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Abstract
Hyperspectral images (HSIs) acquired by hyperspectral imaging sensors contain hun-
dreds of spectral bands. The abundant spectral information provided by an HSI makes
it possible to discriminate different materials in a scene. Therefore, HSIs have been
widely used in various fields, such as agricultural production, mineral exploration, and
environmental protection. However, HSIs are usually corrupted by different noises such
as quantization noise, thermal noise, and shot noise, due to the influence of photon
effects, atmospheric absorption, and sensor disturbance. Therefore, denoising is an
important preprocessing step for HSI analysis and applications. HSI has the low-rank
characteristic, which is exploited by representing the spectral vectors of HSI in a low-
dimensional subspace. Thus, it is an effective way to use the low-rank characteristic of
HSI for HSI denoising. This thesis proposes several low-rank-based denoising methods
for HSI to improve HSI applications.

The main contributions of the thesis are the following.

- Two new low-rank based HSI denoising methods. One is the non-local means low-
rank approximation (NLMLRA) method, which uses a Slanted Butterworth function to
construct a low-rank approximation for non-local means (NLM) operator. The Slanted
Butterworth function is a filter function, that removes the noise in the NLM operator
and retains the eigenvalues above a given threshold value to preserve the low-rank
charactoristic of HSI. The Chebyshev polynomials is used for NLMRA to improve the
practicability and reduce the computational cost. The other is the wavelet-based block
low-rank representations (WBBLRR) denoising method. WBBLRR uses 3-D wavelet
transform to decompose HSI into different sub-images (approximation ciefficients sub-
image and detail coefficients sub-images). Each sub-image can be considered as a block,
where each block utilizes a low-rank representations model with different regularization
parameters to obtain the denoised block.

- A new sparse and low-rank based HSI denoising method. This is the spectral-spatial
transform-based sparse and low-rank representations (SSWSLRR) method. The pro-
posed method uses both `1 penalty and weighted nuclear norm penalty in the transform
domain to exploit the sparse and low-rank characteristics of HSI to remove noise.

- Several mixtures of factor analyzers (MFA) low-rank based methods are proposed
for HSI denoising and feature extraction.

- Four new MFA based HSI denoising methods. MFA is a low-rank probabilistic
method. HSIs usually have different classes with different characteristics and can-
not be assumed to obey a Gaussian distribution. Thus, the Gaussian mixture model
can be used to solve the non-normal distribution problem. MFA uses the Gaussian



mixture model to allow a low-rank representation of the Gaussians for different sam-
ples of HSI to remove noise. Furthermore, MFA is applied in the wavelet domain to
remove noise is also analyzed. In addition, mixed noise is discussed using MFA with
local spatial-spectral correlation of HSI.

- Six new unsupervised, supervised, and semi-supervised feature extraction methods.
All the methods are proposed based MFA to exploit the low-rank representation for
HSI. And the methods set different number of layers of MFA to construct the algorithm
frameworks and use different samples to train the models. Unsupervised methods only
use unlabeled samples to extract features of HSI. Supervised methods only utilize la-
beled samples to extract features of HSI. Semi-supervised methods use both unlabeled
and labeled samples to extract features of HSI.
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Ágrip
Hyperspectral myndir (HSI) sem fengnar eru af skynjun skynjara geisla innihalda hun-
druð litrómsbanda. Nægar litrófsupplýsingar sem gefnar eru af HSI gera það mögulegt
að mismuna mismunandi efnum í senu. Þess vegna hafa HSI verið mikið notaðar á
ýmsum sviðum, svo sem landbúnaðarframleiðsla, steinefnaleit og umhverfisvernd. HSI
eru þó venjulega skemmdir af mismunandi hávaða eins og magnstuðli, hitauppstreymi
og skothávaða, vegna áhrifa ljósáhrifa, frásogs andrúmslofts og truflunar skynjara.
Þess vegna er afneitun mikilvægt forvinnsluskref fyrir HSI greiningu og forrit. Þessi
ritgerð leggur til nokkrar afmörkunaraðferðir fyrir HSI til að bæta árangur fyrrnefndra
umsókna. Helstu framlög ritgerðarinnar eru eftirfarandi.

- Tvær nýjar lágstéttar HSI afbótaaðferðir. Önnur er NLMLRA aðferðin sem er ekki
staðbundin og notar slantaða Butterworth aðgerð til að búa til lágmarks nálgun fyrir
rekstraraðila sem ekki er staðbundinn (NLM) og er á skilvirkan hátt útfærð á grund-
velli Chebyshev margliða. Hitt er aðferðin sem byggir á bylgjulögun (low-rank rep-
resentations) (WBBLRR) afneitunaraðferð. WBBLRR notar 3-D bylgjubreytingu til
að brjóta niður HSI í mismunandi blokkir, þar sem hver blokk notar lág-stig framset-
ningarmódel til fá denoised blokkina, og notaðu síðan andhverfa 3-D bylgjubreytingu
fyrir alla denoised blokkina til að fá denoised HSI.

- Ný dreifðar og lágstéttar HSI afneitunaraðferðir. Þetta er litrófs-staðbundna byl-
gjubundna dreifðar og lágstiga framsetning (SSWSLRR) aðferð. Fyrirhuguð aðferð
notar 3-D stakan wavelet umbreytingu (3-D DWT) til að brjóta niður hávær HSI til
dreifðra bylgjustuðla. Hávaðinn í HSI er niðurbrot í bylgjustuðla með dreifðri dreifingu
lítilla amplituda. Til að fjarlægja hávaðann á áhrifaríkan hátt í wavelet léninu er lagt
til veginn kjarnorku norm reglugerð, sem veitir góða nálgun fyrir raunverulega stöðu
Og lögð er til ný strjál og lítil refsiaðferð sem byggð er á vegnu kjarnorkuviðmiði og
ströngum viðurlögum, sem geta dregið saman aðlögunarhæfilega hvern bylgjustuðul,
þ.e. stærri stuðlarnir skreppa minna saman en þeir minni munu minnka meira, þar
sem stærri stuðlar bera meiri upplýsingar en minni.

- Lagðar eru til nokkrar blöndur af þáttargreiningartækjum (MFA) með lágu stigi
aðferðir til að afmarka HSI og draga út eiginleika.

- Fjórar nýjar MFA byggðar HSI afbótaaðferðir. MFA, 2-D bylgjumiðað MFA (WMFA-
2D) og 3-D bylgjumyndað MFA (WMFA-3D) er lagt til að fjarlægja Gaussískan há-
vaða. WMFA-2D og WMFA-3D nota MFA í wavelet domian til að fjarlægja hávaða
er mælt með staðbundnum staðbundnum og litróf fylgni byggðri MFA (LSSC-MFA)
til að fjarlægja blandaðan hávaða.

- Sex nýjar aðferðir til útdráttar án eftirlits, eftirlits og hálfgerðar eftirlits. MFA,
djúpt MFA (DMFA), MFA (SMFA), DMFA (SDMFA), MFA (S2MFA) , og hálfstýrð
DMFA (S2DMFA) lögun útdráttaraðferða er fyrirhuguð HSI flokkun. The MFA lengir



Gaussian blöndu líkanið til að leyfa lágvíddar framsetningu Gaussians. DMFA er djúp
útgáfa af MFA og samanstendur af tveggja laga MFA, þ.e. sýnum úr aftari dreifingu
við fyrsta lagið er innflutt í MFA líkan í öðru laginu. SMFA samanstendur af eins lags
MFA og SDMFA er tveggja laga SMFA. SMFA og SDMFA nýta merktar upplýsingar
til að draga úr eiginleikum HSI á áhrifaríkan hátt. S2MFA og S2DMFA nýta bæði
merktar og ómerktar upplýsingar til að draga út eiginleika HSI.
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Chapter

Introduction 1
This chapter begins with introducing hyperspectral images (HSI). The concept of
hyperspectral denoising is explained and main methods used in denoising are re-
viewed. Feature extraction and its relationship to hyperspectral denoising is also
discussed. The chapter concludes with the goals and novelties of the work presented
here, along with an overview of the thesis.

•

1.1 Hyperspectral Images

Remote sensing is the process of detecting and monitoring the material characteristics
of a scene by measuring its reflected and emitted radiation from satellite or aircraft
sensors.

Hyperspectral remote sensing image is collected by hyperspectral sensors. Hyperspec-
tral sensors can measure reflected light within a scene in hundreds of narrow spectral
bands from across the electromagnetic spectrum. Thus, Hyperspectral image (HSI)
contains contiguous hundreds of spectral bands and usually covers the visible to the
near infrared spectral region. The abundant spectral information provided by an HSI
makes it possible to discriminate different materials in a scene. Therefore, HSIs have
been widely used in various fields, such as agricultural production, mineral exploration,
and environmental protection.

Hyperspectral dataset is often presented as a 3-D data cube in which the first and
the second dimension are the spatial dimensions and the third dimension is the spec-
tral dimension. One such data cube is shown in Fig. 1.1. The data is Indian Pines
hyperspectral dataset and is collected by the Airborne Visible/Infrared Imaging Spec-
trometer at Indian Pines. The image contains 145 × 145 pixels with spatial resolution
of 20m, and 220 spectral bands from 400 nm to 2500 nm with spectral resolution of
9.15 nm.

HSIs are usually corrupted by different noises such as quantization noise, thermal
noise, and shot noise, due to the influence of photon effects, atmospheric absorption,
and sensor disturbance. Quantization and thermal noise are typically modeled as signal
independent Gaussian additive noise, while shot noise can be modeled as variance
dependent additive noise [1–3].
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Figure 1.1: Indian Pines dataset

1.2 Hyperspectral image Denoising
HSI denoising has considerably evolved in recent years [4–11] and can be divided into
model-based and deep learning-based denoising methods. This dissertation only focus
on the model-based denoising methods.

1.2.1 2-D Band-Wise Based Methods

By treating each spectral band of an HSI as a separate grayscale image 2-D denoising
methods can be extended to HSI denoising. Examples of those methods are the non-
local means (NLM) filter [12], the 2-D wavelet denoising [13], the block-matching and
3-D filter (BM3D) [14], and the weighted nuclear norm minimization (WNNM) [15].
Single-band methods utilize only spatial information leading to spectral distortion.

1.2.2 Spectral-Spatial Based Methods

HSIs are spectrally correlated. Therefore, denoising methods should jointly exploit
spatial and spectral information [16]. Several spectral-spatial denoising methods have
been proposed [17]. Yuan et al. [18] suggested a spectral-spatial adaptive total vari-
ation denoising method for removing Gaussian noise. Chen et al. [19] proposed a
denoising method based on spectral-spatial domain mixing prior. Huang et al. [20]
used a spatial-spectral weighted nuclear minimization denoising method for removing
mixed types of noise in HSI. Besides all the methods above, there are other methods
based on transforming HSI to the wavelet domain and utilize wavelet-based spatial
and spectral information to remove the noise [21]. Chen et al. [22] used principal
component analysis (PCA) of the HSI and then transformed the low-energy PCA
output channels to wavelet domain to remove the noise using 2-D spatial and 1-D
spectral wavelet shrinkage denoising. Othman et al. [23] suggested a hybrid of spa-

2



Introduction

tial and spectral wavelet shrinkage by using a spectral derivative to elevate noise and
then utilizes wavelet-based spatial and spectral denoising. Rasti et al. [24] presented
a wavelet domain-based spectral-spatial penalty method for HSI denoising. These
wavelet-based spectral-spatial methods use spatial and spectral information of HSI to
remove noise and utilize wavelet transform to provide a sparse representation for clean
HSI to further remove noise in the wavelet domain.

1.2.3 Low-Rank Based Methods

Recently, many low-rank model-based methods have been proposed for HSI denois-
ing [25–31]. Zhang et al. [32] presented a low-rank matrix recovery (LRMR) method
for removing mixed types of noise in HSI. An extension of the LRMR method [33] was
proposed using an adaptive iteration regularization framework for HSI denoising. Chen
et al. [34] presented a nonconvex low-rank matrix approximation method using a non-
convex regularizer. These low-rank model-based methods exploit the low-dimensional
structures in the HSIs. HSIs are usually self-similarity and have sparse characteristics
in the spatial domain and hence can be denoised using sparse representation. Lu et
al. [35], and Li et al. [36] suggested a HSI denoising method based on sparse rep-
resentation using the high similar spatial information of HSI. More recently, several
denoising methods based on a combination of low-rank and sparse representation have
been presented [37]. Zhuang et al. [38] utilized similar patches in the low-dimensional
subspace to exploit the sparse and low-rank characteristics of HSI. Rasti et al. [39]
used sparse low-rank model, which utilizes sparse penalized least squares for estimat-
ing the unknown signal for denoising. Tensor-based denoising methods given in [40–45]
exploited the low-rank and the sparse characteristic of similar tensors to remove noise.

1.3 Feature Extraction

HSIs provide abundant spectral information about a scene. In general, an HSI con-
tains hundreds of spectral bands with high spectral resolution. However, the high
dimensionality of hyperspectral images (HSIs) makes the processing computationally
and memory costly, and the reliability of supervised classifiers and classification accu-
racy can not be ensured without enough number of training samples [46]. As a result,
reducing the spectral dimensionality is of great interest in HSI analysis [47]. Dimen-
sionality reduction (DR) is a pre-processing method that decreases the dimensionality
of HSI extracts information for HSI post-processing and can be divided into feature
selection (FS) and feature extraction (FE) [17]. In FS, a subset of spectral bands is
selected from the original set of spectral bands. FE transforms the HSI into a new
feature space and in that space extracts features. This dissertation only focus on the
FE methods.
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1.4 Thesis Contributions and Organization

1.3.1 Unsupervised Feature Extraction
FE has been widely used in HSI processing [48]. FE can be divided into three parts,
unsupervised FE (UFE), supervised FE (SFE), and semi-supervised FE (S2FE). The
UFE methods use unlabeled samples, while SFE methods require labeled samples
to extract features. S2FE methods use both labeled and unlabeled samples to ex-
traction features. A classical UFE method is principal component analysis (PCA),
which searches for a projection to maximize the signal variance [49]. Recently, some
probabilistic methods were proposed to reduce the dimensionality of HSI, such as
factor analysis (FA) [50]. FA is a linear Gaussian latent variable model, in which all
of the marginal and conditional distributions are assumed to be Gaussian. Proba-
bilistic principal component analysis (PPCA) [49], and mixtures of factor analyzers
(MFA) [51, 52]. In addition, there are several UFE methods in the literature, such
as multiscale quaternion Weber local descriptor histogram (MQWLDH) [53], orthog-
onal total variation component analysis (OTVCA) [54], sparse and smooth low-rank
analysis (SSLRA) [47], and segmented stacked autoencoder (S-SAE) [55].

1.3.2 Supervised Feature Extraction
SFE methods use labeled samples to improve class separability. Linear discriminant
analysis (LDA) [56] and nonparametric weighted feature extraction (NWFE) [57] are
examples of widely used SFE methods for HSI processing. LDA maximizes the sep-
aration between different classes to extract features. NWFE uses the nonparametric
extension of scatter matrices to extract features. Extension to these methods are,
for example, modified Fishers LDA (MFLDA) [58], regularized LDA [59], and kernel
NWFE [60]. There are other SFE methods used for HSI processing that use, for exam-
ple, manifold-learning based HSI feature extraction [61], and low-rank representation
with the ability to preserve the local pairwise constraints information (LRLPC) [62].

1.3.3 Semi-supervised Feature Extraction
It is labor-intensive and time-consuming to collect a large number of labeled samples,
so in real applications, the number of labeled samples is usually limited [63, 64]. In
contrast, it is easier to obtain unlabeled samples. Therefore, S2FE methods which
utilize both labeled and unlabeled samples are widely employed for HSI processing [65].
Examples of S2FE methods are semi-supervised local Fisher discriminant analysis
(SELF) [66], semi-supervised local discriminant analysis (SELD) [67], and Graph-
based semi-supervised FE methods [68].

1.4 Thesis Contributions and Organization
In this thesis, there are four major contributions. First, we propose two new low-rank
based denoising methods for HSI. One is the non-local means low-rank approximation
(NLMLRA) method. The other is the wavelet-based block low-rank representations
(WBBLRR) denoising method. NLMLRA uses low-rank approximation for non-local

4



Introduction

means operator in the original domain. WBBLRR utilizes a low-rank representations
model for each block in the wavelet domain.

Another contribution of the thesis is that we propose a denoising method based on
sparse spectral-spatial and low-rank representations (SSSLRR) using 3-D orthogonal
transform (3-DOT). SSSLRR can be effectively used to remove Gaussian and mixed
noise. SSSLRR uses 3-DOT to decompose noisy HSI to sparse transform coefficients.
3-D discrete orthogonal wavelet transform (3-D DWT) is a representative 3-DOT
suitable for denoising since it concentrates the signal in few transform coefficients, the
3-D discrete orthogonal cosine transform (3-D DCT) is another example. An SSSLRR
using 3-D DWT will be called SSSLRR-DWT. SSSLRR-DWT is an iterative algorithm
based on the alternating direction method multipliers (ADMM) that uses sparse and
nuclear norm penalties. We use an ablation study to show the effectiveness of the
penalties we employ in the method. Both simulated and real hyperspectral datasets
demonstrate that SSSLRR outperforms other comparative methods in quantitative
and visual assessments to remove Gaussian and mixed noise.

The third major contributions of the thesis are that we propose several mixtures
of factor analyzers (MFA) low-rank based methods for HSI denoising. MFA uses a
Gaussian mixture model to segment the original HSI into different parts, where each
part follows Gaussian distribution and then utilizes a factor analyzer to get a low-rank
factor loading matrix, and finally uses the inverse transformation of the matrix to
get the denoised hyperspectral dataset. Also, we investigate the performance of MFA
in the wavelet domain for HSI denoising and analyze the denoising result of MFA
combining with local spatial-spectral correlation model for removing mixed noise.

The fourth major contributions of the thesis are that we propose six new unsupervised,
supervised, and semi-supervised MFA-based feature extraction (FE) methods for HSI
classification. There are MFA, deep MFA (DMFA), supervised MFA (SMFA), super-
vised DMFA (SDMFA), semi-supervised MFA (S2MFA), and semi-supervised DMFA
(S2DMFA) FE methods for HSI. We also propose an image segmentation method
based on the Gaussian mixture model for these FE methods to solve the problem of
a non-normal distribution. MFA assumes a low-dimensionality representation of the
Gaussians in the Gaussian mixture model. DMFA consists of a two-layer MFA, which
inputs the samples from the posterior distribution at the first layer to an MFA model
at the second layer. SMFA and SDMFA are supervised FE methods that use labeled
samples to extract features of HSI. S2MFA and S2DMFA exploit both labeled and
unlabeled information to extract features of HSI. Based on these three FE methods,
a framework for HSI classification is also proposed. While the dimensionality of the
desired features needs to be selected by the user in conventional DR methods, the pro-
posed framework automatically determines the dimensionality of features according to
classification accuracy without prior supervision by the user.

In Chapter 2, two low-rank based methods is proposed for HSI denoising. There are
NLMLRA and WBBLRR denoising methods. LNLLRA is an extension of the idea
of [69], which focuses on grayscale images. The distinction of our proposed method
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is that we use full-band pixel-based patches to calculate the weighting function to
take full advantage of the high spatial and spectral correlation and constructs a low-
rank approximation function for denoising operator to improve the NLM denoised
performance rather than only using spatial information alone as in [69]. To improve
the practicability and reduce computational cost, Chebyshev polynomials are used in
the NLMLRA. WBBLRR mainly includes three steps for HSI denoising. First, the
noisy HSI is decomposed to different sub-images blocks in wavelet domain using 3-D
wavelet decomposition. Second, each block uses low-rank representations model to
obtain the denoised block. Third, the denoising HSI is obtained using inverse 3-D
wavelet transformation for all the denoised blocks.

In Chapter 3, a sparse and low-rank based method (SSSLRR) is proposed using 3-D
orthogonal transform (3-DOT) for HSI denoising to remove Gaussian and mixed noise.
The thesis used both 3-D discrete orthogonal wavelet transform (3-D DWT) and 3-D
discrete orthogonal cosine transform (3-D DCT) as representative of 3-DOT. The 3-D
DWT is exploited in SSSLRR-DWT to provide a sparse representation for HSI by
jointly using the correlated spatial and spectral information. The idea is that the
wavelet transform concentrates the signal energy in few coefficients while the noise
has energy spread over all coefficients [70, 71]. A new sparse and low-rank penalized
model is proposed for removing noise in the wavelet domian. The method uses the
`1 penalty and the weighted nuclear norm low-rank penalty to adaptively shrink the
wavelet coefficients and penalize the singular values to remove the noise.

An algorithm based on the alternating direction method of multipliers (ADMM) is
developed to get the optimal parameters and denoised results for SSSLRR-DWT.
To analyze the effectiveness of different penalties for SSSLRR-DWT both in signal
and wavelet domain, four different methods were analyzed. The analysis shows that
SSSLRR-DWT uses both `1 penalty and weighted nuclear norm low-rank penalty in
the wavelet domain yields better denoising results than the other methods. Moreover,
a new SSSLRR-DCT denoising method was also proposed, which uses the 3-D discrete
orthogonal cosine transform (3-D DCT) for SSSLRR. The analysis shows that both
SSSLRR-DWT and SSSLRR-DCT have good denoising results. The experimental
results indicate that our proposed method improves the denoising performance for
both simulated and real noisy HSI datasets.

In Chapter 4, several MFA-based low-rank methods are proposed for HSI denoising.
Three new MFA, 2-D wavelet based MFA (WMFA-2D), and 3-D wavelet based MFA
(WMFA-3D) are proposed for removing Gaussian noise. MFA utilizes Gaussian mix-
ture model to segment the original HSI to different parts, where each part follows a
Gaussian distribution and then utilizes a factor analyzer to get a low-rank factor load-
ing matrix, and finally uses the inverse transformation of the low-rank factor loading
matrix to get the hyperspectral data without noise. WMFA-2D and WMFA-3D use
the MFA in the wavelet domain. MFA is particularly suitable for denoising of HSI
with a high level of noise. While WMFA-2D and WMFA-3D can be effectively used to
denoising of HSI with a low level of noise. One new local spatial-spectral correlation
based automatic MFA (LSSC-AMFA) is proposed for removing mixed noise. LSSC-
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AMFA utilizes a novel local spatial-spectral correlation (LSSC) method to remove the
missing lines noise. Then LSSC-AMFA uses MFA to remove the missing pixels, salt
and pepper noise, and Gaussian noises.

In Chapter 5, six new unsupervised, supervised, and semi-supervised MFA-based
methods are proposed for HSI feature extraction and are then used for classifica-
tion of them. There are MFA, deep MFA (DMFA), supervised MFA (SMFA), super-
vised DMFA (SDMFA), semi-supervised MFA (S2MFA), and semi-supervised DMFA
(S2DMFA) feature extraction methods. All of them are probabilistic dimensionality
reduction (DR) methods, instead of assuming that a whole HSI obeys a Gaussian
distribution, the methods use a Gaussian mixture model to extract more effective
information for DR. The Gaussian mixture model is used for MFA to allow a low-
dimensionality representation of the Gaussian. A two-layer MFA, DMFA, utilizes the
samples from the posterior at the first layer to an MFA model at the second layer.
MFA and DMFA are two unsupervised DR method. The methods are particularly
suitable for DR of HSI with a non-normal distribution and unlabeled samples. SMFA
and SDMFA are two supervised DR methods and use labeled samples to extract fea-
tures. SDMFA is a deep version of SMFA and consists of a two-layer SMFA. SMFA
and SDMFA can be effectively used to DR of HSI with a non-normal distribution and
labeled samples. S2MFA and S2DMFA are two semi-supervised DR methods, which
simultaneously consider labeled and unlabeled samples to extract features. S2MFA
uses a Gaussian mixture model to segment image to different parts, each part follows
a Gaussian distribution and contains many labeled and unlabeled samples and uses
a factor analyzer to get a factor loading matrix. This matrix uses labeled samples to
improve the class discrimination and employs both labeled and unlabeled samples to
preserve the local spatial features of the data and then is used for transforming the
original HSI to an optimal low-dimensional subspace to achieve DR. S2DMFA is a
two-layer S2MFA. S2MFA and S2DMFA are particularly suitable for DR of HSI with
a complicated probability distribution and labeled and unlabeled samples. Based on
the six DR methods, we also proposed a framework for HSI classification, the over-
all accuracy of a classifier on validation samples is used to automatically determine
the optimal number of features of DR for HSI classification. This framework can au-
tomatically extract the most effective feature for HSI classification. To validate the
performance of DR, we conduct experiments in terms of SVM classification based on
real HSIs. The experimental results show that our proposed methods can give better
results than statistical DR comparison methods.

Finally, in Chapter 6, conclusions are summarized and future work is detailed.

1.5 Publications
Chapter 2 is based on the following publications:

[a] Bin Zhao, Johannes R. Sveinsson, Magnus O. Ulfarsson, Jocelyn Chanussot,
“Non-local means low-rank approximation for hyperspectral denoising”, accepted
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by IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
pp. 4147-4150, 2021.

[b] Bin Zhao, Johannes R. Sveinsson, Magnus O. Ulfarsson, Jocelyn Chanussot,
“Wavelet-based block low-rank representations for hyperspectral denoising”, ac-
cepted by IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
pp. 2484-2487, 2021.

Chapter 3 is based on the following publications:

[c] Bin Zhao, Johannes R. Sveinsson, Magnus O. Ulfarsson, Jocelyn Chanussot,
“Hyperspectral image denoising using spectral-spatial transform-based sparse
and low-rank representations”, submitted to IEEE Transactions on Geoscience
and Remote Sensing, 2021.

Chapter 4 is based on the following publications:

[d] Bin Zhao, Johannes R. Sveinsson, Magnus O. Ulfarsson, Jocelyn Chanussot, “Lo-
cal spatial-spectral correlation based mixtures of factor analyzers for hyperspec-
tral denoising”, IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), pp. 1488-1491, 2020.

[e] Bin Zhao, Johannes R. Sveinsson, Magnus O. Ulfarsson, Jocelyn Chanussot,
“Hyperspectral images denoising based on mixtures of factor analyzers”, IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1516-
1519, 2020.

Chapter 5 is based on the following publications:

[f] Bin Zhao, Johannes R. Sveinsson, Magnus O. Ulfarsson, Jocelyn Chanussot,
“Semi-supervised mixtures of factor analyzers feature extraction for hyperspec-
tral images”, IEEE Geoscience and Remote Sensing Letters, pp. 1–5, 2020.

[g] Bin Zhao, Johannes R. Sveinsson, Magnus O. Ulfarsson, Jocelyn Chanussot,
“Unsupervised and supervised feature extraction methods for hyperspectral im-
ages based on mixtures of factor analyzers”, Remote Sensing, vol. 12, no. 7, pp.
1179, 2020.

[h] Bin Zhao, Johannes R. Sveinsson, Magnus O. Ulfarsson, Jocelyn Chanussot,
“Mixtures of factor analyzers and deep mixtures of factor analyzers dimension-
ality reduction algorithms for hyperspectral images classification”, IEEE Inter-
national Geoscience and Remote Sensing Symposium (IGARSS), pp. 891-894,
2019.

