80 pl of 1 %
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ammonia three times, with pH immediately lowered to 2 using 10 % FA by
gentle mixing. Eluted phosphorylated peptides were pooled together then
dried in SpeedVac at RT, finally stored at -80 °C before the LC-MS/MS
analysis.

3.3.3 LC-MS/MS analysis

Peptide analysis for the total and phosphorylated proteome was performed
on a Velos-Pro orbitrap (Thermo Scientific) mass spectrometer coupled with
a Dionex Ultimate 3000 RS (Thermo Scientific). The LC buffers used were
the following: buffer A (2 % ACN and 0.1 % FA in milliQ water (v/v)) and
buffer B (80 % ACN and 0.08 % FA in milliQ water (v/v). All fractions from
both total and phosphorylated proteome were reconstituted in 50 ul of 1 %
FA. An aliquot (10 pL of total proteome while 15 pL of the phosphorylated
proteome) of each fraction were loaded onto a trap column (100 ym % 2 cm,
PepMap nanoViper C18 column, 5 um, 100 A, Thermo Scientific) which had
equilibrated in buffer A for 19 min at 10 yL/min. The trap column was washed
at the same flow rate for 6 min then switched in-line with a resolving C18
column (75 ym x 50 cm, PepMap RSLC C18 column, 2 ym, 100 A, Thermo
Scientific) at a constant temperature of 50 °C. Peptides were eluted at a
constant flow rate of 300 nl/min with a linear gradient from 5 % buffer B to 35
% buffer B within 124 min from the column, which was then washed for 20
min at 98 % buffer B and re-equilibrated for 19 min in 5 % buffer B. LTQ-
Orbitap Velos Pro was operated in DDA positive ionization mode. The source
voltage was set to 2.6 Kv, and the capillary temperature was 250 °C.

A scan cycle comprised MS1 scan (range from 335 m/z to 1,800 m/z) in
the velos-pro orbitrap followed by 15 sequential dependent MS2 scans (the
threshold value was set at 5,000, and the minimum injection time was set at
200 ms) in LTQ with CID. The resolution of the Orbitrap Velos was set at
60,000 after the accumulation of 1,000,000 ions. Precursor ion charge state
screening was enabled, with all unassigned charge states and singly charged
species rejected. Multistage activation for neutral loss ions was activated only
for the analysis of phosphorylated peptides. To improve mass accuracy, the
lock mass option was enabled for survey scans. The mass spectrometer was
calibrated on the first day that the runs were performed to ensure mass
accuracy.

3.3.4 Peptide and protein identification and quantification

The raw data files for D492, D492M, and D492HER?2 obtained from the mass
spectrometer for each experiment were collated into a single quantitated
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dataset using MaxQuant (version 1.5.2.8) (Cox and Mann, 2008) and the
search engine Andromeda (Cox et al., 2011). Enzyme specificity was set to
trypsin, allowing for cleavage N-terminal to proline residues and between
aspartic acid and proline residues. The other parameters applied in this study
were listed, namely, (1) variable modifications: methionine oxidation, protein
N-acetylation, gln — pyro-glu, Phospho (STY); (2) fixed modifications:
cysteine carbamidomethylation; (3) database for protein searching: Uniprot-
human_dec2017 (171216); (4) heavy label: R10K8, medium label: R6K4; (5)
MS/MS tolerance: FTMS - 10 ppm, ITMS - 0.6 Da; (6) maximum peptide
length, 6; (7) maximum missed cleavages, 2; (8) maximum labeled amino
acids, 3; (9) FDR, 1 %. The peak area of labeled arginine/lysine divided by
the peak area of non-labeled arginine/lysine for each single-scan mass
spectrum was calculated for each arginine- and/or lysine-containing peptide
as the peptide ratios. Peptide ratios for all arginine- and lysine-containing
peptides sequenced for each protein were averaged. Data were normalized
using 1/median ratio value for each identified protein group per labeled
sample. The phosphorylated peptides were normalized using the non-
phosphorylated protein 1/median values to correct for mixing errors and
compared against the individual non-phosphorylated protein ratio itself to
correct for protein regulation interactions.

The IBAQ quantification analysis for the SILAC experiment followed
similar setups with several different parameters: (1) variable modifications:
methionine oxidation, protein N-acetylation, Phospho (STY), deamidation
(NQ); (2) database for searching: Homo_sapiens.GRCh38.pep.all (108481);
(3) MS/MS tolerance: FTMS - 20 ppm, ITMS - 0.5 Da.

Valid SILAC quantification for each protein was defined as when two out
of three replicates for each sample ratio were generated with valid SILAC
ratios. Valid phosphoproteomic quantification for each phosphorylation site
was filtered by localization probability > 0.75 in all three replicates for each
sample ratio.

3.4 Data Availability

The mass spectrometry proteomics data (the first LFQ experiment) have
been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-
Riverol et al., 2018) partner repository with the dataset identifier PXD024164.

The mass spectrometry proteomics data (the second LFQ experiment)
have been deposited to the ProteomeXchange Consortium via the PRIDE
partner repository with the dataset identifier PXD025600.
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The mass spectrometry (phospho)proteomics data (SILAC) have been
deposited to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD025858.

3.5 Transient knockdown with siRNAs and quantitative
reverse transcription PCR (RT-qPCR)

Cells were seeded either at 60,000 cells/well in 48-well plates or at 480,000
cells/well in 6-well plates. Prior to cell seeding, plates were coated with
respective control siRNA (Silencer™ Select Negative Control, 4390843),
GFPT2 target siRNAs (Silencer® Select siGFPT2, s19305 and s19306),
GSK3B target siRNAs (Silencer® Select siGSK3B, s6239 and s6241), RELA
target siRNAs (Silencer® Select siRELA, s11914 and s11915), UGDH target
SiRNA (Silencer® Select siUGDH, s409 and s410), and PDGFRB target
SiRNA (Silencer® Select siPDGFRB, s10240) as well as Lipofectamine™
RNAIMAX Transfection Reagent (Thermo). Cells were transfected at 37 °C
and 5 % CO: for 48 hours with a final sSiRNA concentration of 10 nM. The
sense and antisense sequences of all the siRNAs were listed in Table 1.

Table 1. Sequences of the siRNAs used in this project.

No. Target Gene Symble siRNA ID Sense (5' -> 3') Antisense (5' -> 3)

1 GFPT2 519305 GACCGAAUUUCACUACAAALtt UUUGUAGUGAAAUUCGGUCTt
2 GFPT2 519306 GAUGAUGUCUGAAGACCGALt UCGGUCUUCAGACAUCAUCaa
3 GSK3B 56239 CUCAAGAACUGUCAAGUAALt UUACUUGACAGUUCUUGAGtg
4 GSK3B 6241 GCUAGAUCACUGUAACAUALt UAUGUUACAGUGAUCUAGCTt
5 RELA s11914 CCCUUUACGUCAUCCCUGALtt UCAGGGAUGACGUAAAGGGat
6 RELA 511915 GGAGUACCCUGAGGCUAUALt UAUAGCCUCAGGGUACUCCat
7 UGDH s409 GGGUAACGGUUGUUGAUG ULt ACAUCAACAACCGUUACCCtg
8 UGDH s410 CAACAGCGAUUGGAAUGGALt UCCAUUCCAAUCGCUGUUGct
9 PDGFRB 510240 Not available Not available

Cells were cultured in 48-well plates for 72 hours in the RT-qPCR
experiments, followed by total RNA extraction with TRl Reagent™ Solution
(Invitrogen™). RNA concentration was determined in NanoDrop One
(Thermo). 1,000 ng of RNA were used for cDNA synthesis on the thermal
cycler (MJ research, PTC-225, Peltier Thermal Cycler) using High-Capacity
cDNA Reverse Transcription Kit (Thermo). Gene expression was measured
with SYBR Green (Luna® Universal gPCR Master Mix, NEW ENGLAND
BioLabs) on Bio-Rad CFX384 Touch™ Real-Time PCR Detection System
(Bio-Rad). Primers were selected either based on literature, from
PrimerBank, or designed on Primer3Plus website. Primer sequences for
genes studied in this project were listed in Table 2.
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Table 2. Sequences of the primers used in this project.

Genes Primers Sequences (5't03')
GFPT2 Forward ATCCTTGCTTCGCCAAATGC
Reverse TTCAGTATCGTCCTTGGAGCAC
UGDH Forward TTTCTGTGCTGTCCAACCCTGA
Reverse CTCTCTGGCCCTCTGGAGTTTC
CDHL Forward ACCACGTACAAGGGTCAGGT
Reverse GGCATCAGCATCAGTCACTT
CDH2 Forward CCTGCTTATCCTTGTGCTGA
Reverse CCTGGTCTTCTTCTCCTCCA
SQOR Forward CTTCAGGAAGACAGGGAAGCGA
Reverse TAACAGTGAGGTTCCGCTCCTG
GSK3B Forward GGCAGCAAGGTAACCACAGT
Reverse GATGGCAACCGATTCTCCAG
PRCKA Forward GAAGAACGTGCACGAGGTGAAG
Reverse TCCCAAACCCCCAGATGAAGTC
PDGERB Forward GCCGAGCAACTTTGATCAACGA
Reverse GCAGTTCTTGGAGGCCAGAAAC
RELA Forward CCAGACCAACAACAACCCCT
Reverse TCACTCGGCAGATCTTGAGC
SNAIL Forward ACTATGCCGCGCTCTTTCCT
Reverse AGTCCTGTGGGGCTGATGTG
ACTB Forward CTTCCTGGGTGAGTGGAGACTG
Reverse GAGGGAAATGAGGGCAGGACTT

3.6 Crystal violet assay

The crystal violet assay was conducted for the normalization of the metabolic
measurements in the metabolomic experiment with UGDH knockdown and
for the glutathione assay in which cells were counted by this assay. In short,
cells were fixed with 100 % cold MeOH and stained with 0.25 % crystal violet
(Merck, C.l1. 42555). After washing, stained cells were dissolved into 100 pul of
10 % acetic acid and measured at 570 nm in the microplate reader
(SpectraMax® M3, Molecular Devices LLC).

3.7 Metabolomics analysis

In the GFPT2 knockdown experiment, D492, D492M, and D492HER?2 cells in
triplicates were transfected with control siRNA (scramble), target siRNA
(siGFPT2), or neither (wide-type) for 48 hours in 6-well plates, then cultured
for another 24 hours before metabolite extraction. Intensities of the
metabolites were normalized to total protein concentration measured by BCA
assay. In the UGDH knockdown experiment, the D492M, HMLEM, and
PMCA42ET cell lines in sextuplicate were transfected with control siRNA
(scramble) and target siRNA (siUGDH) following the same procedures for
siGFPT2 with the intensities of the metabolites normalized to the crystal violet
signals. In the 3C-labeling experiments, wide-type cells were cultured in T25
flasks in triplicates, and after cells reached 80 % confluency, the medium was
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changed to ones without glucose or glutamine. After culturing cells in the
medium deprived of glucose or glutamine for four hours (as Time 0), labeled
13C 1,2-glucose or 13C 1(5)-glutamine was added. Metabolites were extracted
at time 0 and after 6 hours.

Before metabolite extraction, cells were first washed with sterile saline
solution. Metabolites were extracted with cold 80 % MeOH (MeOH: dH:0,
80:20) containing an isotopically labeled internal standard mix (Table 3) as
instructed in an in-house protocol. Briefly, after adding 80 % MeOH into the
cell culture, cells were scraped off, and cell lyases were centrifuged. Next,
the supernatant was taken and vacuum-dried. The extracted metabolites
were analyzed on the ultra-performance liquid chromatography (UPLC)
coupled with ESI qTOF mass spectrometry (SYNAPT G2, Waters) according
to published protocols (Rolfsson et al., 2017). Briefly, the metabolites lysates
were loaded onto a BEH amide column (Acquity, 1.7 pm, 2.1 x 150 mm,
Waters) to achieve chromatographic separation by hydrophilic interaction
liquid chromatography (HILIC). Two running conditions (acidic and basic) and
two ionization modes (negative and positive) were used for the
chromatographic separation, including acidic negative, acidic positive, and
basic negative modes. The running buffers for the acidic condition included
buffer A (0.1 % FA in ACN (v/v)) and buffer B (0.1 % FA in milliQ water (v/v)),
while for the basic condition, the mobile phases were buffer A (100 % ACN)
and buffer B (20 mM ammonium acetate (pH 9.4, NaOH)).

The metabolite identification and quantification were conducted in
MassLynx software (Waters, version 4.2) from Waters. The targeted
metabolites were identified based on an in-house built library, which was
generated by identifying expected metabolites with chromatographic retention
time, accurate mass, and their ion adducts and fragments. For untargeted
metabolites identification, the publicly deposited spectrum from the online
human metabolome database (HMDB) (Wishart et al., 2018) and METLIN (C.
A. Smith et al., 2005) were used to cross-reference the data collected from
this project. The integration of the area under the peak curve for each
targeted metabolite was conducted in TargetLynx (Waters, version 4.2).

For the 13C-labeling tracer experiments, data were analyzed in
TargetLynx, and IsoCore was used to correct for the abundances of naturally
heavy isotopes (Millard et al., 2012). We normalized the mean enrichment of
13C in UDP-GIcNACc to the total amount of UDP-GIcNAc and presented it as
relative 13C incorporation.
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Table 3. The composition of the internal standard mix.

The isotopically labeled metabolites in the internal standard mix for the metabolic
experiments were listed. Reprinted from (Q. Wang et al., 2021). Reprinted with
permission.

No. Internal Standards Concentrations (ug/mL)
1 Adenine (**N,) 50
2 Alanine (d4) 1000
3 AMP (BCyo, °Ns) 50
4 Arginine (*Cq) 50
5 Carnitine (d9) 20
6 Citric acid (**Cg) 50
7 Cysteine (*°C,, *N) 50
8 Glucose (*Cg) 2100
9 Glutamic Acid (d5) 30
10 Glutamine (*°N,) 50
11 Lysine (d4) 90
12 Malonic acid (d4) 50
13 Octanoic Acid (d15) 150
14 Phenylalanine (d2) 72
15 Phtalic Acid (d4) 50
16 Succinic acid (d4) 50

Table 4. The main metabolites identified and quantified in this project were listed.

The first four metabolites were involved in the EMT section in this project (paper 1),
while the rest of the metabolites were involved in the EMP section (paper I1).

No. Metabolites Mass Rention Time Mode

1 UDP-Glucose 565.0476 8.47 Basic, Negative
2 UDP-Glucuronic acid 579.028 8.58 Basic, Negative
3 Glycerophosphocholine 109.041+242.078 4.79 Acidic, Negative
4 Acetylaspartate 174.03868 2.83 Acidic, Negative
5 UDP-N-acetylglucosamine 606.074 6.58 Acidic, Negative
6 Glutamate 146.0459 4.35 Acidic, Negative
7 Cystathionnine 221.0596 5.38 Acidic, Negative
8 Reduced Glutathione 306.077+272.09 4.28 Acidic, Negative
9 N-acetylglucosamine-1-phosphate 300.0484 5.21 Acidic, Negative

3.8 Untargeted metabolomics analysis

The R package XCMS was used in the untargeted data analysis (Colin A.
Smith et al., 2006) for automatic chromatographic peak-picking (the
centWave algorithm) (Tautenhahn et al., 2008) and retention time alignment
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between samples (the OBI-Warp algorithm) (Tsugawa et al., 2015). Features
that eluted in the first 66 seconds were omitted from further analysis. Feature
intensities were normalized by quality-control sample-based robust LOESS
(locally estimated scatterplot smoothing) signal correction (QC-RLSC) (Dunn
et al., 2011), which was implemented by the R package NormalizeMets (De
Livera et al., 2018). All features with over 25 % relative standard deviation
(RSD) in the QC samples were omitted from further analysis for quality
assurance. To obtain mean-centered and normally-distributed feature
intensity values with equal variance, the generalized logarithmic
transformation (glog) (Durbin et al., 2002) and autoscaling were applied.

3.9 Cell proliferation assay

Cells were seeded in 96-well plates at 10,000 cells/well in quadruplicates.
Both GFPT2 and UGDH knockdowns followed the protocol described in the
above section. In the GFPT2 knockdown experiment, 24 hours after cell
seeding for D492 and D492M while 48 hours for D492HER?2, cells were
placed under the microscope (LEICA CTR 6500, bright field, 10x) with 5 %
COg2 at 37 °C for real-time monitoring and multiple data acquisition. This was
controlled by software Micro-Manager (version 1.4.22). Three spots were
chosen in each well, and photos were taken every 6 hours. Cell growth was
monitored for 66 hours for D492 and D492M while 42 hours for D492HER?2.
Photos were batch-processed with Macro in software ImageJ 1.52p, and cell
numbers were normalized to the starting time point for monitoring under the
microscope. The same procedures were performed in the UGDH knockdown
experiment for the D492M and D492HER?2 cell lines.

3.10 Scratch migration assay

In the GFPT2 knockdown experiment, the scratch assay was performed in
the IncuCyte ZOOM system (2018A) following the manufacturer's
instructions. Cells in triplicates were seeded at 40,000 cells/well in 96-well
plates (Essen bioscience, ImagelLock, 4379). GFPT2 knockdown followed the
procedures described in the above section. Briefly, cells were scratched and
put into the IncuCyte after 48 hours of transfection with siRNAs. The
IncuCyte ZOOM system took pictures every 2 hours. Two positions in each
well were chosen, and cells were monitored for around 72 hours to reach full
wound closure. Images were analyzed in the software IncuCyte ZOOM
(2018A), and the wound confluence data were exported from the same
software.
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3.11 Transwell invasion assay

The D492M and D492HER2 cells were cultured with siRNA transfection
(Scramble, siGFPT2, and siUGDH) for 48 hours in a 6-well plate, and the
protocol for the GFPT2 and UGDH knockdown procedure was described
above. Cells were then re-seeded into filter units (Falcon® Permeable
Support for 24-well Plate with 8.0 um Transparent PET Membrane, 353097)
coated with Matrigel (Corning® Matrigel® Matrix, 356234) at a density of
30,000 cells/well. Firstly, the filter inserts were coated with 100 ul 1:10 diluted
Matrigel for 20-30 min at 37 °C. Secondly, 300 pl of cell suspension was
added on top of the filter units. Thirdly, 500 pl of H14 medium with 10 % FBS
were added to the wells in the 24-well plates below the filters. Finally, cells
were incubated at 37 °C and 5 % CO: for 48 hours. To normalize the different
cell numbers in the filter units, cells were seeded into a 24-well plate along
with the filter units and cultured in the same way as cells in the filter units.

To count the invasive cells below the filter units, non-invasive cells on top
of the filters were first removed with cotton swabs, followed by fixation with
paraformaldehyde (PFA, 3.7 %, Sigma, 252549) and DAPI staining (1:5000,
Sigma, D9542). 10 images per filter unit were then taken by the EVOS® FL
Auto Imaging System (10x, Thermo), followed by the batch analysis of the
images in Macro ImageJ 1.52p.

3.12 Western blot

The D492 cells were incubated with the GFPT2 siRNAs as described above
in the knockdown experiment. Protein lysates were extracted with RIPA
buffer (Pierce™, 89900, Thermo) supplemented with protease &
phosphatase inhibitors (Halt™, 1861284, Thermo) and quantified with BCA
protein assay. Proteins were separated by the 4%-12% Bis-Tris gels
(NUPAGE™, Thermo), transferred to polyvinylidene fluoride (PVDF)
membranes (IPFL00010, Immobilon®), and probed with antibodies against O-
GlcNAcylation (1:200 dilution; sc-59623; Santa Cruz Biotechnology) and the
loading control B-actin (1:2,000; MA5-15739; Thermo). The western blot
detection reagents were Clarity Max™ Western ECL substrate (Bio-Rad), and
plots were imaged in the Molecular Imager® ChemiDoc™ XRS+ Systems
(Bio-Rad). The protein abundance between samples was quantified and
compared via densitometry quantification of western blots carried out in the
software ImageJ 1.52p.
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3.13 Hydrogen peroxide (H202) and reduced glutathione
(GSH) treatment and growth factor deprivation

MDA-MB-231 cells were seeded in 24-well plates at 300,000 cells/well and
cultured for 48 hours, followed by treatment with 2uM H202 (Honeywell,
18304H) for 2 hours.

MDA-MB-231 cells were seeded in 24-well plates at 200,000 cells/well
and cultured for 24 hours, followed by treatment with 50 mg/L reduced
glutathione (GSH, Sigma, G4251) for 48 hours. Cells were changed with
fresh GSH-containing medium 2 hours before the RNA extraction.

MDA-MB-231 cells were cultured in the H14 medium as described for the
D492 cell lines. The cells were then seeded in 24-well plates at 200,000
cells/well and cultured for 24 hours, followed by treatments with medium
deprived of insulin or EGF for 48 hours. The fresh medium was changed for
the cells 2 hours before the RNA extraction.

In the above experiments, the GFPT2 gene expression was tested by RT-
gPCR as described in the above section.

3.14 Glutathione assay

The glutathione levels were measured with the GSH/GSSG-Glo™ Assay
from Promega (V6611), covering both reduced (GSH) and oxidized (GSSG)
glutathione. Cells in quadruplicates were seeded at 20,000 cells/well in 96-
well plates. GFPT2 knockdown and H:20: treatment followed the protocols
described in the above section. The glutathione levels were measured 24
hours after the medium was changed. The luminescence signal was detected
in the microplate reader (SpectraMax® M3, Molecular Devices) with white
and opaque 96-well plates (BRANDplates®, 781965). To normalize the
glutathione level, cells were counted using a crystal violet assay as described
in the previous section.

3.15 Statistical analysis and bioinformatics

All experiments performed in the first study on EMT and UGDH (paper )
were at least in triplicates. The metabolomics analysis of the UGDH
knockdown in D492M, HMLEM, and PMC42ET was in sextuplicate. The
proteomic data were analyzed in Perseus (Version 1.6.14.0, data imputation
based on a normal distribution with width as 0.3 and down shift as 1.8,
Permutation-based FDR < 0.05) (Tyanova et al., 2016) and R (Version 4.0.0).
The figures reported in this study were generated in R. The statistical
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significance for all the two-sample comparisons was derived from the two-
sided Student’s T-test (Welsch, p < 0.05). All error bars represented standard
deviation (SD). The Gene Ontology (GO) functional annotation was carried
out in the DAVID online platform (DAVID Bioinformatics Resources 6.8) with
default settings (Huang da et al., 2009; Huang da et al., 2009). The
Reactome pathway analysis was conducted with the online Reactome tool
(Pathway browser version 3.7; Reactome database release: 75) with default
settings (Jassal et al.,, 2019). Proteins with significance above a certain
threshold (permutation-based FDR < 0.05) were included in the GO
annotation and Reactome pathway analysis. Patient survival analyses were
conducted by the online tool kmplot.com (basal breast cancer patients, split
patients by auto select best cutoff) (Gyorffy et al., 2010).

In the second study on EMP and GFPT2 (paper Il), we utilized two
quantitative methods for proteomics analysis (single-shot LFQ and ten-
fraction SILAC) to increase the data validity and the reproducibility of the
findings. In the LFQ experiment, four cell lines (D492, D492M, D492HER?2,
and D492DEE) in three biological replicates (12 samples in total) were
analyzed, and the proteins with statistical significance were thoroughly
described. In the SILAC experiment, three cell lines (D492, D492M, and
D492HER?2) in three biological replicates (nine samples in total) were
analyzed and described. Due to the limitations with the SILAC methods
(maximum labeling capacity is three), the D492DEE cell line was expelled
from the SILAC experiment. The epithelial D492 cell line was used as the
control for the D492M and D492HER2 mesenchymal cell lines in both LFQ
and SILAC. Statistical analysis for all the comparisons between different
treatments was carried out in R and Perseus (two-sided one or two sample(s)
Student’s T-test). All error bars represented SD.

The R packages “ComplexHeatmap”, “ggdendro”, and “dendextend”
(Galili, 2015; Z. Gu et al., 2016) were used to generate the heatmaps and
dendrogram in this project. The volcano plots were plotted in R using data
that were first analyzed and organized in Perseus (version 1.6.2.3, replace
missing values from normal distribution, width = 0.3 and down shift = 1.8,
two-sided Student’'s T-test for LFQ, one sample T-test for SILAC,
Permutation-based FDR). GO annotation was carried out in Perseus (version
1.6.12.0, Fisher exact test, Benjamini-Hochberg FDR) (Tyanova et al., 2016).
All identified proteins from the SILAC experiment were used as background
for the GO annotation. The KEGG pathway enrichment was performed by the
R package “pathfindR” (100 iterations; Protein-protein interaction: Biogrid; p-
values adjustment: "bonferroni", adjusted p-value threshold: 0.05) (Ulgen et
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al., 2019). Reactome metabolic pathway enrichment was conducted with the
default parameters on the Reactome website (Version 65, 67, and 72 were
used for D492 vs. D492M, D492 vs. D492HER2, and D492M vs. D492HER?2,
respectively) (Jassal et al., 2019) then plotted in R as treemaps. Proteins
involved in the metabolic pathways (enrichment FDR < 0.05) were mapped in
the protein interaction networks created in STRING (Version 11.0; k-means
clustering, minimum required interaction scores: medium confidence 0.400)
(Szklarczyk et al., 2019) and visualized in Cytoscape (version 3.5.1/Version
3.6.1) (Shannon et al.,, 2003). The R packages “survminer” and “survival’
were used for the survival analysis in breast cancer patients, and the top and
bottom 20™ percentile of patients were included in the analysis. The data of
patients with breast cancer were downloaded from The Cancer Genome
Atlas (TCGA) cBioPortal (Breast Invasive Carcinoma (TCGA, Provisional))
(Hoadley et al., 2018). The EMT markers referred to in this project were
downloaded from the online EMT marker database (Min Zhao et al., 2015).
The GFPT2 RNA expression data in breast cell lines and breast cancer
patients were downloaded from the Cancer Cell Line Encyclopedia (CCLE)
database (Ghandi et al., 2019), the Harvard Medical School (HMS) LINCS
database (Koleti et al.,, 2017), and TCGA cBioPortal (Breast Cancer
(METABRIC, Nature 2012 & Nat Commun 2016)) (The Cancer Genome Atlas
Network, 2012). The proteins identified and quantified in both LFQ and
SILAC were plotted as scatter plots in R (Pearson).

In both the EMT and EMP studies, the phosphoproteomic data were
analyzed in the Ingenuity Pathway Analysis (IPA) (QIAGEN, version from
2018) for pathway enrichment and in Perseus for motif enrichment analysis.

All the R codes used for analysis and plotting on UGDH can be found on
https://github.com/QiongW56/UGDH_Publication_2021. (Paper I)

All the R codes used for analysis and plotting on GFPT2 can be found on
https://github.com/QiongW56/GFPT2_Publication_2021. (Paper II)
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4 Results and discussion

4.1 Proteomic profiling of the EMT and EMP programs

The notion that EMT is a driver for cancer pathogenesis has propelled the
drastic growth of the EMT research field. EMT is not a binary process but
rather with a continuum of intermediate states to render cells phenotypic
plasticity. We employed three epithelial-mesenchymal breast cell line pairs to
study the essential non-tumorigenic spontaneous EMT program and three
isogenic breast cell lines with plasticity and tumorigenicity to study the
invasive EMP program. The background and phenotypes of all the cell lines
were introduced, and the proteomic changes of both the EMT and EMP
programs by comparing different cell lines were analyzed, followed by
functional annotation of the proteomic changes.

4.1.1 Characterize the D492, HMLE, and PMC42 EMT cell models
(paper 1)

The D492 (D492-D492M), HMLE (HMLE-HMLEM), and PMC42 (PMC42LA-
PMC42ET) EMT cell models were chosen and characterized to study EMT
(Figure 6). The D492 and HMLE epithelial cell lines were generated from
normal breast reduction mammoplasty with different cell immortalization
methods. The D492 epithelial cells were basal-like with stem cell properties,
while the D492 mesenchymal cells were derived spontaneously from the
epithelial cells after coculture with endothelial cells. HMLE cells isolated from
breast tissue contained both luminal and basal epithelial cells, and the
mesenchymal counterpart was induced spontaneously by instant
trypsinization (1 minute). On the contrary, the PMC42 mesenchymal cells
were derived from pleural effusion from the metastatic site in a breast cancer
patient, and the epithelial counterpart was produced spontaneously by
hormone treatment via MET. All the cell lines held certain levels of
myoepithelial or basal features of breast epithelial cells and were not
tumorigenic.

Genetic manipulation to induce EMT, such as overexpression of EMT-
related growth factors, transcription factors, and microRNAs, may lead to
unwanted effects that diminish the plasticity and flexibility of the EMT
program (Aharonov et al., 2020; Cano et al., 2000; Krebs et al., 2017; Tam
et al., 2013; Y. Yu et al., 2018). The three breast EMT cell models symbolize
the natural EMT program in human breast gland development and have been
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adopted in various studies and contributed indubitably to the understanding
of the underlying mechanism of EMT (Bhatia et al., 2019; Briem et al., 2019;
Kréger et al., 2019).

Breast reduction Breast reduction Breast; derived from metastatic
mammoplasty mammaoplasty site: pleural effusion

Tissue

HPV-16 E6/E7 gene  NTERT and SV-40

Immortalization ; Large T antigen N/A
transduction .
expression
Basal-like; with stem Luminal and basal Express secretory and
Cell type . o N
cell properties epithelial cells myoepithelial markers

Spontaneous EMT;
Induce EMT Co-culture with
endothelial cells

Spontaneous MET; Treatment
with a combination of hormones
to induce MET

Spontanecus EMT;
Trypsinization

Tumorigenicity Nen-tumorigenic Non-tumorigenic Non-tumorigenic

Figure 6. Breast spontaneous EMT cell models.

The three breast EMT cell models (epithelial-mesenchymal cell line pairs) used to
study the essential spontaneous EMT were introduced and compared in terms of their
tissue origin, methods of immortalization, cell type markers, methods of EMT
induction, and tumorigenicity in vivo. Reprinted from (Q. Wang et al., 2021). Reprinted
with permission.

Proteomic analysis of the three EMT cell models revealed that cell lines
with the same tissue origin were more similar in spite of their epithelial or
mesenchymal properties (Figure 7A). The proteomes of the PMC42 cell lines
were distant from those of D492 and HMLE models (Figure 7B). 873 valid
proteins in total were identified and quantified in the proteomic analysis. 21.5
% of the valid proteins in the D492 cell model, 49.9 % of those in HMLE, and
22.9 % in PMC42 were significantly altered after EMT (Permutation-based
FDR < 0.05) (Figure 7C). Within the significantly changed proteins after
EMT, 55.9 % in the D492 model, 18.8 % in the HMLE model, while 63.5 % in
the PMC42 model were upregulated (Figure 7D).

The failure of the epithelial-mesenchymal characteristics being
determinant for the cell line clustering suggests that the impacts of the
spontaneous switches between the epithelial and mesenchymal states are
less profound than the inherited genetic background among the cell lines
(Figure 7A). Both D492 and HMLE are derived from normal breast tissue,
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while PMC42 is isolated from the metastatic site of a breast cancer patient,
which may be responsible for the alienation of PMC42 (Figure 7B).

The D492 and PMC42 cell models shared similar percentages of the
altered proteome after EMT, which was more than two times lower than that
of the HMLE proteome (Figure 7C). Furthermore, both D492 and PMC42
models had relatively more proteins upregulated after EMT. However, less
than 20 % of the changed proteins in the HMLE model were upregulated
(Figure 7D). It suggests that the HMLE epithelial cell line is more epithelial-
like than the other two epithelial cell lines.
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Figure 7. Comparison of the proteomes among the three breast EMT cell models and
during the EMT process.

(A) PCA analysis of the proteomes of the three EMT models clustered the cell lines
with the same tissue origin together, while the epithelial (or mesenchymal) proteomic
phenotypes of these cell lines were not close enough to cluster. (B) The proteome of
D492 was more similar to that of HMLE than PMC42. (C) 21.5 % of the detected
proteome in the D492 EMT model were significantly altered after EMT (Permutation-
based FDR < 0.05), while 49.9 % in HMLE and 22.9 % in PMC42 were significantly
changed. (D) 55.9 % of the significantly changed proteome in the D492 EMT model,
18.8 % in HMLE, and 63.5 % in PMC42 were upregulated. Reprinted from (Q. Wang
et al., 2021). Reprinted with permission.
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We further mapped the log2 fold changes and -log10 p values of all the
detected proteins to filter and identify consistent and significant changes
among all the EMT cell models (Figure 8). Most of the proteins had failed to
yield consistent changes, empathizing the heterogenicity of the EMT program
and supporting that EMT is a context-specific biological process.

GO annotation of the significantly altered proteins after EMT in the three
EMT cell models revealed that changes to the biological process (BP) “cell-
cell adhesion” were prevalent among all models (Figure 9A-C). The HMLE
and PMC42 cell models had changed their biological functions to a similar
extent, with the PMC42 model sharing its top seven GO-BP terms with
HMLE. The estrangement of D492 from the other cell models in EMT-related
functional changes was confirmed by the Reactome pathway enrichment
analysis (Figure 9D-F). Response to cell stress and alteration in IGF and
interleukin-12 signaling were pathways reshaped in the D492 model after
EMT, while changes in the protein translational process were mainly involved
in the HMLE and PMC42 cell models.

The protein expression profile of the D492 cell lines was similar to that of
HMLE compared with PMC42 (Figure 7B); however, the altered biological
functions post-EMT were discordant between these two EMT cell models
(Figure 9). In HMLE and PMC42, the epithelial-mesenchymal switch is
mainly promoted by the changed translational activities, suggesting that
these cells rely on the translational machinery to reshape their proteomic
landscapes during the phenotypic switch. The extravagant difference to the
altered protein profile between HMLE and PMC42 suggests that the cell lines
have customized their needs for protein translation in EMT induction (Figure
9C-D). The D492 EMT cell model suffices the transition by altering cell
responses to stress and signaling regulations, suggesting that these cells,
relying on the cell plasticity imparted by the stem cell-like properties of the
D492 epithelial cells, commit to post-translational approaches to fulfill EMT.
These findings indicate that certain distinct cell properties, such as stem cell
properties, can be dominant for EMT induction, surpassing the proteomic
similarity, and cells with discordant proteomes can rely on similar functional
mechanisms tailored to their intrinsic characteristics to induce EMT.

The D492, HMLE, and PMC42 EMT cell models are three sets of cell lines
with distinct genetic backgrounds and heterogenous EMT processes. D492M,
HMLEM, and PMCA42ET represent three distinct mesenchymal phenotypes,
supporting that the mesenchymal cell state is very diverse and can not be
well-defined by certain sets of markers (J. Yang et al.,, 2020). These
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mesenchymal cell types may be subject to further oncogenic insults and
eventually cause different levels of oncological severity. These findings
support the emerging concept: The intrinsic properties induced by the cell of
origin are the foundation and determinant of the subsequent oncogenic
events, which can profoundly affect cancer malignancy (Puisieux et al.,
2018).
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Figure 8. Proteomic changes after EMT in the three EMT models.

The log2 ratios (epithelial/mesenchymal) of the detected proteins, along with the -
log10(p value), were plotted for the D492 EMT cell model (A), HMLE EMT cell model
(B), and PMC42 EMT cell model (C) based on the proteomic analysis. The proteins
with FDR (Permutation-based) < 0.05 and fold change > 2 were colored. The p value,
which equals to 0.03 (-logl0(p value) = 1.5), was indicated by the horizontal dash
lines, while the fold change at 2-fold was highlighted by the vertical dash lines. The
normal label-marked proteins had log2(fold change) > 3, i.e.,, UCHL1, CTGF,
SERPINE1, FLNC, AKAP12, GLUL, ITGB4, JUP, S100A2, NDRG1, ITGA6, and
SERPINBS in the D492 model (A); ANPEP, MAP1B, SERPINE1, DPYSL3, DKK1,
ITGAB, ITGB4, DSP, LGALS7, KRT18, and S100A2 in the HMLE model (B); while
VIM, HIST1H1B, SERPINE1, TGM2, CD70, CTSZ, CHORDC1, PKP3, and CKB in
the PMC42 model (C). Metabolic proteins with log2(fold change) > 1 for the D492 cell
model, 1.5 for the HMLE and PMC42 cell models were bold label-marked, for
example, UCHL1, UGDH, GLUL, and LDHA in D492 (A); UGDH, FDFT1, ASS1, and
AHCY in HMLE (B); and PGM1, UAP1, OAT, ASS1, and SULT1A3 in PMCA42 (C).
Reprinted from (Q. Wang et al., 2021). Reprinted with permission.
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Figure 9. Functional changes after EMT in the three EMT models.

(A-C) The top 10 of the most dysregulated biological processes (BP) were listed for
the D492 cell model (A), the HMLE cell model (B), and the PMC42 cell model (C),
respectively. The GO terms were listed according to the -loglO(p value) in a
descending order. The gene numbers contained in each GO term were plotted as
dots/line. The functional annotation of the GO-BP terms was performed on the DAVID
platform (DAVID Bioinformatics Resources 6.8). (D-F) The Reactome pathway
analysis was conducted for the D492 cell model (D), HMLE cell model (E), and
PMC42 cell model (F) (Pathway browser version 3.7; Reactome database release:
75). Both the GO annotation and Reactome pathway analysis were analyzed with the
proteins significantly altered in each EMT cell model (Permutation-based FDR < 0.05).
Both the DAVID GO annotation and Reactome pathway analysis were performed with
default settings on the platforms. Reprinted from (Q. Wang et al., 2021). Reprinted
with permission.

4.1.2 Characterize the D492, D492M, and D492HER2 EMP cell
model (paper II)

To discriminate proteomic phenotypes that confer cell invasiveness from
migration, the cell line trio, epithelial D492, mesenchymal D492M, and partial
mesenchymal D492HER?2 formed the EMP cell model and was analyzed in
the same proteomic experimental setup (Figure 10). D492 is a normal
human breast epithelial cell line with basal-like and stem cell properties and
is capable of initiating EMT and of differentiating into both luminal epithelial
and myoepithelial cells. D492M was generated by spontaneous EMT
induction from D492 and is non-tumorigenic with typical mesenchymal
phenotypes and with increased migratory ability. D492HER2 cells possess
certain mesenchymal traits with more potential for invasiveness,
representative of the EMT plasticity.

The proteomic analysis confirmed that D492HER2 is more similar to
D492M than D492 on the protein level, with 462 differently expressed
proteins identified between D492HER2 and D492M while 535 proteins in
D492HER2 different from D492 (Figure 11). The significant difference to
proteome between D492M and D492 (715 altered proteins) exceeded that
between D492HER2 and D492 (535 altered proteins), confirming that
D492HER?2 locates in-between the epithelial D492 and mesenchymal
D492M, retaining the epithelial-mesenchymal intermediate phenotype. The
smaller number of signature proteins (signature proteins: a set of proteins
uniguely dysregulated in one cell line compared with the other two cell lines)
in D492HER2 (84 proteins) further confirmed that D492HER2 is an
intermediate state between D492 and D492M.
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Figure 10. Generation of D492M and D492HER?2 from D492 in the EMP cell model.

The D492M and D492HER?2 cell lines were generated from the D492 cell line. To
generate D492M cells, D492 cells were cocultured with endothelial cells (BRENCs or
HUVECS) to generate spindle colonies, followed by the subculture of the spindle
colonies to generate the new stable cell line D492M, which is not tumorigenic. To
generate D492HER?2 cells, the HER2 (ERBB) receptor was overexpressed on D492
cells via transfection of the HER2-containing lentiviral plasmids, followed by a
selection of the successfully transfected cells based on eGFP expression. In the end,
the stable D492HER2 cell line was generated, which could form tumors in mice.
Reprinted from (Q. Wang et al., 2021). Reprinted with permission.

D492 D492M

Figure 11. The difference to the proteomes among the EMP cell lines.

Based on both the LFQ and SILAC proteomic analysis, there were 715 proteins
significantly different between D492 and D492M, 535 proteins changed significantly
from D492 to D492HER2, while 462 proteins were significantly different between
D492M and D492HER2 (LFQ: Student’s two-sample T-test, Permutation-based FDR
< 0.05 & SILAC: Student's one-sample T-test, p value < 0.05). There were 312
proteins differently expressed in D492 compared with the other two cell lines
(signature proteins for D492), and 97 differently expressed proteins in D492M
(signature proteins for D492M), while 84 signature proteins in D492HER2 (LFQ:
ANOVA, Permutation-based FDR < 0.05 & Coefficient of Variation of SILAC ratios <
0.1).
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EMT is a heterogenous process with as yet no universal criteria to define
it. Groger et al. carried out a meta-analysis for EMT gene expression studies
and identified an EMT-core gene list containing 130 dysregulated genes post-
EMT (Groger et al., 2012). Shaul and colleagues identified a list of metabolic
markers in mesenchymal cell lines (MMS) that comprised 44 enzymes (Shaul
et al., 2014). To characterize the EMP cell model in the framework of EMT,
we compared the protein expression of the general and metabolic
mesenchymal markers from the literature among D492, D492M, D492HER2
(Figure 12A-B). There was good consistency between LFQ and SILAC, with
SILAC being more compatible with the literature. The EMT gene expression
profile of the EMP model and that of the literature are concordant, apart from
aldehyde dehydrogenase family 1 member A3 (ALDH1A3), 4-
hydroxyphenylpyruvate dioxygenase-like protein (HPDL), aldo-keto reductase
1 member Bl (AKR1B1), and microsomal glutathione S-transferase 1
(MGST1).

ALDH1A3 and HPDL were reported to be decreased, while AKR1B1 and
MGST1 were increased in the mesenchymal cells (Gréger et al., 2012; Shaul
et al., 2014), which was contradictory to the EMP cell model. ALDH1A3
catalyzes the formation of retinoic acid and is important for embryonic
development. HPDL localizes in mitochondria, and the biological function of
which is less studied. AKR1B1 is an NADPH-dependent enzyme catalyzing
the reduction of aldehydes and ketones. MGST1 regulates glutathione
metabolism, oxidative stress, and cell detoxification. All four enzymes are
reported to facilitate cancer progression (Duan et al., 2016; X. Wu et al.,
2017; Ye et al., 2021; Zeng et al., 2020), and the discordance dampens their
strength as reliable EMT markers.

D492HER2 cell proteome is closer to that of D492M than D492, albeit
unequivocal differences (Figure 12A-B). EMT marker expression in clusters
C2 and C4 (Figure 12A) was discordant between D492HER2 and D492M,
empathizing the accountabilities of these EMT markers in EMT plasticity.

Established on the reported proteomic fingerprints of 20 common breast
epithelial cell lines (Lawrence et al., 2015), the unsupervised hierarchical
clustering analysis revealed that D492 and D492M were basal-like breast cell
lines, complying with the prior categorization of D492 (Sigurdsson et al.,
2011), while D492HER2 was grouped with the “mesenchymal-like/claudin-
low” cell lines based on both SILAC and LFQ (Figure 12C).

MCF10A cells express stem cell-like markers, and this cell line is non-
tumorigenic and derived from normal breast tissue, which highly resembles
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D492 (Bhat-Nakshatri et al., 2010; Neve et al., 2006; Qu et al., 2015; Soule et
al.,, 1990). MDA-MB-468 is tumorigenic with metastatic capacity and was
clustered with D492M possibly in consequence of its mesenchymal traits
(Cailleau et al., 1978; H. J. Hugo et al., 2017; Neve et al., 2006). D492HER?2
was clustered with the tumorigenic MDA-MB-157, originally isolated from
metastatic human breast carcinoma (Cailleau et al., 1978; Neve et al., 2006;
Young et al., 1974), and classified as a “mesenchymal-like/claudin-low” cell
line based on both LFQ and SILAC. D492 and D492M imitate basal-like
breast cells, while D492HER2 appears to be an intermediate phenotype with
claudin-low properties diverting from D492 and D492M.

These findings strengthen the isogenic D492 cell lines as a valuable tool
to study EMP and to define the molecular plasticity of EMT on the proteomic
level.
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Figure 12. Dysregulation of the general and metabolic EMT markers in the EMP cell
model and cell line classification of D492, D492M, and D492HER?2.

(A) Groger et al. was a published independent study on EMT marker dysregulation via
a meta-analysis of gene expression studies (GES) of EMT, with a focus on different
cell types and treatment modalities (Groger et al., 2012). Based on this study, the
identified EMT markers in the EMP cell model were confirmed. 26 out of the 130 EMT
markers reported in the literature were detected in both the LFQ and SILAC datasets.
EPCAM and IL18 were inconsistent between LFQ and SILAC, with the SILAC results
being more similar to the literature. ALDH1A3 was inconsistent between the literature
and this study. (B) Dysregulated metabolic EMT makers in the EMP model were
compared with the MMS reported in Shaul et al., where the mRNA expression profiles
of 1,704 metabolic genes in 978 human cancer cell lines were analyzed (Shaul et al.,
2014). The LFQ and SILAC quantification of all the metabolic EMT proteins agreed
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with each other except for NT5E, with SILAC being more consistent with the literature.
Compared with the literature, HPDL, AKR1B1, and MGST1 altered oppositely in the
EMP model. (C) Classification of the EMP cell model. Both the LFQ and SILAC raw
data were re-quantified by the iBAQ quantification method in MaxQuant, and the
expression of proteins identified in both literature and this study was used for the
hierarchical clustering. D492, D492M, and D492HER?2 were clustered with other pre-
classified breast cell lines (Lawrence et al., 2015). In the literature, the breast
epithelial cell lines commonly used in literature were classified into four groups:
“luminal”, “basal-like 1,” “basal-like 2,” and “mesenchymal-like/claudin-low.” Based on
the analysis, LFQ (left) classified D492 as “basal-like 1” (in blue), D492M as “basal-
like 2" (in red), and D492HER2 as “mesenchymal-like/claudin-low” (in orange), while
SILAC (right) classified D492 as “basal-like 2” (in red), D492M as “basal-like 1” (in
blue), and D492HER2 as “mesenchymal-like/claudin-low” (in orange). Reprinted from
(Q. Wang et al., 2021). Reprinted with permission.

To characterize the proteomic changes post different types of EMT in the
EMP cell model, supported by both LFQ and SILAC, we plotted the log2 fold
changes and -log10 p values of all the detected proteins from both LFQ and
SILAC and outlined the utmost changes among the three cell lines with
arbitrary thresholds (Figure 13). The topmost consistent non-metabolic
change between D492HER2 and D492M was ERBB, owing to the
transfection of the ERBB receptors into D492HER2 (Figure 13A-B). FLNC,
ERBB, SERPINB5, S100A14, ANXA3, and LAD1 were consistently altered
between D492HER2 and D492 (Figure 13C-D), while ITGB4 and S100A14
were outlined by the comparison between D492M and D492 (Figure 13E-F).

The increased FLNC in the mesenchymal cells agrees with the
involvement of FLNC in cell cytoskeleton modeling. SERPINB5 plummeted
after EMT, supporting that SERPINBS5 is an epithelial marker and competent
for tumor suppression (Vecchi et al.,, 2008). ANXA3 has been reported to
participate in chemoresistance (Tong et al., 2018), and the higher level of
ANXA3 in D492 confirms the higher resistance of D492 to drug treatment
(Barkovskaya et al.,, 2021). The ANXA3 expression in prostate cancer
specimens is essentially reduced, making ANXA3 a prognostic marker in
favor of patient survival (Kdllermann et al.,, 2008). S100A14 has recently
been reported to possess oncogenic effects in breast cancer (Xukun Li et al.,
2020). It is drastically decreased in both D492HER2 and D492M, pinpointing
its importance for D492. LADL1 is reported to be phosphorylated by EGF to
promote tumor aggressiveness in breast cancer, which conflicts with the high
level of LAD1 in D492 (Roth et al., 2018). S100A14 and LAD1 are reported
oncogenes but significantly decreased in the mesenchymal cells, suggesting
higher levels of S100A14 and LAD1 are not necessarily associated with
higher carcinogenicity.
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Reactome pathway analysis revealed that mitochondrial translation was
primarily dysregulated in the partial EMT process represented by D492HER?2
(Figure 14B), reflecting the significance of energy metabolism in cancer
malignancy (Bergers and Fendt, 2021).
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Figure 13. Proteomic changes among different cell lines in the EMP cell model were
quantified by LFQ and SILAC.

