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Quantitative electroencephalography (EEG) distinguishes itself from clinical EEG by
the application of mathematical approaches and computer scientific methods. Its quantita-
tive nature is largely owned to digital signal analysis, enabling a quantitative description
of the waveforms which are obtained when we record an EEG. Indeed, digital signal pro-
cessing has opened a new world for cognitive neuroscientists. The EEG allows to measure
precisely in time when cognitive processes begin and end. Analyzing dynamics and signal
similarities quantitatively reveal insights into propagation patterns of information and most
likely also the exchange of neural messages. Cognitive research in psychology—but also in
neurological fields of application—take advantage of classical and advanced methods in
quantitative EEG research.

After much hype about connectivity, brain computer interfaces that promise mind-
reading based on artificial intelligence and easy-to use mobile EEG systems for entertain-
ment and gaming, critical views on replicability of EEG research in cognitive neuroscience
are highly warranted to restore awareness of common methodological pitfalls and to rise
the reputation of the field.

One of the most classical methods of quantitative EEG in cognitive neuroscience are
event related potentials (ERPs). They are obtained by repeating a certain stimulus and
averaging the brain response that is time-locked to this stimulus’ onset. Brain computer
interfaces are often based on the P300, a component of the ERP that reliably responds to
attentional effects. Although this and similar components are supposed to be used for brain
computer interfaces that aim at making life easier for people with disabilities, possibly due
to brain damage, the effect of pathology on the validity of these markers has rarely been
assessed. In this Special Issue, Lytaev and Vatamaniuk demonstrate variations in latency
and amplitude related to brain pathology [1]; thus, emphasizing the need to probe brain
computer interfaces in target populations of patients with pathophysiological conditions.
This is important as findings from healthy populations might not be easily transferrable to
those populations. Patient populations present with abnormalities in brain activity being
related to the primary injury, but also to neuroplasticity that emerges at the chronic stage
of the condition.

The EEG as a neuroscientific method has several important advantages. One of them
is being portable. Field studies would not be possible with magnetic resonance imaging
or magnetoencephalography. However, mobile EEG devices have been viewed critically
because of their low signal-to-noise ratio and, thus, their poor reliability. Especially record-
ings in the field might be biased by the uncontrolled environment. In this Special Issue,
Edwards and Truillo probe the validity limits of the EEG by directly contrasting a mo-
bile EEG being recorded under controlled laboratory conditions with recordings in an
uncontrolled outdoor environment [2]. Assessment of EEG spectral power responses to
cognitive stimulation (number sense, attention, memory, executive function) showed that
significant effects could be recorded under both recording conditions. Lower frequency
bands up to alpha (8-13 Hz) were not affected by the environment, but beta-band power
was potentially affected at resting state. This finding is encouraging as also neurofeedback
technology may be employed under varying conditions. For example, Pérez-Elvira et al.,
used individual alpha peak frequency as a biomarker for neurofeedback training in ado-
lescents with learning disabilities [3]. In their study, this biomarker was used to identify
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patients who might be more likely to respond to the neurofeedback training. In order to
be used in clinical practice to this end, a biomarker must be reliable and replicable. The
EEQG is still mostly used in a clinical field of application, where qualitative assessment is
today’s standard. Nevertheless, even in the clinical environment quantitative methods are
introduced more and more, as the hope is that they will render clinical applications more
reliable and that they will ultimately make clinical EEG assessment more time-efficient by
introducing automation.

Another advantage of the EEG as a neuroscientific method is that it is not harmful and
can, therefore, be used in vulnerable groups, such as in the study of cognitive processes
very early in a human’s life. Lang et al. conducted two studies in newborns at the age
of 2-5 weeks after birth [4,5]. With this study setup, it was possible to show that the
brain activity in newborns shows a distinctive reaction to the maternal voice compared
to an unfamiliar voice, but that a prenatally repeatedly presented rhyme did not evoke
such a familiarity effect. However, the prenatal daily stimulation with a maternal spoken
nursery rhyme was found to evoke a certain type of memory, such that a re-exposure to this
nursery rthyme after birth had a calming effect; polysomnography and video-monitored
high-density EEG revealed fewer waking states, more time spent in deep sleep and lower
heartrates as response to the familiar nursery rhyme. Both studies represent a hint to very
early memory formation, possibly even pre-natal memory.

The EEG can also be understood in a wider sense, when we move from the classical
scalp-EEG to invasive methods. The medical necessity to implant electrodes in order to
measure the EEG invasively is a very unique opportunity for neuroscientists to study the ac-
tivity of specific brain regions deep below the neocortex. Additionally, addressing medical
questions with methods of quantitative EEG and paradigms from cognitive neuroscience is
also yielding important insights that might be of relevance for future medical decision mak-
ing. Basic questions about the validity of conclusions on effective neural signaling between
brain regions can also be addressed in such a scenario. Based on a sample of pre-surgical
patients with implanted electrodes, Thomschewski et al. critically asked whether neural
activity in high frequency bands at 80-249 Hz is coherent between distant brain regions [6].
Their study revealed that coherent activity of high frequency oscillations between the
prefrontal cortex and the hippocampus was not significantly altered during completion of
a virtual spatial navigation task. It is possible that this band of high frequency activity is
reflecting rather local circuit activities rather than long-distance communication. Locally
refined activity can also be examined by quantitative EEG methods down to the single unit
level. The activity of single neurons can be examined when microelectrodes are implanted
in patients with epilepsy, undergoing pre-surgical evaluation. Derner et al. analyzed firing
rates of single neurons in response to binaural versus monaural 5 Hz stimulation [7]. A
negative correlation between beat stimulation-related firing rate differences and memory-
related firing rates suggested that beat stimulation may be shifting baseline firing levels.
Indeed, the authors reported that this shift in firing rate was associated with increased
memory performance for binaural vs. monaural beats.

Quantitative EEG combined with cognitive tasks is established in cognitive neuro-
science and has been introduced to clinical decision making, a domain that requires reliable
and replicable signals. These are indeed the challenges of quantitative EEG in cognitive
neuroscience, as the replication crisis has reached this field like many others. Analysis
methods in quantitative EEG are often described as a “jungle”, where new methods are
established rapidly and sometimes unfortunately adapted by unexperienced users. Poor
replicability can easily arise from the wide variety of methods that can be combined and
the pitfalls that can be met without the necessary understanding of statistics and digital
signal processing. Furthermore, sample sizes in EEG research are traditionally wrong.
Some decades ago, the rule of thumb was that an EEG study should include around
20 participants. However, this number bears any statistical argument, as the power of
such a study varies with the effect size of the particular biomarker and comparison. Some
researchers have adapted more lenient views and report results on considerably smaller
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samples, which require the use of robust, non-parametric statistics. Other researchers have
acknowledged the problem and aim for larger samples in their studies, at the order of
100 participants or more. Especially in machine learning, this is still a small number.

For boosting the field of quantitative EEG in cognitive neuroscience, it will be necessary
to plan adequately powered studies with large sample sizes. Moreover, longitudinal
research with repeated EEG recordings in order to proof the repeatability of findings with
specific biomarkers and studies that employ robust statistical methods that were tested on
EEG data can propel this field forward.
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