[i] Bin Zhao, Johannes R. Sveinsson, Magnus O. Ulfarsson, Jocelyn Chanussot,
“(Semi-) supervised mixtures of factor analyzers and deep mixtures of factor an-
alyzers dimensionality reduction algorithms for hyperspectral images classifica-
tion”, IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
pp. 887-890, 2019.
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Chapter

Low-Rank Based Methods 2
In this chapter, two low-rank based methods are proposed for HSI denoising. The
two methods are non-local means low-rank approximation (NLMLRA) and wavelet-
based block low-rank representations(WBBLRR) denoising methods. NLMLRA uses
the patch-based similarity weighting function to construct the non-local means
(NLM) denoising operator and utilizes Chebyshev polynomials-based low-rank
approximation to improve the denoising performance. WBBLRR uses 3-D wavelet
transformation to decompose HSI into different blocks, where each block utilizes a
low-rank representations model to obtain the denoised block, and then uses inverse
3-D wavelet transformation for all the denoised blocks to obtain the denoised HSI.
•

2.1 Non-Local Means Low-Rank Approximation
2.1.1 Introduction
NLM is a single-band image denoising method, which uses the spatial self-similarity of
image to denoise. NLM utilizes the patch-based weighted function to get the denoised
results. The denoising operator of NLM is constructed from patches of the corrupted
noisy image. Thus, the denoising operator is affected by noise. NLMLRA is an ex-
tension of the idea of [69], which focuses on grayscale images. The distinction of our
proposed method is that we use full-band pixel-based patches to calculate the weight-
ing function to take full advantage of the high spatial and spectral correlation and
constructs a low-rank approximation function for denoising operator to improve the
NLM denoised performance rather than only using spatial information alone as in [69].
To improve the practicability and reduce computational cost, Chebyshev polynomials
are used in the NLMLRA.

2.1.2 Problem Formulation

Let X = [x1,x2, ...,xn]T ∈ Rn×B denote a clean HSI with n pixels and B spectral
bands. Here, xi ∈ RB is the ith pixel. The additive noise is assumed in hyperspectral
denoising problem, the observational model can be described as

Y = X + N, (2.1)

where Y, N ∈ Rn×B represent the observed noisy HSI and noise, respectively. There-
fore, HSI denoising problem is to find an estimate X̂ ∈ Rn×B of X from Y.

Non-local means (NLM) is a classical image denoising method and can be expressed
as
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2.1 Non-Local Means Low-Rank Approximation

x̂i =
∑m
j=1 wi,jyj∑m
j=1 wi,j

, (2.2)

where m is the number of similar patches, wi,j is a patch-based weighting function,
i.e.,

wi,j = exp(−
‖ Yj − Yi ‖2

2
2h2 ), (2.3)

where Yi ∈ Rp×B is a patch and is centered around yi, p is the size of the patch, h > 0
is filtering parameter. In matrix notation NLM is

X̂ = AY, (2.4)

where A = D−1W is an NLM operator of Y, D ∈ Rn×n is a diagonal matrix given
by Dii =

∑m
j=1 wi,j , and wi,j are the elements of W.

Image Y is noisy, A is constructed from noisy data, and is thus noisy as well [72]. We
would like to replace A with an operator which is less noisy. In particular, we look for
replacing A with its low-rank approximation (LRA). A simple way to construct the
LRA is to use truncated singular-value decomposition (SVD). However, directly calcu-
lating the SVD of A is computationally expensive and often impractical. The Slanted
Butterworth (SB) function [69] is a filter function, that can suppress eigenvalues with
small magnitude when applied to a matrix and accurately approximate the remain-
ing low-rank operator, while preserving the fundamental properties of the original
operator. Therefore, we use SB function to construct an LRA for NLM operator.

Constructing LRA for the NLM operator based on Chebyshev polyno-
mials

The SB function can be expressed as

fsbω,d(x) = x(1 + ( 1− x
1− ω )2d)− 1

2 , x ∈ [0, 1] (2.5)

where 0 ≤ ω ≤ 1 is filter cutoff, d ∈ N is the order of the filter. The SB function based
on NLM operator A becomes

fsbω,d(A) = A(In + (In −A
1− ω )2d)− 1

2 , (2.6)

where In is the n × n identity matrix. The direct evaluation of the matrix function
fsbω,d(A) for a large matrix A is infeasible [69]. Here, we use Chebyshev polynomials
to evaluate the fsbω,d(A) function.

The Chebyshev polynomials of the first kind of degree k are given by

Tk(x) = cos(k arccos(x)), x ∈ [−1, 1], k = 0, 1, 2, ... (2.7)
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The Chebyshev expansion is

f(x) =
∞∑
j=0

αjTj(x) (2.8)

α0 = 1
2 〈f, T0〉T , αn = 〈f, Tn〉T , n ∈ N, (2.9)

where αi is Chebychev coefficient for f(x), 〈f, Tj〉T = 1
N+1

∑N+1
k=1 f(xk)Tj(xk), j =

0, ..., N, and xk = cos(π(k− 1
2 )

N ).

We evaluate fsbω,d : [0,1] → R by truncating (2.8), i.e.,

fsbω,d(z) ≈
N∑
j=0

αjTj(y), (2.10)

where N is the length of the truncation and is set to 50 as a default value, and
y = 2z − 1 maps fsbω,d from [0,1] to [-1,1]. Thus fsbω,d(A) is approximated by

fsbω,d(A) ≈ SN (fsbω,d,A) =
N∑
j=0

αjTj(2A− In). (2.11)

Finally, the clean image of Y is estimated as

X̂ = SN (fsbω,d,A)Y. (2.12)

2.1.3 Experiments and Results
In the following experiments, we use two simulated and one real noisy HSI datasets.
The simulated datasets are Washington DC Mall (WDCM) dataset (Appendix B.1)
and University of Pavia (UP) dataset (Appendix B.2). In the experiments, two small
parts of the WDCM and UP datasets are used. Their sizes are 200× 200× 191 for the
WDCM dataset and 200× 200× 103 for the UP dataset. Both datasets are assumed
to be noise-free HSIs. The datasets are normalized band by band between [0,1] before
adding noise. The Gaussian noise with zero-mean and standard deviation σ was added
to the clean WDCM and UP datasets. In the experiments, we set σ to two different
values 0.05, and 0.1.

To evaluate the denoised results of the simulated datasets, the quantitative metrics
are peak signal-to-noise ratio (PSNR) (Appendix A.1) and mean structural similarity
(MSSIM) (Appendix A.2) are used.

Here, we evaluate the performance of NLMLRA and NLM for both quantitative met-
rics and visualization of the denoised WDCM and UP HSIs. The PSNR and SSIM of
each band are calculated and depicted in Fig. 2.1 for quantitative assessment. Table 4.1
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Figure 2.1: PSNR (a)-(b), and SSIM (c)-(d) values of each band of
denoised WDCM and UP datasets (σ = 0.05).
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Table 2.1: The quantitative evaluation results (PSNR(dB), MSSIM, and
Time (second)) for the different denoising methods for the Washington
DC Mall (WDCM) and the University of Pavia (UP) datasets. The best
results are in bold typeface.

Dataset Noisy level Metric Noisy NLM NLMLRA

WDCM

σ = 0.05
PSNR 26.02 29.52 32.83
MSSIM 0.6750 0.8198 0.9069
Time - 11.24 9.07

σ = 0.1
PSNR 20.01 25.79 28.56
MSSIM 0.4081 0.6549 0.7793
Time - 11.96 9.16

UP

σ = 0.05
PSNR 26.03 30.65 33.69
MSSIM 0.6184 0.8381 0.9060
Time - 5.59 4.60

σ = 0.1
PSNR 20.01 26.69 29.56
MSSIM 0.3427 0.6828 0.8036
Time - 5.61 4.61

               (a)                            (b)                        

               (c)                            (d)                        

Figure 2.2: The results for the different denoising methods for the
WDCM dataset. (a) Original band 1, (b) Noisy band 1, (c) NLM, and
(d) NLMLRA.
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gives the denoising results in terms of PSNR, MSSIM, and Time for both the WDCM
and UP datasets. From the figure and table, it can be seen that the obtained PSNR,
SSIM, and MSSIM of NLMLRA are higher than for NLM method. The denoising
methods are implemented using MATLAB R2019a on a computer having Intel Core
i7-67000 processor (3.40 GHz), 8.00 GB of memory and 64-bit Windows 10 Operating
System. The running times for NLMLRA are faster than NLM.

We choose σ = 0.05 for both the WDCM and UP datasets to demonstrate visual
quality. Figs. 2.2 and 2.3 show the denoised results for band 1 of the WDCM dataset
and band 32 of the UP dataset, respectively. NLM cannot completely remove the
noise as there is still noise in the denoised images. NLMLRA works well in filtering
out the noise and provides cleaner denoised images.

For the experiments based on the real dataset, the Indian Pines dataset (Appendix B.3)
is used. Fig. 2.4 presents the denoised results for bands 2, and 105. It can be clearly ob-
served that NLM gives oversmooth denoised images. The proposed NLMLRA method
gives better denoised images.

               (a)                            (b)                        

               (c)                            (d)                        

Figure 2.3: The results for the different denoising methods for the UP
dataset. (a) Original band 32, (b) Noisy band 32, (c) NLM, and (d)
NLMLRA.
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                   (a)                          (b)                            (c)      

                   (d)                          (e)                            (f)      

Figure 2.4: The results for the different denoising methods for the Indian
Pines dataset. (a) Original band 2, (b) NLM, (c) NLMLRA, (d) Original
band 105, (e) NLM, (f) NLMLRA.

2.2 Wavelet-Based Block Low-Rank Representa-
tions

2.2.1 Introduction

HSI can be represented by low-rank approximation owing to the high correlation in
the spectral domain. Using this characteristic, singular value thresholding (SVT) and
block SVT (BSVT) denoising methods were proposed in [73]. SVT uses singular value
decomposition (SVD) for noisy HSI and then utilizes soft thresholding for singular
value and finally uses inverse SVD for a low-rank matrix to obtain the denoised HSI.
BSVT is an extended denoising method of SVT that segments HSI to different blocks
and then uses SVT for each block. In this chapter, we propose the WBBLRR denoising
method for HSIs. WBBLRR mainly includes three steps for HSI denoising. First, the
noisy HSI is decomposed to different sub-images blocks in wavelet domain using 3-D
wavelet decomposition. Second, each block uses low-rank representations model to
obtain the denoised block. Third, the denoising HSI is obtained using inverse 3-D
wavelet transformation for all the denoised blocks.

2.2.2 Problem Formulation
Let X ∈ Rn×B denote a clean HSI with n pixels and B spectral bands. The additive
noise is assumed in hyperspectral denoising problem, the observational model can be
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described as
Y = X + N, (2.13)

where Y, N ∈ Rn×B represent the observed noisy HSI and noise, respectively. The
HSI denoising problem is to find an estimate X̂ ∈ Rn×B of X from Y. Using 3-D
discrete wavelet transform (3-D DWT) decomposition, the model can be expressed as

Y = DW + N, (2.14)

where D ∈ Rn×n is the 3-D orthogonal wavelet basis, W ∈ Rn×B is a wavelet coeffi-
cients matrix. To enforce the low-rank, nuclear norm penalty is used on the wavelet
coefficients W. Here, the wavelet-based low-rank denoising problem can be expressed
as

Ŵ = arg min
W

‖H−W‖2
F + λ ‖W ‖∗, (2.15)

where H = DTY, ‖ · ‖2
F is the Frobenius norm, and ‖ W ‖∗ is the nuclear norm of

W. The solution of the abovementioned optimization (2.15) is

Ŵ = USw(Σ)VT (2.16)

where W = U(Σ)VT is the singular value decomposition (SVD) of W, and for each
diagonal element Σii of Σ, Sw(Σ) is the generalized soft-thresholding operator with
λ.

Sw(Σ)ii = max((Σ)ii − λ, 0). (2.17)

HSI can be decomposed into different sub-images (approximation coefficients sub-
image and detail coefficients sub-images) using 3-D DWT decomposition. Each sub-
image can be considered as a block. Here, the main idea of WBBLRR is to apply differ-
ent regularization parameters for different blocks. Therefore, the WBBLRR problem
can be expressed as

Ŵ = arg min
W

7L+1∑
k=1
‖Hk −Wk‖2

F + λk ‖Wk ‖∗, (2.18)

where H = [H1; H2; ...; H7L+1] (the notation ’;’ shows vertical concatenation) and L is
the level of the 3-D DWT decomposition, and W = [W1; W2; ...; W7L+1]. Therefore,
the solution to each block optimization problem is given by

Ŵk = UkSw(Σk)VT
k , (2.19)
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where Wk = Uk(Σk)Vk
T is the SVD of Wk, k = 1, 2, ..., 7L + 1, and Sw(Σk) =

max((Σk)ii − λk, 0).

Finally, the clean image of Y is estimated as

X̂ = DŴ. (2.20)

2.2.3 Experiments and Results
In the following experiments, SVT, BSVT, and WBBLRR denoising methods are
compared on two simulated and one real noisy HSI datasets. The simulated datasets
are Washington DC Mall (WDCM) dataset (Appendix B.1) and University of Pavia
(UP) dataset (Appendix B.2). In the experiments, two small parts of the WDCM
and UP datasets are used. Their sizes are 200 × 200 × 191 for the WDCM dataset
and 200 × 200 × 103 for the UP dataset. Both datasets are assumed to be noise-free
HSIs. The datasets are normalized band by band between [0,1] before adding noise.
The Gaussian noise with zero-mean and standard deviation σ was added to the clean
WDCM and UP datasets. In the experiments, we set σ to two different values 0.05,
and 0.1.

To evaluate the denoised results of the simulated datasets, the quantitative metrics
are peak signal-to-noise ratio (PSNR) (Appendix A.1) and mean structural similarity
(MSSIM) (Appendix A.2) are used.

Table 2.2: The quantitative evaluation results (PSNR(dB), MSSIM, and
Time (second)) for the different denoising methods for the Washington
DC Mall (WDCM) and the University of Pavia (UP) datasets. The best
results are in bold typeface.

Dataset Noisy level Metric Noisy SVT BSVT WBBLRR

WDCM

σ = 0.05
PSNR 26.02 36.84 37.14 39.11
MSSIM 0.6750 0.9688 0.9705 0.9731
Time - 25.19 71.24 16.13

σ = 0.1
PSNR 20.01 28.94 31.34 35.33
MSSIM 0.4081 0.9293 0.9388 0.9425
Time - 24.74 71.36 16.13

UP

σ = 0.05
PSNR 26.03 35.94 36.62 38.07
MSSIM 0.6184 0.9406 0.9469 0.9562
Time - 11.86 34.28 8.84

σ = 0.1
PSNR 20.01 27.74 30.30 34.30
MSSIM 0.3427 0.8744 0.8859 0.9070
Time - 11.68 34.21 9.19

Here, we evaluate the performance of SVT, BSVT, and WBBLRR for both quantita-
tive metrics and visualization of the denoised WDCM and UP HSIs. The PSNR and
SSIM of each band are calculated and depicted in Fig. 2.5 for quantitative assessment.
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Figure 2.5: PSNR (a)-(b), and SSIM (c)-(d) values of each band of
denoised WDCM and UP datasets (σ = 0.05).
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(a) (b) (c)

(d) (e)

Figure 2.6: The results for the different denoising methods for the
WDCM dataset. (a) Original band 5, (b) Noisy band 5, (c) SVT, (d)
BSVT, and (e) WBBLRR.

Table 2.2 gives the denoising results in terms of PSNR, MSSIM, and Time for both the
WDCM and UP datasets. From the figure and table, it can be seen that the obtained
PSNR, SSIM, and MSSIM of WBBLRR are higher than for BSVT and SVT methods.
The denoising methods are implemented using MATLAB R2019a on a computer hav-
ing Intel Core i7-67000 processor (3.40 GHz), 8.00 GB of memory and 64-bit Windows
10 Operating System. The running times for WBBLRR are faster than BSVT and
SVT.

We choose σ = 0.05 for both the WDCM and UP datasets to demonstrate visual
quality. Figs. 2.6 and 2.7 show the denoised results for band 5 of the WDCM dataset
and the UP dataset, respectively. WBBLRR works well in filtering out the noise and
provides cleaner denoised images.

For the experiments based on the real dataset, the Indian Pines dataset (Appendix
B.3) is used. Fig. 2.8 presents the denoised results for bands 4, 5, and 200, respectively.
It can be clearly observed that the noise is suppressed by all the denoising methods
and the proposed WBBLRR method gives good denoised images.
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(a) (b) (c)

(d) (e)

Figure 2.7: The results for the different denoising methods for the UP
dataset. (a) Original band 5, (b) Noisy band 5, (c) SVT, (d) BSVT, and
(e) WBBLRR.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.8: The results for the different denoising methods for the Indian
Pines dataset, from left to right bands 4, 5, and 200, respectively, and
from top to bottom: Original band, SVT, BSVT, and WBBLRR.
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2.3 Conclusions
In this chapter, we propose two new low-rank based denoising methods for HSI. There
are NLMLRA and WBBLRR denoising method. NLMLRA uses the patch-based sim-
ilarity weighting function to construct the NLM denoising operator. To improve the
practicability and reduce computational cost, Chebyshev polynomials are used in the
NLMLRA.WBBLRR is a block low-rank representations method that uses 3-D wavelet
transformation to segment HSI to different blocks and utilizes low-rank representations
to obtain denoised blocks. To validate the performance of denoising methods, two sim-
ulated datasets and one real HSI dataset are used in the experiments. The experiment
results show that the NLMLRA and WBBLRR give good denoised results.
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Chapter

Sparse and Low-Rank Based
Method

3
In this chapter, a denoising method based on sparse spectral-spatial and low-rank
representations (SSSLRR) using 3-D orthogonal transform (3-DOT). SSSLRR can
be effectively used to remove Gaussian and mixed noise. SSSLRR uses 3-DOT
to decompose noisy HSI to sparse transform coefficients. 3-D discrete orthogonal
wavelet transform (3-D DWT) is a representative 3-DOT suitable for denoising since
it concentrates the signal in few transform coefficients, the 3-D discrete orthogonal
cosine transform (3-D DCT) is another example. An SSSLRR using 3-D DWT
will be called SSSLRR-DWT. SSSLRR-DWT is an iterative algorithm based on the
alternating direction method multipliers (ADMM) that uses sparse and nuclear norm
penalties. We use an ablation study to show the effectiveness of the penalties we
employ in the method. Both simulated and real hyperspectral datasets demonstrate
that SSSLRR outperforms other comparative methods in quantitative and visual
assessments to remove Gaussian and mixed noise.

•

3.1 Introduction
Recently, many low-rank model-based methods have been proposed for HSI denois-
ing [25–31]. Zhang et al. [32] presented a low-rank matrix recovery (LRMR) method
for removing mixed types of noise in HSI. An extension of the LRMR method [33]
was proposed using an adaptive iteration regularization framework for HSI denois-
ing. Chen et al. [34] presented a nonconvex low-rank matrix approximation method
using a nonconvex regularizer. These low-rank model-based methods exploit the low-
dimensional structures in the HSIs. HSIs are usually self-similarity and have sparse
characteristics in the spatial domain and hence can be denoised using sparse represen-
tation. Lu et al. [35], and Li et al. [36] suggested a HSI denoising method based on
sparse representation using the high similar spatial information of HSI. More recently,
several denoising methods based on a combination of low-rank and sparse represen-
tation have been presented [37]. Liu et al. [37] uses group sparse and nuclear norm
low-rank penalties for removing stripe noise. Zhuang et al. [38] utilized similar patches
in the low-dimensional subspace to exploit the sparse and low-rank characteristics of
HSI. Rasti et al. [39] used sparse low-rank model, which utilizes sparse penalized
least squares for estimating the unknown signal for denoising. Tensor-based denoising
methods given in [40–45] exploited the low-rank and the sparse characteristic of similar
tensors to remove noise.

In this chapter, we propose a denoising method based on sparse spectral-spatial and
low-rank representations (SSSLRR) using 3-D orthogonal transform (3-DOT) for HSI
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denoising to remove Gaussian and mixed noise. The paper used both 3-D discrete or-
thogonal wavelet transform (3-D DWT) and 3-D discrete orthogonal cosine transform
(3-D DCT) as representative of 3-DOT. The 3-D DWT is exploited in SSSLRR-DWT
to provide a sparse representation for HSI by jointly using the correlated spatial and
spectral information. The idea is that the wavelet transform concentrates the signal en-
ergy in few coefficients while the noise has energy spread over all coefficients [70, 71].
A new sparse and low-rank penalized model is proposed for removing noise in the
wavelet domian. The method uses the `1 penalty and the weighted nuclear norm low-
rank penalty to adaptively shrink the wavelet coefficients and penalize the singular
values to remove the noise.

3.2 Problem Formulation and Proposed Denoiser
Let X = [x1,x2, ...,xB ] ∈ Rn×B denote a clean HSI with n pixels and B spectral
bands. Here, xi ∈ Rn is the ith vectorized spectral band. We assume the following
observational model

Y = X + N, (3.1)
where Y, N ∈ Rn×B represent the observed noisy HSI and noise, respectively. There-
fore, estimating X̂ ∈ Rn×B of X from Y is the HSI denoising problem.

3.2.1 SSSLRR
Using the 3-DOT decomposition, the observational model is formulated as

Y = D2WDT
1 + N, (3.2)

where D2 ∈ Rn×n represents a spatial part of the 3-DOT, D1 ∈ RB×B represents a
spectral part of the 3-DOT, and W ∈ Rn×B is a coefficients matrix.

To enforce sparsity and low-rank a cost function using an `1 and a weighted nuclear
norm low-rank penalties is defined as

Ŵ = arg min
W

‖H−W‖2
F + λ1‖W‖1,1 + ‖W‖ω,∗, (3.3)

where H = DT
2 YD1, ‖·‖2

F is the Frobenius norm, ‖W‖1,1 :=
∑B
i=1 ‖wi‖1 (wi denotes

the ith column of W), and ‖W‖ω,∗ is the weighted nuclear norm of W, which is
defined as

‖W‖ω,∗ = Σi|ωiσi(W)|, (3.4)
where ωi is the weight assigned to the ith singular value σi(W) of W.

We adapt alternating direction method of multipliers (ADMM) [74] for solving (3.3).
The optimization problem (3.3) is transformed into the equivalent problem

min
W,Z

‖H−W‖2
F + λ1‖W‖1,1 + ‖Z‖ω,∗,
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s.t. W− Z = 0. (3.5)

The augmented Lagrangian function of the abovementioned optimization is

Lµ(W,Z,U) =‖H−W‖2
F + λ1‖W‖1,1 + ‖Z‖ω,∗

+ µ

2 ‖W− Z + U‖2
F ,

(3.6)

where µ > 0 is the ADMM penalty parameter. The ADMM consists of the iterations:

W-Step: Fix Zk, Uk and estimate Wk+1 by solving

Wk+1 := arg min
W

Lµ(W,Zk,Uk). (3.7)

Z-Step: Fix Wk+1, Uk and estimate Zk+1 by solving

Zk+1 := arg min
Z

Lµ(Wk+1,Z,Uk). (3.8)

U-Step: Fix Wk+1, Zk+1 and update Uk+1 with

Uk+1 := Uk + Wk+1 − Zk+1. (3.9)

The minimization problem (3.7) is equivalent to

arg min
W

‖H−W‖2
F + λ1‖W‖1,1 + µ

2 ‖W− Zk + Uk‖2
F . (3.10)

By ignoring irrelevant terms and using trace properties, the minimization problem
(3.10) is equivalent to

arg min
W

1
2‖W−B‖2

F + λ‖W‖1,1, (3.11)

where B = 2H+µZk−µUk

2+µ , and λ = λ1
2+µ . This problem (3.11) can be solved by using

soft-thresholding function [75]

wk+1
i,j = sign(bi,j) max{|bi,j | − λ, 0}, (3.12)

where wk+1
i,j and bi,j are the entries in the ith row and jth column of Wk+1 and B,

respectively.
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The minimization problem (3.8) is equivalent to

Zk+1 = arg min
Z

µ

2 ‖W
k+1 − Z + Uk‖2

F + ‖Z‖ω,∗ (3.13)

has the closed-form solution [15]

Zk+1 = PSω(Σ)QT , (3.14)
where Wk+1 +Uk = PΣQT is the singular value decomposition (SVD) of Wk+1 +Uk

with singular values ordered by nonincreasing magnitude. Sω(Σ) is a generalized soft-
thresholding function on the diagonal matrix Σ. For the ith singular value Σii,

Sω(Σ)ii = max(Σii − ωi, 0). (3.15)

The weight ωi is
ωi = λω

µ(Σii + ε) , (3.16)

where ε is a nonzero constant and is used to avoid dividing by zero and λω is a
constant. This means that larger singular values will be penalized less than smaller
singular values. Thus, the weighted nuclear norm low-rank penalty provides better
estimation for the rank compared with the nuclear norm which treats all the singular
values equally, since larger singular values implying major information that are more
important than smaller ones [15].

Finally, the estimate is obtained as

X̂ = D2ŴDT
1 . (3.17)

The SSSLRR method is summarized in Algorithm 1 and illustrated in Fig. 3.1.
Algorithm 1 SSSLRR HSI Denoising Algorithm
1: Input: Y, λ1, λω, and µ
2: Initialization: Z0 = U0 = 0, and k = 0
3: repeat
4: B = 2DT

2 YD1+µZk−µUk

2+µ
5: Wk+1 = arg minW

1
2‖W−B‖2

F + λ1
2+µ‖W‖1,1

6: Zk+1 = arg minZ
µ
2 ‖W

k+1 − Z + Uk‖2
F + ‖Z‖ω,∗

7: Uk+1 = Uk + Wk+1 − Zk+1

8: k ← k + 1
9: until stopping criterion is satisfied, i.e., ‖Wk+1 −Wk‖2

F /‖Wk‖2
F ≤ ε

10: Output: X̂ = D2ŴDT
1
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Figure 3.1: The schematic of the SSSLRR, which uses the 3-D DWT
for the 3-DOT.

3.2.2 SSSLRR-DWT

The SSSLRR-DWT denoising method uses the 3-D discrete orthogonal wavelet trans-
form (3-D DWT) to be a representative of the 3-DOT. In SSSLRR-DWT, the 2-D or-
thogonal (spatial) wavelet basis D2 ∈ Rn×n and the 1-D orthogonal (spectral) wavelet
basis D1 ∈ RB×B are used for 3-D DWT to decompose the 3-D HSI to sparse wavelet
coefficients W ∈ Rn×B . SSSLRR-DWT uses the sparse and low-rank penalized model
for the wavelet coefficients to remove noise.

3.2.3 SSSLRR-DCT

3-D discrete orthogonal cosine transform (3-D DCT) is also a classical 3-DOT. SSSLRR-
DCT denoising method uses 3-D DCT as the 3-DOT in SSSLRR. For SSSLRR-DCT,
the 2-D orthogonal (spatial) cosine basis D2 ∈ Rn×n and the 1-D orthogonal (spectral)
cosine basis D1 ∈ RB×B are used for 3-D DCT to decompose the noisy HSI to sparse
cosine coefficients W ∈ Rn×B . The sparse and low-rank penalized model is utilized
for SSSLRR-DCT to shrink the cosine coefficients to remove noise.
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The 3-D DWT or 3-D DCT can concentrate the signal energy in few coefficients
while the noise spreads over all coefficients. Both SSSLRR-DWT or SSSLRR-DCT
are iterative algorithms and can adaptively shrink either wavelet coefficients or cosine
transform coefficients and penalize the singular values of the coefficient matrix. The
larger (signal) singular values will be shrunk less while the smaller ones (noise) will
be shrunk more leading to denoising. Both SSSLRR-DWT and SSSLRR-3DCT yield
good denoising performance. However, the focus of this paper is on SSSLRR-DWT.

3.2.4 Ablation Study

SSSLRR-DWT uses the sparse and low-rank penalized model based on the `1 and
weighted nuclear norm low-rank penalties in the wavelet domain for HSI denoising.
To further analyze the effectiveness of the penalties for the SSSLRR-DWT denoising,
an ablation study of SSSLRR-DWT is performed. SSSLRR-DWT is compared with
the following denoising methods:

1. SSWSR: Only the `1 penalty is used, i.e., the cost function is

Ŵ = arg min
W

‖H−W‖2
F + λ1‖W‖1,1. (3.18)

2. SSWLRR1 : Only the nuclear norm penalty is used, i.e., the cost function is

Ŵ = arg min
W

‖H−W‖2
F + λ∗‖W‖∗, (3.19)

where ‖ · ‖∗ is the nuclear norm.