Statistical analysis of the LFQ and SILAC proteome expression between two different
cell lines in the EMP cell model: D492HER?2 vs. D492M (A-B), D492 vs. D492HER?2
(C-D), D492 vs. D492M (E-F). Proteins with significance and fold change > 2 were
colored (LFQ: Student’s T-test, two-sample tests, Permutation-based FDR < 0.05;
SILAC: Student’s T-test, one-sample tests, p value < 0.05). Metabolic enzymes were
normally labeled for those that were differentially expressed in two cell lines and
consistent between LFQ and SILAC. Proteins were boldly labeled for those that
possessed significant difference and were with fold changes above certain thresholds
(at least 4-fold difference between D492HER2 and D492M, 4-fold between
D492HER2 and D492, and 6-fold between D492 and D492M). Horizontal dash lines
indicated the -log10(p value) at 1.5, and vertical dash lines indicated the fold change
at 2-fold. The top altered proteins between D492M and D492HER2 were PRSS23,
CTGF, TAGLN, POMC, CADMS3, KRT1, CDH2, DCD, PCSK1N, AKR1C1, ALDH1A3,
and ERBB2, involved in cell adhesion and metabolism. The top differently expressed
proteins in D492HER2 and D492 were AKAP12, FLNC, ERBB, RCN3, MYL9,
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SERPINB5, ITGB4, ITGA6, DSP, S100A14, S100A2, LAD1, ANXA3, and PKP2,
which were mainly involved in cell adhesion, structure, cell-cell interaction, and
signaling. Similar to the difference observed with the other cell lines, the top differently
altered proteins between D492 and D492M included AKAP12, CTGF, FLNC,
SERPINE1, MYL9, TAGLN, ITGB4, ITGA6, ANXA3, SERPINB5, NDRG1, DSP,
S100A14, FGFBP1, S100A2, LAMA3, and LAMB3. Reprinted from (Q. Wang et al.,
2021). Reprinted with permission.
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Results and discussion

Figure 14. Functional changes among different cell lines in the EMP cell model.

Dysregulated Reactome metabolic pathways were enriched in D492HER2 vs. D492M
(A), D492HER2 vs. D492 (B), and D492M vs. D492 (C). Proteins significantly
changed between two cell lines in both LFQ and SILAC were included for the
Reactome pathway analysis. Student’s T-test, Permutation-based FDR < 0.05, one
sample T-test, p value of SILAC ratio < 0.05. Reprinted from (Q. Wang et al., 2021).
Reprinted with permission.

4.2 Search for breast EMT markers

In this section, | described the consistent EMT markers identified in the
essential spontaneous EMT program among the three EMT cell models.
Moreover, the proteomic profile of the partial mesenchymal D492HER?2 in the
EMP cell model was explored by comparing the proteome of D492HER2 with
that of the epithelial D492 and mesenchymal D492M.

4.2.1 Common EMT markers were identified (paper 1)

Heterogenicity and plasticity are two of the main molecular properties of the
EMT program, which encourages the field to identify a set of consistent and
reliable markers to define EMT. We identified 13 consistently changed
proteins post-EMT, within which 4 metabolic enzymes were discovered.

One hallmark of EMT is the switch between E-cadherin (CDH1) and N-
cadherin (CDH2) expression (Loh et al., 2019). Forasmuch as the proteomic
data were unable to detect CDH1 and CDHZ2, real-time PCR was applied for
probing the RNA expression of these two EMT markers. The downregulated
CDH1 and upregulated CDH2 in all three EMT cell models confirmed the E-
cadherin and N-cadherin switch in EMT (Figure 15A-B).

The consistently dysregulated proteins after EMT in all three EMT cell
models were summarized (Figure 15C). The upregulated VIM, LGALS1, and
SERPINE1 and downregulated PKP3 in the mesenchymal cells were EMT
markers recorded in a public EMT database (M. Zhao et al, 2019). A
thorough literature review for the identified EMT targets revealed that all had
been connected to EMT, albeit to different extents, with many pending to be
explored in the context of EMT (Table 5). The regulation of these EMT
markers was further confirmed in the tumorigenic breast mesenchymal cell
line D492HER?2 in the context of cancer progression, with the same trends in
changes seen for all the targets detected in D492HER2 (Table 5). It indicates
that these makers are not responsible for the tumor initiation but are critical
for EMT and are potentially involved in cancer malignancy.
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VIM, SERPINE1, LGALS1, and PKP3 have been related to EMT in
different cancer types (Aigner et al., 2007; Bacigalupo et al., 2015; Bedi et al.,
2014; Hui Li et al., 2017; Pavoén et al., 2012; F. Xu et al., 2017; Yamagami et
al., 2020; J. Yang et al., 2020). Vimentin, a type lll intermediate filament and
a well-known EMT marker, shapes cell structure and modifies cell movement
and adhesion (Mendez et al., 2010). SERPINEL, a key player in endothelial
homeostasis, is highly upregulated in EMT. However, the function of
SERPINE 1 in EMT is poorly understood. The possible role of SERPINEL in
EMT is to affect the function of urokinase-type plasminogen activator receptor
(UPAR) to regulate ECM degradation (Yamagami et al., 2020). LGALS1 is a
carbohydrate-binding protein. A study showed that upregulation of LGALS1
decreased CDH1 and increased SNAI1 (Bacigalupo et al., 2015). PKP3 is an
epithelial marker and is under the control of EMT transcription regulator ZEB1
(Aigner et al., 2007; Bedi et al., 2014).
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Figure 15. Consistently altered proteins post-EMT in all three EMT cell models.

(A-B) The RNA expression of CDH1 was downregulated (A), while that of CDH2 was
upregulated after EMT in all three EMT cell models (B). Student’s T-test, *: p < 0.05;
** p < 0.01; ** p < 0.001. (C) The proteomic analysis identified 13 proteins
significantly changed (Student’s T-test, p < 0.05) in all three EMT models and with the
same up- or down-regulated directions. Within these proteins, SERPINE1, RPL26L1,
PLOD2, UGDH, LGALS1, and VIM were upregulated, while JUP, PKP3, MTCH2,
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ATP2A2, FDFT1, SORD, and TSTA3 were downregulated after EMT. UGDH, FDFT1,
SORD, and TSTA3 were metabolic proteins. Reprinted from (Q. Wang et al., 2021).
Reprinted with permission.

4.2.2 Distinct proteomic signatures of the EMP cell line (paper II)

Accordingly, D492HER2 resides at the EMT spectrum created by the
epithelial D492 and mesenchymal D492M, with increased invasiveness.
Identifying the altered proteome in D492HER2 compared with the other cell
lines (signature proteins) advances the searching for accountable markers in
the EMT-involved oncogenicity. 65 out of the 84 identified dysregulated
proteins in D492HER2 were upregulated, implying increased cellular
activities (Table 6). The proteomic signature consisted of a broad range of
proteins with diverse cellular functions, covering DNA replication, RNA
transcription, protein translation, cell structure and movement, transport, cell
signaling, and metabolism.

Focusing on the distinctive metabolic phenotype in D492HER2, GFPT2,
SLC16A3, ALDH9A1, HK1l, MGEA5, ACLY, and NDUFAB1 were
upregulated, while cytosolic FH, SOD2, and GLA were downregulated.
SLC16A3 encodes monocarboxylate transporters, carrying lactate, keto
bodies, and more across the plasma membrane, and is a marker for
increased dependence for glycolysis (Halestrap, 2013). ALDH9A1 belongs to
aldehyde dehydrogenases, correlated with cell proliferation (Muzio et al.,
2012). HK1 participates in glucose metabolism. Cytosolic FH has been
shown as a tumor suppressor and part of the DNA damage response (Yogev
et al., 2010). GFPT2 that generates UDP-GIcNAc, MGEAS5 that removes O-
GIcNAc, and GLA that hydrolyzes glycolipids are enzymes related to glycans.
ACLY is a lipogenic enzyme critical for the de novo lipid synthesis by
converting cytoplasmic citrate to acetyl-CoA and oxaloacetate and is a key
player in cancer metabolism (Zaidi et al., 2012). NDUFABL1 is also known as
acyl carrier protein (ACP), takes part in the type |l fatty acid synthesis in
mitochondria, and has been shown to regulate mitochondrial bioenergetics
and ROS metabolism to affect cell viability (Feng et al., 2009; T. Hou et al.,
2019). SOD2 is an oxidant scavenger in mitochondria (ldelchik et al., 2017)
and is one of the few enzymes downregulated in D492HER?2, possibly
owning the impaired mitochondria.

Taken together, D492HER2 regulates many oncogenic enzymes required
for cell proliferation, lipid synthesis, glycan metabolism, mitochondria and
ROS regulation, DNA damage response, and central carbon metabolism,
rendering it more invasiveness than the other two EMP cell lines.
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Table 5. Consistent proteomic changes in EMT.

The expression of consistently changed proteins among the three EMT cell models was reported. The EMT targets were significantly
different (Student’s T-test, p < 0.05). The literature related to each target in terms of EMT was also listed. Changes of these targets in
another breast mesenchymal cell line with tumorigenicity (D492HER2) were consistent with the findings in this study. Reprinted from (Q.
Wang et al., 2021). Reprinted with permission.

Gene expression in

Log2(D492/D Log2(HMLE/HM Log2(PMC42LA -Log(p-value -Log(p-value -Log(p-value EMT-related Literature mesenchymal cells with

Uniprot ID Protein Name Gene Name

492M) LEM) IPMC42ET) D492s) HMLES) PMC42s) tumorigenicity (Log2Ratio)
. " 1 (Pavonetal., 2012; Xu et al.,
P05121-1 Plasminogen activator inhibitor 1 SERPINE1 -4.236 -3.442 -3.993 3.416 3.313 3.780 2019; Yamagami et al., 2020) -4.739
QYUNX3  60S ribosomal protein L26-like 1 RPL26L1 -2.367 -1.123 -1.346 1.981 2.349 1.925 (Piskareva et al., 2015) Not detected
I 1-lysine, 2 lutarate 5- (Pavonetal., 2012; Xu et al.,
000469-1 dioxygenase 2 PLOD2 -1.817 -1.504 -1.121 5.005 3411 2072 -1.687

(Arnold et al., 2019; Vergara et
060701  UDP-glucose 6-dehydrogenase UGDH -1.193 -2.550 -0.779 3.101 3.962 2.285 al., 2015; Lin et al., 2020; Teoh -0.828
et al., 2020; Wang et al., 2019)

(Bacigalupo et al., 2015; Li et

P09382  Galectin-1 LGALS1 -0.623 2912 -0.444 1.769 3.035 1.799 S 2017, Pivtn ot ol 3013) -0.422
P08670  Vimentin VIM -0.407 -1.979 3,343 5.493 4.802 5.970 (Yang et al., 2020) -0.957
Q13630 GDP-L-fucose synthase TSTA3 0.553 1.009 0.508 2.871 2517 1.789 (Renetal, "’2%12% Wangetal,, 0.562
Q00796  Sorbitol dehydrogenase SORD 0599 1.459 1.452 2457 2.957 2.806 (Schwab et al., 2018) 0111
P37268  squalene synthase FDFT1 0683 1.536 0.491 3510 3215 1.462 (Yang et al., 2020b) 0722
Sar ic/endopl; ic reticul .
P1ga1s ol otE ATP2A2 0919 0.523 0.641 2388 1.551 2316 (Davis et al., 2013) 0.299
Q9YBCY  Mitochondrial carrier homolog 2 MTCH2 1.239 0.725 0.899 2219 1.624 3.015 (Ren et al., 2015) 0.198
QOY446  Plakophilin-3 PKP3 2958 2057 3478 2786 3077 1850  (Aigneretal, 2007; Bedietal., 3.458
P14923  Junction plakoglobin JuP 4343 1.541 1214 1783 1.356 3611 (Demirkan;2013; Lowenco'et 4344

al., 2020)
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Table 6. Signature proteins in partial mesenchymal D492HER2.

Proteins were significantly down-/up- regulated in D492HER2 compared with the other two cell types (D492 and D492M) based on both LFQ
and SILAC. The z-score values of the protein expression in D492HER?2 were reported. Data used were from (Q. Wang et al., 2021).

Protein ID Protein Name Gene Name LFQ_D492HER2 °“ANOVA.FDR_D492HER2  SILAC_D492HER2 °CV_D492HER2
QINR33 DNA polymerase epsilon subunit 4 POLE4 -2.123 0.006 -1.133 0.064
Q53Y83 Galactosidase, alpha GLA -2.031 0.012 -1.152 0.065
Q5VXV3 SET SET -1.828 0.002 -1.150 0.048
095758-1 Isoform 1 of Polypyrimidine tract-binding protein 3 PTBP3 -1.629 0.001 -1.154 0.003

AOA024R829 Polymerase (DNA directed), epsilon 3 (P17 subunit), isoform CRA_a POLE3 -1.553 0.002 -1.152 0.032
Q9BPX3 Condensin complex subunit 3 NCAPG -1.471 0.009 -1.145 0.001
QINQG5 Regulation of nuclear pre-mRNA domain-containing protein 1B RPRD1B -1.390 0.001 -1.140 0.013

ADA024R2Q3 Catenin (Cadherin-associated protein), beta 1, 88kDa, isoform CRA_a CTNNB1 -1.370 0.001 -1.150 0.066

P19105 Myosin regulatory light chain 12A MYL12A -1.219 0.000 -1.148 0.040
Q5VXNO Ribosome production factor 2 homolog (Fragment) RPF2 -1.058 0.012 -1.147 0.079

AOA024R694  Actinin, alpha 1, isoform CRA_a ACTN1 -0.920 0.002 -1.142 0.070
075643 U5 small nuclear ribonucleoprotein 200 kDa helicase SNRNP200 -0.850 0.001 -1.155 0.021
P04179-4 Isoform 4 of Superoxide dismutase [Mn], mitochondrial SOD2 -0.828 0.030 -1.137 0.013

AOA024R395 MRE11 meiotic recombination 11 homolog A (S. cerevisiae), isoform CRA_a MRE11A -0.781 0.000 -1.136 0.081
Q53Y51 D-dopachrome tautomerase DDT -0.776 0.017 -1.154 0.040

P40616-2 Isoform 2 of ADP-ribosylation factor-like protein 1 ARL1 -0.717 0.042 -1.142 0.050
Q6FGX3 RABGA protein RABGA -0.355 0.009 -1.146 0.009
P38159 RNA-binding motif protein, X chromosome RBMX -0.216 0.008 -1.133 0.053
P07954-2 Isoform Cytoplasmic of Fumarate hydratase, mitochondrial FH -0.164 0.037 -1.143 0.034
Q9UPN1 Serine/threonine-protein phosphatase (Fragment) PPP1CC 0.098 0.004 1.155 0.060
P62070 Ras-related protein R-Ras2 RRAS2 0.118 0.005 1.078 0.088

QI9NXH9-2 Isoform 2 of tRNA (guanine(26)-N(2))-dimethyltransferase TRMT1 0.129 0.002 1.136 0.011
Q53799 Ribosome biogenesis protein WDR12 WDR12 0.199 0.039 1.153 0.084
C9J2Y9 DNA-directed RNA polymerase subunit beta POLR2B 0.307 0.002 0.841 0.006
Q72417 Nuclear fragile X mental retardation-interacting protein 2 NUFIP2 0.362 0.013 1.119 0.073

Q7Z3B4-3  Isoform 3 of Nucleoporin p54 NUP54 0.371 0.010 1.134 0.067
J3KNL6 Protein transport protein sec16 SEC16A 0.468 0.003 1.154 0.035
Q06830 Peroxiredoxin-1 PRDX1 0.502 0.003 1.086 0.022
Q6IAX5 Eukaryotic translation initiation factor 3 subunit E EIFSE 0.525 0.004 1.002 0.066
QB8WXF1 Paraspeckle component 1 PSPC1 0.562 0.012 1.142 0.078

Footnotes:

a: in the LFQ experiment, the statistical analysis was ANOVA, and proteins with FDR < 0.05 were listed.
b: in the SILAC experiment, proteins with Coefficient of Variation (CV) of SILAC ratios < 0.1 were listed.
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Table 6. (Continued)

Protein ID Protein Name Gene Name LFQ_D492HER2 “ANOVA.FDR_D492HER2  SILAC_D492HER2 °CV_D492HER2
B4DVQ5 Eukaryotic translation initiation factor 3 subunit C EIF3C 0.573 0.001 1.116 0.085
QOVGAS5 SARS protein SARS 0.577 0.010 1.116 0.003
015371-2 Isoform 2 of Eukaryotic translation initiation factor 3 subunit D EIF3D 0.622 0.003 0.972 0.079
Q9Y262 Eukaryotic translation initiation factor 3 subunit L EIF3L 0.623 0.007 1.071 0.068
P78406 mRNA export factor RAEL 0.630 0.001 1.059 0.060
Q7Z7E8 Ubiquitin-conjugating enzyme E2 Q1 UBE2Q1 0.635 0.038 1.034 0.046
014561 Acyl carrier protein, mitochondrial NDUFAB1 0.720 0.010 1.128 0.036
P55795 Heterogeneous nuclear ribonucleoprotein H2 HNRNPH2 0.779 0.021 1.014 0.088
AOA024RCR5 Bromodomain containing 2, isoform CRA_b BRD2 0.779 0.044 1.110 0.063
P42285 Superkiller viralicidic activity 2-like 2 SKIV2L2 0.817 0.000 1.143 0.051
Q6FHL9 PEALS5 protein PEA15 0.872 0.001 1.154 0.017
AO0A024R370 TATA element modulatory factor 1, isoform CRA_a TMF1 0.898 0.011 1.133 0.021
Q14157-4 Isoform 4 of Ubiquitin-associated protein 2-like UBAP2L 0.907 0.005 0.942 0.052
AOA024R1T9 ATP-citrate synthase ACLY 0.914 0.000 1.108 0.060
Q9UKLO REST corepressor 1 RCOR1 0.946 0.023 0.913 0.038
AO0A140VJJ2  S-formylglutathione hydrolase ESD 0.953 0.001 1.154 0.038
AOA024R9T6 HCG17415, isoform CRA_a SLAIN2 0.955 0.015 1.118 0.067
095490-2 Isoform 2 of Adhesion G protein-coupled receptor L2 ADGRL2 1.018 0.000 1.138 0.046
AOA024R6K8 Tryptophanyl-tRNA synthetase, isoform CRA_a WARS 1.025 0.020 1.148 0.042
Q5JTV8-3 Isoform 3 of Torsin-1A-interacting protein 1 TOR1AIP1 1.029 0.001 1.029 0.019
060502 Protein O-GlcNAcase MGEA5 1.036 0.006 1.141 0.057
AOA0S2Z3H8 GNAS complex locus isoform 1 (Fragment) GNAS 1.040 0.002 1.124 0.051
AOA024RDU9  General transcription factor IIF subunit 2 GTF2F2 1.063 0.024 1.108 0.062
AO0A024RDRO  High-mobility group box 1, isoform CRA_a HMGB1 1.066 0.001 1.126 0.044
Q9BV57 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase ADI1 1.071 0.002 1.146 0.088
Q9Y678 Coatomer subunit gamma-1 COPG1 1.073 0.000 0.814 0.085
Q14566 DNA replication licensing factor MCM6 MCM6 1.173 0.003 1.127 0.051
QI9NQC3-5  Isoform 5 of Reticulon-4 RTN4 1.194 0.006 1.024 0.073
Q9H7D7-2  Isoform 2 of WD repeat-containing protein 26 WDR26 1.200 0.001 0.980 0.030
P49792 E3 SUMO-protein ligase RanBP2 RANBP2 1.201 0.001 1.092 0.052
Q96CP5 PMPCB protein (Fragment) PMPCB 1.204 0.003 1.134 0.003
Q14008 Cytoskeleton-associated protein 5 CKAPS5 1.265 0.000 0.822 0.015

Footnotes:

a: in the LFQ experiment, the statistical analysis was ANOVA, and proteins with FDR < 0.05 were listed.
b: in the SILAC experiment, proteins with Coefficient of Variation (CV) of SILAC ratios < 0.1 were listed.
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Table 6. (Continued)

Protein ID Protein Name Gene Name LFQ_D492HER2 *ANOVA.FDR_D492HER2  SILAC_D492HER2 °CV_D492HER2
Q9NZT2-2  Isoform 2 of Opioid growth factor receptor OGFR 1.266 0.000 1.029 0.010
AOA024R4G1 Leucine rich repeat containing 47, isoform CRA_a LRRC47 1.308 0.001 1121 0.035
Q9coCc9 (E3-independent) E2 ubiquitin-conjugating enzyme UBE20 1.313 0.014 0.803 0.023
QINVI7-2 Isoform 2 of ATPase family AAA domain-containing protein 3A ATAD3A 1.335 0.000 1.003 0.035
P30085 UMP-CMP kinase CMPK1 1.365 0.001 1.030 0.042
AOA024RC61 Aminopeptidase ANPEP 1.395 0.000 1.131 0.058
P19367-4 Isoform 4 of Hexokinase-1 HK1 1.397 0.001 1.092 0.063
P35606-2 Isoform 2 of Coatomer subunit beta COPB2 1.399 0.001 1.056 0.028
ADA0S2Z4X9  Glutamine-fructose-6-phosphate transaminase 2 isoform 1 (Fragment) GFPT2 1.441 0.000 1.146 0.052
060664-4  Isoform 4 of Perilipin-3 PLIN3 1.479 0.000 1.154 0.009
AOA024R313 Glycosyltransferase 8 domain containing 1, isoform CRA_a GLT8D1 1.506 0.006 1.126 0.009
Q5HIA7 Metalloproteinase inhibitor 1 TIMP1 1.531 0.002 1.109 0.092
043493-2 Isoform TGN46 of Trans-Golgi network integral membrane protein 2 TGOLN2 1.563 0.001 1.146 0.032
Q9uUMS4 Pre-mRNA-processing factor 19 PRPF19 1.587 0.019 1.146 0.024
E7EVAOQ Microtubule-associated protein MAP4 1.649 0.001 1.155 0.020
P49189 4-trimethylaminobutyraldehyde dehydrogenase ALDH9A1 1.649 0.001 0.894 0.012
AOA024R8UL  Solute carrier family 16 (Monocarboxylic acid transporters), member 3, isoform CR/  SLC16A3 1.791 0.002 0.825 0.033
AO0A024QZW?7 Nucleoporin 153kDa, isoform CRA_a NUP153 1.800 0.004 1.142 0.035
QINVD7 Alpha-parvin PARVA 1.847 0.039 1.126 0.076
P53621 Coatomer subunit alpha COPA 1.881 0.001 0.956 0.046
Q01433-3  Isoform Ex1A-3 of AMP deaminase 2 AMPD2 1.928 0.002 1.001 0.017
014579 Coatomer subunit epsilon COPE 2.089 0.004 1.108 0.012

Footnotes:

a: in the LFQ experiment, the statistical analysis was ANOVA, and proteins with FDR < 0.05 were listed.
b: in the SILAC experiment, proteins with Coefficient of Variation (CV) of SILAC ratios < 0.1 were listed.
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4.3 Metabolic alteration in breast EMT

Herein we set out to explore the uniformly changed metabolic proteins in the
EMT cell models in breast epithelium. In addition, the abnormally regulated
enzymes among the EMP breast cell lines were also depicted.

4.3.1 The commonly altered metabolic targets post-EMT (paper 1)

The metabolic enzymes FDFT1, SORD, and TSTA3 were significantly
downregulated, while UGDH was upregulated and altered the most (Figure
16A-D). The upregulation of UGDH after EMT was confirmed on the RNA
level and further validated in the context of breast cancer progression. The
increasing trends in the UGDH RNA expression after EMT were observed in
all EMT cell models (Figure 16E), and the protein expression of UGDH was
higher in the tumorigenic breast mesenchymal cell line D492HER2 compared
with D492, consistent with the non-tumorigenic D492M (Figure 16F).

The EMT-associated functions of the metabolic targets FDFT1, SORD,
and TSTA3 have not been well investigated in literature (Figure 16). FDFT1,
or squalene synthase, also short for SQR, is involved in cholesterol
metabolism and has been related to cancer metastasis (Ha and Lee, 2020).
FDFT1 is marginally associated with the survival of patients with basal breast
cancer, according to kmplot.com. However, it has not been associated with
EMT. SORD oxidizes sorbitol to fructose in the polyol pathway to metabolize
the excess glucose, and a study has shown that a stable knockdown of
SORD could block EMT (Schwab et al., 2018). This observation is
contradictory to what has been seen in this study, where SORD is
downregulated in the mesenchymal cells. TSTA3, also known as GFUS,
catalyzes the production of GDP-fucose, which is an essential substrate for
fucosylation. TSTA3 has been proposed as an oncogenic target, and high
expression of TSTA3 is correlated with poor survival in patients with breast
cancer based on kmplot.com and esophageal squamous cell carcinoma (Sun
et al., 2016; J. Yang et al., 2018). Since TSTA3 is downregulated in EMT, this
suggests that the poor survival rate in patients with high TSTA3 expression is
not related to EMT.

The well-known functions of UGDH include production of hyaluronan,
glucuronidation of xenobiotics, synthesis of proteoglycans, and influences on
protein glycosylation. Recently, many studies have reported that UGDH is
involved in cancer progression and participates in tumor growth, metastasis,
and patient survival (Arnold et al., 2019; Goodwin et al., 2019; Huang et al.,
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2010; Lin et al., 2020; Oyinlade et al., 2018; Teoh et al., 2020). UGDH has
been associated with EMT; however, the exact role of UGDH in EMT is
complex and inexplicit (Arnold et al., 2019; Lin et al., 2020; Teoh et al., 2020;
Vergara et al., 2015; X. Wang et al., 2019). Arnold et al. has recently found
that UGDH is a clinically relevant metabolic enzyme that is highly expressed
in mesenchymal-like breast cancers (Arnold et al., 2019). Of late, Wang and
colleagues published on NATURE LETTER, reporting that UGDH controls
the availability of UDP-Glc to regulate the main EMT transcription factor
SNAIL (X. Wang et al., 2019). The upregulation of UGDH in both D492M and
D492HER?2 (Figure 16F) suggests that UGDH engages in the mesenchymal
characteristics in cancer invasiveness.
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Figure 16. Consistently altered metabolic proteins post-EMT in all three EMT cell
models with UGDH altered the most.

(A-D) The metabolic targets, i.e., FDFT1, SORD, TSTA3, and UGDH, were identified
in the proteomic analysis and changed consistently in all three EMT cell models. (E)
The mesenchymal cell lines in all three EMT cell models consistently expressed a
higher level of the UGDH RNA. (F) The UGDH protein levels in D492 and D492M
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were confirmed in the EMP datasets and further confirmed in the tumorigenic breast
mesenchymal cell line D492HER2. Student’s T-test, *: p < 0.05; **: p < 0.01; **: p <
0.001. FDFT1: farnesyl-diphosphate farnesyltransferase 1; SORD: sorhitol
dehydrogenase; TSTA3: GDP-L-fucose synthetase; UGDH: UDP-glucose
dehydrogenase. Reprinted from (Q. Wang et al., 2021). Reprinted with permission.

4.3.2 Different metabolic profiles of the EMP cell model (paper II)

In this chapter, we identified metabolic proteins with more than two-fold
changes in expression between two types of cell lines, and these changes
were confirmed by both LFQ and SILAC with a pre-defined significance
threshold (Figure 17A). We grouped the identified enzymes into 6 clusters on
account of the six possible comparison profiles among the three cell lines.
These metabolic targets extended several KEGG metabolic pathways with
several targets previously connected to EMT (Table 7). Most enzymes were
associated with the metabolism of glycan precursors, i.e., PYGB, PGMS,
UGDH, PGM2L1, GALNT7, GFPT2, and GALE, which were indiscriminately
spanned among different clusters. GFPT2 and FAH were solely highly
expressed in the partial mesenchymal D492HER2, with GFPT2 being more
significant. The highest RNA expression of GFPT2 was detected in
D492HER2 (Figure 17B), supporting the proteomic result (Figure 17C).

FAH is a key enzyme of the tyrosine catabolic pathway and is widely
studied in tyrosinemia (M. Zhu et al., 2019). GFPT2 catalyzes fructose-6-
phosphate into glucosamine-6-phosphate, concurrently converting glutamine
into glutamate, and is the rate-limiting enzyme in the HBP. The end-product
of the HBP is UDP-GIcNAc, an indispensable nucleotide sugar that partakes
in protein glycosylation. Various transcription factors, signaling mediators,
and metabolic enzymes are modulated by O-GIcNAcylation in cancer, and
glycans are critical for ECM modeling in a malignant environment
(Chiaradonna et al., 2018; K. Taparra et al., 2016). Protein GlcNAcylation
facilitates breast cancer metastasis and tumorigenesis (Y. Gu et al., 2010).
The function and regulation of GFPT2 in protein O-GlcNAcylation have drawn
a considerable amount of attention by virtue of the UDP-GIcNAc production
by GFPT2 (L. Liu et al., 2020; Szymura et al., 2019; Zhou et al., 2019).
GFPT2 is one of the MMS genes identified by Shaul and colleagues (Shaul et
al., 2014) and is associated with the mesenchymal phenotypes of invasive
breast cancer (Simpson et al., 2012). It has also been reported that GFPT2
engages in regulating cellular oxidative stress, the mechanism of which
remains yet unclear, likely owing to the glutaminolysis mediated by GFPT2
(Askari et al., 2019; Chao et al., 2021; Zitzler et al., 2004). We concentrated
on GFPT2 as the key mesenchymal feature in cancer progression.
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Figure 17. Altered metabolic proteins post two types of EMT processes in the EMP
cell model with GFPT2 altered the most in D492HER2 compared with the other two
cell lines.

(A) Metabolic proteins that expressed differentially in D492HER2 vs. D492M,
D492HER2 vs. D492, and D492M vs. D492 were manually identified and plotted
(Student’s T-test, permutation-based FDR < 0.05 for LFQ, one sample T-test, p value
of SILAC < 0.05, more than 2-fold in both LFQ and SILAC). The median relative
SILAC expression of each target for D492, D492M, and D492HER2 was used for
plotting. The metabolic targets were manually clustered into six clusters. The relative
expression of each metabolic protein was indicated in the color bar, scaling from blue
to red, representing the lowest to the highest expression. The identified metabolic
targets were classified into two groups based on the literature (Shaul et al., 2014):
Mesenchymal (Mes) and non-mesenchymal (Non-Mes). n.a: not available in the
literature. (B-D) The expression of GFPT2 in the EMP cell model. On the RNA level
(B), GFPT2 expressed at the highest level in D492HER2, while it had the lowest
expression in D492. (C) The GFPT2 protein expression was the highest in D492HER?2
confirmed by both LFQ (left) and SILAC (right), followed by D492M, with D492
expressed the lowest. (D) D492DEE was the negative control cell line of D492HER2
for HER2 overexpression, the low GFPT2 level in D492DEE indicated that the
increased expression of GFPT2 in D492HER2 was not due to the cell handling
process in HER2 induction. Student’s T-test, *: p < 0.05; **: p < 0.01; ***: p < 0.001.
GFPT2: glutamine-fructose-6-phosphate  transaminase 2; LFQ: label-free
quantification; SILAC: stable isotope labeling by amino acids in cell culture. Reprinted
from (Q. Wang et al., 2021). Reprinted with permission.
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Table 7. Main metabolic targets dysregulated in the EMP cell model. Reprinted from (Q. Wang et al., 2021). Reprinted with permission.

The significantly altered metabolic targets were listed by comparing D492HER2 with D492M, D492HER2 with D492, and D492M with D492
(Permutation-based FDR < 0.05) with at least 2-fold difference, confirmed by LFQ and SILAC. The reported log2 ratios were the average of
the LFQ and SILAC ratios. The relevant transcription factors and literature were reported for each target based on literature review.

Protein ID Protein Names Gene Name KEGG Classification Log2(D492HER2/D492M} Possible Transcription Factors Citation related to EMT

DADS274X9 fruct 6 transaminase 2 isoform 1 (Fragment) GFPT2 Carbohydrate metabolism 1.658 NF-KB: SIRTE; BMP-2 (St‘r:l;‘;r‘:‘e} ;D,‘%ET”;:Z:;L?; ‘zgafeé;:!:uur:t ::‘5‘2032)19
Q16831 Uridine phosphorylase 1 UPP1 Pyrimidine metabolism 1.167 NF-Kb; Oct3/4 (Guan et al, 2019; Wehbe et al, 2012)
X8DR03  Glutathione S-transferase mu 1 isoform B (Fragment) GSTM1 Glutathione metabolism -2.152 Nrf2 na
Q53X91  Sulfotransferase (Fragment) SULTIE1 Steroid hormone biosynthesis -2.383 Nrf2 na
Q92626 Peroxidasin homolog PXDN Oxidoreductases -3.825 Snail 1; Nri2 {Briem et al., 2019; Sitole and Mawi-Damelin, 2018)

Log2{D492HER2/D492)

DA0S2Z4XE fruct transaminase 2 isoform 1 (Fragment) GFPTZ Carbohydrate matabollsm 1827 NF-KB: SIRTS; BMP-2 e T
Q6FH49  NNMT protein NNMT Nicotinate and nicotinamide metabolism 1.275 Statd (Eckert et al., 2019; Shaul et al., 2014)
P16930  Fumarylacetoacetase FAH Tyrosine metabolism 1.272 CDC5L na
QBXQNE  Nicolinate phosphaoribosyliransferase NAPRT Nicofinate and nicotinamide metabolism -1.266 NF-Kb; STAT3; HIF-1a (Lee et al, 2018)

ADAD24REH3 Inositol 1,3,4-triphosphate 5/6 kinase, iscform CRA_a ITPK1 Inositol phasphate metabolism -1.358 BMPZ; TBXZ; SNAIL; miR-23b (Bonet et al.,, 2015)
AOADB4J2A4 3-keloacyl-CoA thiolase, mitochondrial ACAA2 Lipid metabolism -1.737 PPARa; HNF4a na
ADADZ4RB23 Diacylglycerol kinase DGKA Lipid metabolism -1.826 PPARy: Stat5: AP2, Ets1.5P1 na
P11216  Glycogen phosphorylase, brain form PYGB Starch and sucrose metabolism 2018 na {Zhang et al.2018)
P47989  Xanthine dehydrogenasefoxidase XDH Purine metabolism -2.908 NF-Y na
QS3FA7  Quinone oxidoreductase PIG3 TP53I3 Oxidative stresses and iradiation 291 FOXK28BAP1 (Alonso et al., 2007; Reka et al., 2014)
Q53X91  Sulfotransferase (Fragment) SULTIE1 Steroid hormone biosynthesis -3.010 Nri2 na
ABYXX4  Glutamine synthetase GLUL Carbohydrate metabolism -3.582 ATF4 n.a
Log2(D492M/D492)
Q53TK1  Cytochrome P450, family 1, subfamily B, polypeptide 1, isoform CRA_a CYP1B1 Lipid matabolism 3733 SP1 (Kwon et al, 2016; Shaul et al., 2014)

ETEPM&  Long-chain-fatty-acid--CoA ligase 1 ACSL1 Lipid metabolism 1712 SP1 (Sanchez-Martinez et al., 2015)
QBPCE3  Glucose 1,6-bisphosphate synthase PGM2L1 Carbohydrate metabolism 1422 ZEB1 na
095394 Phosphoacetylglucosamine mutase PGM3 Carbohydrate metabolism 1.393 na na
Q6FGJ9  Glutathione S-transferase GSTM3 Glutathiona metabolism 1.368 Nrf2 (Zhou et al., 2008)

QBESF2  N-acelylgalactosaminyltransferase 7 GALNT7? Glycan biosynthesis and metabolism 1.328 -30d/30b; miR-214 na

QBFH49  NNMT protein NNMT Nicotinate and nicotinamide metabolism 1.181 Stat3 (Eckert et al., 2019; Shaul et al., 2014)

QUBRRE-2 Isoform 2 of ADP-dependent glucokinase ADPGK Glycolysis | Gluconeagenesis 1173 na (Lee et al, 2016; Sang el al, 2018)
060701 UDP-glucose B-dehydrogenase UGDH Carbohydrate metabolism 1.025 SP1 (Tang el al., 2016; Vergara et al,, 2015)
HOUIAT  Acyl-CoA synthetase short-chain family member 2, isoform CRA_c ACSS2 Carbohydrate metabolism -1.128 SREBF1/2: HIF; (Sun et al. 2017)

Q53GQ0  Very-long-chain 3-oxoacyl-CoA reductase HSD17B12 Lipid metabolism -1.142 na na
Q53FA7  Quinone oxidoreductase PIG3 TP53I13 Oxidative stresses and irradiation -1.159 FOXK2&BAP1 (Alonso et al., 2007; Reka et al., 2014)
Q14376  UDP-glucose 4-spimerase GALE Galactose metabolism -1.458 na na
Q6LET6  MGST1 protein (Fragment) MGST1 Glutathione metabolism -1.522 na (Fischer ot al., 2015; Shaul et al., 2014)
P11216 Glycogen phosphorylase, brain form PYGB Starch and sucrose metabolism -1.611 na {Zhang et al. 2018)

P12532 Creatine kinase U-type, mitachondrial CKMT1A Arginine and proline metabolism -1.686 LncRNA n3355868miR-924; EVI1ARUNX1 (Tanaka and Ogishima, 2015}
AOADB4J2A4 3-ketoacyl-CoA thiolase, mitochondrial ACAAZ Lipid metabolism -2.038 PPARa; HNF4o na

B4DLR8 NAD(PJH dehydrogenase [quinone] 1 NQO1 Ubiquinane and other terpenaid-quinone biosynthesis -2.069 Nrf2: NF-Kb (Fischer et al., 2015; Yang et al,, 2017)

Q16831 Uridine phosphorylase 1 UPP1 Pyrimidine metabolism -2.303 NF-Kb; Oct3/4 (Guan et al, 2019; Wehbe et al, 2012)
AUAD24RB2Z3 Diacylglycerol kinase DGKA Lipid metabolism -2.730 PPARy; Stat5; AP2, Ets1.5P1 na

ABYXX4  Glutamine synthetase GLUL Carbohydrate metabolism -2.741 ATF4 na

P47989  Xanthine dehydrogenasefoxidase XDH Purine metabolism -3.159 NF-Y n.a
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4.4 Glycan metabolism alters in breast EMT

The enzyme UGDH identified in EMT and GFPT2 identified in EMP are both
involved in glycan metabolism. UGDH catalyzes the oxidation of UDP-Glc
into UDP-GIcA, while GFPT2 is the rate-limiting enzyme in the HBP to
produce UDP-GIcNAc. Glycan, the branched structure that comprises
monosaccharide units, is responsible for protein glycosylation, a common
PTM. Cellular glycome is diverse and vital for normal cellular functions
(Schjoldager et al., 2020). We confirmed the oncogenic properties of UGDH
and GFPT2, investigated their influences on the metabolic network, and
probed the upstream signaling regulations of these two enzymes.

4.4.1 UGDH is highly expressed in mesenchymal cells (paper I)

For UGDH, we confirmed the effects of UGDH on patient survival, cell
proliferation, cell invasion, and the RNA expression of SNAI1l in the
mesenchymal cell lines D492M and D492HER2. We further explored the
perturbation of UGDH knockdown on metabolism in mesenchymal cells.
Finally, we interrogated the regulatory signaling pathways that control cellular
UGDH expression.

UGDH knockdown affects patient survival, cell proliferation and
invasion, and SNAIL expression

UGDH has been reported to affect patient survival (Teoh et al., 2020), cell
proliferation (Lin et al., 2020; Qyinlade et al., 2018), cell invasion (Arnold et
al., 2019), cell migration (Oyinlade et al., 2018; Teoh et al., 2020), and SNAI1
expression (X. Wang et al., 2019).

The output from the online KM plotter, kmplot.com, revealed that the
elevated UGDH expression was negatively correlated with the survival of
patients with basal breast cancer, in consonance with the literature (Figure
18A). On account of the oncological traits of UGDH, we included two types of
breast mesenchymal cells, the non-tumorigenic D492M and tumorigenic
D492HERZ2, to confirm the effects of UGDH on cell proliferation, cell invasion,
and SNAI1 expression via siRNA silencing. Same as stated in the literature,
knockdown of UGDH impaired cell growth (Figure 18B-C) and invasion
(Figure 18D-E) in both D492M and D492HER2, and the RNA expression of
SNAI1 was also hampered by UGDH knockdown (Figure 18F-G).

All the mesenchymal cells in the three EMT cell models have increased
the expression of UGDH after EMT (Figure 16) yet remained non-
tumorigenic, which is not directly in accordance with the negative correlation
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between UGDH and cancer patient survival (Figure 18A) and with the
observation that abated UGDH diminished cell proliferation and invasion
(Figure 18B-E). It suggests that UGDH is not a decisive player in the tumor
initiation process, albeit cells with tumorigenicity may depend on UGDH to
reinforce malignancy. The inhibition of SNAI1 by decreased UGDH (Figure
18F-G) strengthens the connection between UGDH and EMT and pinpoints
that UGDH exerts uncanonical regulatory functions, exceeding its catalytic
capacity arguably via glycosylation.
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Figure 18. Functional analysis of the UGDH knockdown in the mesenchymal cells.

(A) The expression of UGDH was negatively correlated with the patient survival in
basal breast cancer patients based on the Kaplan-Meier plot from kmplot.com. (B-C)
UGDH knockdown via siRNA decreased cell proliferation in the non-tumorigenic
D492M (B) and tumorigenic D492HER2 (C) cell lines. (D-E) UGDH knockdown via
siRNA reduced cell invasion in the non-tumorigenic D492M (D) and tumorigenic
D492HER2 (E) cell lines. (F-G) The EMT transcription factor SNAI1 was
downregulated with the siRNA knockdown of UGDH in the non-tumorigenic D492M
(F) and tumorigenic D492HER?2 (G) cell lines. Student’s T-test, **: p < 0.01; ***: p <
0.001. SNAIL: or Snail, zinc finger protein SNAI1. Reprinted from (Q. Wang et al.,
2021). Reprinted with permission.

UGDH is associated with the expression of GPC and NAA

To evaluate the impact of UGDH on metabolism, we treated the
mesenchymal cells D492M, HMLEM, and PMC42ET in the three EMT cell
models with siRNA that silences UGDH and carried out targeted and
untargeted metabolomics analysis. Notwithstanding the knockdown of
UGDH, the metabolomes of the cell lines with the same background were
clustered together (Figure 19A-B), suggesting that the absence of UGDH is
unable to achieve distinct metabolic phenotypes. The metabolome of D492M
was more comparable to that of HMLEM than PMC42ET (Figure 19B), which
was in agreement with the proteome clustering (Figure 7B). In line with the
literature, the substrate of UGDH, UDP-Glc, was increased in all the
mesenchymal cell lines with the knockdown of UGDH (Figure 19C), while the
product of UGDH, UDP-GIcA, was decreased (Figure 19D), both of which
are crucial for normal cellular functions and impact broadly on cellular
activities (Arnold et al., 2019; X. Wang et al., 2019).

We next conducted an untargeted metabolomics analysis to uncover the
metabolic influences of UGDH in a systemic manner. The knockdown of
UGDH significantly reduced the intracellular level of GPC (Figure 19E) and
upregulated that of NAA (Figure 19F) in all the mesenchymal cell lines, with
GPC being affected more prominently. Detections of GPC and NAA in the
epithelial D492, non-tumorigenic mesenchymal D492M, and tumorigenic
mesenchymal D492HER?2 showed that GPC was higher in both D492M and
D492HER?2 compared with D492 (Figure 19G), indicating that GPC may be
negatively correlated with UGDH and highly expressed in mesenchymal cells
albeit tumorigenicity. The knockdown of UGDH was confirmed to decrease
GPC and increase NAA in D492HER2 and MDA-MB-231 (Figure 20A-D). To
further investigate the connection between GPC and the mesenchymal state,
we did a correlation analysis using published datasets in literature (H. Li et
al., 2019; Shaul et al., 2014) but did not observe any significant correlation
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(Figure 20E), suggesting that the higher GPC levels in the D492
mesenchymal cell lines are irrelevant to their mesenchymal traits. In addition,
UGDH knockdown via siRNA did not yield consistent and significant changes
to choline and phosphocholine (Figure 20F-G).

GPC is a choline precursor and a key component in the choline metabolic
pathway. Abnormal choline metabolism along with elevated GPC level has
emerged as a hallmark of cancer pathogenesis (Sonkar et al., 2019).
Increased GPC level has been associated with worse patient survival (M. D.
Cao et al., 2012) and is observed in basal-like breast cancer xenograft and
ESR-negative breast cancer patients (Giskegdegard et al., 2010; Siver A.
Moestue et al.,, 2010). Abated GPC level with chemotherapies presages
better survival in patients with breast cancer (M. D. Cao et al., 2012). GPC is
suggested to be involved in EMT, but the mechanism is elusive (Bharti et al.,
2018; Koch et al., 2016). Our results have associated GPC with UGDH,
which is upregulated in mesenchymal cells (Figure 19E). However, further
investigation is needed to clarify the mechanism.

GPC is engaged in choline synthesis, and NAA is intimately related to
acetyl-CoA and central carbon metabolism. We conducted in silico
knockdown of UGDH using tailored GEMs of D492 to query if changes in
metabolic fluxes with UGDH knockdown might act on the processing of GPC
and NAA (Halldorsson et al., 2017; Karvelsson et al., 2021). Metabolic fluxes
of keratan and hyaluronan metabolism, the pentose phosphate pathway, and
central carbon metabolic pathways were altered (Table 8), with trivial
changes observed to the flux of GPC metabolism.

The affected metabolic pathways predicted by the in-silico knockdown of
UGDH in GEMs (Table 8) suggest a rerouting of glucose flux away from
UDP-GIcA formation and into central carbon metabolism, potentially causing
the upregulation of NAA (Figure 19F). The negligible impact on GPC implies
that decreased GPC with UGDH knockdown is likely caused by changes from
altered glycosylation rather than perturbation of the metabolic flux balance.
Stable cellular osmotic pressure is critical for cells to carry out normal cell
activities for survival. Both GPC and proteoglycans are prominent osmotic
regulators functioning as intracellular and extracellular osmolytes,
respectively (Okazaki et al., 2019). The knockdown of UGDH causes reduced
proteoglycans and extracellular osmotic pressure, which the decreased
intracellular GPC may counteract.

UGDH regulates signaling pathways and genes related to lipid
metabolism, for example, SNAI1, SIP-1, ERK/MAPK, SIX1, and PPARy
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(Arnold et al., 2019; Lin et al., 2020; Teoh et al., 2020; X. Wang et al., 2019).
Lipid metabolism, downstream of choline/PtdCho metabolism (E. lorio et al.,
2005), is controlled by the transcription receptor PPARy (Ahmadian et al.,
2013; Tontonoz and Spiegelman, 2008). UGDH inhibits PPAR signaling to
regulate lipid metabolism (Arnold et al., 2019). In line with the literature,
phosphoproteomics analysis showed higher UGDH expression is associated
with downregulated PPARy signaling (Figure 20H), proposing that the
knockdown of UGDH decreases GPC via PPARy. Furthermore,
phospholipase A2 group XV (PLA2G15) from the cPLA2 group catalyzes the
hydrolysis of phospholipids and possibly the formation of GPC from PtdCho
and is regulated by ERK signaling (Menzel et al., 2012; Ulisse et al., 2000). In
highly invasive ovarian cancer cells, the knockdown of UGDH diminishes the
phosphorylation of ERK (pERK) (Lin et al., 2020). The higher GPC and
PLA2G15 in the mesenchymal D492M and D492HER2 (Figure 19G &
Figure 20I) imply that UGDH affects GPC via pERK-PLA2G15. Collectively,
UGDH may indirectly regulate GPC via pERK-PLA2G15 and/or PPARY to
balance the intra- and extracellular osmotic pressure, although further
investigation is needed.