3. SSWLRR2 : The weighted nuclear norm low-rank penalty is used in the signal
domain instead of using it in the wavelet domain, i.e., the cost function is

X̂ = arg min
X

‖Y−X‖2
F + ‖X‖ω,∗, (3.20)

4. SLRR: The `1 penalty and the weighted nuclear norm low-rank penalty are used
in the signal domain, i.e., the cost function is

X̂ = arg min
X

‖Y−X‖2
F + λ1‖X‖1,1 + ‖X‖ω,∗, (3.21)

The ADMM algorithm is adapted to get the solutions for these optimization problems.

The simulated WDCM dataset for Cases 1-3 and UP dataset for Case 7 (detailed
experimental setting is given in Section III) is used for this experiment. Tables 3.1
and 3.2 and Figs. 3.2-3.8 present the denoising results. SSWSR can remove most
of the Gaussian and the salt and pepper noise but can not remove the stripe noise.
The difference in results between SSWLRR1 and SSWLRR2 shows that the extra
flexibility provided by the weighted nuclear norm compared to the traditional nuclear
norm leads to better denoising results. Both SLRR and SSSLRR-DWT can effectively
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Table 3.1: The quantitative evaluation results (PSNR(dB), MSSIM,
MFSIM, and SAM(degrees)) for the different denoising methods using
the Washington DC Mall (WDCM) dataset. The best results are in bold
typeface.

Noise level Metric Noisy SSWSRSSWLRR1SSWLRR2 SLRR SSSLRR-DWT

σ = 0.1

PSNR 20.004 32.171 33.304 35.627 35.906 37.968
MSSIM0.4528 0.9263 0.9449 0.9582 0.9593 0.9794
MFIM 0.7348 0.9598 0.9707 0.9745 0.9790 0.9867
SAM 30.350 8.5714 7.4659 6.0733 6.0960 4.0887

σ = 1, η = 10

PSNR 22.820 32.429 31.771 33.965 38.267 44.165
MSSIM0.8674 0.9633 0.9553 0.9691 0.9857 0.9968
MFIM 0.9306 0.9777 0.9701 0.9781 0.9910 0.9977
SAM 23.863 8.9575 7.7902 6.0998 4.8411 1.9880

σ ∼ U(0.1, 0.2)

PSNR 16.371 28.816 30.774 32.777 33.250 35.544
MSSIM0.3083 0.8686 0.9199 0.9274 0.9326 0.9661
MFIM 0.6423 0.9289 0.9565 0.9573 0.9655 0.9782
SAM 39.689 12.054 9.1468 7.9920 8.0173 5.2188

Table 3.2: The quantitative evaluation results (PSNR(dB), MSSIM,
MFSIM, and SAM(degrees)) for the different denoising methods using
the University of Pavia (UP) dataset. The best results are in bold type-
face.

Noise level Metric Noisy SSWSR SSWLRR1 SSWLRR2 SLRR SSSLRR-DWT

Case 7

PSNR 12.891 23.738 24.054 26.119 28.432 30.933
MSSIM 0.1465 0.6590 0.6876 0.7489 0.7883 0.9066
MFIM 0.5321 0.8601 0.8735 0.8902 0.9169 0.9553
SAM 41.441 12.021 12.124 11.309 8.8532 7.2942

(a) (b) (c) (d) (e) (f) (g)

Figure 3.2: Denoising for the UP dataset, Case 7 using different meth-
ods. The small green square is a zoomed-in area shown in the big square.
(a) Original pseudocolor image (R: 70, G: 120, B: 170), (b) Noisy image,
(c) SSWSR, (d) SSWLRR1, (e) SSWLRR2, (f) SLRR, and (g) SSSLRR-
DWT.

remove mixed noise. The benefit of using the `1 and weighted nuclear norm low-
rank penalties can clearly be seen by noticing that both SLRR and SSSLRR-DWT
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(a) (b) (c) (d) (e) (f) (g)

Figure 3.3: Denoising for the WDCM dataset, Case 1 with σ = 0.1,
using different methods. The small green square is a zoomed-in area
shown in the big square. (a) Original pseudocolor image (R: 70, G: 120,
B: 170), (b) Noisy image, (c) SSWSR, (d) SSWLRR1, (e) SSWLRR2,
(f) SLRR, and (g) SSSLRR-DWT.
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Figure 3.4: Denoised images (the first row) and residual images (the
second row) for the WDCM dataset, Case 1 with σ = 0.1, using different
methods. (a) Original band 95, (b) Noisy band 95, (c) SSWSR, (d)
SSWLRR1, (e) SSWLRR2, (f) SLRR, and (g) SSSLRR-DWT.

(a) (b) (c) (d) (e) (f) (g)

Figure 3.5: Denoising for the WDCM dataset, Case 2 with σ = 1,
η = 10, using different methods. The small green square is a zoomed-
in area shown in the big square. (a) Original pseudocolor image (R:
70, G: 120, B: 170), (b) Noisy image, (c) SSWSR, (d) SSWLRR1, (e)
SSWLRR2, (f) SLRR, and (g) SSSLRR-DWT.

outperform SSWSR, SSWLRR1, and SSWLRR2. Finally, SSSLRR-DWT outperforms
SLRR and yields the best results of all the methods, highlighting that working in the
wavelet domain yields some gains.
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Figure 3.6: Denoised images (the first row) and residual images (the
second row) for the WDCM dataset, Case 2 with σ = 1, η = 10, using
different methods. (a) Original band 95, (b) Noisy band 95, (c) SSWSR,
(d) SSWLRR1, (e) SSWLRR2, (f) SLRR, and (g) SSSLRR-DWT.
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Figure 3.7: Denoising for the WDCM dataset, Case 3 with σ ∼
U(0.1, 0.2), η = 10, using different methods. The small green square
is a zoomed-in area shown in the big square. (a) Original pseudocolor
image (R: 70, G: 120, B: 170), (b) Noisy image, (c) SSWSR, (d) SS-
WLRR1, (e) SSWLRR2, (f) SLRR, and (g) SSSLRR-DWT.

(a) (b) (c) (d) (e) (f)
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(g)

Figure 3.8: Denoised images (the first row) and residual images (the
second row) for the WDCM dataset, Case 3 with σ ∼ U(0.1, 0.2), using
different methods. (a) Original band 95, (b) Noisy band 95, (c) SSWSR,
(d) SSWLRR1, (e) SSWLRR2, (f) SLRR, and (g) SSSLRR-DWT.
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3.3 Experimental Results and Discussion
In the experiments both simulated and real datasets are used to demonstrate the ef-
fectiveness of the proposed method. Experimental results for SSSLRR-DWT are com-
pared with the following denoising methods: two patch based methods, i.e., BM3D1

[14], and nonlocal transform-domain filter for volumetric data (BM4D2) [76], two
low-rank based methods, i.e., low-rank tensor approximation (LRTA3) [77], and noise-
adjusted iterative low-rank matrix approximation (NAILRMA4) [33], four sparse and
low-rank based methods, i.e., tensor learning dictionary (TDL5) [78], Kronecker-basis-
representation based tensor sparsity measure (KBR6) [79], sparse and low-rank model
HSI restoration (HyRes7) [39], and fast hyperspectral denoising based on the low-rank
and sparse representation (FastHyDe8) [38]. Each datasets are normalized between
[0,1] band by band before adding the noise and are returned to the original level after
denoising.

3.3.1 Simulated Datasets Experiments

Data Description

We use two public HSI datasets to simulate noisy HSI. The simulated datasets are
Washington DC Mall (WDCM) dataset (Appendix B.1) and University of Pavia (UP)
dataset (Appendix B.2). In the experiments, two small parts of the WDCM and UP
datasets are used. Their sizes are 200× 200× 191 for the WDCM dataset and 200×
200 × 103 for the UP dataset. Both datasets are assumed to be noise-free HSIs. The
noisy simulated datasets are created as follows:

1. Case 1 : A zero-mean isotropic Gaussian noise with standard deviation σ ∈
{0.05, 0.1, 0.2}, is added to each band.

2. Case 2 : A zero-mean bandwise Gaussian noise with varied variance, σi, is added
to each band. The bell shape variance varies according to

σ2
i = σ2 e

− (i−B/2)2

2η2∑B
j=1 e

− (i−B/2)2
2η2

, (3.22)

where σ, and η control the noise intensity and the bell width, respectively [80].
We set σ, η to two different values 0.5 and 1, 10, and 20, respectively.

1http://www.cs.tut.fi/~foi/GCF-BM3D/
2http://www.cs.tut.fi/~foi/GCF-BM3D/
3https://www.sandia.gov/tgkolda/TensorToolbox/
4https://sites.google.com/site/rshewei/home
5http://gr.xjtu.edu.cn/web/dymeng/3
6http://gr.xjtu.edu.cn/web/dymeng/3
7https://www.researchgate.net/profile/Behnood-Rasti
8https://github.com/LinaZhuang/FastHyDe_FastHyIn
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3. Case 3 : A zero mean Gaussian noise is added to each band with standard
deviation σ is drawn from a uniform distribution between 0.1 and 0.2 [σ ∼
U(0.1, 0.2)].

Evaluation Metric

To evaluate the denoised results of the simulated datasets, the quantitative metrics
are the peak signal-to-noise ratio (PSNR) (Appendix A.1), mean structural similarity
(MSSIM) (Appendix A.2), the mean feature similarity (MFSIM) (Appendix A.2), and
the spectral angle mapper (SAM) (Appendix A.3) are used.

Table 3.3: The quantitative evaluation results (PSNR(dB), MSSIM,
MFSIM, SAM(degrees), and Time (second)) for the different denoising
methods using the Washington DC Mall (WDCM) dataset. The best
results are in bold typeface.

WDCMNoise levelMetric Noisy BM3DBM4D LRTANAIRLMA TDL KBR HyResFastHyDeSSSLRR-DWT

Case 1

σ = 0.05

PSNR 26.025 31.031 36.624 37.035 40.288 39.615 38.617 40.297 41.219 41.681
MSSIM 0.7191 0.8948 0.9677 0.9699 0.9862 0.9855 0.9830 0.9870 0.9898 0.9908
MFSIM0.8691 0.9365 0.9808 0.9829 0.9919 0.9910 0.9903 0.9921 0.9935 0.9942
SAM 18.048 8.6547 5.1559 5.1145 3.6577 3.6349 3.0349 3.4451 2.9787 2.8475
Time - 118.12 462.12 1.5192 58.323 8.0064 1253.3 1.5588 0.3309 11.754

σ = 0.1

PSNR 20.004 27.429 32.468 33.181 36.109 35.581 34.582 36.419 37.671 37.968
MSSIM 0.4528 0.7778 0.9209 0.9370 0.9661 0.9657 0.9596 0.9701 0.9779 0.9794
MFSIM0.7348 0.8675 0.9541 0.9612 0.9806 0.9792 0.9758 0.9821 0.9858 0.9867
SAM 30.350 10.742 7.5690 6.6810 5.6988 5.3089 4.4250 5.2171 4.1810 4.0887
Time - 137.68 461.66 1.4653 48.741 7.8660 1337.1 1.2664 0.3454 12.593

σ = 0.2

PSNR 13.983 24.199 28.540 29.300 31.653 31.280 30.145 32.442 33.948 34.518
MSSIM 0.2061 0.5929 0.8197 0.8675 0.9177 0.9178 0.8956 0.9324 0.9528 0.9582
MFSIM0.5644 0.7482 0.8994 0.9215 0.9548 0.9524 0.9383 0.9599 0.9700 0.9734
SAM 46.309 12.615 10.651 8.3784 8.4539 7.1401 6.2672 7.0750 5.9433 5.6292
Time - 120.97 463.11 1.7205 42.016 7.5671 2644.2 1.3871 0.3403 13.466

Case 2

σ = 0.5,
η = 10

PSNR 28.840 34.056 39.026 29.008 43.879 29.006 35.239 46.498 42.381 46.750
MSSIM 0.9321 0.9707 0.9890 0.9330 0.9955 0.9336 0.9713 0.9978 0.9935 0.9979
MFSIM0.9641 0.9808 0.9926 0.9643 0.9969 0.9649 0.9832 0.9984 0.9955 0.9985
SAM 13.704 6.7747 3.9992 13.476 2.3161 13.471 6.2553 1.5969 2.5904 1.5664
Time - 118.91 464.55 1.3040 100.21 9.8575 1223.6 1.6714 0.2571 44.097

σ = 1,
η = 10

PSNR 22.820 30.645 35.060 23.096 40.088 22.987 29.944 43.602 39.003 44.165
MSSIM 0.8674 0.9401 0.9754 0.8680 0.9912 0.8694 0.9329 0.9965 0.9864 0.9968
MFSIM0.9306 0.9636 0.9845 0.9307 0.9937 0.9316 0.9634 0.9975 0.9906 0.9977
SAM 23.863 8.9355 5.9647 23.266 3.3176 23.530 11.356 2.1116 3.5566 1.9880
Time - 116.93 463.54 2.0748 100.27 10.306 1233.6 1.5828 0.3015 44.075

σ = 1,
η = 20

PSNR 22.815 29.410 34.324 24.515 38.917 24.686 34.515 39.877 38.928 40.436
MSSIM 0.7853 0.9087 0.9668 0.8188 0.9873 0.8314 0.9629 0.9902 0.9859 0.9913
MFSIM0.8927 0.9454 0.9790 0.9034 0.9915 0.9148 0.9773 0.9931 0.9903 0.9939
SAM 23.972 9.4715 6.2886 20.424 3.7875 20.236 6.0661 3.1943 3.5651 3.0618
Time - 115.41 465.22 4.6855 99.264 9.5967 1233.0 1.4268 0.3048 36.186

Case 3 σ ∼ U
(0.1,0.2)

PSNR 16.371 25.161 30.069 23.942 33.646 32.977 31.668 34.509 35.331 35.544
MSSIM 0.3083 0.6624 0.8694 0.6447 0.9455 0.9384 0.9256 0.9546 0.9645 0.9661
MFSIM0.6423 0.8008 0.9258 0.8075 0.9691 0.9651 0.9562 0.9732 0.9773 0.9782
SAM 39.689 12.821 9.3562 20.305 7.0918 6.8392 5.5020 6.1270 5.3139 5.2188
Time - 119.62 461.44 4.5692 40.548 8.1913 2276.4 1.3455 0.3276 12.620
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Figure 3.9: PSNR (a)-(c), SSIM (d)-(f), and FSIM (g)-(i) values of
each band of the denoised WDCM dataset. The first to third column
correspond to the Case 1 with σ = 0.05, σ = 0.1, and σ = 0.2.
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Figure 3.10: PSNR (a)-(c), SSIM (d)-(f), and FSIM (g)-(i) values of
each band of the denoised WDCM dataset. The first to third column
correspond to the Case 2 with σ = 0.5, η = 10, σ = 1, η = 10, and
σ = 1, η = 20.
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Figure 3.11: PSNR (a), SSIM (b), and FSIM (c) values of each band of
denoised the WDCM dataset in Case 3 with σ ∼ U(0.1, 0.2).
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Figure 3.12: Denoising for the WDCM dataset, Case 1 with σ = 0.2, us-
ing different methods. The small green square is a zoomed-in area shown
in the big square. (a) Original pseudocolor image (R: 70, G: 120, B: 170),
(b) Noisy image, (c) BM3D, (d) BM4D, (e) LRTA, (f) NAIRLMA (g),
TDL, (h), KBR, (i) HyRes, (j) FastHyDe, and (k) SSSLRR-DWT.
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Table 3.4: The quantitative evaluation results (PSNR(dB), MSSIM,
MFSIM, SAM(degrees), and Time (second)) for the different denoising
methods using the University of Pavia (UP) dataset. The best results
are in bold typeface.

UP Noise levelMetric Noisy BM3DBM4D LRTANAIRLMA TDL KBR HyResFastHyDeSSSLRR-DWT

Case 1

σ = 0.05

PSNR 26.026 31.713 37.118 35.031 37.410 38.001 37.499 37.860 38.379 38.807
MSSIM 0.6512 0.8931 0.9607 0.9304 0.9623 0.9680 0.9658 0.9646 0.9706 0.9728
MFSIM0.8549 0.9330 0.9784 0.9714 0.9837 0.9857 0.9831 0.9849 0.9862 0.9875
SAM 13.900 6.1373 3.6802 4.6048 3.5091 3.1956 3.1937 3.3337 3.1292 3.0070
Time - 60.969 245.00 2.5617 27.388 4.9310 647.12 0.7363 0.3052 4.2892

σ = 0.1

PSNR 20.002 28.063 33.603 31.461 33.812 34.526 34.803 34.332 35.545 35.704
MSSIM 0.3880 0.7875 0.9234 0.8657 0.9165 0.9411 0.9457 0.9290 0.9507 0.9520
MFSIM0.7053 0.8659 0.9550 0.9342 0.9658 0.9706 0.9702 0.9681 0.9741 0.9751
SAM 25.525 7.5487 5.0964 6.1013 5.0108 4.3931 3.9783 4.6130 4.0236 3.9670
Time - 59.788 243.39 0.7045 20.610 4.4749 681.14 0.6542 0.3430 4.5737

σ = 0.2

PSNR 13.980 25.117 29.652 27.924 29.540 30.917 30.940 30.696 32.544 32.997
MSSIM 0.1700 0.6401 0.8354 0.7505 0.8136 0.8832 0.8878 0.8612 0.9166 0.9232
MFSIM0.5242 0.7623 0.9061 0.8719 0.9236 0.9378 0.9333 0.9336 0.9520 0.9567
SAM 42.357 9.3165 7.2347 7.6180 7.3585 5.7785 5.2794 6.4479 5.1509 4.9689
Time - 60.677 242.48 0.7807 21.781 4.1931 1257.4 0.6370 0.3394 4.8983

Case 2

σ = 0.5,
η = 10

PSNR 26.144 34.154 39.424 27.257 38.215 27.306 34.766 41.055 40.213 41.202
MSSIM 0.7731 0.9375 0.9758 0.7879 0.9706 0.8010 0.9329 0.9804 0.9783 0.9822
MFSIM0.8928 0.9591 0.9852 0.8970 0.9848 0.9097 0.9671 0.9909 0.9891 0.9914
SAM 13.663 4.4674 2.7893 12.075 3.1835 12.019 4.8530 2.1801 2.5442 2.3102
Time - 57.901 244.17 1.2375 49.585 5.2778 642.83 0.8239 0.2925 13.858

σ = 1,
η = 10

PSNR 20.135 31.272 35.481 22.042 35.150 21.472 29.689 37.044 36.854 37.721
MSSIM 0.6385 0.8920 0.9475 0.6513 0.9484 0.6718 0.8530 0.9531 0.9588 0.9648
MFSIM0.8060 0.9295 0.9682 0.8160 0.9729 0.8305 0.9283 0.9796 0.9778 0.9813
SAM 25.097 5.8888 4.1183 20.728 4.3844 22.023 8.7923 3.2496 3.4898 3.2060
Time - 56.629 244.10 3.6193 49.192 5.3541 639.44 0.7383 0.3294 13.436

σ = 1,
η = 20

PSNR 20.124 29.355 34.217 24.728 34.460 27.264 34.465 35.703 36.191 36.484
MSSIM 0.4599 0.8331 0.9291 0.6189 0.9299 0.7401 0.9358 0.9411 0.9542 0.9565
MFSIM0.7313 0.8936 0.9575 0.8000 0.9682 0.8866 0.9656 0.9729 0.9756 0.9773
SAM 25.205 7.0915 4.8462 15.492 4.7633 11.523 4.4364 3.9780 3.7887 3.6863
Time - 59.374 243.54 2.4560 29.093 5.8211 644.80 0.6525 0.3370 4.6615

Case 3σ ∼ U
(0.1,0.2)

PSNR 16.191 26.003 31.098 23.846 31.275 30.760 32.209 32.537 33.630 34.270
MSSIM 0.2536 0.6879 0.8756 0.5575 0.8676 0.8516 0.9134 0.8990 0.9310 0.9379
MFSIM0.6008 0.8049 0.9275 0.7719 0.9456 0.9418 0.9496 0.9529 0.9614 0.9660
SAM 35.723 9.1650 6.3804 16.364 6.2691 6.7892 4.8065 5.3489 4.7269 4.4690
Time - 62.464 243.46 2.0414 18.791 4.8703 1173.4 0.6298 0.3412 4.9486
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Figure 3.13: Denoised images (the first row) and residual images (the
second row) for the WDCM dataset, Case 1 with σ = 0.05, using different
methods. (a) Original band 95, (b) Noisy band 95, (c) BM3D, (d) BM4D,
(e) LRTA, (f) NAIRLMA (g), TDL, (h), KBR, (i) HyRes, (j) FastHyDe,
and (k) SSSLRR-DWT.

Parameters Setting

All the parameters used for the comparison methods follow either the authors’ source
code settings or are experimentally evaluated according to the reference recommen-
dations. SSSLRR-DWT uses three parameters, and they are set as follows for all the
simulated and real datasets experiments, the regularization parameters λ1, λω, and µ
are set to 0.07, 0.3, and 0.5, respectively. We give the reason for this decision in the
discussion part.

Results on WDCM Dataset

Table 3.3 presents the PSNR, MSSIM, MFSIM, SAM, and running time of SSSLRR-
DWT and all comparison methods for the WDCM dataset. The highest values of
PSNR, MSSIM, and MFSIM and the lowest values of SAM and running time are
shown in bold. SSSLRR-DWT outperforms other methods in terms of all metrics.
Also, SSSLRR-DWT yields the best performance for all noise settings. Specifically,
SSSLRR-DWT achieves an approximately 0.6 dB (Case 1 and 3) and 5 dB (Case 2),
0.5 dB (Case 2) and 2 dB (Case 1 and 3) improvement in PSNR, and a few percent
of MSSIM and MFSIM in comparison with the second-best methods, FastHyDe and
HyRes. Figs.3.9-3.11 show the PSNR, SSIM, and FSIM for each band in Cases 1-3
for the WDCM dataset. SSSLRR-DWT (red curve) has the best PSNR, SSIM, and
FSIM for almost all the bands. This also shows the effectiveness of SSSLRR-DWT
for HSI denoising. Figs. 3.18-3.20 show the spectral signatures of pixel (173, 150)
for the WDCM dataset with different noise settings. From Figs. 3.18-3.20 it can
be clearly observed that the proposed SSSLRR-DWT yields higher similarity of the
spectral signatures with the clean pixel than the other denoising methods.

In terms of visual quality, Figs. 3.12, 3.14, and 3.16 show the pseudocolor images of
the WDCM dataset denoised by nine different methods under Case 1 with σ = 0.2,
Case 2 with σ = 1, η = 20, and Case 3 with σ ∼ U(0.1, 0.2), respectively. The same
area of each subfigure marked with a green box was enlarged for a better comparison.
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Figure 3.14: Denoising for the WDCM dataset, Case 2 with σ = 1,
η = 20 using different methods. The small green square is a zoomed-in
area shown in the big square. (a) Original pseudocolor image (R: 70,
G: 120, B: 170), (b) Noisy image, (c) BM3D, (d) BM4D, (e) LRTA,
(f) NAIRLMA (g), TDL, (h), KBR, (i) HyRes, (j) FastHyDe, and (k)
SSSLRR-DWT.
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Figure 3.15: Denoised images (the first row) and residual images (the
second row) for the WDCM dataset, Case 2 with σ = 1, η = 10, using
different methods. (a) Original band 95, (b) Noisy band 95, (c) BM3D,
(d) BM4D, (e) LRTA, (f) NAIRLMA (g), TDL, (h), KBR, (i) HyRes,
(j) FastHyDe, and (k) SSSLRR-DWT.

For LRTA there is still noise in the denoised images as can be seen in Figs. 3.12, 3.14,
and 3.16. BM3D removes the noise but gives oversmooth denoised images. All the
remaining methods effectively remove the noise. It is visually difficult to compare the
comparison denoising methods. To show the denoising results, the difference between
each original band and the denoised band is used, i.e. residual image. Figs. 3.13,
3.15, and 3.17 show the band 95 of the denoising results and its residual images under
Case 1 with σ = 0.05, Case 2 with σ = 1, η = 10, and Case 3 with σ ∼ U(0.1, 0.2),
respectively. By comparing the residual images, SSSLRR-DWT achieves the smallest
residual in all cases. NAIRLMA HyRes, and FastHyDe also do good job in denoising
in most cases and achieve small residual. However, for the denoising WDCM dataset
in Case 2 (see Fig. 3.15), NAIRLMA and FastHyDe are slightly worse than HyRes
and SSSLRR-DWT.

UP Dataset

Table 3.4 presents the PSNR, MSSIM, MFSIM, SAM, and running time of SSSLRR-
DWT and all comparison denoising methods for the UP dataset. The highest values
of PSNR, MSSIM, and MFSIM and the lowest values of SAM and running time are
highlighted in bold. It can be seen that the SSSLRR-DWT gets the best results
in terms of all metrics. SSSLRR-DWT achieves an approximately 0.5-2 dB gain in
PSNR. This further validates that our proposed SSSLRR-DWT method can remove
noise effectively. Figs. 3.21-3.23 show the PSNR, SSIM, and FSIM of each band in
Cases 1-3 for the UP dataset. Compared with all the other methods, SSSLRR-DWT
achieves higher PSNR, SSIM, and FSIM (red curve) for almost all the bands, showing
the robustness of SSSLRR-DWT for HSI denoising.

Figs. 3.24, 3.26, and 3.28 show the pseudocolor images of the UP dataset denoised by
nine different methods under Case 1 with σ = 0.2, Case 2 with σ = 1, η = 20, and
Case 3 with σ ∼ U(0.1, 0.2), respectively. The same area of each subfigure marked
with a green box is enlarged for a better comparison. As shown in Figs. 3.24, 3.26,
and 3.28, BM3D smooths as before some details information of the original image, and
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Figure 3.16: Denoising for the WDCM dataset, Case 3 with σ ∼
U(0.1, 0.2), using different methods. The small green square is a zoomed-
in area shown in the big square. (a) Original pseudocolor image (R: 70,
G: 120, B: 170), (b) Noisy image, (c) BM3D, (d) BM4D, (e) LRTA,
(f) NAIRLMA (g), TDL, (h), KBR, (i) HyRes, (j) FastHyDe, and (k)
SSSLRR-DWT.
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Figure 3.17: Denoised images (the first row) and residual images (the
second row) for the WDCM dataset, Case 3 with σ ∼ U(0.1, 0.2), using
different methods. (a) Original band 95, (b) Noisy band 95, (c) BM3D,
(d) BM4D, (e) LRTA, (f) NAIRLMA (g), TDL, (h), KBR, (i) HyRes,
(j) FastHyDe, and (k) SSSLRR-DWT.

0

0.1

0.2

0.3

0.4

0.5

0.6

D
N

Clean

Noisy

4     7   10   13  16   19999999888     22  25

Wavelength
9 ( 100)

(nm)
*

(a)

4     7   10   13  16   19999999888     22  25
0

0.1

0.2

0.3

0.4

0.5

0.6

D
N

Clean

BM3D

Wavelength
9 ( 100)

(nm)
*

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

D
N

Clean

BM4D

4     7   10   13  16   19999999888     22  25

Wavelength
9 ( 100)

(nm)
*

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

D
N

Clean

LRTA

4     7   10   13  16   19999999888     22  25

Wavelength
9 ( 100)

(nm)
*

(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

D
N

Clean

NAIRLMA

4     7   10   13  16   19999999888     22  25

Wavelength
9 ( 100)

(nm)
*

(e)

0

0.1

0.2

0.3

0.4

0.5

0.6

D
N

Clean

TDL

4     7   10   13  16   19999999888     22  25

Wavelength
9 ( 100)

(nm)
*

(f)

0

0.1

0.2

0.3

0.4

0.5

0.6

D
N

Clean

KBR

4     7   10   13  16   19999999888     22  25

Wavelength
9 ( 100)

(nm)
*

(g)

0

0.1

0.2

0.3

0.4

0.5

0.6

D
N

Clean

HyRes

4     7   10   13  16   19999999888     22  25

Wavelength
9 ( 100)

(nm)
*

(h)

0

0.1

0.2

0.3

0.4

0.5

0.6

D
N

Clean

FastHyDe

4     7   10   13  16   19999999888     22  25

Wavelength
9 ( 100)

(nm)
*

(i)

0

0.1

0.2

0.3

0.4

0.5

0.6
D

N

Clean

SSSttTTLRR-AADWTtggfTTTGFGGGT

4     7   10   13  16   19999999888     22  25

Wavelength
9 ( 100)

(nm)
*

(j)

Figure 3.18: Spectrum of pixel (173, 150) for the WDCM dataset, Case
1 with σ = 0.2, using different denoising methods. (a) Noisy image, (b)
BM3D, (c) BM4D, (d) LRTA, (e) NAIRLMA (f), TDL, (g), KBR, (h)
HyRes, (i) FastHyDe, and (j) SSSLRR-DWT.