91



Qiong Wang

D492M_siUGDH_2_4
D492M_siUGDH_2"2
D492M_sIUGDH 273
D492M_Scri
D492M_Scrs
D492M_sIUGDH_2
D492M_sIUGDH_"
D492M_siUGDH_2
D492M_Scrd

1
D492M_sIUGDH_1_
D482M_siUGDH_1_
D492M_sIUGDH 2!
D492M_Scr3
D492M_Scrg
D492M_Scr2
D492M_sIUGDH_1_4
D492M_siUGDH™1°2
D492M_siUGDH_1_3

>
o

3
=

sl alas

[34]

® D492M
® HMLEM
2 PMC42ET

o
D)

PC 2 (24%)

HMLEM_Scr6
HMLEM Scr2
HMLEM SiUGDH
HMLEM_SiUGDH
HMLEM siUGDH 2 ¢
HMLEM siUGDH 2
HMLEM_siUGDH 2_:
HMLEM siUGDH 2 4
HMLEM_siUGDH_2_2
HMLEMScr5
HMLEM_Scrd

I
roi =
' lo'men

10 0 10
PC 1 (57.3%)

HMLEM_Scri
HMLEM_Scr3

HMLEM_siUGDH_2_5
HMLEM siUGDH 173
HMLEM siUGDH _1_1
HMLEM_siUGDH_1_2

o

UDP-Glucose

Treatment

B Scramble
H siUGDH_1
O siUGDH_2

Metabolome of The Mesenchymal Cells

KD/Scr Ratio

D F.
' s UDP-Glucuronate .. Acetylaspartate ...
T
2
H 2.00 [
2 & 150 ,
§ Treatment = K Treatment
5 B Scramble : B8 Scramble
(4]
@ o s & ety
g ©
X E
E
[=]
z
20.00 o
E. Glycerophosphocholine G. H e e
k]
2 15.00
2
=] e
= X mD492
= Treatment 10.00 abD43z2M
= B Scramble 3 OD492HER2
3 B rhennt &
& SR T 5.00
4 E
i
S
Z 0.00

Glycerocphosphecholine

Figure 19. Metabolomics analysis of the UGDH knockdown in the mesenchymal cells.

(A) PCA analysis clustered the same cell lines together based on the differences of
the metabolomes among different EMT cell models, in spite of UGDH knockdown. (B)
The metabolome of the D492 mesenchymal cells was similar to that of the HMLE
mesenchymal cells than PMC42. (C) UDP-glucose (UDP-GIc), the substrate of the
reaction catalyzed by UGDH, was increased with the siRNA knockdown of UGDH in
all mesenchymal cell lines confirmed by two siRNAs; however, one siRNA failed to
obtain the significance. (D) UDP-glucuronate (UDP-GIcA), the product of the reaction
catalyzed by UGDH, decreased with the siRNA knockdown of UGDH in all the
mesenchymal cell lines confirmed by two siRNAs; however, one siRNA in D492M
failed to yield significance. (E-F) siRNA knockdown of UGDH significantly decreased
the intracellular glycerophosphocholine (GPC) and increased acetylaspartate (NAA) in
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all the mesenchymal cell lines confirmed by two siRNAs. (G) The intracellular GPC
level was higher in the tumorigenic mesenchymal D492HER2 than in the non-
tumorigenic D492M and the epithelial D492. Student’s T-test, *: p < 0.05; **: p < 0.01;
***: p < 0.001. UGDH: UDP-glucose dehydrogenase. Reprinted from (Q. Wang et al.,
2021). Reprinted with permission.

Table 8. Metabolic pathways affected by UGDH via in silico analysis.

In silico knockdown of UGDH in GEMs that were built previously on the D492 EMT
cell model (Karvelsson et al., 2021) suggested that metabolic pathways with changed
metabolic fluxes were involved in keratan, hyaluronan, glycan, central carbon
metabolism. UGDH: UDP-glucose dehydrogenase.

Group Enriched set size Total set size p-value Adjusted p-value
Transport, extracellular 3 859 0 ]
Keratan sulfate degradation 71 74 5.25E-101 3.94E-100
Keratan sulfate synthesis 59 59 1.07E-79 5.35E-79
Transport, mitochondrial 1 188 2.26E-07 8.49E-07
Hyaluronan metabolism 5 5 3.38E-06 1.01E-05
Transport, lysosomal 10 33 1.31E-04 3.28E-04
O-glycan synthesis 4 7 0.0012 0.0025
Glyoxylate and dicarboxylate metabolism 3 6 0.0085 0.0159
Pentose phosphate pathway 5 27 0.0454 0.0757
Transport, golgi apparatus 4 25 0.0963 0.1444
Sphingolipid metabolism 2 17 0.2576 0.3512
Citric acid cycle 1 19 0.334 0.3755
Starch and sucrose metabolism 1 8 0.3636 0.3755
Alanine and aspartate metabolism 1 9 0.3755 0.3755
Miscellangous 1 9 0.3755 0.3755
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Figure 20. The altered GPC and NAA expression with the siUGDH treatment in
D492HER2 and MDA-MB-231 and the possible roles of PPAR signaling and
PLA2G15 in regulating GPC.

(A-D) In the tumorigenic D492HER2 and malignant MDA-MB-231, the intracellular
glycerophosphocholine (GPC) level was decreased (A, C), while the acetylaspartate
(NAA) level was increased (B, D) after the siUGDH treatment, consistent with the
other mesenchymal cell lines. (E) Correlation analysis suggested that the GPC level is
not correlated with the mesenchymal traits. (F-G) Other important metabolites, i.e.,
choline and phosphocholine, are not consistently and significantly associated with
UGDH knockdown. (H) Arnold et al. reported that UGDH decreased the PPAR
expression to regulate lipid metabolic genes (Arnold et al., 2019). We performed a
phosphoproteomics analysis on the D492 EMT cell model to confirm the negative
correlation between UGDH and PPAR signaling. The PPAR signaling was
downregulated in the mesenchymal D492M cells with highly expressed UGDH. The
IPA pathways were listed in a descending order based on the —log10(p value), and
the z-scores of the pathways were plotted by dots/line. Red: overrepresented in the
mesenchymal D492M; blue: overrepresented in the epithelial D492. (I) PLA2G15 is
higher in both D492M and D492HER2 compared with D492 and is an enzyme
potentially involved in the hydrolysis of PtdCho into GPC in choline metabolism.
cPLA2 is under the regulation of ERK/MAPK, and UGDH has been reported to
regulate the phosphorylation of ERK (pERK) (Lin et al., 2020; Menzel et al., 2012;
Ulisse et al., 2000), suggesting that the knockdown of UGDH may decrease GPC via
pERK and PLA2G15. Student’s T-test, *: p < 0.05; **: p < 0.01; ***: p < 0.001. UGDH:
UDP-glucose dehydrogenase. PLA2G15: phospholipase A2 group XV. Reprinted from
(Q. Wang et al., 2021). Reprinted with permission.

UGDH is under the regulation of PDGFRB potentially via NF-kB-
p65

Employing the secretomic data of the D492 EMT model (Steinhaeuser et al.,
2020), we interrogated the UGDH signaling regulation. The growth factors
IGF, TGF-B, and PDGFD were increasingly secreted into the medium by
D492M (Figure 21A). We engaged in investigating PDGF signaling in
regulating UGDH on account of the highly expressed PDGFRB in the
mesenchymal cells (Figure 21B) and the secreted PDGFD by D492M
(Figure 21C) accompanying the dysregulated target of the PDGF signaling
PKC (Figure 21D). Both RELA (the gene that codes NF-kB-p65), the
downstream target of the PDGFR signaling (Naidu et al., 2017; Shimamura et
al., 2002), and UGDH were downregulated with PDGFRB knockdown in the
mesenchymal cells (Figure 21E-G). Furthermore, the UGDH RNA level was
reduced with RELA knockdown in the mesenchymal cells (Figure 21H-1).

Various regulators are related to UGDH, such as Slit2, SP1, TGF-,
hypoxia, p38MAPK LMP2A, and PI3K/Akt, empathizing that UGDH is under
the control of a regulatory network (Bontemps et al., 2003; Clarkin et al.,
2010; Fernando and Smith, 2020; Pan et al., 2008). The PDGF signaling and
its downstream target NF-kB can mediate these regulators and are involved
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in cancer progression and EMT (Huber et al., 2004; Naidu et al., 2017; Tam
et al., 2013). The EGFR-to-PDGFR signaling switch in the formation of CSC
and EMT (Tam et al., 2013) is in consonance with the higher level of
PDGFRB and secretion of PDGFD in the mesenchymal cells, indicating that
the PDGFRB signaling is overrepresented in mesenchymal cells (Figure
21A-C). Phospholipase C, PI3K/Akt, and PKCa are common downstream
targets of the PDGFR signaling (Tam et al., 2013; H. Wang et al., 2012), and
the upregulation of these regulators support the increased PDGFD-PDGFRB
signaling in mesenchymal cells (Figure 20H & Figure 21D). These findings
agree with the literature (Z. Wang et al., 2010; Q. Wu et al., 2013). The
inhibitions of PDFGRB and NF-kB-p65 impeded the UGDH expression
(Figure 21E-I), confirming that PDGFRB regulates UGDH via NF-kB-p65.

Taken together, UGDH contributes to cancer progression and takes part
in a collaborative signaling and metabolism network.
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A
Protein ID Protein Name Gene Name  -Log(pvalue) FDR -Log2(D492/D492M)
QBWXT77 Insulin-like growth factor-binding protein-like 1 IGFBPL1 2.633 0.004 -6.055
P22692 Insulin-like growth factor-binding protein 4 IGFBP4 6.401 0.000 -5.008
P61812 Transforming growth factor beta-2 TGFB2 4.302 0.000 -4.524
P01137 Transforming growth factor beta-1 TGFB1 1.773 0.014 -3.392
Q16270 Insulin-like growth factor-binding protein 7 IGFBP7 5191 0.000 -3.341
QIGZPO Platelet-derived growth factor D PDGFD 4127 0.000 -3.273
P18065 Insulin-like growth factor-binding protein 2 IGFBP2 2.878 0.003 -1.729
Q15582 Transforming growth factor-beta-induced protein ig-h3 TGFBI 2.606 0.004 -0.967
MOQXF7 Myeloid-derived growth factor (Fragment) MYDGF 3.098 0.002 -0.848
G3V3X5 Latent-transforming growth factor beta-binding protein 2 LTBP2 241 0.005 -0.750
J3KT38 Growth factor receptor-bound protein 2 (Fragment) GRB2 1.933 0.013 -0.295
H7BYW6 Platelet-derived growth factor subunit A (Fragment) PDGFA 1.646 0.019 0.505
P08581 Hepatocyte growth factor receptor MET 1.478 0.024 0.610
P51858 Hepatoma-derived growth factor HDGF 1.829 0.014 0.647
AQAOCADHO7  Latent-transforming growth factor beta-binding protein 4 LTBP4 2.645 0.004 0.827
P24592 Insulin-like growth factor-binding protein 6 IGFBP6 2.810 0.003 1.728
QOHES3 Eﬁ?;l:mzal growth factor receptor kinase substrate 8-like EPS8L2 3.919 0.000 1835
P00533 Epidermal growth factor receptor EGFR 2.168 0.010 2.485
CoJD84 Latent-transforming growth factor beta-binding protein 1 LTBP1 4.083 0.000 2.501
Q14512 Fibroblast growth factor-binding protein 1 FGFBP1 6.742 0.000 8.075
B. Ak C. k%
6.00 ., 300 —y
s >
§ _5.00 Z 250
224 3 52,00
o N .00 & 22
g £3.00 mD492 2 $1.50 @D492
w E s
=3
Y 5200 mD492M 2 2100 mD492M
aZ oW
2 T1.00 g 050
w
0.00 0.00
PDGFRB PDGFD
D' Enrichment factor E ) F )
fO0S1DISES g PDGFRB in D492M g RELA in D492M
. MAPKAPK2 kinase substrate motif =200 =
B & L
H GSK3 kinase substrate motif g %
5 Chi1 kinase substrate motif 51.60 ek
E G protein-coupled receptor kinase 1 substrate motif lﬁ
£ Calmodulin-dependent protein kinase Il substrate motif © 1.20 i
E PKC kinase substrate motif EO 80
= " - " *
o p70 Ribosomal S6 kinase substrate motif (U]
3 PKA kinase substrate motif g 0.40
= 14.3.3 domain binding motif 'ﬁo 00 L
001.02.03.04050 @ ** - -
-Log(p.value) & Scr siPDGFRB &’ Scr siPDGFRB
Treatment Treatment
H. . . .
5 RELA in D492M 5 UGDH in D492M
] ‘»2.00
n2.80 @ kkk
[
52.40 51.60
Kk
X2.00 X
1.20
@ 1.60 @
©1.20 ©0.80
o [G]
20.80 -
> > 0.40
8 Foa0 —— £ .
s Z0.00 S0.00 e
o Scr siPDGFRB (4 Scr  siRELA 14 Scr  siRELA
Treatment Treatment Treatment

97



Qiong Wang

Figure 21. The upstream signaling regulation of UGDH.

(A) The significantly differently secreted growth factors from the cell medium cultured
with D492 EMT cells were listed (Permutation-based FDR < 0.05). (B) Based on the
RPPA analysis (Barkovskaya et al., 2021), the protein expression of PDGFRB was
higher in the mesenchymal cells than the epithelial cells in the D492 model. (C) The
growth factor PDGFD was secreted in the mesenchymal cells in the D492 EMT
model. (D) The motif enrichment analysis of the phosphorylation sites detected in the
phosphoproteomic data yielded plausibly disturbed kinases of the D492 EMT model.
PKC kinase activity, among others, was highly enriched in EMT based on the motif
enrichment analysis of the phosphorylated proteome in the D492 EMT model. Motif
enrichment terms (Enrichment factors >= 2) were reported and ranked based on the —
log10(p value) in a descending order. (E) The knockdown efficiency of the PDGFRB
siRNA was about 80 % in the D492M cell line. (F) After the siRNA knockdown of
PDGFRB in D492M, RELA (the gene that codes NF-kB-p65) was decreased. (G)
UGDH was also reduced by the siRNA knockdown of PDGFRB in D492M. (H) The
knockdown efficiency of the first RELA siRNA was around 80 % in D492M. (I) UGDH
was decreased by the first SIRNA knockdown of RELA in D492M. Student’s T-test, **:
p < 0.01; ***: p < 0.001. RPPA: reverse phase protein array; PDGF: platelet-derived
growth factor; RELA: or NF-kB, nuclear factor-kappa B; UGDH: UDP-glucose
dehydrogenase. Reprinted from (Q. Wang et al., 2021). Reprinted with permission.

4.4.2 GFPT2 is associated with cancer malignancy (paper Il)

GFPT2 knockdown affects cell proliferation, EMT, invasion, and
migration, and it is highly expressed in claudin-low breast cancer

Recently, GFPT2 has gained emerging attention in multiple cancer types and
has been shown to regulate cell migration and invasion in NSCLC (Szymura
et al., 2019), ovarian cancer cell lines (Zhou et al., 2019), and colorectal
cancer (L. Liu et al., 2020). GFPT2, as an MMS gene, was shown to
decrease the EMT marker vimentin in ovarian cancer (Shaul et al., 2014;
Zhou et al., 2019). In light of the reported oncogenic properties of GFPT2 and
its influence on EMT, we confirmed that GFPT2 promotes the advancement
of breast cancer and affects vimentin in breast mesenchymal cell lines. The
proliferation (Figure 22A-B) and vimentin expression (Figure 22C-D) in the
mesenchymal cell lines D492M and D492HER2 were dampened, and the
invasiveness of D492HER2 was decreased (Figure 22E) by the knockdown
of GFPT2. Cell migration was also hindered by GFPT2 knockdown in the
three cell lines, although it was unable to secure the significance in the
mesenchymal cell lines (Figure 22F).

Considering the clinical significance, we further explored the gene
expression of GFPT2 across various breast cancer cell lines verified by two
data sources and in patients with different breast cancer types. GFPT2 was
highly expressed in claudin-low breast cell lines and breast cancer patients
compared with the other types (Figure 23). This is in compliance with the
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previous result from the cell line clustering analysis that the high-GFPT2-
expressing D492HER?2 clusters with the claudin-low breast cell lines (Figure
12C). Claudin-low breast cancer has been deemed a distinct breast cancer
subtype as of its discovery. Of late, two publications on NATURE
communications reported the re-definition and sub-classification of claudin-
low breast cancer, questioned the current claudin-low classifier, and
concluded that claudin-low breast cancer is heterogeneous and in need of
efforts and cautions to define it (Fougner et al., 2020; Pommier et al., 2020).
GFPT2 was predicted by Prat et al. to be a claudin-low gene signature in
TNBC (Prat et al., 2010), compatible with this study. Additionally, GFPT2 has
been reported to promote the malignancy of the KRAS and LKB1 co-mutant
NSCLC, which is a type of malignant lung cancer emulating claudin-low
breast cancer (H. S. Kim et al., 2013; J. Kim et al., 2020).

Collectively, these findings indicate that GFPT2 is a marker for claudin-
low breast cancer.
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Figure 22. Functional analysis of the GFPT2 knockdown.

(A-B) The cell proliferation of D492M (A) and D492HER2 (B) were decreased by the
siRNA-mediated knockdown of GFPT2 four days from cell seeding. (C-D) The EMT
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marker vimentin (VIM) was reduced by the knockdown of GFPT2 in the mesenchymal
cell lines D492M (C) and D492HER2 (D). (E) The knockdown of GFPT2 hindered the
cell invasion of D492HER2. (F) The knockdown of GFPT2 hampered the cell
migration of D492. The decreasing trends of cell growth without significance were
seen in D492M and D492HER2. Student's T-test, *: p < 0.05; **: p < 0.01; ***: p <
0.001. KD: Knock Down. GFPT2: glutamine-fructose-6-phosphate transaminase 2.
Reprinted from (Q. Wang et al., 2021). Reprinted with permission.
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Figure 23. The GFPT2 expression in different breast cell lines and cancer patients.

Higher expression of GFPT2 was shown in both basal and claudin-low breast cell
lines and breast cancer patients. (A) GFPT2 was highly expressed in basal and
claudin-low cell lines while lower in HER2-positive and luminal cell lines based on an
open-source database — CCLE (left panel) (Ghandi et al.,, 2019). The trend was
confirmed by another open-source database — HMS LINCS (right panel) (Koleti et al.,
2017). (B) GFPT2 was highly expressed in patients with claudin-low cancer while
lower in patients with HER2-positive and luminal cancer according to the TCGA data
(Breast Cancer (METABRIC, Nature 2012 & Nat Commun 2016)). GFPT2: glutamine-
fructose-6-phosphate transaminase 2. Reprinted from (Q. Wang et al.,, 2021).
Reprinted with permission.

GFPT2 is responsible for tuning the HBP flux

UDP-GIcNAc is indispensable for the PTM of proteins via O-GIlcNAcylation.
GFPT2 modulates the availability of UDP-GIcNAc as the precursors for O-
GlcNAcylation. The knockdown of GFPT2 dampened the protein O-
GlcNAcylation in D492 (Figure 24), supporting the role of GFPT2 in
regulating the HBP and the production of UDP-GIcNACc.

We further confirmed the function of GFPT2 in the HBP via metabolomics.
We analyzed the metabolomes of the EMP cell model with a targeted
metabolomic approach and noticed that the metabolome of D492HER2 was
more like that of D492M than D492 (Figure 25A), confirming that D492HER?2
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is an intermediate state of D492 and D492M. UPLC-MS analysis of UDP-
GIcNAc revealed that D492HER?2 expressed a significantly higher amount of
UDP-GIcNAc than the other two cell lines, with its intracellular concentration
of UDP-GIcNAc increased roughly four-fold than D492M while 10-fold than
D492 (Figure 25B). The substantial amount of UDP-GIcNAc in D492HER?2 is
inadequate to deduct the activeness of the metabolic fluxes encircling UDP-
GIcNAc. We further traced the enrichment of the 3C isotopologue labels in
UDP-GIcNAc from either 1,2-13C glucose, 1-13C glutamine, or 5-*3C glutamine
to check the metabolic fluxes into UDP-GIcNAc from different carbon
sources. The carbons in UDP-GIcNAc were mainly derived from glucose
compared with glutamine (Figure 25C), and the relatively small amounts of
carbons from 5-13C glutamine are indicative of an alternate carbon
contribution to UDP-GIcNAc through reductive carboxylation. Considering the
cellular amount of UDP-GIcNAc, D492HER?2 had the highest enrichment of
13C in UDP-GIcNAc from 1,2-13C glucose, indicating the absolute metabolite
flux of UDP-GIcNAc and the HBP activity are more active in D492HER2.
GFPT2 has been reported to be associated with glucose uptake, independent
of GLUT1 (Chao et al., 2021; W. Zhang et al., 2018), which may facilitate the
increased pool and flux of UDP-GIcNAc in D492HER2. There was no
observable 3C enrichment in UDP-GIcNAc from 1-13C glutamine on the
grounds that the carbon in the first position of glutamine is unlikely to be
incorporated into UDP-GIcNAc through either oxidative TCA or citrate-derived
cytosolic acetyl-CoA. These data suggest that the higher level and increased
metabolic flux of UDP-GICNAc are in line with the upregulated GFPT2 in
D492HERZ2.

In accordance with the enzymatic functions of GFPT2 that include UDP-
GIcNAc production in the HBP and glutamate generation via glutaminolysis
(Oki et al., 1999), the knockdown of GFPT2 has led to a significant decrease
in intracellular concentration of UDP-GIcNAc in both D492M and D492HER?2
(Figure 25D) and has dropped in the glutamate level in all the cell lines
(Figure 25E). It confirms that the upregulated GFPT2 is accountable for the
increased HBP flux. Furthermore, we also observed that the treatment of
SiGFPT2 had significantly diminished the intracellular cystathionine level in all
the cell lines (Figure 25F).
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Figure 24. Western blot of protein O-GlycNAcylation with GFPT2 knockdown.

Western blot analysis indicated that the protein O-GIcNAcylation was hindered by the
knockdown of GFPT2 in D492 cells treated with two siRNA that interfere with GFPT2,
and this experiment used B-actin as the loading control. Reprinted from (Q. Wang et
al., 2021). Reprinted with permission.
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Results and discussion

Figure 25. Metabolomics analysis of the EMP cell model and the GFPT2 knockdown.

(A) The metabolome of D492HER2 was similar to that of D492M compared with
D492. (B) D492HER2 expressed a higher level of UDP-GIcNAc compared with the
other cell lines. (C) Carbons incorporation from 1,2-13C glucose (Glc) into UDP-
GIcNAc were higher compared with 5-13C glutamine (GIn) and 1-'3C GIn in all three
cell lines after cell culture for six hours. No carbons were incorporated from 1-13C Gin
in all three cell lines. D492HER2 had a higher carbon incorporation rate into UDP-
GlcNAc from both 1,2-13C Glc and 5-13C GIn compared with D492 and D492M. The
carbon incorporation rate into UDP-GIcNAc from 1,2-13C Glc was higher in D492M
compared with D492. (D) The production of UDP-GIcNAc in both D492M and
D492HER2 was decreased with the knockdown of GFPT2. (E) Glutamate was
decreased with the GFPT2 knockdown in the D492 EMT model. (F) Cystathionine
was decreased significantly with the knockdown of GFPT2 in all three cell lines.
Student's T-test, *: p < 0.05; **: p < 0.01; ***: p < 0.001. KD: Knock Down. UDP-
GlcNAc: UDP-N-acetylglucosamine. Reprinted from (Q. Wang et al., 2021). Reprinted
with permission.

GFPT2 is a marker for oxidative stress

GFPT2 may affect the de novo GSH synthesis via glutamine-derived
glutamate (Simpson et al., 2012). The knockdown of GFPT2 led to reduced
intracellular glutamate levels (Figure 25E); however, the impact was
insubstantial. We concomitantly observed a reduction in the intracellular
cystathionine levels in all the cell lines (Figure 25F). Like glutamate,
cystathionine is one of the precursors for the de novo synthesis of GSH by
engaging in the transsulfuration pathway and concurrently producing H2S.
Knockdown of GFPT2 negligibly affected the GSH level (data not shown),
indicating that GFPT2 is not a dominant regulator of GSH.

The gene-metabolite correlation analysis using the NCI60 cancer cell line
panel implied that GFPT2 and GSH were negatively correlated (Figure 26A).
There was no correlation observed neither for the oxidized glutathione
(GSSG) nor for GFPT1 (data not shown), implying the distinctive relationship
between GFPT2 and GSH. Overexpression of GFPT2 increases cell viability
and protects cells against the H20:2 treatment (Zitzler et al., 2004). Treatment
with H20: significantly increased the RNA expression of GFPT2 (Figure 26B)
and concomitantly reduced the GSH level (Figure 26D), with no influences
on the total glutathione (Figure 26C). In addition, treatment with GSH
decreased the RNA expression of GFPT2 (Figure 26E). The highest amount
of GSH (Figure 26F) and lowest expression of GFPT2 in D492 compared
with D492M and D492HER2 (Figure 17), which are consistent with the
increased cell stress in the mesenchymal cells as previously reported
(Eiriksson et al., 2018; Halldorsson et al.,, 2017), support the negative
correlation between GFPT2 and GSH. On the grounds of the previous result
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that GFPT2 did not regulate GSH, these findings suggest that the RNA
expression of GFPT2 is negatively adjusted according to the intracellular
level of GSH.

In view of the decreased cystathionine with the knockdown of GFPT2
(Figure 25F) and the involvement of cystathionine in the production of HzS,
GFPT2 may modulate the intracellular H2S homeostasis to resist oxidative
stress. SQOR locates on the mitochondrial membrane and oxidizes H2S and
glutathione to regenerate ubiquinol. SQOR was consistently downregulated
by the knockdown of GFPT2 (Figure 26G-J), indicating that the knockdown
of GFPT2 may lead to the diminished production of H2S via cystathionine to
further hinder the downstream enzyme SQOR. However, further investigation
is needed to elucidate the link between GFPT2 and H2S. Nonetheless, the
decreased cystathionine and SQOR after the knockdown of GFPT2 have
associated GFPT2 with H2S and mitochondrial metabolism. H2S signaling
facilitates EMT (Ascencao et al., 2021; M. Wang et al., 2020), the relationship
of which is still elusive and controversial (Guo et al., 2016). Mitochondrial
dysfunction is involved in EMT (Sessions and Kashatus, 2021) and breast
cancer (Lunetti et al.,, 2019), and GFPT2 is connected to SLP-2, which is
involved in mitochondrial regulation (Chao et al., 2021). Dysregulation in
GFPT2, H2S metabolism, and mitochondrial functions may be part of the
partial EMT process in claudin-low breast cancer.

Taken together, these findings suggest that the RNA level of GFPT2 is
regulated by redox balance and the increased expression of GFPT2 is a
marker for cellular oxidative stress, which plays an important role in EMT
(Giannoni et al., 2012) and breast cancer progression (Jezierska-Drutel et al.,
2013). GFPT2 may protect cells from oxidative stress via GFPT2-
cystathionine-H2S-SQOR-mitochondria homeostasis.
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Figure 26. GFPT2 is a marker for oxidative stress.

(A) A negative correlation between GFPT2 and GSH was observed by the gene-
metabolite correlation analysis in the NCI60 cancer cell line panel. (B) The RNA
expression of GFPT2 was significantly upregulated in MDA-MB-231 with 2 uM H20:2
treatment. (C) The H202 treatment did not affect the total glutathione level in MDA-
MB-231. (D) The H20: treatment significantly decreased the GSH level in MDA-MB-
231. (E) The GFPT2 gene expression was significantly downregulated by the
treatment of 50 mg/L of GSH in MDA-MB-231. (F) The epithelial D492 had a
significantly higher level of GSH than the mesenchymal D492M and D492HER2. (G-
J) The knockdown of GPFT2 with siRNA significantly decreased the RNA expression
of SQOR in D492 (G), D492M (H), D492HER?2 (1), and MDA-MB-231 (J). Student’s T-
test, * p < 0.05; **: p < 0.01; **: p < 0.001. GSH: reduced glutathione; GFPT2:
glutamine-fructose-6-phosphate  transaminase 2; SQOR: sulfide quinone
oxidoreductase. Reprinted from (Q. Wang et al., 2021). Reprinted with permission.
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GFPT2 is under the regulation of EGF and insulin signaling, and
itis suppressed by GSK-38

GFPT2 is under the regulation of an intrinsically complex signaling network
and related to various growth factors and transcriptional regulators, including
EGF, TGF-B, TNF, NF-«kB, SIRT6, sXBP1, and SLP-2, etc. (Chao et al.,
2021; Panarsky et al., 2020; Richani et al., 2014; Szymura et al., 2019; W.
Zhang et al., 2018). Mutant KRAS can enhance the flux into HBP via GFPT2
that is intensified by the loss of LKB1 (J. Kim et al., 2020).

The growth factors TGF-B, IGF, TNF, and EGF, had secreted differently
into the medium between D492HER2 and D492 based on the analysis of the
secretomic data (Steinhaeuser et al., 2020) (Figure 27A), all of which have
been confirmed to regulate GFPT2 apart from IGF (Richani et al., 2014;
Szymura et al., 2019; W. Zhang et al., 2018). The removal of insulin and EGF
resulted in the decreased expression of GFPT2 (Figure 27B-C). The higher
expression of IGF1R in D492HER2 (Figure 27D) supports that the activities
of the IGF signaling are more active in D492HER2.

Phosphoproteomics analysis identified the upregulated ERK/MAPK
signaling in D492HER2, a common EGF/IGF downstream pathway. The
kinase enrichment analysis also highlighted the enrichment of the GSK-3f3
and PKCa substrates (Figure 27E-F). GSK-3 is one of the central regulators
of biological activities and under the inhibition of insulin/IGF1 and ERK/MAPK
(Beurel et al., 2015; Cohen and Frame, 2001; Q. Ding et al., 2005; Riis et al.,
2020). We further explored GSK-3f3 inasmuch as it responds to oxidative
stress (Niringiyumukiza et al., 2019; Riis et al., 2020; Schafer et al., 2004; C.
Yan et al., 2020) and partakes in Wnt signaling, which is of importance to the
EMT program (Yook et al., 2006). The phosphorylation of GSK-3[ was higher
in D492HER?2, suggesting GSK-3pB is inactivated (Figure 27G) (X. M. Xu et
al., 2005). GSK-3B were increased on both the RNA and protein levels,
indicating D492 has increased activity of the GSK-3B kinase (Figure 27H-I).
The knockdown of GSK-3( resulted in an increase of the GFPT2 expression
(Figure 273), indicating that GSK-3f suppresses GFPT2. These findings
suggest that the lower expression of GFPT2 in D492 is mediated by the
increased activities of GSK-33.

In summary, GFPT2 is a tumor promotor highly expressed in
mesenchymal cells with partial EMT and a marker for claudin-low breast
cancer and oxidative stress. It is under the regulation of insulin and EGF and
the kinase GSK-3p.
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A.
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Figure 27. The upstream signaling regulation of GFPT2.

(A) Several growth factors, such as TGF, IGF, TNF, EGF, and FGF, were secreted
differently between D492HER2 and D492 based on the analysis of their secretome
(FDR < 0.05, Fold change > =2). (B-C) We adapted the MDA-MB-231 cell line in the
FBS-free H14 medium to investigate the effects of the growth factors EGF and IGF on
GFPT2. The GFPT2 RNA expression was decreased in the MDA-MB-231 cell line
with removals of either EGF (B) or insulin (C). (D) The SILAC proteomic data
suggested that the protein level of IGF1R was higher in D492HER?2 than in D492. (E)
The top eight Ingenuity Canonical Pathways from the phosphoproteomics data
analysis showed ERK/MAPK signaling was activated in D492HER2. Activated
pathways in D492HER2 were labeled in orange, while pathways activated in D492
were marked in blue. Dots were the absolute value of activation Z-scores. Pathways
were listed in a descending order based on the -log 10(p value). (F) Motif enrichment
from Perseus (Version 1.6.14.0) suggested that several kinases, such as GSK-3,
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Casein kinase, and PKA, were enriched differently in D492HER2 compared with
D492. (G) According to the phosphoproteomics analysis, GSK-3B was highly
phosphorylated at position serine 9, inhibiting the activation of GSK-3f in D492HER2
compared with D492. (H-I) Both the RNA (H) and protein (I) expression of GSK-3f in
D492HER2 and D492 showed the higher abundance of GSK-3B in D492 compared
with D492HER2. (J) The knockdown of GSK-3B with the first SiRNA increased the
GFPT2 RNA expression in D492. Student’s T-test, **: p < 0.01; ***: p < 0.001. EGF:
epidermal growth factor; IGF1R: insulin-like growth factor 1 receptor; GSK3B:
glycogen synthase kinase 3 beta; GFPT2: glutamine-fructose-6-phosphate
transaminase 2. Reprinted from (Q. Wang et al., 2021). Reprinted with permission.

GFPT2 is under the regulation of PKCa (unpublished).

PKCa (gene name: PRKCA) is highly expressed in D492HER2 and D492M
than in D492 (Figure 12A). PKCa signaling is dysregulated in EMT as stated
in literature (Tam et al., 2013), which aligns with the above-discussed data. In
light of the central role of PKCa in gene regulation, we explored the potential
regulatory functions of PKCa on GFPT2. siRNA-mediated knockdown of
PKCa significantly increased the GFPT2 expression on the RNA level in both
D492M and D492HER?2 (Figure 28), which was unexpected since both PKCa
and GFPT2 are upregulated in mesenchymal cells, indicating a possible
positive association between these two genes. The increase of GFPT2 with
PKCa knockdown was confirmed on the protein level in these two cell lines,
albeit to a lesser degree (Figure 29). The lesser influence of PKCa
knockdown on GFPT2 on the protein level than the RNA level is possibly due
to the lagged protein expression of GFPT2 following the increased mRNA.

The mechanism by which siRNA-mediated PKCa knockdown increases
GFPT2 is unknown. Knockdown of PKCa can protect cells against H202
treatment (Saberi et al., 2008), which is consistent with the statement that
GFPT2 protects cells against H202 (Zitzler et al., 2004). This evidence
supported that PKCa inhibited GFPT2. Since SIRT6 inhibits GFPT2
(Szymura et al., 2019), and SIRT6 can be degraded by AKT1
phosphorylation (Thirumurthi et al., 2014), One explanation, though purely
speculative, is PKCa — AKT1 — SIRT6 — GFPT2. Specifically, PKCa inhibits
AKT1 (Hsu et al, 2018) to upregulate SIRT6, leading to GFPT2
downregulation. Further studies are required to confirm this theory and
provide more evidence on the mechanism by which PKCa negatively
regulates GFPT2.
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Figure 28. RT-gPCR analysis of GFPT2 with siPKCa treatment.

D492M and D492HER2 were treated with the siRNA targeting PKCa, and the RNA
expression of GFPT2 was detected 72 hours after siRNA-mediated PKCa knockdown
via RT-qPCR. The knockdown efficiency of the siRNA targeting PKCa was about 50 —
60 % in both D492M (A) and D492HER2 (C). The RNA expressions of GFPT2 were
significantly increased after knockdown of PKCa in both cell lines (B, D). PRKCA is
the gene name of PKCa. Student’s T-test, ***: p < 0.001. PRKCA: or PKCa, protein
kinase C alpha; GFPT2: glutamine-fructose-6-phosphate transaminase 2.
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Figure 29. Western blot analysis of GFPT2 with siPKCa treatment.

(A) D492M and D492HER2 were treated with the siRNA targeting PKCa, and the
protein expression of GFPT2 was detected 72 hours after siRNA treatment via
western blot. (B) Western Blots were quantified by densitometry data in ImageJ
software. The protein expressions of GFPT2 were increased after knockdown of
PKCa in both cell lines. Loading control: $-actin. PRKCA: or PKCa, protein kinase C
alpha; GFPT2: glutamine-fructose-6-phosphate transaminase 2.
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4.5 Reconstruction and upgrade of the D492 GEMs (paper
1)

In paper lll, the metabolic network of EMT was reconstructed within GEMs
using either transcriptomic or proteomic data from the D492 breast EMT cell
lines (D492 and D492M cells) based on a previously built model, termed
iBreast2886 (Figure 30). The proteomic GEM showed higher accuracy in
predicting metabolic flux than transcriptomic data. This computational model
predicted two features of EMT, which were confirmed in the lab: (1)
cholesterol metabolism alteration in EMT; (2) higher dependency on
argininosuccinate lyase (ASL) in EMT. iBreast2886 holds potential for
interpreting cancer gene expression data in the clinic.

Correlation analysis of the proteomic and RNA-seq data yielded a
correlation efficiency of 0.46 (Spearman’s rank correlation coefficient),
suggesting a low consistency between gene expression on the RNA and
protein levels. Two major factors impacting the differences between
transcriptome and proteome are PTMs and protein turnover. Metabolic
reactions enriched in cholesterol metabolism were identified as key factors in
the transition between epithelial and mesenchymal states. Cholesterol
synthesis inhibition showed that D492 relies more on this pathway than
D492M. Gene essentiality analysis of the proteomic GEM identified ASL as
an essential gene in EMT, and application of the breast cancer clinical data in
this model revealed that ASL was essential for the survival of patients with
ER-negative breast cancer. ASL is a urea cycle enzyme that converts
aspartate and citrulline into fumarate and arginine. The roles of ASL in EMT
are speculated to be (1) influencing proline synthesis via ornithine
aminotransferase (OAT); (2) affecting the fumarate production for the TCA
cycle; (3) decreasing the conversion of oxaloacetate (OAA) to aspartate to
increase anaplerotic fueling of the TCA cycle.
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Figure 30. Reconstruction and upgrade of the D492 GEMs using the proteomic
dataset.

(A) Different data types generated different metabolic fluxes when they were applied
for the reconstruction of the D492 GEMs. Proteomic data-based GEM showed higher
accuracy than other data types. (B) Correlation analysis revealed a low consistency of
gene expression between the RNA level and the protein level (Spearman’s rank
correlation coefficient). (C) Metabolic reactions in cholesterol metabolism were highly
enriched in the metabolic difference in EMT. (D) Gene essentiality analysis of the
proteomic GEM identified ASL, among others, as an essential gene in EMT. ***: p <
0.001. ASL: argininosuccinate lyase. Reprinted from (Karvelsson et al., 2021).
Reprinted with permission.
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4.6 Deep mining of the phosphoproteomic data
(unpublished data)

Hereafter, | analyzed and reported the phosphoproteomic data collected from
the SILAC experiment for the epithelial D492, mesenchymal D492M, and
partial mesenchymal D492HER2, with emphasis on the top dysregulated
protein phosphorylation sites between different cell lines and the metabolism-
signaling interactions. The phosphoproteomic data were only marginally
reported in paper | and Il to support the signaling regulation of GFPT2 and
UGDH, and an in-depth analysis of this dataset was lacking. On account of
the regulatory functions and broad coverage of protein phosphorylation in
cellular activities, the following analysis was intended to better understand
the phosphorylation alteration in EMT and the different mesenchymal states
with a focus on metabolism.

The raw data were filtered to identify the topmost changed phosphosites
with valid identification and quantification (Table 9). The top altered
phosphosites between D492M and D492, D492HER2 and D492, and
D492HER2 and D492M were listed in the Appendix (223 phosphosites, 158
phosphosites, and 149 phosphosites, respectively).

Table 9. Workflow for analysis of the phosphoproteomic dataset.

The phosphoproteomic data were first screened based on the localization probability
(localization probability > 0.75 for all three replicates). Two out of three replicates
detected with valid SILAC ratios were deemed valid phosphosite identification, and
the missing ratios were imputated based on a normal distribution. The three SILAC
ratios for each phosphosite were tested in statistical analysis for significance (one-
sample Student’s T-test p value < 0.05). Phosphosites that did not pass the statistical
analysis but with fold changes of more than 2 in all three replicates were also deemed
valid differences. Finally, phosphosites were filtered by fold changes (fold change >=
2). At the end of data filtering and analysis, 223 phosphosites, 158 phosphosites, and
149 phosphosites were significantly different between D492M and D492, D492HER2
and D492, and D492HER2 and D492M, respectively, and these phosphosites were
reported in the Appendix.
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Phosphoproteomic data (D492M vs. D492)
(22,458 phosphosites)

Localization prob. > 0.75 for all three replicates
(4049 phosphosites)

Valid (2 out of 3 ratios)
(3541 phosphosites_multiplicity)

One-sample t-test, p.value < 0.05
(1144 phosphosites _multiplicity)

|

Phosphosites p.value > 0.05, fold changes >
2, same trends in all three replicates
(1144 + 50 = 1194 phosphosites_multiplicity)

Fold changes >= 2

223 Phosphosites

Phosphoproteomic data (D492HER2 vs. D492)
(22,458 phosphosites)

Localization prob. > 0.75 for all three replicates
(4049 phosphosites)

Valid (2 out of 3 ratios)
(3541 phosphesites _multiplicity)

Cne-sample t-test, p value < 0.05
(826 phosphosites _multiplicity)

|

Phosphosites p.value > 0.05, fold changes >
2, same trends in all three replicates
(826 + 46 = 872 phosphosites _multiplicity)

Fold changes >= 2
158 Phosphosites

Phosphoproteomic data (D492ZHER2 vs. D492M)
(22,458 phosphosites)

Localization prob. > 0.75 for all three replicates
(4049 phosphosites)

Valid (2 out of 3 ratios)
(3541 phosphosites _multiplicity)

One-sample t-test, p.value < 0.05
(819 phosphosites _multiplicity)

Phosphosites p.value > 0.05, fold changes >
2, same trends in all three replicates
(819 + 54 = 873 phosphosites _multiplicity)

Fold changes >= 2

149 Phosphosites

4.6.1 Phosphorylated metabolic alteration in EMT

The identified phosphorylated enzymes significantly altered between D492M
and D492 were reported (Figure 31), and the topmost dysregulated enzymes
were plotted (Figure 32). Pyruvate dehydrogenase E1 component subunit
alpha (PDHAL) was differently phosphorylated at three positions (serine 300,
serine 293, and serine 232), which were all higher in D492M compared with
D492. In addition, 7-dehydrocholesterol reductase (DHCR7) at serine 14 was
also highly phosphorylated in D492M. Conversely, phosphorylations of very-
long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 (HACD3) at position
serine 135 and fructose-bisphosphate aldolase A (ALDOA) at serine 46 were
significantly higher in D492.

Under aerobic conditions, the product of glycolysis, pyruvate, is
transported into the mitochondrial matrix and completely oxidized to CO: in
the TCA cycle. During this process, the pyruvate dehydrogenase (PDH)
complex, in which PDHA1l plays a key role, catalyzes the irreversible
conversion of pyruvate into acetyl-CoA, linking glycolysis and the TCA cycle.
The PDH complex is regulated by PDK-1, which is dysregulated in cancer
(Flynn et al., 2000). The anaplerosis of pyruvate into the TCA cycle via
pyruvate carboxylase (PC) in breast cancer cells can promote cell mobility
(Phannasil et al., 2015). The enzymatic activities of PDHA1 can be inhibited
by phosphorylation modification of the enzyme at serine 300, 293, and 232
induced by pyruvate dehydrogenase kinase (PDHKs or PDKs) (Fujita et al.,
2020). Phosphorylation of PDHAL at serine 293 has been shown to increase
cell motility and the expression of EMT markers, such as CDH2, vimentin,
and SNAI1, which is in line with the phenotypes of D492M (J. Zhang et al.,
2019).
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DHCR7 is responsible for the final step in cholesterol production,
converting 7-dehydrocholesterol to cholesterol. Both AMPK and protein
kinase A (PKA) have been reported to decrease the DHCR7 activities after
being treated with kinase inhibitors (Prabhu et al., 2017). Protein Kinase D1
(PRKD1) has been reported to regulate the phosphorylation of DHCR7 at
serine 14, which can induce its enzymatic activity (Franz-Wachtel et al.,
2012).

HACD3 is an enzyme in the long-chain fatty acids elongation cycle, and
the phosphorylation of HACD3 at serine 135 has been reported before but
with no responsible kinases identified (Carrier et al., 2016).

ALDOA participates in glycolysis, where it catalyzes fructose-1,6-
bisphosphate to glyceraldehyde 3-phosphate in a reversible manner. The
phosphorylation of ALDOA at serine 46 can also be regulated by PRKD1
(Franz-Wachtel et al., 2012).
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Figure 31. Differently phosphorylated metabolic enzymes between D492M and D492.

The metabolic enzymes differently phosphorylated between D492M and D492 (one-
sample Student’'s T-test p value < 0.05) were plotted. Phosphosites that did not pass
the statistical analysis but with fold changes of more than 2 in all three replicates were
also deemed valid differences. These metabolic enzymes reported were manually
identified. Red: highly expressed in D492M compared with D492. Blue: highly
expressed in D492 compared with D492M. Yellow numbers: p values. Rectangle size:
the bigger the size, the bigger the difference.
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Figure 32. Top differences between D492M and D492.

The top differently phosphorylated metabolic enzymes between D492M and D492
were plotted. PDHAL: pyruvate dehydrogenase E1 component subunit alpha;
DHCR7: 7-dehydrocholesterol reductase; HACD3: very-long-chain (3R)-3-
hydroxyacyl-CoA dehydratase 3; ALDOA: fructose-bisphosphate aldolase A. One
sample T-test, *: p < 0.05; **: p < 0.01.

4.6.2 Phosphorylated metabolic alteration in EMP

The identified phosphorylated enzymes significantly altered between
D492HER2 and D492 were reported (Figure 33), and the topmost
dysregulated enzymes were plotted (Figure 34). Fructose-bisphosphate
aldolase C (ALDOC) at serine 45, isoform 2 of pantothenate kinase 2
(mitochondrial, PANK2) at serine 45, and HACD3 at serine 135 were highly
phosphorylated in D492 compared with D492HER2. On the contrary, the
phosphorylation levels of fatty acid synthase (FASN) at serine 2236 and ATP-

dependent 6-phosphofructokinase (platelet type, PFKP) at serine 386 were
higher in D492HER?2.

PANK2 plays a critical role in the biosynthesis of coenzyme A. Both
HACD3 and fructose-bisphosphate aldolases (ALDOA and ALDOC) were
highly phosphorylated in D492 compared with the other two mesenchymal
cell lines. FASN is involved in the de novo biosynthesis of long-chain
saturated fatty acids, while PFKP is responsible for the first committing step
of glycolysis, phosphorylating fructose 6-phosphate to fructose 1,6-
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bisphosphate. Phosphorylation of PFKP at serine 386 is associated with cell
growth and moatility, as well as carcinogenic effects (Fan et al., 2021).

Phosphosites Differently Expressed (D492HER2 vs. D492)

ACACA_pS23 LPIN3_pS411
ALDOC_p345 CAD_pS1343

PGAM1_pS31 PFKP_p5386 PGAM1_pS5118

PANK2_pS45 CTPS1_pS575

0.026

ENO1_pS263

FASN_pS2236 ACACA_pS5 q

0.026
ACSS2 pS30 PldK2A_pS4T
HACD3_pS135 PPIP5K2_pS1108 - =

TPI1_pS80 FASN_pS207 0.002  0.038
STT3B_pS498
0.012

0.011

Figure 33. Differently phosphorylated metabolic enzymes between D492HER2 and
D492.

The metabolic enzymes differently phosphorylated between D492HER2 and D492
(one-sample Student’s T-test p value < 0.05) were plotted. Phosphosites that did not
pass the statistical analysis but with fold changes of more than 2 in all three replicates
were also deemed valid differences. These metabolic enzymes reported were
manually identified. Orange: highly expressed in D492HER2 compared with D492.
Blue: highly expressed in D492 compared with D492HER2. Yellow numbers: p
values. Rectangle size: the bigger the size, the bigger the difference.
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Figure 34. Top differences between D492HER2 and D492.

The top differently phosphorylated metabolic enzymes between D492HER?2 and D492
were plotted. ALDOC: fructose-bisphosphate aldolase C; PANK2: isoform 2 of
pantothenate kinase 2, mitochondrial; HACD3: very-long-chain (3R)-3-hydroxyacyl-
CoA dehydratase 3; FASN: fatty acid synthase; PFKP: ATP-dependent 6-
phosphofructokinase, platelet type. One sample T-test, *: p < 0.05; **: p < 0.01.

4.6.3 Phosphorylated metabolic alteration in cancer malignancy

The identified phosphorylated enzymes significantly altered between
D492HER2 and D492M were reported (Figure 35), and the topmost
dysregulated enzymes were plotted (Figure 36). Similar to the differences
between D492M and D492, the phosphorylation levels of PDHA1l and
DHCR7 were higher in D492M than in D492HER?2.
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Phosphasites Differently Expressed (D492HER2 vs. D492M)

PPIPSK2_pS1108 LPIN3_pS411 PAICS_pS27
DHCR7_pS14 = = =7

PDHA1_pS283

PI4K2A_pS9 STT3B_pS498 STT3B_pS499 HMGCS_pS4a4
ITPR3_pS916

PDHA1_pS300
FASN_pS2198

HMGCS_pT465 ALDOC_pS45
0,021

TPI1_pS21 0.004 0.026

FASN_pS2236 PGM3_pT6Z

MCT1_psa7s  POAM1pst1
0.04 0.024

0,038
PDHA1_pS232 023 G3PD_pS83 maza ssur

CAD_pS1343 0015
MVD_pS96 DPM1_pS9 -
- N .
0.004 0.039 0.018

Figure 35. Differently phosphorylated metabolic enzymes between D492HER2 and
D492M.