LRTA still cannot completely remove the noise. All the other methods get satisfactory
denoising results in most cases. Figs. 3.25, 3.27, and 3.29 show the band 51 of the
denoising results and its residual images under Case 1 with σ = 0.05, Case 2 with
σ = 1, η = 10, and Case 3 with σ ∼ U(0.1, 0.2), respectively. As observed, the
proposed SSSLRR-DWT method achieves good denoising result.
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Figure 3.19: Spectrum of pixel (173, 150) for the WDCM dataset,
Case 2 with σ = 1, η = 20, using different denoising methods. (a) Noisy
image, (b) BM3D, (c) BM4D, (d) LRTA, (e) NAIRLMA (f), TDL, (g),
KBR, (h) HyRes, (i) FastHyDe, and (j) SSSLRR-DWT.
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Figure 3.20: Spectrum of pixel (173, 150) for the WDCM dataset, Case
3 with σ ∼ U(0.1, 0.2), using different denoising methods. (a) Noisy
image, (b) BM3D, (c) BM4D, (d) LRTA, (e) NAIRLMA (f), TDL, (g),
KBR, (h) HyRes, (i) FastHyDe, and (j) SSSLRR-DWT.

3.3.2 Real Datasets Experiments
Data Description

The Indian Pines and the Urban datasets are used in the real datasets experiments.
The Indian Pines dataset9 was collected by the Airborne Visible/Infrared Imaging

9http://lesun.weebly.com/hyperspectral-data-set.html
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Figure 3.21: PSNR (a)-(c), SSIM (d)-(f), and FSIM (g)-(i) values of each
band of the denoised UP dataset. The first to third column correspond
to the Case 1 with σ = 0.05, σ = 0.1, and σ = 0.2.
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Figure 3.22: PSNR (a)-(c), SSIM (d)-(f), and FSIM (g)-(i) values of each
band of the denoised UP dataset. The first to third column correspond
to the Case 2 with σ = 0.5, η = 10, σ = 1, η = 10, and σ = 1, η = 20.
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Figure 3.23: PSNR (a), SSIM (b), and FSIM (c) values of each band of
the denoised UP dataset in Case 3 with σ ∼ U(0.1, 0.2).
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Figure 3.24: Denoising for the UP dataset, Case 1 with σ = 0.2, using
different methods. The small green square is a zoomed-in area shown
in the big square. (a) Original pseudocolor image (R: 64, G: 45, B: 10),
(b) Noisy image, (c) BM3D, (d) BM4D, (e) LRTA, (f) NAIRLMA (g),
TDL, (h), KBR, (i) HyRes, (j) FastHyDe, and (k) SSSLRR-DWT.
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Figure 3.25: Denoised images (the first row) and residual images (the
second row) for the UP dataset, Case 1 with σ = 0.05, using different
methods. (a) Original band 51, (b) Noisy band 51, (c) BM3D, (d) BM4D,
(e) LRTA, (f) NAIRLMA (g), TDL, (h), KBR, (i) HyRes, (j) FastHyDe,
and (k) SSSLRR-DWT.
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Figure 3.26: Denoising for the UP dataset, Case 2 with σ = 1, η = 20
using different methods. The small green square is a zoomed-in area
shown in the big square. (a) Original pseudocolor image (R: 64, G: 45,
B: 10), (b) Noisy image, (c) BM3D, (d) BM4D, (e) LRTA, (f) NAIRLMA
(g), TDL, (h), KBR, (i) HyRes, (j) FastHyDe, and (k) SSSLRR-DWT.
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Figure 3.27: Denoised images (the first row) and residual images (the
second row) for the UP dataset, Case 2 with σ = 1, η = 10, using
different methods. (a) Original band 30, (b) Noisy band 30, (c) BM3D,
(d) BM4D, (e) LRTA, (f) NAIRLMA (g), TDL, (h), KBR, (i) HyRes,
(j) FastHyDe, and (k) SSSLRR-DWT.
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Figure 3.28: Denoising for the UP dataset, Case 3 with σ ∼ U(0.1, 0.2),
using different methods. The small green square is a zoomed-in area
shown in the big square. (a) Original pseudocolor image (R: 64, G: 45,
B: 10), (b) Noisy image, (c) BM3D, (d) BM4D, (e) LRTA, (f) NAIRLMA
(g), TDL, (h), KBR, (i) HyRes, (j) FastHyDe, and (k) SSSLRR-DWT.
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Figure 3.29: Denoised images (the first row) and residual images (the
second row) for the UP dataset, Case 3 with σ ∼ U(0.1, 0.2), using
different methods. (a) Original band 51, (b) Noisy band 51, (c) BM3D,
(d) BM4D, (e) LRTA, (f) NAIRLMA (g), TDL, (h), KBR, (i) HyRes,
(j) FastHyDe, and (k) SSSLRR-DWT.
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(f) (g) (h) (i) (j)

Figure 3.30: Denoising for the Indian Pines dataset. The small green
square is a zoomed-in area shown in the big square. (a) Original pseu-
docolor image (R: 220, G: 144, B: 3), (b) BM3D, (c) BM4D, (d) LRTA,
(e) NAIRLMA (f), TDL, (g), KBR, (h) HyRes, (i) FastHyDe, and (j)
SSSLRR-DWT.
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Figure 3.31: Denoising for the Urban dataset. The small green square
is a zoomed-in area shown in the big square. (a) Original pseudo-
color image (R: 30, G: 110, B: 207), (b) BM3D, (c) BM4D, (d) LRTA,
(e) NAIRLMA (f), TDL, (g), KBR, (h) HyRes, (i) FastHyDe, and (j)
SSSLRR-DWT.
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Figure 3.32: PSNR as a function of the parameters (a) λ1, (b) λω (is a
constant and is related to the weight ωi), and (c) µ for SSSLRR-DWT
denoising method for the WDCM and the UP datasets.
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Figure 3.33: RelCha values with respect to the number of iterations.
(a) WDCM dataset, (b) UP dataset.

Spectrometer (AVIRIS) sensor and the image contains 145×145 pixels and 220 spectral
bands. The Urban dataset10 was collected by HYDICE and contains 307× 307 pixels
and 210 spectral bands. Both Indian Pines and Urban datasets are contaminated by
various types of noise, such as the Gaussian, Poisson, missing pixels, salt and pepper,
and stripped noises.

Results on Indian Pines Dataset

Fig. 3.30 depicts the Pseudocolor images for both original and denoised Indian Pines
datasets . As shown in Fig. 3.30, BM3D, LRTA, TDL, and KBR can remove some
noise, and BM4D smooths some details. NAIRLMA, HyRes, FastHyDe, and SSSLRR-
DWT achieve satisfactory denoising results. The area marked by a green box reveals
that BM3D, BM4D, LRTA, TDL, and KBR have edge distortion or blurring, and
NAIRLMA, HyRes, FastHyDe, and SSSLRR-DWT preserve details like sharp and
clear edges.

Urban Dataset

Pseudocolor images for both original corrupted by noise and strips and the denoised
Urban dataset are shown in Fig. 3.31 for each method. The denoised images of BM3D,
BM4D, LRTA, TDL, and KBR still have blue stripes. NAIRLMA, HyRes, FastHyDe,
and SSSLRR-DWT remove Gaussian noise and blue strip and provide good denoised
results. This also demonstrates that the proposed SSSLRR-DWT method can remove
the Gaussian noise and strips in real HSI. To further illustrate the denoising effect,
Fig. 3.34 shows the horizontal mean profiles of band 206 before and after denoising.
The horizontal mean profile of a band is obtained by calculating the mean of each
row. Fig. 3.34(a) has rapid fluctuations that are due to the mixed noise, and all the
denoising methods diminish them. BM3D, NAIRLMA, HyRes, and SSSLRR-DWT
achieve smoother curves.

10http://lesun.weebly.com/hyperspectral-data-set.html
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Figure 3.34: Horizontal mean profiles of band 206 of the Urban dataset.
(a) Original data, denoising results of (b) BM3D, (c) BM4D, (d) LRTA,
(e) NAIRLMA (f), TDL, (g), KBR, (h) HyRes, (i) FastHyDe, and (j)
SSSLRR-DWT.

3.3.3 Discussion

Convergence of the Proposed Method

The convergence is studied on the WDCM and UP datasets. Fig. (3.33) displays
the RelCha of two denoised results for the WDCM and UP datasets for the Case
2 with σ = 1, η = 10. RelCha is the relative change between iterations, i.e.,
‖Wk+1 −Wk‖2

F /‖Wk‖2
F , where Wk are the wavelet coefficient at the kth iteration.

The RelCha values for SSSLRR-DWT monotonically decrease with iterations until
stopping criterion is satisfied (RelCha ≤ ε).

Parameter Analysis

For SSSLRR-DWT, three parameters have to be obtained or chosen for the HSI denois-
ing. Here we analyze parameter selection for the simulated WDCM and UP datasets
in Case 2 with σ = 1, η = 10.

λ1 is related to the strength of sparse wavelet coefficients. SSSLRR-DWT is tested
using different values of λ1 over [0.01, 0.1] and shown in Fig. 3.32(a). SSSLRR-DWT
achieves the best performance when λ1 is set as 0.07.

λω is a constant and is related to the weight ωi and is correlated with the low-rank
characteristic of HSI. Fig. 3.32(b) presents the denoised results based on the different
λω. SSSLRR-DWT achieves the highest PSNR when λω is 0.3.

Parameter µ is used for the ADMM multipliers. Fig. 3.32(c) shows the robustness of
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the proposed SSSLRR-DWT method to the changes in µ. When µ lies in the range of
[0.5, 0.6], SSSLRR-DWT achieves a high PSNR value.

Further Discussion

In this section, we further compare SSSLRR-DWT with four denoising methods for re-
moving Gaussian noise with high noise level and mixed noise. The compared denoising
methods are low-rank matrix recovery (LRMR11) [32], non-local low-rank tensor ap-
proximation (NGmeet12) [81], tensor low-rank constraint and `0 total variation (TLR-
`0TV13) [82], and SSSLRR using 3-D discrete orthogonal cosine transform (SSSLRR-
DCT) instead of using 3-D discrete orthogonal wavelet transform. The noisy simulated
datasets are created as follows:

1. Case 4 : A zero-mean Gaussian noise is added to each band with standard devi-
ation σ drawn from a uniform distribution between 0.1 and 0.4 [σ ∼ U(0.1, 0.4)].

2. Case 5 (Gaussian noise + salt and pepper noise): The Gaussian noise is added
in the same way as Case 3. The salt and pepper noise is added to all the bands
with noise density 10%.

3. Case 6 (Gaussian noise + stripe): The Gaussian noise is added in the same way
as Case 3. 30% of the bands are randomly selected to add the stripes. The
number of stripes for the selected band is randomly sampled from 1 to 10.

4. Case 7 (Gaussian noise + salt and pepper noise+ stripe): The Gaussian noise
and salt and pepper noise are added in the same way as Case 5. The stripes are
added in the same way as in Case 6.

(a) (b) (c) (d) (e) (f) (g)

Figure 3.35: Denoising for the WDCM dataset, Case 7 using different
methods. The small green square is a zoomed-in area shown in the big
square. (a) Original pseudocolor image (R: 70, G: 120, B: 170), (b) Noisy
image, (c) LRMR, (d) NGmeet, (e) TLR-`0TV, (f) SSSLRR-DCT, and
(g) SSSLRR-DWT.

The simulated WDCM and UP datasets for Cases 1-7 and the real Indian Pines and
Urban datasets are used in the experiments. Tables 3.5, 3.6, 3.7, and 3.8 present the

11https://sites.google.com/site/rshewei/home
12https://sites.google.com/site/rshewei/home
13https://openremotesensing.net/kb/codes/denoising/
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Table 3.5: The quantitative evaluation results (PSNR(dB), MSSIM,
MFSIM, SAM(degrees), and Time (second)) for the different denoising
methods using the Washington DC Mall (WDCM) dataset. The best
results are in bold typeface.

WDCM Noise level Metric Noisy LRMR Ngmeet TLR-`0TV SSSLRR-DCT SSSLRR-DWT

Case 1

σ = 0.05

PSNR 26.025 38.529 41.453 39.925 41.546 41.681
MSSIM 0.7191 0.9802 0.9910 0.9858 0.9907 0.9908
MFIM 0.8691 0.9879 0.9942 0.9913 0.9940 0.9942
SAM 18.048 4.6330 2.9266 3.6415 2.9036 2.8475
Time - 24.506 38.838 1011.4 11.836 11.754

σ = 0.1

PSNR 20.004 34.082 38.089 35.572 37.739 37.968
MSSIM 0.4528 0.9473 0.9805 0.9655 0.9785 0.9794
MFIM 0.7348 0.9700 0.9878 0.9789 0.9861 0.9867
SAM 30.350 7.3018 3.8188 5.4473 4.1484 4.0887
Time - 25.062 39.104 1031.1 12.882 12.593

σ = 0.2

PSNR 13.983 29.687 33.990 33.277 34.015 34.518
MSSIM 0.2061 0.8734 0.9544 0.9516 0.9547 0.9582
MFIM 0.5644 0.9335 0.9717 0.9697 0.9721 0.9734
SAM 46.309 11.069 5.8062 5.9847 5.8048 5.6292
Time - 24.571 48.150 1035.6 13.659 13.466

Case 2

σ = 0.5, η = 10

PSNR 28.840 38.094 39.511 43.957 45.966 46.750
MSSIM 0.9321 0.9825 0.9874 0.9962 0.9943 0.9979
MFIM 0.9641 0.9886 0.9923 0.9971 0.9975 0.9985
SAM 13.704 5.0619 3.6387 2.3002 1.9318 1.5664
Time - 21.054 35.629 1009.3 44.387 44.097

σ = 1, η = 10

PSNR 22.820 34.332 33.472 41.545 43.727 44.165
MSSIM 0.8674 0.9642 0.9655 0.9932 0.9961 0.9968
MFIM 0.9306 0.9778 0.9777 0.9942 0.9975 0.9977
SAM 23.863 7.4990 7.0825 2.8441 2.1047 1.9880
Time - 23.543 37.961 1012.8 44.229 44.075

σ = 1, η = 20

PSNR 22.815 35.041 34.315 39.135 40.198 40.436
MSSIM 0.7853 0.9670 0.9691 0.9885 0.9910 0.9913
MFIM 0.8927 0.9789 0.9809 0.9914 0.9934 0.9939
SAM 23.972 6.7136 6.9198 3.4272 3.1831 3.0618
Time - 25.728 39.083 1016.6 37.125 36.186

Case 3 σ ∼ U(0.1, 0.2)

PSNR 16.371 31.519 34.364 34.672 35.435 35.544
MSSIM 0.3083 0.9112 0.9573 0.9549 0.9659 0.9661
MFIM 0.6423 0.9518 0.9734 0.9738 0.9781 0.9782
SAM 39.689 9.3786 6.2681 6.1109 5.2643 5.2188
Time - 24.746 37.458 1014.6 13.418 12.620
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(a) (b) (c) (d) (e) (f) (g)

Figure 3.36: Denoising for the UP dataset, Case 7 using different meth-
ods. The small green square is a zoomed-in area shown in the big square.
(a) Original pseudocolor image (R: 70, G: 120, B: 170), (b) Noisy im-
age, (c) LRMR, (d) NGmeet, (e) TLR-`0TV, (f) SSSLRR-DCT, and (g)
SSSLRR-DWT.

(a) (b) (c) (d) (e) (f)

Figure 3.37: Denoising for the Indian Pines dataset. The small green
square is a zoomed-in area shown in the big square. (a) Original pseu-
docolor image (R: 220, G: 144, B: 3), (b) LRMR, (c) NGmeet, (d) TLR-
`0TV, (e) SSSLRR-DCT, and (f) SSSLRR-DWT.

(a) (b) (c) (d) (e) (f)

Figure 3.38: Denoising for the Urban dataset. The small green square
is a zoomed-in area shown in the big square. (a) Original pseudocolor
image (R: 30, G: 110, B: 207), (b) LRMR, (c) NGmeet, (d) TLR-`0TV,
(e) SSSLRR-DCT, and (f) SSSLRR-DWT.

PSNR, MSSIM, MFSIM, SAM, and running time of SSSLRR-DWT and all comparison
methods for the WDCM and UP datasets. The highest values of PSNR, MSSIM, and
MFSIM and the lowest values of SAM and running time are represented in bold.
It can be seen that SSSLRR-DWT yields the best denoising results in most cases.
NGmeet yields good denoising results for low Gaussian noise cases. SSSLRR-DWT is
slightly better than SSSLRR-DCT. Both of them obtain good denoising results. This
means that SSSLRR using both 3-D discrete orthogonal wavelet transform and 3-D
discrete orthogonal cosine transform can achieve good denoising performance. Figs.
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Table 3.6: The quantitative evaluation results (PSNR(dB), MSSIM,
MFSIM, and SAM(degrees)) for the different denoising methods using
the Washington DC Mall (WDCM) dataset. The best results are in bold
typeface.

Noise levelMetric Noisy LRMRNGmeetTLR-`0TVSSSLRR-DCTSSSLRR-DWT

Case 4

PSNR 11.376 28.233 29.194 29.613 32.381 32.490
MSSIM0.1831 0.8357 0.8809 0.8826 0.9321 0.9345
MFIM 0.5228 0.9162 0.9317 0.9338 0.9591 0.9599
SAM 53.557 12.914 7.5161 8.8449 7.1005 6.7911
Time - 30.622 44.436 1135.7 12.793 12.586

Case 5

PSNR 12.829 29.356 28.571 29.787 31.633 32.053
MSSIM0.1792 0.8766 0.8633 0.8886 0.9241 0.9251
MFIM 0.5766 0.9432 0.9206 0.9350 0.9532 0.9562
SAM 43.896 9.4171 9.3268 8.6681 7.4483 7.2766
Time - 30.191 44.701 1143.3 12.873 12.191

Case 6

PSNR 16.370 29.419 26.798 30.266 33.502 33.851
MSSIM0.3104 0.8935 0.796 0.8988 0.9433 0.9515
MFIM 0.6432 0.9453 0.8828 0.9416 0.9665 0.9692
SAM 39.813 9.8694 8.0446 8.4550 6.5269 6.0191
Time - 29.913 43.974 1133.5 12.491 12.448

Case 7

PSNR 12.698 27.659 24.205 28.341 30.636 31.309
MSSIM0.1714 0.8483 0.8208 0.8563 0.9077 0.9139
MFIM 0.5694 0.9318 0.9388 0.9175 0.9439 0.9501
SAM 44.373 10.215 11.504 9.7621 7.8932 7.8694
Time - 30.145 44.338 1138.2 12.752 12.381

3.35, 3.36, 3.37, and 3.38 show the pseudocolor images of the simulated WDCM and
UP datasets for Case 7 and the real Indian Pines and Urban datasets denoised by
five different methods. The same area of each subfigure marked with a green box was
enlarged for a better comparison. From Figs. 3.35 and 3.36 we can see that LRMR can
remove most stripes, but there is still Gaussian noise and salt and pepper noise in the
denoised image. NGmeet removes Gaussian noise and salt and pepper noise effectively
for the WDCM dataset and removes most Gaussian noise and salt and pepper noise
for the UP dataset and can not remove stripes and gives an over smoothed denoised
image. TLR-`0TV, SSSLRR-DCT, and SSSLRR-DWT can remove Gaussian noise,
salt and pepper noise, and stripe efficiently and give good denoising results. From
Figs. 3.37 and 3.38 we can see that all the five denoising methods achieve satisfactory
denoising results for the real Indian Pines and Urban datasets.

Running Time

The running times (in seconds) for SSSLRR-DWT and the competitive methods ap-
plied to the WDCM and the UP datasets are evaluated in this section. All the exper-
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Table 3.7: The quantitative evaluation results (PSNR(dB), MSSIM,
MFSIM, SAM(degrees), and Time (second)) for the different denoising
methods using the University of Pavia (UP) dataset. The best results
are in bold typeface.

UP Noise level Metric Noisy LRMR Ngmeet TLR-`0TV SSSLRR-DCT SSSLRR-DWT

Case 1

σ = 0.05

PSNR 26.026 36.588 39.090 37.1927 38.143 38.807
MSSIM 0.6512 0.9538 0.9772 0.9611 0.9682 0.9728
MFIM 0.8549 0.9802 0.9891 0.9834 0.9852 0.9875
SAM 13.900 3.9784 2.7183 3.5889 3.2753 3.0070
Time - 22.326 35.553 966.89 4.3200 4.2892

σ = 0.1

PSNR 20.002 32.279 36.173 34.131 35.356 35.704
MSSIM 0.3880 0.8862 0.9611 0.9288 0.9514 0.9520
MFIM 0.7053 0.9535 0.9804 0.9678 0.9745 0.9751
SAM 25.525 6.2864 3.4468 4.7002 4.2018 3.9670
Time - 23.732 37.725 971.42 4.8847 4.5737

σ = 0.2

PSNR 13.980 27.753 32.484 31.681 32.605 32.997
MSSIM 0.1700 0.7473 0.9152 0.9088 0.9164 0.9232
MFIM 0.5242 0.8965 0.9509 0.9428 0.9514 0.9567
SAM 42.357 9.8416 5.2406 5.7382 5.2012 4.9689
Time - 24.493 43.302 968.23 4.9211 4.8983

Case 2

σ = 0.5, η = 10

PSNR 26.144 35.085 35.367 39.110 40.472 41.202
MSSIM 0.7731 0.9348 0.9532 0.9746 0.9788 0.9822
MFIM 0.8928 0.9712 0.9770 0.9842 0.9894 0.9914
SAM 13.663 4.9504 4.6545 2.8983 2.5342 2.3102
Time - 23.433 35.457 971.22 14.682 13.858

σ = 1, η = 10

PSNR 20.135 31.435 29.585 34.948 37.141 37.721
MSSIM 0.6385 0.8750 0.9011 0.9566 0.9567 0.9648
MFIM 0.8060 0.9452 0.9511 0.9687 0.9803 0.9813
SAM 25.097 7.3800 9.0351 4.0144 3.4374 3.2060
Time - 24.753 35.889 967.97 13.491 13.436

σ = 1, η = 20

PSNR 20.124 32.279 32.304 35.073 36.320 36.484
MSSIM 0.4599 0.8821 0.9091 0.9387 0.9557 0.9565
MFIM 0.7313 0.9505 0.9578 0.9675 0.9761 0.9773
SAM 25.205 6.4972 6.6344 4.2612 3.7267 3.6863
Time - 24.339 36.044 968.80 8.7625 4.6615

Case 3 σ ∼ U(0.1, 0.2)

PSNR 16.191 29.575 33.357 33.416 34.164 34.270
MSSIM 0.2536 0.8147 0.9301 0.9208 0.9372 0.9379
MFIM 0.6008 0.9246 0.9637 0.9624 0.9656 0.9660
SAM 35.723 8.2789 5.2755 4.8358 4.4698 4.4690
Time - 23.236 33.619 968.21 6.5452 4.9486
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Table 3.8: The quantitative evaluation results (PSNR(dB), MSSIM,
MFSIM, and SAM(degrees)) for the different denoising methods using
the University of Pavia (UP) dataset. The best results are in bold type-
face.

Noise level Metric Noisy LRMR NGmeet TLR-`0TV SSSLRR-3DCT SSSLRR-DWT

Case 4

PSNR 11.645 26.204 26.089 29.261 32.477 32.567
MSSIM 0.1530 0.6893 0.7831 0.8032 0.9201 0.9216
MFIM 0.4891 0.8707 0.8999 0.9199 0.9587 0.9607
SAM 49.501 11.907 12.345 8.5770 5.8926 5.8172
Time - 30.341 44.308 971.14 6.8324 5.7550

Case 5

PSNR 12.892 28.348 23.947 30.218 31.983 32.098
MSSIM 0.1468 0.7852 0.6937 0.8327 0.8910 0.9143
MFIM 0.5326 0.9156 0.8878 0.9319 0.9483 0.9561
SAM 41.225 8.9158 11.786 7.7761 6.3496 5.5627
Time - 30.237 34.630 970.26 5.3745 4.5971

Case 6

PSNR 16.239 28.755 31.594 30.830 32.212 32.843
MSSIM 0.2529 0.7969 0.9136 0.8925 0.9201 0.9242
MFIM 0.6014 0.9175 0.9590 0.9228 0.9644 0.9651
SAM 35.805 8.7441 5.4931 7.3799 5.4581 5.2077
Time - 29.833 34.250 969.71 5.7278 5.3020

Case 7

PSNR 12.891 27.691 23.759 28.871 30.103 30.933
MSSIM 0.1465 0.7654 0.6623 0.7899 0.8839 0.9066
MFIM 0.5321 0.9069 0.8744 0.9142 0.9453 0.9553
SAM 41.441 9.4280 11.9194 8.9173 8.1103 7.2942
Time - 30.293 34.020 972.06 5.8311 5.1261

iments are run on a Linux computer using MATLAB R2019b. The computer has an
eight-core Intel CPU 3.2 GHz and 64-GB RAM. Tables 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8
show the running times. FastHyDe is the fastest method using less than 1 s for de-
noising the WDCM and the UP datasets, while KBR is the slowest method. SSSLRR-
DWT has an average running time in the middle between the slow group methods
(BM4D and KBR) and the fast group methods (FastHyDe, HyRes, and LRTA) and
is 24.97 s for the WDCM dataset and 7.24 s for the UP dataset.

3.4 Conclusions
In this chapter, a denoising method based on sparse spectral-spatial and low-rank
representations (SSSLRR) using 3-D orthogonal transform (3-DOT) was proposed.
SSSLRR can be effectively used to remove Gaussian and mixed noise. 3-DOT is used
for SSSLRR to decompose noisy HSI to sparse transform coefficients. 3-D discrete
orthogonal wavelet transform (3-D DWT) and 3-D discrete orthogonal cosine trans-
form (3-D DCT) are two examples of 3-DOT appropriate for denoising since they
concentrate the signal in few transform coefficients. SSSLRR-DWT uses 3-D DWT to
be the 3-DOT. SSSLRR-DWT transforms the original HSI to the wavelet domain. A
weighted nuclear norm low-rank regularizer was proposed for the global image, which
gives more flexibility than the nuclear norm. The weighted nuclear norm low-rank reg-
ularizer uses different weights to shrink the singular values of the wavelet coefficient
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matrix.