The metabolic enzymes differently phosphorylated between D492HER2 and D492M
(one-sample Student’s T-test p value < 0.05) were plotted. Phosphosites that did not
pass the statistical analysis but with fold changes of more than 2 in all three replicates
were also deemed valid differences. These metabolic enzymes reported were
manually identified. Red: highly expressed in D492M compared with D492HER?2.
Orange: highly expressed in D492HER2 compared with D492M. Yellow numbers: p
values. Rectangle size: the bigger the size, the bigger the difference.
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Figure 36. Top differences between D492HER2 and D492M.

The top differently phosphorylated metabolic enzymes between D492HER2 and
D492M were plotted. PDHAL: pyruvate dehydrogenase E1 component subunit alpha;
DHCRY7: 7-dehydrocholesterol reductase. One sample T-test, *: p < 0.05; **: p < 0.01;
***: p < 0.001.

In summary, the topmost dysregulated phosphorylations of enzymes
between the epithelial and mesenchymal cell lines are mainly involved in
glycolysis, fatty acid synthesis and elongation, cholesterol production, and
coenzyme A metabolism. The high phosphorylation levels of PDHAL suggest
that the metabolic fluxes in complete mesenchymal D492M are diverted from
the TCA cycle, possibly to facilitate fatty acid metabolism (Halldorsson et al.,
2017). The induced activities of DHCR7 in D492M via phosphorylation at
serine 14 agree with the need for cholesterols in the mesenchymal cells for
cell plasma membrane formation.

4.6.4 Kinases responsible for the identified phosphosites

Proteins are phosphorylated by various kinases. The known kinases
responsible for the phosphorylation of metabolic enzymes differentially
expressed between two different cell lines were identified based on the
platform PhosphoSitePlus: https://www.phosphosite.org/homeAction.action
(Hornbeck et al., 2015). All metabolic phosphosites reported to be differently
expressed between cell lines were known sites that had been reported in
literature except for COASY and HMGCS. However, most of these
phosphosites were phosphorylated by unknown kinases. The metabolic
phosphosites identified in the previous sections and their responsible kinases
are listed in Table 10. PDHA1l was highly phosphorylated in D492M
compared with both D492 and D492HER2. CAD and PGAM1 were lesser
phosphorylated in D492HER2 compared with both D492 and D492M.
Pyruvate dehydrogenase kinases (PDHKs) were highly active in the more
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complete mesenchymal cell line D492M than both D492 and D492HER2,
while Serine/threonine-protein kinase (PAK1) and protein kinase A catalytic
subunit a (PKACA) were less active in the partial mesenchymal D492HER2
compared with D492 and D492M.

Table 10. Kinases responsible for known phosphosites.

The kinases responsible for metabolic phosphosites different between two cell lines
(reported above) were identified by the database PhosphoSitePlus. The phosphosites
with known kinases were reported in this table. PDHAL can be phosphorylated at
serine 300, 293, and 232 by PDHKs and was highly phosphorylated in D492M. The
phosphorylation of GYS1 can be induced at position serine 645 by p38 and GSK-3.
CDK1 is the candidate kinase for PIK3C2A phosphorylated at serine 259. CAD can be
phosphorylated at position serine 1343 by PKACA, and PGAM1 can be
phosphorylated at serine 118 by PAK1. Both CDK1 and CDK2 can phosphorylate
PAICS at position serine 27. At last, PKACA is responsible for the phosphorylation of
ITPR3 at position serine 916. PDHA1 was highly phosphorylated in D492M compared
with both D492 and D492HER2. CAD and PGAM1 were lesser phosphorylated in
D492HER2 compared with both D492 and D492M.

Comparison Phosphosites Kinases Expression
PDHA1_pS300 PDHK4;PDK1;PDHK2;PDHK3;PDHK1 Higer in D492M

PDHA1_pS293 PDHK4;PDK1;PDHK2;PDHK3;PDHK1 Higer in D492M

D492M vs. D492 PDHA1_pS232 PDK1;PDHK2;PDHK1 Higer in D492M
GYS1_pS645 P38B;GSK3B Higer in D492M

PIK3C2A_pS259 CDK1 Higer in D492

CAD_pS1343 PKACA Higher in D492

D492HER?2 vs. D492

PGAM1_pS118 PAK1 Higher in D492
PDHA1_pS293 PDHK4;PDK1;PDHK2;PDHK3;PDHK1 Higher in D492M
PDHA1_pS300 PDHK4;PDK1;PDHK2;PDHK3;PDHK1 Higher in D492M
PDHA1_pS232 PDK1;PDHK2;PDHK1 Higher in D492M
D492HER?2 vs. D492M PAICS_pS27 CDK1;CDK2 Higher in D492M
PGAM1_pS118 PAK1 Higher in D492M
ITPR3_pS916 PKACA Higher in D492M
CAD_pS1343 PKACA Higher in D492M
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5 Summary and conclusions

This project first defined the phenotypes of EMT and EMP in breast
epithelium metabolically via proteomic and phosphoproteomic approaches,
then it identified potential metabolic targets for therapeutic treatments, and
finally it investigated the metabolism-signaling relationship in different
mesenchymal states. The main findings in this project were summarized in
Figure 37 and Figure 38, surrounding UGDH and GFPT2, respectively.
Since this project was a discovery-based proteomic study, the main findings,
which deserve further attention, could not be followed up within the scope of
secured funding and time. The mechanism by which the mesenchymal gene
UGDH regulates GPC in choline metabolism is unclear. The explanation for
which the partial mesenchymal gene GFPT2 affects cystathionine and SQOR
in transsulfuration metabolism is lacking. There were speculation and
hypotheses that need the support of experimental data. The signaling
regulation of UGDH and GFPT2 proposed in this project needs to be
confirmed in other cell types with similar properties and requires to be further
elucidated. In addition, the main findings deduced from the
phosphoproteomic analysis of the EMP cell models were not followed up.

For future perspective, cell lines with stable knockouts and with
overexpression of UGDH and GFPT2 need to be established for further
studies of these two genes. Of more interest to us are the roles of UGDH in
choline and lipid metabolism and the importance of GFPT2 in cells with
defective mitochondria. More generally used breast cell lines and protein
assays, for example, western blots, need to be included to confirm the
findings from this project and corroborate the conclusions observed on the
RNA level. In vivo studies are required to verify the cancer promoting roles of
these two enzymes especially in tumor metastasis. The identification of
PDHK, PAK1, and PKACA from the phosphoproteomic study needs to be
followed up by applying similar functional assays, such as siRNA-mediated
knockdown, migration, and invasion assays, and more, to evaluate the
importance of these kinases in different mesenchymal cell states and explore
the potentials of these kinases to distinguish aggressive and non-aggressive
mesenchymal cells for breast cancer clinical therapies. The valid findings can
be generalized beyond the scope of breast cancer.
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Figure 37. Summary of the study on spontanous EMT.

UGDH catalyzes UDP-Glc into UDP-GIcA, an indispensable unit for GAGS,
proteoglycans, and ECM. In this study, UGDH was highly expressed in the
mesenchymal cells and affected cancer patient survival, mesenchymal cell
proliferation and invasion, and the EMT transcription factor SNAI1, and it was under
the control of the PDGFRB-NFkB pathway. UGDH knockdown significantly decreased
the intracellular GPC level and increased the NAA level in all the mesenchymal cell
lines. NAA is closely linked to the central carbon metabolism and is potentially
affected by the mass-action effects of UGDH knockdown. GPC is an intracellular
osmolyte and part of the choline metabolism. Knockdown of UGDH hindered the
formation of proteoglycans and further decreased the extracellular osmotic pressure,
which could be counteracted by the reduced intracellular osmotic pressure induced by
GPC. We hypothesized that UGDH knockdown affected PPARA-lipid metabolism
and/or pERK-PLA2G15 to regulate GPC and to ease the osmotic stress. UGDH:
UDP-glucose dehydrogenase; UDP-Glc: UDP-glucose; UDP-GIcA: UDP-glucuronic
acid; GAGs: glycosaminoglycans; ECM: extracellular matrix; EMT: epithelial-
mesenchymal transition; SNAIL: zinc finger protein SNAI1; PDGFRB: platelet-derived
growth  factor receptor B; NFkB: nuclear factor-kappa B; GPC:
glycerophosphocholine; NAA: N-acetylaspartate; PPARA: peroxisome proliferator-
activated receptor gamma; pERK: phosphorylated extracellular signal-regulated
kinase; PLA2G15: phospholipase A2 group XV. Reprinted from (Q. Wang et al.,
2021). Reprinted with permission.
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Figure 38. Summary of the study on EMP.

GFPT2 is the rate-limiting enzyme in the HBP and was upregulated in mesenchymal
cells, especially in partial EMT represented by the D492HER?2 cell line. It affected the
EMT program regulator vimentin, the HBP flux, cell growth, and cell invasion, and it
was overexpressed in claudin-low breast cancer cell lines and patients with claudin-
low breast cancer. GFPT2 was regulated by oxidative stress (H202 and GSH) and
signaling regulators (insulin and EGF, and GSK-38). GFPT2 knockdown decreased
the intracellular cystathionine level and the SQOR RNA expression in the
transsulfuration pathway, indicating that GFPT2 is potentially involved in the H2S
metabolism and mitochondrial homeostasis. The underscored metabolites were
measured in this study. GFPT2: glutamine-fructose-6-phosphate transaminase 2;
HBP: hexosamine biosynthetic pathway; EMT: epithelial-mesenchymal transition;
H202: hydrogen peroxide; GSH: reduced glutathione; EGF: epidermal growth factor;
GSK-3B: glycogen synthase kinase 3 beta; SQOR: sulfide quinone oxidoreductase;
H2S: hydrogen sulfate. Reprinted from (Q. Wang et al., 2021). Reprinted with
permission.
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UGDH affects GPC and NAA under PDGFRE regulation

1. Introduction

Epithelial-mesenchymal transition (EMT) is a core
developmental process that allows a polarized epithelial
cell to assume mesenchymal phenotypes through a series
of morphological, molecular, regulatory and functional
changes [1]. EMT is part of normal tissue development,
organ/tissue fibrosis, wound healing and cancer malig-
nancy. Partial activation of EMT drives tumour metas-
tasis and dissemination to distant organs [2,3].

The biological plasticity and molecular heterogeneity
of the EMT programme indicate that EMT is context-
specific, which has resulted in discrepancies in its
description in the literature [4]. One factor causing
EMT heterogeneity in cell line models is the EMT
induction method. Growth factors, transcription fac-
tors and microRNAs can be manipulated in cells to
trigger EMT, such as TGF-p, EGF, Snaill/2, ZEBI
and Twist [3,5-8]. Genetic manipulation may lead to
effects that diminish the flexibility and plasticity of the
EMT programme. In the present study, we used three
breast EMT cell models related to basal mammary
cells to investigate common effects of the spontaneous
EMT programme, that is, D492 EMT cell lines [9,10],
HMLE EMT cell lines [7.11,12] and PMC42 EMT cell
lines [13-15]. Each EMT cell model includes a breast
epithelial/mesenchymal cell line pair generated with
spontaneous induction methods without overexpress-
ing specific EMT inducers. These EMT models may
reside at different positions in the EMT spectrum [1]
but represent typical EMT progress in human breast
gland development and have contributed significantly
to the understanding of the molecular regulatory
machinery in EMT [16-18].

Metabolic reprogramming is an indispensable driver
of EMT in cancer [19]. A better understanding of the
metabolism of EMT may facilitate the development of
new therapeutics for breast cancer treatment. Glucose
metabolism, lipid metabolism, an acidic microenviron-
ment, nucleotide metabolism and amino acid metabo-
lism have been related to EMT in cancer malignancy
[20.21]. In our previous studies on EMT-related meta-
bolic dysregulation limited to the D492 EMT model,
we observed different preferences for reductive/oxida-
tive carboxylation, glycolysis and amino acid anaplero-
sis along with an altered lipid profile and shifted
glutathione homeostasis [22-24]. To move towards a
system’s understanding of how metabolism is influ-
enced following EMT, we compared the metabolic
phenotypes of EMT within genome-scale metabolic
network reconstructions (GEMs) that allow the inte-
grated analysis of gene expression, proteomic and
metabolomic data. These analyses revealed increased
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dependency on argininosuccinate lyase (ASL) and
enhanced activities of the pentose phosphate pathway,
hexosamine biosynthesis and one-carbon metabolism
post-EMT in the D492 EMT model [23,25]. More
recently, we confirmed that metabolic flux through the
hexosamine biosynthesis pathway (HBP) increases sig-
nificantly in mesenchymal cells and that glutamine-
fructose-6-phosphate transaminase 2 (GFPT2) in the
HBP is associated with breast cancer malignancy [26].

In this study, we further explored the metabolic
changes in EMT using shotgun proteomics and
expanded our analysis to include three breast cell mod-
els descriptive of spontaneous EMT (Fig. | and
Fig. 81). Several metabolic enzymes were commonly
changed after EMT, with UDP-glucose dehydrogenase
(UGDH) being most altered. UGDH catalyses conver-
sion of UDP-glucose (UDP-Glc) to UDP-glucuronate
(UDP-GlcA), both of which are essential metabolites
with diverse cellular functions [27,28]. UGDH is
involved in a variety of regulatory events. SP1, TGF-
. Slit2, p3s™A"™ and PI3K/Akt regulate UGDI
expression, which in turn influences the downstream
targets ERK/MAPK, PPARy and SNAII [27-34]. Sev-
eral studies have recently reported that UGDH is
involved in tumour growth, metastasis and patient sur-
vival [27.32,34-37]. To understand the roles of UGDH
in EMT in the breast gland, we knocked down UGDIT
in breast mesenchymal cells with siRNAs and studied
effects on cell function and metabolism. Importantly,
the three EMT models studied are noncarcinogenic.
To account for UGDH in cancer progression and
oncogenesis, we compared results from the EMT mod-
els to UGDH functions in the tumorigenic breast mes-
enchymal cell lines D492HER2 and MDA-MB-231.
These investigations suggest that the tumour promot-
ing effects of UGDH may in part be attributed to
changes in choline metabolism.

2. Materials and methods

2.1. Cell culture

D492 was isolated from primary cultures of reduction
mammoplasties with immortalization [9]. D492M was
generated via 3D coculture of the D492 cells with
endothelial cells to induce EMT [10]. D492HER2 was
established by the overexpression of HER2 receptors on
D492 [38]. The D492 cell lines (D492, D492M and
D492HER2) were cultured in serum-free H14 medium
(DMEM/F-12 without glutamine; Thermo Fisher Scien-
tific (TFS), Waltham, MA, USA; 21331020) supplemented
with 250 ng-mL_1 insulin (Merck, Kenilworth, NI,
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Breast reduction Breast reduction Breast; derived from metastatic
Tissue G :
mammoplasty mammoplasty site: pleural effusion
.| HPV-16 E6/E7 gene TR and SV-40
Immortalization sansduition Large T antigen N/A
expression
Cell type Basal-like; with stem Luminal and basal Express secretory and
cell properties epithelial cells myoepithelial markers
Spontaneous EMT; Spontaneous EMT: Spontaneous MET; Treatment
Induce EMT Co-culture with pT siteriion ' with a combination of hormones
endothelial cells P to induce MET
Tumorigenicity | Non-tumorigenic Non-tumorigenic Non-tumorigenic

Fig. 1. Summary of the three breast EMT cell models. Comparison of the three breast EMT cell models with respect to tissue origin,
immortalization methods, cell markers, EMT induction methods and tumorigenicity.

USA; 16634), 10 pg-mL~" transferrin (Merck; T2252),
10 ng-mL~" EGF (PeproTech, Cranbury, NJ, USA; AF-
100-15), 2.6 ng-mL~"' Na-selenite (BD Biosciences, San
Jose, CA, USA; 354201), 10~ 1034 estradiol (Sigma,
St.Louis, MO, USA; E2758). 1.4 x 107% m hydrocorti-
sone (Sigma: HO88E), 0.15 TU prolactin (PeproTech; 100-
07), 100 TU penicillin and 0.1 mg-mL™" streptomycin
(Gibco™, TFS; 15140122) and 2 mm glutamine (TTFS;
25030024). The passage numbers for both D492 and
D492M were from 31, while D492HER2 was cultured
from passage 65. IIMLE was isolated from reduction
mammoplasties [12], while HMLEM was generated from
HMLE via differential trypsinization [7]. The HMLE cell
lines (HMLE with passage number from 16 and
HMLEM with passage number from 28) were cultured in
serum-free DMEM/F-12 medium supplemented with
10 pgemL™" insulin, 10 ng-mL~" EGF, 1.4 x 107%um
hydrocortisone, 100 TU penicillin and 0.1 mg-mL ™" strep-
tomycin and 2 mm glutamine. PMC42ET was originally
established from pleural effusion from the metastatic site
in a breast cancer patient [15], and PMC42LA was then
generated via mesenchymal-epithelial transition by hor-
mone treatments [13]. The PMC42 cell lines (PMC42LA
and PMC42ET with passage numbers from 9) were cul-
tured in RPMI 1640 Medium (TFS; 52400025) supple-
mented with 10% FBS (Gibco™ 10270106) and 100 TU
penicillin and 0.1 mg-mL_] streptomycin. The antibiotics
were excluded in the medium for the transient knock-
down experiments. In the SILAC phosphoproteomic

experiment, DMEM/F-12 was replaced by ‘DMEM:F-12
for SILAC’ (TTS; 88370) with light- (r-arginine, 1-lysine),
medium- [r-arginine-'*C, hydrochloride (Arg + 6 Da),
L-lysine-4.4.5,5-d4 hydrochloride (Lys + 4 Da)] or heavy-
(1-arginine-"Cg, "N,  hydrochloride  (Arg + 10 Da),
1-lysine-"*Cy,"*Ny hydrochloride (Lys + & Da)] labelled
arginine or lysine (Cambridge Isotope Laboratories,
Tewksbury, MA, USA). In the invasion assay, HI14
was supplemented with 10% FBS in the lower chamber
of the Transwell. The MDA-MB-231 cells (passage
number 26) were cultured in RPMT 1640 supplemented
with 10% FBS and 100 TU penicillin and 0.1 mg-mL™"'
streptomycin. All cell lines were cultured at 37 °C with
5% CO; for routine maintenance, and cells were rou-
tinely checked for mycoplasma contamination. All cell
lines used in this study were kindly provided by the
Stem Cell Research Unit, Biomedical Center, Univer-
sity of Iceland.

2.2. LFQ proteomics and SILAC
phosphoproteomic analysis

The proteomic experimental set-up was illustrated in
Fig. SIA.

2.2.1. LFQ protein and peptide sample preparation

Cells were lysed with 4% sodium dodecyl sulfate
(SDS; MP Biomedicals™, Trvine, CA, USA) in
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100 mm Tris (Sigma) and kept on ice for 10 min and
then transferred to 1.5-mL Eppendorf tubes. After
five freeze/thaw (—80 “C/room temperature) cycles,
the samples were centrifuged at 20 817 g for 20 min
at 4 °C. The supernatants were collected and ali-
quoted in new tubes and stored at —80 °C. Total pro-
tein was quantified with the Pierce™ BCA protein
assay (TFS). A volume containing 12-15 pg total
protein was precipitated by chloroform/methanol pre-
cipitation and reconstituted in 50 mm ammonium
bicarbonate. The protein sample was reduced with
I m dithiothreitol (DTT) for 20 min at 70 °C and
then alkylated by 200 mm iodoacetamide (TIAM) at
room temperature in the dark for 30 min, followed
by quenching the extra TAM with | m DTT for
20 min at room temperature in the dark. Samples
were digested overnight with 1.5 pg trypsin at 37 °C.
Tryptic peptides were desalted using C-18 StageTips
as described [39], after which peptides were dried in a
SpeedVac centrifuge and resuspended in 0.1% formic
acid.

2.22. LFQ LC-MS/MS analysis

Peptides were analysed on an LC-MS/MS platform
consisting of an Easy-nLC 1200 UHPLC system
(TFS) interfaced with a QExactive HIFF Orbitrap Mass
Spectrometer (TFS) via a nanospray ESI ion source
(TFS). Peptides were injected into a C-18 trap column
(Acclaim PepMapl00, 75 pm i. d. x 2cm, C-18,
3 pm, 100 A TFS) and further separated on a C-18
analytical column (Acclaim PepMapl00, 75 um i
d. x 50 cm, C-18, 2 pm, 100 A: TFS) using a multi-
step gradient with buffer A (0.1% formic acid) and
buffer B (80% CH1CN, 0.1% formic acid): from 2%
to 10% buffer B in 10 min, 10% to 50% buffer B in
130 min, 50% to 100% buffer B in 20 min and
20 min with 100% buffer B. The HPLC was re-
equilibrated with 2% buffer B before the next injec-
tion. The flow rate was 250 nL-min~'. Peptides eluted
were analysed on QExactive HF mass spectrometer
(TFS) operating in positive ion- and data-dependent
acquisition mode using the following parameters:
electrospray voltage 1.9 kV, HCD fragmentation with
normalized collision energy 29, automatic gain con-
trol (AGC) target value of 3 x 10° for Orbitrap MS
and 1 x 10° for MS/MS scans. Each MS scan (m/z
350-1650) was acquired at a resolution of 120 000
FWHM, followed by 15 MS/MS scans triggered for
AGC targets above 2 x 10°, at a maximum ion injec-
tion time of 1000 ms for MS and 100 ms for MS§/MS
scans. The proteomic method has been described pre-
viously [40].
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2.2.3. LFQ protein and peptide identification and
quantification

Proteins were identified and quantified by processing
MS data using Thermo Scientific™ PROTEOME DISCOV-
erer™ (PD, version 2.3; TFS). prEviEw version 2.3.5
(Protein Metrics Inc.) [41] was used to inspect the raw
files to determine optimal search criteria, and the follow-
ing search parameters were used: (a) enzyme specified as
trypsin with maximum of two missed cleavages allowed;
(b) acetylation of protein N-terminal including loss-of-
methionine; (c) oxidation of methionine; (d) deamidation
of asparagine/glutamine as dynamic post-translational
modification; (e) carbamidomethylation of cysteine as
static; Precursor mass-tolerance of 10 PPM while frag-
ment mass-tolerance of 0.02 Dalton. PD’s node, Spec-
trum file RC, was set up to query the raw files against
the human proteome downloaded from UniProt (ffome
sapiens, UP000005640, October 2018) with the static
modification to recalibrate and detect features with the
Minora node. Further, the internal contaminant data-
base was also queried along with the human proteome
using Sequest [42] search engine available in PD. For
downstream analysis of these peptide-spectrum matches
(PSM), both protein and peptide identifications/PSM
false discovery rate (FDR) were set to 1%; thus, only
the unique peptides with high confidence were used for
final protein group identification. Peak abundances were
extracted by integrating the area under the peak curve.
Each protein group abundance was normalized by the
total abundance of all identified peptides at FDR < [%.
Summed up median values for all unique peptide ion
abundances mapped to respective protein using label-
free quantification scaled on all average with Precursor
Ton Quantifier node [43] for PD were used.

The mass spectrometry proteomic data have been
deposited to the ProteomeXchange Consortium via the
PRIDE [44] partner repository with the data set identi-
fier PXD024164.

The protocol for SILAC phosphoproteomic analysis
was thoroughly described in the other study [26].
Briefly, protein sample equivalent to 4 mg was dis-
solved and fractionated, followed by phosphorylated
peptide enrichment with MagReSyn-TiIIMAC beads
(Resyn Biosciences, Edenvale, Gauteng, South Africa)
and Magnetic Rack (DynaMag-2; Life Technologies,
Carlsbad, CA, USA). Analyses of peptides for total
proteome and phosphorylated proteome were carried
out on a Velos-Pro Orbitrap (TFS) mass spectrometer
coupled with a Dionex UltiMate 3000 RS (TFS). The
raw data files obtained from the mass spectrometric
outputs for each experiment were merged into a single
quantitated data set using MAXQUANT (version 1.5.2.8)
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[45] and the anproMEDA search engine software [46].
The mass spectrometry phosphoproteomic data have
been deposited to the ProteomeXchange Consortium
via the PRIDE [44] partner repository with the data
set identifier PXD025858.

2.3. Metabolomic analysis

The metabolomic experimental set-up was illustrated in
Fig. SIA. Cells were washed with saline solution
(09%), and the metabolites were extracted with
MeOH : dH,0 (80 : 20) containing an internal stan-
dard mix (Table S1). After adding MeOH : dH,0
(80 : 20), samples were centrifuged, and the supernatant
was taken and vacuum dried. The extracts were anal-
ysed on UPLC mass spectrometry (SYNAPT G2;
‘Waters) according to published protocols [47]. Metabo-
lites were identified and quantified in MassLYNX software
(version 4.2) from waters. For untargeted data analysis,
xcms [48] was used for automatic peak-picking (cen-
tWave) [49] and retention time alignment (OBI-Warp)
[50]. All features that eluted in the first 66 s were omit-
ted from further analysis. Feature intensities were nor-
malized using quality control sample-based robust
LOESS (locally estimated scatterplot smoothing) signal
correction (QC-RLSC) [51] which was implemented
using the r-package NormalizeMets [52]. For quality
assurance, all features with over 25% relative standard
deviation in the QC samples were omitted from further
analysis. Generalized logarithmic transformation (glog)
[53] and autoscaling were used to obtain mean-centred,
normally distributed feature intensity values with equal
variance. The expression of metabolites was normalized
to cell numbers estimated by crystal violet assays. For
the normalization of the metabolic measurements in the
metabolomic experiment, cells were counted using a
crystal violet assay. In short, cells were fixed with 100%
cold MeOH and stained with 0.25% crystal violet (Mer-
ck:; C.I. 42555). After washing, stained cells were dis-
solved into 100 pL of 10% acetic acid and measured at
570 nm in the microplate reader (SpectraMax™ M3;
Molecular Devices LLC, San Jose, CA, USA).

2.4, siRNA transient knock-down and
quantitative reverse transcription PCR

Cells were seeded either at 60 000 cells/well in 48-well
plates or at 480 000 cells/well in 6-well plates. Before
cell seeding, plates were coated with respective control
siRNA (Silencer™ Select Negative Control, 4390843)
and target siRNA (Silencer™ Select siUGDH: s409
and s410; siPDGFRB: s10240; siRELA: s11914 and
s11915) as well as Lipofectamine™ RNAIMAX

UGDH affects GPC and NAA under PDGFRE regulation

Transfection Reagent (TFS). Cells were transfected at
37 °C and 5% CO; for 48 h with the final siRNA con-
centration of 10 nM.

In the RT-gPCR experiments, cells were cultured in
48-well plates for 72 h, followed by total RNA extrac-
tion with TRI Reagent™ Solution (Invitrogen™, TFS).
RMNA concentration was determined in NanoDrop One
(TES). 500-1000 ng of RNA was used for cDNA syn-
thesis on the thermal cycler (Peltier Thermal Cycler, MJ
research, PTC-225, Alameda, CA, USA) using High-
Capacity cDNA Reverse Transcription Kit (TFS). Gene
expression was measured with SYBR Green (Luna®
Universal gPCR Master Mix; New England BioLabs,
Ipswich, MA, USA) on Bio-Rad CFX384 Touch™
Real-Time PCR Detection System (Bio-Rad, Hercules,
CA. USA). Primers were either selected from Primer-
Bank, designed on the Primer3Plus website, or based on
the literature. Primer sequences for genes studied in this
study were listed in Table S2.

2.5. Cell proliferation assay

Cells in quadruplicate were seeded at 10 000 cells/well
in 96-well plates. UGDIT knock-down followed the
methods described above. For D492M, 24 h after
seeding (48 h for D492HER?2), cells were placed under
the microscope (LEICA CTR 6500, bright field, 10x)
at 37 °C with 5% CO, for real-time monitoring and
multiple data acquisition. The microscope was con-
trolled by software MICRO-MANAGER (version 1.4.22,
Vale's laboratory, San Francisco, CA, USA). Three
spots were chosen in each well, and photographs were
taken every 6 h. Cell growth was monitored for 66 h
for D492M while 42 h for D492HER2. Photographs
were batch-processed with Macro in software IMAGES
1.52p (NIH, Bethesda, MD, USA), and cell numbers
were normalized to the starting point.

2.6. Transwell invasion assay

The D492M and D492HER?2 cells were cultured with
siRNA transfection (Scramble and siUGDH) for 48 h
in 6-well plates. UGDIT knock-down followed the
methods described abowve. Cells were then reseeded
into filter units (Falcon™ Permeable Support for 24-
well Plate with 8.0-um Transparent PET Membrane,
353097, Corning, NY, USA) coated with Matrigel
(Corning®™ Matrigel® Matrix, 356234) at a density of
30 000 cells/well. First, the filter inserts were coated
with 100 pLL 1 : 10 diluted Matrigel for 20-30 min at
37 °C. Next, 300 puL of cell suspension was added on
top of the filter units. Then, 500 pL. of H14 medium
with 10% FBS was added to the wells in the 24-well
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plates below the filters. Finally, cells were incubated at
37 °C and 5% CO; for 48 h. Noninvasive cells on top
of the filters were removed with cotton swabs, fol-
lowed by fixation with paraformaldehyde (PFA. 3.7%,
Sigma; 252549) and DAPI staining (1 : 5000; Sigma,
D9542). Ten images per filter unit were taken by the
EVOS” FL Auto Imaging System (10x; TFS), fol-
lowed by the batch analysis of the images in Macro mm-
aGeEl 1.52p. For normalization of the different cell
numbers in the filter units, cells were seeded into a 24-
well plate along with the filter units and cultured and
treated in the same way as cells in the filter units.

2.7. Statistical analysis and bioinformatics

All experiments performed in this study were in at
least triplicates. The metabolomic analysis of the
UGDIT knock-down treatment was in six replicates.
The proteomic data were processed in PERSEUS (version
1.6.14.0, data imputation based on normal distribu-
tion, width = 0.3, downshift = 1.8, permutation-based
FDR < 0.05) [54] and r (version 4.0.0, the University
of Auckland, New Zealand). Plots in this study were
generated in r software. The statistical significance for
all two-sample comparisons was based on the two-sided
Student’s r-test (Welsch, £ < 0.05). Gene Ontology
(GO) functional annotation was conducted in DAVID
(DAVID Bioinformatics Resources 6.8) with default set-
tings [55,56]. Reactome pathway analysis was performed
with Reactome (Pathway browser version 3.7; Reac-
tome database release: 75) with default settings [57].
Proteins with permutation-based FDR < (.05 were used
for the GO annotation and Reactome pathway analysis.
Patient survival was plotted in KM plotter (kmplot.
com) with basal breast cancer patients (split patients by
autoselect best cut-off) [58]. The phosphoproteomic
data were analysed in the INGENUITY PATHWAY ANALYSIS
(1ra) (QIAGEN, Germantown, MD, USA, version from
2018) for pathway enrichment and perseus for motif
enrichment analysis.

All the r codes used for figure plotting in this study
could be found on https://github.com/QiongW56/
UGDH_Publication_2021.

3. Results

3.1. The proteomic differences based on cell-of-
origin outweigh proteomic changes that
accompany EMT

Three breast EMT cell models consisting of epithelial
and mesenchymal breast cell line pairs were used in this
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study (Fig. 1), namely, D492/D492M (D492 EMT
model), HMLE/HMLEM (HMLE EMT model) and
PMC42LA/PMC42ET (PMC42 EMT model). All three
epithelial cell lines presented a typical cobblestone-
shaped epithelial cell phenotype, while all the mesenchy-
mal cells showed flattened mesenchymal morphology
with undefined cell contour (Fig. SIB). The three EMT
cell models presented different luminal/myoepithelial/
basal phenotypes, with all three models possessing cer-
tain degrees of basal breast cell properties.

Irrespective of being epithelial or mesenchymal, cell
lines of the same origin were grouped on the proteomic
level (Fig. 2A). The PMC42 model shared the least simi-
larities with the other EMT models (Fig. 2B). To confirm
the epithelial and mesenchymal phenotypes on the molec-
ular level, we quantified the EMT markers captured by
the proteomic analysis from an EMT marker database
[59]. VIM, LGALSI and SERPINEI were consistently
upregulated in the mesenchymal cells, while PKP3 was
downregulated (Fig. 2C-F). Not all EMT markers found
in this study were, however, consistently altered among
all three models, that is CD44, LMNBI, MSN, FLNA,
TLNI, FSCNI, EGFR, 5100A2 and NDRG1 (Fig. 52).
Since E-cadherin (CDHI1) and N-cadherin (CDH2), two
typical EMT markers [60], were not covered in the pro-
teomic analysis, we checked the expression of these by
real-time PCR. CDHI was significantly downregulated,
while CDH2 was significantly upregulated in all EMT
models (Fig. 2G,H).

3.2. Cell-cell and cell-extracellular matrix
interactions are altered in EMT, and a diversity of
pathways and molecular activities are changed in
D492 as opposed to protein translation in HMLE
and PMC42

Heterogenicity and plasticity are two intrinsic character-
istics of EMT. To further define the epithelial and mes-
enchymal cells in all three EMT models, we compared
their proteomes with respect to the number and profile
of the significantly altered proteins along with their bio-
logical function and identified consistent EMT markers.

In total, 873 proteins were deemed valid proteins in
identification and quantification (Table S3). In the
D492 model, 188 out of the 873 valid proteins (21.5%)
were significantly changed after EMT (permutation-
based FDR < 0.05). In the HMLE model, 436 out of
873 proteins (49.9%) were significantly altered, while
200 proteins (22.9%) were significantly changed in the
PMC42 model (Fig. 3A). Out of the significantly altered
proteins, 55.9% (105/188) in the D492 model, 18.8%
(82/436) in the HMLE model, while 63.5% (127/200) in
the PMC42 model were upregulated after EMT
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Fig. 2. EMT markers in the three breast EMT cell models. (A, B) Proteomic analysis of the three EMT models revealed cell lines with the
same origin were more similar than their epithelial or mesenchymal states. The D492 EMT model was more similar to the HMLE model
than the PMCA42 model. Proteins with valid identification and quantification were included in the analysis (Table S3). Protein levels of the
known EMT markers VIM (C), LGALS1 (D), SERPINE1 (E) and PKP3 (F) were consistently altered in all EMT models. RNA expression of
CDH1 was downregulated (G), while RNA expression of CDH2 was upregulated after EMT (H). Student’s ttest, *P < 0.05; **P < 0.01;
***P < 0.001; n=3. The error bars indicate standard deviation. VIM, vimentin, LGALS1, galectin-1; SERPINE1, plasminogen activator

inhibitor 1; PKP3, plakophilin-3; CDH1, E-cadherin; CDH2, N-cadherin.

(Fig. 3B). To ensure reproducibility of the proteomic
data used in this study (Table S4), we compared the cur-
rent proteomic data set with the previously generated
data for the D492 EMT model [26]. The correlation
coefficient of these two data sets was 0.936 (Fig. S3).

We next filtered the identified proteins based on
their log2 fold changes and —logl0 P-values (Fig. 3C-
E) and rized the cor ly altered proteins in
all three EMT models (Fig. 3F and Table I) to iden-
tify common changes in EMT. A literature search for
each EMT target revealed that all had been associated
with EMT previously, albeit to a different extent
(Table 1). To evaluate these consistently altered EMT
markers in the context of cancer progression, we

confirmed the expression of these markers in the
tumorigenic breast mesenchymal cell line D492HER2.
All the targets detected in D492HER2 showed the
same trends in changes (Table 1).

To define functional changes in EMT, we annotated
the GO terms for the significantly changed proteins
(Table S3) and observed that the Biological Process (BP)
‘cell-cell adhesion” was altered in all three EMT models
(Fig. 4A-C). The D492 model had the least similarity
compared with the other two models, with only one com-
mon BP term (i.e. cell-cell adhesion) out of the top 10
enriched BP terms (Fig. 4A). In contrast, the PMC42
model shared its top seven terms with HMLE (Fig. 4B,
C). The same trend was observed using enriched
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Fig. 3. Proteomic analysis of the three breast EMT cell models. (A) Percentages of significantly altered proteins in the EMT models
{permutation-based FDR < 0.05). (B) Up- and downregulation profiles for all the significantly changed proteins in the EMT models. The log2
{epitheliamesenchymal ratio) along with the —log10{P-value) for each protein was plotted for the D492 model (C), HMLE model (D) and
PMCA42 model (E). Proteins with FDR (permutation-based) less than 0.05 and fold change more than 2 are coloured. The horizontal and
vertical dashed lines indicate a Pvalue of 0.03 |-log10{P-value} = 1.5] and a 2-fold change, respectively. The annotated proteins had a log2
{fold change) of more than 3. Proteins involved in metabolism with a log2(fold change) of more than 1 for D492 model, 1.5 for HMLE and
PMCA42 models were bold label marked. n = 3. (F) A list of proteins significantly changed in the same direction (Student’s ttest, P < 0.05)
in all three EMT models. SERPINE1, RPL26L1, PLOD2, UGDH, LGALS1 and VIM were upregulated, while JUP, PKP3, MTCH2, ATP2A2,
FDFT1, SORD and TSTA3 were downregulated after EMT.

protein function following EMT in the HMLE and
PMC42 models as compared to the D492 model.

Reactome pathway analysis (Fig. 4D-F). The altered
Reactome pathways in the D492 model were related to
response to cell stress, IGF signalling and interleukin-12

signalling (Fig. 4D). In both the HMLE and PMC42 3.3. UGDH is negatively correlated with patient

models, changes were, however, mainly to pathways
involved in the protein translational process (Fig. 4E.F).
Comparison of changes to cellular components
(Fig. S4A-C) and molecular function (Fig. S4D-F) was
similarly indicative of more similarities in changes to

survival and affects cell proliferation, cell
invasion and SNAI1 expression

Next, we focused on the metabolic changes during
EMT. Out of the thirteen identified targets listed in
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Fig. 4. Functional annotation of the GO terms (BP) and Reactome pathway analysis for the three EMT models. (A-C) Functional annotation
of the GO terms (BP) was conducted on the DAVID platform (DAVID Bicinformatics Resources 6.8) for the D492 model (A), HMLE model
{B), and PMC42 model (C). The GO terms were listed according to the —log10 Pvalue in descending order. The numbers of genes in each
GO term were also plotted as dots/line plots. (D-F) Reactome pathway analysis (Pathway browser version 3.7, Reactome database release:
75) for the D492 model (D), HMLE model (E) and PMC42 model (F). Data used for both the GO annotation and the pathway analysis
(Table S3) were proteins significantly different in each EMT model (permutation-based FDR < 0.05). Default settings in the DAVID and
Reactome platforms were used. BP, biological process.

Table I, four proteins were involved in metabolism:
FDFTI, SORD and TSTA3 were downregulated while
UGDH was upregulated (Fig. SA-D). We further
tested the RNA expression of UGDH, which showed

10

190

the most changes to protein expression in all EMT
models and was associated with cancer aggressiveness.
Though there was no significance in the D492 and
PMC42 models, the upregulating trends in all EMT
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Fig. 5. Four metabolic enzymes changed consistently in all EMT meodels. {(A-D) The proteomic analyses revealed that the metabolic
enzymes FDFT1, SORD, TSTAZ and UGDH changed consistently in all EMT maodels. (E} The RNA level of UGDH in all EMT models was
consistently higher in the mesenchymal cell lines. (Fy The UGDH protein level in the epithelial and mesenchymal cells was confirmed in
another data set [26] and further confirned in another tumorigenic breast mesenchymal cell ine D4S2HER2. Student’s ttest, *P < 0.05;
=#0 < 0.01; ***P = 0.001; n= 3. The error bars indicate standard dewiation. FDFT1, squalene synthase, SORD, sorbitol dehydrogenase;
TSTA3, GDP4-fucose synthase; UGDH, UDP-glucose 6-dehydrogenase.

models were seen (Fig. SE). To relate these findings to
breast cancer, we tested the protein level of UGDH in
the tumorigenic breast mesenchymal cell line
D492HER2. UGDH was upregulated in D492HER2
as observed in nontumorigenic mesenchymal cell line
D492M (Fig. 5F).

Recent studies have reported that UGDH affects
patient survival [34], cell proliferation [32,37], cell inva-
sion [27], cell migration [34,37] and SNAII expression
[28]. We set out to confirm these effects of UGDH in
our EMT cell lines. High UGDIH level was associated
with worse patient survival in basal breast cancer
patients based on KM plotter (Fig. 6A). Based on this,
we analysed effects of UGDH on cell morphology,
proliferation, invasion and SNATI expression in two
types of breast mesenchymal cells: nontumorigenic
D492M and tumorigenic D492HER2 via siRNA-
mediated knock-down of UGDIT (Fig. S5). Knock-
down of UGDIT did not yield observable morphological
changes but slowed down cell growth (Fig. 6B,C) and
invasion (Fig. 6D.E and Fig. S6A-C) in both cell lines.

Molecular Oncology (2022) & 2021 The Authors. Moleculsr Oneology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

SNATl RNA expression was downregulated after
UG DIT knock-down, which was also consistent with the
literature (Fig. 6F.G and Fig. S6D,E).

3.4. GPC is downregulated while NAA
upregulated following UGDH knock-down in the
mesenchymal cells

UGDH catalyses the conversion of UDP-Gle to UDP-
GlcA that are constituents of glycosaminoglycans and
N- and O-linked glycans [61]. To confirm the meta-
bolic impacts of UGDH in mesenchymal cells, we
knocked down UGDIT with siRNAs and performed
metabolomic analysis in all three mesenchymal cell
lines. Samples from the same cell line clustered
together at the metabolic level despite UGDIT knock-
down (Fig. 7A_B). As with the proteome, the metabo-
lome of D492M was closer to that of HMLEM than
the metabolome of PMC42ET. Knock-down of UGDIT
did not confer a distinct metabolic phenotype com-
pared with the scramble control in any of the

n
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Fig. 6. Functional analysis of UGDH in EMT. (A) The Kaplan-Meier plot of UGDH in basal breast cancer patients was downloaded from
kmplot.com. (B, C) Cell proliferation slowed down with the siRNA knock-down of UGDH in both nontumorigenic D492M (B) and tumorigenic
DA492HER2 (C). n equals 4, and three spots were chosen for each replicate during the imaging process. (D, E) Cell invasion decreased with
UGDH knock-down in both nontumorigenic D492M (D) and tumorigenic DA92HER2 (E). n equals 3, and 10 spots were chosen for each
replicate during the cell counting process. (F, G) One of the main EMT transcription factors SNAI1 was downregulated after the siRNA
knock-down of UGDH in both nontumorigenic D492M (n =7) (F) and tumorigenic DAS2HER2 (n = 4) (G). Student’s ttest, **P < 0.01;
**++P < 0.001. The error bars indicate standard deviation. SNAI1, Snail family transcriptional repressor 1. UGDH, UDP-glucose 6-
dehydrogenase.

mesenchymal cell lines (Fig. 7B). An increasing trend To better evaluate the systemic changes of UGDH
of UDP-Glc was observed in all the mesenchymal cell on metabolism, we carried out an untargeted metabo-
lines with all the siUGDH treatments, although non- lomics analysis. Knocking down UGDII significantly

significant for one of the siRNAs (Fig. 7C). UDP- decreased the intracellular glycerophosphocholine
GlcA decreased in all the mesenchymal cell lines in all (GPC) level and increased acetylaspartate (NAA) in
the siUGDH treatments, although nonsignificantly all the mesenchymal cell lines (Fig. 7E.F), which was
with one siRNA in D492M (Fig. 7D). confirmed in the aggressive D492HER2 and MDA-
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Fig. 7. Metabolomic changes after siRNA knock-down of UGDH in the mesenchymal cell lines. (A, B) Metabolomic clustering of the
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MB-231 cell lines (Fig. STA-D). To investigate
whether GPC and NAA were associated with the
UGDH level and differently expressed regardless of
tumorigenicity, we tested the GPC and NAA levels in
the epithelial D492, nontumorigenic mesenchymal
D492M and tumorigenic mesenchymal D492HER2
cells. GPC was higher in both D492M and
D492HER2 compared with D492 (Fig. 7G). We fur-
ther looked into the connection between GPC and the
mesenchymal state based on published data sets in the
literature [62,63] but did not observe any significant
correlation (Fig. STE and Table S5). siRNA-mediated
knock-down of UGDIT did not yield significant and
consistent changes to choline and phosphocholine
(Fig. 87F.G).

Glycerophosphocholine is part of the choline syn-
thetic pathway from phosphatidylcholine (PtdCho),
and NAA is closely associated with acetyl-CoA and
central carbon metabolism. To query how changes to
UDP-GlcA might relate to GPC and NAA processing
via changes in metabolic flux, we performed in silico
knock-down of UGDII using tailored genome-scale
metabolic models of D492 [23.25]. Changes to meta-
bolic flux were observed within keratan metabolism,
hyaluronan processing, pentose phosphate pathway
and the central carbon metabolic pathways (Table S6).
Negligible changes were, however, observed to GPC
production and consumption.

3.5. PDGFRB signalling regulates UGDH
potentially via NFkB-p65

We next investigated the upstream regulation of
UGDH by analysing the secretome of the D492 model
[64]. IGF, TGF-p and PDGFD signalling regulators
were highly presented in the culture medium of
D492M  cells  (Fig. 8A). PDGFRB was highly
expressed in the nontumorigenic D492M (Fig. 8B) and
the tumorigenic D492HER2 mesenchymal cell lines
(Fig. S8A) [65], and PDGFD was secreted by D492M
(Fig. 8C). We thus focused on the role of PDGF

0. Wang et al_

signalling in UGDH regulation. In addition, the motif
enrichment analysis of the phosphorylation sites within
the phosphoproteomic data (Table 87) revealed poten-
tially altered kinases in the D492 EMT model, includ-
ing the downstream target of the PDGF signalling
PKC kinase (Fig. 8D). siRNA-mediated knock-down
of PDGFRB decreased both the PDGFR signalling
downstream regulator RELA (NFkB-p65) and UGDH
in D492M (Fig. 8E-G) and D492HER2 (Fig. S8B-D).
We further investigated the impact of RELA on
UGDH and found that siRNA-mediated knock-down
of RELA decreased the UGDH RNA level in D492M
(Fig. 8H.I and TFig. SRE,F). We observed the same
effect of RELA knock-down on UGDH in
D492HER2 with only one siRNA (Fig. S8G-J).

4. Discussion

Herein we set out to determine common metabolic
changes in cell models used to study EMT in breast
epithelium. We chose the D492, HMLE and PMC42
EMT cell models on account of the spontaneous EMT
induction approaches and the nontumorigenic proper-
ties of these cell lines to ensure the intrinsic character-
istics and plasticity of EMT (Fig. 1). First, we
validated and compared the EMT cell models on the
proteomic level (Fig. 2A B). Cell lines clustered based
on their origin instead of their epithelial or mesenchy-
mal characteristics, indicating that the spontaneous
epithelial-mesenchymal switches during EMT/MET
are subtle compared with the imprinted intrinsic
genetic differences among these cell models.

VIM, LGALSI, SERPINEL, PKP3 and the CDHI-
CDH2 switch were consistently altered in all the EMT
models (Fig. 2C-H) and have all been related to EMT
in different cancer types [4.60.66-72]. Vimentin, a type
IIT intermediate filament and well-known EMT mar-
ker, shapes the cell structure and modifies cell move-
ments and cell adhesion [73]. SERPINEI, a key player
in endothelial homeostasis, is highly upregulated in
EMT. However, the function of SERPINE 1 in EMT

Fig. 8. PDGFRB regulates UGDH via RELA (NFKB-pBB) in D492M. (A) Top differently secreted growth factors from the secretome of the
D492 EMT model were reported |permutation-based FOR < 0.05). (B} PDGFRB was highly expressed in mesenchymal cells than epithelial
cells in the D492 model on the protein level based on the RPPA analysis (n=3) [65]. (C) PDGFD protein was highly secreted in
maesenchymal cells than epithelial cells in the D492 model (n = 3). (D} Motif enrichment of the phospho-proteome in the D492 EMT model
suggested that PKC kinase activity, among others, was highly enriched in EMT. Enrichment factors = 2; motif enrichment terms were
ranked based on the —log10{Pvalug). (E} The knock-down efficiency of PDGFARE with siRNA in the DA92M cell line was around 80% (n = 7).
{F} RELA (MFkB-p65} was downregulated after the siRNA knock-down of PDGFAB in D492M (n = 5). (G} UGDH was downregulated after
the siRNA knock-down of PDGFREB in D492M (n = 7). (H) The knock-down efficiency of RELA with the first siRNA in D492M was about
80% (m = 6). () UGDH was downregulated after the siRNA knock-down of RELA in DA92M with the first siRNA (n = 6). Student’s ttest,
**P < 0.01, ***P < 0.001. The error bars indicate standard deviation. PDGFRE, platelet-derived growth factor receptor beta; RELA (NFxB
p65), nuclear factor NF-kappa-B p65 subunit; UGDH, UDP-glucose 6-dehydrogenase.
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is poorly understood. The possible role of SERPINE]
in EMT is to affect the function of urokinase-type
plasminogen activator receptor (uPAR) to regulate
extracellular matrix degradation [72]. LGALSI is a
carbohydrate-binding protein. One study shows that
upregulation of LGALS! decreases CDHI and
increases SNAIl [67]. PKP3 is an epithelial marker
and is under the control of the EMT transcriptional
regulator ZEBI [66,68]. All these EMT markers were
consistently altered in the three EMT models
(Fig. 2C-F). However, inconsistencies in EMT mark-
ers were also observed indicative of their different roles
in EMT with respect to cell type. The PMC42 model
was different from the other EMT cell models
(Fig. 82), potentially reflecting the cell heterogeneity
and partially expressed mesenchymal marker CDH2 in
the epithelial cells (Fig. 2H) [74]. The consistently
altered EMT markers were also confirmed in the
tumorigenic breast mesenchymal cell line D492HER2
(Fig. 3F and Table 1), indicating that these makers are
not only crucial for EMT but also potentially involved
in tumorigenicity and malignancy, even though they
are not critical for tumour initiation. Moreover, many
of the consistently altered proteins identified in this
study remain unexplored in the context of EMT
(Table 1).

Our findings confirmed that changes to cellular mor-
phology, cell-cell communication and cell-extracellular
matrix interaction are among the main characteristics
of EMT (Fig. 4 and Fig. 54). Even though the pro-
teomes of the D492 cell lines were closer to HMLE
(Fig. 2B), they shared the least similarity in the altered
pathways post-EMT. The changed translational activi-
ties in HMLE and PMC42 and the altered responses
to stress and signalling regulation in D492 suggest that
in HMLE and PMC42, the epithelial or mesenchymal
switch may largely be mediated by altered expression
of proteins involved, whereas in D492, post-
translational control of existing proteins may play a
more important role. This may also reflect the more
stem-like properties of the D492 epithelial cells that
confer cell flexibility. Qur findings indicate that distinct
and dominant cell properties (e.g. stem cell properties)
outweigh similar genetic backgrounds for EMT induc-
tion, while cells with disparate genetic backgrounds
can rely on similar machineries to induce EMT.

Recently, a growing number of studies have focused
on UGDH in cancer, and the roles of UGDH in
tumour growth, metastasis and patient survival have
been well documented [27,32,34-37]. Additionally,
UGDH has been connected to EMT [27,28,32,34,75].
Arnold et al. [27] reported that UGDH was highly
expressed in mesenchymal cells and mesenchymal-like

0. Wang et al.

breast cancers and connected UDP-GlcA (the enzy-
matic product of UGDH) to extracellular matrix
remodelling and mesenchymal-like properties. Further-
more, UGDH regulates SNATIL, a well-known EMT
transcription factor, via UDP-Gle (the enzymatic sub-
strate of UGDH) [28]. We confirmed the upregulation
of UGDH in both nontumorigenic and tumorigenic
mesenchymal cell lines, suggesting UGDH is associ-
ated with the mesenchymal feature in tumorigenic cell
lines (Fig. 5F). Interestingly, even though the high
expression of UGDH was associated with worse sur-
vival in basal breast cancer patients (Fig. 6A) and
decreased UGDH  jeopardized cell proliferation
(Fig. 6B.C) and invasion (Fig. 6D.E and Fig. S6A-C),
all the mesenchymal cells in this study possess upregu-
lated UGDH and are nontumorigenic. Thus, elevated
UGDH expression is likely not a trigger for tumour
initiation, but tumorigenic cells may rely on UGDH to
facilitate tumorigenicity and malignancy. UGDH may
induce resistance to chemotherapy via drug elimina-
tion. This was supported by a recent study demon-
strating that high levels of UGDH are correlated with
worse prognosis in  triple-negative breast cancer
patients receiving chemotherapy, likely by promoting
UDP-GlcA-mediated detoxification and elimination of
epirubicin [76]. The effect of UGDH on SNATI sup-
ports that UGDH has a regulatory role in EMT and
that its function may exceed its catalytic role, perhaps
via nonconventional signalling regulatory effects such
as glycosylation (Fig. 6F,G and Fig. S6D.E).

The D492 EMT model metabolome was more simi-
lar to HMLE than PMC42 (Fig. TAB), consistent
with the proteomic analysis (Fig. 2A.B). In agreement
with the literature, knock-down of UGDII increased
UDP-Gle and decreased UDP-GlcA (Fig. 7C.D), both
of which are important metabolites with wide impact
on cells [27,28]. The most prominently altered metabo-
lite was, however, GPC (Fig. 7E). Increased GPC in
tumours indicates changes to choline metabolism,
which has emerged as a hallmark of cancer progres-
sion [77]. GPC is negatively correlated with patient
survival [78] and is high in basal-like breast cancer
xenograft and oestrogen receptor-negative breast can-
cer patients [79,80]. Reduced GPC levels after
chemotherapies are associated with better survival in
breast cancer patients [78]. D492 and D492M are
basal-like breast cell lines, while D492HER2, deemed
as HER2-positive breast cell line, is more closely asso-
ciated with the aggressive claudin low than other
breast cancer types [26.81]. Claudin low is not a dis-
tinct intrinsic breast tumour subtype but may permeate
various breast cancer types including HER2-positive
[82]. The higher levels of GPC along with UGDH in
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basal-like mesenchymal D492M and claudin-low
D492HER?2 are in congruence with the clinical obser-
vations. GPC may be involved in EMT, but the con-
nection between GPC and EMT in cancer is unclear
[83.84]. Li and colleagues detected GPC in 928 cell
lines and performed different types of metabolite-gene
association analyses. They reported various genes asso-
ciated with GPC where the EMT master regulator
TWISTI was one of the top hits [62]. The insignificant
correlation between GPC and mesenchymal cells
(Fig. STE) suggests that the increased GPC levels
observed in the D492 mesenchymal cells are results of
one or several regulators independent of mesenchymal
traits. Our results support that GPC in part is regu-
lated by the mesenchymal metabolic enzyme UGDH,
but the molecular mechanisms underlying this warrant
further investigation. fn silico knock-down of UGDIT
in the genome-scale metabolic models revealed several
metabolic changes (Table 86) primarily on account of
rerouting of glucose flux away from UDP-GlcA for-
mation and into glycolysis and associated pathways
(e.g. PPP and TCA), which may be partially responsi-
ble for the increased NAA (Fig. 7F). It, however,
imparted no changes in GPC. implying that the
changes to metabolic fluxes encircling GPC due to a
mass-action effect of UGDH are likely secondary to
changes that arise through altered glycosylation. Cell
osmotic pressure balance is vital for normal cell func-
tions and cell survival. GPC is a well-known intracellu-
lar osmotic regulator, and proteoglycans serve as
extracellular osmolytes [85]. The decreased intracellular
GPC may thus counterbalance the decreased extracel-
lular osmotic pressure induced by the reduced proteo-
glycans caused by the knock-down of UGDIT.
Recently, studies have shown that UGDH regulates
signalling factors and lipid metabolic genes, such as
SNAITI-, SIP-1-, ERK/MAPK-, SIX1- and PPARy-
targeted genes [27.28,32.34]. PPARy is a nuclear tran-
scription factor regulating genes linked to lipid metabo-
lism [86.87] that interacts with choline/PtdCho
metabolism [88]. UGDH has been proposed to inhibit
PPAR signalling and affect lipid metabolism [27]. Con-
sistent with this, we observed a negative association
between UGDH expression and PPARy signalling
(Fig. STH), suggesting the UGDII knock-down
decreases intracellular GPC level via PPARy. More-
over, phospholipase A2 group XV (PLA2G15), which
belongs to Cytosolic phospholipase A2 (cPLA2), is an
enzyme catalysing the hydrolysis of phospholipids,
potentially involved in the formation of GPC from
PtdCho, and is under the control of ERK signalling
[89.90]. Knock-down of UGDIT has been reported to
downregulate the phosphorylation of ERK (pERK) in

UGDH affects GPC and NAA under PDGFRE regulation

highly invasive ovarian cancer cells [32]. We observed
that both GPC and PLA2G 15 were higher in the mes-
enchymal cell lines D492M and D492HER2 (Fig. 7G
and Fig. S7T), implying UGDH may regulate GPC via
pERK-PLA2GI15. Taken together, UGDH may indi-
rectly affect GPC via signalling regulations and/or lipid
metabolism to retain the osmotic balance across the cell
membrane, although further investigations are needed.
Furthermore, the absence of UGDH in the list of genes
associated with GPC reported in the literature indicates
UGDH may not be a dominant GPC regulator [62].

Slit2, SP1, TGF-B, hypoxia, p38™A"™  LMP2A and
PI3K/Akt affect and/or regulate UGDH expression,
which highlights that UGDH is under complex regula-
tion network control [29-31,33]. These regulators are
potentially mediated by PDGF signalling that, along
with the downstream transcription factor NFkB, is dys-
regulated in cancer progression and EMT [7.91.92]
Tam et al. [7] reported a switch from EGFR to
PDGFR signalling in cancer stem cell formation and
EMT. The higher expression of PDGFRB and secretion
of PDGFD in D492M compared with D492 suggest
PDGFRB signalling is upregulated in mesenchymal
cells (Fig. 8A-C and Fig. S8A) supported by the
increased phospholipase C, PI3K/Akt and PKCa sig-
nalling (Fig. STH and Fig. 8D) since these are well-
known downstream targets of PDGFR [7.93]. This is
consistent with PDGFD-PDGFRB signal regulation of
EMT [94.95]. NFkB-p65 is a downstream regulator of
PDGFR signalling [92.96]. Downregulating either
PDGFREB or NFEkB-p65 decreased UGDH expression
on the RNA level in both D492M and D492HER2.
However, the impacts of PDGFRB and NFkB-p65 on
UGDH were dampened in D492HER2 compared with
D492M (Fig. 8E-T and Fig. S8B-J). We have previ-
ously noticed that D492HER?2 is a less complete mes-
enchymal cell line than D492M, suggesting that the
regulations of PDGFRB and NFkB-p65 on UGDIH are
more dominant in complete mesenchymal cells [26]. Tt
thus appears that UGDH is part of an interactive sig-
nalling and metabolic network in which PDGFRB dif-
ferently regulates UGDH via NFkB-p65 depending on
specific cell types.

5. Conclusions

In conclusion, we used three breast EMT cell models
to study proteomic changes in EMT, focusing on
metabolic reprogramming. We further studied the
downstream functions of the metabolic enzyme
UGDH in cancer progression and metabolism, and
finally, we explored the upstream signalling regulating
UGDH (Fig. 9). Several proteins were found to be
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Fig. 9. Summary of the study. This figure ilustrates the main metabolic pathways and findings involved in this study. UGDH catalyses UDP.
glucose into UDP-glucuronic acid, an indispensable unit for glycosaminoglycans, proteoglycans and extracellular matrix. In this study, UGDH
was found to be highly expressed in the mesenchymal cells and affect cancer patient survival, mesenchymal cell proliferation and invasion
and the EMT transeription factor SNAIT, and it was under the control of the PDGFRB-NFxB pathway. In addition, the knock-down of UGDH
with siRNAs significantly decreased the intracellular GPC lewels and increased the acetylaspartate (NAA) levels in all the mesenchymal cell
lines. NAA is closely linked to the central carbon metabolism and potentially affected by the mass-action effects of UGDH knock-down. GPC
is an intracellular osmolyte and part of the choline metabolism. Knock-down of UGDH hindered the formation of protecglycans and further
decreased the extracellular osmotic pressure, which could be counteracted by the reduced intracellular osmotic pressure induced by GPC.
Based on the literature, we hypothesized that to ease the osmotic stress, knock-down of UGDH affected PPARA-lipid metabolism andfor
pERK-PLA2G15 to regulate GPC. However, further studies are needed to address this question. UGDH, UDP-glucose G-dehydrogenase;
SNAI, Snail family transcriptional repressor 1, PDGFRB, platelet-derived growth factor receptor beta; RELA (NFxB-p65), nuclear factor NF
kappa-B p65 subunit; PPARy, peroxisome proliferator-activated receptor y, pERE, phosphorylated extracellular signal-regulated kinase;
PLA2G15, phospholipase A2 group XV.

involved in the EMT programme and likely to partici-

pate in normal human breast gland development, that
is SERPINEI, RPL26L1, PLOD2, UGDH, LGALSI,
VIM, TSTA3, SORD, FDFTI, ATP2A2, MTCH2,
PKP3 and JUP, within which, UGDH, TSTA3, SORD
and FDFTI were metabolic enzymes with UGDH pos-
sessing the biggest difference between the epithelial
and mesenchymal cell lines. UGDH regulated SNAII,
affected cell proliferation and invasion and is associ-
ated with patient survival potentially via regulation of
the intracellular GPC level. PDGFRB was involved in
the regulation of UGDH in mesenchymal cells, likely
through NFkB-p63. Further studies on understanding
the roles of UGDH on GPC and its relationship with
EMT could be valuable in developing novel therapeu-
tics against breast cancer.
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of the article.

Fig. S1. Study workflow and the phenotypes of the cell
lines. (A) Workflow of the proteomic analysis of the
three breast EMT cell models and metabolomics anal-
ysis after siIRNA knock-down of the metabolic target
UGDIT in all the mesenchymal cell lines. Three breast
EMT cell models (epithelial and mesenchymal cell line
pairs) were used in this study, D492&D492M,
HMLE&HMLEM, and PMC42LA&PMC42ET. The
proteomic strategy was label-free quantification (LFQ)
with each cell line in triplicates. The metabolomic
strategy was untargeted metabolomics in negative, pos-
itive, and basic modes with six replicates. The
upstream signaling regulation and downstream cellular
functions of UGDH were also investigated in this
study. The tumorigenic breast mesenchymal cell line
D492HER2 and malignant MDA-MB-231 were
employed further to define the functions of UGDH in
tumor malignancy. (B) Photos of all the cell lines in
the three breast EMT cell models used in this study
were shown. Different cell lines were cultured in their
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routine maintaining medium respectively, and the pho-
tos were taken under phase contrast with objectives 5x
or 20x.

Fig. 82. Inconsistent EMT markers. A list of known
EMT markers (based on the public EMT database
dbEMT) was inconsistently altered among the three
EMT models. Student’s T-test, *: P < 0.05; ** p <
0.01; ***: P < 0.001; n = 3. CD44, CD44 antigen;
LMNBI, Lamin-Bl; MSN, Moesin; FLNA, Filamin-
A; TLNI, Talin-1; FSCN1, Fascin; EGFR, Epidermal
growth factor receptor; S100A2, S100 calcium binding
protein A2; NDRG1, N-myc downstream regulated 1.

Fig. S3. Accuracy and validity of the proteomic analy-
sis. The accuracy and validity of the proteomic analy-
sis in this study were confirmed by comparing the
current data to our previously generated proteomic
data for the D492 EMT model [26]. The correlation
between these two datasets was 0.936. The high corre-
lation coefficient (Pearson correlation, 0.936) of the
datasets ensures good accuracy and validity of the pro-
teomic analysis in this study. It laid the foundation for
valid conclusions deducted from this study.

Fig. S4. Functional annotation of the GO terms (CC
and MF) for the three EMT models. Functional anno-
tation of the GO terms (CC and MF) was conducted
on the DAVID (DAVID Bioinformatics Resources
6.8) platform for each EMT model. Data used for the
GO annotation analysis (Supplementary Table 3) were
proteins significantly altered in each EMT model (Per-
mutation-based FDR < 0.05). Default settings were
used for the analysis. The GO terms were listed
according to the -logl0 p value in descending order.
The numbers of genes in each GO term were also plot-
ted as dots/line plots. CC: Cellular Component; MF:
Molecular Function.

Fig. S5. Knock-down efficiency of UGDIT with two
siRNAs. (A-D) The knock-down efficiency of UGDIT
with two siRNAs compared to the scramble control
was around 80 % in D492M (n = 7 for the first
siRNA: n = 9 for the second siRNA) (A-B) and 60 %
in D492HER2 (n = 5) (C-D). (E) The knock-down effi-
ciency of UGDIT with two siRNAs in the metabolo-
mics experiments for D492M, HMELM, and
PMC42ET was 90 % (n = 5). KD: Knock-down. Stu-
dent’s T-test, ***: P < 0.001. UGDH, UDP-glucose 6-
dehydrogenase.

Fig. S6. Functional analysis of UGDH in EMT. (A)
Photos of the D492M and D492HER?2 cells following
knock-down of UGDIT via two siRNAs in the invasion
assay. Cells were stained with DAPI and observed
under the objective 10x. (B-C) Cell invasion decreased
with the second siRNA knock-down of UGDIT in both
non-tumorigenic  D492M  (B) and tumorigenic
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D492HER?2 (C). n equals 3, and ten spots were chosen
for each replicate during the cell counting process. (D-
E) One of the main EMT transcription factors SNATL
was downregulated following the second siRNA
knock-down of UGDIT in both non-tumorigenic
D492M (n = 5) (D) and tumorigenic D492HER2 (n = 4)
(E). (F-H) The Kaplan-Meier plots of FDFTI, SORD,
and TSTA3J in basal breast cancer patients were down-
loaded from kmplotcom. Student’s T-test, **: P < 0.01;
kP < 0,001, UGDH, UDP-glucose 6-dehydrogenase;
SNAITI, Snail Family Transcriptional Repressor 1]
FDFTI, Squalene synthase; SORD, Sorbitol dehydroge-
nase; TSTA3, GDP-L-fucose synthase.

Fig. S7. GPC and NAA were altered with the
siUGDH treatment in D492HER2 and MDA-MB-231.
(A-D) The glycerophosphocholine (GPC) level was
decreased, and the acetylaspartate (NAA) level was
increased after the siUGDH treatment in the tumori-
genic D492HER2 (n = 3) and malignant MDA-MB-
231 (n = 6) cell lines. (E) There were no significant dif-
ferences to the GPC levels between mesenchymal cells
and non-mesenchymal cells based on published data-
sets in literature [62, 63] (Supplementary Table 5).
(F-G) The expression levels of choline (F) and phos-
phocholine (G) with UGDIT knock-down in the three
EMT cell models. No significant and consistent
changes were observed for both metabolites in all the
cell lines (n = 5). (H) UGDH has been reported to
downregulate PPARy [27]. To test if there was a nega-
tive correlation between UGDH and PPAR signaling,
we performed a phosphoproteomic analysis on the
D492 EMT cell model (Supplementary Table 7) and
noticed that the PPAR signaling was downregulated in
the mesenchymal cells where UGDH was highly
expressed. The TPA pathways were listed based on the
—loglO(p wvalue), and the z-scores for the pathways
were represented by the dots/line plot. Red: higher in
the mesenchymal D492M; blue: higher in the epithelial
D492, (I) The enzyme PLA2GIS potentially involved
in the hydrolysis of phosphatidylcholine (PtdCho) into
GPC was higher in both D492M and D492HER2.
UGDH has been reported to regulate the phosphoryla-
tion of ERK (pERK) [32]. ¢cPLA2 is responsible for
GPC synthesis from PtdCho in choline metabolism

UGDH affects GPC and NAA under PDGFRE regulation

and is under the control of ERK/MAPK [89, 90]. We
also observed that PLA2GIS5 was highly expressed in
D492M and D492HER2 compared to D492 (1), sug-
gesting the knock-down of UGDIT may downregulate
GPC via pERK-PLA2G15 (n = 3). Student’s T-test, *:
P =005 **: P <0.01; *** P < 0.00]. n.s: not signifi-
cant. UGDH, UDP-glucose  6-dehydrogenase:
PLA2GIS, Phospholipase A2 group XV.
Fig. S8 PDGFRB regulates UGDH wvia RELA
(NFkB-p63). (A) PDGFRB was highly expressed in
the tumorigenic mesenchymal cell line D492HER2
based on the RPPA analysis (n = 3) [65]. (B) The
knock-down efficiency of PDGFRE with siRNA in the
D492HER2 cell line was about 90 % (n = 6). (C)
RELA (NFkB-p65) was downregulated after the
siRNA  knock-down of PDGFRB in D492HER2
(n = 6). (D) UGDH was downregulated after the
siRNA knock-down of PDGFRE in D492HER2 (n = 6).
(E) The knock-down efficiency of RELA with the second
sIRNA in D492M was around 70 % (n = 6). (F) UGDH
was downregulated after the knock-down of RELA in
D492M with the second siRNA (n = 6). (G) The knock-
down efficiency of RELA with the first siRNA in
D492HER?2 was around 90 % (n = 6). (H) No significant
change in UGDH was observed after the knock-down of
RELA with the first siRNA in D492ZHER2 (n = 6).
(I) The knock-down efficiency of RELA with the second
siIRNA in the D492HER2 cell line was about %0 %
(n = 6). (J) UGDH was downregulated after the knock-
down of RELA in D492HER2 with the second siRNA
(n = 6). Student’s T-test, *: P < (.05; **: P < (.01; ***:
P < 000l. UGDH, UDP-glucose 6-dehydrogenase;
PDGFRB, Platelet-derived growth factor receptor beta;
RELA (NFkB-p65), Nuclear factor NF-kappa-B p65
subunit.

Table S1. The internal standard mix used in the meta-
bolomics analysis.

Table S2. A list of primers used in this study.

Table S3. Perseus output data.

Table S4. Raw data of proteomics.

Table S5. Publicly available data on the GPC levels of
mesenchymal cells.

Table S6. In silico knockdown of UGDH in GEMs.
Table S7. Data of phosphoproteomics.
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* GFPT2 is upregulated following EMT.
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* GFPT2 is regulated by insulin and EGF.

2022, Mol Cell Proteomics 21(2), 100185

© 2021 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and
Molecular Biology. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

https://doi.org/10.1016/j.mcpro.2021.100185

209



MCP RESEARCH

Glutamine-Fructose-6-Phosphate
Transaminase 2 (GFPT2) Is Upregulated in
Breast Epithelial-Mesenchymal Transition and
Responds to Oxidative Stress

Qiong Wang', Sigurdur Trausti Karvelsson', Aristotelis Kotronoulas’,

Thorarinn Gudjonsson’, Skarphedinn Halldorsson'

Breast cancer cells that have undergone partial epithelial-
mesenchymal transition (EMT) are believed to be more
invasive than cells that have completed EMT. To study
metabolic reprogramming in different mesenchymal
states, we analyzed protein expression following EMT in
the breast epithelial cell model D492 with single-shot LFQ
supported by a SILAC proteomics approach. The D492
EMT cell model contains three cell lines: the epithelial
D492 cells, the mesenchymal D492M cells, and a partial
mesenchymal, tumorigenic variant of D492 that over-
expresses the oncogene HER2. The analysis classified the
D492 and D492M cells as basal-like and D492HER2 as
claudin-low. Comparative analysis of D492 and D492M to
tumorigenic D492HER2 differentiated metabolic markers
of migration from those of invasion. Glutamine-fructose-6-
phosphate transaminase 2 (GFPT2) was one of the top
dysregulated enzymes in D492HER2. Gene expression
analysis of the cancer genome atlas showed that GFPT2
expression was a characteristic of claudin-low breast
cancer. siRNA-mediated knockdown of GFPT2 influenced
the EMT marker vimentin and both cell growth and inva-
sion in vitro and was accompanied by lowered metabolic
flux through the hexosamine biosynthesis pathway (HBP).
Knockdown of GFPTZ2 decreased cystathionine and sulfi-
de:quinone oxidoreductase (SQOR) in the transsulfuration
pathway that regulates HzS production and mitochondrial
homeostasis. Moreover, GFPT2 was within the regulation
network of insulin and EGF, and its expression was regu-
lated by reduced glutathione (GSH) and suppressed by the
oxidative stress regulator GSK3-fi. Our results demon-
strate that GFPT2 controls growth and invasion in the
D492 EMT model, is a marker for oxidative stress, and
associated with poor prognosis in claudin-low breast
cancer.

, and Ottar Rolfsson'”

Breast cancer is the most prevalent cancer in women
worldwide (1). Within 3 years after the initial diagnosis, around
10 to 15% of patients with breast cancer develop distant
metastasis (2). Epithelia-mesenchymal transition (EMT) is a
natural process during embryonic development that tumor
cells hijack to gain migration and invasive properties (3, 4).
EMT is characterized by a broad spectrum of epithelial-
mesenchymal states that ultimately affect cancer malignancy
(2, 6).

Multiple changes to metabolism accompany breast cancer.
These include changes to enzymes in glycolysis (7), the
tricarboxylic acid (TCA) cycle (8, 9), and fatty acid synthesis
(10). More recently, changes in serine and proline biosynthesis
(8, 11) and nucleotide metabolism (12) have been described.
However, definitive metabolic phenotypes that differentiate
between noninvasive complete EMT and partial EMT with
invasive potentials remain elusive (13). Understanding how
regulation of enzyme activity on the protein level affects
invasiveness may improve breast cancer personalized thera-
peutic interventions.

In this study, we set out to define changes in metabolic
enzymes that accompany EMT in the EMT cell model D492
(14, 15) reviewed in Briem et al., 2019 (16). The D492 breast
EMT cell model contains three isogenic phenotypes: the
epithelial D492 cells, the mesenchymal D492M cells, and the
partial mesenchymal D492HER2 cells. D492 is a basal-like
human breast epithelial cell line derived from normal tissue.
The D492 cell line expresses both luminal (K8, K19) and
myoepithelial (K5/6, K14) cytokeratins. It has epithelial stem
cell properties and can differentiate into luminal and myoepi-
thelial cells (15, 17). EMT in cultured breast epithelial cells can
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be triggered with growth factors such as TGF-p and EGF
(14, 18, 19). It can also be induced via overexpression of
certain EMT markers such as TWIST (20). D492M is a
mesenchymal cell line spontanecusly generated by 3D
coculture of D492 with human endothelial cells in the absence
of any dominant EMT inducers (15). Although the D492 and
D492M cells are premalignant and not tumorigenic, the
D492 cells gain tumorigenicity when HER2 is overexpressed.
The D492HER2 cells have a partial mesenchymal phenotype,
indicating that cells have gone through EMT (14). The D492
EMT cell model thus comprises three cell lines allowing
different states of EMT to be studied in vitro. We hypothesized
that comparative proteomics analysis of these three cell lines
would highlight crucial metabolic enzymes to EMT in breast
epithelium and discriminate metabolic enzymes that impart
invasion properties.

We have previously defined changes to metabolism in the
D492 EMT model within genome-scale metabolic network
models. Glycan metabolism, amongst others, was altered in
EMT (9). These models were based on changes to gene
expression and extracellular metabolomic measurements. In
this study, we analyzed the metabolic changes in EMT on the
protein level, emphasizing mesenchymal cells that possess
invasive potentials. We first positioned the D492 EMT cell
model within the breast cancer cell model landscape based
upon the LFQ and SILAC proteomics data. We then identified
the hexosamine biosynthesis pathway (HBP) rate-limiting
enzyme, glutamine-fructose-6-phosphate transaminase 2
(GFPT2), as a potential target in claudin-low breast cancer
progression.

Enzymes involved in glycan processing were owver-
represented in both mesenchymal proteomes, and the HBP
rate-limiting enzyme GFPT2 was upregulated in D492M and
further still in the D492HER2 mesenchymal cells as
compared with D492. Metabolomics analysis confirmed
changes to HBP flux. We then compared GFPT2 expression
across clinical breast cancer subtypes and breast cancer
cell lines and knocked down GFPT2 to assess its effects
on the EMT program, cell growth, and cell invasion in the
D492 EMT model. These analyses suggest that GFPT2 is a
tumor promoter in claudin-low breast cancer. The role of
GFPT2 in mediating glycan synthesis has been reported ina
series of studies that show that GFPT2 mediates response
via glycosylation of master regulators of metabolism,
including NF-«xB and p-catenin (21, 22). The function of
GFPT2 in glutaminolysis is less explored, although its
importance has been inferred from its enzymatic activity. In
light of recent results that show that altered glutaminolysis
in the D492 EMT model influences their ability to synthesize
glutathione from glutamine-derived glutamate, and that this
influences their susceptibility to cancer therapeutics (23),
we explored the role of GFPT2 in maintaining redox balance
in EMT.

EXPERIMENTAL PROCEDURES
Cell Culture

D492, D492M, D492HER2, and D492DEE were generated in-house
(14, 15, 17) and cultured in serum-free H14 medium. The MDA-MB-
231 cell line was cultured in RPMI 1640 (Thermeo, 52400-025) sup-
plemented with 10% Fetal Bovine Serum (FBS, Gibco 10270106) and
100 IU penicillin and 0.1 mg/ml streptomycin (Gibco, 15140122). Cells
were at 37 °C and 5% CO; for routine maintenance. The H14 medium
is Dulbecco's modified Eagle's medium — F12 (DMEM/F12 without
glutamine, Thermo, 21331020) supplemented with 250 ng/ml insulin
(Merck, 16634), 10 pg/ml transferin (Merck, T2252), 10 ng/ml EGF
(PeproTech, AF-100-15), 2.6 ng/ml Na-selenite (BD Biosciences,
354201), 10 '® M estradiol (Sigma, E2758), 1.4 x 10 © M hydrocorti-
sone (Sigma, H0888), 0.15 IU prolactin (PeproTech, 100-07), 100 IU
penicillin & 0.1 mg/ml streptomycin, and 2 mM glutamine (Thermo,
25030024). In the SILAC proteomic experiment, DMEM-F12 was
replaced by “DMEM:F-12 for SILAC™ (Thermo, 88370) with “light-,"
“medium-," or “heavy-labeled” arginine or lysine (Cambridge Isotope
Laboratories). In the *C labeling experiment, the base medium was
changed to “DMEM, no glucose, no glutamine, no phenol red”
(Thermo, A1443001), and ™C labeled 1,2-glucose, '*C labeled 1-
glutamine, or "C labeled 5-glutamine from Cambridge Isotope Lab-
oratories was added. Medium excluded penicillin and streptomycin for
the transient knockdown experiments according to instruction. In the
invasion assay, H14 was supplemented with 10% FBS. Cell cultures
were routinely checked for mycoplasma contamination.

Label-free Quantification (LFQ) Proteomics

Protein and Peptide Sample Preparation—Cells were cultured in
T75 flasks in triplicates (three flasks per cell ling), and the seeding
density was 600,000 cells per flask. Proteins were harvested at 90%
confluency, and 72 h after seeding, cells were washed twice with ice-
cold PBS and lysed by 450 pl lysis buffer containing 4% sodium
dodecyl sulfate (SDS, MP Biomedicals) in 100 mM Tris (Sigma). Flasks
were kept on ice for 10 min. The cell lysates were transferred to 1.5 ml
Eppendorf tubes. After five freeze (-80 "C)thaw (room temperature)
cycles, the sample was spun at 20,718g for 20 min at 4 °C. The
supemnatant was collected and aliquoted in new tubes and stored
at ~80 "C. Protein guantification was measured with BCA protein
assay (Pierce).

For Filter-Aided Sample Preparation (FASP), an equivalent of 300 pg
of proteins in 150 pl from each sample was reduced with 100 mM
dithiothreitol (DTT), and samples were then processed using FASP
protocol (24). Proteins on the filters were digested twice at 30 "C with
trypsin (enzyme-to-substrate ratio: 1:100 (w/w); 3 pg x 2), first over-
night and then for another 6 h in a final volume of 200 pl. The resulting
peptides were desalted using a C18 solid-phase extraction cariridge
(Empore, Agilent technologies). Peptides were resuspended in 50 pl
1% formic acid and quantified using pierce guantitative colorimetric
peptide assay (product 23275, Thermmo Scientific).

LC-MS/MS Analysis— Trypsin-digested peptides were separated
using an Ultimate 3000 RSLC (Thermo Scientific) nanoflow LC system.
In total, 130 ng of peptides was loaded with a constant flow of 5 pl/min
onto an Acclaim PepMap100 nanoViper C18 trap colurmn (100 pm
inner-diameter, length: 2 cm; Thermo Scientific). After trap enrichment,
peptides were eluted onto an EASY-Spray PepMap RSLC nanoViper,
C18, particle size: 2 pm, pore size: 100 A column (75 pm inner-
diameter, length: 50 cm; Thermo Scientific) with a linear gradient of
2 to 35% solvent B (80% acetonitrile with 0.08% formic acid, Solvent
A—10.1% formic acid) over 124 min with a constant flow of 300 nlfmin
and column temperature of 50 "C. The HPLC system was coupled to a
linear ion trap Orbitrap hybrid mass spectrometer (LTQ-Orbitrap Velos,
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Thermo Scientific) wia an EASY-Spray ion source (Thermo Scientific).
The spray voltage was set to 1.8 kV, and the temperature of the
heated capillary was set to 250 “C. Full-scan MS survey spectra (m/z
335-1800) in profile mode were acquired in the Orbitrap with a reso-
lution of 60,000 after accumulation of 1,000,000 ions. The 15 most
intense peptide ions from the preview scan in the Orbitrap were
fragmented by collision-induced dissociation (CID, normalized colli-
sion energy, 35%; activation Q, 0.250; and activation time, 10 ms) in
the LTQ after the accumulation of 5000 ions. Maximal filling times
were 1000 ms for the full scans and 150 ms for the MS/MS scans.
Precursor ion charge state screening was enabled, and all unassigned
charge states, as well as singly charged species, were rejected. The
lock mass option was enabled for survey scans to improve mass
accuracy (25). Data were acquired using the Xcalibur software.

Peptide and Profein Identification and Quantification—The raw
mass spectrometric data files were collated into a single quantitated
dataset using MaxQuant (version 1.5.2.8) (26) and the Andromeda
search engine software (27). Enzyme specificity was set to that of
trypsin, allowing for cleavage N-terminal to proline residues and be-
tween aspartic acid and proline residues. Other parameters used
were: (i) wvariable modifications—methionine oxidation, protein
N-acetylation, gin — pyro-glu, phospho (STY), deamidation (NQ); (i)
fixed modifications, cysteine carbamidomethylation; (i) database:
Uniprot-human-up5640 (release date of sequence database searched:
05.2017; number of entries: 20,201); (iv) LFQ: min ratio count, 2 (v) MS/
MS tolerance: FTMS- 10 ppm, [TMS- 0.6 Da; (vi) maximum peptide
length, 6; (vii) maximum missed cleavages, 2; (viil) maximum labeled
amino acids, 3; and (ix) false discovery rate (FDR), 1%. LFQ intensities
were reported individually for each sample and were given as a relative
protein quantitation across all samples. LFQ intensities were repre-
sented by a normalized intensity profile as described by Cox (28)
affording a matrix with number of samples and number of protein
groups as dimensions. The IBAQ quantification was camied out in
MaxQuant (version 1.5.2.8) for the same raw data obtained. The same
parameters as described above for the LFQ quantification were
applied for the iBAQ guantification except for the selection of the IBAQ
method for outputs.

Protein identification was defined as one or more identified peptides
observed in at least two out of three replicates in at least one cell line.
Protein gquantification was calculated when at least two out of three
replicates in at least one cell line had detectable intensities.

Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)
(Phospho)Proteomics

Protein and Peptide Sample Preparation, Fractionation, and
Enrichment—Protein Extraction. The cell lines D492M, D492, and
D492HER2 were labeled with “light,” “medium,” and “heavy” stable
isotope-labeled versions of arginine and lysine for SILAC analysis,
respectively. The SILAC labeling was not randomized among the cell
lines for the triplicates. Cells were first cultured in T25 flasks with
respective SILAC labels to get fully labeled cell populations for D492
{“medium® label, L-arginine-""Cy hydrochloride (Arg +6 Da), L-lysine-
4,4,5,5-d4 hydrochloride (Lys +4 Dal), D492M (“iight” label, L-arginine,
L-lysine), and D492HER2 (*heavy” label, L-arginine-""Cg, "*N, hydro-
chioride {Arg +10 Da), L-lysine-""Cg, "N, hydrochloride (Lys +8 Dal).
The D492 and D492M cells were cultured in the “medium-" and “light-
labeled” medium for six passages to ensure that the cells were close
to the fully labeled status. The D492HER2 cells were cultured in the
“heavy-labeled” medium for five passages. To harvest enough pro-
teins, cells were propagated in T75 flasks (Santa cruz), then cultured in
T182 flasks (Santa cruz) in triplicates, and the seeding density was
1,500,000 cells per flask, which was calculated to be consistent with
the LFQ proteomics experiment. The same procedures as described in
the LFQ protein preparation section were conducted for SILAC protein

extraction with lysis buffer supplemented with one tablet of Phos-
STOP phosphatase inhibitors (Roche) and one tablet of cOmplete mini
EDTA-free protease inhibitors (Roche).

Protein Digestion (FASP Processing of Samples). Proteins were
solubilized in 150 pl of Tris-HC1 (100 mM, pH 7.6) containing 4% SDS
and 100 mM DTT. Protein extracts were heated at 95 °C, and DNA
was shredded by sonication to reduce the viscosity of the lysates.
Samples were then centrifuged and processed using FASP protocol
(24) with some modifications. After lysates were passed through the
filters (Nanosep, 10k, PALL Life Sciences), proteins were alkylated in
100 pl iodoacetamide (IAA) at a final concentration of 50 mM for
15 min, filters were washed four times with 200 pl 8 M urea in Tris-HCI
(100 mM, pH 8), then twice with 200 pl 40 mM ammonium bicarbon-
ate. Proteins on the filters were then digested twice at 30 "C with
trypsin (enzyme-to-substrate ratio: 1:100 (w/w); 3.3 pg x 2), first
overnight and then for another 6 h in 200 pl, ammonium bicarbonate at
40 mM. The resulting tryptic peptides were desalted using a C18
solid-phase extraction cartridge (Empore, Agilent technologies).

Peptide Fractionation (High pH Reverse-phase Fractionation).
Samples equivalent to 4 mg were dissolved in 200 pl of 10 mM
ammonium formate buffer (pH 9.5), and peptides were fractionated
using high pH RP chromatography. A C18 column from Waters
(XBridge peptide BEH, pore size: 130 A, particle size: 3.5 pm, inner-
diameter: 4.6 x length: 150 mm, Ireland) with a guard column
(XBridge, C18, particle size: 3.5 pm, inner-diameter: 4.6 x length:
20 mm, Waters) was used on an Ultimate 3000 HPLC (Thermo-Sci-
entific). Buffers A and B used for fractionation consisted, respectively
of 10 mM ammonium formate in distilled, deionized water (Buffer A)
and 10 mM ammonium formate in 90% acetonitrile (Buffer B), and
both buffers were adjusted to pH 9.5 with ammonia. Fractions were
collected using a WPS-3000FC autosampler (Thermo-Scientific) at
1 min intervals. Column and guard column were equilibrated with 2%
buffer B for 20 min at a constant flow rate of 0.75 mlimin and a
constant temperature of 21 °C. Samples (185 pl) were loaded onto the
column at 0.75 ml/min, and the separation gradient started from 2%
buffer B to 5% B in 6 min, then from 5% B to 60% B within 55 min.
The column was washed for 7 min at 100% buffer B and equilibrated
at 2% buffer B for 20 min, as mentioned above. The fraction collection
started 1 min after injection and stopped after 80 min (total of 80
fractions, 750 pl each). Each peptide fraction was acidified immedi-
ately after elution from the column by adding 20 to 30 pl 10% formic
acid to each tube in the autosampler. The total number of fractions
concatenated was set to 10, with 96% of material from each fraction
was used for phospho-enrichment, and 4% was used for total pro-
teome analysis. The content of the fraction from each set was dried
prior to further analysis.

Phosphoproteomic Phospho-peptide Enrichment. Phospho-pep-
tide enrichment was performed using MagReSyn-TIMAC beads
(Resyn Biosciences) and Magnetic Rack (DynaMag-2, Life Technolo-
gies). Tryptic peptides to TIIMAC beads were used at 1:5 ratio (w/w).
Beads were first washed using Magnetic Rack with 80 pl, 1% NH,OH
or ammonia, followed with 200 pl acetonitrle. TIMAC beads were
equilibrated for 2 min with gentle mixing in 200 pl loading buffer
consisting of 1 M glycolytic acid 80% acetonitrile and 5% trifluoro-
acetic acid (TFA). Dried samples were resuspended in 100 pl loading
buffer, added to TIIMAC beads, and the mixture was incubated with
gentle mixing for 20 min at room temperature (RT). Samples were
then washed for 2 min successively with 200 pl loading buffer, three
times with 200 pl of 80% acetonitrile-1% TFA, and finally with 200 pl of
10% acetonitrile-0.2% TFA. Phospho-peptides were eluted from
beads three times using 80 pl of 1% ammonia, and gentle mixing with
pH immediately lowered to 2 using 10% formic acid. Eluted phospo-
peptides were pooled, dried in speed vac at RT, and stored at -80 *C
before LC-MS analysis.
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LC-MS/MS Analysis—Analysis of peptides for total proteome and
phospho-proteome was performed on a Velos-Pro orbitrap (Thermo
Scientific) mass spectrometer coupled with a Dionex Ultimate 3000
RS (Thermo Scientific). LC buffers were the following: buffer A (2%
acetonitrile and 0.1% formic acid in distilled, deionized water (v/v))
and buffer B (80% acetonitrile and 0.08% formic acid in distilled,
deionized water (w/iv). All fractions from both total proteome and
phospho-proteome were reconstituted in 50 pl of 1% formic acid. An
aliquot (10 pl of total proteome; 15 pl of phospho-proteome) of each
fraction was loaded at 10 pl/min onto a trap column (inner diameter:
100 pm x length: 2 cm, PepMap nanoViper C18 column, particle
size: 5 pm, pore size: 100 A, Thermo Scientific) equilibrated in buffer
A for 19 min. The trap column was washed for 6 min at the same flow
rate, and then the trap column was switched in-line with a Thermo
Scientific, resolving C18 column (inner diameter: 75 pm x length:
50 cm, PepMap RSLC C18 column, particle size: 2 pm, pore size:
100 A) kept at a constant temperature of 50 °C. Peptides were eluted
from the column at a constant flow rate of 300 nl/min with a linear
gradient from 5% buffer B to 35% buffer B within 124 min. The
column was then washed for 20 min at 98% buffer B and re-
equilibrated in 5% buffer B for 19 min. LTQ-Orbitap Velos Pro was
operated in data-dependent positive ionization mode (DDA). The
source voltage was set to 2.6 Kv, and the capillary temperature was
250 °C.

A scan cycle comprised MS1 scan (m/z range from 335 to 1800) in
the velos pro-orbitrap followed by 15 sequential dependent MS2
scans (the threshold value was set at 5000, and the minimum in-
jection time was set at 200 ms) in LTQ with CID. The resolution of the
Orbitrap Velos was set at 60,000 after the accumulation of 1,000,000
ions. Precursor ion charge state screening was enabled, with all
unassigned charge states and singly charged species rejected.
Multistage activation for neutral loss ions was activated only for
analysis of phospho-peptides. The lock mass option was enabled for
survey scans to improve mass accuracy. To ensure mass accuracy,
the mass spectrometer was calibrated on the first day that the runs
were performed.

Peptide and Protein Identification and Quantification—The Max-
Quant setup and parameters for SILAC were consistent with the
LFQ experiment described in the previous section with several
differences: (i) variable modifications, methionine oxidation, protein
N-acetylation, gin — pyro-glu, Phospho (STY); (i) database:
Uniprot-human_dec2017 (release date of sequence database
searched: 12.2017; number of entries: 20,244); (iii) “heavy” label:
R10K8, “medium” label: RE6K4. Peptide ratios were calculated
for each arginine- and/or lysine-containing peptide as the peak area
of labeled arginine/lysine divided by the peak area of nonlabeled
arginineflysine for each single-scan mass spectrum. Peptide
ratios for all arginine- and lysine-containing peptides sequenced
for each protein were averaged. Data were normalized using
1/median ratio value for each identified protein group per
labeled sample. Phospho-peptides were normalized using the
nonphospho protein 1/median values to correct for mixing errors
and compared against the individual nonphospho protein ratio itself
to correct for protein regulation interactions. Different parameters
used in the iBAQ quantification were: (i) variable modifications—
methionine oxidation, protein N-acetylation, Phospho (STY), dea-
midation (NQ); (i) database: Homo_ sapiens.GRCh38.pep.all
(release date of sequence database searched: 06.2018; number of
entries: 107,844); (i) MS/MS tolerance: FTMS- 20 ppm, ITMS-
0.5 Da.

Valid SILAC quantification was defined as when two out of three
replicates were generated with valid SILAC ratios. Valid phospho-
proteomic quantification was filtered by localization probability =0.75
in all three replicates.

Transient Knockdown With siRNA and Quantitative Reverse
Transcription PCR (RT-qPCR)

Cells were seeded either at 60,000 cells/well in 48-well plates or at
480,000 cells/well in 6-well plates. Prior to cell seeding, plates were
coated with respective control siRNA (Silencer Select Negative Con-
trol, 4390843), GFPT2 target siRNAs (Silencer Select siGFPT2, 519305
and s19306), GSK3B target siRNAs (Silencer Select siGSK3B, s6239
and s6241), and RELA target siRNAs (Silencer Select siRELA, s11914
and s11915) as well as Lipofectamine RNAIMAX Transfection Reagent
(Thermo). Cells were transfected at 37 “C and 5% CO: for 48 h with a
final siRNA concentration of 10 nM.

In the RT-gPCR experiments, cells were mainly cultured in 48-well
plates for 72 h, followed by total RNA extraction with TRI Reagent
Solution (Invitrogen). RNA concentration was determined in NanoDrop
One (Thermo). In total, 1000 ng of RNA was used for cDNA synthesis
on the thermal cycler (MJ research, PTC-225, Peltier Thermal Cycler)
using High-Capacity cDMA Reverse Transcription Kit (Thermo). Gene
expression was measured with SYBR Green (Luna Universal gPCR
Master Mix, NEW ENGLAND BiolLabs) on Bio-Rad CFX384 Touch
Real-Time PCR Detection System (Bio-Rad). Primers were selected
either based on literature or from PrimerBank or designed on Pri-
mer3Plus website. Primer sequences for genes in this study (TAG
Copenhagen) were listed in supplemental Table S1. The VIM primers
were from IDT (Hs.PT.58.38906895).

Westemn Blot

Cells were incubated with siRNAs as described above. Protein
lysates were extracted with RIPA buffer (Pierce, 89900, Thermo)
supplemented with protease and phosphatase inhibitors (Halt,
1861284, Thermo) and quantified with BCA protein assay. Proteins
were separated on 4 to 12% Bis-Trs gels (NuPAGE, Thermo),
transferred to  polyvinylidene fluoride (PVDF) membranes
(IPFLO0010, Immobilon), and probed with antibodies against O-
GlcNAcylation (1:200 dilution; sc-59623; Santa Cruz Biotechnology)
and the loading control, f-actin (1:2000; MA5-15739; Thermo). The
Western blot detection reagents were Clarity Max Western ECL
substrate (Bio-Rad), and plots were imaged in the Molecular Imager
ChemiDoc XRS+ Systerns (Bio-Rad).