HSI has sparse and low-rank characteristics and can be preserved using the `1 penalty
and the weighted nuclear norm low-rank penalty, respectively. Thus, a novel sparse
and low-rank penalized model was proposed using both the `1 penalty and the weighted
nuclear norm low-rank penalty. SSSLRR-DWT uses the sparse and low-rank penal-
ized model can adaptively shrink wavelet coefficients and penalize the singular values
of the wavelet coefficient matrix. Thus, SSSLRR-DWT uses the sparse and low-rank
penalized model to remove noise effectively and recover the denoised image. The al-
gorithm for SSSLRR-DWT was developed using ADMM. To analyze the effectiveness
of different penalties for SSSLRR-DWT both in signal and wavelet domain, four dif-
ferent methods were analyzed. The analysis shows that SSSLRR-DWT uses both `1
penalty and weighted nuclear norm low-rank penalty in the wavelet domain yields
better denoising results than the other methods. Moreover, a new SSSLRR-DCT
denoising method was also proposed, which uses the 3-D discrete orthogonal cosine
transform (3-D DCT) for SSSLRR. The analysis shows that both SSSLRR-DWT and
SSSLRR-DCT have good denoising results. The experimental results indicate that
our proposed method improves the denoising performance for both simulated and real
noisy HSI datasets.
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Chapter

MFA Low-Rank Based Methods
for HSI Denoising

4
This chapter proposes four mixtures of factor analyzers (MFA) low-rank based meth-
ods for HSI denoising. Three new MFA, 2-D wavelet based MFA (WMFA-2D), and
3-D wavelet based MFA (WMFA-3D) are proposed for removing Gaussian noise.
MFA uses a Gaussian mixture model to segment the original HSI into different parts,
where each part follows Gaussian distribution and then utilizes a factor analyzer to
get a low-rank factor loading matrix, and finally uses the inverse transformation of
the matrix to get the denoised hyperspectral dataset. WMFA-2D and WMFA-3D
use the MFA in the wavelet domain to remove the noise in HSI. HSIs are usually
degraded by different noise types such as missing lines (ML), missing pixels (MP),
salt and pepper noise (SP), and Gaussian noise. One new local spatial-spectral
correlation based automatic MFA (LSSC-AMFA) is proposed for removing mixed
noise. The proposed method, hierarchically, removes the mixed noise. Firstly, we
develop a novel local spatial-spectral correlation (LSSC) method to remove the ML
noise. Then LSSC-MFA uses the mixtures of factor analyzers (MFA) method to
remove the MP, SP, and Gaussian noises. The proposed methods are evaluated by
using both simulated and real hyperspectral datasets.

•

4.1 MFA and WMFA HSI Denoising

4.1.1 Introduction
Low-rank model based methods describe the problem of finding and exploiting low-
dimensional structures in high-dimensional data have been proposed and successfully
used in HSI denoising [32]. An example is hyperspectral restoration (HyRes) [39],
which is a low-rank SSTV-based method. Another examples are low-rank matrix
recovery (LRMR) [32], and noise-adjusted iterative low-rank matrix approximation
(NAILRMA) [33]. LRMR explores the low-rank property of the HSI by lexicographi-
cally ordering a patch of the HSI into a 2-D matrix, while NAILRMA utilizes patch-
wise low-rank matrix approximation and adaptive iteration factor selection to remove
noise.

In this paper, we propose two low-rank model-based denoising methods for HSI, i.e.,
mixtures of factor analyzers (MFA) and wavelet-based MFA (WMFA). MFA, as it is
used to HSI denoising, utilizes Gaussian mixture model to segment the original HSI
to different parts, where each part follows a Gaussian distribution and then utilizes
a factor analyzer to get a low-rank factor loading matrix, and finally uses the inverse
transformation of the low-rank factor loading matrix to get the hyperspectral data
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without noise. WMFA is a MFA in the wavelet domain. In WMFA, the whole HSI is
firstly decomposed into sub-images (approximation coefficients (AC1) sub-image and
detail coefficients sub-images) using wavelet decomposition. Secondly, using all the
sub-images to compose a new hyperspectral dataset with the same size as the original
HSI. Thirdly, this new dataset is put in the MFA algorithm to get a denoised dataset.
Fourthly, the denoised dataset is split to different sub-images (new approximation co-
efficients (AC2) sub-image and new detail coefficients sub-images) using the inverse
way as the process of composition in the second step. Finally, using wavelet reconstruc-
tion transformation based on the approximation coefficients (AC1) sub-image and new
detail coefficients sub-images to reconstruct a new denoised HSI with the same size as
the original HSI.

Original 
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Figure 4.1: The schematic of the WMFA, which uses 1-level 2-D DWT
as an input.

4.1.2 MFA Denoiser
Let x denote a D-dimensional spectral vector, z denote a d-dimensional latent vector,
and c ∈ {1, ..., C} denote the component indicator variable of the C factor analyzers
in MFA. The standard multivariate normal prior on the latent factors is

p(z|c) = p(z) = N (z; 0, I), (4.1)

where p(c) = πc,
∑C
c=1 πc = 1, N (z; 0, I) means that z is Gaussian vector with zero

mean and d× d identity matrix I as the covariance matrix.

The MFA model can be defined as

x = Wcz + µc + ε, (4.2)

where ε is noise which is independently distributed as N (0,Ψ), Ψ is diagonal matrix
which represents the independent noise variances for each of the observed variables.
The parameters of the c-th factor analyzer include a mixing proportion πc, a factor
loading matrix Wc, and mean µc.

By integrating out the latent variables z, the MFA model becomes a mixture of Gaus-
sians [83]. The parameters of MFA are estimated by using an expectation maximiza-
tion (EM) algorithm [83].
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     (a)                   (b)                            (c)

Figure 4.2: The experimental datasets. (a) University of Pavia (R: 64,
G: 45, and B: 10), (b) Washington DC Mall (R: 60, G: 27, and B: 17),
and (d) Indian Pines (R: 50, G: 27, and B: 17).

Table 4.1: The quantitative evaluation results (PSNR(dB)) for the dif-
ferent denoising methods for the University of Pavia (UP) and the Wash-
ington DC Mall (WDCM) datasets. The best results are in bold type-
face.

DatasetsNoise CasesNoise ParametersNoisySSTVLRMRNAILRMAHyRes MFA WMFA-3DWMFA-2D

UP
Case 1 σ = 0.1, η = 10 38.05 43.85 44.34 46.33 46.69 46.50 46.62 46.92
Case 2 σ = 0.5, η = 10 24.08 34.56 33.17 36.75 39.31 39.50 39.29 39.37
Case 3 σ = 1, η = 12 18.07 29.10 29.49 33.86 35.14 35.20 34.96 35.02

WDCM
Case 1 σ = 0.1, η = 10 38.05 43.85 44.34 46.13 46.51 46.44 46.83 46.62
Case 2 σ = 0.5, η = 10 24.09 34.63 33.55 38.22 38.73 40.04 38.50 38.62
Case 3 σ = 1, η = 12 18.06 29.09 29.59 33.34 34.92 35.06 33.91 33.99

      (a)                  (b)                   (c)                  (d)                   (e)                   (f)                  (g)                   (h)                 (i)

Figure 4.3: The results for the different denoising methods for the sim-
ulated UP dataset. (a) Original band 32, (b) Noisy band 32, (c) SSTV,
(d) LRMR, (e) NAILRMA, (f) HyRes, (g) MFA, (h) WMFA-3D, and (i)
WMFA-2D.
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Algorithm 2 WMFA algorithm
1: Input HSI X.
2: Use 2-D (or 3-D) DWT to decompose X to approximation sub-image and details

sub-images.
3: Compose all the sub-images to a new HSI X1.
4: Use MFA to remove the noise of X1, get denoised dataset X2.
5: Split X2 to different sub-images by using the inverse way as the process of com-

position in the third step.
6: Perform IDWT based on the original approximation sub-image and denoised de-

tails sub-images to get the denoised HSI X3.
7: Output the denoised HSI X3.

4.1.3 WMFA Denoiser

WMFA uses the MFA in the wavelet domain to remove the noise in an HSI. Firstly,
using 2-D discrete wavelet transform (DWT) to decompose the original noisy HSI X
with m × n pixels and b spectral bands to a sequence of different spatial resolution
sub-images, i.e., approximation and details. In case of using 2-D DWT, a K level
decomposition can be performed resulting in 3K + 1 different sub-images namely, LL,
LH, HL, and HH. The next level of DWT is applied to the low-frequency sub-image LL
only. Secondly, putting all the sub-images together to constitute a new HSI X1 with
the same size as X and then using MFA to remove the noise from X1 in the wavelet
domain. The Gaussian noise will be averaged out in low-frequency wavelet coefficients,
therefore only the wavelet coefficients in the high-frequency levels, i.e., the details (LH,
HL, and HH) sub-images are needed to denoise [70]. Thirdly, splitting the denoised
image to different sub-images by using the inverse way as the process of composition in
the second step. Finally, performing 2-D inverse DWT (IDWT) based on the original
approximation sub-image and denoised details sub-images to reconstruct the denoised
HSI.

In the decomposition and reconstruction of WMFA, we can also use the 3-D DWT to
decompose and the 3-D IDWT to reconstruct. In this paper, the WMFA using 2-D
WDT is called WMFA-2D, and WMFA-3D when the 3-D DWT is used. The WMFA
model is summarized in Algorithm 2, and the schematic of the WMFA is shown in
Fig. 4.1.

4.1.4 Experiments and Results

In this part, the experiments are conducted on two simulated noisy datasets and one
real noisy hyperspectral dataset. The following denoising methods SSTV, LRMR,
NAILRMA, HyRes, MFA, and WMFA (WMFA-2D, and WMFA-3D) are compared.

Two HSI datasets, the University of Pavia (UP) dataset (Appendix B.2), and the
Washington DC Mall (WDCM) dataset (Appendix B.1), are used in the simulated
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experiments. In the experiments, only a sub-image of size 256× 128 ×64 for UP dataset
is used, and is given in Fig. 4.2(a). The size of sub-image for WDCM dataset used
in experiments is selected as 256 × 128 × 64, and is given in Fig. 4.2(b). Before
the simulated datasets are denoised, the gray values of each band in the HSI are
normalized between [0, 1]. After denoising, the gray values of each band are stretched
to the original level. The Gaussian noise was added in such a way that the variance
(σ2
i ) varies along the spectral axis according to

σ2
i = σ2 e

− (i−p/2)2

2η2∑p
j=1 e

− (i−p/2)2
2η2

. (4.3)

Note that the power of the noise is controlled by σ, and η behaves like the standard
deviation of a Gaussian bell curve [80]. In the experiments, we set σ to three different
values 0.1, 0.5, and 1, and η to two different values 10, and 12.

To evaluate the denoised results of the simulated datasets, the quantitative metric is
peak signal-to-noise ratio (PSNR) (Appendix A.1) is used.

Table 4.1 shows the quantitative evaluation results for the different denoising methods
for both the UP dataset and the WDCM dataset. From the table, it can be seen that
the proposed MFA and WMFA (WMFA-2D, and WMFA-3D) methods outperform
the other methods. When the level of noise is high such as in Case 2 and 3, MFA
outperforms WMFA-3D and WMFA-2D and achieves the highest PSNR values. When
the level of noise is low such as in Case 1, WMFA-3D and WMFA-2D are similar
and slightly better than MFA. Fig. 4.3 shows the results for the different denoising
methods for a selected band 32 of the simulated UP dataset. The visual comparison
reveals that the proposed methods successfully remove noise from the corrupted band.

         (a)                    (b)                     (c)                     (d)                    (e)                     (f)                     (g)                   (h)

Figure 4.4: The results for the different denoising methods for the Indian
Pines dataset, from top to bottom bands 150, 163, and 220, respectively.
(a) Original band, (b) SSTV, (c) LRMR, (d) NAILRMA, (e) HyRes, (f)
MFA, (g) WMFA-3D, and (h) WMFA-2D.
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For the experiments based on the real dataset, the Indian Pines dataset (Appendix B.3)
is used. The dataset is given in Fig. 4.2(c). Fig. 4.4 presents bands 150, 163, and 220
for different denoising methods. It can be clearly observed that the denoised images
obtained by SSTV, LRMR, NAILRMA, and HyRes still have some visible noises.
By contrast, the proposed MFA, WMFA (WMFA-3D, and WMFA-2D) methods give
better denoised images, all of them have smoother appearance and preserve more
details on edges.

4.2 LSSC-AMFA HSI Denoising

4.2.1 Introduction

MFA and WMFA can only remove Gaussian noise. HSIs are often corrupted by differ-
ent noises such as missing vertical lines (MVL) noise, missing horizontal lines (MHL)
noise, salt and pepper (SP) noise, missing pixels (MP) noise, and Gaussian noise, etc.
This is due to the influence of dark current, fluctuations in power supply, and atmo-
spheric change. Therefore, HSI mixed noise denoising is an important preprocessing
task since it improves HSI quality and enhances the performance of HSI applications.
In this chapter, we propose a local spectral-spatial correlation based automatic mix-
tures of factor analyzers (LSSC-AMFA) denoising method for HSIs. The method can
simultaneously remove MVL, MHL, SP, MP, and Gaussian noises. LSSC-AMFA firstly
uses a local spectral-spatial correlation (LSSC) method to remove the MVL and MHL
noises, and then using an automatic mixtures of factor analyzers (AMFA) method to
remove SP, MP, and Gaussian noises.

4.2.2 LSSC-AMFA Denoiser

Let us consider an HSI dataset X that is aM×N×B 3-D matrix and hasM×N pixels
and B spectral bands. The HSIs are received by sensors, the line stripping problem
mostly happens when sensors go out of radiometric calibration [84]. The dataset might
be corrupted by MVL and MHL noises. Therefore, the HSI dataset X can be modeled
by

X = X1 + N1, (4.4)

where X1 is a missing-lines-noise-free signal, and N1 represents the MVL and MHL
noises. To estimate X1, a LSSC method is proposed to remove the MVL and MHL
noises. For the LSSC method, it is important to find the positions of MVL and MHL
noises, precisely. We propose the following method to find the positions of MVL and
MHL noises. We detect MVL noise if the following condition is true

vi,b = ‖vi,b./v:,b‖1 , (4.5)

|vi,b − µv|> 3σv, (4.6)
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where vi,b is the i-th column vector in the b-th spectral band of X, b ∈ {1, ..., B},
v:,b is the mean vector of all the column vectors in the b-th spectral band of X, µv =
1
N

∑N
i=1 vi,b is the mean, and σv =

√
1
N

∑N
i=1(vi,b − µv)2 is the standard deviation.

We detect MHL noise if the following condition is true

hi,b =
∥∥hi,b./h:,b

∥∥
1 , (4.7)

|hi,b − µh| > 3σh, (4.8)
where hi,b and h:,b are the i-th row vector and the mean vector of all the row vectors
in the b-th spectral band of X, respectively. µh = 1

M

∑M
i=1 hi,b is the mean, and

σh =
√

1
M

∑M
i=1(hi,b − µh)2 is the standard deviation.

When vi,b and hi,b satisfy (4.6) and (4.8), respectively, vi,b and hi,b have MVL and
MHL noises, respectively. Then, the estimation X̂1 of X1 is obtained by using the
following model to remove MVL and MHL noises,

v̂i,b = 1
k1

(vi−1,b + vi+1,b + vi,b−1 + vi,b+1), (4.9)

ĥi,b = 1
k2

(hi−1,b + hi+1,b + hi,b−1 + hi,b+1), (4.10)

where v̂i,b and ĥi,b are the denoised version of vi,b and hi,b, respectively. k1 and k2 are
positive integers constant. Suppose V = {vi−1,b, vi+1,b, vi,b−1, vi,b+1}, k1 = 4 when all
the elements in the V do not satisfy (4.6). When k elements in the V satisfy (4.6),
using the renewed (4.9) by removing these k vectors from (4.9) to estimate vi,b, and
here k1 = 4− k, k ∈ {1, 2, 3}. When all the elements in the V satisfy (4.6), i.e., k = 4,
v̂i,b = 1

B−3 (vi,1 + vi,2 + ...+ vi,b−2 + vi,b+2 + ...+ vi,B) is used to estimate vi,b. ĥi,b
and k2 are similarly set. X̂1 might contain SP, MP, and Gaussian noises. Therefore,
the X̂1 can be modeled by

X̂1 = X2 + N2, (4.11)
where X2 is the unknown noise-free image and N2 is the mixture of SP, MP and
Gaussian noises. In order to estimate X2, we propose an automatic mixtures of factor
analyzers (AMFA) method to remove N2. The AMFA model can be defined as

X̂1 = WcZ + µc + N2, (4.12)

where X̂1 is reshaped to be a B × P matrix, B is the number of spectral bands,
P = M × N is the number of pixels, Z denotes the r × P latent factor matrix, r
is subspace dimension, and r ≤ min(B,P ), the subscript c ∈ {1, ..., C} denotes the
component indicator variable of the C factor analyzers in the AMFA. The parameters
of the c-th factor analyzer include a B × r factor loading matrix Wc, and a B × P
mean matrix µc.

The parameter r is estimated by using a minimum error based hyperspectral subspace
identification (HySime) method [80], and the parameters Z, Wc, µc, and N2 of AMFA
are estimated by using an expectation-maximization (EM) algorithm [85].
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Table 4.2: The parameters of the mixed noises for different cases.

Cases Gaussian Noise MVL MHL SP MP NB
Case 1σ = 1, η = 15 N-MVL = 10N-MHL = 10P-SP = 10%N-MP = 10NB = 10
Case 2σ = 1, η = 15 N-MVL = 20N-MHL = 20P-SP = 20%N-MP = 20NB = 20
Case 3σ = 0.5, η = 15N-MVL = 10N-MHL = 10P-SP = 10%N-MP = 10NB = 10
Case 4σ = 0.5, η = 15N-MVL = 20N-MHL = 20P-SP = 20%N-MP = 20NB = 20

Finally, the clear image is obtained by

X̂2 = ŴcẐ + µ̂c, (4.13)

where X̂2, Ŵc, Ẑ, and µ̂c denote the estimations of X2, Wc, Z, and µc, respectively.

The LSSC-AMFA denoising method is summarized in Algorithm 3.

Algorithm 3 LSSC-AMFA algorithm
1: Input HSI X.
2: Find the positions of MVL and MHL noises.
3: Remove the MVL and MHL noises using the LSSC method.
4: Use the AMFA method to further remove the SP, MP, and Gaussian noises.
5: Output the denoised HSI X̂2.

     (a)                   (b)                                  (c)

Figure 4.5: The experimental datasets. (a) University of Pavia (R: 64,
G: 45, and B: 10), (b) Washington DC Mall (R: 60, G: 27, and B: 17),
and (c) Urban (R: 53, G: 35, and B: 10).

4.2.3 Experiments and Results

The experiments are conducted on two noisy simulated datasets and one real noisy
hyperspectral dataset. The following denoising methods GSP, GAP, BM3D, BM4D,
SSTV, LRMR, NAILRMA, and HyRes are used as comparison to the proposed LSSC-
AMFA denoising method.
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             (a)                                    (b)                                    (c)                                   (d)                                     (e)                                    (f)                  

             (g)                                              (h)                                               (i)                                             (j)                                               (k)

Figure 4.6: The results for the different denoising methods for the Uni-
versity of Pavia (UP) dataset. (a) Original band 31, (b) Noisy band
31, (c) GSP, (d) GAP, (e) BM3D, (f) BM4D, (g) SSTV, (h) LRMR, (i)
NAILRMA, (j) HyRes and (k) LSSC-AMFA.

Table 4.3: The quantitative evaluation results (PSNR (dB)) for the
different denoising methods for the University of Pavia (UP) and the
Washington DC Mall (WDCM) datasets. The best results are in bold
typeface.

Data Cases Noisy GSP GAP BM3D BM4D SSTV LRMR NAILRMA HyRes LSSC-AMFA

UP
Case 1 16.74 24.28 27.35 24.87 29.94 28.17 28.65 29.47 29.45 30.83
Case 2 13.69 22.78 23.72 20.30 23.74 24.72 24.75 23.89 22.92 25.31
Case 3 19.99 27.56 29.59 24.47 27.57 33.10 30.72 31.08 30.98 33.81
Case 4 14.75 24.84 24.30 20.01 21.54 26.59 24.23 24.93 23.67 27.11

WDCM
Case 1 16.69 22.67 26.60 23.11 27.30 27.77 26.47 26.53 27.29 31.57
Case 2 13.67 19.96 21.68 18.88 21.49 22.99 21.31 20.92 21.26 24.95
Case 3 19.81 25.11 28.84 23.64 25.94 32.38 27.33 26.98 27.62 34.65
Case 4 14.52 21.29 22.72 18.22 20.49 24.60 21.09 20.77 20.71 26.88
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The University of Pavia (UP) dataset (Appendix B.2), and the Washington DC Mall
(WDCM) dataset (Appendix B.1) are used in the simulated experiments. In the ex-
periments, only a sub-image of size 256× 128 ×64 is used for UP dataset and is given
in Fig. 4.5(a). The size of the sub-image for WDCM dataset used in experiments
is 256 × 128 × 64, and it is given in Fig. 4.5(b). Before the simulated datasets are
denoised, the gray values of each band in the HSI are normalized between [0, 1]. After
denoising, the gray values of each band are stretched to the original level. The added
Gaussian noise has variance (σ2

i ) that varies along the spectral axis and is given by

σ2
i = σ2 e

− (i−p/2)2

2η2∑p
j=1 e

− (i−p/2)2
2η2

. (4.14)

In (4.14), σ controls the power of the noise and η behaves like the standard deviation
of a Gaussian bell curve [80]. In the experiments, σ has two different values 1, and
0.5, and we set η = 15.

The parameters for the MVL, MHL, SP, MP, and Gaussian noises added to the simu-
lated datasets are given in Table 4.2. The number of MVL, MHL, and MP are called
N-MVL, N-MHL, and N-MP, respectively. The percentage of the SP noise is denoted
by P-SP (equal percentages for salt and pepper). The number of bands selected to
add each type of MVL, MHL, SP, and MP is denoted by NB.

To evaluate the denoised results of the simulated datasets, the quantitative metric is
peak signal-to-noise ratio (PSNR) (Appendix A.1) is used.

Table 4.3 shows the quantitative evaluation results for the different denoising methods
with different noise cases for both the UP dataset and the WDCM dataset. From the
table, it can be seen that the performance of the proposed LSSC-AMFA method is
better than the other methods used in the experiments. LSSC-AMFA achieves the
highest PSNR for both datasets for all different noise cases. For the UP dataset,
LSSC-AMFA improves the PSNR by 6.55 dB in Case 1, 5.01 dB in Case 2, 9.34 dB
in Case 3, and 7.10 dB in Case 4 compared to other methods used in the experiment.
For the WDCM dataset, LSSC-AMFA improves the PSNR by 8.90 dB in Case 1, 4.99
dB in Case 2, 11.01 dB in Case 3, and 8.66 dB in Case 4 compared to other methods
used in the experiment. Fig. 4.6 and 4.7 show the results for the different denoising
methods for band 31 of the simulated UP dataset and band 64 of the simulated WDCM
dataset, respectively. The visual comparison shows that GSP, GAP, BM3D, BM4D,
SSTV, LRMR, NAILRMA, and HyRes have a hard time removing the mixed noises as
were expected. But LSSC-AMFA removes the mixed noises from the corrupted band.

The Urban dataset (Appendix B.4) is used in experiments for the real dataset. The
dataset is given in Fig. 4.5(c). It should be noted that, the GSP and GAP methods
do not work for the Urban dataset since one necessary running condition for GSP is
that the number of pixels for experimental dataset is even, while the Urban dataset
is odd (307 × 307 = 94249). And the size of the Urban dataset is too big to be run
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             (a)                                    (b)                                    (c)                                   (d)                                     (e)                                    (f)                  

             (g)                                              (h)                                               (i)                                             (j)                                               (k)

Figure 4.7: The results for the different denoising methods for the Wash-
ington DC Mall (WDCM) dataset. (a) Original band 64, (b) Noisy band
64, (c) GSP, (d) GAP, (e) BM3D, (f) BM4D, (g) SSTV, (h) LRMR, (i)
NAILRMA, (j) HyRes and (k) LSSC-AMFA.
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for GAP. Therefore, there are no experimental results for GSP and GAP in this part
of the experiments. Fig. 4.8 shows bands 150, 208, and 210 for the different denoising
methods. It can be clearly observed that the denoised images obtained by GSP, GAP,
BM3D, BM4D, SSTV, LRMR, NAILRMA, and HyRes still have some visible noises.
By contrast, LSSC-AMFA gives much better denoised images and preserves more
details on edges.

 Original band 210           BM3D                       BM4D                         SSTV                         LRMR                  NAILRMA                    HyRes               LSSC-AMFA                                         

 Original band 150           BM3D                       BM4D                         SSTV                         LRMR                  NAILRMA                    HyRes                 LSSC-AMFA                                         

 Original band 208           BM3D                       BM4D                         SSTV                         LRMR                  NAILRMA                    HyRes               LSSC-AMFA                                         

Figure 4.8: The results for the different denoising methods for the Urban
dataset.

The CPU processing time (in seconds) is given in Table 4.4 for different denoising
methods applied to the UP dataset. The results given are mean values over ten exper-
iments. All the methods are implemented in MATLAB R2019a on a computer having
Intel(R) Core(TM) i7-6700 processor (3.40GHz), 8.00 GB of memory and 64-bit Win-
dows 10 Operating System. It can be seen that the running time for LSSC-AMFA is
0.77 s in Case 1, 0.73 s in Case 2, 0.65 s in Case 3, and 1.01 s in Case 4. LSSC-AMFA
is a fast denoising method and mostly less computational expensive than the other
methods used in the experiments.

Table 4.4: CPU processing times in seconds for different denoising meth-
ods applied on the University of Pavia dataset.

Noise Cases GSP GAP BM3D BM4D SSTV LRMR NAILRMA HyRes LSSC-AMFA
Case 1 90.43 7339.94 33.68 107.57 127.59 16.78 30.37 0.74 0.77
Case 2 89.67 7430.61 33.80 107.15 127.68 16.63 31.65 0.74 0.73
Case 3 92.05 7202.84 34.31 107.65 127.38 16.54 40.64 0.76 0.65
Case 4 94.86 7333.70 33.72 107.44 127.24 16.84 41.49 0.79 1.01

4.3 Conclusions
In this chapter, we propose three new, MFA, WMFA-2D, and WMFA-3D, denoising
methods for removing Gaussian noise of HSI. MFA uses the inverse transformation of
the loading matrix to get the denoised HSI. WMFA-2D and WMFA-3D use the MFA
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in the wavelet domain. MFA is particularly suitable for denoising of HSI with a high
level of noise. While WMFA-2D and WMFA-3D can be effectively used to denoising of
HSI with a low level of noise. To validate the performance of denoising, two simulated
datasets and a real dataset are used in the experiments. The experimental results
show that MFA, WMFA-2D, and WMFA-3D can give good denoised results.

LSSC-AMFA denoising method was proposed for removing mixed noise of HSI. In the
LSSC-AMFA, the MVL and MHL noises were first removed using the proposed LSSC
method and then the mixture of SP, MP, and Gaussian noises was removed using
the proposed AMFA method. To validate the performance of denoising methods,
two simulated datasets and one real HSI dataset was used in the experiments. These
experimental results show that LSSC-AMFA is a fast denoising method and gives
better results compared to state-of-the-art denoising methods and can effectively and
simultaneously remove the mixture of MVL, MHL, SP, MP, and Gaussian noises.
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Chapter

MFA Low-Rank Based Methods
for HSI Feature Extraction

5
This chapter proposes six new unsupervised, supervised, and semi-supervised MFA-
based methods are proposed for HSI feature extraction and are then used for clas-
sification of them. There are MFA, deep MFA (DMFA), supervised MFA (SMFA),
supervised DMFA (SDMFA), semi-supervised MFA (S2MFA), and semi-supervised
DMFA (S2DMFA) feature extraction methods. All of them are probabilistic dimen-
sionality reduction (DR) methods, instead of assuming that a whole HSI obeys a
Gaussian distribution, the methods use a Gaussian mixture model to extract more
effective information for DR. The Gaussian mixture model is used for MFA to allow
a low-dimensionality representation of the Gaussian. A two-layer MFA, DMFA, uti-
lizes the samples from the posterior at the first layer to an MFA model at the second
layer. MFA and DMFA are two unsupervised DR method. The methods are particu-
larly suitable for DR of HSI with a non-normal distribution and unlabeled samples.
SMFA and SDMFA are two supervised DR methods and use labeled samples to
extract features. SDMFA is a deep version of SMFA and consists of a two-layer
SMFA. SMFA and SDMFA can be effectively used to DR of HSI with a non-normal
distribution and labeled samples. S2MFA and S2DMFA are two semi-supervised DR
methods, which simultaneously consider labeled and unlabeled samples to extract
features. S2MFA uses a Gaussian mixture model to segment image to different parts,
each part follows a Gaussian distribution and contains many labeled and unlabeled
samples and uses a factor analyzer to get a factor loading matrix. This matrix
uses labeled samples to improve the class discrimination and employs both labeled
and unlabeled samples to preserve the local spatial features of the data and then is
used for transforming the original HSI to an optimal low-dimensional subspace to
achieve DR. S2DMFA is a two-layer S2MFA. S2MFA and S2DMFA are particularly
suitable for DR of HSI with a complicated probability distribution and labeled and
unlabeled samples. Based on the six DR methods, we also proposed a framework for
HSI classification, the overall accuracy of a classifier on validation samples is used
to automatically determine the optimal number of features of DR for HSI classifica-
tion. This framework can automatically extract the most effective feature for HSI
classification. To validate the performance of DR, we conduct experiments in terms
of SVM classification based on real HSIs. The experimental results show that our
proposed methods can give better results than statistical DR comparison methods.

•
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5.1 Unsupervised and Supervised MFA-Based Fea-
ture Extraction Methods

5.1.1 Introduction

Hyperspectral images (HSIs) provide abundant spectral information about a scene [86].
In general, an HSI contains hundreds of spectral bands with high spectral resolu-
tion [87–89]. Having sufficient spectral information makes it possible to discriminate
different materials within a scene by using a classifier [90–93]. However, the high
dimensionality of HSIs makes the processing computationally and memory costly. To
achieve an acceptable classification accuracy for an image of high dimensionality many
conventional HSI processing require many training samples [94–96]. This is known as
the Hughes phenomenon or the curse of dimensionality [97]. Thus when we have a
limited number of training samples, we have a trade-off between classification accu-
racy and the number of spectral bands [48, 98–105]. Dimensionality reduction (DR)
is a very effective way to solve this problem [17, 106–115]. Dimensionality reduced
data should be a good representation of the original data. In addition, both the com-
puting time and the number of training samples required will become less when the
data dimensionality is lower. Therefore, DR is a very important pre-processing step
for HSI classification [116–122]. In general, DR can be divided into feature selection
(FS) and feature extraction (FE). In this paper, we focus on FE. There exist several
classical and novel statistical FE methods in the literature that have been used in
HSI processing. FE methods are either unsupervised or supervised. Principal com-
ponent analysis (PCA) [123] is a classical unsupervised FE method. PCA projects
the original data onto a lower dimensional linear subspace of the original data space
and can also be expressed as the maximum likelihood solution of a probabilistic latent
variable model [50]. This reformulation of PCA is called probabilistic principal com-
ponent analysis (PPCA) [49] and is an example of a linear-Gaussian framework, in
which all of the marginal and conditional distributions are assumed to be Gaussian.
Factor analysis (FA) [50, 124] is also a linear Gaussian latent variable model closely
related to PPCA. For FA, the conditional distribution of the observed variables given
the latent variable have diagonal rather than an isotropic covariance matrix. In addi-
tion to these classical unsupervised FE methods, there are several novel unsupervised
FE methods in the literature, such as orthogonal total variation component analysis
(OTVCA) [54], edge-preserving filtering [125], Gaussian pyramid based multi-scale
feature extraction (MSFE) [126], sparse and smooth low-rank analysis (SSLRA) [47],
etc. For supervised FE methods, the new features should contain most discriminative
information based on the labeled samples. There exist several supervised FE methods,
such as linear discriminant analysis (LDA) [56], nonparametric weighted feature ex-
traction (NWFE) [57], manifold-learning based HSI feature extraction [61], low-rank
representation with the ability to preserve the local pairwise constraints information
(LRLPC) [62], etc. Supervised methods are usually better than unsupervised methods
for HSI classification [127–129], since they have access to labeled data. However, the
effectiveness depends on how well the labeled dataset represents the whole original
dataset.
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For both PPCA and FA, all the marginal and conditional distributions of the HSI are
assumed to be Gaussian. However, in practice, most HSIs cannot be assumed to obey
a Gaussian distribution. To overcome this problem, we propose mixtures of factor an-
alyzers (MFA), deep MFA (DMFA), supervised MFA (SMFA), and supervised DMFA
(SDMFA) FE methods for HSI. We also propose an image segmentation method based
on the Gaussian mixture model for MFA, DMFA, SMFA, and SDMFA to solve the
problem of a non-normal distribution. MFA, is the same as it is used to HSI denoising,
assumes a low-dimensionality representation of the Gaussians in the Gaussian mixture
model. DMFA consists of a two-layer MFA, which inputs the samples from the pos-
terior distribution at the first layer to an MFA model at the second layer. SMFA
and SDMFA are supervised FE method that uses labeled samples to extract features
of HSI. Based on these four FE methods, a framework for HSI classification is also
proposed in this paper. While the dimensionality of the desired features needs to be
selected by the user in conventional DR methods, the proposed framework automat-
ically determines the dimensionality of features according to classification accuracy
without prior supervision by the user.

5.1.2 Proposed FE Methods and Framework

MFA

Let x denote a D-dimensional spectral vector, z denote a d-dimensional latent vector,
and m ∈ {1, ...,M} denote the component indicator variable of theM factor analyzers
in MFA. The MFA model can be defined as

p(m) = πm,

M∑
m=1

πm = 1, (5.1)

p(z|m) = p(z) = N (z; 0, I), (5.2)
p(x|z,m) = N (x; Wmz + µm,Ψ), (5.3)

where N (z; 0, I) means that z is Gaussian vector with zero mean and d × d identity
matrix I as the covariance matrix. The parameters of the m-th factor analyzer include
a mixing proportion πm, mean µm, a D× d factor loading matrix Wm, and a D×D
diagonal matrix Ψ which represents the independent noise variances for each band.

The parameters z, µm, Wm, and Ψ of MFA are estimated (trained) by using an
expectation maximization (EM) algorithm [85]. An example demonstrating how MFA
works is shown in Figure 5.1(a) and (b). The schematic of the MFA is shown in Figure
5.2.

The performance of MFA for classification can be improved by increasing the dimen-
sionality d of the latent factors per component of the mixture of factor analyzers or
the number M of mixture components. However, for high dimensionality data, this
approach quickly leads to overfitting. Below we discuss a cross-validation scheme to
select d while avoiding overfitting.
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Figure 5.1: (a) A scatterplot of HSI samples over two spectral bands.
(b) Illustration of the MFA model with each ellipse representing a Gaus-
sian component. MFA has three components colored red (m = 1), green
(m = 2) and blue (m = 3). Their mixing proportions are given by πm.
(c) Illustration of DMFA model with each ellipse representing a Gaus-
sian component. The number of components and mixing proportions of
the first layer of DMFA are the same as MFA. For the red component, we
further learn a second layer of DMFA with three components. For the
green and blue components, both of them are learned a second layer of
DMFA with two components, respectively. We also introduce the second
layer component indicator variable km = 1, 2, ...,Km and mixing propor-
tions π(2)

m , where Km is the total number of the second layer components
associated with the first layer component m. Km is specific to the first
layer component and need not be the same for all m. In this example,
K1 = 3, K2 = 2 and K3 = 2.
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Gaussian mixture model

FA3FA2FA1

Original HSI

3M

1m 2m 3m
1

 2
 3



Dimensionality Reduction Result

Figure 5.2: The schematic of the MFA corresponding to Figure 5.14b.

DMFA

Figure 5.1(c) shows a case where the posteriors have non-normal distribution, to solve
this problem the DMFA model was proposed. Instead of a simple standard normal
prior, the DMFA model uses a more powerful MFA prior:

p(z|m) = MFA(θ(2)
m ), (5.4)

where θ(2)
m is the model parameter in the second layer and it emphasizes that the

new MFA’s parameters are at the second layer and specific to component m of the
first layer MFA, while holding the first layer parameters fixed. Thus, the DMFA is
equivalent to fitting component-specific second layer MFAs with vectors drawn from
p(z,m, |x; θ(1)

m ) as data, where θ(1)
m is the model parameter in the first layer.

Using p(km|m) = π
(2)
km

to denote the second layer mixing proportion of mixture com-
ponent km, and Km denote the total number of factor analyzers in the second layer
for specific m of the first layer, so

∀m :
Km∑
km=1

π
(2)
km

= 1, (5.5)

pDMFA(z,m) = p(m)p(z|m) = p(m)p(km|m)p(z|km). (5.6)
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For convenience denote all possible second layer mixture components with s = 1, ..., S,
where S =

∑M
m=1 Km. The mixing proportions are π(2)

s = p(m(s))p(km(s)|m(s)),
where m(s) and km(s) are the first and second layer mixture components m and km
to which s corresponds.

Therefore, the DMFA model is
p(s) = π(2)

s , (5.7)

p(z(2)|s) = N (z(2); 0, I), (5.8)

p(z(1)|z(2), s) = N (z(1); W(2)
s z(2) + µ(2)

s ,Ψ(2)), (5.9)

m← m(s), (deterministic), (5.10)

p(x|z(1),m) = N (x; W(1)
m z(1) + µ(1)

m ,Ψ(1)), (5.11)

where (5.10) is fully deterministic as each s belongs to one and only onem. z(1) ∈ Rd
(1)
,

z(2) ∈ Rd
(2)
, W(1)

m ∈ RD×d
(1)
, W(2)

s ∈ Rd
(1)×d(2)

, µ
(1)
m ∈ Rd

(1)
, µ

(2)
s ∈ Rd

(2)
, Ψ(1)

and Ψ(2) are D ×D and d(1) × d(1) diagonal matrices of the first and second layers,
respectively.

For the DMFA algorithm, the same scheme can be extended to training third-layer
MFAs, but in this paper, we only consider the two-layer DMFA model.

The DMFA model can be trained by using a greedy layers-wise algorithm. The first
layer of DMFA is trained as described above in Section 5.1.2, when training the second
layer of DMFA, freezing the first layer parameters and treating the sampled first layer
factor values for each mixture component {z(1)

n }m as training data for the second layer
of DMFA. The DMFA model is summarized in Algorithm 4, and an illustration of the
DMFA are shown in Figure 5.1 (c) and Figure 5.3, respectively.

Algorithm 4 DMFA algorithm
Step 1: Input HSI X = {x1,x2, ...,xN}, the maximum number of EM iteration
(default=1000).

Step 2: Train the first layer of DMFA on X with M mixture components and d(1)

dimensional latent factors using the EM algorithm.

Step 3: Use the first layer latent factor dataset Ym = {z(1)
n }m for each of the M

mixture components as training data for the second layer of DMFA.
Step 4: Train the second layer of DMFA on Ym with d(2) dimensional latent factors
and Km mixture components using the EM algorithm.

Step 5: Output DR results Z = {z(2)
1 , z(2)

2 , ..., z(2)
N }.
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The first layer of DMFA

The second layer of DMFAThe second layer of DMFAThe second layer of DMFA
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Figure 5.3: The schematic of the DMFA corresponding to Figure 5.14c.
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SMFA

SMFA is a supervised FE method, let y denote an output value (label) for each D-
dimensional labeled spectral vector x. The SMFA model can be defined as

p(x|z,m) = N (x; Wmz + µm,Ψ), (5.12)

p(y|z,m) = N (y; Wymz + µym,Ψy), (5.13)

where the parameters of the m-th factor analyzer include mean µm, a D × d factor
loading matrix Wm, and a D×D diagonal matrix Ψ which represents the independent
noise variances for each band. Wym, µym, and Ψy are similar defined.

The parameters z, µm, Wm, Ψ, Wym, µym, and Ψy of SMFA are also estimated by
using the EM algorithm [85]. The schematic of the SMFA is shown in Figure 5.4.

Gaussian mixture model

Original HSI

3M

1m 2m 3m
1


2

 3


Dimensionality Reduction Result

Labeled 
samples

Factor loading W3Factor loading W2Factor loading W1

Label Label Label

Dimensionality reduction

FA3FA2FA1

Figure 5.4: The schematic of the SMFA corresponding to Figure
5.14(b).
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SDMFA

SDMFA consists of two layers SMFA. In the second layer, instead of a simple standard
normal prior, the SDMFA model uses a more powerful SMFA prior [130]:

p(z|m) = SMFA(θ(2)
m ), (5.14)

where θ(2)
m is the model parameter in the second layer and it emphasizes that the

new SMFA’s parameters are at the second layer and specific to component m of the
first layer SMFA, while holding the first layer parameters fixed. Thus, the SDMFA is
equivalent to fitting component-specific second layer SMFAs with vectors drawn from
p(z,m, |x; θ) as data [130], where θ is the model parameter in the first layer. The
same scheme can be extended to training third-layer SMFAs, but in this paper, we
only consider two-layer SDMFA model. The SDMFA is summarized in Algorithm 5.

Algorithm 5 SDMFA algorithm
1: Input: Assume n labeled samples {(xi, yi)}ni=1.
2: Train the first layer of SDMFA by using (5.12) and (5.13) on xi with M mixture

components and d(1) dimensionality factors using the EM algorithm.
3: Use the first layer factor dataset Zm = {z(1)

i }m for each of the M mixture compo-
nents as training data for the second layer of SDMFA.

4: Train the second layer of SDMFA on Zm with d(2) dimensionality factors and Km

mixture components using the EM algorithm, where Km is the total number of
the second layer components associated with the first layer component m.

5: Output: Dimensionality reduction results by calculating the second layer la-
tent factors z(2)

i . For HSI {xi}Ni=1, z(2)
i =

∑M
m=1 π

(1)
m {

∑Km
km=1 π

(2)
km

[(WT
km

Wkm +
Ψkm)−1WT

km
(z(1)
i − µkm)]}, z(1)

i = (WT
mWm + Ψ)−1WT

m(xi − µm), where N is
the total number of samples, the parameters of the m-th factor analyzer mixing
proportion in the first layer include a mixing proportion π

(1)
m , a factor loading

matrix Wm, mean µm, and a diagonal noise variances matrix Ψ, the parameters
of the km-th factor analyzer in the second layer include a mixing proportion π(2)

km
,

a factor loading matrix Wkm , mean µkm , and a diagonal noise variances matrix
Ψkm associated with the first layer component m.

Framework

Traditionally, in DR, the dimensionality of desired features has to be initialized by
the user. In this chapter, we propose a framework that automatically selects the opti-
mal dimensionality of desired features for HSI. We use the classification accuracy of a
classifier on validation samples to automatically determine the dimensionality of the
features. Different classifiers such as maximum likelihood (ML), support vector ma-
chine (SVM), and random forest (RF), can be used in this framework. The framework
based on MFA, SMFA, and DMFA for HSI classification are summarized in Algorithms
6 and 7, respectively.
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Algorithm 6 Framework based on MFA and SMFA
Step 1: Input HSI X, training samples;

Step 2: Automatically select the optimal number of features d and mixture com-
ponents M :

for M = 2 : Mc
for d = 3 : D2

Run MFA (or SMFA);
Five-fold cross-validation of SVM (ML, or RF) on training
samples; Save the cross-validation (CV) score CVM,d;

end
end
Return M̂ and d̂ corresponding to the best CV;

Step 3: Run MFA (or SMFA) with M̂ and d̂;
Step 4: Run SVM (ML or RF) classification;
Step 5: Output Classification results.

5.1.3 Experiments and Results

The experiments were done using ML, RF, and SVM classifiers, but since ML and RF
gave inferior or slightly inferior results compared to SVM results, only the results of
the SVM classifier are reported.

Experimental Datasets

The first dataset is the Indian Pines dataset (Appendix B.3). In the experiments,
noisy bands and atmospheric vapor absorption bands are excluded leaving 200 spec-
tral bands. Figure 5.5 shows the false-color composite of the Indian Pines image and
the corresponding ground reference map, respectively. The nine largest classes are con-
sidered for classification [17,46]. For the Indian Pines, the University of Pavia, and the
Salinas datasets, 10% of the labeled samples for each class are randomly selected as
training samples, and the remaining 90% are used as the test set, respectively. Tables
5.1, 5.3 and 5.4 provide information on the number of training and test samples for
each class of interest, respectively.

The second dataset is the Houston dataset (Appendix B.5). This HSI contains fifteen
classes of interest. Figure 5.6 shows the false-color composite of the Houston image and
the corresponding ground reference map, respectively. The training and test samples
were given according to the IEEE GRSS Data Fusion Contest in 2013. The spatial
positions and the number of training and test samples for each class of interest is
fixed by the IEEE GRSS Data Fusion Contest. Table 5.2 provides information on the
number of training and test samples for each class of interest. It is important to note
that the standard sets of training and test samples were used for the dataset to make
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Algorithm 7 Framework based on DMFA
Step 1: Input HSI X, training samples;

Step 2: Automatically select the optimal number of features in the first layer d(1),
in the second layer d(2), mixture components in the first layer M , and in the second
layer Km:

for M = 2 : Mc
for d1 = 3 : D2

for Km = 2 : M
for d2 = 3 : d1

Run DMFA;
Five-fold cross-validation of SVM (ML, or RF) on
training samples; Save the cross-validation accuracy
(CVA) CVAM,d1,Km,d2 ;

end
end

end
end
Return M̂ , d̂1, K̂m, and d̂2 according to the best CVA;

Step 3: Run DMFA with M = M̂ , d(1) = d̂1, Km = K̂m, and d(2) = d̂2;
Step 4: Run SVM (ML or RF) classification;
Step 5: Output Classification results.

the results entirely comparable with most of the methods available in the literature.

The third dataset is the University of Pavia dataset (Appendix B.2). In the exper-
iments, this data contains nine classes of interest and has 103 spectral bands after
removing 12 noisy bands. Figure 5.7 shows the false-color composite of the University
of Pavia image and the corresponding ground reference map.

The last dataset is the Salinas dataset (Appendix B.6). This image contains sixteen
classes of interest. Figure 5.8 shows the false-color composite of the Salinas image and
the corresponding ground reference map.

Experimental Setup

An SVM classifier is used to evaluate the performance of the proposed methods. The
SVM classifier is a supervised classification method that uses a kernel method to
map the data with a non-linear transformation to a higher dimensional space and in
that space tries to find a linear separating hyperplane from different classes. In the
experiments, for SVM, the LibSVM Toolbox for MATLAB was applied with a radial
basis function (RBF) kernel [131,132]. The five-fold cross-validation is used to find the
best parameters, i.e., the kernel parameter and regularization parameter, in SVM. The
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evaluation metrics used are overall accuracy (OA) (Appendix A.4), average accuracy
(AA) (Appendix A.6), and Kappa coefficient (KC) (Appendix A.7), as well as standard
deviation (STD). To further evaluate the performance of the proposed algorithms, the
following statistical and DR methods: PCA, PPCA, FA, LDA, NWFE, MFA, DMFA,
and SMFA are used for comparison. Each experiment is run ten times, and the average
of these ten experiments is reported.

Corn-no till

Corn-min till

Grass/pasture

Grass/tree

Soybeans-min till

Soybeans-no till

Soybeans-clean till

Hay-windrowed

Woods

(a) (b)

Figure 5.5: Indian Pines dataset. (a) Three-band false-color image. (b)
Ground truth-map containing nine land-cover classes.

Table 5.1: Indian Pines HSI: Number of training and test samples.

Class number Class name Training samples Test samples
1 Corn-no till 143 1291
2 Corn-min till 83 751
3 Grass/Pasture 50 447
4 Grass/Trees 75 672
5 Hay-windrowed 49 440
6 Soybean-no till 97 871
7 Soybean-min till 247 2221
8 Soybean-clean till 61 553
9 Woods 129 1165

Total 934 8411

Tuning Parameter Estimation and Assessment

For the MFA and SMFA algorithms, we need to estimate the number of mixture
components M , and the dimensionality of latent factors d. In the experiments, M ∈
{2, 3, ...,Mc}, whereMc is the maximal number of classes considered, d ∈ {3, 4, ..., D/2},
whereD is the input dimensionality of original datasets, we use five-fold cross-validation
to obtain the optimal parameters M and d.

The assessment of the effect of the tuning parameters (M and d) on the performance
of the proposed methods was of interest. Since we were interested in the classification
accuracy, we investigated the effect of the number of mixture components M and the
dimensionality of latent factors d on OA. Figure 5.9(a)-(b) show the 3-dimensional
surface of the OA of MFA and SMFA with respect to the values of parameters M and
d for the SVM classifier, respectively. It can be seen that the OA gradually increases
in the beginning as the d increases, and then keeps stable with slight fluctuation as
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Healthy grass
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Running Track
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Figure 5.6: Houston dataset. (a) Three-band false-color image. (b)
Ground truth-map reference.

Table 5.2: Houston dataset: Number of training and test samples.

Class number Class name Training samples Test samples
1 Healthy grass 198 1053
2 Stressed grass 190 1064
3 Synthetic grass 192 505
4 Trees 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot 1 192 1041
13 Parking Lot 2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2832 12197

Asphalt

Meadows

Trees

Bricks

Bitumen

Bare Soil

Shadows

Gravel

Metal sheet

(a) (b)

Figure 5.7: University of Pavia dataset. (a) Three-band false-color
image. (b) Ground truth-map reference.
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Table 5.3: University of Pavia dataset: Number of training and test
samples.

Class number Class name Training samples Test samples
1 Asphalt 663 5968
2 Meadows 1865 16784
3 Gravel 210 1889
4 Trees 306 2758
5 Painted metal sheets 135 1210
6 Bare Soil 503 4526
7 Bitumen 133 1197
8 Self-Blocking Bricks 368 3314
9 Shadows 95 852

Total 4278 38498

Table 5.4: Salinas dataset: Number of training and test samples.

Class number Class name Training samples Test samples
1 Brocoli_green_weeds_1 201 1808
2 Brocoli_green_weeds_2 373 3353
3 Fallow 198 1778
4 Fallow_rough_plow 139 1255
5 Fallow_smooth 268 2410
6 Stubble 396 3563
7 Celery 358 3221
8 Grapes_untrained 1127 10144
9 Soil_vinyard_develop 620 5583
10 Corn_senesced_green_weeds 328 2950
11 Lettuce_romaine_4wk 107 961
12 Lettuce_romaine_5wk 193 1734
13 Lettuce_romaine_6wk 92 824
14 Lettuce_romaine_7wk 107 963
15 Vinyard_untrained 727 6541
16 Vinyard_vertical_trellis 181 1626

Total 5415 48714

Weeds_1

Weeds_2

Fallow

Fallow plow

Fallow smooth

Stubble

Celery

Grapes

Soil

Corn

Lettuce 4wk

Lettuce 5wk

Lettuce 6wk

Lettuce 7wk

Vinyard untrained

Vinyard trellis

(a) (b)

Figure 5.8: Salinas dataset. (a) Three-band false-color image. (b)
Ground truth-map reference.
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Table 5.5: CPU processing times in seconds by different DR methods
applied to the Indian Pines (INPS), Houston (HSN), University of Pavia
(UPA), and Salinas (SAS) datasets (the number of features=20).

Datasets PCA PPCA FA LDA NWFE MFA DMFA SMFA
INPS 0.11 63.66 70.89 0.12 1.05 3.85 18.07 0.12
HSN 2.91 1335.09 21.45 0.89 5.02 103.77 151.91 4.54
UPA 0.62 285.01 4.01 0.21 0.91 28.10 79.30 1.55
SAS 0.56 356.44 22.15 0.38 − 18.97 87.85 1.62

the d increases, but decreases slightly when the d reaches some value. It can also be
observed that the OA is insensitive to M .

For the DMFA algorithm, we need to estimate the number of mixture components
M and Km, and the dimensionality of latent factors d(1) and d(2), in the first and
second layer of DMFA, respectively. In the experiments, M is the same as in the
MFA, Km ∈ {2, ...,M}, we set Km = 2 for all m in our experiments. d(1) is the same
as d, d(2) ∈ {3, 4, ..., d(1)}. Five-fold cross-validation can be used to obtain the optimal
parameters. To analyze the impact of the number of mixture components M and the
dimensionality of latent factors d(1) in the first layer on the performance of DMFA,
the output results of the first layer of DMFA were used for HSI classification. Figure
5.9(c) shows the OAs with respect to the values of parameters M and d(1). Figure
5.9(a) and (b) show similar things for MFA and SMFA, respectively.

                             (a)                                                                  (b)                                                                  (c)
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Figure 5.9: OAs versus the reduced dimensionality d and the number
of mixture components M in the proposed methods with SVM classifier
on the Indian Pines dataset. (a) MFA (b) SMFA, and (c) DMFA in the
first layer.

Classification

The first experiment was performed on the Indian Pines dataset (Appendix B.3).
Figure 5.10 shows the classification maps obtained by different methods. From the
figures, it can be seen that the classification maps obtained by PCA, PPCA, FA, LDA,
and NWFE are not very satisfactory since they have lots of visible noise. By contrast,
MFA, DMFA, and SMFA give much better classification maps, all of them have a
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smoother appearance and preserve more details on edges. Besides visual comparison,
Table 5.6 presents the quantitative classification results for all the methods, and there
it can be observed that the MFA, DMFA, and SMFA achieve much higher classification
accuracies than PCA, PPCA, and FA, respectively. These results imply that the
performance of DR could be improved by considering the Gaussian mixture model.
Moreover, DMFA and SMFA clearly outperform MFA, and the performance of DMFA
and SMFA is similar, both of them present the highest OA, AA, and KC and achieves
most of the top classification accuracy values for individual classes. This indicates that
MFA, DMFA, and SMFA could extract more useful information for classification from
a complicated HSI. Moreover, SMFA is better than LDA and NWFE, this means that
SMFA is an effective supervised DR method. MFA, DMFA, and SMFA improve the
OA by 11.11%, 13.38%, and 13.42% using SVM compared to other methods in the
experiment, respectively. It is interesting to note that all DR methods based on FA
(SMFA, DMFA, MFA, and FA) gave a better performance than PCA and PPCA. The
reason for this is that noise could be distributed inconsistently for different components
in real HSI. Table 5.6 also gives the STDs of classification results for different DR
methods for the Indian Pines dataset. It can be seen that all the methods give similar
and stable classification results. Table 5.5 compares the CPU processing time (in
seconds) used by different DR methods for the Indian Pines dataset. All methods
were implemented in Matlab R2019a on a computer having Intel(R) Core(TM) i7-
6700 processor (3.40GHz), 8.00 GB of memory, and 64-bit Windows 10 Operating
System. It can be seen that the running times for MFA, DMFA, and SMFA were
3.85, 18.07, and 0.12 s, respectively. It is worth noting that the running time for the
supervised methods (LDA, NWFE, and SMFA) is affected considerably by the number
of labeled (training) samples used, and the unsupervised methods are affected by the
total size of the dataset.

              (a)                                          (b)                                        (c)                                          (d)                    

                (e)                                           (f)                                         (g)                                        (h)

Figure 5.10: Classification maps for the Indian Pines dataset obtained
by SVM classification after using (a) PCA, (b) PPCA, (c) FA, (d) LDA,
(e) NWFE, (f) MFA, (g) DMFA, and (h) SMFA DR methods.
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Table 5.6: The classification results (%) of different DR methods on
the Indian Pines dataset, the best results are in bold typeface. The row
of each class number (CN) is the mean accuracy ± standard deviation
based on ten runs.