Proliferation, Scratch, and Invasion Assay

Proliferation Assay—Cells in guadruplicates were seeded at
10,000 cellsfwell in 96-well plates. GFPTZ knockdown followed the
methods described above. For D492 and D492M, 24 h after seeding
{48 h for D492HERZ), cells were placed under the microscope (LEICA
CTR 6500, bright field, 10x) with 5% CO. at 37 °C for real-time
monitoring and multiple data acquisition. This was controlled by
software Micro-Manager 1.4.22. Three spots were chosen in each
well, and photos were taken every 6 h. Cell growth was monitored for
66 h for D492 and D492M while 42 h for D492HER2. Photos were
batch-processed with Macro in software Imaged 1.52p, and cell
numbers were normalized to the starting time point under the
microscope.

Scratch Assay—The scratch assay was performed in the IncuCyte
Z00M system (2018A) following the manufacturer’s instructions. Cells
in triplicates were seeded at 40,000 cells/well in 96-well plates (Essen
bioscience, Imagelock, 4379). GFPTZ knockdown followed the
methods described above. Cells were scratched and put into the
IncuCyte after 48 h of transfection with siRNAs. The IncuCyte ZOOM
system took pictures every 2 h. Two positions in each well were
chosen, and cells were monitored for 72 h to reach full wound closure.
Images were analyzed in the software IncuCyte ZOOM (2018A), and
wound confluence data were exported.
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Invasion Assay—The D492HERZ? cells were cultured with siRNA
ftransfection (Scramble and siGFPT2) for 48 h in a 6-well plate. GFPTZ2
knockdown followed the methods described above. Cells were then
reseeded into filter units (Falcon Permeable Support for 24-well Plate
with 8.0 pm Transparent PET Membrane, 353097) coated with Matri-
gel (Coming Matrigel Matrix, 356234) at a density of 30,000 cells/well.
First, the filter inserts were coated with 100 pl 1:10 diluted Matrigel for
20 to 30 min at 37 °C. Next, 300 pl of cell suspension was added on
top of the filter units. Then, 500 pl of H14 medium with 10% FBS was
added to the wells in the 24-well plates below the filters. Finally, cells
were incubated at 37 °C and 5% CO, for 48 h. Moninvasive cells on
top of the filters were removed with cotton swabs, followed by fixation
with paraformaldehyde (PFA, 3.7%, Sigma, 252549) and DAPI staining
(1:5000, Sigma, D9542). Ten images per filter unit were taken by the
EVOS FL Auto Imaging System (10, Thermao), followed by the batch
analysis of the images in Macro ImageJ 1.52p. To normalize the
different cell numbers in the filter units, cells were seeded into a 24-
well plate along with the filter units, and they were cultured and
freated in the same way as cells in the filter units.

Metabolomics Analysis

In the GFPT2 knockdown experiments, cells in triplicates were
transfected with control siRNA (scramble), target siRNA (sIGFPT2), or
neither (wide-type cells) for 48 h in 6-well plates, then cultured for
another 24 h before metabolite extraction. In °C labeling experiments,
wide-type cells were cultured in T25 flasks in triplicates, and after cells
reached 80% confluency, the medium was changed to ones without
glucose or glutamine. After culturing cells in the medium without
glucose or glutamine for 4 h (as Time 0), labeled Be 1,2-glucose or
3¢ 1(S)-glutamine was added. Metabolites were extracted at time
0 and after 6 h. Metabolites were extracted with cold 80% MeOH
supplemented with metabolite intemal standards as instructed in an
in-house protocol. Extracts were analyzed on the UPLC mass spec-
trometry (SYNAPT G2, Waters) according to published protocols (29).
For C labeling experiments, data were analyzed in ISOCORE, and
we normalized the mean enrichment of '3C in  UDP-N-
acetylglucosamine (UDP-GlcNAC) to the total amount of UDP-
GlcMAc and presented it as relative B incorporation. Metabolomic
data were normalized to protein levels.

Hydrogen Peroxide (H-05) and Reduced Glutathione (GSH)
Treatment and Growth Factor Deprivation

The MDA-MB-231 cells were seeded in 24-well plates at
300,000 cells/well and cultured for 48 h followed by treatment with
2 puM hydrogen peroxide (H20,, Honeywell, 18304H) for 2 h. GFPT2
gene expression was tested by RT-gPCR.

The MDA-MB-231 cells were seceded in 24-well plates at
200,000 cells/well and cultured for 24 h, followed by treatment with
50 mg/l reduced glutathione (GSH, Sigma, G4251) for 48 h. Cells were
changed with fresh GSH medium 2 h before the RNA extraction.
GFPT2 gene expression was tested by RT-gPCR.

The MDA-MB-231 cells were cultured in the H14 medium as
described for the D492 cell lines, then seeded in 24-well plates at
200,000 cells/well and cultured for 24 h followed by treatments with
medium deprived of insulin or EGF for 48 h. Fresh medium was
changed for the cells 2 h before the RNA extraction. GFFT2 gene
expression was tested by RT-gPCR.

Glutathione Assay

The glutathione levels, including both reduced (GSH) and oxidized
(GSSG) glutathione, were measured with the GSH/GSSG-Glo Assay
from Promega (V6611). Cells in quadruplicates were seeded at
20,000 cells/well in 96-well plates. GFPTZ2 knockdown and HoO.

treatments followed the methods described above. The glutathione
levels were measured 24 h after changed medium. The luminescence
signal was detected in the microplate reader (SpectraMax M3, Mo-
lecular Devices) with white and opague 96-well plates (BRANDplates,
781965). To nomalize the glutathione level, cells were counted using
a crystal violet assay. In short, cells were fixed with 100% cold MeOH
and stained with 0.25% crystal violet (Merck, C.. 42555). After
washing, stained cells were dissolved into 100 pl of 10% acetic acid
and measured at 570 nm in the microplate reader (SpectraMax M3,
Molecular Devices LLC).
Experimental Design and Statistical Rationale

We conducted two types of proteomics analysis (single-shot LFQ
and SILAC with ten fractions) to increase the validity and repro-
ducibility of our results. In the LFQ experiment were four different cell
lines (D492, D492M, D492HER2, and D492DEE) in three biological
replicates with 12 samples analyzed and described to yield statis-
tical significances. In the SILAC experiment were three different cell
lines (D492, D492M, and D492HERZ) in three biological replicates
with nine samples analyzed and described due to the maximum la-
beling capacity in SILAC. In both LFQ and SILAC, the epithelial
D492 cells were used as controls for the two mesenchymal cell
lines. Statistical analysis for all the comparisons between different
treatments was conducted in R (two-sided one or two sample(s)
Student’s t test) for the (phospho)proteomic data, metabolomic
data, and functional analyses. All error bars represent standard de-
viation (SD).

The heatmaps and dendrogram were generated in R with pack-
ages “ComplexHeatmap,” “ggdendro,” and “dendextend” (30, 31).
Volcano plots were plotted in R with data analyzed in Perseus
(version 1.6.2.3, Replace missing values from normal distribution,
two-sided Student's t test for LFQ, one sample t test for SILAC,
Permutation-based FDR). GO annotation was performed in Perseus
(version 1.6.12.0, Fisher exact test, Benjamini-Hochberg FDR) (32)
using all identified proteins from the SILAC experiment as back-
ground. We used the R package “pathfindR" (100 iterations; Protein—
protein interaction: Biogrid; p-values adjustment: *bonferroni,”
adjusted p-value threshold: 0.05) (33) to enrich KEGG pathways.
Reactome metabolic pathways were enriched with the default pa-
rameters on the Reactome website (Version 65, 67, and 72 were
used for D492 versus D492M, D492 versus D492HER2, and D492M
versus D492HER2, respectively) (34) and plotted as treemaps in R.
The protein interaction networks of proteins involved in the meta-
bolic pathways (enrichment FDR < 0.05) were created in STRING
(Version 11.0; k-means clustering, minimum required interaction
scores: medium confidence 0.400) (35) and visualized in Cytoscape
(wersion 3.5.1/Version 3.6.1) (36). Survival analysis in breast cancer
patients was performed in R with packages: “survminer” and “sur-
vival”. The top and bottom 20th percentile of patients were included
in the analysis. Breast cancer patients’ data were acquired via the
Cancer Genome Atlas (TCGA) cBioPortal (Breast Invasive Carcinoma
(TCGA, Provisional)) (37). EMT markers were referenced to and
downloaded from the online EMT database (38). RNA expression
data of GFPTZ2 in breast cell lines and breast cancer patients had
referred to the Cancer Cell Line Encyclopedia (CCLE) database (39),
the Harvard Medical School (HMS) LINCS database (40), and TCGA
cBioPortal (Breast Cancer (METABRIC, Nature 2012 & Nat Commun
2016)) (41), respectively. The scatter plots were plotted in R for
proteins identified and quantified in both LFQ and SILAC (Pearson).
Pathway enrichment of the phosphoproteomic data was performed
by Ingenuity Pathway Analysis (IPA) (QIAGEN, version from 2018),
while motif enrichment was done in the software Perseus. The R
codes for figure plotting can be found on hitps:/github.com/
QiongW56/GFPT2_Publication 2021.
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RESULTS

The D492 and D492M Cell Lines Have Basal-like Proteomic
Fingerprints, While D492HER2, Closer to D492M, Is
Classified as Claudin-low

The proteomes of the D492, D492M, and D492HER2 cell
lines were investigated in biological triplicates by single-shot
LFQ and SILAC proteomics with ten fractions (Fig. 1, A and
B and supplemental Table 52). In the LFQ experiment
(supplemental Data 1), we identified 28,766 peptides corre-
sponded to 3595 protein groups (FDR < 1%). An increase of
identified peptides (on average 68,692) was observed in the
SILAC experiment due to the fractionation process
(supplemental Data 2 and supplemental Fig. 51, A-C). The
increased number of peptides in SILAC led to almost twofold
more identified (FDR < 1%) and guantified proteins (5120
proteins) compared with that in the LFQ experiment (2705
proteins). The Pearson cormrelation between LFQ and SILAC
was 0685, 0782, and 0.847 for ratios of D492M and
D492HER2, ratios of D492HER2 and D492, and ratios of
D492M and D492, respectively (supplemental Fig. S1, D-F).
Cluster analysis showed more similarity between the pro-
teomes of D492M and D492HERZ than to that of D492
(supplemental Fig. 51, G and H and supplemental Data 3).
Furthermore, a comparison of unique proteins in D492 versus
D492M revealed that the coverage of the proteome was
altered by approximately 6.8% to switch between the two
cellular phenotypes. For D492 versus D492HER2, this number
was approximately 7.0%, and for D492M versus D492HERZ, it
was about 5.1% (supplemental Table S2).

The proteomic fingerprints of the D492, D492M, and
D492HER2 cells were compared with the EMT gene expres-
sion signatures reported by Groger et al., 2012 (42) (Fig. 1C).
Twenty-six of the 130 reported EMT markers (42) were iden-
tified in both the LFQ and SILAC datasets. All but ALDH1A3
were consistent between this study and the literature
(supplemental Data 4). D492M clustered with D492HER2,
although clear differences were observed in the selected
markers between D492M and D492HER2 (Fig. 1C). These
proteins represented EMT markers whose expression was
inconsistent in the tumorigenic wversus nontumorigenic
mesenchymal-like cell models. Particularly, genes in clusters
C2 and C4 showed different trends in the two mesenchymal
cell types. D492HER2 and D492M possessed different
mesenchymal characteristics confimed by the dbEMT2
database (43) (supplemental Fig. S2 and supplemental Data
5). Similar results were obtained when the datasets were
compared with the mesenchymal metabolic signatures re-
ported in Shaul et al., 2014 (44) (Fig. 10 and supplemental
Data 4).

To position the D492 EMT model in relation to other cell
models of breast epithelium, we compared the D492, D492M,
and D492HER2 proteomes with the fingerprints of breast
cancer reported by Lawrence ef al., 2015 (45) (supplemental

Data 6 and Fig. 1E). Both the SILAC and LFQ data placed
D492 and D492M with basal-like breast cell lines while
D492HER2 clustered with “mesenchymal-like/claudin-low™
cell lines.

Changes to Nucleoside Metabolism Accompany
Nontumnorigenic and Turnorigenic Mesenchymal
Phenotypes in D492

To identify specific proteins different between spontaneous
nontumorigenic and the HER2-induced tumorigenic mesen-
chymal states, protein ratios and p values calculated for pro-
teins in both the LFQ (Student's t test, two-sample tests,
Permutation-based FDR < 0.05) and SILAC (Student's t test,
one-sample tests, p value < 0.05) experiments were plotted for
comparison (Fig. 2). Significantly deregulated proteins be-
tween the D492 epithelial phenotype and the two mesen-
chymal phenotypes shared in both the LFQ and SILAC
datasets (supplemental Data 7) were analyzed by enrichment
analysis of GO terms within Perseus (32) (supplemental
Fig. 53, A-C). Of the identified GO terms, 11 were metabolic
processes in HER2-induced tumorigenic EMT, while five
metabolic processes were enriched in nontumorigenic EMT.
Nucleotide-sugar metabolic process was enriched in both
comparisons and was also different between the two
mesenchymal cell lines. KEGG pathway analysis was also
performed to complement these findings. Pathways involved
in cell structure, migration, adhesion, invasion, and pro-
teoglycans were enriched in the mesenchymal phenotypes
compared with the epithelial phenotype. Nucleoside meta-
bolism altered specifically between the two mesenchymal cell
lines (supplemental Fig. $3, D-F and supplemental Data 8).

Focusing on metabolism, we mapped 102 (D492HER2
versus D492M), B4 (D492HER2 versus D492), and 119 (D492
versus D492M) differentially expressed metabolism-related
proteins to their respective metabolic pathways (Fig. 3, A-C
and supplemental Fig. S4). Asparagine N-linked glycosylation,
glycolysis, glucose metabolism, and translocation of SLC2A4
(GLUT4) to the plasma membrane were dysregulated in both
mesenchymal transitions. In the HER2-induced mesenchymal
model specifically, dysregulation had enriched metabolism in
mitochondria. In the nontumorigenic mesenchymal model,
different metabolic pathways were enriched, e.g., regulation of
omithine decarboxylase (ODC), selenocysteine synthesis,
selenoamine acid metabolism, and metabolism of polyamines.
Considering the differences in nucleoside metabolic path-
ways, the Golgi system, proteoglycans in cancer, and aspar-
agine N-linked glycosylation, we focused our analysis
specifically on metabolic proteins involved in glycan
metabolism.

Metabolic Differences in Two Mesenchymal States Involve
Changes to GFPT2 Expression

To determine how changes in proteins involved in glycan
precursor synthesis come about following EMT, we identified
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metabolic enzymes with a fold change of two or more in both
the LFQ and SILAC datasets across the three cell lines. These
targets were grouped into six clusters that spanned several
metabolic pathways and included enzymes that have previ-
ously been associated with EMT (Fig. 3, D—F and Table 1).
Enzymes closely involved in the metabolism of glycan pre-
cursors included PYGB, PGM3, UGDH, PGM2L1, GALNTT,
GFPT2, and GALE and were found indiscriminately within
different clusters. Altered expression of GALE, UGDH,
PGM2L1, and GFPT2 was confirmed using gPCR (Fig. 44 and
supplemental Fig. S5, A-C). The biggest difference in RNA
expression was detected in GFPT2, consistent with the pro-
teomic analysis (Fig. 48). GFPT2 was not upregulated in D492
transfected with empty vectors (D492DEE) compared with
D492HER2 (Fig. 4C). GFPT2 is the rate-limiting enzyme in the
HBP and catalyzes fructose-6-phosphate to glucosamine-6-
phosphate while converting glutamine into glutamate.
GFPT2 regulates the availability of precursors for O-GIcNA-
cylation. Knockdown of GFPT2 with siRNAs reduced protein
O-GlcNAcylation in the D492 cells (supplemental Fig. S5,
D-F).

GFPT2 Influences the EMT Program, Cell Growth, and Cell
invasion, and It Is Associated with Claudin-low Breast
Cancer

The switch between the epithelial marker, E-Cadherin
(CDH1), and the mesenchymal maker, N-Cadherin (CDH2),
along with the increased expression of vimentin, is halimark in
EMT (46, 47). To interrogate if GFPT2 knockdown influences
the EMT program, we assayed vimentin VIM (Fig. 4, D-F) and
the surface markers CDH1 and CDH2 (Fig. 4, G- and
supplemental Fig. 56, A-F). siRMA-mediated knockdown of
GFPT2 decreased the expression of VIM in the mesenchymal
cell states and affected the CDH2-to-CDH1 ratios in all three
cell lines. Knockdown of GFPT2 negatively affected cellular
growth in both D492M and D492HER2 (Fig. 4, J-L and
supplemental Fig. S7A) as well as invasion in D492HER2
(Fig. 4, M and N and supplemental Fig. S7B). Decreasing
trends were observed for migration after GFPT2 knockdown in
the three cell lines (Fig. 40 and supplemental Fig. S7C). No
changes were observed in cell morphology (supplemental
Fig. 56G). To test the generality of these results, we investi-
gated the expression of GFPT2 across different breast cancer
subtypes in both cell lines and patients. GFPT2 was not

positively associated with HER2-positive but rather claudin-
low breast cancer (Fig. 5).

Hexosamine Biosynthesis Is Upregulated Post Both
Mesenchymal Transitions and Dependent Upon GFPT2

We next confirmed changes to glycan metabolic precursors
in the D492 model. Metabolomics comparison indicated that
D492HER2 was more like D492M than D492 (Fig. 64). UPLC-
MS analysis of the glycan precursor metabolites, namely
UDP-glucose (UDP-Glc), UDP-glucuronate (UDP-GlcA), N-
acetylglucosamine phosphate (GlcNAc-P), and UDP-GIcNAc,
showed only significant changes to the GFPT2 product
UDP-GlcNAc (Fig. 68 and supplemental Fig. S8, A-C). Rela-
tive intracellular concentrations increased by roughly twofold
from D492 to D492M and tenfold between D492 and
D492HER2. We confirmed altered metabolic activity by
monitoring "*C isotopologue label enrichment in UDP-GlcNAG
from cells grown in media containing 1,2-'*C glucose, 1-"C
glutamine, or 5-'3C glutamine. In context with the relative
amount of UDP-GlcNAc, "*C enrichment in UDP-GlcMNAc from
12-"C glucose was increased in both D492M and
D492HER2. The data indicated an absolute metabolite flux
increase into the HBP from glucose that increased via D492 <
D492M < D492HER2 (Fig. 6C and supplemental Fig. S8, D-F).
Little or no enrichment was observed in UDP-GIcNAc from
1-'3C glutamine. The m + 1 isotopologue in '*C enrichment
from the 5-'"*C-glutamine was decreased in D492M compared
with D492 and D492HERZ2 (supplemental Fig. S&F). Knock-
down of GFPT2 resulted in a clear decrease in the intracellular
levels of UDP-GlcNAc in both D492M and D492HER2
(Fig. 60), consistent with reports of its enzymatic function (48).

GFPT2 Is a Marker for Cellular Oxidative Stress

The HBP is altered by changes to cellular redox potential
(49). GFPT2 may influence GSH through glutamine-derived
glutamate (50). In addition to changes to UDP-GlcNAc,
knockdown of GFPTZ2 resulted in decreased intracellular
levels of glutamate (Fig. GE). We similarly noted a decrease in
the intracellular cystathionine levels (Fig. 6F). Both glutamate
and cystathionine can serve as precursors in GSH de novo
synthesis. A gene-metabolite correlation analysis of the NCIB0
cancer cell line panel indicated a negative correlation between
GFPT2 and GSH (Fig. 7A). No correlation was observed for
oxidized glutathione (GSSG), and none was observed for

culture of D492, D492M, and D492HER2 to the bicinformatic and biological analysis of the LFQ and SILAC proteomic datasets. C, dysregulation
of EMT markers in independent and published gene expression studies (GES) of EMT, which focused on different cell types and treatment
modalities (42). D, dysregulation of EMT metabolic makers in the D492 cell model compared with the literature. There was a consistency be-
tween LFQ (leff) and SILAC (right) except for NTSE. SILAC was consistent with the literature. HPDL, AKR1B1, and MGST1 were in an opposite
trend compared with the literature. The mesenchymal metabolic signature (MMS) in the literature (44) was referred to in this analysis. For detailed
descriptions of each EMT marker mentioned in Figure 1, C and D, please refer to the supplemental Data 4. E, classification of the D492 cell
model. Using the iBAQ expression of proteins identified in both literature and this study, D492, D492M, and D492HER2 were clustered with other
preclassified breast cell lines (45). LFQ (leff) classified D492 as “Basal-like 1" (in biue), D492M as “Basal-like 2" (in red), and D492HER2 as
“Mesenchymal-like/claudin-low” (in orange), while SILAC (right) classified D492 as “Basal-like 2” (in red), D492M as “Basal-like 17 (in biue), and
D492HER? also as “Mesenchymal-like/claudin-low” {in orange). The LFQ and SILAC raw data were quantified by the iBAQ quantification method

in MaxQuant.
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Fiz. 2. LFQ and SILAC proteomic data plotting. Statistical analysis of the LFQ and SILAC expressions of proteome in two different cell lines:
D492HER? versus D492M (A and B), D492HER2 versus D492 (C and D), and D492M versus D492 (E and F). Proteins with FDR less than 0.05 and
fold change of more than 2 were colored. Metabolic enzymes differently expressed in two cell lines and consistent between LFQ and SILAC were
labeled in the plots, and proteins with significant differences and big fold changes (at least fourfold between D492HER2 and D492M, fourfold
between D492HERZ and D492, and sixfold difference between D492M and D492) were marked in bold. Horizontal dash line indicated -Log.glp
value) at 1.5, and vertical dash lines indicated fold change at twofold. Proteins with the biggest differences between D492HER2 and D492M were
PRSS23, CTGF, TAGLN, POMC, CADM3, KRT1, CDH2, DCD, PCSK1N, AKR1C1, ALDH1A3, and ERBB2, involved in cell adhesion and
metabolism. Proteins differently expressed in D492HER2 and D492 were AKAP12, FLNC, ERBB, RCN3, MYL9, SERPINBS, [TGB4, ITGAS, DSP,
S100A14, S100A2, LAD1, ANXA3, and PKP2, which were mainly involved in cell adhesion, structure, cell-cell interaction, and signaling. Lastly, a
group of proteins that were similar to the differences observed with the other cell lines were differently expressed between D492M and D492,
including AKAP12, CTGF, FLNC, SERPINE1, MYL9, TAGLN, ITGB4, ITGAG, ANXA3, SERPINBS, NDRG1, DSP, S100A14, FGFEP1, S100A2,
LAMA3, and LAMB3. The main target in this study GFPT2 was highlighted with “** in the plots (A-D).

GFPT1 (not shown). Knockdown of GFPTZ, however, resulted GFPT2 RNA expression (Fig. 78) with a concomitant
in an increase or no change to glutathione, which we reduction to GSH while total glutathione remained un-
confirmed in the widely studied claudin-low MDA-MB-231 cell changed (Fig. 7, C and D). Furthermore, treatment of the
line (supplemental Fig. S9, A-H). MDA-MB-231 cells with GSH resulted in decreased

Zitzler et al. (51) reported that overexpression of GFPT2 expression of GFPT2 (Fig. 7E), confirming that GFPT2
enhances cell survival following H.O, treatment. We treated expression reacts to GSH. The D492 cells possessed higher
MDA-MB-231 cells with H,0, and observed an increase of amounts of GSH than D492M and D492HERZ2 (Fig. 7F),
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Reactome metabolic pathways were differently enriched in D492HER2 versus D492M (A), D492HER2 versus D492, (B) and D492M versus D492
(C). Proteins involved in each Reactome metabolic pathway were plotted in supplemetal Fig. S4. (Data used for analysis: Supplemental Data 7;
Student t test, Permutation-based FDR < 0.05, one sample t test, p value of SILAC ratio < 0.05). D, differentially expressed metabolic proteins in
D492HER2 versus D492M, D492HER2 versus D492, and D492M versus D492 (student t test, permutation-based FDR <0.05 for LFQ, one sample
t test, p value of SILAC <0.05, more than twofold in both LFQ and SILAC) were manually identified. Samples were in triplicates for both D492,
D492M, and D492HER2 in the LFQ and SILAC experiments. For SILAC, the median relative expression of each target for D492, D492M, and
D492HER2 was plotted. Targets were clustered into six clusters. The relative expression from the lowest to the highest for each metabolic
protein was indicated in color scaling from blue to red, as shown in the color bar. On the right side was listed the identified metabolic targets in
mesenchymal (Mes) and nonmesenchymal (Non-Mes) groups based on literature (44). n.a: not available in literature. E and F, survival analysis of
the identified metabolic targets in breast cancer patients of all types revealed a group of enzymes might affect the outcome of patients’ survival.
The enzymes that exerted either beneficial or harmful effects on patients were listed in the table (F) together with the p value for each enzyme’s
effect on patients. Clusters in which the enzymes resided were listed too. TCGA data, Breast Invasive Carcinoma (TCGA, Provisional), were used
in this analysis.

lowest expression of GFPT2

which agreed with the
(Fig. 4, A-C).
Cystathionine is an intermediate metabolite in the trans-
sulfuration pathway and contributes to hydrogen sulfide (H,S)
and GSH synthesis. Considering that the levels of cys-
tathionine dropped following GFPT2 knockdown (Fig. 6F)
while no consistent significant changes to the glutathione level
were observed (supplemental Fig. S9, A-H), we hypothesized

that GFPT2 might affect the intracellular H,S homeostasis to
counteract oxidative stress. SQOR catalyzes the oxidation of
H»S and glutathione regenerating ubiquinol in the mitochon-
drial membrane. Following GFPT2 knockdown, we observed
consistent downregulation of SQOR in all four cell lines (Fig. 7,
G-N).

NF-xB (p65) responds to cell stress (52) and has previously
been shown to modulate GFPT2 (53). Knockdown of p65 did,
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Paossible
Protein ID Protein names .?:1:2 dasP;Erﬁcc\:(:tun LogZD{D;;B;:IJERZI transcription Citation related to EMT
factors
ADADSZ2Z4X9 Glutamine-fructose-6-phosphate GFPT2 Carbohydrate 1.558 NF-KB; SIRTS; Shaul et al., 2014 (44); Simpson et al.,
transaminase 2 isoform 1 metabolism BMP-2 2012 (50); Szymura et al., 2019 (53);
(Fragment) Taparra et al., 2019 (96); Zhang et al.,
2018 (55); Zhou et al., 2019 (22)
Q16831 Uridine phosphorylase 1 uPP1 Pyrimidine metabolism 1.167 NF-Kb; Oct3/4 Guan et al., 2019 (97); Wehbe et al.,
2012 (98)
X5DR03 Glutathione S-transferase mu 1 GSTM1  Glutathione metabolism 2152 Nrf2 na
isoform B (Fragment)
Q53¥91 Sulfotransferase (Fragment) SULTIE? Steroid hormone 2.383 Nrf2 na
biosynthesis
Q92626 Peroxidasin homolog PXDN Oxidoreductases 3.825 Snail 1; Nrf2 Briem et al., 2019 (16); Sitole and
Mavri-Damelin, 2018 (39)
Log?(D492HER2/D492)
ADADS2Z4%9  Glutamine-fructose-6-phosphate GFFT2 Carbohydrate 1.827 NF-KB; SIRTs; Shaul et al., 2014 (44); Simpson et al.,
transaminase 2 isoform 1 metabolism BMP-2 2012 (50); Szymura et al., 2019 (53);
(Fragment) Taparra ef al., 2019 (36); Zhang et al.,
2018 (55); Zhou et al., 2019 (22)
Q6FH49 NNMT protein NNMT Nicotinate and 1.275 Stat3 Eckert et al., 2019 (100); Shaul ef al.,
nicotinamide 2014 (44)
metabolism
P16930 Fumarylacetoacetase FAH Tyrosine metabolism 1.272 CDC5L n.a
QEXONG Nicotinate NAPRT  Nicotinate and 1.266 NF-Kb; STATS; Lee et al., 2018 (101)
phosphoribosyltransferase nicotinamide HIF-1a
metabolism
ADAD24R6H3  Inositol 1,3 4-triphosphate 5/6 ITPK1 Inositol phosphate 1.358 BMPZ; TBX2; Bonet et al., 2015 (102)
kinase, isoform CRA a metabolism SNAIL; miR-23b
ADADB4J2A4  3-ketoacyl-CoA thiolase, ACAAZ  Lipid metabolism 1.737 PPAR; HNF 4 na
mitochondrial
ADAD24RB23  Diacylglycerol kinase DGKA Lipid metabolism 1.826 PPARy; Stat5; na
APZ, Ets1,5P1
P11216 Glycogen phosphorylase, PYGB Starch and sucrose 2.018 na Zhang et al., 2018 (55)
brain form metabolism
P47989 ¥anthine dehydrogenase/oxidase XDH Purine metabolism 2.908 NF-Y na
Q53FAT Quinone oxidoreductase PIG3 TP53I3 Oxidative stresses and 291 FOXK2EBAP1 Alonso et al., 2007 (103); Reka et al.,
irradiation 2014 (104)
Q53x91 Sulfotransferase (Fragment) SULTTET Steroid hormone 3.010 Nrf2 na
biosynthesis
ABYXHa Glutamine synthetase GLUL Carbohydrate 3.582 ATF4 na
metabolism
Log2(D492M/D492)
Q53TK1 Cytochrome P450, family 1, CYP1B1  Lipid metabolism 3.733 SP1 Kwon ef al, 2016 (105); Shaul et al.,

subfamily B, polypeptide 1,

isoform CRA a

2014 (44)
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R Possible 1‘.?'
o
5 Protein ID Protein names S::.: clmﬁfﬁﬁfﬁon ""gzg"::zigm lrﬁrf:;:riptiun Citation related to EMT 3
o tors. b
% ETEPME Long-chain-fatty-acid-CoA ACSL1 Lipid metabaolism 1.712 5P1 Sanchez-Martinez et al., 2015 (106) _§
ligase 1 o
§ Q6PCE3 Glucose 1,6-bisphesphate PGM2L1  Carbohydrate 1.422 ZEB1 na a
§ synthase metabolism s
E‘;&' 085394 Phosphoacetylglucosamine PGM3 Carbohydrate 1.383 na na -+
= mutase metabolism o
2 Q6FGJ9 Glutathione S-transferase GSTM3  Glutathione metabolism 1.368 Nrf2 Zhou et al.,, 2008 (107) 9
i) Q865F2 N-acetylgalactosaminyltransferase 7 GALNT7  Glycan biosynthesis and 1.328 miR-30d/30b; na o
~ metabolism miR-214 2
= Q6FH49 MNNMT protein NNMT Nicotinate and 1.181 Stat3 Eckert et al., 2019 (100); Shaul et al., H
A nicotinamide 2014 (44)
= metabolism 2
@ Q9BRRE-2 Isoform 2 of ADP-dependent ADPGK Glycolysis/ 1173 na Lee et al, 2016 (108); Song et al,, 2018 s
o glucokinase Gluconeogenesis (109) @
060701 UDP-glucose 6-dehydrogenase UGDH Carbohydrate 1.025 SP1 Tang et al., 2016 (110); 5
metabolism Vergara et al, 2015 (111) =
HoUIA1 Acyl-CoA synthetase short-chain ACSsS2 Carbohydrate 1125 SREBF1/2; HIF; Sunet al., 2017 (112) @
family member 2, isoform CRA ¢ metabolism TFEB §
Q53600 Very-long-chain 3-oxoacyl-CoA HSD17B812 Lipid metabolism 1.142 na na [+
reductase 3
Q53FAT Quinone oxidoreductase PIG3 TP53I13 Oxidative stresses and 1.159 FOXK2&BAP1 Alonso et al., 2007 (103); Reka et al., ‘g
irradiation 2014 (104) 2
4376 UDP-glucose 4-epimerase GALE Galactose metabolism 1.458 na na 9
Q6LETE MGST1 protein (Fragment) MGST1 Glutathione metabolism 1.522 na Fischer et al., 2015 (113); =
Shaul et al., 2014 (44) @
P11216 Glycogen phosphorylase, PYGB Starch and sucrose 1.611 na Zhang et al., 2018 (55)
brain form metabolism
P12532 Creatine kinase U-type, CKMT1A  Arginine and proline 1.686 LncRNA Tanaka and Ogishima, 2015 (114)
mitochondrial metabolism n335586&miR-
924;
EVIT&RUNX1
ADADB4J2A4  3-ketoacyl-CoA thiolase, ACAAZ  Lipid metabolism 2.038 PPAR; HNF4u na
mitochondrial
BADLR8 NAD(P)H dehydrogenase NQO? Ubiquinone and other 2.069 Nrf2; NF-Kb Fischer et al., 2015 (113);
[quinone] 1 terpenoid-quinone Yang et al, 2017 (115)
biosynthesis
16831 Uridine phosphorylase 1 UPF1 Pyrimidine metabolism 2.303 NF-Kb; Oct3/4 Guan et al., 2019 (97);
Wehbe et al., 2012 (38)
ADAD24RB23  Diacylglycerol kinase DGKA Lipid metabolism 2.730 PPARy; Stats; na
APZ, Ets1,5P1
ABYXX4 Glutamine synthetase GLUL Carbohydrate 271 ATF4 na
metabolism
P47389 Xanthine dehydrogenase/oxidase XDH Purine metabolism 3.159 NF-¥ na
% These targets were with significance (Permutation-based FDR less than 0.05). They were at least twofold changes, comparing D492HER2 to D492M, D492HERZ to D492, and D492M to
53] D492. The: fold changes were confirmed by both LFQ and SILAC. The average of Log? ratios from LFQ and SILAC were reported in this table.
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Fic. 4. Expression and functions of GFPT2 in the D492 EMT model. A, GFPT2 showed the highest expression in D492HER2 while lowest in
D492 on the RNA level; B, The protein expression of GFPT2 in the three cell lines suggested highest expression of GFPT2 in D492HER2
confirmed by both LFQ (left) and SILAC (right); C, The GFPT2 level in D492DEE which was the negative control cell line of D492HER? indicated
that the increased expression of GFPT2 was not due to the artifacts from cell handling but the overexpression of HER2. D-F, siRNA-mediated

ZASBMB

Mol Cell Proteomics (2022) 21(2) 100185 13

222



GFPT2 Responses to Oxidative Stress in Mesenchymal Cells

A GFPT2 in Breast Cell Lines
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Fiz. 5. GFPT2 is higher in basal and claudin-low breast cell lines, and same trend is shown in breast cancer patients. A, based on data
from an open-source database — CCLE (leff) (39), GFPT2 was higher in basal and claudin-low cell lines while lowly expressed in HER2-positive
and luminal cell lines. The same trend was seen with data from another open-source database — HMS LINCS (night) (40). The molecular
classification of breast cancer cell lines was based on literature (95). B, TCGA data (Breast Cancer (METABRIC, Nature 2012 & Nat Commun
2016)) suggested GFPT2 was expressed highly in claudin-low patients, while its expression was lower in HER2-positive and luminal patients.

however, not suppress GFPT2 expression in D492HER2
(supplemental Fig. S9, I and J). Analysis of previously pub-
lished secretome data from D492 and D492HER2 (54) showed
differences in proteins involved in TGF-p, IGF, TNF, and EGF
signaling (Fig. 84), with all apart from IGF confirmed to regu-
late GFPT2 (53, 55, 56). Individual removal of growth factors
from MDA-MB-231 growth media resulted in decreased
GFPT2 expression following removal of insulin and EGF
(Fig. 8, B and C) consistent with receptor tyrosine kinase (RTK)
regulation of GFPT2. Expression of the membrane receptor,
IGF1R, was also higher in D492HER2 than in D492 (Fig. 80),
supporting the higher activity of IGF signaling in D492HER2.
ERK/MAPK are common downstream regulators in the RTK
signaling pathways. Phosphoproteomics analysis
(supplemental Data 9) confirmed changes in signaling within
the ERK/MAPK pathway between D492HER2 and D492 and
showed enrichment of the GSK3-f and PKCa substrates
(Fig. 8, E and F). siRNA-mediated knockdown of GSK3-§
resulted in increased GFPT2 expression (Fig. 8, G-M).

DISCUSSION

To define changes to metabolic enzymes associated with
EMT phenotypes in the breast gland, we analyzed proteins
isolated from three breast cell lines representing three
epitheliak-mesenchymal states using both LFQ- and SILAC-
based proteomics mass spectrometry. We first analyzed the
proteomics data to confirm the EMT signature of the D492
EMT model and position the cell lines with respect to other
cells derived from breast tissue.

The expression pattern of EMT markers was consistent with
previously reported markers of EMT (42, 43). Groger et al.,
2012 compared EMT gene expression signatures during
cancer progression from 18 independent and published pa-
pers and listed the core genes involved in EMT. Good con-
sistency between literature and our datasets was observed in
terms of the up/downregulation of these EMT markers and
between the two detection methods. LFQ and SILAC were
discordant on the expression of IL18 and EPCAM. Results
from SILAC were more in agreement with literature reports.

knockdown of GFPT2 d d VIM in both

hymal cell lines. G, knockdown of GFPTZ2 affected CDH2-to-CDH1 ratios in all cell lines.

JHL, knockdown of GFFTZ decreased the growth of D492M (K) and D492HER2 (L) after 90 h from cell seeding. M and N, D492HERZ cell invasion
was decreased after knockdown of GFPT2 and confirmed by two siRNAs. O, D492 cell migration was slowed by the knockdown of GFPTZ. A
decreasing trend was seen in D492M and D492HER2 without significance. *p < 0.05; “p < 0.01; *p < 0.001.
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Fiz. 6. Metabolomic analyses of the D492 EMT cell model. A, the metabolome in D492 M and D492HERZ was similar compared with that in
D492, B, UDP-GlcNAc was expressed higher in D492HER2 compared to the other cell types. C, carbon incorporation into UDP-GlcNAc after 6 '
culture. Carbons from 1,2-'2C glucose (Glc) were highly incorporated into UDP-GlcNAc, compared to 5-'*C glutamine (Gin) and 1-"*C Gin in all
three cell lines. No carbon incorporation from 1-'3C Gin in all three cell lines. Higher rates of carbon incorporation into UDP-GlcNAc from both
1,2-"3¢C Glc and 5-"°C Gin were observed in D482HER2, compared to D492 and D492M. A higher rate of carbon incorporation into UDP-GleNAC
from 1,2-"3C Glc was observed in D492M compared with D492. D, knockdown of GFPTZ decreased the production of UDP-GIcNAc in both

D492M and D492HER2. E, a d

ing trend for gl with GFFTZ knockdown was observed in the D492 EMT model. F, knockdown of

GFPT2 significantly decreased cystathionine in all three cell types. *p < 0.05; *p < 0.01; **'p < 0.001.

The results support the epithelial and mesenchymal pheno-
types of the D492 EMT cell model previously reported (14, 15).

The results define the D492 model better in relation to other
cell models used to study breast cancer and EMT. Both D492
and D492M clustered within the “basal-like” categories,
consistent with the prior classification of D492 (15). D492
clustered with the human breast epithelial cell line MCF10A
that, like D492, is derived from a reduction mammoplasty from
patients without breast cancer (57). Both are nontumorigenic,
and MCF10A, like D492, expresses stem cell-like markers
(58-60). Based on SILAC, D492M was most similar to the
tumorigenic cell line MDA-MB-468 (59, 61) originally isolated
from a metastatic adenocarcinoma and has been used to
study metastasis previously (62). D492HER2 shared more
similarities with D492M than D492 based on the proteome
clustering but was characterized as claudin-low. Accordingly,
D492HER2 thus appears to be an intermediate between D492

and D492M, representing diversion from the natural EMT
program upon which tumorigenic properties are gained. Both
the LFQ and SILAC data indicated D492HER2 as a “mesen-
chymal-like/claudin-low™ cell type showing the most similarity
to the tumorigenic MDA-MB-157 cells originally isolated from
metastatic human breast carcinoma (59, 61, 63). Given the
basal origin of D492, the relatively small changes to the
coverage of the proteome between these cell lines (5-7%),
and that the claudin-low phenotype has recently been rede-
fined as a molecular signature found dispersed within the
intrinsic breast cancer subtypes (64), these results define
D492HERZ as a basal-like cell line with claudin-low pheno-
types. The findings position the D492 cell culture model with
respect to other commonly researched cell culture models
originating from breast tissue based upon their protein content
and suggest that the D492 cell model mimics basal-like tu-
mors with D492HER2 prone to claudin-low.
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Fic. 7. GFPT2is a marker for cellular stress. A, gene-metabolite correlation analysis of the NCI60 cancer cell line panel indicated a negative
correlation between GFPT2 and GSH. B, GFPT2 RNA expression was significantly upregulated with 2 pM H,0, treatment in MDA-MB-231. C,
the total glutathione level did not change after H,O, treatment. D, the GSH level was significantly decreased by the H,O, treatment. E, treatment
with 50 mg/l of GSH significantly downregulated the GFPT2 gene expression in MDA-MB-231. F, GSH level was significantly higher in D492 than
in D492M and D492HER2. G-N, SQOR RNA expression was significantly downregulated in D492 (G), D492M (H), D492HER2 (/), and MDA-MB-
231 (J) by siRNA-mediated knockdown of GFPT2, which was confirmed by the second siRNA (K-N). *p < 0.05; *'p < 0.01; **p < 0.001.
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A Protein ID Protein Name Gene Name Lm‘::g‘“” Log(p.value) FOR
PO1137  Transfoming growth tactor bata-1 TGFB! 5208 3669 0.000
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Fic. 8. Signaling regulation of GFPT2. A, secretome of D492HER2 and D492 revealed a list of growth factors that secreted differently
between these two cell lines (FDR <0.05, Fold change > 2). B and C, to test the effects of growth factors on GFPT2, we adapted the MDA-MB-
231 cells with the FBS-free H14 medium. Removal of EGF and insulin decreased GFPT2 RNA expression in the MDA-MB-231 cell line. D, the
protein level of IGF1R was higher in D492HER2 than in D492 based on the SILAC proteomic data. E, top eight of the Ingenuity Canonical
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Focusing on metabolism, a variety of metabolic enzymes
involved in a diversity of metabolic pathways were significantly
altered in EMT according to our data, supporting that EMT is
entangled with the metabolic network, e.g., central carbon
metabolism including glycolysis and oxidative phosphoryla-
tion, pentose phosphate pathway (PPP), and mitochondrial
metabolism, lipid metabolism, glutamine metabolism, nucle-
otide metabolism, and glycan metabolism (65). The upregu-
lation of PGM3, UAP1, and OGT, also components of the HBP
in the mesenchymal cells, supports the increased activities of
HBP in EMT. GO enrichment analysis and pathway enrich-
ment analysis further indicated differences in glycan meta-
bolism in the D492 EMT meodel. Multiple transcriptional
factors, regulators, and enzymes are influenced by O-
GlcNAcylation, and glycans are essential for the formation and
function of the extracellular matrix (66, 67). GlcNAcylation
plays an essential role in breast cancer metastasis and
tumorigenesis (68), in line with the observations that siRNA-
mediated knockdown of GFPTZ2 imparted negative effects on
growth and invasion in the mesenchymal cell lines.

GFPT2 has previously been identified as part of the
mesenchymal metabolic signature genes (44) and associated
with invasive breast cancer mesenchymal phenotypes on the
mRNA level (50). Several studies have focused on the function
and regulation of GFPT2 related to its role in modulating O-
GlcNAcylation of proteins on account of GFPT2 in producing
UDP-GIcNAc (21, 22, 53). GFPT2 has also been shown to
counteract oxidative stress (51, 69, 70), although the mecha-
nism behind that remains elusive. Our results demonstrate
that GFPT2 affects protein O-GlcNAcylation, regulates the
EMT program, and impacts cellular growth and invasion in a
cellular subtype-specific manner in breast epithelial cells,
which are consistent with the literature mentioned above.
Claudin-low breast cancer has recently been redefined and
subclassified as a breast cancer subtype (64, 71). GFPT2 was
one of the predicted claudin-low signatures in Triple-Megative
Breast Cancer reported by Prat ef al., 2010 (72). KRAS and
LKB1 comutant NSCLC emulates claudin-low breast cancer,
and GFPT2 was reported in different studies to be the key
player in boosting the malignancy of this type of malignant
lung cancer (73, 74). Our results indicate that GFPT2 is a
claudin-low breast cancer marker, consistent with the previ-
ous finding that D492HER2 with higher expression of GFPT2
belongs to the claudin-low breast cell line. The upregulation of
GFPT2 in D492HER2 compared with its negative control cell

line D492DEE indicates that the HER2 receptor is somewhat
responsible for the GFPT2 overexpression. The lower levels of
GFPT2 across HER2-positive cell lines in the public domain
however suggest that the HER2 receptor is not the only
regulator of GFPT2.

We confirmed increased HBP flux associated with GFPT2
expression. The HBP is central to metabolic rewiring in cancer
as it affects glutamine, acetyl-CoA, the nucleotides UTP and
UDP, and the glycan substrate UDP-GlcNAc (66). UDP-
GlcNAc intracellular concentration increased in accordance
with the expression levels of GFPT2 in the D492 cell lines and
dropped following GFPT2 knockdown. Concordantly, '*C flux
analysis showed increased flux from glucose and glutamine
into UDP-GlcNAc. The altered glutamine filux profiles into
UDP-GIcNAc are consistent with previously proposed differ-
ences in TCA cycle flux in the D492 model on account of
altered glutamine utilization following EMT (9). The increased
metabolic flux observed alongside enhanced expression of
GFPT2 is consistent with a mass action effect and corre-
sponds to GFPT2’s role as a biomarker for glucose uptake
independent of GLUT1 (55, 70). '°C enrichment from the
5-'3C-glutamine was negligible but suggestive of flux rerout-
ing in the TCA cycle, particularly in D492M compared with
D492 and D492HER2. Specifically, the changes in the m + 1
isotopologue were indicative of alternate carbon contribution
to UDP-GlcNAc through citrate-derived cytosolic acetyl-CoA
and aspartate and are consistent with more detailed meta-
bolic flux analysis of these cell lines reported in Karvelsson
et al., 2021 (23).

In light of increased glutamine uptake following EMT in the
D492 cells (9) along with decreased glutamate and cys-
tathionine following GFPT2 knockdown, we explored if GFPT2
would influence GSH through GFPT2 derived glutamate.
Knockdown of GFPT2 resulted in no change or trends toward
increased glutathione that does not support a positive rela-
tionship between GFPT2 and glutathione in the four cell lines
tested. The regulatory role of GFPT2 on glutathione can
however not be excluded merely based on the little impacts of
GFPT2 on the net glutathione levels. A negative comrelation
between GSH and GFPT2 expression was observed across
the NCIB0 cancer cell line panel. Therefore, even though
GFPT2 had limited effects on glutathione, the expression of
GFPT2 may be adjusted according to the GSH level. Indeed,
Hz0. treatment increased GFPT2 expression, while GSH
treatment had the opposite effect. The D492 cells possessed

Pathways from the phosphoproteomics data analysis. Pathways activated in D492HER2 were in orange, while pathways activated in D492 were
in bive. Dots referred to the absolute value of activation Z-scores. Pathways were listed based on p value. F, motif enrichment from Perseus
(Version 1.6.14.0) suggested a list of kinases behaving differently in D492HER2 compared to D492. G, based on the phosphoproteomics
analysis, GSK3-fi was highly phosphorylated at position serine 9, which inhibits GSK3-p activation in D492HER2 compared with D492. H and /,
RNA (H) and protein (/) expression of GSK3-f in D492HER2 versus D492 indicated the higher abundance of GSK3-§ in D492. J-M, knockdown of
GSK3-§ in D492 increased GFPFT2 RNA expression. J, knockdown efficiency for GSK3-§ with the first siRNA. K, GFFT2 RNA expression after
knockdown of GSK3-# in D492 with the first siRMA. L, knockdown efficiency for GSK3-§ with the second siRNA. M, GFPT2 RNA expression after
knockdown of GSK3-# in D492 with the second siRNA. *p < 0.01; **p < 0.001.
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Fiz. 9. Summary of the study. The hexosamine biosynthesis pathway (HBF) and transsulfuration pathway, two main pathways associated
with GFPT2 in this study, were illustrated. HBP is closely associated with the central carbon metabolism. The underscored metabolites were
measured in this study. We used 1,2-™C Gle, 1-™*C Gln, and 5-'*C Gin in the "*C tracing experiment to trace the carbon flux into UDP-GlcNAc.
GFPT2 is the rate-limiting enzyme in the HBP and was upregulated in mesenchymal cells, especially in partial EMT. It affected the HBP flux, EMT
program (e.g., VIM), cell growth, and cell invasion, and it was overexpressed in claudin-low breast cancer represented by the D492HER2 cell line.
GFPT2 was regulated by oxidative stress (H20z and GSH) and signaling regulators (insulin and EGF, and GSK3-f). Knockdown of GFPT2 with
siRNAs decreased the cystathionine level and SQOR RNA expression in the transsulfuration pathway.

higher amounts of GSH while GFPT2 expression was low,
while the opposite was true for D492M and D492HER2,
consistent with increased cell stress in the mesenchymal cells
as previously reported (9, 75). The data suggest that redox
balance influences GFPT2 expression. High expression of
GFPT2 is a marker for oxidative stress important for EMT (76)
and breast cancer progression (77).