CN PCA PPCA FA LDA NWFE MFA DMFA SMFA
1 75.13 ± 2.39 81.22 ± 1.39 86.48 ± 1.93 89.31 ± 0.98 84.51 ± 2.25 93.00 ± 1.87 97.49 ± 1.51 96.34 ± 1.32
2 83.33 ± 2.16 84.00 ± 4.21 89.30 ± 3.49 72.44 ± 3.97 82.82 ± 2.16 91.71 ± 1.05 99.17 ± 0.89 95.61 ± 1.04
3 94.51 ± 1.62 94.77 ± 2.27 97.48 ± 0.89 92.84 ± 2.62 91.50 ± 1.75 94.42 ± 1.08 97.35 ± 1.66 95.08 ± 1.51
4 96.09 ± 1.02 95.95 ± 0.99 97.65 ± 0.98 97.32 ± 1.62 98.51 ± 1.49 98.53 ± 0.40 98.39 ± 0.47 98.81 ± 1.08
5 99.55 ± 0.14 99.77 ± 0.18 99.84 ± 0.16 99.55 ± 0.23 99.32 ± 0.16 99.83 ± 0.18 99.86 ± 0.14 99.84 ± 0.18
6 75.03 ± 1.99 82.06 ± 2.27 82.50 ± 2.14 80.37 ± 2.89 82.43 ± 3.00 90.53 ± 0.68 95.48 ± 1.40 97.36 ± 0.62
7 78.22 ± 1.85 77.62 ± 1.45 88.40 ± 1.70 82.85 ± 2.05 88.74 ± 2.11 95.56 ± 1.58 96.91 ± 1.22 98.24 ± 1.42
8 83.54 ± 2.68 83.00 ± 2.34 89.21 ± 2.68 77.76 ± 2.74 79.57 ± 3.56 96.75 ± 1.34 98.74 ± 1.03 99.28 ± 1.06
9 99.40 ± 0.32 99.83 ± 0.41 99.66 ± 0.26 99.57 ± 0.36 99.49 ± 0.55 99.83 ± 0.30 99.74 ± 0.54 99.91 ± 0.46

AA 87.20 ± 0.35 88.69 ± 0.73 92.30 ± 0.67 88.00 ± 0.64 89.65 ± 0.88 95.59 ± 1.01 98.14 ± 0.86 97.85 ± 0.51
OA 84.48 ± 0.35 85.98 ± 0.39 90.96 ± 0.60 87.20 ± 0.56 89.28 ± 0.82 95.59 ± 0.86 97.86 ± 0.72 97.90 ± 0.60
KC 0.8173 ± 0.0040 0.8345 ± 0.0048 0.8940 ± 0.0072 0.8495 ± 0.0065 0.8738 ± 0.0096 0.9459 ± 0.0102 0.9749 ± 0.0085 0.9753 ± 0.0070

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5.11: Classification maps for the Houston dataset obtained by
SVM classification after using (a) PCA, (b) PPCA, (c) FA, (d) LDA,
(e) NWFE, (f) MFA, (g) DMFA, and (h) SMFA DR methods.
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               (a)                                        (b)                                      (c)                                          (d)                            

               (e)                                        (f)                                      (g)                                          (h)                                    

Figure 5.12: Classification maps for the University of Pavia dataset
obtained by SVM classification after using (a) PCA, (b) PPCA, (c) FA,
(d) LDA, (e) NWFE, (f) MFA, (g) DMFA, and (h) SMFA DR methods.
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Table 5.7: The classification results (%) of different DR methods on the
Houston dataset, the best results are in bold typeface. The row of each
class number (CN) is the mean accuracy ± standard deviation based on
ten runs.

CN PCA PPCA FA LDA NWFE MFA DMFA SMFA
1 98.05 96.20 ± 0.29 96.37 80.53 80.72 ± 0.45 98.98 ± 0.89 99.31 ± 1.66 79.49 ± 1.37
2 96.01 96.36 ± 0.13 95.97 80.92 82.99 ± 0.18 95.33 ± 1.63 95.24 ± 1.58 83.46 ± 1.57
3 100 99.97 ± 0.27 100 100 99.42 ± 0.58 99.76 ± 0.24 99.82 ± 0.19 99.48 ± 0.34
4 98.05 97.35 ± 1.36 97.72 92.90 89.49 ± 0.94 99.89 ± 0.32 99.47 ± 1.78 89.30 ± 2.09
5 97.41 97.45 ± 0.16 97.11 96.97 98.86 ± 0.38 98.42 ± 0.82 98.11 ± 1.09 99.96 ± 0.11
6 99.94 95.07 ± 0.46 95.30 93.71 95.11 ± 0.21 47.24 ± 0.80 99.97 ± 0.27 92.31 ± 0.35
7 81.34 82.05 ± 0.31 87.91 84.80 79.76 ± 2.44 66.22 ± 1.38 89.53 ± 3.02 82.37 ± 1.23
8 81.45 68.87 ± 0.17 84.18 71.13 72.46 ± 4.73 84.06 ± 1.14 81.82 ± 2.64 90.03 ± 0.11
9 83.40 78.34 ± 0.60 78.08 72.52 75.54 ± 1.19 87.65 ± 1.04 91.66 ± 0.66 83.95 ± 1.08
10 70.03 83.58 ± 0.48 65.32 73.17 81.27 ± 3.21 86.21 ± 0.24 66.67 ± 4.76 97.97 ± 1.59
11 67.86 69.57 ± 1.86 57.04 85.39 93.55 ± 2.10 68.21 ± 0.16 74.51 ± 0.59 88.99 ± 4.01
12 85.50 89.15 ± 5.12 82.68 82.52 85.11 ± 1.86 95.80 ± 2.28 94.07 ± 2.64 96.25 ± 1.19
13 30.69 30.06 ± 1.33 43.85 70.53 70.88 ± 1.74 92.52 ± 3.26 89.56 ± 2.31 65.26 ± 0.89
14 99.18 98.39 ± 0.24 89.05 99.19 99.60 ± 0.31 94.64 ± 0.83 97.24 ± 1.13 99.96± 0.22
15 100 99.41 ± 0.59 100 95.98 98.73 ± 0.50 99.54 ± 0.54 99.88 ± 0.14 91.97 ± 1.61
AA 85.93 85.50 ± 0.50 84.70 85.35 86.94 ± 0.47 87.68 ± 0.36 91.81 ± 0.39 89.42 ± 0.69
OA 83.45 83.75 ± 0.59 82.05 83.59 85.35 ± 0.56 86.65 ± 0.42 88.72 ± 0.49 89.40 ± 0.67
KC 0.8207 0.8240 ± 0.0065 0.8053 0.8223 0.8412 ± 0.0059 0.8552 ± 0.0046 0.8775 ± 0.0053 0.8848 ± 0.0075

Table 5.8: The classification results (%) of different DR methods on
the University of Pavia dataset, the best results are in bold typeface.
The row of each class number (CN) is the mean accuracy ± standard
deviation based on ten runs.

CN PCA PPCA FA LDA NWFE MFA DMFA SMFA
1 92.00 ± 1.01 93.16 ± 0.82 94.65 ± 0.58 93.20 ± 0.55 94.10 ± 0.49 98.07 ± 0.45 98.39 ± 0.66 98.69 ± 0.27
2 95.71 ± 0.53 96.12 ± 0.25 96.43 ± 0.24 96.86 ± 0.41 97.52 ± 0.38 99.68 ± 0.10 99.02 ± 0.42 99.79 ± 0.08
3 78.98 ± 2.06 82.23 ± 1.86 80.16 ± 1.72 76.13 ± 2.81 74.01 ± 4.00 90.15 ± 2.29 98.39 ± 1.44 94.28 ± 1.93
4 94.24 ± 0.95 94.61 ± 0.82 93.86 ± 0.78 92.57 ± 0.90 89.63 ± 1.26 95.65 ± 0.36 98.72 ± 0.95 96.27 ± 0.61
5 99.41 ± 2.27 98.99 ± 2.01 99.21 ± 1.23 99.17 ± 0.16 99.59 ± 0.13 99.89 ± 0.12 99.93± 0.35 99.81 ± 0.09
6 90.96 ± 2.01 91.80 ± 0.75 93.54 ± 1.09 81.11 ± 1.06 90.39 ± 1.72 98.63 ± 0.30 99.80 ± 0.88 99.98 ± 0.30
7 85.40 ± 4.34 88.69 ± 1.98 90.08 ± 2.19 80.95 ± 1.35 83.12 ± 4.17 94.32 ± 0.76 99.75 ± 1.06 99.92 ± 0.68
8 77.35 ± 2.14 83.85 ± 0.97 84.40 ± 1.61 86.33 ± 2.03 84.91 ± 2.30 94.63 ± 0.81 97.15 ± 1.12 97.31 ± 1.54
9 91.55 ± 1.78 99.89± 0.58 99.31± 0.87 99.65 ± 0.18 99.88 ± 0.11 97.07 ± 0.93 99.64 ± 1.07 97.77 ± 0.58
AA 89.57 ± 0.53 92.27 ± 0.39 92.57 ± 0.48 89.55 ± 0.19 90.35 ± 0.66 96.47 ± 0.30 98.98 ± 0.49 98.22 ± 0.25
OA 91.78 ± 0.29 93.32 ± 0.27 93.80 ± 0.29 91.85 ± 0.18 93.02 ± 0.32 97.90 ± 0.14 98.87 ± 0.41 98.87 ± 0.14
KC 0.8908 ± 0.0038 0.9112 ± 0.0036 0.9177 ± 0.0038 0.8314 ± 0.0023 0.9071 ± 0.0043 0.9722 ± 0.0019 0.9850 ± 0.0055 0.9850 ± 0.0019

The second experiment was performed on the Houston dataset (Appendix B.5). Figure
5.11 shows the classification maps obtained by different methods. From the figures,
we can see that the proposed MFA, DMFA, and SMFA algorithms also outperform
the other algorithms. Table 5.7 presents the quantitative classification results of the
different DR methods. As shown in Table 5.7, the performance of DMFA and SMFA
is better than MFA and much better than PCA, PPCA, FA, LDA, and NWFE. MFA,
DMFA, and SMFA improve the OA by 4.60%, 6.67%, and 7.35% compared to other
methods in the experiment, respectively. Table 5.7 also presents the STDs of classifi-
cation results. It can be seen that FA and LDA present the most stable results. MFA,
DMFA, and SMFA have slight fluctuation for each experiment and give relatively
stable results.

The third and fourth experiments were performed on the University of Pavia (Ap-
pendix B.2) and Salinas (Appendix B.6) datasets. It should be noted that the NWFE
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Table 5.9: The classification results (%) of different DR methods on the
Salinas dataset, the best results are in bold typeface. The row of each
class number (CN) is the mean accuracy ± standard deviation based on
ten runs.

CN PCA PPCA FA LDA MFA DMFA SMFA
1 99.91± 0.17 99.32± 0.02 99.29± 0.38 99.95 ± 0.05 99.94± 0.09 99.82 ± 0.08 99.89± 0.18
2 99.88 ± 0.23 99.97 ± 0.09 99.82 ± 0.14 99.79 ± 0.03 99.79 ± 0.12 99.99± 0.21 99.99± 0.12
3 98.88 ± 0.36 99.04 ± 0.29 99.21 ± 0.16 99.78 ± 0.12 99.83 ± 0.07 99.72 ± 0.21 99.96± 0.22
4 99.13 ± 0.48 99.76 ± 0.42 99.76 ± 0.30 99.12 ± 0.53 98.96 ± 0.50 97.93 ± 0.46 98.41 ± 0.18
5 99.05 ± 0.64 98.19 ± 0.56 99.13 ± 0.15 98.96 ± 0.32 99.50 ± 0.34 99.92 ± 0.42 99.17 ± 0.20
6 99.94 ± 0.20 99.92± 0.09 99.03± 0.06 99.83 ± 0.08 99.23 ± 0.20 99.98± 0.14 99.97 ± 0.05
7 99.94 ± 0.19 99.89± 0.14 99.95± 0.20 99.94 ± 0.09 99.81 ± 0.10 99.91 ± 0.13 99.91 ± 0.12
8 88.88 ± 0.92 87.55 ± 1.01 84.53 ± 1.12 90.09 ± 1.29 97.73 ± 0.91 99.25 ± 0.04 99.71 ± 0.60
9 99.44 ± 0.16 99.38 ± 0.14 99.34 ± 0.15 99.95 ± 0.20 99.91 ± 0.07 99.93 ± 0.29 99.99± 0.03

10 96.27 ± 0.53 98.19 ± 0.72 97.80 ± 0.82 98.61 ± 0.45 98.99 ± 0.44 99.49 ± 0.83 99.76 ± 0.87
11 99.03 ± 0.80 99.04 ± 0.74 99.68 ± 0.47 98.86 ± 0.41 99.97 ± 0.19 99.90 ± 1.08 99.97± 0.28
12 98.36 ± 0.14 98.86 ± 0.07 99.26 ± 0.15 99.97± 0.32 99.94 ± 0.49 99.71 ± 0.15 99.89 ± 0.13
13 99.52 ± 0.51 99.76 ± 0.25 99.76 ± 0.22 99.39 ± 0.29 99.43± 0.09 99.52 ± 0.60 99.96± 0.45
14 99.79 ± 1.02 98.43 ± 0.83 99.16 ± 0.58 96.78 ± 0.93 99.93 ± 1.23 99.27 ± 1.60 99.99± 0.15
15 84.51 ± 1.20 85.68 ± 1.54 83.23 ± 1.96 72.62 ± 2.44 97.38 ± 1.15 98.03 ± 1.64 97.75 ± 2.26
16 99.38 ± 0.30 99.75 ± 0.74 99.58± 1.15 98.65 ± 0.44 99.76± 0.97 99.08 ± 0.63 99.92± 0.80

AA 97.62 ± 0.15 87.73 ± 0.12 97.54 ± 0.09 97.02 ± 0.12 99.49 ± 0.08 99.47 ± 0.26 99.66 ± 0.14
OA 95.09 ± 0.17 95.08 ± 0.09 94.19 ± 0.12 93.91 ± 0.10 99.02 ± 0.20 99.40 ± 0.40 99.53 ± 0.34
KC 0.9453 ± 0.0019 0.9452 ± 0.0010 0.9353 ± 0.0013 0.9321 ± 0.0011 0.9890 ± 0.0022 0.9933 ± 0.0045 0.9948 ± 0.0038

          (a)                       (b)                       (c)                      (d)                        (e)                       (f)                      (g)

Figure 5.13: Classification maps for the Salinas dataset obtained by
SVM classification after using (a) PCA, (b) PPCA, (c) FA, (d) LDA,
(e) MFA, (f) DMFA, and (g) SMFA DR methods.
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method does not work for the Salinas dataset. Therefore, in the experiments of the
Salinas dataset, there are no experimental results for NWFE. Figures 5.12 and 5.13
show the classification maps obtained by different methods on the University of Pavia
and Salinas datasets, respectively. From Figures 5.12 and 5.13, it can be seen that the
classification maps obtained by MFA, DMFA, and SMFA are much better than PCA,
PPCA, FA, LDA, and NWFE, respectively. Tables 5.8 and 5.9 present the quantita-
tive classification results. As shown in Tables 5.8 and 5.9, the classification accuracies
of the proposed MFA, DMFA, and SMFA methods are much better than PCA, PPCA,
and FA methods. These results further demonstrate that, instead of using a single
Gaussian distribution model, the performance of DR could be improved by consider-
ing the Gaussian mixture model. For the University of Pavia dataset, MFA, DMFA,
and SMFA improve the OA by 6.05%, 7.02%, and 7.02% compared to other meth-
ods used in the experiment, respectively. For the Salinas dataset, MFA, DMFA, and
SMFA improve the OA by 5.11%, 5.49%, and 5.62% compared to other methods used
in the experiment, respectively. Moreover, in the experiments, DMFA and SMFA are
clearly better than MFA, and DMFA and SMFA give similar and highest OA, AA, and
KC and also achieve most of the top classification accuracy values for the individual
classes. This also further indicates that MFA, DMFA, and SMFA could extract more
effective information for classification from a complicated HSI. Tables 5.8 and 5.9 also
give the STDs of classification results for different DR methods for the University of
Pavia and Salinas datasets, respectively. It can be seen that all the methods give
similar and relatively stable classification results. This also further demonstrates that
MFA, DMFA, and SMFA are stable and effective DR methods.

5.2 Semi-Supervised MFA-Based Feature Extrac-
tion Methods

5.2.1 Introduction

MFA, DMFA, SMFA, and SDMFA are unsupervised feature extraction (FE) methods.
They only use unlabeled or labeled samples to extract feature of HSI. In this chapter,
we propose two semi-supervised FE methods, semi-supervised mixtures of factor ana-
lyzers (S2MFA) and semi-supervised deep mixtures of factor analyzers (S2DMFA), for
HSI. For the S2MFA method, first, the training set is created by randomly selecting
some labeled samples and unlabeled samples of the HSI. Second, the training data
is segmented using a Gaussian mixture model. Each segmented region is then fitted
to a Gaussian distribution and simultaneously contains labeled and unlabeled sam-
ples. Third, a factor analyzer is used for each region to get a factor loading matrix.
This matrix uses the labeled samples to improve the class discrimination and employs
both labeled and unlabeled samples to preserve the local spatial features of the data.
Also, the matrix transforms the original HSI to an optimal low-dimensional subspace
to achieve DR. S2DMFA is two-layer S2MFA. This chapter extends our previous un-
supervised MFA and unsupervised DMFA methods [51, 52] to semi-supervised MFA
amd semi-supervised DMFA methods to effectively extract HSI features utilizing both

95



5.2 Semi-Supervised MFA-Based Feature Extraction Methods

labeled and unlabeled samples.

5.2.2 Proposed Semi-Supervised FE methods

S2MFA

Let x ∈ RD×1 denote a spectral vector that has a label y, z ∈ Rd×1 denotes a latent
vector, m ∈ {1, ...,M} denotes the component indicator variable of the M factor
analyzers in S2MFA. ω is aM -dimensional binary random vector, where ωm = 1 when
the data is generated to them-th Gaussian components and 0 otherwise. The standard
multivariate normal prior on the latent factors is

p(z|ωm) = p(z) = N (z; 0, Id), (5.15)

p(ωm) = πm,

M∑
m=1

πm = 1, (5.16)

where N (z; 0, Id) means that z is Gaussian vector with zero mean and d× d identity
matrix Id as the covariance matrix and πm is the m-th mixing proportion.

The S2MFA model is described by

p(x, y|z, ωm) = p(x|z, ωm)p(y|z, ωm), (5.17)

p(x|z, ωm) = N (x; Wmz + µm,Ψ), (5.18)

p(y|z, ωm) = N (y; wymz + µym, σ
2
y), (5.19)

where the parameters of the m-th factor analyzer include a mixing proportion πm, a
D× d factor loading matrix Wm, a D× 1 mean µm, and a D×D diagonal matrix Ψ
which represents the independent noise variances for each of the observed variables.
σ2
y is the variance, wym ∈ R1×d and µym ∈ R1×1 are defined similarly.

Labeled samples (xi, yi), i = 1, ..., n, and unlabeled samples xi, i = n + 1, ..., n + u
are assumed and the parameters of the model are estimated using the expectation
maximization algorithm [83].

The EM functional is given by

Q = Eθold [log
M∏
m=1
{
n+u∏
i=1
{(2π)−D2 |Ψ|−

1
2

× exp[−1
2(xi − W̃mz̃)TΨ−1(xi − W̃mz̃)]}ωm

×
n∏
i=1
{(2π)− 1

2σ−1
y exp[− 1

2σ2
y

(yi − w̃ymz̃)2]}ωm}|x, y],

(5.20)
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where Eθold [•] denotes expectation with θold fixed, z̃ = [zT 1]T , W̃m = [Wm µm],
and w̃ym = [wym µym]. Now let him , Eθold [ωm|xi, yi], h̃im , Eθold [ωm|xi], then

Q = c−n+ u

2 log |Ψ|+
n∑
i=1

M∑
m=1
{−1

2himxTi Ψ−1xi

+ himxTi Ψ−1W̃mE[z̃|xi, yi, ωm]

− 1
2himtr(W̃T

mΨ−1W̃mE[z̃z̃T |xi, yi, ωm])}

+
n+u∑
i=n+1

M∑
m=1
{−1

2 h̃imxTi Ψ−1xi

+ h̃imxTi Ψ−1W̃mE[z̃|xi, ωm]

− 1
2 h̃imtr(W̃T

mΨ−1W̃mE[z̃z̃T |xi, ωm])}

−n2 log σ2
y +

n∑
i=1

M∑
m=1
{−1

2himσ
−2
y y2

i

+ himσ
−2
y yiw̃ymE[z̃|xi, yi, ωm]

− 1
2himσ

−2
y w̃ymE[z̃z̃T |xi, yi, ωm]w̃T

ym},

(5.21)

where c is constant. The EM algorithm is based on iterating between the expectation
step (E-step) and the maximization step (M-step) until convergence. The E-step and
the M-step are as follows:

E-step: compute him, h̃im, E[z|xi, yi, ωm], E[z|xi, ωm], E[zzT |xi, yi, ωm], and E[zzT |xi, ωm].

M-step: update θ, i.e., πm, Wm, wym µm, µym, σ2
y, and Ψ corresponding to the

maximum of Q.

When ∀ i ∈ {1, 2, ..., n}, xi has a label yi, the class discrimination can be improved
as the factor loading matrix Wm is constrained by the label information in (5.18)
and (5.19). The local spatial information can be preserved based on the labeled and
unlabeled samples as the same classified pixels are segmented to the same segments
using Gaussian mixture model. By combining the labeled with unlabeled samples
together, S2MFA achieves high class discrimination information and simultaneously
preserves the sufficient local spatial information for HSI. The schematic of the S2MFA
is shown in Fig. 5.14 and Fig. 5.15.

S2DMFA

For S2DMFA, we also only consider two-layer S2DMFA model. The algorithm of
S2DMFA is similar as S2MFA. In this chapter, we omit the process of S2DMFA.
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Figure 5.14: (a) The distribution of all the training samples of the
Indian Pines dataset for bands i=21 and j=41 indicate non-Gaussian
distribution. (b) Illustration of S2MFA model with each ellipse repre-
senting a Gaussian component. S2MFA has three components colored
red (m = 1), green (m = 2) and blue (m = 3). Their mixing proportions
are given by πm.
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Figure 5.15: The schematic of the S2MFA corresponding to Fig. 5.14(b).
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Figure 5.16: Indian Pines dataset. (a) Three-band false-color image.
(b) Ground truth-map containing nine land-cover classes.

5.2.3 Experiments and Results

In this section, the performances of the S2MFA method were validated using the
classification of the support vector machine (SVM) classifier on the Indian Pines and
Houston datasets.

Table 5.10: Indian Pines dataset: Number of training and test samples.

NO. Class name Training Test
samples samples

1 Corn-no till 5 1429
2 Corn-min till 5 829
3 Grass/Pasture 5 492
4 Grass/Trees 5 742
5 Hay-windrowed 5 484
6 Soybean-min till 5 963
7 Soybean-min till 5 2463
8 Soybean-clean till 5 609
9 Woods 5 1289

Total 45 9300

Experimental Datasets

The first dataset is the Indian Pines dataset (Appendix B.5). Fig. 5.16 shows the false-
color composite of the Indian Pines image and the corresponding ground reference map,
respectively.

The second experiment was performed on the Houston dataset (Appendix B.5). The
HSI contains fifteen classes of interest. Fig. 5.17 shows the false-color composite of the
Houston image and the corresponding ground reference map. The spatial positions
and the number of training and test samples for each class of interest is fixed by the
IEEE GRSS Data Fusion Contest in 2013. Table 5.11 provides information on the
number of training and test samples for each class of interest. It is important to note
that the standard sets of training and test samples were used for the dataset to make
the results entirely comparable with most of the classification methods available in the
literature.
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Figure 5.17: Houston dataset. (a) Three-band false-color image. (b)
Ground truth-map reference.

Table 5.11: Houston dataset: Number of training and test samples.

Class number Class name Training samples Test samples
1 Healthy grass 198 1053
2 Stressed grass 190 1064
3 Synthetic grass 192 505
4 Trees 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot 1 192 1041
13 Parking Lot 2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2832 12197
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Figure 5.18: Overall accuracy (OA) versus the reduced dimensionality
d and the number of mixture components M in the S2MFA method
with SVM classifier on the Indian Pines dataset (the number of training
samples per class=50).
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Figure 5.19: Classification results with different numbers of training
samples for the Indian Pines dataset.

Experimental Setup: Indian Pines Dataset

The training set X consists of unlabeled samples subset Xun and labeled samples
subset Xlb, i.e., X = Xun ∪Xlb, and Xun ∩Xlb = ∅. A number of unlabeled samples
u = 1500 are randomly selected from the original image without labels to compose
Xun [67]. Each class of the original image labeled training samples nk are randomly
selected to compose Xlb. The impact of the training set size on the performance of
S2MFA is investigated in experiments using three different cases with different numbers
of labeled training set Xlb [67]:

CASE 1, ill-posed condition: n < D and nk < D;

CASE 2, poor-posed condition: n > D and nk < D;

CASE 3, good-posed condition: n > D and nk ≥ D.
Here n is the number of labeled training samples, D is the dimensionality of the input
spectral bands of the original image. Five experiments were carried out on the Indian
Pines dataset and separated to the three different cases, i.e., nk = 5, nk = 10, for
CASE 1; nk = 40, nk = 50, for CASE 2; nk = 200, for CASE 3. The training set for
the semi-supervised methods (SELF, SELD, and S2MFA) is X and for the supervised
methods (LDA and NWFE) is Xlb and all the samples of the dataset is used for the
unsupervised methods (PCA, S-SAE, FA, and MFA).

Experimental Setup: Houston Dataset

The experiment was performed on the Houston dataset. The training set for the semi-
supervised methods (SELF, SELD, and S2MFA) is X. The training set X consists of
unlabeled samples subset Xun and labeled samples subset Xlb, i.e., X = Xun ∪Xlb,
and Xun ∩Xlb = ∅. A number of unlabeled samples u = 1500 are randomly selected
from the original image without labels to compose Xun. Xlb is the same as the training
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Table 5.12: The classification results (%) of different DR methods on the
Indian Pines dataset (the number of training samples per class is five),
the best results are in bold typeface. The row of each class number (CN)
is the mean accuracy ± standard deviation based on ten runs.

CN PCA S-SAE FA MFA LDA NWFE SELF SELD S2MFA
1 61.23 ± 24.88 77.06 ± 1.80 59.55 ± 13.81 72.15 ± 9.91 33.66 ± 2.41 47.52 ± 10.89 17.57 ± 21.88 54.30 ± 12.81 56.54 ± 9.64
2 49.34 ± 12.06 66.74 ± 0.08 74.79 ± 32.92 66.83 ± 5.87 16.29 ± 7.92 53.80 ± 12.79 15.92 ± 10.11 39.69 ± 7.20 77.20 ± 9.98
3 95.33 ± 2.95 91.53 ± 2.28 85.16 ± 14.80 90.24 ± 8.28 48.37 ± 6.77 86.99 ± 11.86 64.84 ± 4.80 95.33 ± 11.62 65.65 ± 12.42
4 91.78 ± 3.71 96.19 ± 1.36 96.09 ± 1.68 98.52 ± 0.92 24.53 ± 17.31 96.50 ± 7.94 61.59 ± 11.71 93.80 ± 7.27 99.33 ± 2.32
5 99.24 ± 0.40 99.37 ± 0.14 99.12 ± 1.45 99.31 ± 5.03 51.65 ± 17.36 98.97 ± 2.61 86.36 ± 5.51 99.38 ± 0.24 99.98 ± 0.21
6 68.22 ± 9.71 66.59 ± 4.95 58.98 ± 12.85 74.77 ± 12.23 45.07 ± 14.32 65.52 ± 12.11 57.01 ± 12.78 53.69 ± 5.09 93.04 ± 10.03
7 50.18 ± 10.66 51.37 ± 1.11 54.04 ± 2.79 59.48 ± 6.89 28.62 ± 7.54 44.95 ± 3.99 57.65 ± 15.29 43.24 ± 8.34 76.49 ± 3.96
8 65.19 ± 12.84 57.40 ± 4.06 95.73 ± 9.72 69.79 ± 14.35 24.63 ± 6.53 75.37 ± 19.47 27.26 ± 11.99 53.20 ± 14.67 92.12 ± 12.56
9 87.98 ± 5.08 92.12 ± 1.64 91.70 ± 4.08 98.53 ± 13.82 58.42 ± 21.14 94.26 ± 1.51 79.44 ± 7.91 96.04 ± 4.39 99.77 ± 2.31
AA 74.36 ± 1.98 77.60 ± 1.27 80.47 ± 3.99 81.28 ± 2.26 36.80 ± 4.45 73.76 ± 3.95 51.96 ± 2.07 69.85 ± 7.2 84.45 ± 1.33
OA 68.19 ± 2.14 72.46 ± 1.02 73.72 ± 2.80 76.70 ± 1.43 35.78 ± 4.08 66.24 ± 2.41 50.92 ± 1.62 63.39 ± 12.81 81.92 ± 1.01
KC 0.7436 ± 0.0247 0.6829 ± 0.0161 0.6982 ± 0.0330 0.7314 ± 0.0166 0.2618 ± 0.0425 0.6127 ± 0.0304 0.4269 ± 0.0181 0.5813 ± 0.1162 0.7904 ± 0.0119

samples as shown in the Table 5.11. The training set for the supervised methods (LDA
and NWFE) is Xlb and all the samples of the dataset is used for the unsupervised
methods (PCA, S-SAE, FA, and MFA).