NF-xB is central to the cellular stress response and is
implicated in EMT (52, 78). Following TGF-p/TNFa stimulation,
GFPT2 expression is enhanced by the stress regulator NF-xB
with which it forms a regulatory feedback loop via glycosyla-
tion of p65 (21). siRNA-mediated knockdown of p65 did,
however, not influence GFPT2 expression in the D492 EMT
model. Our results do not exclude that MF-xB induces GFPT2
expression in the stress response with TNFux stimulation.
However, it appears that maintenance of GFPT2 expression in
claudin-low breast cancer relies on additional factors.

H2S originates from the transsulfuration pathway, and
knockdown of GFPT2 resulted in decreases to the pathway
intermediate, cystathionine, suggesting that the production of
HS could be hampered. SQOR utilizes H,S as substrate, and
decreased SQOR with GFPT2 knockdown supports the
hampered H.S production. However, a solid relationship be-
tween GFPT2 and H»S could not be established based on
limited evidence. Nevertheless, the negative effects of
knocking down GFPT2 on cystathionine and SQOR have
connected GFPT2 with H,S and further with mitochondrial

functions. H»S signaling has recently been reported to facili-
tate EMT (79, 80). However, the exact role of H.S in EMT is still
controversial (81). Mitochondrial dysfunction is involved both
in EMT (82) and in breast cancer (83). A recent study has
connected GFPT2 to SLP-2 involved in mitochondrial regu-
lation (70). Understanding the roles of GFPT2 in oxidative
stress and H.S and mitochondrial homeostasis in mesen-
chymal cells is beneficial to clinical therapeutic interventions
and prognostics. Our results indicate that the effects of
GFPT2 on GSH are more complex than can be accounted for
by a direct impact on account of limitation to GSH precursors.
GFPT2 expression responds to changes in the intracellular
redox environment and may alter H,S level that impacts
SQOR and mitochondria homeostasis. The protective effects
of GFPT2 from oxidative stress may thus be attributed in part
to changes in HzS-5QO0R activity, although further research is
needed to elucidate this link.

The regulation of GFPT2 is inherently complex and asso-
ciated with various growth factors and transcriptional regula-
tors, including EGF, TGF-i, TNF, NF-«xB, SIRTE, sXBP1, and
SLP-2, etc. (53, 55, 56, 70, 84). Mutant KRAS has also been
demonstrated to enhance flux into the HBP via GFPT2 that is
potentiated by loss of LKB1 (74). Our results are consistent
with growth factor-mediated regulation of GFPT2 as removal
of insulin and EGF from growth media decreased the
expression of GFPT2. The effect of the insulin/IGF pathway on
GFPT2 has not been reported before. Phosphoproteomics
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comparison of D492 and D492HER2 also confimed altered
downstream signaling within the ERK/MAPK pathway. Kinase
enrichment analysis highlighted ERK/MAFPK and components
of the Wnt signaling pathway, i.e., GSK3-f and casein kinase.
We interrogated GSK3-f on account of its role in responding
to oxidative stress (85-88) and regulation of Wnt signaling of
importance to the EMT program (89). GSK3-§ phosphorylation
was higher in D492HER2 suggesting inactivation of GSK3-f
via phosphorylation (90). GSK3-p RNA and protein levels were
increased in D492, indicating more active GSK3-p kinase ac-
tivity in D492. Knockdown of GSK3-§ in the D492 cells upre-
gulated GFPT2 expression suggesting that GSK3-p
suppresses GFPT2. GSK3 kinases are regulators of multiple
complex biological functions, which can be inhibited by in-
sulin/IGF1 and ERK/MAPK (88, 91-93). Our data suggest that
GFPT2 is under the control of EGF and insulin and down-
regulated in epithelial D492 by GSK3-fi responding to oxida-
tive stress.

In summary (Fig. 9), GFPT2 is upregulated in breast EMT
with higher expression in partial EMT, and knockdown of
GFPT2 in mesenchymal cells decreases the EMT marker VIM
and cell proliferation and invasion as well as HBP flux. It is a
marker for claudin-low breast cancers and oxidative stress.
GFPT2 is under the regulation of the insulin and EGF signaling
networks within which GSK3-f imparts a negative effect.
Further studies are needed to understand the mechanism of
GFPT2 regulating cystathionine, SQOR, the role of GFPT2 in
oxidative stress and the transsulfuration pathway, and to
confirm the effects of insulin, EGF, and GSK-§ on GFPT2 in
more cell lines.
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Argininosuccinate lyase 1s a metabolic vulnerability in breast
development and cancer

Sigurdur Trausti Karvelsson(®', Qiong Wang', Bylgja Hilmarsdottir’, Amar Sigurdsson (37, Siver Andreas Moestue (3%,
Gunhild Mari Mzlandsmo (37, Skarphedinn Halldorsson'*, Steinn Gudmundsson'” and Ottar Rolfsson ('™

Epithelial-to-mesenchymal transition (EMT) is fundamental to both normal tissue development and cancer progression. We
hypothesized that EMT plasticity defines a range of metabolic phenotypes and that individual breast epithelial metabolic
phenotypes are likely to fall within this phenotypic landscape. To determine EMT metabolic phenotypes, the metabelism of EMT
was described within genome-scale metabolic models (GSMMs) using either transcriptomic or proteomic data from the breast
epithelial EMT cell culture model D492. The ability of the different data types to describe breast epithelial metabolism was assessed
using constraint-based modeling which was subsequently verified using '*C isotope tracer analysis. The application of proteomic
data to GSMMs provided relatively higher accuracy in flux predictions compared to the transcriptomic data. Furthermore, the
proteomic GSMMs predicted altered cholesterol metabolism and increased dependency on argininosuccinate lyase (ASL) following
EMT which were confirmed in vitro using drug assays and siRNA knockdown experiments. The successful verification of the
proteomic GSMMs afforded iBreast2886, a breast GSMM that encompasses the metabolic plasticity of EMT as defined by the D492

EMT cell culture model. Analysis of breast tumor proteomic data using iBreast2886 identified vulnerabilities within arginine
metabolism that allowed prognostic discrimination of breast cancer patients on a subtype-specific level. Taken together, we

demonstrate that the metabolic reconstruction iBreast2886 for

the bolism of breast epithelial cell development and

can be utilized as a tool for the functional interpretation of high throughput clinical data.
npj Systems Biology and Applications (2021)7:36; https://doi.org/10.1038/s41540-021-00195-5

INTRODUCTION

Roughly 90% of all cancer-related deaths are believed to be
caused by secondary metastatic tumors'. Multiple enzymes have
been identified that support cancer cell dissemination in breast
cancer through alterations of core metabolic pathways. These
include the glycolytic enzymes HK1 and PKM223, IDH1 involved in
the tricarboxylic acid (TCA) cycle?, ACLY in fatty acid synthesis®,
and PRODH from proline synthesis®. Definitive metabolic patterns
that differentiate between invasive and non-invasive cancer cells
however remain elusive’.

One way that epithelial cells gain invasive properties is through
the developmental process known as epithelial-to-mesenchymal
transition (EMT). When localized breast cancer epithelial cells go
through EMT, they gain invasive and apoptosis-resistant proper-
ties that contribute to their ability to migrate through the
extracellular matrix and form secondary tumors through
mesenchymal-to-epithelial transition (MET)*'%. Metabolic altera-
tions are believed to be a hallmark of cancer and tumor
progression'' and thus, an overall understanding of the metabolic
changes that accompany EMT and MET in breast tissue may help
to recognize potential biomarkers and drug targets associated
with cancer progression.

Genome-scale metabolic models (GSMMs) have been success-
fully used to analyze and interpret changes to cancer metabolism
based upon high-throughput datasets'*'", GSMM-based studies
have revealed significant alterations in the reducing potential
during breast tumor development where NADPH is increasingly
directed towards reactive oxygen species (ROS) defenses'=.

Furthermore, the predicted metabolic variability between patients
has been utilized successfully for their prognosis'®. These
studies'*'® were based on transcriptomic or proteomic data
obtained from the cell lines or tumars of interest but lacked direct
measurements of uptake/secretion rates that constrain metabolic
flux as these measurements are challenging to obtain in a clinical
setting. Directly incorporating metabolic measurements s
expected to provide more accurate predictions than clinical
breast cancer data alone.

We hypothesize that GSMMs representing the metabolic
plasticity of EMT may help define the metabolism of breast tissue
and contribute to the identification of metabolic vulnerabilities for
breast cancer diagnostic or therapeutic purposes. The epithelial-
derived D492 cell EMT model is comprised of two cell lines (D492
and D492M) that allow metabolic differences that occur following
spontaneous EMT in cell culture to be investigated'®. Similar cell
models previously used to study EMT include HMLE and the
PM(C42 EMT cell models'” "%,

In order to describe the metabolic plasticity of EMT we recently
reported the metabolism of D492 and its mesenchymal-like
counterpart D492M by integrated analyses of extracellular
metabolomic- and transcriptomic data within tailored GSMMs.
The metabolic alterations that occur following EMT in D492'¢
mirrored results from a comprehensive analysis of EMT metabo-
lism®® and anchorage-independent growth?'. A decrease in
glycolysis and changes to mitochondrial oxidation of amino acids,
specifically glutamine, threonine, arginine and lysine were
observed. Those analyses were limited to transcriptomic and
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extracellular metabolomics data prompting the question of how
proteomic data would alter the predictions of D492 metabolic
network activity given the nonlinear relationship of transcription
and translation™*.

Here, we extend the D492 EMT GSMM, now termed iBreast2886,
to include differences in protein levels, further formulating the
metabolism of EMT and investigate the models ability to describe
breast tissue metabolism. In order to capture the intracellular
metabotypes that accompany EMT in D492 and identify biomar-
kers that discriminate between the two phenotypes, we used
constraint-based modeling and comparative metabolic analysis. In
order to reconcilidate the predicted differences in metabolic
phenotypes based on the different data types, we carried out
enzyme Inhibitor assays, 1-'*C-glutamine tracer analyses, and
siRNA knockdown experiments in vitro to determine the actual
phenotypes D492 and D492M cells. Finally, we demonstrate how
iBreast2886 can be used as a tool for functional interpretation of
tumor gene expression data from breast cancer patients.

RESULTS

Direct comparison of different data types reveals their low
overlap

In order to determine the consistency of the three different types
of data used in this study (microarray, RNA sequencing (RNA-seq)
and proteomic) for D492 epithelial cells and D492M mesenchymal
cells, we compared the three data types by calculating the
Spearman correlation of the log-fold differences between D492M
and D492 (Fig. 1a).

The correlation between RNA-seq and proteomic data was the
highest (p—=046) and the correlation between the two gene
expression methods was lowest (p = 0.28). By comparing only the
metabolic identifiers, the correlation between the dataset did not
change (Fig. 1b).

To compare the datasets on a more functional metabolic level,
we investigated and compared their ability to infer metabolic
activity of D492 and D492M using constraint-based metabolic
modeling®. In order to achieve this, we used the different
datasets as constraints on our previous reconstruction of breast
metabolism, which we refer to hereafter as iBreast2886.
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True metabolic flux is reflected in cell-specific metabolic
networks from proteomic data but not other data types

For the comparative metabolic analysis, we constructed GSMMs
based on RNA-seq and proteomic data from the epithelial D492
and mesenchymal D492M and compared these to microarray-
based GSMMs built previously'® and iBreast2886 GSMMs where
only the extracellular constraints were applied. Henceforth, these
will be referred to as the RNA-seq GSMMs, protein GSMMs,
microarray GSMMs, and media GS5MMs.

In order to compare the EPl and MES models in all pairs of
GSMMs, representative flux values (flux profiles) for all reactions
that obey the GSMM steady-state assumptions for all models were
obtained through random sampling of the solution space®, where
the median values for reactions were used to represent their
activity. The relative differences between EPl and MES in all four
GSMM pairs are summarized in Fig. 2a—d. Hierarchical clustering of
the GSMMs flux profiles revealed highest similarity between the
RNA-seq- and proteomic-constrained models on a phenotype-
specific level (Supplementary figure 1). Upon closer inspection, it
was clear that reaction similarity was different in the various
subcellular compartments. Specifically, the flux similarity of the
RNA-seq- and proteomic-constrained models was compartment
specific, where the endoplasmic reticulum (ER) had the highest
correlation of EMT-linked differences in reaction activity, followed
by the cytosol and mitochendria (Supplementary table 1).

As the ground truth for the comparative analysis of pathway
activity within our GSMMs, we used isotope labeling patterns from
1-"*C-labeled glutamine experiments. This tracer is capable of
quantifying the contribution of glutamine, one of two major
carbon sources of D492 and D492M'S, to citrate, malate, and
aspartate through reductive carboxylation (Fig. 3a) and to the
synthesis of proline and glutathione. The contributions from
glutamine to the aforementioned metabolites are not whole
metabolic pathways but subsets of reductive glutaminelysis and
will be referred to as metabolic routes. Some of these metabolic
routes occur in more than one cellular compartment. Reductive
glutaminolysis is therefore a good representation of the
compartment-based complexity of eukaryotic cellular metabolism.

It is challenging to infer metabolic pathway activity by
observing multiple, individual reactions (cf Fig. 2). Therefore, we
utilized an activity measure that quantifies metabolic route activity
in compartmentalized GSMMs based on random sampling results.
From the metabolic route activity calculations, we observed that
the different omics-constrained GSMMs had different predictions
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Fig. 2 Relative differences in reaction activity in EPl and MES models constrained in four different ways. a Only extracellular constraints,
(b) Microarray, () RMA-seq and (d) Proteomic data. The pathways shown are glycolysis, TCA cycle, and pentose-phosphate pathway. Red
represents higher activity in MES whereas blue represents higher activity in EPI, represented by log-fold differences in median activity from

random sampling of the models.

of the production of metabolites derived from glutamine (Fig. 3b).
According to the 1-'3C-abeled glutamine results, there was
relatively higher citrate derived from glutamine in D492M than
D492, indicating increased flow through reductive carboxylation
of glutamine and/or the decreased condensation of oxaloacetate
and acetyl-CoA (Fig. 3a). The proteomic GSMMs were the only
ones to predict both routes correctly (Fig. 3¢ and Supplementary
figure 2) along with the other four routes that were investigated.
The microarray-constrained GSMMs correctly predicted the
relative difference in metabolic route activity for only two routes,
the RNA-seq G5MM:s for three routes, and the GSMMs constrained
only with extracellular uptake and secretion rates predicted
correctly for four routes in total. Thus, the results indicated the
relatively higher validity of the proteomics-constrained GSMMs
compared to the other data types for intracellular, compartmen-
talized flux predictions.

Results from GSMMs ¢ ined with p
metabolic vulnerabilities of EMT

For the investigation of EMT-specific metabolic remodeling, we
utilized the same methodology as before'® to identify reactions
whose activity specifically requires alteration in order to switch
from a epithelial flux profile (EPI) to a mesenchymal one (MES). As
the proteomics-constrained GSMMs had the most accurate flux
predictions, we used them for this analysis. Briefly, we used a
hypergeometric test to identify whether the altered reactions
were enriched with any subsystems (e.g. the metabolic pathway
families with specific functional roles) within iBreast2886. The
results showed that two out of the top four enriched reaction sets
among EMT-linked reactions are within cholesterol metabolism
(highlighted in red in Fig. 4a).

Statins are a class of drugs that are broadly prescribed to
patients with hypercholesterolemia. They work by inhibiting HMG-
CoA reductase (Fig. 4b), the rate-limiting step in cholesterol
synthesis®®. We treated the D492 and D492M cells with lovastatin
and found that following the successful inhibition of cholesterol
synthesis in both cell lines (Fig. 4¢), it was apparent that the D492
cells were more sensitive to the drug in terms of survival (Fig. 4d).

Thus, in addition to being the most accurate model in terms of
intracellular fluxes, the analysis of the proteomic iBreast2886
GSMMs proved useful in identifying the differences in cholesterol
metabolism in D492 and D492M. On the same note, we performed

ic data reveal
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gene essentiality analysis of the proteomic GSMMs and found the
essential genes for EPl and MES, respectively. Focusing particularly
on the mesenchymal GSMM due to its metastatic involvement, we
found that there were nine genes essential for the MES model.
These were Argininosuccinate Lyase (ASL), Ornithine Aminotrans-
ferase (OAT), Pyruvate Dehydrogenase Complex Component X
(PDHX), Proline Dehydrogenase 1 (PRODH), Renin binding protein
(RENEBP), Isocitrate Dehydrogenase 2 (IDH2), Guanylate Kinase 1
(GUKT), 6-Phosphogluconolactonase (PGLS) and Cystathionine
Gamma-Lyase (CTH).

In order to narrow down the list of genes to verify in vitro, we
evaluated the genes' relationship to survival of patients with
claudin-low breast cancer, which is representative for the
mesenchymal-like phenotype of breast cancer that expresses
high levels of EMT markers®’. This we achieved by measuring the
concordance index (C-index) for the genes, which is a metric for
predictive ability of survival models based on gene expression
levels®™®. ASL had the highest C-index (and lowest associated p
value) among the genes (Fig. 5a) and was chosen for in vitro
survival analysis.

After lowering ASL expression by 75% using small interfering
RNAs (siRNA), the survival of D492M cells was significantly
diminished whereas the survival of D492 cells was not altered
(Fig. 5b and c). The same effect was observed when GUKI, the
gene with third-lowest p value, was silenced in the cells using
siRNA (Supplementary figure 3). Importantly, no effect on survival
was observed after silencing the gene coding for the neighbor
reaction of ASL, argininosuccinate synthase (ASS1) (Supplementary
figure 3).

iBreast2886-dependent analysis of breast cancer proteome
reveals subtype-specific vulnerabilities

Building on the verification of the gene essentiality predictions, we
next validated the ability of iBreast2886 to identify growth
vulnerabilities in breast cancer that could potentially be exploited
for diagnostic or therapeutic purposes. To achieve this, we used
proteomic data from breast tumors®® as constraints for the model.
Again, we chose proteomic data (instead of available transcrip-
tomic data) based on our preliminary constraint-based analysis
with D492 and D492M data which showed its relatively higher
accuracy in capturing intracellular flux phenotypes compared to
transcriptomic data.
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Fig. 3 Predicted and measured metabolic route activity in D492 and D492M cells. a A carbon tracing map of 1-*C-abeled glutamine
describing the flow and fate of labeled carbons in the glutamine carbon skeleton. Metabolites in bold are the end metabolites within the
pathways we guantified. Red circles represent the "*C- carbon isotopes. The mitochondria is indicated by shaded grey. b Density plots of the
calculated metabolic route activitiy (MRA) of five different routes of reductive glutamine metabolism from the total random sampling matrix
(n = 5800 flux vectors) for all GSMMs. The blue distributions represent MRA within the epithelial GSMMs whereas red represents MRA within
the mesenchymal GSMMs. The dashed line represents the median MRA value. Higher (i.e. more positive) values represent more active routes.
All distributions were significantly different in (b) (p < 0.001) based on a Kolmogorov-Smirnov test. ¢ Measured total contribution (TC) from

1-"3C-glutamine to selected metabolites (after 6 h of cell culture) which

p the same r lic routes as in (b). Results in (c) are shown

as mean -+ SEM from three experiments (shown with dots). Student’s t-test was used to estimate significance.

We hypothesized that we would identify subtype-specific
metabolic vulnerabilities of breast cancer, ie. genes specifically
essential for estrogen-receptor positive (ER-positive) and ER-
negative tumors. The status of the estrogen receptor has
repeatedly been shown to be a significant prognostic marker,
where patients with ER-negative tumors generally have shorter
survival times. After creating 55 patient-specific proteomic
GSMMs, we performed gene essentiality analysis on all models.
Subsequently, the ER-negative and ER-positive patient GSMMs
were tested for over-representation of essential genes using
empirical p value calculations (see Materials and Methods).

A single essential gene was identified for ER-negative patients:
Argininosuccinate Lyase (ASL) (empirical p value = 0.0419). In
order to confirm these results, we acquired the metadata for the
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patients through the Gene Expression Omnibus (GEO) and
performed survival analyses using survival in months as time
and cancer-related death as event.

Univariate and multivariable Cox proportional hazard models
were constructed using age and ASL separately for patients with
ER-positive and ER-negative tumors. The Cox analyses (shown in
Table 1) revealed that although ASL protein levels were a predictor
of death in the univariate models of patients with both ER-positive
and ER-negative tumors (HR = 1.16 and 1,12; p = 0.067 and 0.049,
respectively), the inclusion of age in the multivariable models
attenuated the effects of ASL in the ER-positive patients (HR =
1.08, p—0.44) but not in ER-negative patients (HR—=1.12, p—
0.062). Thus, after adjusting for confounding effector age we
observed that ASL was a marginally significant predictor of cancer-
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related death of only ER-negative patients, which confirms the
results from the gene essentiality analysis using breast cancer
proteomic data and iBreast2886.

There were no genes significantly enriched for ER-positive
patients, likely due to the heterogeneity of this breast cancer
subtype which might require further stratification based on the
status of the progesterone and HER2 receptors or genes within the
PAMS0 panel’”.

DISCUSSION

High-throughput molecular screening can serve to focus experi-
mental efforts on understanding the functional consequences of
molecular variation. Here we have used genome-scale metabolic
network modeling to reverse this classification and prioritization
strategy. Rather than using high-throughput clinical data as the
basis for network analysis of generic metabolic models, we used
GSMMs constrained with data from cells in culture whose
metabolic phenotypes resemble breast gland development to
describe the metabolic landscape of breast epithelium and
identify changes in metabolism associated with breast cancer.

A comparison of the different omics data from the breast
epithelial cells D492 and their mesenchymal isogenic cell line
D492M revealed a low correlation of the mRNA and protein levels,
compatible with literature reports on the correlation of these data
types®> 1733 There was an even lower correlation of the two
different mRNA gquantification methods microarray and RNA
sequencing (Fig. 1) which is in accordance with the previous
studies™.

The correlation of transcriptomic and proteomic data can be
compartment-specific due to the different spatiotemporal nature
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of the molecules™. Accordingly, after constraining iBreast2886
with all the different omics data, we found that the differences in
fluxes between the proteomic- and RNA-seg-constrained models
were indeed highly compartment-specific (Supplementary table
1). Three compartments (cytosol, mitochondria, and the ER) had a
significant correlation of p>0.37, with the ER having the highest
value of 0.54. A plausible explanation is that mRNA is synthesized
in the nucleus, but is subsequently exported to the rough ER
where protein translation takes place. Therefore, the ER displaying
high correlation of reaction activity based on proteomic and
transcriptomic data is unsurprising®-7.

Multiple factors influence the consistency of proteomics and
transcriptomics data, not only technical ones like experimental
discrepancies and different data-producing platforms, but also
biological factors like gene regulation, post-translational modifica-
tion, different rates of synthesis, and availability of resources®.
Our findings support that these are different based on the type of
cellular compartment and show that the accuracy of GSMMs flux
predictions from extracellular uptake and secretion measurements
is dependent upon the transcriptomic and proteomic profiles of
the cellular compartment of interest.

The compartment-dependent correlation results highlight that
care must be taken in the interpretation of metabolic phenotypes
from high-throughput data as these may fail to accurately
represent the most fundamental parts of energy metabolism.
Indeed, it was apparent that the predicted relative activity
between EPl and MES was highly data type-dependent (Fig. 2)
with the proteomic-constrained GSMMs predicting flux pheno-
types most similar to measured pathway activity using a
1-"*C-glutamine tracer (Fig. 3). Further analysis of the proteomic
GSMMs was successful in proposing valid changes to D492
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Table 1.  Univariate and multivariable Cox proportional hazard models suggest proteomic levels of ASL are significantly associated with survival of
ER-negative breast cancer patients.

Univariate Multivariable
ER-status Variables HR 95% C1 p value HR 95% C| p value
Positive ASL 116 0.99-1.35 0.067 1.08 0.89-1.31 044
Age 1.07 1.03-1.12 0.0022 1.06 1.02-1.11 0.0086
Negative ASL 112 1.00-1.25 0.049 112 0.99-1.25 0.062
Age 0.99 0.94-1.05 077 1.00 0.95-1.05 093

The models were created using age (in years) and ASL protein levels. The event used in the survival analysis was cancer-related death.

metabolism following EMT. The EMT-linked reaction list was
enriched particularly with reactions taking part in cholesterol and
squalene metabolism (Fig. 4a). As a confirmation of these
predictions, we found that the cholesterol-inhibiting drug
lovastatin had a significantly stronger effect on the survival of
D492 than D492M cells (Fig. 4d). Cholesterol has previously been
shown to be a promoter of EMT*® and the cholesterol-inhibiting
drug statin has been shown to inhibit cancer invasion and
metastasis™® "', Importantly, the differences in cholesterol meta-
bolism of D492 and D492M were not captured by a general KEGG
pathway enrichment analysis of the significantly different proteins
in the cell lines (Supplementary figure 4), suggesting the presence
of emergent properties of the iBreast2886 network that are
biologically relevant and cannot be elucidated using a generic
differential expression analysis.

Similarly, the gene essentiality analysis for the proteomics-
constrained MES model suggested that argininosuccinate lyase
(ASL) would be essential for D492M which was confirmed by
in vitro siRMA knockdown experiments (Fig. 5). Upon knockdown
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of the gene, there was a 22.1% reduction in survival of D492M
cells on average in contrast to only 7% in D492 cells. This level of
survival reduction in D492M is comparable to results from
validations in previous studies using similar methodology
proposing metabolic targets, where 10-80% reduction in survival
have been observed upon in vitro knockdown of the main
metabolic target genes'*2, A manual investigation of the GSMM
flux profiles revealed three likely reasons for the essentiality of ASL:
1) compromised proline synthesis via OAT accompanied by 2)
decreased fumarate production for the TCA cycle and 3)
decreased OAA to aspartate conversion that compromises
aminotransferase activity and therefore anaplerotic fueling of
the TCA cycle. In addition to ASL, we identified six other significant
targets from the gene essentiality analysis, most of which have
been associated with poor cancer survival®~%5. For example,
increased expression of the IDH2 gene has been shown to be
overexpressed in endometrial, prostate, testicular, and advanced
colon cancer'® 8, and we have recently demonstrated that IDH2
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indeed fuels reductive glutaminolysis and fatty acid synthesis in
the D492 and D492M cells in an accompanying study™.

Several studies have carried out metabolic network analysis on
a compendium of clinical transcriptomic or proteomic data to
extract and prioritize metabolic features of importance''2%=2,
Using our breast metabolic GSMM iBreast2886, we analysed
publically available breast tumor proteomic data from 55 breast
cancer patients and identified ASL as a metabolic vulnerability of
the aggressive ER-negative breast cancer.

Thus, we found that ASL was both essential for D492M cell
growth and related to the worse prognosis of ER-negative breast
cancer patients. The enzyme coded by ASL, argininosuccinate
lyase, produces fumarate and arginine from the breakdown of
argininosuccinate. Arginine is a non-essential proteogenic amino
acid involved in nitrogen detoxification and the generation of
nitric oxide (NO) which is important for invasion and metastasis in
various cancer types®**. Downregulation of ASL has been shown
to inhibit the growth of breast cancer tumors in vitro and in vivo®".
Rabinovich et al>® reported that downregulation of ASS1, an
enzyme directly upstream of ASL, increased pyrimidine synthesis
and cancer cell proliferation but did not see the same connection
with ASL. The different effect of siRNA knockdown of ASL and ASST
on D492 and D492M survival reported here support a mutually
exclusive relationship of ASL and ASS1 as only ASL and not ASST
was found to be essential for growth of D492M (Fig. 5c and
Supplementary figure 3). This however does not explain the
observed differences in the context of linear pathway flux within
iBreast2886. A possible explanation is a secondary function of ASL,
as it has been shown to influence cyclin A2 levels by direct
binding in hepatocellular carcinoma, independent of its enzymatic
activity within the ASS7-ASL node that also promoted anchorage-
independent growth®. Intercellular exchange of argininosucci-
nate between ASL- and ASS1-deficient cells, as demenstrated by
Davidson et al®, furthermore indicates that the two enzymes
need not be co-regulated within a single-cell type. This type of
tissue-level metabolic crosstalk would not be captured by our
single-cell metabolic reconstruction iBreast2886. Nevertheless, the
components of the ASST-ASL node, citrulline, and fumarate, have
been reported to be significantly lower and higher, respectively, in
ER-negative breast cancer compared to ER-positive which
supports altered activity within the ASS1-ASL metabolic node™.
The findings additionally support more studies that have shown
that metabolic vulnerabilities of breast cancer lie within arginine
metabolism®*5%:50,

Taken together, the study demonstrates that the metabolism of
EMT captured within iBreast2886 is practical for data integration
and analysis and that proposed phenotypes are in agreement
both with prior investigations of EMT/metastasis and ER-negative
breast cancer metabolism. The iBreast2886 reconstruction is first
and foremost a metabolic model descriptive of the steady-state
metabolic phenotypes that the D492 EMT cell model can achieve
based upon the integration of mRNA transcription, protein
translation, and metabolite uptake and secretion rates. The
integrated analysis of multiple iBreast2886 GSMMs constrained
with separate data types collectively yielded more accurate
predictions than each individual GSMM, as shown here with the
EMT-related changes in cholesterol metabolism and ASL
essentiality.

Limitations of iBreast2886 include lack of actual measurements
of fatty acid oxidation and cholesterol uptake/secretion rates
which might further increase predictive accuracy of iBreast2886.
Genes involved in the oxidation of fatty acids are known to
correlate with reduced cancer patient survival'*®'% and the
relationship of cholesterol to EMT and metastasis has been
discussed here above® "', The robustness and plasticity of breast
tissue metabolism are also more complex than is captured by
iBreast2886, which is solely based upon one EMT cell culture
model and media constraints that may not accurately reflect the
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breast tissue microenvironment® and lack flux extremities that
may arise from kinetic regulation. Steps towards further under-
standing of EMT metabolism could be performed by expanding
iBreast2886 to account for additional cell lines alongside focused
studies aimed at addressing metabolic gaps and network
inconsistencies whose presence was demonstrated in this study
using isotope tracer analysis. In this way, biochemically accurate
descriptions of EMT metabolism in breast tissue to aid in
translational cancer research may be pushed forward.

MATERIALS AND METHODS

Cell culture

D492 and D492M were cultured in a serum-free H14 medium at 37°C and
5% CO2 as previously descibed™. H14 is a fully defined medium
comprised of DMEM/F12 base with 250 ng/ml insulin, 10 ug/mi transferrin,
10ng/ml EGF, 26ng/ml sodium selenite, 10'°M estradiol, 1.4pM
hydrocortisone, 7.1 ng/ml prolactin, 100 U penidillin, 0.1 mg/ml strepto-
mycin and 2mM glutamine. Medium was changed every 48h while
propagating cells, and experiments were performed within four passages.
D452 and D492M cells were kindly provided by the Stem Cell Research
Unit, University of lceland, and were screened for Mycoplasma infections
monthly using PCR-based tests at the Biomedical Center, University of
Iceland.

Origin of iBreast2886 GSMM for breast metabolism
Genome-scale metabolic model construction and analysis were carried out
in MATLAB using the COBRA Toolbox™. The genome-scale breast tissue
metabolic model from Halldorsson et al.’® was used as a base model.
Briefly, RNA sequencing data from both the D492 and D492M cell lines™
was used to create a metabolic model specific for breast tissue. To achieve
this, the human metabolic reconstruction Recon 2 was employed™. All
genes in the RMA sequencing data with expression values exceeding a
fixed cut-off value (1 RPM} in either cell line were identified. To identify the
metabolic reactions associated with the list of genes, the Gene-Protein
Rules (GPRs) of Recon 2 were used. The FASTCORE model building
algorithm™ was subsequently applied to build a functional metabolic
network from the list of identified reactions. The resulting network,
referred to as the iBreast2886 model, was manually curated to ensure no
metabolites or pathways were blocked or missing.

Construction and analysis of cell-type-specific epithelial and
mesenchymal GSMMs

The iBreast2886 reconstruction was used to create cell-type-specific
models of epithelial D492 and mesenchymal D492M based on microarray,
proteomic, and RNA sequencing (RNA-seq) data. The workflow of the
model construction is outlined in Supplementary figure 5. Briefly, the
genes/proteins from each dataset (along with cell-type-specific uptake and
secretion rates of multiple metabolites in the media) were used to
constrain iBreast2886 to create two models (EPI for epithelial D492, and
MES for mesenchymal D492M). Furthermore, the fourth pair of EPl and MES
was added that did not contain any intracellular constraints imposed by
omics data, but only the cell-type-specific uptake and secretion rates. This
gave rise to four pairs of EPl and MES models, where each EPI model
shared the same stoichiometry and uptake/secretion rates but had
different intracellular reaction constraints based on the different datasets.
The same applied to the MES models. See Supplementary information for
details.

Stable isotope tracing analysis

D492 and D492M cells were cultured until confluent as described above.
The medium was then changed to a complete H14 containing
1-"*C-abeled glutamine (Cambridge Isotope Laboratories, Inc, MA, USA).
After 6 h of culturing with the "*C-labeled carbon source, cell metabolism
was quenched using cold methanol and intracellular metabolites were
extracted using ACN extraction®. Analyses were performed on a UPLC
system as described in Rolfsson et al.®. Results were presented as the total
contribution (TC) of carbon sources to measured metabolites®™:

c r»"";"""f m
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Where n is the number of C atoms in the metabolite, i represents the
isotopologues and m is the relative fraction of the isotopologues.

Comparison of GSMM flux predictions and '*C-labeling
profiles

Individual flux distributions from constraint-based modeling of GSMMs
were used to estimate the relative contribution of extracellular metabolites
to intracellular metabolites of interest. This app: h is suitable to

the flow of carbons between metabolites within GSMMs to ultimately
quantify the total activity of specific metabolic routes within pathways that
can subsequently be directly compared to definitive results from stable
isotope tracer analyses. A sch laining the r bolic route activity
measure is shown in Supplementary ﬁqurl: 6. A single flux distribution
represent the flux values of all reactions within a GSMM which is subject to
the constraints applied to the model. In order to calculate the relative flux
value v,y from metabolite m; to m; |, within a pathway of interest, we first
identify all consuming reactions of metabolite m; using the stoichiometric
matrix 5. Then, for a single flux distribution, one can calculate the sum of
© ing flux of bolite m;, and the relative flux that is used to
produce only metabolite m; 1, which we will call v If k is a consuming
reaction of a particular metabolite of interest, then the v,y value for k is
calculated from the raw flux value of k divided by the sum of the fluxes of
all K reactions consuming the same metabolite as k. Therefore, the vy of k
(or v(k)) in a single flux vector is calculated as follows:

vik)

vrei(K) E,f ) Weomp 2)
Where Wemg is the weight given to the relative flux value based on the
relative abundance of the companment it takes place in, since some
reactions take place in more than one companment. The v,(k) values for
all transport reactions were assumed to be 1. The weights for the
compartments were as follows: Cytosol 0.54, mitochondria 022, ER 0.12,
nucleus 0.06, golgi apparatus 0.03, peroxisomes and lysosomes 0.01, and
are representative of their relative volume within cells in general™.

Using the relative consumption values for a list of reactions within a
single flux vector, it is possible to calculate the metabolic route activity
(MRA). To calculate the MRA from metabolite m to m | k, calculate the sum
of the log of relative flux values (from Eq. (2)) within that route:

k1
MRA =3~ log (Ve (m 1)) El

Where the first reaction is the consumption of metabolite m; to produce
metabolite m; ;. The MRA of multiple flux vectors (e.g, within a random
sampling matrix) can be calculated to get a distribution of MRA within a
specific constrained GSMM.

Lovastatin assay

D492 and D492M cells were treated with 5, 10, and 100 pM concentration
of lovastatin (Tocris Bioscience, Bristol, UK) for 24h after which both
cholesterol abundance and cell numbers were assessed. The cholesterol
was measured using Amplex™ Red Cholesterol Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA) according to manufacturers protocol. The
cell numbers were assessed using crystal violet staining. Briefly, after 24 h
of treatment, the cells were fixed using ice-cold methanol and stained with
crystal violet (0.5%). The stain was subsequently released using 10% acetic
acid and absorption was measured at 570 nm.

Scoring of in silico gene essentiality candidates

The METABRIC breast cancer clinical dataset’” was downloaded from
cBioPortal™™"®. The dlinical metadata includes information about the
claudin-status of the tumors in the data. Using only patients with tumors
classified as doudinfow and awvailable survival data (n—199), we
performed a survival analysis. In short, patients were split into two groups
based on the bestsplitting expression level (as identified through
R-package survminer’s surv_cutpoint() function) of a gene of interest. The
prognoses of the groups were then examined by calculating the
concordance index (C-index), which provides an overall measure of
predictive accuracy of the genes’ expression level with right-censored
survival data.
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Small interfering RNA (siRNA) knockdown experiments

For the knockdown experiments, Silencer Select siRNAs (Thermo) were
used (Negative Control No 1 #4390843), ASL (51669 and 51671), and A551
(s1684). Cells were seeded at density of 3000 cells/well in a 96 well plate.
Prior to seeding, the 96 well plates were coated with siRNA and
Lipofectamine RNAIMAX (Thermao) for 15 min. Final concentration of siRNA
in each well, after addition of cells, was 10nM. Transfected cells were
incubated at 37°C and 5% CO; for 96 h at the end of which cell survival
and gene expression were d. To cell survival, CellTiter Glo
Luminescent Cell Viability Assay (Promega, Madison, Wi, USA) was used
according to instructions of the manufacturer. SpectraMax plate reader
was used to measure luminescence at 560 nm. To measure the gene
expression, real time quantitative polymerase chain reaction (qPCR)
was used.

Real-time PCR

Total RNA was isolated using TRIFReagent (Thermo) according to the
manufacturer’s instructions. RNA concentration was measured using
NanoDrop One (Thermo). 0.4 to 1 ug RNA was reverse transcribed to
cDNA using High-Capacity cDNA Reverse Transcription kit (Thermao). Real-
time quantitative PCR reactions were carried out using Luna Universal
qPCR Master Mix (New England Biolabs, Ipswich, MA, USA) according to
manufacturer’s instructions on a BioRad CFX384 Touch™ Real Time System
[BloRad Laboratories, Hercules, CA, USA). Gene expression levels were
d with CFX M. Software (BioRad). Primers were designed
using the Primer3 sof 4 Primers g exon junctions were
chosen to ensure specificity. Differences in relative expression were
estimated using the 2°*' method. The primer sequences used for
tifying the gene expression were: ASL-fwd 5-GGAAGCTGTGTTTGAA
GTGTCA-3', ASL-rev 5-CCATGTTCTCTTGGTGANTCTG-3', ASS1-fwd 5-CAGG
AAAGGGGANCGATCAGGT-3', ASS1-rev 5-CGTGTTGCTTTGOGTACTCCAT-3,
GUK1-fwd 5"-CTTCATCGAGCATGCCGAGTTC-3', GUK1-rev 5-GAACCTGTATG
GCACGAGCAAG-3, ACTBfwd 5-CTTCCTGGGTGAGTGGAGACTG-3" and
ACTB-rev 5-GAGGGAAATGAGGGCAGGACTT-3".

Analysis of clinical breast cancer data using iBreast2886
PI’OII:OI’nII: breast cancer data were acquired from Tang et al®™. After

identifers with missing data in more than ED%DfsampIcs the
data \M’:rl: imported into MATLAB for constraint-based modeling.

Patient-specific GSMMs were constructed from iBreast2886, where the
reactions were only constrained in a patient model if their associated
protein levels were below the 60th percentile in all patients. The same
amount of constraint was applied to the selected reactions as for the EPI
and MES models (as described above). The median percentage of
constrained reactions in the patients was 3.8%. Gene essentiality analysis
was carried out using FBA as desaibed above.

Essential genes that were over-represented in the GSMMs of estrogen
receptor (ER) negative (n, —33) and positive patients (n,—32) were
identified by randomly sampling n, and n, patient-specific GSMMs 1000
times from the whole GSMM list. Then, an empirical p value (p) was
calculated for each gene in the ER-negative and ER-positive patient subsets
using the formula from North et al.”:

ril
nil

Where p is the empirical p value, n is the number of resampled sets
(1000 in this case) and ris the number of times the resampled sets have an
equal or greater number of an essential gene compared to the ER-negative
or ER-positive patient sets.

Genes with a p < 0,05 were identified and their proteomic levels™ were
tested as subtype-specific survival predictors using the patient metadata
acquired from GEO (GSE37751). The metadata used were cancer-related
death and survival in months that were acquired using the R-package
GEOquery™. To assess the effects of genes and confounding variables on
patient survival, Cox-proportional hazard models were employed using the
R-package survival™’_

4

Statistical analysis

For comparison of two groups, a two-sided Student’s t-test was employed
unless when the data did not follow a normal distribution, when the non-
parametric Mann-Whitney U-test was used. When more than a single
treatment was compared in the cell lines, the treatments were all
compared to the negative control using two-sided Student’s ttest and

in par hip with the S

Biclogy Institute



subsequently, the p values were adjusted for multiple comparisons using
the Benjamini-Hochberg approach. For the comparison of two distribu-
tions (e, in the metabolic route activity measurements), a
Kolmogorov-Smimov test was used. Presented data were from at least
three independent experiments (represented by dots) and were summar-
ized using mean | standard error. The asterisks in each figure represent
the p values (*<0.05, **<0.01, ***<0.001, *™**<0.0001, ns — not significant).
Statistical methods used for GSMM analysis of breast cancer patients are
described in the Analysis of clinical breast cancer data using
iBreast2886 section. All statistical analysis was camied out using the R
programming language’®.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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Appendix

Appendix Table 1. The topmost dysregulated phosphorylation sites by
comparing D492M with D492 after statistical analysis of the SILAC
phosphoproteomic dataset (fold change >= 2, one-sample Student’'s T-test p
value < 0.05; p > 0.05 and fold change >= 2 in all three replicates). Blue:
active in D492; Red: active in D492M. NA: gene name is not available.

: . Uniprot : Median_Log2
Phosphorylation Site Protein ID Protein Name (D492/D492M) p Value
COL17A1_pS148 Q9UMD9  Isoform 2 of Collagen alpha-1(XVIl) chain 5.341 0.019
CRYBG1_pS280 Q9Y4K1  Beta/gamma crystallin domain-containing protein 1 3.123 0.004
COL17A1 pS93 Q9UMD9 Isoform 2 of Collagen alpha-1(XVIl) chain 3.058 0.108
FAM83B_pS869 Q5TOW9  Protein FAM83B 3.009 0.006
AKAP12_pS1395 Q02952  A-kinase anchor protein 12 2.750 0.000
LMNB2_pS424 Q03252  Lamin-B2 2.642 0.001
CRYBG1_pS299 Q9Y4K1  Beta/gamma crystallin domain-containing protein 1 2.587 0.002
TNS4_pS350 Q8IZW8  Tensin-4 2.365 0.100
LRBA_pS2485 P50851 Isoform 2 of Lipopolysaccharide-responsive and beige-like anchor protein 2.345 0.035
NA_pS31 B2RA03  cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), mRNA 2.270 0.002
FAM62A_pS820 Q9BSJ8  Family with sequence similarity 62 (C2 domain containing), member A, isoform CRA_b 2.179 0.003
AKAP12 pS96 Q02952  A-kinase anchor protein 12 2.167 0.027
NA pS10 B2RA03 cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), mRNA 2.138 0.009
COL17A1_pS85 Q9UMD9  Isoform 2 of Collagen alpha-1(XVIl) chain 2.116 0.007
AKAP12_pS75 Q02952  A-kinase anchor protein 12 2.061 0.005
EHD2_pS470 QI9NZN4  EH-domain containing 2, isoform CRA_a 2.052 0.001
CRYBG1_pT397 Q9Y4K1  Beta/gamma crystallin domain-containing protein 1 2.032 0.009
FLNC_pS2146 Q14315  Filamin-C 1.893 0.029
LSM14A _pS192 Q8ND56  Isoform 2 of Protein LSM14 homolog A 1.839 0.164
NUP153 pS330 P49790 Nucleoporin 153kDa, isoform CRA_a 1.817 0.002
RAC1 pS71 P63000 Ras-related C3 botulinum toxin substrate 1 (Rho family, small GTP binding protein Rac1) 1.774 0.020
TNS4 pS253 Q8IZW8  Tensin-4 1.748 0.045
NA_pS177 B2RDZ9  cDNA, FLJ96850 1.738 0.011
PKP2_pS197 Q99959 Isoform 1 of Plakophilin-2 1.698 0.079
NUP153_pS333 P49790  Nucleoporin 153kDa, isoform CRA_a 1.696 0.002
CD2AP_pS458 Q9Y5K6  CD2-associated protein 1.694 0.001
El24_pS46 014681 Etoposide induced 2.4 mRNA, isoform CRA_a 1.683 0.013
DSP_pS176 P15924 Desmoplakin 1.626 0.150
DSP_pS2815 P15924 Desmoplakin 1.601 0.014
DSP_pS2821 P15924 Desmoplakin 1.601 0.014
NA_pS60 B2RA03  cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), mRNA 1.476 0.008
NA_pS7 B2RA03  cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), mRNA 1.469 0.001
DSP_pS2825 P15924 Desmoplakin 1.467 0.099
HEL113_pS325 VOHWEL  Epididymis luminal protein 113 1.451 0.002
CRYBG1_pS424 Q9Y4K1  Beta/gamma crystallin domain-containing protein 1 1.426 0.001
CRYBG1_pS427 Q9Y4K1  Beta/gamma crystallin domain-containing protein 1 1.418 0.001
PAK2_pT143 Q13177  Serine/threonine-protein kinase PAK 2 1.394 0.004
SARG_pS133 Q9BWO04  Specifically androgen-regulated gene protein 1.361 0.040
HEL-S-43 pS5 VOHWH9  Protein S100 1.357 0.002
BIN1_pT292 000499  Bridging integrator 1, isoform CRA_a 1.353 0.053
AKAP12_pS286 Q02952  A-kinase anchor protein 12 1.343 0.041
UBE1_pS46 P22314  Testicular secretory protein Li 63 1.334 0.001
NA_pS42 B2RA03  cDNA, FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), mRNA 1.333 0.010
ITGB4_pS1069 P16144 Integrin beta 1.330 0.106
JUP_pS665 P14923  Junction plakoglobin isoform 1 (Fragment) 1.322 0.075
WDR44_pS561 Q5JSH3 Isoform 2 of WD repeat-containing protein 44 1.283 0.004
EPHA2 pS897 P29317 EPH receptor A2, isoform CRA_a 1.278 0.024
HIST1H4L pS48 P62805 Histone H4 1.256 0.010
RAB7A_pS72 P51149 RAB7, member RAS oncogene family, isoform CRA_a 1.243 0.023
NA_pS266 B4E2X3  cDNA FLJ56024 1.240 0.007
RAB3GAP1_pS537 Q15042  RAB3 GTPase activating protein subunit 1 1.223 0.019
AKAP12_pS283 Q02952  A-kinase anchor protein 12 1.200 0.013
HACD3_pS135 Q9P035  Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 1.197 0.005
BIN1_pS272 000499  Bridging integrator 1, isoform CRA_a 1.189 0.004
PAK2_pS141 Q13177  Serine/threonine-protein kinase PAK 2 1.189 0.051
RPLP2_pS17 P05387 Ribosomal protein, large, P2, isoform CRA_a 1.162 0.011
HEL70 pS576 VOHWCO  Epididymis luminal protein 70 1.159 0.004
SNAP23_pS20 000161  Synaptosomal-associated protein 1.156 0.009
EPHA2_pS901 P29317 EPH receptor A2, isoform CRA_a 1.149 0.012
PRKARLA pS83 P10644 Frmein kinase, cAMP-dependent, regulatory, type I, alpha (Tissue specific extinguisher 1), 1127 0.017
isoform CRA_a
ARFGEF1_pS1569 Q9Y6D6 .ADP'TIbGS\ﬂaUDH factor guanine nucleotide-exchange factor 1(Brefeldin A-inhibited), 1122 0.012
isoform CRA_a
HEL113_pS7 VOHWE1  Epididymis luminal protein 113 1.112 0.017
NA_pS1124 AOA1P7ZIM8 LMO7b 1.079 0.010
NA pS1130 AOA1P7ZIM8 LMO7b 1.079 0.010
DDI2_pS194 Q5TDHO  Protein DDI1 homolog 2 1.074 0.017
TMEM201_pS454 Q5SNT2  Transmembrane protein 201 1.060 0.007
CTNND1_pS914 060716  Isoform 1A of Catenin delta-1 1.059 0.011
ARHGAP35_pS1179 Q9NRY4  Rho GTPase-activating protein 35 1.051 0.033
DSG2_pS680 Q14126  Desmoglein-2 1.047 0.033
ZFYVE16_pS946 Q723718  Zinc finger, FYVE domain containing 16, isoform CRA_a 1.043 0.126
SCRIB_pS504 Q14160  Protein scribble homolog 1.026 0.032
PSAT1 pS331 Q9Y617 Phosphoserine aminotransferase 1.006 0.017
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Appendix Table 1 — continued.