The proposed method is validated by the classification of the Indian Pines and Houston
datasets using SVM classifier in the experiments. The SVM classifier is a supervised
classification method, the LibSVM Toolbox for MATLAB version was applied with
a radial basis function (RBF) kernel. The tuning parameter in SVM are obtained
using five-fold cross-validation. The training of the classifier was performed using the
labeled samples subset Xlb. The classifier was tested by using the remaining labeled
samples corresponding to the ground truth-map. The classification metrics used are
overall accuracy (OA) (Appendix A.4), average accuracy (AA) (Appendix A.6), and
Kappa coefficient (KC) (Appendix A.7), as well as standard deviation (STD). For
comparison the following statistical and DR methods: PCA, S-SAE, FA, MFA, LDA,
NWFE, SELF, SELD, and S2MFA are used. Each experiment runs ten times, and the
average and the standard deviation (STD) of these ten runs are reported.

Tuning Parameter Estimation and Assessment

For the S2MFA algorithms, we need to estimate the number of mixture components
M , and the dimensionality of latent factors d. In the experiments, M ∈ {2, 3, ...,Mc},
where Mc is the number of classes of experimental datasets, d ∈ {3, 4, ..., 50}, and
five-fold cross-validation is used to obtain the optimal parameters M and d.

           (a)                                (b)                                  (c)                                 (d)                                  (e)                                  (f)                                  (g)                                (h)                                  (i)

Figure 5.20: Classification maps for the Indian Pines dataset using five
examples for each training class: (a) PCA, (b) S-SAE (c) FA, (d) MFA,
(e) LDA, (f) NWFE, (g) SELF, (h) SELD, and (i) S2MFA.

The effect of the M and d on the performance of S2MFA is of interest. Since we are
using classification accuracy, we investigated the effect of the M and d on OA. Fig.
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5.18 shows the 3-dimensional surface of the OA of S2MFA with respect to theM and d
for the SVM classifier. It can be seen that the OA gradually increases in the beginning
as d increases, and then keep stable with slight fluctuation as d increases. It can also
be observed that the OA is insensitive to M .

Classification Results

For the Indian Pines dataset, five samples per class are randomly selected for training
samples, and the rest is used for test samples. The amount of training and test samples
per class are shown in Table 5.10. Fig. 5.20 shows the classification maps obtained by
different methods. From the figures, we can see that S2MFA gives good classification
performance. Besides visual comparison, Table 5.12 presents the quantitative classifi-
cation results for all the methods, and there it can be observed that S2MFA achieves
much higher classification accuracies than PCA, S-SAE, FA, MFA, LDA, and NWFE
methods. This indicates that, compared to unsupervised and supervised FE methods,
the semi-supervised S2MFA method could extract more effective features for classifica-
tion by simultaneously considering labeled and unlabeled samples. Moreover, S2MFA
is better than SELF and SELD and presents the highest OA, AA, and KC and achieves
most of the top classification accuracy values for individual classes. S2MFA improves
the OA by 46.14% using SVM compared to other methods in the experiment. Table
5.12 also presents the STDs of the classification results for different DR methods. It
can be seen that, S2MFA gives relatively stable classification results compared to the
other methods. Table 5.14 compares the CPU processing time (in seconds) used by
different DR methods. All the methods are implemented using Matlab R2019a on a
computer having Intel(R) Core(TM) i7-6700 processor (3.40GHz), 8.00 GB of memory
and 64-bit Windows 10 Operating System. The running times for S2MFA were 0.29,
0.43, and 0.76 s when the number of features are equal to 5, 20, and 50, respectively. It
is worth noting that the running time for the semi-supervised methods (SELF, SELD,
and S2MFA) is affected considerably by the number of labeled and unlabeled training
samples used and the supervised methods (LDA and NWFE) are affected consider-
ably by the number of labeled training samples used and the unsupervised methods
are affected by the size of the dataset.

The results of the impact of different training set sizes for the Indian Pines dataset are
shown in Fig. 5.19. As can be seen from the figure that, when the number of labeled
samples is very limited such as in CASE 1, the performances of all the methods
are limited by the number of training samples. LDA performs much worse than the
other methods because the number of extracted features in the LDA depends on
the number of classes. When the number of labeled samples is increased such as in
CASE 2 and 3, all the methods achieve better results. For all the three different cases,
it can be seen that S2MFA achieves much higher classification accuracies than the
other methods. This further demonstrates that, by simultaneously considering the
labeled and unlabeled samples, S2MFA could preserve the local spatial information
and improves the class discrimination of the data and thus could extract more effective
information for classification from a complicated HSI.
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Table 5.13: The classification results (%) of different DR methods on
the Houston dataset, the best results are in bold typeface. The row
of each class number (CN) is the mean accuracy ± standard deviation
based on ten runs.

CN PCA S-SAE FA MFA LDA NWFE SELF SELD S2MFA
1 98.05 82.43 96.37 98.98 ± 0.89 80.53 80.72 ± 0.45 82.43 ± 0.60 82.53 ± 0.03 82.43 ± 0.07
2 96.01 76.79 95.97 95.33 ± 1.63 80.92 82.99 ± 0.18 83.55 ± 0.13 83.18 ± 0.13 83.55 ± 0.53
3 100 92.87 100 99.76 ± 0.24 100 99.42 ± 0.58 100 100 100
4 98.05 89.49 97.72 99.89 ± 0.32 92.90 89.49 ± 0.94 91.95 ± 0.40 90.44 ± 1.47 89.87 ± 0.94
5 97.41 100 97.11 98.42 ± 0.82 96.97 98.86 ± 0.38 98.67 ± 0.33 97.16 ± 0.27 100
6 99.94 95.80 95.3 47.24 ± 0.80 93.71 95.11 ± 0.21 95.11 ± 0.05 95.80 ± 2.47 94.41 ± 0.99
7 81.34 78.64 87.91 66.22 ± 1.38 84.80 79.76 ± 2.44 80.88 ± 1.12 74.81 ± 0.40 72.97 ± 0.46
8 81.45 98.39 84.18 84.06 ± 1.14 71.13 72.46 ± 4.73 54.70 ± 1.07 71.04 ± 0.34 82.06 ± 0.62
9 83.40 85.65 78.08 87.65 ± 1.04 72.52 75.54 ± 1.19 74.88 ± 2.27 63.08 ± 0.67 89.97 ± 1.07
10 70.03 49.04 65.32 86.21 ± 0.24 73.17 81.27 ± 3.21 91.89 ± 2.39 57.92 ± 4.51 95.95 ± 1.05
11 67.86 85.96 57.04 68.21 ± 0.16 85.39 93.55 ± 2.10 87.67 ± 1.74 82.83 ± 1.41 94.51 ± 0.35
12 85.50 89.63 82.68 95.80 ± 2.28 82.52 85.11 ± 1.86 89.24 ± 0.07 66.19 ± 2.24 96.64 ± 0.20
13 30.69 73.68 43.85 92.52 ± 3.26 70.53 70.88 ± 1.74 75.79 ± 0.74 64.21 ± 0.25 77.90 ± 1.23
14 99.18 100 89.05 94.64 ± 0.83 99.19 99.60 ± 0.31 99.60 ± 0.04 98.79 ± 0.29 100
15 100 86.89 100 99.54 ± 0.54 95.98 98.73 ± 0.50 97.67 ± 0.45 97.89 ± 0.15 100
AA 85.93 85.68 84.70 87.68 ± 0.36 85.35 86.94 ± 0.47 86.94 ± 0.28 81.72 ± 0.08 90.75 ± 0.42
OA 83.45 84.39 82.05 86.65 ± 0.42 83.59 85.35 ± 0.56 85.07 ± 0.38 79.09 ± 0.32 89.78 ± 0.63
KC 0.8207 0.8304 0.8053 0.8552 ± 0.0046 0.8223 0.8412 ± 0.0059 0.8380 ± 0.0041 0.7730 ± 0.0035 0.8891 ± 0.0069

Table 5.14: CPU processing times in seconds with different number
of features (NF) for different DR methods applied on the Indian Pines
dataset.

NF PCA S-SAE FA MFA LDA NWFE SELF SELD S2MFA
5 0.14 135.90 14.36 1.51 0.08 0.52 0.04 0.33 0.29
20 0.14 331.48 73.48 3.84 0.09 0.54 0.04 0.37 0.43
50 0.15 594.76 121.61 7.51 0.09 0.69 0.05 0.38 0.76

Table 5.15: CPU processing times in seconds with different number of
features (NF) for different DR methods applied on the Houston dataset.

NF PCA S-SAE FA MFA LDA NWFE SELF SELD S2MFA
5 1.02 4362.81 18.19 50.64 0.78 4.81 118.29 47.56 2.86
20 2.86 7608.93 21.89 105.85 0.83 4.95 127.52 43.88 5.34
50 2.94 8520.14 28.36 320.58 0.88 5.29 124.69 45.60 20.14
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Figure 5.21: Classification maps for the Houston dataset obtained by
SVM classification after using (a) PCA, (b) S-SAE, (c) FA, (d) MFA,
(e) LDA, (f) NWFE, (g) SELF, (h) SELD, and (i) S2MFA DR methods.
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5.3 Conclusions

For the Houston dataset, Fig. 5.21 shows the classification maps obtained by differ-
ent methods used in the chapter. From the figures, we can see that the proposed
S2MFA method outperforms all other methods. Table 5.13 presents the quantitative
classification results of the different dimensionality reduction (DR) methods for Hous-
ton dataset. As shown in Table 5.13, the performance of S2MFA is better than PCA,
S-SAE, FA, MFA, NWFE, SELF, and SELD. S2MFA improves the OA by 10.69%
compared to other methods in the experiment. Table 5.13 also presents the standard
deviations of the classification results. It can be seen that PCA, FA, and LDA present
the most stable results. S2MFA has slight fluctuation for each experiment and give
relatively stable results. Table 5.15 compares the CPU processing time (in seconds)
used by the different DR methods for the Houston dataset. It can be seen that the
running times for S2MFA was 2.86, 5.34, and 20.14 s when the number of features are
equal to 5, 20, and 50, respectively.

5.3 Conclusions
In this chapter, six MFA low-rank based unsupervised, supervised, and semi-supervised
FE methods were proposed for HSI. There are MFA, DMFA, SMFA, SDMFA, S2MFA
and S2DMFA and were proposed for feature extraction of HSIs and were then used
for classification of them.

MFA, DMFA, SMFA, SDMFA, S2MFA and S2DMFA are probabilistic DR methods,
instead of assuming that a whole HSI obeys a Gaussian distribution, the methods use
a Gaussian mixture model to extract more effective information for DR. The Gaussian
mixture model is used for MFA to allow a low-dimensionality representation of the
Gaussian. A two-layer MFA, DMFA, utilizes the samples from the posterior at the
first layer to an MFA model at the second layer. MFA and DMFA are two unsupervised
DR method. The methods are particularly suitable for DR of HSI with a non-normal
distribution and unlabeled samples. SMFA and SDMFA are supervised DR methods
and use labeled samples to extract features. SMFA and SDMFA can be effectively
used to DR of HSI with a non-normal distribution and labeled samples.

S2MFA and S2DMFA are semi-supervised DR methods, which simultaneously consider
labeled and unlabeled samples to extract features. S2MFA uses a Gaussian mixture
model to segment image to different parts, each part follows a Gaussian distribution
and contains many labeled and unlabeled samples and uses a factor analyzer to get a
factor loading matrix. This matrix uses labeled samples to improve the class discrim-
ination and employs both labeled and unlabeled samples to preserve the local spatial
features of the data and then is used for transforming the original HSI to an opti-
mal low-dimensional subspace to achieve DR. S2DMFA is a two-layer S2MFA. S2MFA
and S2DMFA are particularly suitable for DR of HSI with a complicated probability
distribution and labeled and unlabeled samples.

Based on the six DR methods, we also proposed a framework for HSI classification, the
overall accuracy of a classifier on validation samples is used to automatically determine
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the optimal number of features of DR for HSI classification. This framework can
automatically extract the most effective feature for HSI classification. To validate the
performance of DR, we conduct experiments in terms of SVM classification based on
four real HSIs. The experimental results show that our proposed methods can give
better results than statistical DR comparison methods.
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Chapter

Conclusions 6
In this chapter, the conclusions and main contributions are reviewed. Future re-
search topics are also discussed.

•

6.1 Main Contributions
In this thesis, two low-rank based and one sparse and low-rank based HSI denoising
methods have been presented, a series of MFA low-rank based methods have been
proposed for HSI denoising and feature extraction. The main contributions of this
thesis are listed here.

6.1.1 Low-Rank Based Methods

Two low-rank based methods, non-local means low-rank approximation (NLMLRA)
and wavelet-based block low-rank representations (WBBLRR), are presented. NLMLRA
is an extension of the idea of [69], which focuses on grayscale images. The distinction
of our proposed method is that we use full-band pixel-based patches to calculate the
weighting function to take full advantage of the high spatial and spectral correlation
and constructs a low-rank approximation function for denoising operator to improve
the NLM denoised performance rather than only using spatial information alone as
in [69]. To improve the practicability and reduce computational cost, Chebyshev poly-
nomials are used in the NLMLRA. WBBLRR uses 3-D wavelet transformation to de-
compose HSI into different blocks, where each block utilizes a low-rank representations
model to obtain the denoised block, and then uses inverse 3-D wavelet transformation
for all the denoised blocks to obtain the denoised HSI.

NLMLRA and WBBLRR denoising methods were tested using simulated and real
datasets. The simulated datasets are Washington DC Mall (WDCM) and University
of Pavia (UP) datasets. The Gaussian noise is added to the simulated datasets. To
evaluate the denoised results of the simulated datasets, the quantitative metrics are
mean structural similarity (MSSIM) and peak signal-to-noise ratio (PSNR) are used.
The proposed methods are shown to give better results than the comparison methods
for HSI denoising.

6.1.2 Sparse and Low-Rank Based Method

A spectral-spatial transform-based sparse and low-rank representations (SSWSLRR)
method using 3-D orthogonal transform (3-DOT) is proposed for HSI denoising. 3-D
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discrete orthogonal wavelet transform (3-D DWT) and 3-D discrete orthogonal cosine
transform (3-D DCT) are two examples of 3-DOT appropriate for denoising since they
concentrate the signal in few transform coefficients. SSSLRR-DWT uses 3-D DWT
to be the 3-DOT to decompose noisy HSI to sparse wavelet coefficients. A weighted
nuclear norm low-rank regularizer was proposed for the global image, which gives more
flexibility than the nuclear norm. The weighted nuclear norm low-rank regularizer uses
different weights to shrink the singular values of the wavelet coefficient matrix.

HSI has sparse and low-rank characteristics and can be preserved using the `1 penalty
and the weighted nuclear norm low-rank penalty, respectively. Thus, a novel sparse
and low-rank penalized model was proposed using both the `1 penalty and the weighted
nuclear norm low-rank penalty. SSSLRR-DWT uses the sparse and low-rank penal-
ized model can adaptively shrink wavelet coefficients and penalize the singular values
of the wavelet coefficient matrix. Thus, SSSLRR-DWT uses the sparse and low-rank
penalized model to remove noise effectively and recover the denoised image. The al-
gorithm for SSSLRR-DWT was developed using ADMM. To analyze the effectiveness
of different penalties for SSSLRR-DWT both in signal and wavelet domain, four dif-
ferent methods were analyzed. The analysis shows that SSSLRR-DWT uses both `1
penalty and weighted nuclear norm low-rank penalty in the wavelet domain yields
better denoising results than the other methods. Moreover, a new SSSLRR-DCT
denoising method was also proposed, which uses the 3-D discrete orthogonal cosine
transform (3-D DCT) for SSSLRR. The analysis shows that both SSSLRR-DWT and
SSSLRR-DCT have good denoising results.

In the experiments, two simulated and two real HSI datasets were used to demonstrate
the effectiveness of the proposed method for HSI denoising. To evaluate the denoised
results of the simulated datasets, the quantitative metrics are PSNR, MSSIM, the
mean feature similarity (MFSIM), and the spectral angle mapper (SAM) are used.
The experimental results show that the obtained PSNR, MSSIM, MFSIM, and SAM of
the proposed SSSLRR method outperforms comparison methods. In the real datasets
experiments, SSSLRR achieve satisfactory denoising results.

6.1.3 MFA Low-Rank Based Methods for HSI Denoising

Four MFA low-rank based HSI denoising methods are proposed. There are MFA,
WMFA-2D, WMFA-3D, and LSSC-AMFA denoising mehtods. MFA utilizes Gaussian
mixture model to segment the original HSI to different parts, where each part follows
a Gaussian distribution and then utilizes a factor analyzer to get a low-rank factor
loading matrix, and finally uses the inverse transformation of the low-rank factor
loading matrix to get the hyperspectral data without noise. WMFA-2D is a MFA
in the 2-D wavelet domain. In WMFA-2D, the whole HSI is firstly decomposed into
sub-images (approximation coefficients (AC1) sub-image and detail coefficients sub-
images) using wavelet decomposition. Secondly, using all the sub-images to compose
a new hyperspectral dataset with the same size as the original HSI. Thirdly, this
new dataset is put in the MFA-2D algorithm to get a denoised dataset. Fourthly, the
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denoised dataset is split to different sub-images (new approximation coefficients (AC2)
sub-image and new detail coefficients sub-images) using the inverse way as the process
of composition in the second step. Finally, using wavelet reconstruction transformation
based on the approximation coefficients (AC1) sub-image and new detail coefficients
sub-images to reconstruct a new denoised HSI with the same size as the original HSI.
WMFA-3D is a MFA in the 3-D wavelet domain and is similar as WMFA-2D. MFA,
WMFA-2D, and WMFA-3D are used for removing Gaussian noise. HSIs are usually
corrupted by different kinds of noise such as missing vertical lines (MVL), missing
horizontal lines (MHL), missing pixels (MP), salt and pepper noise (SP), and Gaussian
noise. The proposed LSSC-AMFA method, hierarchically, removes the mixed noises.
Firstly, we develop a novel local spectral-spatial correlation (LSSC) method to remove
the MVL and MHL noises. Then we propose an automatic mixtures of factor analyzers
(AMFA) method to further remove the MP, SP, and Gaussian noises. The performance
of the proposed methods are validated in experiments using both simulated and real
HSI datasets. These experimental results show that the proposed methods outperform
the state-of-the-art denoising methods in terms of PSNR for the simulated datasets.
For the real dataset, experimental results show visual improvements.

6.1.4 MFA Low-Rank Based Methods for HSI Feature Ex-
traction

Six MFA low-rank based unsupervised, supervised, and semi-supervised feature extrac-
tion (FE) methods are proposed. There are MFA, DMFA, SMFA, SDMFA, S2MFA
and S2DMFA methods. MFA and DMFA are unsupervised FE methods. MFA is the
same as it used for HSI denoising, the Gaussian mixture model is used for MFA to
allow a low-dimensionality representation of the Gaussian. DMFA is a two-layer MFA
and utlizes the sampples from the posterior at the first layer to an MFA in the sec-
ond layer. The methods are particularly suitable for FE of HSI with a non-normal
distribution and unlabeled samples. SMFA and SDMFA are supervised DR methods
and use labeled samples to extract features. SMFA and SDMFA can be effectively
used to FE of HSI with a non-normal distribution and labeled samples. S2MFA and
S2DMFA are semi-supervised dimensionality reduction (DR) methods, which simul-
taneously consider labeled and unlabeled samples to extract features. S2MFA uses a
Gaussian mixture model to segment image to different parts, each part follows a Gaus-
sian distribution and contains many labeled and unlabeled samples and uses a factor
analyzer to get a factor loading matrix. This matrix uses labeled samples to improve
the class discrimination and employs both labeled and unlabeled samples to preserve
the local spatial features of the data and then is used for transforming the original
HSI to an optimal low-dimensional subspace to achieve DR. S2DMFA is a two-layer
S2MFA. S2MFA and S2DMFA are particularly suitable for DR of HSI with a com-
plicated probability distribution and labeled and unlabeled samples. Based on the six
dimensionality reduction methods, we also proposed a framework for HSI classifica-
tion, the overall accuracy of a classifier on validation samples is used to automatically
determine the optimal number of features of DR for HSI classification. This frame-
work can automatically extract the most effective feature for HSI classification. To
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validate the performance of DR, we conduct experiments in terms of SVM classifica-
tion based on real HSIs. The experimental results show that the proposed methods
can give better results than comparison methods.

6.2 Further work
The work presented here can be extended or continued in a number of ways. Some
possible future research topics are listed below.

• The proposed denoising methods in this thesis are used for HSI. These methods
can be used for other different datasets, such as multispectral images, magnetic
resonance images (MRI) and functional MRI.

• The proposed methods in this thesis can be used for other HSI applications, such
as HSI classification, super-resolution, and unmixing.

• Tensor based low-rank model can be further developed for our SSWSLRRmethod.

• Combining CNN with statistic model for HSI denoising is our interest as a future
research project.
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Evaluation Metrics A
Here are detailed evaluation metrics that are used to evaluate denoising and classi-
fication results.

•

A.1 Denoising Evaluation Metrics
To evaluate the denoised results of the simulated datasets, the quantitative metrics
are the peak signal-to-noise ratio (PSNR), the mean structural similarity (MSSIM),
the mean feature similarity (MFSIM), and the spectral angle mapper (SAM) are used.

A.1.1 PSNR

The definition of PSNR is

PSNR = 10 log10( max2(x)
1
P ‖ x− x̂ ‖2

2
), (A.1)

where x is a vectorized the clean image of length P , x̂ is the vectotized denoised image.

A.1.2 MSSIM and MFSIM

MSSIM is the bandwise mean of SSIM, the SSIM of ith band is defined as [133],

SSIMi,j =
(2µxi,jµx̂i,j + c1)(2σ

xi,j x̂i,j
+ c2)

(µ2
xi,j + µ2

x̂i,j
+ c1)(σ2

xi,j + σ2
x̂i,j

+ c2) , (A.2)

where µxi,j , µx̂i,j , σxi,j , and σx̂i,j are mean and standard deviation for the reference
and estimated images in a local 11×11 window centered at pixel i, respectively. σ

xi,j x̂i,j

is the cross-covariance between two images. c1 = (K1M)2 and c2 = (K2M)2, where
K1 = 0.01,K2 = 0.03, andM is the dynamical range of the image that is set to 1 in this
paper. PSNR and MSSIM assess the similarity of the target image and the reference
image based on the mean square error and the structural consistency, respectively.
MFSIM focuses on the perceptual consistency based on the phase congruency and
gradient magnitude between the target image and the reference image [134]. The
larger the PSNR, MSSIM, and FSIM are, the closer the target HSI is to the reference
one.
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A.1.3 SAM

SAM calculates the mean angle between spectrum vectors of the target image and the
reference image across all spatial positions. The definition of SAM in degrees is

SAM = 1
nB

nB∑
p=1

arccos
(

xT(p)x̂(p)

‖x(p)‖‖x̂(p)‖

)
180
π
, (A.3)

where x(p) and x̂(p) are the reference image and estimated image at pixel p, respec-
tively. Different from the former three metrics, the smaller the SAM is, the better
does the target HSI estimate the reference one.

A.2 Classification Evaluation Metrics
To evaluate the classification results, the classification metrics used are overall accuracy
(OA), class accuracy (CA), average accuracy (AA), and Kappa coefficient (KC).

A.2.1 OA

OA is the proportion of the correctly classified samples over all the test samples. We
introduce confusion matrix (C = [ci,j ]) to clearly explain OA. Table A.1 shows the
confusion matrix for a 4-class classification problem. The OA is defined as

OA =
∑
i cii∑
i,j ci,j

. (A.4)

Table A.1: Confusion matrix for a 4-class classification problem

Predicted Class Actual Class
Class 1 Class 2 Class 3 Class 4

Class 1 c11 c12 c13 c14
Class 2 c21 c22 c23 c24
Class 3 c31 c32 c33 c34
Class 4 c41 c42 c43 c44

A.2.2 CA

CA is the ratio of the correctly classified samples for each class and is defined as

CAj = cjj∑
i ci,j

. (A.5)
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A.2.3 AA

AA is the average of all the CAs and is given as

AA = 1
n

∑
i

CAi, (A.6)

where n is the number of classes.

A.2.4 KC

KC is a classification statistic metric and is given by

KC = p0 − pe
1− pe

, (A.7)

where p0 = OA, pe =
∑

i
‖c(i)‖1‖ci‖1

(
∑

i
ci,j)2 .
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Hyperspectral Data B
This appendix describes the hyperspectral data sets used in this thesis.

•

B.1 Washington DC Mall
The Washington DC Mall dataset was collected by the Hyperspectral Digital Imagery
Collection Experiment (HYDICE) sensor and has 1208 × 307 pixels with a spatial
resolution of 2 m and 191 spectral bands. Figure B.1 shows the false-color composite
of the Washington DC Mall image.

Figure B.1: Washington DC Mall dataset.

B.2 University of Pavia
The University of Pavia dataset was captured by the Reflective Optics System Imaging
Spectrometer sensor over the city of Pavia, Italy. This image has 610×340 pixels with
a spatial resolution of 1.3 m and 115 spectral bands coverage ranging from 0.43 µm
to 0.86 µm. In the experiments, this data contains nine classes of interest and has
103 spectral bands after removing 12 noisy bands. Figure B.2 shows the false-color
composite of the University of Pavia image and the corresponding ground reference
map.
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Figure B.2: University of Pavia dataset. (a) Three-band false-color
image. (b) Ground truth-map reference.

B.3 Indian Pines
The Indian Pines dataset was collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor at Indian Pines. The image contains 145 × 145 pixels
with a spatial resolution of 20 m and 220 spectral bands from 400 nm to 2500 nm. In
the experiments, noisy bands and atmospheric vapor absorption bands are excluded
leaving 200 spectral bands. Figure B.3 shows the false-color composite of the Indian
Pines image and the corresponding ground reference map, respectively.
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Figure B.3: Indian Pines dataset. (a) Three-band false-color image. (b)
Ground truth-map containing nine land-cover classes.

B.4 Urban
The Urban is a 307 × 307 pixel HYDICE (Hyperspectral Digital Imagery Collection
Experiment) hyperspectral image. The area is an urban landscape, showing trees,
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grass fields, houses, and roads. The dataset is composed of 210 spectral bands, has a
spectral resolution of 10nm and covers the 400 − 2400nm spectral range. Figure B.4
shows the false-color composite of the Urban image.

Figure B.4: Urban dataset.

B.5 Houston
The Houston dataset was provided by the IEEE Geoscience and Remote Sensing So-
ciety (GRSS) for the Data Fusion Contest in 2013. This image is of the University of
Houston campus and the neighboring urban area. The dataset has 349× 1905 pixels
with a spatial resolution of 2.5 m and 114 spectral bands coverage ranging from 380
nm to 1050 nm. This HSI contains fifteen classes of interest. Figure B.5 shows the
false-color composite of the Houston image and the corresponding ground reference
map, respectively.

B.6 Salinas
The Salinas dataset was acquired by the AVIRIS sensor over Salinas Valley, California.
This image has 512 × 217 pixels with a spatial resolution of 3.7 m and 204 spectral
bands after removing 20 water absorption bands. This image contains sixteen classes
of interest. Figure B.6 shows the false-color composite of the Salinas image and the
corresponding ground reference map.
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Figure B.5: Houston dataset. (a) Three-band false-color image. (b)
Ground truth-map reference.
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Figure B.6: Salinas dataset. (a) Three-band false-color image. (b)
Ground truth-map reference.
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