. . Uniprot . Median_Log2
Phosphorylation Site Protein ID Protein Name (D492/D492M) p Value
HEL-S-270_pS12 VOHWE5  Annexin -1.002 0.015
NA_pS2 B3KU62  cDNA FLJ39243 fis, clone OCBBF2008283, highly similar to Protein NDRG1 -1.004 0.023
PHIP_pS1315 Q8WWQO PH-interacting protein -1.009 0.008
STOML2_pT327 Q9UJZ1  Stomatin-like protein 2, mitochondrial -1.010 0.000
IGF2BP2_pS162 Q9Y6M1  Isoform 2 of Insulin-like growth factor 2 mRNA-binding protein 2 -1.011 0.002
GBF1_pS1780 Q92538  Isoform 3 of Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 -1.012 0.017
RPL4_pS295 P36578  60S ribosomal protein L4 -1.014 0.030
ADD3_pS649 Q9UEY8  Isoform 1 of Gamma-adducin -1.018 0.048
UBE4B_pS105 095155 Isoform 2 of Ubiquitin conjugation factor E4 B -1.018 0.045
SLK_pS777 Q9H2G2  Isoform 2 of STE20-like serine/threonine-protein kinase -1.020 0.048
NOP56_pS563 000567 Nucleolar protein 56 -1.020 0.004
IGF2BP2_pS164 Q9Y6M1  Isoform 2 of Insulin-like growth factor 2 mRNA-binding protein 2 -1.025 0.001
LAMTOR1_pS27 Q6IAA8  Ragulator complex protein LAMTOR1 -1.026 0.024
EML3_pS176 Q32P44  Echinoderm microtubule-associated protein-like 3 -1.030 0.002
NUP50_pS193 Q9UKX7  Isoform 2 of Nuclear pore complex protein Nup50 -1.031 0.025
SMG8_pS742 Q8ND04  Protein SMG8 -1.033 0.019
BAG3_pS377 095817 BAG family molecular chaperone regulator 3 -1.037 0.006
SCRIB_pT1342 Q14160 Protein scribble homolog -1.038 0.000
MAP4_pT1462 P27816  Microtubule-associated protein -1.040 0.034
NA_pS139 ABK7NO  cDNA FLJ75556, highly similar to Homo sapiens ribosomal protein L14, mRNA -1.041 0.021
YRDC_pS60 Q86U90  YrdC domain-containing protein, mitochondrial -1.046 0.028
cDNA FLJ12778 fis, clone NT2RP2001740, moderately similar to Ubiquitin carboxyl-
NA_pS413 B3KMW2 terminal hydrolase 36 (EC 3.1.2.15) 1047 0.033
DCP1A _pS487 QINPI6 Isoform 2 of MRNA-decapping enzyme 1A -1.056 0.001
PKP3_pT571 Q9Y446  Plakophilin-3 -1.062 0.075
NA_pS204 B7Z3E3  Reticulon -1.067 0.001
ARHGEF10_pS27 015013  Rho guanine nucleotide exchange factor 10 (Fragment) -1.067 0.084
SLK_pS779 Q9H2G2  Isoform 2 of STE20-like serine/threonine-protein kinase -1.081 0.048
RASAL2 _pS877 Q9UJF2 Isoform 2 of Ras GTPase-activating protein nGAP -1.082 0.123
RASAL2_pS880 Q9UJF2 Isoform 2 of Ras GTPase-activating protein nGAP -1.082 0.123
PARG_pS178 Q86W56  Isoform 3 of Poly(ADP-ribose) glycohydrolase -1.084 0.059
AHNAK_pS5752 Q09666  Neuroblast differentiation-associated protein AHNAK -1.086 0.057
UTP14A_pS437 Q9BVJI6 U3 small nucleolar RNA-associated protein 14 homolog A -1.088 0.062
LIMD1_pS277 Q9UGP4  LIM domain-containing protein 1 -1.088 0.012
HTT_pS1874 P42858 Huntingtin -1.096 0.019
ZNF106_pS1025 Q9H2Y7  Zinc finger protein 106 -1.101 0.111
ZNF106_pS1026 Q9H2Y7  Zinc finger protein 106 -1.101 0.111
IRS2_pT527 Q9Y4H2  Insulin receptor substrate 2 -1.109 0.050
IRS2_pS523 Q9Y4H2  Insulin receptor substrate 2 -1.109 0.050
PKP3_pS238 Q9Y446  Plakophilin-3 -1.123 0.014
TNKS1BP1_pS836 Q9C0C2  Tankyrase 1 binding protein 1, 182kDa, isoform CRA_a -1.124 0.017
NA_pS14 ABKOD2  cDNA FLJ77740, highly similar to Homo sapiens 7-dehydrocholesterol reductase, mRNA -1.126 0.005
PAK2 _pS197 Q13177 Serine/threonine-protein kinase PAK 2 -1.127 0.023
NA_pS109 ADA1U9X609 ABCFL -1.128 0.004
MAP7D1_pS125 Q3KQU3  Isoform 4 of MAP7 domain-containing protein 1 -1.130 0.038
ERBB2_pS1024 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -1.131 0.045
SPAG9_pS265 060271  C-Jun-amino-terminal kinase-interacting protein 4 -1.135 0.009
SPAG9_pS268 060271 C-Jun-amino-terminal kinase-interacting protein 4 -1.135 0.009
SARM1_pS40 QB6SZW1  SARML1 protein (Fragment) -1.137 0.052
EIF3E_pS399 P60228 Eukaryotic translation initiation factor 3 subunit E -1.138 0.023
VCL_pS721 P18206 Vinculin, isoform CRA ¢ -1.141 0.027
STIM2_pS680 Q9P246  Stromal interaction molecule 2 -1.142 0.043
STIM2_pS719 Q9P246  Stromal interaction molecule 2 -1.144 0.043
NA_pS56 AOA109NGN6 Proteasome subunit alpha type -1.162 0.005
ZNF22_pS49 P17026  Zinc finger protein 22 (KOX 15), isoform CRA_a -1.164 0.000
PKP3_pT308 Q9Y446 Plakophilin-3 -1.171 0.015
THRAP3_pS575 Q9Y2W1  Thyroid hormone receptor-associated protein 3 -1.176 0.018
LARP7_pS300 Q4G0J3  La-related protein 7 -1.184 0.006
NA_pS293 ABK2W3  cDNA FLJ78516 -1.185 0.024
TRAM1_pS279 Q15629  Translocating chain-associated membrane protein 1 -1.205 0.036
SH3KBP1_pS474 Q96B97 Isoform 2 of SH3 domain-containing kinase-binding protein 1 -1.210 0.133
SH3KBP1_pS472 Q96B97 Isoform 2 of SH3 domain-containing kinase-binding protein 1 -1.210 0.133
FKBP15_pS1164 Q5TIM5  FK506-binding protein 15 -1.214 0.000
MAP7D1_pS116 Q3KQU3  Isoform 4 of MAP7 domain-containing protein 1 -1.228 0.001
ITGB4_pS1387 P16144 Integrin beta -1.242 0.068
LARP1_pT1071 Q6PKGO  La-related protein 1 -1.246 0.015
MAP7D1_pS113 Q3KQU3  Isoform 4 of MAP7 domain-containing protein 1 -1.262 0.138
AHNAK pS3182 Q09666 Neuroblast differentiation-associated protein AHNAK -1.263 0.009
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COBLL1_pS256 Q53SF7  Isoform 4 of Cordon-bleu protein-like 1 -1.269 0.006
COBLL1_pT260 Q53SF7  Isoform 4 of Cordon-bleu protein-like 1 -1.269 0.006
LARP7_pS299 Q4G0J3  La-related protein 7 -1.271 0.001
JUND_pS90 P17535 Transcription factor jun-D -1.285 0.088
PEA15_pS116 Q15121 PEA15 protein -1.292 0.002
MEF2D_pS121 Q14814  Isoform MEF2DAO of Myocyte-specific enhancer factor 2D -1.311 0.019
HSP90ABL_pS452 P08238 Heat shock protein 90kDa alpha (Cytosolic), class B member 1, isoform CRA_a -1.317 0.041
OSBP_pS240 P22059 Oxysterol-binding protein 1 -1.328 0.000
NA pT108 AOA1U9X609 ABCF1 -1.337 0.011
LARP7_pS298 Q4G0J3  La-related protein 7 -1.340 0.003
LIMAL pS132 Q9UHB6  Isoform 4 of LIM domain and actin-binding protein 1 -1.347 0.002
VCL_pS290 P18206  Vinculin, isoform CRA_c -1.362 0.014
KIF14_pS1292 Q15058 Kinesin-like protein KIF14 -1.362 0.034
NA_pS1166 Q2TTR7  Receptor protein-tyrosine kinase -1.370 0.016
RPL28 pS115 P46779 60S ribosomal protein L28 -1.381 0.001
OSBPL3_pS251 Q9H4AL5  Oxysterol-binding protein-related protein 3 -1.383 0.000
TEX2_pS196 Q8IWB9  Testis-expressed protein 2 -1.396 0.120
ARHGAP1_pS51 Q07960 Rho GTPase-activating protein 1 -1.406 0.004
CCDC6_pS367 Q16204  Coiled-coil domain containing 6, isoform CRA_a -1.406 0.009
PDHA1_pS293 P08559 Pyruvate dehydrogenase E1 component subunit alpha -1.431 0.003
NRBP1_pS11 Q9UHY1  Nuclear receptor-binding protein -1.447 0.047
NRBP1_pS2 Q9UHY1  Nuclear receptor-binding protein -1.447 0.053
DLG5_pT874 Q8TDM6  Isoform 4 of Disks large homolog 5 -1.458 0.002
DLG5_pS890 Q8TDM6  Isoform 4 of Disks large homolog 5 -1.458 0.002
DSG2_pS782 Q14126 Desmoglein-2 -1.476 0.023
RPS6KA4_pS347 075676  Ribosomal protein S6 kinase -1.484 0.002
RPS6KA4_pS343 075676  Ribosomal protein S6 kinase -1.484 0.002
SPECCIL_pS384 Q69YQO  Isoform 2 of Cytospin-A -1.499 0.019
ERRFI1_pT127 Q9UJIM3  ERBB receptor feedback inhibitor 1 -1.512 0.120
MYO18A pS1970 Q92614  Unconventional myosin-XVllla -1.519 0.003
NA_pS295 B3KU62 cDNA FLJ39243 fis, clone OCBBF2008283, highly similar to Protein NDRG1 -1.529 0.005
NA_pS292 B3KU62  cDNA FLJ39243 fis, clone OCBBF2008283, highly similar to Protein NDRG1 -1.529 0.194
AKAP13 pS1914 Q12802 Isoform 3 of A-kinase anchor protein 13 -1.564 0.019
SYNE1_pS7900 Q8NF91  Nesprin-1 -1.565 0.001
NA_pS16 AOAL09NGNG Proteasome subunit alpha type -1.587 0.008
SPECCIL_pS385 Q69YQO  Isoform 2 of Cytospin-A -1.592 0.001
AHNAK_pS5400 Q09666  Neuroblast differentiation-associated protein AHNAK -1.612 0.120
EPHA2_pS570 P29317 EPH receptor A2, isoform CRA_a -1.613 0.037
PDHAL_pS232 P08559 Pyruvate dehydrogenase E1 component subunit alpha -1.651 0.131
ERCC6L_pS1069 Q2NKX8  DNA excision repair protein ERCC-6-like -1.684 0.153
HEL-S-102_pS15 VOHW43  Epididymis secretory protein Li 102 -1.688 0.024
GIT1_pS508 Q9Y2X7  ARF GTPase-activating protein GIT1 -1.734 0.010
PAWR_pS259 Q96120 PRKC apoptosis WT1 regulator protein -1.748 0.042
NA_pS298 B3KUB2  cDNA FLJ39243 fis, clone OCBBF2008283, highly similar to Protein NDRG1 -1.765 0.065
ERBB2_pS1077 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -1.806 0.001
AHNAK_pS5731 Q09666 Neuroblast differentiation-associated protein AHNAK -1.843 0.058
SPECCI1L_pS389 Q69YQO0  Isoform 2 of Cytospin-A -1.852 0.012
RAB23_pS188 Q9ULC3  RAB23, member RAS oncogene family, isoform CRA_a -1.869 0.060
NA_pS148 Q71U35  Transcriptional enhancer factor TEF-5 -1.892 0.004
PKP2_pS155 Q99959 Isoform 1 of Plakophilin-2 -1.911 0.108
PKP2_pS154 Q99959 Isoform 1 of Plakophilin-2 -1.911 0.108
PKP2_pS151 Q99959 Isoform 1 of Plakophilin-2 -1.911 0.108
AHNAK_pT4766 Q09666 Neuroblast differentiation-associated protein AHNAK -1.919 0.037
MYO18A pS1974 Q92614 Unconventional myosin-XVllla -1.945 0.029
AHNAK_pT4100 Q09666  Neuroblast differentiation-associated protein AHNAK -1.953 0.017
ITGB4_pT1417 P16144 Integrin beta -1.983 0.186
cDNA, FLJ93042, highly similar to Homo sapiens signal sequence receptor, alpha
NA_pS268 B2REN9 (translocon-associated protein alpha) (SSR1), mRNA -1.983 0.002
ERRFI1_pT131 Q9UJIM3  ERBB receptor feedback inhibitor 1 -1.994 0.054
CAMK2D_pS319 Q13557 Isoform Delta 6 of Calcium/calmodulin-dependent protein kinase type Il subunit delta -2.007 0.028
CAMK2D_pS315 Q13557 Isoform Delta 6 of Calcium/calmodulin-dependent protein kinase type Il subunit delta -2.007 0.028
RPS6KA4 pS627 075676 Ribosomal protein S6 kinase -2.043 0.010
AHNAK_pS5857 Q09666  Neuroblast differentiation-associated protein AHNAK -2.153 0.096
AHNAK_pT4430 Q09666  Neuroblast differentiation-associated protein AHNAK -2.158 0.034
NOP56_pS569 000567  Nucleolar protein 56 -2.208 0.000
NOP56_pS570 000567  Nucleolar protein 56 -2.208 0.000
AHNAK_pS5830 Q09666 Neuroblast differentiation-associated protein AHNAK -2.213 0.092
CTNND1_pS47 060716 Isoform 1A of Catenin delta-1 -2.263 0.005
AHNAK_pT3716 Q09666 Neuroblast differentiation-associated protein AHNAK -2.277 0.040
RRAGC_pT96 Q9HB90  Ras-related GTP-binding protein C -2.387 0.001
CTNNB1_pS191 P35222  Catenin (Cadherin-associated protein), beta 1, 88kDa, isoform CRA_a -2.393 0.002
ZNF106_pS1370 QOH2Y7  Zinc finger protein 106 -2.409 0.004
PDHA1_pS300 P08559 Pyruvate dehydrogenase E1 component subunit alpha -2.413 0.058
SH3KBP1_pS193 Q96B97  Isoform 2 of SH3 domain-containing kinase-binding protein 1 -2.449 0.012
CTNND1_pS4 060716 Isoform 1A of Catenin delta-1 -2.486 0.014
ITGB4_pS1404 P16144 Integrin beta -2.545 0.087
AHNAK_pS5620 Q09666  Neuroblast differentiation-associated protein AHNAK -2.627 0.008
CDH1_pS793 P12830 E-cadherin 1 -2.631 0.016
NA_pT290 B3KUG2  cDNA FLJ39243 fis, clone OCBBF2008283, highly similar to Protein NDRG1 -2.660 0.001
CAMSAP2_pS835 QO8AD1  Isoform 2 of Calmodulin-regulated spectrin-associated protein 2 -3.479 0.018
ABLIM3_pS282 094929  Isoform 2 of Actin-binding LIM protein 3 -3.567 0.013
ITGB4 pS1534 P16144 Integrin beta -4.577 0.003
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Appendix Table 2. The topmost dysregulated phosphorylation sites by
comparing D492HER2 with D492 after statistical analysis of the SILAC
phosphoproteomic dataset (fold change >= 2, one-sample Student’s T-test p
value < 0.05; p > 0.05 and fold change >= 2 in all three replicates). Tenne:
active in D492HERZ2; Blue: active in D492. NA: gene name is not available.

. . Uniprot . Median_Log2(D492
Phosphorylation Site Protein ID Protein Name HER2/D492) p Value
RPS6KA4_pS627 075676  Ribosomal protein S6 kinase 5.198 0.005

CAV1 pY6 Q03135  Caveolin 2.862 0.028
AHNAK_pS5731 Q09666  Neuroblast differentiation-associated protein AHNAK 2.702 0.160
RASAL2_pS880 Q9UJF2  Isoform 2 of Ras GTPase-activating protein nGAP 2.679 0.073
RASAL2 pS877 Q9UJF2  Isoform 2 of Ras GTPase-activating protein nGAP 2.679 0.073
AHNAK_pS5830 Q09666 Neuroblast differentiation-associated protein AHNAK 2.646 0.088

RRAGC_pT96 Q9HB90 Ras-related GTP-binding protein C 2.643 0.001
AHNAK_pS5857 Q09666  Neuroblast differentiation-associated protein AHNAK 2.173 0.082
ERBB2_pS968 P04626  Isoform 5 of Receptor tyrosine-protein kinase erbB-2 1.947 0.011
CDC42EP2 pS109 014613  Cdc4?2 effector protein 2 1.946 0.003
HEL-S-270_pS12 VOHWE5  Annexin 1.848 0.002
CCDC6_pS367 Q16204  Coiled-coil domain containing 6, isoform CRA_a 1.811 0.005
MYO18A pS1974 Q92614  Unconventional myosin-XVllla 1.810 0.013
MYO18A_pS1970 Q92614  Unconventional myosin-XVllla 1.810 0.013
CDH1_pS793 P12830  E-cadherin 1 1.788 0.025
ITGB4_pS1534 P16144  Integrin beta 1.713 0.037
CTNNB1_pS191 P35222  Catenin (Cadherin-associated protein), beta 1, 88kDa, isoform CRA_a 1.643 0.019
AHNAK_pS5400 Q09666  Neuroblast differentiation-associated protein AHNAK 1.627 0.159
AKAP13 _pS1914 Q12802 Isoform 3 of A-kinase anchor protein 13 1.491 0.009
MAP4 pT1462 P27816  Microtubule-associated protein 1.483 0.004
HEL-S-270_pY30 VOHWE5  Annexin 1.416 0.001
CTNND1_pS4 060716  Isoform 1A of Catenin delta-1 1.415 0.034

NA_pT290 B3KUB2 ’c\‘[l;l\éAGiLJSQZAS fis, clone OCBBF2008283, highly similar to Protein 1410 0.091
MAP7D1_pS116 Q3KQU3 Isoform 4 of MAP7 domain-containing protein 1 1.398 0.000

IRS2_pS388 Q9Y4H2  Insulin receptor substrate 2 1.373 0.012
COBLL1_pS256 Q53SF7  Isoform 4 of Cordon-bleu protein-like 1 1.370 0.089
COBLL1_pT260 Q53SF7  Isoform 4 of Cordon-bleu protein-like 1 1.370 0.089
MAP7D1_pS113 Q3KQU3  Isoform 4 of MAP7 domain-containing protein 1 1.366 0.123
MAP7D1_pS125 Q3KQU3 Isoform 4 of MAP7 domain-containing protein 1 1.366 0.073
ERBB2_pS1144 P04626  Isoform 5 of Receptor tyrosine-protein kinase erbB-2 1.364 0.030

ADD3_pS645 Q9UEY8 Isoform 1 of Gamma-adducin 1.362 0.078
ADD3_pS649 Q9UEY8 Isoform 1 of Gamma-adducin 1.362 0.097
STOML2_pT327 Q9UJZ1  Stomatin-like protein 2, mitochondrial 1.343 0.006
TFAM_pS195 Q00059  TFAM protein (Fragment) 1.332 0.002
NOP56_pS569 000567  Nucleolar protein 56 1.324 0.001
NOP56_pS570 000567  Nucleolar protein 56 1.324 0.001
NOP56_pS563 000567  Nucleolar protein 56 1.324 0.001
PAK2_pS197 Q13177  Serine/threonine-protein kinase PAK 2 1.317 0.029
OSBP_pS240 P22059  Oxysterol-binding protein 1 1.314 0.005
PLEKHAS5 pS471 Q9HAUO  Pleckstrin homology domain-containing family A member 5 1.299 0.044
SF3B1_pT328 075533  Splicing factor 3B subunit 1 1.297 0.069
DSG2_pS782 Q14126  Desmoglein-2 1.295 0.032
ERBIN_pS1158 Q96RT1 Isoform 5 of Erbin 1.293 0.037
PAWR_pS259 Q961Z0  PRKC apoptosis WT1 regulator protein 1.260 0.032
ERBB2 pT671 P04626  Isoform 5 of Receptor tyrosine-protein kinase erbB-2 1.256 0.196
ERRFI1_pT131 Q9UJIM3  ERBB receptor feedback inhibitor 1 1.237 0.051
GIT1_pS508 Q9Y2X7 ARF GTPase-activating protein GIT1 1.235 0.043
NA_pS293 ABK2W3  cDNA FLJ78516 1.221 0.015
MAP4_pS723 P27816  Microtubule-associated protein 1.202 0.041
NRBP1_pS11 QYUHY1 Nuclear receptor-binding protein 1.196 0.069

NRBP1_pS2 Q9UHY1  Nuclear receptor-binding protein 1.196 0.070

NA _pY1172 Q2TTR7 Receptor protein-tyrosine kinase 1.164 0.042
NOP56_pS519 000567  Nucleolar protein 56 1.164 0.026
NOP56_pS520 000567  Nucleolar protein 56 1.164 0.026
ERRFI1_pT127 Q9UIM3  ERBB receptor feedback inhibitor 1 1.157 0.094
SLC8ALl pS389 P32418  Sodium/calcium exchanger 1 1.143 0.096

TNS4_pS7 Q8I1ZW8  Tensin-4 1.137 0.027
CTNND1_pS47 060716  Isoform 1A of Catenin delta-1 1.120 0.005

PRRC2C_pT2682 Q9Y520  Isoform 4 of Protein PRRC2C 1.085 0.084
PPP1R13L_pS187 QBWUFS5 E:;eig phosphatase 1, regulatory (Inhibitor) subunit 13 like, isoform 1.085 0.016
RAPH1_pS853 Q70E73 Ras-associated and pleckstrin homology domains-containing protein 1 1.083 0.011

NA_pT108 AOA1U9X609 ABCF1 1.072 0.005

NA_pY1110 Q2TTR7  Receptor protein-tyrosine kinase 1.071 0.010
AHNAK_pS5448 Q09666  Neuroblast differentiation-associated protein AHNAK 1.063 0.107
DCP1A pS487 Q9NPI6  Isoform 2 of mMRNA-decapping enzyme 1A 1.062 0.029

SF3B2_pS307 Q13435 Splicing factor 3B subunit 2 1.054 0.048
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HACD3_pS135 Q9P035  Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 -1.003 0.023
AHNAK_pS210 Q09666  Neuroblast differentiation-associated protein AHNAK -1.006 0.154
TNS4_pS350 Q8I1ZW8  Tensin-4 -1.007 0.082
PKP2_pS155 Q99959 Isoform 1 of Plakophilin-2 -1.009 0.000
PKP2_pS151 Q99959  Isoform 1 of Plakophilin-2 -1.015 0.017
NUP153_pS333 P49790  Nucleoporin 153kDa, isoform CRA_a -1.016 0.003
CTNND1_pS352 060716  Isoform 1A of Catenin delta-1 -1.017 0.014
PANK2_pS45 Q9BZ23  Isoform 2 of Pantothenate kinase 2, mitochondrial -1.039 0.018
FAM83H_pS513 Q6ZRV2  Protein FAM83H -1.041 0.013
TACC3_pS25 Q9Y6A5  Transforming acidic coiled-coil-containing protein 3 -1.044 0.078
CTNND1_pS346 060716  Isoform 1A of Catenin delta-1 -1.045 0.100
CTNND1_pS349 060716  Isoform 1A of Catenin delta-1 -1.045 0.100
MAP7D1_pS428 Q3KQUS3  Isoform 4 of MAP7 domain-containing protein 1 -1.049 0.009
TMEM201_pS454 Q5SNT2  Transmembrane protein 201 -1.058 0.069
ALDOC_pS45 P09972  Fructose-bisphosphate aldolase -1.063 0.001
EPS8L2_pS17 Q9H6S3  Epidermal growth factor receptor kinase substrate 8-like protein 2 -1.069 0.073
TMPO_pS362 P42166  Thymopoietin, isoform CRA_c -1.071 0.004
GPS1_pS454 Q13098 COP9 signalosome complex subunit 1 -1.074 0.021
CTNND1_pS252 060716  Isoform 1A of Catenin delta-1 -1.088 0.037
CRYBG1_pS427 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 -1.102 0.000
DSP_pS22 P15924  Desmoplakin -1.104 0.098
TAOK1_pS9 Q7L7X3  TAO kinase 1, isoform CRA_a -1.108 0.025
cDNA, FLJ96094, highly similar to Homo sapiens numb homolog
NA_pS350 B2RCI6 (Brosophila) (NUMB). mRNA -1.108 0.112
STK38_pS264 Q15208  Serine/threonine kinase 38, isoform CRA_a -1.112 0.189
UBE1_pS46 P22314  Testicular secretory protein Li 63 -1.115 0.002
NUP153_pS330 P49790  Nucleoporin 153kDa, isoform CRA_a -1.120 0.021
EHD2_pS470 Q9NZN4  EH-domain containing 2, isoform CRA_a -1.126 0.001
CRYBG1 pS424 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 -1.129 0.000
IRS2_pS1203 Q9Y4H2  Insulin receptor substrate 2 -1.133 0.012
NA_pS266 B4E2X3  cDNA FLJ56024 -1.139 0.002
GPS1_pS448 Q13098 COP9 signalosome complex subunit 1 -1.160 0.014
AKAP12_pS283 Q02952  A-kinase anchor protein 12 -1.165 0.015
IRS2_pS973 Q9Y4H2  Insulin receptor substrate 2 -1.165 0.126
ATXN2_pS545 Q99700  Ataxin-2 (Fragment) -1.171 0.003
TNKS1BP1_pS987 Q9C0C2 Tankyrase 1 binding protein 1, 182kDa, isoform CRA_a -1.175 0.005
HEL113_pS325 VOHWE1L  Epididymis luminal protein 113 -1.186 0.005
NES_pS398 P48681  Nestin, isoform CRA_c -1.190 0.170
RACI_pS71 P63000 Rasjrelated ‘;3 botulinum toxin substrate 1 (Rho family, small GTP 1013 0.047
binding protein Rac1)
ZFYVE16_pS946 Q723T8  Zinc finger, FYVE domain containing 16, isoform CRA_a -1.217 0.033
FAMG2A_pS820 Q9BSI8 Family with sequence similarity 62 (C2 domain containing), member A, 1001 0.003
isoform CRA_b
CHORDC1_pT47 QYUHD1  Cysteine and histidine-rich domain (CHORD)-containing 1, isoform CRA_c -1.233 0.014
PHKA2_pS729 P46019  Phosphorylase b kinase regulatory subunit alpha, liver isoform -1.239 0.058
PSAT1_pS344 Q9Y617  Phosphoserine aminotransferase -1.299 0.041
DSP_pS176 P15924  Desmoplakin -1.308 0.002
CTNND1_pS268 060716  Isoform 1A of Catenin delta-1 -1.309 0.022
CTNND1 pS269 060716  Isoform 1A of Catenin delta-1 -1.309 0.022
HEL113 pS42 VOHWE1 Epididymis luminal protein 113 -1.370 0.007
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WDR44_pS561 Q5JSH3  Isoform 2 of WD repeat-containing protein 44 -1.410 0.004
PKP2_pS251 Q99959 Isoform 1 of Plakophilin-2 -1.427 0.200
CTNND1_pS230 060716  Isoform 1A of Catenin delta-1 -1.438 0.023
HIST1H4L pS48 P62805  Histone H4 -1.447 0.017
RPL34_pS12 P49207  Ribosomal protein L34, isoform CRA_a -1.460 0.151
AKAP12_pS286 Q02952  A-kinase anchor protein 12 -1.469 0.034
TNS3_pS1149 Q68CZ2  Tensin-3 -1.487 0.044
TNKS1BP1 pS1024 Q9CO0C2 Tankyrase 1 binding protein 1, 182kDa, isoform CRA _a -1.493 0.033
ITPR3_pS916 Q14573 Inositol 1,4,5-trisphosphate receptor type 3 -1.503 0.013
HEL113_pS56 VOHWE1L  Epididymis luminal protein 113 -1.516 0.009
HEL113_pS51 VIHWE1L  Epididymis luminal protein 113 -1.516 0.009
BIN1 pT292 000499  Bridging integrator 1, isoform CRA a -1.522 0.118
AHNAK_pS332 Q09666  Neuroblast differentiation-associated protein AHNAK -1.548 0.012
NA_pS177 B2RDZ9 cDNA, FLJ96850 -1.566 0.000
SEPT9_pS12 AOA024R8V0 Septin 9, isoform CRA_a -1.571 0.059
DST_pS1909 Q03001 Isoform 3 of Dystonin -1.587 0.046
El24 pS46 014681  Etoposide induced 2.4 mRNA, isoform CRA a -1.625 0.010
SCRIB_pS504 Q14160 Protein scribble homolog -1.636 0.010
NA_pS60 BIRAO3 :ﬂ%m FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), .1.669 0.003
ITGB4_pT1417 P16144  Integrin beta -1.679 0.109
SARG_pS133 Q9BWO04  Specifically androgen-regulated gene protein -1.774 0.156
AKAP12 pS75 Q02952  A-kinase anchor protein 12 -1.797 0.173
FLNC_pS2146 Q14315  Filamin-C -1.889 0.007
NA_pS42 B2RAO3 :HI?QN& FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), 1018 0.002
PKP2_pS197 Q99959 Isoform 1 of Plakophilin-2 -1.920 0.001
LMNB2_pS424 Q03252 Lamin-B2 -1.999 0.001
COL17A1_pS148 Q9UMD9 Isoform 2 of Collagen alpha-1(XVII) chain -2.041 0.009
ITGB4_pS1413 P16144  Integrin beta -2.139 0.015
NA_pS10 B2RAO3 ::“I??NNAA FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), 2,006 0.024
ITGB4_pS1069 P16144  Integrin beta -2.303 0.009
NA_pS31 B2RAO3 .?n?QNr\ﬁx FLJ94640, highly similar to Homo sapiens keratin 18 (KRT18), 2,304 0.011
CRYBG1_pS280 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 -2.424 0.029
AKAP12 pS96 Q02952  A-kinase anchor protein 12 -2.479 0.069
FAM83B_pS869 Q5TOW9  Protein FAM83B -2.516 0.021
CRYBG1_pT397 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 -2.563 0.003
AKAP12_pS1395 Q02952  A-kinase anchor protein 12 -2.848 0.001
ERBB2_pY975 P04626  Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -2.880 0.011
CRYBG1_pS299 Q9Y4K1 Beta/gamma crystallin domain-containing protein 1 -2.964 0.000
ERBB2_pS1070 P04626  Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -3.622 0.011
ERBB2_pS1024 P04626  Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -3.660 0.001
ITGB4_pS1424 P16144  Integrin beta -3.760 0.000
ERBB2_pS1036 P04626  Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -3.815 0.006
ERBB2_pS1048 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -4.040 0.012
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Appendix Table 3. The topmost dysregulated phosphorylation sites by
comparing D492HER2 with D492 after statistical analysis of the SILAC

phosphoproteomic dataset (fold change >=
value < 0.05; p > 0.05 and fold change >=

2, one-sample Student’s T-test p
2 in all three replicates). Tenne:

active in D492HERZ2; Red: active in D492M. NA: gene name is not available.

Phosphorylation Site P?(;ISLOIID Protein Name Meﬂ:;;;‘gfgzz(’\[;;‘gz p Value
COL17A1_pS93 Q9UMD9  Isoform 2 of Collagen alpha-1(XVII) chain 3.886 0.086
CAV1_pY6 Q03135 Caveolin 3.692 0.013
COL17A1_pS148 Q9UMDY9  Isoform 2 of Collagen alpha-1(XVII) chain 3.467 0.017
COL17A1_pS61 Q9UMD9  Isoform 2 of Collagen alpha-1(XVII) chain 3.295 0.146
RPS6KA4_pS627 075676 Ribosomal protein S6 kinase 3.088 0.037
COL17A1_pS85 Q9UMD9  Isoform 2 of Collagen alpha-1(XVII) chain 2.904 0.012
CD2AP_pS458 Q9Y5K6  CD2-associated protein 2.626 0.117
COL17A1_pS62 Q9UMD9  Isoform 2 of Collagen alpha-1(XVII) chain 2.597 0.025
TNS4_pS253 Q8Izw8 Tensin-4 2.257 0.083
NA_pS1124 AOA1P7ZIM8 LMOT7b 1.715 0.014
NA_pS1130 AOA1P7ZIM8 LMOT7b 1.715 0.014
LRBA_pS2485 P50851 Isoform 2 of _Lipopolysaccharide—responsive and beige-like 1.660 0.030
anchor protein
CTNND1_pS320 060716 Isoform 1A of Catenin delta-1 1.590 0.074
DSP_pS2815 P15924 Desmoplakin 1.516 0.033
DSP_pS2821 P15924 Desmoplakin 1.516 0.033
DSP_pS2825 P15924 Desmoplakin 1.516 0.097
RAB7A_pS72 P51149 RAB7, member RAS oncogene family, isoform CRA_a 1.508 0.064
EPHA2_pS901 P29317 EPH receptor A2, isoform CRA_a 1.498 0.008
CEP170B_pS1109 Q9Y4F5 Isoform 3 of Centrosomal protein of 170 kDa protein B 1.392 0.008
PKP3_pS313 Q9Y446 Plakophilin-3 1.349 0.093
RASAL2_pS880 Q9UJF2 Isoform 2 of Ras GTPase-activating protein nGAP 1.334 0.059
RASAL2_pS877 Q9UJF2 Isoform 2 of Ras GTPase-activating protein nGAP 1.334 0.059
SNAP23_pS20 000161 Synaptosomal-associated protein 1.246 0.021
ERBB2_pS968 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 1.179 0.073
TNS4_pS350 Q8Izw8 Tensin-4 1.164 0.188
ZC3HAV1_pS335 Q7Z2W4  Zinc finger CCCH-type antiviral protein 1 1.160 0.018
EPHA2_pS897 P29317 EPH receptor A2, isoform CRA_a 1.122 0.006
Protein kinase, cCAMP-dependent, regulatory, type I, alpha
PRKAR1A_pS83 p10644 (Tissue specific eninguisger 1), isufogrm CRY'Aieip ’ 1.106 0.016
PANK4_pT406 QINVE7  Pantothenate kinase 4 1.105 0.064
CHD4_pS1524 Q14839 Chromodomain-helicase-DNA-binding protein 4 1.067 0.096
CHD4_pS1528 Q14839 Chromodomain-helicase-DNA-binding protein 4 1.067 0.096
EPHA2_pS892 P29317 EPH receptor A2, isoform CRA_a 1.041 0.119
SETX_pS1019 Q7Z333 Isoform 3 of Probable helicase senataxin 1.033 0.148
Family with sequence similarity 62 (C2 domain containing),
FAMG62A_pS820 Q9BSJ8 membyer i iso‘?orm CRA b y 62 ( q) 1.029 0.000
JAM3_pS230 Q9BX67  Isoform 2 of Junctional adhesion molecule C 1.028 0.003
NA_pY1172 Q2TTR7  Receptor protein-tyrosine kinase 1.020 0.097
NA_pS73 B3KN59 cDNA FLq13673 fis, clone PLACE1011858, highly similar to 1013 0.004
BAG family molecular chaperone regulator 2
HEL-S-270_pY30 VOHWE5  Annexin 1.013 0.013
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CTNND1_pT900 060716 Isoform 1A of Catenin delta-1 -1.004 0.015
TNKS1BP1_pT1282 Q9C0C2  Tankyrase 1 binding protein 1, 182kDa, isoform CRA_a -1.005 0.070
HTT_pS432 P42858 Huntingtin -1.005 0.022
DKFZp76110921_pS692 Q68CX0  Transporter (Fragment) -1.006 0.099
PPP1R13L_pS102 QB8WUF5 Frotein phosphatase 1, regulatory (Inhibitor) subunit 13 like, 1011 0.003
isoform CRA_a
CDAN1_pS276 Q8IWY9 Isoform 1 of Codanin-1 -1.026 0.055
cDNA FLJ39243 fis, clone OCBBF2008283, highly similar to
NA_pS298 B3KU62 Protein NDRG1 any -1.026 0.116
TOP2A_pS1374 P11388 DNA topoisomerase 2-alpha -1.031 0.139
TOP2A_pS1377 P11388 DNA topoisomerase 2-alpha -1.031 0.139
BAIAP2LL_pS261 Q9UHRA S:;i;:qecific angiogenesis inhibitor 1-associated protein 2-like 1.031 0.001
MST065_pS15 Q549C5 HCG2010808, isoform CRA_a -1.036 0.007
SAP30BP_pS22 Q9UHR5  Isoform 2 of SAP30-binding protein -1.040 0.055
MYBBP1A_pS1308 Q9BQGO  Myb-binding protein 1A -1.040 0.004
MYBBP1A_pS1314 Q9BQGO  Myb-binding protein 1A -1.040 0.004
STIM2_pS680 Q9P246 Stromal interaction molecule 2 -1.040 0.003
PDLIM2_pS161 Q96JY6 PDZ and LIM domain protein 2 -1.042 0.014
TNKS1BP1_pS1024 Q9C0C2  Tankyrase 1 binding protein 1, 182kDa, isoform CRA_a -1.043 0.044
CAD_pS1343 P27708 CAD protein -1.048 0.102
PLEKHF2_pS16 Q9H8W4  Pleckstrin homology domain-containing family F member 2 -1.049 0.006
SLK_pS779 Q9H2G2  Isoform 2 of STE20-like serine/threonine-protein kinase -1.051 0.070
SLK_pS777 Q9H2G2  Isoform 2 of STE20-like serine/threonine-protein kinase -1.051 0.054
NAP1L4_pS5 Q99733 Nucleosome assembly protein 1-like 4, isoform CRA_b -1.053 0.021
HEL113_pS42 VO9HWE1  Epididymis luminal protein 113 -1.054 0.022
TNKS1BP1_pS1029 Q9C0C2  Tankyrase 1 binding protein 1, 182kDa, isoform CRA_a -1.068 0.046
TACC3_pS25 Q9Y6A5  Transforming acidic coiled-coil-containing protein 3 -1.076 0.003
NOP56_pS563 000567 Nucleolar protein 56 -1.078 0.019
SH3KBP1_pS474 Q96B97 Isoform 2 of SH3 domain-containing kinase-binding protein 1 -1.080 0.056
SH3KBP1_pS472 Q96B97 Isoform 2 of SH3 domain-containing kinase-binding protein 1 -1.080 0.056
SARM1_pS40 Q6SZW1  SARM1 protein (Fragment) -1.084 0.043
REPS1 pS272 Q96D71 Ilsoform 3 of RalBP1-associated Eps domain-containing protein 1.092 0.077
REPSL pS273 Q96D71 Ilsoform 3 of RalBP1-associated Eps domain-containing protein 1.092 0.077
HEL-S-49_pS21 VO9HWK1  Triosephosphate isomerase -1.094 0.003
LASP1_pS146 Q14847 LIM and SH3 protein 1, isoform CRA_b -1.097 0.128
TP53BP1_pS1618 Q12888  TP53-hinding protein 1 -1.106 0.008
YRDC_pS60 Q86U90  YrdC domain-containing protein, mitochondrial -1.106 0.014
EIF4B_pS498 P23588 Eukaryotic translation initiation factor 4B -1.110 0.004
LASP1_pT68 Q14847 LIM and SH3 protein 1, isoform CRA_b -1.113 0.021
SPECCI1L_pS384 Q69YQO0 Isoform 2 of Cytospin-A -1.117 0.040
PKP3_pT308 Q9Y446  Plakophilin-3 -1.123 0.143
IRS2_pS560 Q9Y4H2  Insulin receptor substrate 2 -1.127 0.040
IGF2BP2_pS164 Q9Y6M1  Isoform 2 of Insulin-like growth factor 2 mRNA-binding protein 2 -1.129 0.001
CTNND1_pS352 060716  Isoform 1A of Catenin delta-1 -1.137 0.000
CTNND1_pS349 060716 Isoform 1A of Catenin delta-1 -1.137 0.179
AHNAK_pS210 Q09666 Neuroblast differentiation-associated protein AHNAK -1.144 0.108
TNKS1BP1_pS987 Q9C0C2  Tankyrase 1 binding protein 1, 182kDa, isoform CRA_a -1.147 0.050
C150rf52_pS133 Q6ZUT6  Isoform 4 of Uncharacterized protein C150rf52 -1.169 0.187
ITPR3_pS916 Q14573 Inositol 1,4,5-trisphosphate receptor type 3 -1.179 0.071
PDLIM4_pS120 P50479 PDZ and LIM domain protein 4 -1.183 0.006
NA_pS185 B3KN57 cDNA FLJ13654 fis, clone PLACE1011477, highly similar to 1192 0.017
Sorting nexin-2
IGF2BP2_pS162 Q9Y6M1  Isoform 2 of Insulin-like growth factor 2 mRNA-binding protein 2 -1.193 0.003
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AHNAK_pS5552 Q09666 Neuroblast differentiation-associated protein AHNAK -1.201 0.016
TMPO_pS362 P42166 Thymopoietin, isoform CRA_c -1.203 0.009
CENPF_pS2996 P49454 Centromere protein F -1.204 0.011
CTNND1_pS230 060716 Isoform 1A of Catenin delta-1 -1.224 0.030
NA_pS1166 Q2TTR7  Receptor protein-tyrosine kinase -1.225 0.079
HEL113_pS56 VOHWEL  Epididymis luminal protein 113 -1.230 0.034
HEL113_pS51 VOHWE1  Epididymis luminal protein 113 -1.230 0.034
cDNA FLJ77740, highly similar to Homo sapiens 7-
NA_pS14 ABKOD2 dehydrocholesterol ?edyuctase, mMRNA ’ -L.242 0.003
SBDS_pT5 Q9Y3A5  Shwachman-Bodian-Diamond syndrome isoform 1 (Fragment) -1.245 0.007
STIM2_pS719 Q9P246 Stromal interaction molecule 2 -1.250 0.004
NAP1L4_pS7 Q99733 Nucleosome assembly protein 1-like 4, isoform CRA_b -1.251 0.018
HNRNPA3_pS14 P51991 Heterogeneous nuclear ribonucleoprotein A3 -1.258 0.066
CTNND1_pS47 060716 Isoform 1A of Catenin delta-1 -1.261 0.014
PEA15_pS116 Q15121 PEA15 protein -1.262 0.005
NAP1L4_pS12 Q99733 Nucleosome assembly protein 1-like 4, isoform CRA_b -1.274 0.001
CENPF_pS3007 P49454 Centromere protein F -1.334 0.017
PDHA1_pS293 P08559 Pyruvate dehydrogenase E1 component subunit alpha -1.347 0.006
PHACTR4_pS411 Q8l1z21 Isoform 3 of Phosphatase and actin regulator 4 -1.359 0.054
NA_pS16 AOAL09NGN6 Proteasome subunit alpha type -1.387 0.004
ERBB2_pS1053 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -1.390 0.056
RIPOR1_pS22 Q6ZS17  Isoform 2 of Rho family-interacting cell polarization regulator 1 -1.391 0.001
VCL_pS721 P18206 Vinculin, isoform CRA_c -1.400 0.000
HSPYOABL_pS452 P08238 _Heat shock protein 90kDa alpha (Cytosolic), class B member 1, 1418 0.027
isoform CRA_a
TEX2_pS196 Q8IWB9  Testis-expressed protein 2 -1.421 0.002
PKP3_pS314 Q9Y446  Plakophilin-3 -1.421 0.102
AHNAK_pS5620 Q09666 Neuroblast differentiation-associated protein AHNAK -1.426 0.107
HEL-S-102_pS15 VOHWA43  Epididymis secretory protein Li 102 -1.443 0.149
SPECC1L_pS385 Q69YQO0  Isoform 2 of Cytospin-A -1.521 0.014
PDLIM2_pS134 Q96JY6 PDZ and LIM domain protein 2 -1.535 0.006
PDLIM2_pS137 Q96JY6 PDZ and LIM domain protein 2 -1.535 0.015
TP53BP1_pS1678 Q12888 TP53-binding protein 1 -1.544 0.016
TP53BP1_pS1673 Q12888  TP53-binding protein 1 -1.544 0.016
NA_pS148 Q71U35  Transcriptional enhancer factor TEF-5 -1.565 0.002
PDHA1_pS232 P08559 Pyruvate dehydrogenase E1 component subunit alpha -1.612 0.030
TNS3_pS1154 Q68CZ2 Tensin-3 -1.623 0.019
TNS3_pS1149 Q68CZ2 Tensin-3 -1.623 0.019
PKP3_pT571 Q9Y446  Plakophilin-3 -1.625 0.028
SPECCI1L_pS389 Q69YQO  Isoform 2 of Cytospin-A -1.700 0.008
EIF3E_pS399 P60228 Eukaryotic translation initiation factor 3 subunit E -1.750 0.001
ITGB4_pS1413 P16144 Integrin beta -1.845 0.125
PLCB3_pS537 001970 ;»phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta- 1.887 0125
ERCC6L_pS1069 Q2NKX8  DNA excision repair protein ERCC-6-like -1.919 0.199
ZNF106_pS1370 Q9H2Y7  Zinc finger protein 106 -1.951 0.001
PDHA1_pS300 P08559 Pyruvate dehydrogenase E1 component subunit alpha -1.980 0.134
SEPT9_pS12 ADA024R8V0 Septin 9, isoform CRA_a -1.990 0.014
PKP2_pS251 Q99959 Isoform 1 of Plakophilin-2 -2.006 0.149
VCL_pS290 P18206 Vinculin, isoform CRA_c -2.048 0.002
RAB23_pS188 Q9ULC3  RAB23, member RAS oncogene family, isoform CRA_a -2.352 0.001
SH3KBP1_pS193 Q96B97 Isoform 2 of SH3 domain-containing kinase-binding protein 1 -2.548 0.008
ITGB4_pS1424 P16144 Integrin beta -3.174 0.092
ERBB2_pS1077 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -3.303 0.005
CAMSAP2_pS835 QO8AD1  Isoform 2 of Calmodulin-regulated spectrin-associated protein 2 -3.522 0.006
ABLIM3_pS282 094929 Isoform 2 of Actin-binding LIM protein 3 -3.525 0.016
ERBB2_pY975 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -3.544 0.001
ERBB2_pY847 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -3.734 0.019
ERBB2_pS1048 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -4.226 0.005
ERBB2_pS1070 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -4.897 0.004
ERBB2_pS1024 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -5.930 0.006
ERBB2_pS1036 P04626 Isoform 5 of Receptor tyrosine-protein kinase erbB-2 -6.706 0.029
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